
A New Refinement Type System for Automated
νHFLZ Validity Checking

Hiroyuki Katsura1 , Naoki Iwayama1, Naoki Kobayashi1 , and Takeshi
Tsukada2

1 The University of Tokyo, {katsura,iwayama,koba}@kb.is.s.u-tokyo.ac.jp
2 Chiba University, tsukada@math.s.chiba-u.ac.jp

Abstract. Kobayashi et al. have recently shown that various verifica-
tion problems for higher-order functional programs can naturally be re-
duced to the validity checking problem for HFLZ, a higher-order fixpoint
logic extended with integers. We propose a refinement type system for
checking the validity of νHFLZ formulas, where νHFLZ is a fragment of
HFLZ without least fixpoint operators, but sufficiently expressive for en-
coding safety property verification problems. Our type system has been
inspired by the type system of Burn et al. for solving the satisfiability
problem for HoCHC, which is essentially equivalent to the νHFLZ va-
lidity checking problem. Our type system is more expressive, however,
due to a more sophisticated subtyping relation. We have implemented
a type-based νHFLZ validity checker ReTHFL based on the proposed
type system, and confirmed through experiments that ReTHFL can
solve more instances than Horus, the tool based on Burn et al.’s type
system.

1 Introduction

Kobayashi et al. [7,16] have recently shown that various verification problems
for higher-order functional programs can naturally be reduced to the validity
checking problem for HFLZ, an extension of HFL [15] with integers. In this paper,
we focus on a fragment of HFLZ called νHFLZ, which is a fragment of HFLZ
without least fixpoint operators, and propose an automated method for solving
the validity checking problem (which, in turn, serves as an automated method
for higher-order program verification, thanks to the reduction mentioned above).
The fragment νHFLZ is sufficiently expressive for encoding safety properties of
programs. A validity checker for νHFLZ can also be used as a building block for
a validity checker for full HFLZ, as briefly discussed in [16], and worked out for
the first-order fixpoint logic [6].

To see the connection between program verification and νHFLZ validity
checking, let us consider the following ML program.

let rec sum n k =
if n <= 0 then k n
else sum (n - 1) (fun r -> k (n + r))

let main m = sum m (fun r -> assert(r >= m))

http://orcid.org/0000-0003-3420-4207
http://orcid.org/0000-0002-0537-0604
http://orcid.org/0000-0002-2824-8708

2 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

This program calculates the sum of integers from 1 to n, and then asserts that
the value is no less than n. Suppose that we wish to verify that the assertion
never fails for any integer n. By using the reduction of Kobayashi et al. [7], the
verification problem can be reduced to the validity checking problem for the
following νHFLZ formula.

ψ := ∀m.(νSum.λn.λk.
(n ≤ 0 ⇒ k n)∧
(n > 0 ⇒ Sum (n− 1) (λr.k (n+ r)))

) m (λr.r ≥ m)

(1)

Here, the part νSum.λn. · · · denotes the greatest predicate such that Sum =
λn. · · ·. A detailed explanation is deferred to Section 2, but the reader should be
able to notice the close correspondence between the program and the formula
above: for example, the part (n ≤ 0 ⇒ · · ·) ∧ (n > 0 ⇒ · · ·) corresponds to the
conditional expression in the program.

In this paper, we propose a refinement type system for proving the validity
of a νHFLZ formula, and develop an automated procedure for refinement type
inference. In our refinement type system, the type of propositions is refined to
a type of the form •⟨θ⟩, which is the type of propositions that hold whenever θ
holds; in other words, if a proposition ψ has type •⟨θ⟩, then θ is an underapprox-
imation of ψ (with respect to the order false < true). For example, νHFLZ
formula x ≥ 0 has type •⟨x > 0⟩ because x > 0 ⇒ x ≥ 0 holds.

Our type system has been inspired by that of Burn et al. [2] for proving
the satisfiability of Higher-order Constrained Horn Clauses (HoCHC), a higher-
order extension of Constrained Horn Clauses (CHC) [1]. In fact, the HoCHC
satisfiability problem3 is essentially the same as the νHFLZ validity checking
problem (in the sense that for any HoCHC C, there exists a νHFLZ formula
ψC such that C is satisfiable if and only if ψC is valid, and vice versa). The
main difference between our type system and theirs is in the subtyping relation.
We introduce more sophisticated subtyping relations, which makes the resulting
subtyping relation complete with respect to the semantic subtyping relation. In
contrast, the subtyping relation in Burn et al.’s system is too conservative, which
makes their type system too weak; in fact, as confirmed through experiments,
there are many νHFLZ formulas whose validity can be proved in our type system
but the satisfiability of the corresponding HoCHC cannot be proved in Burn et
al.’s type system.

An alternative existing approach to automatically proving the validity of a
νHFLZ formula is a combination of (pure) HFL model checking and predicate
abstraction [5]. Though our type-based approach is less powerful in theory than
the model checking approach, ours tends to be faster, as confirmed by our ex-
periments. Thus, we consider that the two approaches are complementary.

The rest of this paper is structured as follows. Section 2 reviews the definition
of νHFLZ. Section 3 presents our refinement type system for νHFLZ and proves
3 Throughout the paper, we assume integer arithmetic as the underlying constraint

language of HoCHC.

A New Refinement Type System for Automated νHFLZ Validity Checking 3

the soundness of the type system and the relative completeness of the subtyping
relation. Section 4 discusses the relationship between our type system for νHFLZ
and Burn et al.’s one for HoCHC. Section 5 presents an automated method
for νHFLZ validity checking based on our type system. Section 6 reports an
implementation and experimental results. Section 7 discusses related work, and
Section 8 concludes the paper.

2 Preliminaries: νHFLZ

We review the syntax and semantics of νHFLZ [7], which is a simply-typed
higher-order logic with arithmetic operations and the greatest fixed-point oper-
ator.

2.1 Syntax

The logic νHFLZ is simply typed. The syntax of simple types is given by:

ρ ::= • | η → ρ and η ::= ρ | Int.

The type • is for propositions and Int is for integers. The types are constructed
from these atomic types and the function type constructor →. The above syn-
tax restricts occurrences of Int only to argument positions. The reason will be
explained in the next subsection.

The syntax of νHFLZ formulas is given by:

ψ ::= n | ψ1 op ψ2 | p(ψ1, · · · , ψn) | tt | ff | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ∀X : Int.ψ
| X | λX : η.ψ | ψ1 ψ2 | νX : ρ.ψ

where n ranges over integers, op over basic binary operations on integers (such
as summation and multiplication), p over basic predicates on integers (such as
equality), and X over variables. The constructors in the first line are standard;
those in the second line are those from the simply-typed λ-calculus (i.e. variable
X, abstraction λX : η.ψ and application ψ1 ψ2) and the greatest fixed-point
operator νX : ρ.ψ. The occurrences of X in ∀X : Int.ψ, λX : η.ψ and νX :
ρ.ψ are binding occurrences. We shall not distinguish α-equivalent terms. We
shall often omit the type annotations. Lower case letters such as x, y and z are
sometimes used as variables of type Int.

The typing rules are straightforward. A judgment is a triple Γ ⊢H ψ : η,
where Γ is a (simple) type environment (i.e. finite map from variables to simple
types). The type system is basically the simply-typed λ-calculus with typed
constants

n : Int op : Int → Int → Int p : Int → · · · → Int → •
tt,ff : • ∨,∧ : • → • → •

4 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

and the following additional typing rules:

Γ,X : Int ⊢H ψ : •
Γ ⊢H ∀X : Int.ψ : •

and
Γ,X : ρ ⊢H ψ : ρ

Γ ⊢H νX : ρ.ψ : ρ
.

The complete list of typing rules can be found in Appendix A. In the sequel, we
shall consider only well-typed formulas.

A closed formula of type • is called a sentence.

Example 1. Let ψ be the νHFLZ formula defined by

ψ := νX : Int → •. λy : Int. y ̸= 0 ∧X (y + 1).

The meaning of this formula can be intuitively understood as follows. Since it is
a fixed-point, (the meaning of) this formula must be a solution of the equation

X = λy. y ̸= 0 ∧X (y + 1).

More specifically it is the greatest solution, where a predicate A is greater than
B if ∀n ∈ Z.(An⇒ B n).

A more intuitive way to guess the greatest solution is to iteratively apply the
equation. Since (the meaning of) ψ satisfies the above equation, one has

ψ n = (n ̸= 0) ∧ ψ (n+ 1) = (n ̸= 0) ∧ (n+ 1 ̸= 0) ∧ ψ (n+ 2) = · · ·
= (n ̸= 0) ∧ (n+ 1 ̸= 0) ∧ · · · ∧ (n+ k ̸= 0) ∧

This informal argument shows that ψ n must be false for every n ≤ 0. The
greatest solution is obtained by letting ψ n be true if ψ n does not have to be
false by this argument based on expansion of the definition. Hence ψ n is true
for every n > 0. ⊓⊔

2.2 Semantics

A type η is interpreted as a poset Dη and a formula ψ of type η as an element
of Dη. The formal definition is as follows.

The poset Dη = (Dη,⊑η) is defined by induction on η:

D• = {⊤,⊥} ⊑•= {(⊥,⊥), (⊥,⊤), (⊤,⊤)}
DInt = Z ⊑Int= {(n, n) | n ∈ Z}
Dη→ρ = {f ∈ Dη → Dρ | ∀x, y.(x ⊑η y ⇒ f(x) ⊑ρ f(y))}
⊑η→ρ= {(f, g) | ∀x ∈ Dη.f(x) ⊑ρ g(x)}.

