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Abstract. Useless-variable elimination is a transformation that eliminates variables
whose values contribute nothing to the final outcome of a computation. We present
a type-based method for useless-variable elimination and prove its correctness. The
algorithm is a surprisingly simple extension of the usual type-reconstruction algo-
rithm. Our method has several attractive features. First, it is simple, so that the
proof of the correctness is clear and the method can be easily extended to deal with
a polymorphic language. Second, it is efficient: for a simply-typed λ-calculus, it runs
in time almost linear in the size of an input expression. Moreover, our transformation
is optimal in a certain sense among those that preserve well-typedness, both for the
simply-typed language and for an ML-style polymorphically-typed language.

Keywords: control-flow analysis, type-based analysis, type inference, useless-
variable elimination

1. Introduction

1.1. Background

Useless-variable elimination [25] (UVE, in short) is a transformation
that eliminates variables whose values contribute nothing to the fi-
nal outcome of a computation. For example,1 we can transform the
following program

let fun loop(a,bogus,j) =

if (j>100) then a else loop(f(a,j),bogus+2,j+1)

in loop(a,3,1) end

into:

let fun loop(a,j) =

if (j>100) then a else loop(f(a,j),j+1)

in loop(a,1) end

by eliminating the useless variable bogus. (Here, we ignore exceptions
that may be caused by arithmetic operations: See Section 1.4 below.)

† A revised and extended version of the paper that has appeared in Proceedings
of 2000 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM’00), pp.84-93, 2000.

1 This example is taken from [29] and originally comes from [25].
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This kind of useless variable is unlikely to appear in human-produced
code, but it may appear in automatically generated code or in a re-
sult of various compiler optimizations such as constant propagation
and partial evaluation. For example, consider a program fragment
fn (x,y)=>if b then x else y. If b is found to be always true
by other program analysis, the program can be transformed into
fn (x,y)=>x, making the variable y useless.

Shivers [25] first defined the problem of UVE and gave an algo-
rithm for it. His algorithm uses control-flow information. Wand and
Siveroni [29] recently reformalized Shivers’ UVE and proved its cor-
rectness. Wand and Siveroni’s algorithm is based on 0CFA [25], a
context-insensitive control-flow analysis, and it takes cubic time in the
worst case. The proof of the correctness of the algorithm is rather
complicated.

1.2. Our Proposal in This Paper

In this paper, we present a type-based UVE for an ML-style
polymorphically-typed, call-by-value functional language. We define
UVE as the following two-step transformation: In the first step, we
replace as many subexpressions as possible with an empty value () so
that the evaluation result of the whole expression does not change. In
the second step, we simplify the resulting expression by eliminating
unnecessary ()’s. For example, the above program can be transformed
into

let fun loop(a,(),j) =

if (j>100) then a else loop(f(a,j),(),j+1)

in loop(a,(),1) end

by replacing the second argument of loop with (). We can then simplify
the program to obtain the optimized program shown before, by elimi-
nating ()’s. This view of UVE as a two-step transformation clarifies the
essence of UVE: we think the essence lies in the first transformation. It
also seems advantageous in that no special treatment is necessary for
eliminating part of a structured data argument.

Since the second transformation — simplifying a program by elim-
inating ()’s — seems fairly easy, we focus on the first transformation
of replacing subexpressions with () without changing the evaluation
result. We formalize rules for deriving a correct transformation as a
simple extension of standard typing rules, and obtain an algorithm for
finding an optimal transformation as a simple modification to a stan-
dard type-reconstruction algorithm. An important observation behind
this formalization is that when some subexpressions are replaced with
(), the evaluation result of the whole expression is unchanged as long
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as the typing of the whole expression is unchanged.2 Intuitively, this is
because no operations (like pair destructors and arithmetic operations)
that inspect the values of the subexpressions can be applied inside the
expression: If there were such operations, replacing the subexpressions
with () would make the expression ill-typed. Therefore, we can replace
a subexpression with () when the type of the subexpression can be
assumed to be unit (the type of ()) in the surrounding context.