We note that Dη→ρ is not the set of all functions but monotone functions.
Observe that Dρ is a complete lattice (i.e., for each subset A ⊆ Dρ, the greatest
lower bound

d
A of A exists). The interpretation DInt is not a complete lattice,

and this is why we distinguish Int from other simple types.

A New Refinement Type System for Automated νHFLZ Validity Checking 5

For a simple type environment Γ , we write [[Γ]] for the set of functions that
maps a variable X in (the domain of) Γ to an element of DΓ (X). We call an
element of [[Γ]] a valuation. Valuations are ordered by the point-wise ordering.

The interpretation [[ψ]] of a formula Γ ⊢H ψ : η is a monotone function from
[[Γ]] to Dη. It is defined by induction on ψ. For example,

[[νX : ρ.ψ]](χ) :=
l

{ v ∈ Dρ | v ⊑ρ [[ψ]](χ[X 7→ v]) }

where χ[X 7→ v] is the valuation defined by χ[X 7→ v](X) = v and χ[X 7→
v](Y) = χ(Y) (X ̸= Y). The right-hand-side of the above definition is an explicit
formula that calculates the greatest fixed-point of the mapping v 7→ [[ψ]](χ[X 7→
v]). The well-definedness and correctness of this explicit formula is ensured by the
facts that Dρ is a complete lattice and that v 7→ [[ψ]](χ[X 7→ v]) is monotone. We
omit other cases since they are straightforward; see Appendix B for the complete
definition.

We write the interpretation of a sentence ψ as [[ψ]] since it is independent
of a valuation (as a sentence has no free variable). If [[ψ]](∅) = ⊤, then the
sentence ψ is valid and we write |= ψ. The νHFLZ validity checking problem is
the problem of checking whether a given sentence is valid. Note that this problem
is undecidable in general.

Example 2. Let us consider the following formula νHFLZ formula:

ϕ := ∀m.(νSum.λn.λk.
(n > 0 ∨ k n)∧
(n ≤ 0 ∨ Sum (n− 1) (λr.k (n+ r)))

) m (λr.r ≥ m).

This formula is essentially the same as the example in Introduction (Section 1)
except that ⇒ is replaced with with other connectives (since ⇒ is not in νHFLZ).
The relationship between this formula and the safety verification of the program
at the beginning of Introduction can be now explained as follows.

The reduction of the program corresponds to the β-reduction, the expansion
of Sum (cf. Example 1), and some trivial rewriting of formulas such as (0 ̸=
0) ∨ δ −→ δ. The safety verification asks whether the program fails in some
finite steps. If the program fails, then the corresponding rewriting of the formula
shows that the formula is false. If there is no such rewriting, the formula is true
as expected since the greatest fixed-point is true “by default” (cf. Example 1).

⊓⊔

3 Refinement Type System

This section introduces a refinement type system, which our validity checker
is based on. The refinement type system introduced in this section is inspired
by and closely related to that of Burn et al. [2]. This section focuses on our
refinement type system; a comparison of the two systems is the topic of the next
section.

6 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

3.1 Syntax of Refinement Types

Our type system uses refinement types to describe properties of formulas. Here
we define the syntax and semantics of refinement types.

The syntax of refinement types is given by the following grammar:

arithmetic expressions a ::= n | x | op(a1, · · · ,an)

constraint formulas θ ::= tt | ff | p(a1, · · · ,an) | θ1 ∧ θ2 | θ1 ∨ θ2
extended constraint formulas Θ ::= θ | Θ1 ∧Θ2 | ∃x.Θ
refinement types τ ::= •⟨θ⟩ | x : Int → τ | τ1 → τ2.

The occurrence of x in x : Int → τ is a binding occurrence. We shall not distin-
guish between α-equivalent refinement types.

Each refinement type τ describes a property on formulas and semantic el-
ements of a simple type ρ. This relationship is formalized as the refinement
relation, which is defined by the following rules:

•⟨θ⟩ :: •
τ :: ρ

(x : Int → τ) :: (Int → ρ)

τ1 :: ρ1 τ2 :: ρ2
(τ1 → τ2) :: (ρ1 → ρ2)

.

For every refinement type τ , there exists a unique simple type ρ such that τ :: ρ.
We write Γ ⊢ τ :: ρ if τ :: ρ and fv(τ) ⊆ {x | Γ (x) = Int }.

The meaning of arithmetic expressions and constraint formulas should be
obvious. We explain the intuitive meaning of refinement types. If τ :: ρ, then τ
is for formulas of simple type ρ that satisfies a certain property.

A formula ψ of type • has the refinement type •⟨θ⟩ if θ implies ψ. More
precisely, the type judgement ψ : •⟨θ⟩ means “if θ holds, then the interpretation
of ψ is ⊤.” The simplest example is •⟨tt⟩; if ψ : •⟨tt⟩, then the interpretation
of ψ is ⊤. Another extreme example is •⟨ff⟩; ψ : •⟨ff⟩ holds for every formula ψ
of simple type • since the condition ff never holds. Both ψ and θ may contain
free variables. For example, ψ : •⟨x > 0⟩ holds if the interpretation of ψ[n/x] is
⊤ for every n > 0.

The meaning of the refinement type τ1 → τ2 is similar to the standard
function type. A formula ψ has type τ1 → τ2 just if ψ ϕ : τ2 for every formula ϕ
of type τ1.

The meaning of x : Int → τ is similar to the above case, but τ can refer to
the argument x in this case. For example, x : Int → •⟨x > 0⟩ is for formulas ψ
of simple type Int → • such that ψ n : •⟨n > 0⟩ for every n.4 In other words, it
is a type for predicates that are true on every positive integer.

It is worth emphasising that a refinement type describes a situation in which
a formula should be true. It does not say anything about a situation in which a
formula should be false. Therefore the constantly true function λX : ρ.tt has all
refinement type τ such that τ :: ρ → •. So a (valid) refinement type judgement
ψ : τ gives an underapproximation of ψ.

4 Equivalently, ψ x : •⟨x > 0⟩, provided that ψ has no free occurrence of x.

A New Refinement Type System for Automated νHFLZ Validity Checking 7

3.2 Semantics of Refinement Types

In order to clarify the informal definition of the meaning of refinement types
given above, we formalize the semantics of refinement types. For a refinement
type τ :: ρ, we give two interpretations. In the first interpretation, the refinement
type is interpreted as the subset (|τ |) ⊆ Dρ of semantic elements that satisfies
τ . This is a direct formarization of the above discussed meaning of refinement
types. In the second interpretation, the refinement type is seen as an element
γτ ∈ Dρ. As expected, the two interpretations are closely related: we have (|τ |) =
{ v ∈ Dρ | γτ ⊑ρ v }.

We give some auxiliary definitions. The interpretation [[θ]] of constraint for-
mulas θ is straightforward as constraint formulas can be seen as νHFLZ for-
mulas. It is a map from valuations α on free variables of θ to D• = {⊥,⊤}.
The interpretation can be naturally extended to extended constraint formulas
by [[∃x.Θ]](α) :=

⊔
v∈Z[[Θ]](α[x 7→ v]).

The first interpretation (|τ |) of a refinement type Γ ⊢ τ :: ρ is a function
from valuations α ∈ [[Γ]] to subsets (|τ |)(α) ⊆ Dρ of the interpretation of ρ. It is
defined by induction on the structure as follows:

(| • ⟨θ⟩|)(α) :=

{
{⊤} (if α |= θ)
{⊥,⊤} (if α ̸|= θ)

(|x : Int → τ |)(α) := { f ∈ DInt→ρ | ∀v ∈ DInt. f(v) ∈ (|τ |)(α[x 7→ v]) }
(|τ1 → τ2|)(α) := { f ∈ Dρ1→ρ2 | ∀v ∈ (|τ1|)(α). f(v) ∈ (|τ2|)(α) }.

This is basically a direct translation of the informal semantics discussed in the
previous subsection.

The second interpretation γτ is a map from [[Γ]] to Dρ, inductively defined
by

γ•⟨θ⟩(α) :=

{
⊤• (if α |= θ)
⊥• (if α ̸|= θ)

γx:Int→τ (α) :=
[
DInt ∋ v 7→ γτ (α[x 7→ v])

]
γτ1→τ2(α) :=

[
Dρ1 ∋ v 7→

{
γτ2(α) (if γτ1(α) ⊑ρ1

v)
⊥ρ2

(otherwise)

]

where we assume (τ1 → τ2) :: (ρ1 → ρ2) in the last case. Here ⊤ρ and ⊥ρ are the
greatest and least element of Dρ. The element γτ (α) is the minimum element in
(|τ |)(α).

Lemma 1. Assume Γ ⊢ τ :: ρ and α ∈ [[Γ]]. Then

∀v ∈ Dρ.
[
v ∈ (|τ |)(α) ⇐⇒ γτ (α) ⊑ρ v

]
.