We now explain how to obtain a transformation in more detail. What
we essentially need to do is to perform type inference in a top-down [14]
and on-demand manner: we need to perform type inference for a sub-
term N only when it is found from type inference of the surrounding
context that N must produce a non-empty value (because otherwise
N can be just replaced with (), whatever expression N is). If some
subterm N remains unchecked, then N can be replaced with an empty
value (). For example, consider a term (λ(x, y).x)(1, 2) of integer type.
By performing type inference in a top-down manner, we know that
λ(x, y).x must have type int×α→ int and (1, 2) must have type int×α.
The usual type inference then checks 2 against type α and obtains
α = int , but in our case, 2 is not checked because α can be instantiated
to the type unit of an empty value without violating typing constraints
of the surrounding context. We then obtain a term (λ(x, ()).x)(1, ()) by
replacing terms of type α with (). It is then simplified to (λx.x)1 by
eliminating ().

1.3. Contributions

This is not the first work that studied the problem of UVE for func-
tional languages: Shivers [25] and Wand and Siveroni [29] proposed
CFA-based methods, and Fischbach and Hannan [5] recently, inde-
pendently from us, proposed a type-based method in which types are
annotated with information on whether values are needed or not. Dami-
ani et al. [2, 3] also proposed a non-standard type system of PCF for
a slightly different problem. Our contributions can be summarized as
follows:

− Simple formalization: Our type-based UVE is just a slight mod-
ification to the usual type reconstruction. So, it is easy to verify
its correctness and to extend the method to deal with full-scale
programming languages. Also, it should not be difficult to imple-
ment the algorithm, compared with Wand and Siveroni’s method
(although efficient implementation would still require a fair amount
of work, just as a 0CFA-based optimization would).

2 The same observation was also made by Berardi [1]. It is also related with
Reynolds’ abstraction/parametricity theorem [24].
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− Efficiency: Wand and Siveroni’s method costs cubic time, while
ours costs only almost linear time for the simply-typed case. With
polymorphism, the cost can be exponential in the worst case, but
we believe the algorithm works well in practice (just as ML type
inference does). Detailed analysis of the cost, which is missing in
other work, is also one of our contributions.

− Treatment of polymorphism: Our method can deal with Hindley-
Milner polymorphism, while other type-based methods [2, 3, 5] do
not. Although it is mentioned in their papers that they can extend
the method to deal with polymorphism, it does not seem obvious
how to do so while preserving the optimality of their methods,
because polymorphism brings more opportunities for UVE and
UVE in turn brings more polymorphism, as will be demonstrated
in Section 3.

− Optimality of the method: Our method is optimal among any type-
preserving UVE, that is, (i) any sound (i.e., semantics-preserving)
and type-preserving transformation can be obtained by using our
method, and (ii) there is indeed an algorithm to obtain an optimal
transformation (that replaces more subexpressions with () than
any other transformation) by using our method. In order to avoid
confusion, we often refer to the property (i) alone by the complete-
ness of our method. As mentioned above, how to find an optimal
transformation in the presence of polymorphism is not so trivial.
In fact, Wand and Siveroni’s method [29] is not optimal for the
polymophically-typed language.

The optimality of our method implies that, while subset-based analyses
(like 0CFA) have been used in the previous methods for UVE [25, 29], it
is actually sufficient to use equality-based analyses like our type-based
analysis without subtyping or 0CFA=[19] for our definition of UVE. An
informal account of this is given in Section 7.

1.4. Limitations

Our type-based UVE has the following limitations.

− Non-termination and side-effects: The transformation method
sketched above does not preserve side effects (including non-
termination). For example, consider an expression (λx.1)M and
suppose that M diverges. The expression is transformed into
(λx.1)(). In order to preserve side effects, we must perform an
effect-analysis [26] and disallow the replacement of a side-effecting
expression. For simplicity, we first ignore the problem of side effects
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and then discuss a remedy for this later (in Section 6.2). Although
the remedy is very simple, the optimality no longer holds. If we
must preserve divergence in the call-by-value semantics, (λx.1)M
can be replaced with (λx.1)() if and only if M converges. It is
therefore undecidable whether or not a transformation is optimal.

− Possibility of more aggressive transformations: Our UVE is opti-
mal only among the type-preserving transformations that replace
subterms only with (). For some programs, there are better trans-
formations (in the sense that they eliminate more useless variables)
that are operationally sound, but they are non-type-preserving or
they replace subterms with terms other than (). We discuss this
point in more detail in Section 6.

1.5. Structure of the Rest of This Paper

The rest of this paper is structured as follows. Section 2 introduces
the syntax and typing of the source language. Section 3 gives transfor-
mation rules and shows their correctness and completeness. Section 4
describes how to find an optimal transformation. Section 5 briefly
describes how to simplify the transformed program by removing ().
Section 6 discusses extensions to deal with side effects, equality types,
etc. Section 7 discusses related work, and Section 8 concludes this
paper.

2. Syntax and Operational Semantics of the Language

In this section, we introduce the syntax and typing of an ML-style
polymorphic, call-by-value functional language, which is used as the
source and target language of UVE.

2.1. Terms

DEFINITION 2.1 (terms). The syntax of terms is defined as follows:

M (terms) ::= () | n | x |M1 +M2 | λx.M | fix(f, x,M) |M1M2

| let x = M1 in M2 | if0 M1 then M2 else M3

| proj 1(M) | proj 2(M) | (M1,M2)
V (values) ::= () | n | λx.M | (V1, V2)

Here, n ranges over integers.
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The expressionM1+M2 denotes the summation of integers, fix(f, x,M)
denotes a recursive function f such that f = λx.M ,3 and proj i(M)
denotes a pair projection. The expression if0 M1 then M2 else M3

evaluates M2 if M1 is evaluated to 0, and evaluates M3 otherwise. The
value () is a special constant: its semantics is the same as the () in
ML [16], but it plays a special role in the formalization of UVE in this
paper.

Bound and free variables of M are defined as usual: f and x
are bound in fix(f, x,M) and x is bound in M of λx.M and
let x = N in M . We assume that α-conversion is implicitly performed
as necessary, so that all bound variables are always different from each
other and from free variables. We write [N/x]M for a term obtained by
substituting N (with α-conversion if necessary) for all free occurrences
of x in M .

2.2. Operational Semantics

We define a natural-semantics-style operational semantics by using the
relation M ⇓ V , which means that the term M is evaluated to the
value V . It is defined as the least relation closed under the rules given
in Figure 1. In the rule (E-Add), “+” in n1+n2 denotes the semantic
addition of two integers.

2.3. Typing

DEFINITION 2.2 (types). The sets of types and type schemes, ranged
over by τ and σ respectively, are given by the following syntax.

τ (types) ::= α | unit | int | τ1 → τ2 | τ1 × τ2

σ (type schemes) ::= τ | ∀α.σ

We also use a meta-variable ρ for types. We write FV (σ) for the
set of free type variables (i.e., type variables not bound by ∀) in σ. We
identify types up to α-conversion of bound type variables.

DEFINITION 2.3. A type environment, denoted by Γ, is a mapping
from a finite set of variables to the set of type schemes.

NOTATION 2.4. We write dom(Γ) for the domain of Γ. When
x1, . . . , xn are distinct from each other, the sequence x1 :σ1, . . . , xn :σn
denotes the type environment Γ such that dom(Γ) = {x1, . . . , xn} and
Γ(xi) = σi for each i ∈ {1, . . . , n}. When x 6∈ dom(Γ) holds, Γ, x :σ

3 We do not use the general fixed-point operator because our language is call-by-
value.
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() ⇓ () (E-Unit)

n ⇓ n (E-Int)

M1 ⇓ n1 M2 ⇓ n2

M1 +M2 ⇓ n1+n2
(E-Add)

λx.M ⇓ λx.M (E-Abs)

fix(f, x,M) ⇓ λx.[fix(f, x,M)/f ]M (E-Fix)

M1 ⇓ λx.M M2 ⇓ V2 [V2/x]M ⇓ V
M1M2 ⇓ V

(E-App)

M1 ⇓ V1 [V1/x]M2 ⇓ V2

let x = M1 in M2 ⇓ V2
(E-Let)

M1 ⇓ 0 M2 ⇓ V
if0 M1 then M2 else M3 ⇓ V

(E-IfT)

M1 ⇓ n n 6= 0 M3 ⇓ V
if0 M1 then M2 else M3 ⇓ V

(E-IfF)

M ⇓ (V1, V2)

proj i(M) ⇓ Vi
(E-Proj)

M1 ⇓ V1 M2 ⇓ V2

(M1,M2) ⇓ (V1, V2)
(E-Pair)

Figure 1. Operational Semantics

denotes the type environment ∆ such that dom(∆) = dom(Γ) ∪ {x},
∆(x) = σ, and ∆(y) = Γ(y) for each y ∈ dom(Γ). FV (Γ) denotes the
set
⋃
x∈dom(Γ) FV (Γ(x)).