8 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

∆(x) = τ

∆ ⊢ x : τ
(RVar)

∆ ⊢ ψ : x : Int → τ

∆ ⊢ ψ a : [a/x]τ
(RAppI)

∆ ⊢ ψ1 : •⟨θ1⟩ ∆ ⊢ ψ2 : •⟨θ2⟩
∆ ⊢ ψ1 ∧ ψ2 : •⟨θ1 ∧ θ2⟩

(RAnd)
∆,X : τ ⊢ ψ : τ

∆ ⊢ νX.ψ : τ
(RGfp)

∆,x : Int ⊢ ψ : τ

∆ ⊢ λx.ψ : x : Int → τ
(RAbsI)

∆,x : Int ⊢ ψ : •⟨θ⟩ x ̸∈ fv(θ)
∆ ⊢ ∀xInt.ψ : •⟨θ⟩

(RAllI)

∆ ⊢ p(a1, · · · ,an) : •⟨p(a1, · · · ,an)⟩
(RPred)

∆ ⊢ ψ1 : τ1 → τ2 ∆ ⊢ ψ2 : τ1

∆ ⊢ ψ1 ψ2 : τ2
(RApp)

∆ ⊢ ψ1 : •⟨θ1⟩ ∆ ⊢ ψ2 : •⟨θ2⟩
∆ ⊢ ψ1 ∨ ψ2 : •⟨θ1 ∨ θ2⟩

(ROr)

∆ ⊢ ψ : τ1 ∆; tt ⊢ τ1 ≺ τ2

∆ ⊢ ψ : τ2
(RSub)

∆,x : τ1 ⊢ ψ : τ2

∆ ⊢ λx.ψ : τ1 → τ2
(RAbs)

Fig. 1. Refinement typing rules

∆ |= Θ ∧ θ2 ⇒ θ1

∆;Θ ⊢ •⟨θ1⟩ ≺ •⟨θ2⟩
(S-Bool)

∆,x : Int;Θ ⊢ τ1 ≺ τ2

∆;Θ ⊢ x : Int → τ1 ≺ x : Int → τ2
(S-IntFun)

∆;Θ ∧ rty(τ ′2) ⊢ τ ′1 ≺ τ1 ∆;Θ ⊢ τ2 ≺ τ ′2

∆;Θ ⊢ τ1 → τ2 ≺ τ ′1 → τ ′2
(S-Fun)

Fig. 2. Subtyping rules

3.3 Typing Rules

Now we define our refinement type system by giving the typing rules.
A refinement type environment ∆ is a finite map from a subset of variables

to refinement types or Int. We write ∆ :: Γ if the domains of ∆ and Γ coincide
and ∆(X) :: Γ (X) for every X in the domain. Here we assume Int :: Int.

A refinement type judgement is a triple ∆ ⊢ ψ : τ . We shall only consider a
refinement type judgement that refines a simple type judgement. That means,
when we consider ∆ ⊢ ψ : τ , we implicitly assume a simple type judgement
Γ ⊢H ψ : ρ and refinement relations ∆ :: Γ and Γ ⊢ τ :: ρ.

Figure 1 shows typing rules of the refinement type system. We explain some
key rules. The rule RAnd says that θ1 ∧ θ2 is an underapproximation of ψ1 ∧ψ2

if θi is an underapproximation of ψi for i = 1, 2. The rule RAppI substitutes
the actual argument a for x in τ . The rule RGfp is the standard coinductive
(i.e. greatest) fixed-point rule, saying that the fixed-point νX.ψ has type τ if ψ
has type τ under the assumption that X has type τ . The most important rule
for this paper is RSub, which allows us to construct a derivation of ∆ ⊢ ψ : τ2
from that of ∆ ⊢ ψ : τ1 under a certain assumption. We explain this rule in more
detail.

The rule RSub refers to the subtyping judgement ∆;Θ ⊢ τ1 ≺ τ2, defined
by the subtyping rules listed in Fig. 2. Among the rules in Fig. 2, S-Fun is the
only nontrivial rule. Similar to the standard subtyping rule for function types,
it concludes τ1 → τ2 ≺ τ ′1 → τ ′2 from τ ′1 ≺ τ1 and τ2 ≺ τ ′2. A notable point is

A New Refinement Type System for Automated νHFLZ Validity Checking 9

that the assumption for τ ′1 ≺ τ1 is strengthened by rty(τ ′2), which is defined by
the following equations:

rty(•⟨θ⟩) := θ rty(x:Int → τ) := ∃x.rty(τ) and rty(τ1 → τ2) := rty(τ2).

A key property of rty(τ) is the following lemma.

Lemma 2. Assume Γ ⊢ τ :: ρ and α ∈ [[Γ]]. If α ̸|= rty(τ), then (|τ |)(α) = Dρ.

This means that, if rty(τ) is false, then τ2 is the trivial property that all elements
satisfy. Therefore, to show that τ ≺ τ ′, we can assume without loss of generality
that rty(τ ′) holds because otherwise τ ≺ τ ′ trivially holds. This explains why
we can assume rty(τ ′2) in the premise of S-Fun.5

The significance of the assumption rty(τ ′2) in S-Fun is demonstrated by the
next example.

Example 3. Recall the formula ψ in Introduction (Section 1) and Example 2:

∀m.(νSum.λn.λk.(n > 0∨k n)∧(n ≤ 0∨Sum (n−1) (λr.k(r+n))))m (λr.r ≥ m).

We would like to show that ⊢ ψ : •⟨tt⟩, which implies the validity of ψ as we
shall see. The most interesting part is the typing of (νSum. . . .):

⊢ (νSum. . . .) : n : Int → (x : Int → •⟨x ≥ n⟩) → •⟨tt⟩.

Let ∆ be the refinement type environment:

Sum :
(
n :Int → (x :Int → •⟨x ≥ n⟩) → •⟨tt⟩

)
, n :Int, k :

(
x :Int → •⟨x ≥ n⟩

)
.

It suffices to show:

∆ ⊢ (n > 0 ∨ k n) ∧ (n ≤ 0 ∨ Sum (n− 1) (λr.k(r + n))) : • ⟨tt⟩.

We have:

...
(n > 0 ∨ k n) : •⟨tt⟩

n ≤ 0 : •⟨n ≤ 0⟩

...
Sum (n− 1) (λr.k(r + n)) : •⟨n > 0⟩

(n ≤ 0 ∨ Sum (n− 1) (λr.k(r + n))) : •⟨tt⟩
(n > 0 ∨ k n) ∧ (n ≤ 0 ∨ Sum (n− 1) (λr.k(r + n))) : • ⟨tt⟩

where we omit ∆ ⊢ from each judgement and implicitly rewrite •⟨n ≤ 0 ∨ n >
0⟩ to •⟨tt⟩. Since the left judgement is easy to show, we focus on the right
judgement.

We have

∆ ⊢ Sum (n− 1) : (r : Int → •⟨r ≥ n− 1⟩) → •⟨tt⟩
5 A reader may wonder why we do not assume rty(τ ′2) in the other premise. This is

because the subtyping judgements ∆;Θ ⊢ τ2 ≺ τ ′2 and ∆;Θ ∧ rty(τ ′2) ⊢ τ2 ≺ τ ′2 are
equivalent in the sense that the derivability of one of them implies the other’s. We
chose the simpler judgement.

10 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

∆, r : Int |= n > 0 ∧ r ≥ n− 1 ⇒ r ≥ 0

∆, r : Int;n > 0 ⊢ •⟨r ≥ 0⟩ ≺ •⟨r ≥ n− 1⟩
∆;n > 0 ⊢ r : Int → •⟨r ≥ 0⟩ ≺ r : Int → •⟨r ≥ n− 1⟩

∆ |= n > 0 ⇒ tt
∆; tt ⊢ •⟨tt⟩ ≺ •⟨n > 0⟩

∆; tt ⊢ (r : Int → •⟨r ≥ n− 1⟩) → •⟨tt⟩ ≺ (r : Int → •⟨r ≥ 0⟩) → •⟨n > 0⟩

Fig. 3. A derivation of a subtyping judgement used in Example 3

but this is not immediately usable since

∆ ⊬ (λr.k(r + n))) : r : Int → •⟨r ≥ n− 1⟩.

Actually this judgement is invalid6: the type of k requires that r + n ≥ n but
r ≥ n− 1 is not sufficient for this when n ≤ 0. Therefore one needs subtyping.

Figure 3 proves a subtyping judgement. Note that the assumption n > 0
plays a crucial role in the left branch of the derivation. Since ∆ ⊢ (λr.k(r+n))) :
(r : Int → •⟨r ≥ 0⟩) is easily provable, we have completed the proof. ⊓⊔

3.4 Soundness and Completeness

This subsection defines the semantic counterpart of (sub)typing judgements, and
discuss soundness and completeness of the refinement type system.

The interpretation of a refinement type environment ∆ :: Γ is the subset
[[∆]] ⊆ [[Γ]] defined by

[[∆]] := {α ∈ [[Γ]] | ∀X ∈ dom(Γ). α(X) ∈ [[∆(X)]](α) }.

We write [[∆;Θ]] for the set of valuations {α ∈ [[∆]] | α |= Θ}.
The semantic counterpart of (sub)typing judgements are defined as follows:

∆;Θ |= τ ≺ τ ′ :⇐⇒ (|τ |)(α) ⊆ (|τ ′|)(α) for every α ∈ [[∆;Θ]]

∆ |= ψ : τ :⇐⇒ [[ψ]](α) ∈ (|τ |)(α) for every α ∈ [[∆]].

The (sub)typing rules are sound with respect to the semantics of judgements.

Theorem 1 (Soundness).

– If ∆;Θ ⊢ τ1 ≺ τ2, then ∆;Θ |= τ1 ≺ τ2.
– If ∆ ⊢ ψ : τ , then ∆ |= ψ : τ .

Proof. By induction on the derivations. See Appendix D. ⊓⊔

By applying Soundness to sentences, one can show that a derivation in the
refinement type system witnesses the validity of a sentence.
6 The formal definition of the validity of a refinement type judgement will be defined

in the next subsection.

A New Refinement Type System for Automated νHFLZ Validity Checking 11

Corollary 1. Let ψ be a νHFLZ sentence. If ⊢ ψ : •⟨tt⟩, then |= ψ.

A remarkable feature is completeness. Although the type system is not com-
plete for typing judgements, it is complete for subtyping judgements.

Theorem 2 (Completeness of subtyping). If ∆;Θ |= τ1 ≺ρ τ2, then ∆;Θ ⊢
τ1 ≺ρ τ2.

Proof (Sketch). By induction on the structure of simple type ρ. Here we prove
only the case ρ = ρ1 → ρ2. A complete proof can be found in Appendix E.

In this case τ = τ1 → τ2 and τ ′ = τ ′1 → τ ′2. Assume that ∆;Θ |= τ ≺ τ ′. We
prove ∆;Θ |= τ2 ≺ τ ′2 and ∆;Θ ∧ rty(τ ′2) |= τ ′1 ≺ τ1. Then ∆;Θ ⊢ τ ≺ τ ′ follows
from the induction hypothesis and S-Fun.

We prove ∆;Θ |= τ2 ≺ τ ′2. Let α ∈ [[∆;Θ]] and v ∈ (|τ2|)(α) and define
f ∈ (|τ1 → τ2|)(α) by f(x) := v. By the assumption, f ∈ (|τ ′1 → τ ′2|)(α). Since
⊤ρ1

∈ (|τ ′1|)(α), we have f(⊤ρ1
) = v ∈ (|τ ′2|)(α). Since v ∈ (|τ2|)(α) is arbitrary,

we obtain (|τ2|)(α) ⊂ (|τ ′2|)(α).
We prove ∆;Θ ∧ rty(τ ′2) |= τ ′1 ≺ τ1. Assume for contradiction that ∆;Θ ∧

rty(τ ′2) ̸|= τ ′1 ≺ τ1. Then, there exist α ∈ [[∆;Θ ∧ rty(τ ′2)]] and g ∈ (|τ ′1|)(α)
such that g /∈ (|τ1|)(α). By Lemma 1, we have the minimal element γτ1→τ2(α)
in (|τ1 → τ2|)(α), which belongs to (|τ ′1 → τ ′2|)(α) by the assumption. Since
g ∈ (|τ ′1|)(α), we have γτ1→τ2(α)(g) ∈ (|τ ′2|)(α). One can prove that α |= rty(τ ′2)
implies ⊥ρ2

̸∈ (|τ ′2|)(α) and thus γτ1→τ2(α)(g) ̸= ⊥ρ2
. On the other hand, from

the definition of the minimal element γτ1→τ2(α) and the assumption g ̸∈ (|τ1|)(α),
we have γτ1→τ2(α)(g) = ⊥ρ2 , a contradiction. ⊓⊔

4 Relationship with Higher-Order Constrained Horn
Clauses

Our work is closely related to the work on Higher-order constrained Horn clauses
(HoCHC for short) [2]. HoCHC has been introduced by Burn et al. [2] as a
higher-order extension of the standard notion of constrained Horn clauses. They
also gave a refinement type system that proves the satisfiability of higher-order
constrained Horn clauses. The satisfiability problem of higher-order constrained
Horn clauses is equivalent to the validity problem of νHFLZ, and the refinement
type system of Burn et al. [2] is almost identical to ours, except for the crucial
difference in the subtyping rules. Below we discuss the connection and the differ-
ence between our work on their work in more detail; readers who are not familiar
with HoCHC may safely skip the rest of this section.

4.1 The Duality of νHFLZ and HoCHC

A HoCHC is of the form7 ψ =⇒ Z, where ψ is a νHFLZ formula that does
not contain the fixed-point operator ν and Z is a variable X or the constant
7 The syntax of HoCHC is modified in a way that emphasises the relationship to
νHFLZ.

12 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

ff whose simple type is the same as ψ. The formula ψ in HoCHC may have
free variables that possibly include X. A valuation α satisfies the HoCHC if
[[ψ]](α) ⊑ [[Z]](α). A solution of a set of HoCHCs is a valuation that satisfies all
given HoCHCs. Burn et al. [2] studied the HoCHC satisfiability problem, which
asks whether a given finite set of HoCHC has a solution.

The HoCHC satisfiability problem can be characterized by using the least
fixed-points. Assume a set of HoCHCs C = {ψ0 =⇒ ff, ψ1 =⇒ X1, . . . , ψn =⇒
Xn}, where X1, . . . , Xn are pairwise distinct variables. The HoCHCs {ψ1 =⇒
X1, . . . , ψn =⇒ Xn } has the minimum solution, say α, and C has a solution if
and only if [[ψ0]](α) = ⊥ for the minimum solution α.

The connection to the νHFLZ validity problem becomes apparent when we
consider the dual problem. Given a ν-free formula ψ, we write ψ for the dual
of ψ obtained by replacing ∧ with ∨, ff with tt, atomic predicates p(a⃗) with
its negation ¬p(a⃗) and a variable X with the dual variable X. Then C has a
solution if and only if so does

{ψ0 ⇐= tt, ψ1 ⇐= X1, . . . , ψn ⇐= Xn }.

This dual problem has a characterisation using the greatest fixed-points: it has
a solution if and only if [[ψ0]](α) = ⊤ where α is the greatest solution α of
{ψ1 ⇐= X1, . . . , ψn ⇐= Xn }. Since the greatest solution satisfies ψi = Xi

for every i, it can be represented by using the greatest fixed-point operator ν
of νHFLZ. By substituting Xi in ψ0 with the νHFLZ formula representation of
the greatest solution α, one obtains a νHFLZ formula ϕ. Now C has a solution
if and only if [[ϕ]] = ⊤, that means, ϕ is valid.

4.2 The similarity and difference between two refinement type
systems

The connection between HoCHC and νHFLZ allows us to compare the refinement
type system for HoCHC of Burn et al. [2] with our refinement type system for
νHFLZ. In fact, as mentioned in Introduction, this work is inspired by their
work. Our refinement type system is almost identical to that of Burn et al. [2],
but there is a significant difference. The subtyping rule for function types in
their type system corresponds to:

∆;Θ ⊢ τ ′1 ≺ τ1 ∆;Θ ⊢ τ2 ≺ τ ′2
∆;Θ ⊢ τ1 → τ2 ≺ τ ′1 → τ ′2

.

The difference from S-Fun is that rty(τ ′2) cannot be used to prove τ ′1 ≺ τ1.
Because of this difference, our refinement type system is strictly more expressive
than that of Burn et al. [2]. Their refinement type system cannot prove the
(judgement corresponding to the) subtyping judgement in Example 3, namely,

∆; tt ⊢
(
(r :Int → •⟨r ≥ n−1⟩

)
→ •⟨tt⟩) ≺

(
(r :Int → •⟨r ≥ 0⟩) → •⟨n > 0⟩

)
;

recall that rty((r : Int → •⟨r ≥ 0⟩) → •⟨n > 0⟩) = (n > 0) is crucial in the
derivation of the subtyping judgement in Example 3. In fact, their type system
cannot prove that the sentence in Example 3 is valid.

A New Refinement Type System for Automated νHFLZ Validity Checking 13

The difference is significant from both theoretical and practical view points.
Theoretically our change makes the subtyping rules complete (Theorem 2). Prac-
tically this change is needed to prove the validity of higher-order instances. We
will confirm this claim by experiments in Section 6.

5 Type Inference

This section discusses a type inference algorithm for our refinement type system
in Section 3. The type system is based on constraint generation and solving. The
constraint solving procedure simply invokes external solvers such as Spacer [8],
HoIce [3] and PCSat [11]. In what follows, we describe the constraint generation
algorithm and discuss the shape of generated constraints.

5.1 Constraint generation

The constraint generation algorithm adopts the template-based approach. For
each subformula Γ ⊢ ϕ : ρ of a given sentence ⊢ ψ : •, we prepare a refinement
type template, which is a refinement type with predicate variables. For example,
if Γ = (X : ρ′, y : Int, Z : ρ′′) and ρ = Int → (Int → •) → Int → •, then the
template is a :Int → (b :Int → •⟨P (y, a, b)⟩) → c :Int → •⟨Q(y, a, c)⟩. The ideas
are: (i) for each occurrence of type Int, we give a fresh variable of type Int (in
the above example, a, b and c), and (ii) for each occurrence of type •, we give
a fresh predicate variable (in the above example, P and Q). The arity of each
predicate variable is the number of integer variables available at the position.
Recall that the scope of x in (x : Int → τ) is τ .

Then we extract constraints. For example, assume that

x : Int ⊢ ϕ1 : (Int → •) → • x : Int ⊢ ϕ2 : Int → •
x : Int ⊢ ϕ1 ϕ2 : •

is a part of the simple type derivation of the input sentence. Then the refinement
type templates for ϕ1 and ϕ2 are

(y : Int → •⟨P (x, y)⟩) → •⟨Q(x)⟩ and z : Int → •⟨R(x, z)⟩,

respectively. The refinement type system requires that

x : Int; tt ⊢ (z : Int → •⟨R(x, z)⟩) ≺ (y : Int → •⟨P (x, y)⟩),

from which one obtains a constraint x : Int, z : Int; tt |= P (x, z) ⇒ R(x, z), or
more simply ∀x, z.