DEFINITION 2.5. A typing relation Γ ` M : τ is the least relation
closed under the rules given in Figure 2. (In the figure, −→α stands for a
sequence α1, . . . , αn, and ∀−→α .τ stands for ∀α1. · · · ∀αn.τ .)

3. Useless-Variable Elimination

We formalize UVE as a type-preserving, source-to-source transforma-
tion that replaces some subterms with an empty value (). In Sections 3.1
and 3.2, we give rules for deriving such transformations and prove their
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Γ ` () : unit (T-Unit)

Γ ` n : int (T-Int)

Γ, x : ∀−→α .τ ` x : [−→τ /−→α ]τ (T-Var)

Γ `M1 : int Γ `M2 : int

Γ `M1 +M2 : int
(T-Add)

Γ, x : τ1 `M : τ2

Γ ` λx.M : τ1 → τ2
(T-Abs)

Γ, f : τ1 → τ2, x : τ1 `M : τ2

Γ ` fix(f, x,M) : τ1 → τ2
(T-Fix)

Γ `M1 : τ1 → τ2 Γ `M2 : τ1

Γ `M1M2 : τ2
(T-App)

Γ `M1 : τ1 Γ, x :∀−→α .τ1 `M2 : τ2 {−→α } = FV (τ1)\FV (Γ)

Γ ` let x = M1 in M2 : τ2

(T-Let)

Γ `M1 : int Γ `M2 : τ Γ `M3 : τ

Γ ` if0 M1 then M2 else M3 : τ
(T-If)

Γ `M : τ1 × τ2

Γ ` proj i(M) : τi
(T-Proj)

Γ `M1 : τ1 Γ `M2 : τ2

Γ ` (M1,M2) : τ1 × τ2
(T-Pair)

Figure 2. Typing Rules

correctness. Then, we show in Section 3.3 that they are optimal in the
sense that any valid transformation can be derived from those rules.
An algorithm for finding an optimal transformation is deferred until
Section 4.

3.1. Transformation Rules

We want to formalize rules for deriving from a well-typed term M a
term M ′ such that M ′ is obtained by replacing some subterms of M
with () and the evaluation result of M ′ is the same as that of M . For
that purpose, we introduce a relation Γ ` M : τ ⇒ M ′. Intuitively, it
means that M can be transformed into a term M ′ that has type τ under
Γ by replacing some terms with (). It is defined as the least relation
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closed under the rules given in Figure 3. The key idea is embodied in
the rule (Tr-Unit): It means that if we want some part of a term to
produce a value of type unit , then we can just replace that part with ()
regardless of what that part is. More intuitively, it means that if we do
not need information on the evaluation result of some part of a term, we
can just replace it with an empty value (). The other rules are almost
the same as the corresponding typing rules.

Note that the transformation rules are non-deterministic (in addi-
tion to the usual non-determinism on how generic type variables are
instantiated in (Tr-Var)): for example, if M = M1M2 and τ = unit ,
then we can apply either (Tr-Unit) or (Tr-App). This is just for
technical convenience: Thanks to this, we always have a valid identity
transformation Γ ` M : τ ⇒ M for any well-typed term (see Theo-
rem 3.7). If we want to avoid the non-determinism, we can just add the
side condition τ2 6= unit to (Tr-App), etc. (Note that Γ `M : τ ⇒M
would no longer hold if we did so.)

A nice point about our type-based approach is that the consistency
of transformation can be naturally maintained by using type informa-
tion. Notice that replacing some useless terms with () may require other
parts to be modified accordingly. For example, suppose that a function
f does not use the second argument and that f has a monomorphic
type. In order to change a function call f(1, 2) into f(1, ()), we must re-
place any other calls f(M1,M2) with f(M1, ()). This is naturally taken
care of by typing assumptions: By (Tr-Var) and (Tr-App), f(1, 2)
can be transformed into f(1, ()) only when Γ(f) is int × unit → τ .
Because other parts must also be transformed under the same typing
assumption, the second parameters of any other calls to f are also
replaced with ().