[
P (x, z) =⇒ R(x, z)

]
.

Example 4. Recall the formula ψ in Example 1:

ψ := νX. λy. y ̸= 0 ∧X (y + 1) : Int → •.

We generate constraints for the sentence ∀z. (z ≤ 0) ∨ ψ z. The refinement type
template for ψ is y : Int → •⟨P (z, y)⟩.

14 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

The first constraint comes from the subtyping judgement filling the gap be-
tween

z : Int ⊢ z ≤ 0 : •⟨z ≤ 0⟩
z : Int ⊢ ψ : y : Int → •⟨P (z, y)⟩

z : Int ⊢ ψ z : •⟨P (z, z)⟩
z : Int ⊢ (z ≤ 0) ∨ ψ z : •⟨(z ≤ 0) ∨ P (z, z)⟩

and z : Int ⊢ (z ≤ 0) ∨ ψ z : •⟨tt⟩. The required subtyping judgement is
z : Int; tt ⊢ •⟨(z ≤ 0) ∨ P (z, z)⟩ ≺ •⟨tt⟩, from which one obtains

∀z ∈ DInt. tt =⇒ z ≤ 0 ∨ P (z, z).

The second constraint comes from the gap between

· · · ⊢ y ̸= 0 : •⟨y ̸= 0⟩
· · · ⊢ X : (y′ : Int → •⟨P (z, y′)⟩)
· · · ⊢ X (y + 1) : •⟨P (z, (y + 1))⟩

z : Int, X : (y′ : Int → •⟨P (z, y′)⟩), y : Int ⊢
(y ̸= 0∧X (y+1)) : •⟨(y ̸= 0)∧P (z, (y+1))⟩

and the requirement z : Int, X : y:Int → •⟨P (z, y)⟩, y : Int ⊢ (y ̸= 0∧X (y+1)) :
•⟨P (z, y)⟩. The second constraint is

∀y, z ∈ DInt. P (z, y) =⇒ P (z, y + 1).

These two constraints are sufficient for the validity of ∀z. (z ≤ 0) ∨ ψ z. ⊓⊔

Remark 1. The constraint generation procedure is complete with respect to the
typability: ⊢ ψ : •⟨tt⟩ is derivable for the input sentence if and only if the
generated constraints are satisfiable. However it is not complete with respect to
the validity since the refinement type system is not complete with respect to the
validity. ⊓⊔

5.2 Shape of generated constraints

Constraints obtained by the above procedure are of the from

∀x̃. P1(x̃1) ∧ · · · ∧ Pn(x̃n) ∧ θ =⇒ Q1(ỹ1) ∨ · · · ∨Qm(ỹm).

Here Pi and Qj are predicate variables and θ is a constraint formula. If m ≤ 1,
then this is called a constrained Horn clause (CHC for short). Following [11],
we call the general form pCSP. We invoke external solvers such as Spacer [8],
HoIce [3] and PCSat [11] to solve the satisfiability of generated constraints.

PCSat [11] accepts the constraints of the above form, so it can be used as
a backend solver of the type inference. However PCSat is immature at present
compared with CHC solvers, some of which are quite efficient. By this reason,
we use CHC solvers such as Spacer [8] and HoIce [3] as the backend solver if the
constraints are CHCs.

It is natural to ask when generated constraints are CHCs. We give a conve-
nient sufficient condition on input νHFLZ formulas. We say a formula is tractable

A New Refinement Type System for Automated νHFLZ Validity Checking 15

if for every occurrence of disjunctions (ψ1 ∨ ψ2), at least one of ψ1 and ψ2 is an
atomic formula. For example, ((F x)∧ (Gy))∨ (b = 2) is tractable because b = 2
is atomic, and ((F x) ∧ (b = 2)) ∨ (Gy) is not. If the input formula is tractable,
the constraint generation algorithm generates CHCs.

In the context of program verification, the safety property verification of
higher-order programs are reducible to the validity problem of tractable for-
mulas. In fact, the reduction given in [7] satisfies this condition. Therefore the
translation in [7] followed by our type-based validity checking reduces the safety
property verification to CHCs, for which efficient solvers are available.

6 Implementation and Experiments

6.1 Implementation

We have implemented a νHFLZ validity checker ReTHFL based on the inference
on the proposed refinement type system. ReTHFL uses, as its backend, CHC
solvers HoIce [3] and Spacer [8], and pCSP solver PCSat [11]. In the experiments
reported below, unless explicitly mentioned, HoIce is used as the backend solver.
We have also implemented a functionality to disprove the validity when a given
formula is untypable, as discussed below. For this functionality, Eldarica [4] is
used to obtain a resolution proof of the unsatisfiability of CHC.

A method to disprove the validity of a νHFLZ formula. Since our re-
duction from the typability of a νHFLZ formula ψ to the satisfiability of CHC
or pCSP is complete, we can conclude that ψ is untypable if the CHC or pCSP
obtained by the reduction is unsatisfiable. That does not imply, however, that
the original formula ψ is invalid, due to the incompleteness of the type system.
Therefore, when a CHC solver returns “unsat”, we try to disprove the validity of
the original formula. To this end, we first use Eldarica [4] to obtain a resolution
proof of the unsatisfiability of CHC, and estimate how many times each fixpoint
formula should be unfolded to disprove the validity of the νHFLZ formula. Below
we briefly explain this idea through an example.

Example 5. Let us consider the following formula:

∀n.n < 0 ∨ (νX.(λy.y = 1 ∨ (y ≥ 1 ∧X (y − 1)))) n.

By preparing a refinement type template y : Int → •⟨PX(y)⟩ for X, we obtain
the following constraints:

∀x ∈ DInt. tt ⇒ PX(x) ∨ x < 0

∀x ∈ DInt. PX(x) ⇒ x = 1 ∨ (x ≥ 1 ∧ PX(x− 1)),

which correspond to the CHC:

∀x ∈ DInt. x ≥ 0 ⇒ PX(x) ∀x ∈ DInt. PX(x) ∧ x ̸= 1 ∧ x < 1 ⇒ ff
∀x ∈ DInt. PX(x) ∧ x ̸= 1 ⇒ PX(x− 1)

16 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

This set of CHC is unsatisfiable, having the following resolution proof:

0 ≥ 0 ⇒ PX(0) PX(0) ∧ 0 ̸= 1 ∧ 0 < 1 ⇒ ff
0 ≥ 0 ∧ 0 ̸= 1 ∧ 0 < 1 ⇒ ff (= ff)

Here, the two leaves of the proof have been obtained from the first two clauses by
instantiating x to 0. Since the second clause is used just once in the proof, we can
estimate that a single unfolding of X is sufficient for disproving the validity of
the formula. We thus expand the fixpoint formula for X once and check whether
the following resulting formula holds by using an SMT solver:

∀n.n < 0 ∨ (n = 1 ∨ (n ≥ 1 ∧ tt)).

The SMT solver returns ’No’ in this case; hence we can conclude that the original
νHFLZ formula is invalid.

6.2 Experiments

We have conducted experiments to compare ReTHFL with:

– Horus [2]: a HoCHC solver based on refinement type inference [2].
– PaHFL [5]: a νHFLZ validity checker [5] based on HFL model checking and

predicate abstraction.

The experiments were conducted on a Linux server with Intel Xeon CPU E5-2680
v3 and 64 GB of RAM. We set the timeout as 180 seconds in all the experiments
below.

Comparison with Horus [2]. We prepared two sets of benchmarks A and B.
Both benchmark sets A and B consist of νHFLZ validity checking problems
and the corresponding HoCHC problems. Benchmark set A comes from the
HoCHC benchmark for Horus [2], and we prepared νHFLZ versions based on the
correspondence between HoCHC and νHFLZ discussed in Section 4. Benchmark
set B has been obtained from safety verification problems for OCaml programs.
Benchmark set A has 8 instances, and benchmark set B has 56 instances. In the
experiments, we used Spacer as the common backend CHC solver of ReTHFL
and Horus.

The result is shown in Fig. 4. In the figure, "Unknown" means that Horus
returned "unsat", which implies that it is unknown whether the program is safe,
due to the incompleteness of the underlying refinement type system. ReTHFL
could solve 8 instances correctly for benchmark set A, and 46 instances for bench-
mark set B. In contrast, Horus could solve 7 instances correctly for benchmark
set A, and only 18 instances for benchmark set B; as already discussed, this is
mainly due to the difference of the subtyping relations of the underlying type
systems. The running times were comparable for the instances solved by both
ReTHFL and Horus,

A New Refinement Type System for Automated νHFLZ Validity Checking 17

Fig. 4. Comparison with Horus [2]. Fig. 5. Comparison with PaHFL [5].

Comparison with PaHFL [5]. We used two benchmark sets I and II. Bench-
mark set I is the benchmark set of PaHFL [5] consisting of νHFLZ validity
checking problems, which have been obtained from the safety property verifi-
cation problems for OCaml programs [12]. Since the translation used to obtain
νHFLZ formulas is tailor-made for and works favorably for PaHFL, we also
used benchmark set II, which consists of the original program verification prob-
lems [12]; for this benchmark set, ReTHFL and PaHFL use their own transla-
tions to νHFLZ formulas.

The results of the two experiments are shown in Fig. 5. In the figure, "Fail"
means that the tool terminated abnormally, due to a problem of the backend
solvers, or a limitation of our current translator from OCaml programs to νHFLZ
formulas. For benchmark set I, ReTHFL and PaHFL solved 205 and 217 in-
stances respectively. For benchmark set II, ReTHFL and PaHFL solved 247 and
217 instances respectively. Thus, both systems are comparable in terms of the
number of solved instances. As for the running times, our solver outperformed
PaHFL for most of the instances.

We also compared our solver with PaHFL by using 10 problems reduced from
higher-order non-termination problems, which were used in [9]. While PaHFL
could solve 4 instances, our solver could not solve any of them in 180 seconds.
This is mainly due to the bottleneck of the underlying pCSP solver; developing
a better pCSP solver is left for future work.

7 Related work

Burn et al. [2] introduced a higher-order extension of CHC (HoCHC) and pro-
posed a refinement type system for proving the satisfiability of HoCHC. As
already discussed in Section 4, the HoCHC satisfiability problem is essentially
equivalent to the νHFLZ validity problem. Our type system is more expressive
than Burn et al.’s type system due to more sophisticated subtyping rules. We

18 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

have confirmed through experiments that our νHFLZ solver ReTHFL outper-
forms their HoCHC solver Horus in terms of the number of solved instances.

Iwayama et al. [5] have recently proposed an alternative approach to νHFLZ
validity checking, which is based on a combination of (pure) HFL model check-
ing, predicate abstraction, and counterexample guided abstraction refinement.
In theory, their method is more powerful than ours, since theirs can be viewed as
a method for inferring refinement intersection types. In practice, however, their
solver PaHFL is often slower and times out for some of the instances which
ReTHFL can solve. Thus, both approaches can be considered complementary.

Kobayashi et al. [6] have shown that a validity checker for a first-order fixpoint
logic can be constructed on top of the validity checker for the ν-only fragment of
the first-order logic. We expect that the same technique can be used to construct
a validity checker for full HFLZ on top of our νHFLZ validity checker ReTHFL.

There are other refinement type-based approach to program verification, such
as Liquid types [10,14] and F* [13]. They are not fully automated in the sense
that users must provide either refinement type annotations or qualifiers [10] as
hints for verification, while our method is fully automatic. Also, our νHFLZ-
based verification method can deal with (un)reachability in the presence of both
demonic and angelic branches, while most of the type-based verification methods
including those mentioned above can deal with reachability in the presence of
only demonic branches.

8 Conclusion

We have proposed a refinement type system for νHFLZ validity checking, and
developed an automated procedure for refinement type inference. Our refinement
type system is more expressive than the system by Burn et al. [2] thanks to the
refined subtyping relation, which is sound and relative complete with respect
to the semantic subtyping relation. We have confirmed the effectiveness of our
approach through experiments. Future work includes an improvement of the
backend pCSP solver (which is the current main bottleneck of our approach),
and an extension of the method to deal with full HFLZ, based on the method
for the first-order case [6].

Acknowledgments

We would like to thank anonymous referees for useful comments. This work was
supported by JSPS Kakenhi JP15H05706, JP20H00577, and JP20H05703.

References

1. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Fields of Logic and Computation II - Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday. LNCS, vol. 9300, pp. 24–51.
Springer (2015). https://doi.org/10.1007/978-3-319-23534-9_2

https://doi.org/10.1007/978-3-319-23534-9_2

A New Refinement Type System for Automated νHFLZ Validity Checking 19

2. Burn, T.C., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses
for verification. Proc. ACM Program. Lang. 2(POPL), 11:1–11:28 (2018).
https://doi.org/10.1145/3158099

3. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: Ice-based refinement type dis-
covery for higher-order functional programs. In: Proceedings of TACAS 2018.
LNCS, vol. 10805, pp. 365–384. Springer (2018). https://doi.org/10.1007/978-3-
319-89960-2_20

4. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: Proceedings of FMCAD
2018. pp. 1–7. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8603013

5. Iwayama, N., Kobayashi, N., Tsukada, T.: Predicate abstraction and CEGAR for
nu-HFLZ validity checking (2020), draft

6. Kobayashi, N., Nishikawa, T., Igarashi, A., Unno, H.: Temporal verification of
programs via first-order fixpoint logic. In: Proceedings of SAS 2019. pp. 413–436
(2019). https://doi.org/10.1007/978-3-030-32304-2_20

7. Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program verification via
HFL model checking. In: Proceedings of ESOP 2018. LNCS, vol. 10801, pp. 711–
738. Springer (2018). https://doi.org/10.1007/978-3-319-89884-1_25

8. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for re-
cursive programs. Formal Methods in System Design 48(3), 175–205 (2016).
https://doi.org/10.1007/s10703-016-0249-4

9. Kuwahara, T., Sato, R., Unno, H., Kobayashi, N.: Predicate abstraction and
CEGAR for disproving termination of higher-order functional programs. In:
Proceedings of CAV 2015. LNCS, vol. 8410, pp. 287–303. Springer (2015).
https://doi.org/10.1007/978-3-319-21668-3_17

10. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Ama-
rasinghe, S.P. (eds.) Proceedings of the PLDI 2008. pp. 159–169. ACM (2008).
https://doi.org/10.1145/1375581.1375602

11. Satake, Y., Unno, H., Yanagi, H.: Probabilistic inference for predicate con-
straint satisfaction. Proceedings of the AAAI 34, 1644–1651 (04 2020).
https://doi.org/10.1609/aaai.v34i02.5526

12. Sato, R., Iwayama, N., Kobayashi, N.: Combining higher-order model checking
with refinement type inference. In: Proceedings of PEPM 2019. pp. 47–53 (2019).
https://doi.org/10.1145/3294032.3294081

13. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoué, J.K.,
Zanella-Béguelin, S.: Dependent types and multi-monadic effects in F*. In: 43rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). pp. 256–270. ACM (Jan 2016), https://www.fstar-lang.org/papers/
mumon/

14. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refine-
ment types for haskell. In: Jeuring, J., Chakravarty, M.M.T. (eds.) Pro-
ceedings of the 19th ACM SIGPLAN international conference on Func-
tional programming, Gothenburg, Sweden, September 1-3, 2014. pp. 269–282.
ACM (2014). https://doi.org/10.1145/2628136.2628161, https://doi.org/10.1145/
2628136.2628161

15. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In:
Proceedings of CONCUR 2004. LNCS, vol. 3170, pp. 512–528. Springer (2004).
https://doi.org/10.1007/978-3-540-28644-8_33

16. Watanabe, K., Tsukada, T., Oshikawa, H., Kobayashi, N.: Reduction
from branching-time property verification of higher-order programs to

https://doi.org/10.1145/3158099
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-319-89884-1_25
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/978-3-319-21668-3_17
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1609/aaai.v34i02.5526
https://doi.org/10.1145/3294032.3294081
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1007/978-3-540-28644-8_33

20 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

HFL validity checking. In: Proceedings of PEPM 19. pp. 22–34 (2019).
https://doi.org/10.1145/3294032.3294077

https://doi.org/10.1145/3294032.3294077

A New Refinement Type System for Automated νHFLZ Validity Checking 21

Appendix

A Simple type system for νHFLZ

Γ ⊢H n : Int

Γ ⊢H ψi : Int for each i ∈ {1, 2}
Γ ⊢H ψ1 op ψ2 : Int

Γ ⊢H tt : •

Γ ⊢H ff : •

Arity(p) = k

Γ ⊢H ψi : Int for each i ∈ {1, · · · , k}
Γ ⊢H p(ψ1, · · · , ψk) : •

Γ,X : η ⊢H X : η

Γ ⊢H ψi : • for each i ∈ {1, 2}
Γ ⊢H ψ1 ∨ ψ2 : •

Γ ⊢H ψi : • for each i ∈ {1, 2}
Γ ⊢H ψ1 ∧ ψ2 : •

Γ,X : ρ ⊢H ψ : ρ

Γ ⊢H νX : ρ.ψ : ρ

Γ,X : η ⊢H ψ : ρ

Γ ⊢H λX : η.ψ : η → ρ

Γ ⊢H ψ1 : η → ρ Γ ⊢H ψ2 : η

Γ ⊢H ψ1 ψ2 : ρ

Γ,X : Int ⊢H ψ : •
Γ ⊢H ∀X : Int.ψ : •

Fig. 6. Simple type judgement of νHFLZ

B Semantics of νHFLZ formulas

The semantics of a well-typed νHFLZ formula [[Γ ⊢H ψ : ρ]] is defined as a map
from [[Γ]] to Dρ by induction as shown in Fig. 7. Note that (Dρ,⊑ρ) forms a
complete lattice; therefore, we can define that ⊔ρ and ⊓ρ are respectively the
least upper bound and greatest lower bound with respect to ⊑ρ.

Note that [[op]] is the function over integers denoted by op. Also, [[p]] is the
k-ary relation on integers denoted by p.

The greatest fixpoint operators gfpρ are defined as follows.

gfpρ(f) =
⊔
ρ

{x ∈ Dρ | x ⊑ρ f(x)}

C Proof of Minor Lemmas

C.1 Well-definedness of the minimum element

One has to check that γτ1→τ2(α) is monotone. We first prove an auxiliary lemma.

22 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

[[Γ ⊢H n : Int]](α) = n [[Γ ⊢H tt : •]](α) = ⊤ [[Γ ⊢H ff : •]](α) = ⊥
[[Γ ⊢H ψ1 op ψ2 : Int]](α) = ([[Γ ⊢H ψ1 : Int]](α))[[op]]([[Γ ⊢H ψ2 : Int]](α))
[[Γ ⊢H p(ψ1, · · · , ψk) : •]](α) ={
⊤ if ([[Γ ⊢H ψ1 : Int]](α), · · · , [[Γ ⊢H ψk : Int]](α)) ∈ [[p]]
⊥ otherwise

[[Γ,X : η ⊢H X : η]](α) = α(X)

[[Γ ⊢H ψ1 ∨ ψ2 : •]](α) = [[Γ ⊢H ψ1 : •]](α) ⊔• [[Γ ⊢H ψ2 : •]](α)
[[Γ ⊢H ψ1 ∧ ψ2 : •]](α) = [[Γ ⊢H ψ1 : •]](α) ⊓• [[Γ ⊢H ψ2 : •]](α)
[[Γ ⊢H νXρ.ψ : ρ]](α) = gfpρ([[Γ ⊢H λX : ρ.ψ : ρ→ ρ]](α))

[[Γ ⊢H λX : η.ψ : η → ρ]](α) = {(v, [[Γ,X : η ⊢H ψ : ρ]](α[X 7→ v])) | v ∈ Dη}
[[Γ ⊢H ψ1 ψ2 : ρ]](α) = [[Γ ⊢H ψ1 : η → ρ]](α)([[Γ ⊢H ψ2 : η]](α))

[[Γ ⊢H ∀Xη.ψ : •]](α) =
l

•

{[[Γ,X : η ⊢H ψ : •]](α[X 7→ v]) | v ∈ Dη}

Fig. 7. Semantics of νHFLZ

Lemma 3. Let Γ ⊢ τ :: ρ be a refinement type and α be a valuation in [[Γ]]. For
any x, y ∈ Dρ, if x ⊑ρ y and x ∈ (|τ |)(α), then y ∈ (|τ |)(α).

Proof. By induction on the structure of the refinement type Γ ⊢ τ :: ρ.

– Case Γ ⊢ •⟨θ⟩ :: •:
If y = ⊤, then y ∈ (|τ |)(α) for every τ and α (provided that τ refines •).
Otherwise, x = y = ⊥ and thus y ∈ (|τ |)(α) follows from the assumption
x ∈ (|τ |)(α).

– Case Γ ⊢ z : Int → τ :: Int → ρ:
It suffices to show that y(v) ∈ (|τ |)(α[z 7→ v]) for every v ∈ DInt. Let v ∈
DInt. Then (a) x(v) ∈ (|τ |)(α[z 7→ v]) from the assumption, and (b) x(v) ⊑ρ

y(v) from x ⊑Int→ρ y. So by the induction hypothesis, we have y(v) ∈
(|τ |)(α[z 7→ v]).

– Case Γ ⊢ τ1 → τ2 :: ρ1 → ρ2:
Similar to the previous case.

⊓⊔

The monotonicity of γτ1→τ2(α) is a consequence of this lemma. Assume that
τ1 → τ2 :: ρ1 → ρ2. Let x and y be elements of Dρ1

and assume that x ⊑ y. If
x ∈ [[τ1]](α), then y ∈ [[τ1]](α) by the previous lemma. Then

γτ1→τ2(α)(x) = γτ2(α) = γτ1→τ2(α)(y).

If x /∈ [[τ1]](α), then

γτ1→τ2(α)(x) = ⊥ρ2
⊑ γτ1→τ2(α)(y).

A New Refinement Type System for Automated νHFLZ Validity Checking 23

C.2 Proof for Lemma 1

We prove the claim by induction on ρ. Assume Γ ⊢ τ :: ρ and α ∈ [[Γ]].

– Case •:
Then τ = •⟨θ⟩. If α |= θ, then γτ (α) = ⊤ and (|τ |)(α) = {⊤}. If α ̸|= θ, then
γτ (α) = ⊥ and (|τ |)(α) = {⊥,⊤}.

– Case Int → ρ1:
Then τ = x : Int → τ1. Let v ∈ DInt→ρ1 . Then, by using the induction
hypothesis,

γx:Int→τ1(α) ⊑ v ⇐⇒ ∀n ∈ DInt. γx:Int→τ1(α)(n) ⊑ v(n)

⇐⇒ ∀n ∈ DInt. γτ1(α[x 7→ n]) ⊑ v(n)

⇐⇒ ∀n ∈ DInt. v(n) ∈ (|τ1|)(α[x 7→ n])

⇐⇒ v ∈ (|x : Int → τ1|)(α).

– Case ρ1 → ρ2:
Then τ = τ1 → τ2. Let v ∈ Dρ1→ρ2 . Then, by using the induction hypothesis,

γτ1→τ2(α) ⊑ v ⇐⇒ ∀w ∈ Dρ1 . γτ1→τ2(α)(w) ⊑ v(w)

⇐⇒ ∀w ∈ (|τ1|)(α). γτ2(α) ⊑ v(w)

⇐⇒ ∀w ∈ (|τ1|)(α). v(w) ∈ (|τ2|)(α)
⇐⇒ v ∈ (|τ1 → τ2|)(α).

C.3 Proof of Lemma 2

By induction on the structure of τ .

– Case τ = •⟨θ⟩:
Trivial.

– Case τ = x : Int → τ ′:
Then ρ = Int → ρ′ for some ρ′. Since rty(x : Int → τ ′) = ∃x.rty(τ ′), the
assumption is α ̸|= ∃x.rty(τ ′), which is equivalent to α |= ∀x.¬rty(τ ′) and
to

∀v ∈ DInt.
[
α[x 7→ v] ̸|= rty(τ ′)

]
.

Let f be an arbitrary element in DInt→ρ′ . By definition, f ∈ (|x:Int → τ ′|)(α)
if f(v) ∈ (|τ ′|)(α[x 7→ v]) for every v ∈ DInt. So let v be an arbitrary element
in v ∈ DInt. By the above proposition and the induction hypothesis, we
have (|τ ′|)(α[x 7→ v]) = Dρ′ . In particular, f(v) ∈ Dρ′ . Since v is arbitrary,
we obtain f ∈ Dx:Int→τ ′(α).

– Case τ = τ1 → τ2:
Then ρ = ρ1 → ρ2 and rty(τ1 → τ2) = rty(τ2). So the assumption is
equivalent to α ̸|= rty(τ2). By the induction hypothesis, we have (|τ2|)(α) =
Dρ2

. Let f be an arbitrary element in Dρ1→ρ2
. By definition, f ∈ (|τ1 →

τ2|)(α) if f(v) ∈ (|τ2|)(α) for every v ∈ Dρ1
. This follows from the induction

hypothesis (|τ2|)(α) = Dρ2 .

24 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

D Soundness (Theorem 1)

We prove the soundness of the subtyping rules.

Lemma 4. If ∆;Θ ⊢ τ ≺ρ τ
′, then ∆;Θ |= τ ≺ρ τ

′.

Proof. By induction on the the derivation ∆;Θ ⊢ τ ≺ρ τ
′. We appeal to the case

analysis on the shape of the judgement ∆;Θ ⊢ τ ≺ρ τ
′.

– Case ∆;Θ ⊢ •⟨θ⟩ ≺• •⟨θ′⟩:
Since ∆;Θ ⊢ •⟨θ⟩ ≺• •⟨θ′⟩ is derivable, we have

∆ |= Θ ∧ θ′ ⇒ θ.

Let α be a valuation in [[∆;Θ]]. We show that (| • ⟨θ⟩|)(α) ⊆ (| • ⟨θ′⟩|)(α).
• If α |= θ′, then α |= θ by the assumptions. In this case, we have (| •
⟨θ⟩|)(α) = (| • ⟨θ′⟩|)(α) = {⊤}.

• If α ̸|= θ′, then (| • ⟨θ′⟩|)(α) = {⊥,⊤} = D•. Hence (| • ⟨θ⟩|)(α) ⊆
(| • ⟨θ′⟩|)(α) holds.

– Case ∆;Θ ⊢ x : Int → τ ≺Int→ρ x : Int → τ ′:
The premise of the derivation is Γ, x : Int;Θ ⊢ τ ≺ρ τ ′. Assume that
α ∈ [[∆;Θ]] and f ∈ (|x:Int → τ |)(α). By definition, f(v) ∈ (|τ |)(α[x 7→ v]) for
every v ∈ DInt. Since (|τ |)(α[x 7→ v]) ⊆ (|τ ′|)(α[x 7→ v]) from the induction
hypothesis, we have f(v) ∈ (|τ ′|)(α[x 7→ v]) for every v ∈ DInt. Therefore
f ∈ (|x : Int → τ ′|)(α).

– Case ∆;Θ ⊢ τ1 → τ2 ≺ρ1→ρ2
τ ′1 → τ ′2:

The premises of the derivation are

Γ ;Θ ∧ rty(τ ′2) ⊢ τ ′1 ≺ρ1
τ1

and
Γ ;Θ ⊢ τ2 ≺ρ2

τ ′2.

Assume α ∈ [[∆;Θ]], f ∈ (|τ1 → τ2|)(α) and v ∈ (|τ ′1|)(α). It suffices to show
that f(v) ∈ (|τ ′2|)(α).
• Assume that α |= rty(τ ′2). Then α ∈ [[∆;Θ∧rty(τ ′2)]], and thus (|τ ′1|)(α) ⊆
(|τ1|)(α) by the induction hypothesis. So the assumption v ∈ (|τ ′1|)(α) im-
plies v ∈ (|τ1|)(α). Since f ∈ (|τ1 → τ2|)(α), we have f(v) ∈ (|τ2|)(α). Then
f(v) ∈ (|τ ′2|)(α) since (|τ2|)(α) ⊆ (|τ ′2|)(α) by the induction hypothesis.

• Assume that α ̸|= rty(τ ′2). Then, by Lemma 2, we have (|τ ′2|)(α) = Dρ2
.

In particular, f(v) ∈ (|τ ′2|)(α).
⊓⊔

We then prove the soundness of the refinement type system.

Lemma 5. If ∆ ⊢ ψ : τ , then ∆ |= ψ : τ .

Proof. By induction on the structure of derivation. Assume that ∆ ⊢ ψ : τ and
let α ∈ [[∆]].

A New Refinement Type System for Automated νHFLZ Validity Checking 25

– Case RAbs:
Then τ = τ1 → τ2 and ψ = λX.ϕ. We have ∆,X : τ1 ⊢ ϕ : τ2 as the premise.
Let v be an arbitrary element in (|τ1|)(α). Since α[X 7→ v] ∈ [[∆,X : τ1]], we
have [[ϕ]](α[X 7→ v]) ∈ (|τ2|)(α[X 7→ v]) by the induction hypothesis. Note
that (|τ2|)(α[X 7→ v]) = (|τ2|)(α) because X, which is not of simple type
Int, does not appear in τ2. Therefore v ∈ (|τ1|)(α) implies [[ϕ]](α[x 7→ v]) ∈
(|τ2|)(α). This means that [[λX.ϕ]](α) ∈ (|τ1 → τ2|)(α) since [[λX.ϕ]](α)(v) =
[[ϕ]](α[X 7→ v]) ∈ (|τ2|)(α) for every v ∈ (|τ1|)(α).

– Case RGfp:
Then ψ = νX : τ.ϕ and we have ∆,X : τ ⊢ ϕ : τ as the premise. Let
v = γτ (α) be the minimum element in (|τ |)(α) (cf. Lemma 1). Since v ∈
(|τ |)(α), we have α[X 7→ v] ∈ [[∆,X : τ]]. By the induction hypothesis,
[[ϕ]](α[X 7→ v]) ∈ (|τ |)(α[X 7→ v]). Since X does not appear in τ , we have
(|τ |)(α[X 7→ v]) = (|τ |)(α) and thus [[ϕ]](α[X 7→ v]) ∈ (|τ |)(α). By Lemma 1,
we have v ⊑ [[ϕ]](α[X 7→ v]).
Recall that the goal is [[νX : τ.ϕ]](α) ∈ (|τ |)(α), which is equivalent to v ⊑
[[νX : τ.ϕ]](α). By definition,

[[νX : τ.ϕ]](α) =
⊔

{w | w ⊑ [[ϕ]](α[X 7→ w]) }.

We have v ⊑ [[νX : τ.ϕ]](α) since v belongs to the set in the right-hand-side.
– Case RSub: Immediate from Lemma 4.

Other cases are easy. ⊓⊔

Proof (Theorem 1). The first claim is Lemma 4 and the second claim is Lemma 5.
⊓⊔

E Completeness of Subtyping Rules (Theorem 2)

We start from auxiliary lemmas. We write ⊥ρ for the minimum element in Dρ.

Lemma 6. Let Γ ⊢ τ :: ρ be a refinement type and α be a valuation in [[Γ]]. If
α |= rty(τ), then ⊥ρ /∈ (|τ |)(α).

Proof. By induction on the structure of the refinement type τ .

– Case •⟨θ⟩:
From the assumption, α |= θ and thus (| • ⟨θ⟩|)(α) = {⊤}.

– Case (x : Int → τ):
Since rty(x : Int → τ) = ∃x.rty(τ), the assumption is equivalent to α |=
∃x.rty(τ). So α[x 7→ v] |= rty(τ) for some v. We fix v that satisfies this
condition. Then, by the induction hypothesis, we have ⊥ρ /∈ (|τ |)(α[x 7→ v]).
Assume for contradiction that ⊥Int→ρ ∈ (|x:Int → τ |)(α). Then ⊥Int→ρ(v) =
⊥ρ ∈ (|τ |)(α[x 7→ v]), a contradiction.

26 Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi Tsukada

– Case Γ ⊢ τ1 → τ2 :: ρ1 → ρ2
Since rty(τ1 → τ2) = rty(τ2), the assumption is equivalent to α |= rty(τ2).
By the induction hypothesis, ⊥ρ2

/∈ (|τ2|)(α).
Assume for contradiction that ⊥ρ1→ρ2

∈ (|τ1 → τ2|)(α). Since ⊤ρ1
∈ (|τ1|)(α),8

we have ⊥ρ1→ρ2(⊤ρ1) = ⊥ρ2 ∈ (|τ2|)(α), a contradiction.
⊓⊔

Proof (Theorem 2). Assume that ∆;Θ |= τ ≺ρ τ
′. We prove the claim by induc-

tion on ρ.

– Case ρ = •:
Then τ = •⟨θ⟩ and τ ′ = •⟨θ′⟩. Let α ∈ [[∆;Θ]]. If α ̸|= θ, then

{⊥,⊤} ⊆ (| • ⟨θ⟩|)(α) ⊆ (| • ⟨θ′⟩|)(α),

which implies α ̸|= θ′ and thus α |= θ′ ∧ Θ =⇒ θ. If α |= θ, then α |=
θ′ ∧Θ =⇒ θ as well.

– Case ρ = Int → ρ1:
Then τ = (x : Int → τ1) and τ ′ = (x : Int → τ ′1). Let α ∈ [[∆;Θ]] and
n ∈ DInt. We have

γx:Int→τ1(α) ∈ (|x : Int → τ1|)(α) ⊆ (|x : Int → τ ′1|)(α)

by Lemma 1 and the assumption. Hence, for every n ∈ DInt,

γτ1(α[x 7→ n]) = γx:Int→τ1(α)(n) ∈ (|τ ′1|)(α[x 7→ n]).

By using Lemmas 1 and 3,

v ∈ (|τ1|)(α[x 7→ n]) ⇐⇒ γτ1(α[x 7→ n]) ⊑ v

=⇒ v ∈ (|τ ′1|)(α[x 7→ n]).

Since α ∈ [[∆;Θ]] and v ∈ DInt are arbitrary and x does not appear freely
in Θ, the above proposition says that v ∈ (|τ1|)(α′) implies v ∈ (|τ ′1|)(α′)
for every α′ ∈ [[∆,x : Int;Θ]]. In other words, ∆,x : Int;Θ |= τ1 ≺ τ ′1.
Hence, by the induction hypothesis, ∆,x : Int;Θ ⊢ τ1 ≺ τ ′1, from which
∆;Θ ⊢ (x : Int → τ1) ≺ (x : Int → τ ′1) follows.

– Case ρ = ρ1 → ρ2:
In this case τ = τ1 → τ2 and τ ′ = τ ′1 → τ ′2. Assume that ∆;Θ |= τ ≺ τ ′. We
prove ∆;Θ |= τ2 ≺ τ ′2 and ∆;Θ ∧ rty(τ ′2) |= τ ′1 ≺ τ1. Then ∆;Θ ⊢ τ ≺ τ ′

follows from the induction hypothesis and S-Fun.
We prove ∆;Θ |= τ2 ≺ τ ′2. Let α ∈ [[∆;Θ]] and v ∈ (|τ2|)(α) and define
f ∈ (|τ1 → τ2|)(α) by f(x) := v. By the assumption, f ∈ (|τ ′1 → τ ′2|)(α).
Since ⊤ρ1

∈ (|τ ′1|)(α), we have f(⊤ρ1
) = v ∈ (|τ ′2|)(α). Since v ∈ (|τ2|)(α) is

arbitrary, we obtain (|τ2|)(α) ⊂ (|τ ′2|)(α).
8 One can easily prove that ⊤ρ ∈ (|τ |)(α) if I ⊢ τ :: ρ and α ∈ [[I]], by induction on the

structure of τ .

A New Refinement Type System for Automated νHFLZ Validity Checking 27

We prove ∆;Θ ∧ rty(τ ′2) |= τ ′1 ≺ τ1. Assume for contradiction that ∆;Θ ∧
rty(τ ′2) ̸|= τ ′1 ≺ τ1. Then, there exist α ∈ [[∆;Θ ∧ rty(τ ′2)]] and g ∈ (|τ ′1|)(α)
such that g /∈ (|τ1|)(α). By Lemma 1, we have the minimal element γτ1→τ2(α)
in (|τ1 → τ2|)(α), which belongs to (|τ ′1 → τ ′2|)(α) by the assumption. Since
g ∈ (|τ ′1|)(α), we have γτ1→τ2(α)(g) ∈ (|τ ′2|)(α). By Lemma 6, we have ⊥ρ2

̸∈
(|τ ′2|)(α) and thus γτ1→τ2(α)(g) ̸= ⊥ρ2

. On the other hand, from the definition
of the minimal element γτ1→τ2(α) and the assumption g ̸∈ (|τ1|)(α), we have
γτ1→τ2(α)(g) = ⊥ρ2 , a contradiction.

	A New Refinement Type System for Automated HFLZ Validity Checking