EXAMPLE 3.1. Consider the following term:

M = (λx.(λz.proj 1(x) + 1)(proj 2(x) + 1))(1, 2)

It is transformed into:

M ′ = (λx.(λz.proj 1(x) + 1)())(1, ())

(which can be further simplified to (λx.x + 1)1 by removing () and
applying β-reduction) by the derivation in Figure 4. In the figure,
N1, N2, and Γ denote proj 1(x) + 1, proj 2(x) + 1, and x : int × unit
respectively. 2

EXAMPLE 3.2. Let us reconsider the example given in Section 1. The
source program is expressed in our language (extended with booleans,
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Γ `M : unit ⇒ () (Tr-Unit)

Γ ` n : int ⇒ n (Tr-Int)

Γ, x :∀−→α .τ ` x : [−→τ /−→α ]τ ⇒ x (Tr-Var)

Γ `M1 : int ⇒M ′1 Γ `M2 : int ⇒M ′2
Γ `M1 +M2 : int ⇒M ′1 +M ′2

(Tr-Add)

Γ, x : τ1 `M : τ2 ⇒M ′

Γ ` λx.M : τ1→τ2 ⇒ λx.M ′
(Tr-Abs)

Γ, f : τ1→τ2, x : τ1 `M : τ2 ⇒M ′

Γ ` fix(f, x,M) : τ1→τ2 ⇒ fix(f, x,M ′)
(Tr-Fix)

Γ `M1 : τ1→τ2 ⇒M ′1 Γ `M2 : τ1 ⇒M ′2
Γ `M1M2 : τ2 ⇒M ′1M

′
2

(Tr-App)

Γ `M1 : τ1 ⇒M ′1 Γ, x :∀−→α .τ1 `M2 : τ2 ⇒M ′2
{−→α } = FV (τ1)\FV (Γ)

Γ ` let x = M1 in M2 : τ2 ⇒ let x = M ′1 in M ′2
(Tr-Let)

Γ `M1 : int ⇒M ′1 Γ `M2 : τ ⇒M ′2 Γ `M3 : τ ⇒M ′3
Γ ` if0 M1 then M2 else M3 : τ ⇒ if0 M ′1 then M ′2 else M ′3

(Tr-If)

Γ `M : τ1 × τ2 ⇒M ′

Γ ` proj i(M) : τi ⇒ proj i(M
′)

(Tr-Proj)

Γ `M1 : τ1 ⇒M ′1 Γ `M2 : τ2 ⇒M ′2
Γ ` (M1,M2) : τ1 × τ2 ⇒ (M ′1,M

′
2)

(Tr-Pair)

Figure 3. Transformation Rules

n-tuples, and conditionals) by the following term M :

(λloop.loop(a, 3, 1))
fix(loop, x, if proj 3(x) > 100 then proj 1(x)

else loop(f(proj 1(x), proj 3(x)), proj 2(x) + 2, proj 3(x) + 1))

Let Γ = loop : int × unit × int → int , f : int × int → int . Then,
the body of the function loop and the main body are transformed as
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π1 =

· · ·
Γ, z : unit ` N1 : int ⇒ N1

Γ ` λz.N1 : unit→int ⇒ λz.N1 Γ ` N2 : unit ⇒ ()

Γ ` (λz.N1)N2 : int ⇒ (λz.N1)()
Tr-App

∅ ` λx.(λz.N1)N2 : int × unit→int ⇒ λx.((λz.N1)())
Tr-Abs

π2 = π1

∅ ` 1 : int ⇒ 1 ∅ ` 2 : unit ⇒ ()

∅ ` (1, 2) : int × unit ⇒ (1, ())
Tr-Pair

∅ `M : int ⇒M ′ Tr-App

Figure 4. An Example of Transformation Derivation

follows:

Γ, x : int × unit × int `
if proj 3(x) > 100 then proj 1(x)
else loop(f(proj 1(x), proj 3(x)), proj 2(x) + 2, proj 3(x) + 1) : int
⇒ if proj 3(x) > 100 then proj 1(x)

else loop(f(proj 1(x), proj 3(x)), (), proj 3(x) + 1)
Γ, a : int ` loop(a, 3, 1) : int ⇒ loop(a, (), 1)

So, the whole term is transformed into:

(λloop.loop(a, (), 1))
fix(loop, x, if proj 3(x) > 100 then proj 1(x)

else loop(f(proj 1(x), proj 3(x)), (), proj 3(x) + 1))

under the typing assumption f : int × int → int , a : int . By eliminating
the unnecessary (), we obtain the optimized program given in Section 1.
2

EXAMPLE 3.3. Consider the following program taken from [29]:

let fun f1(x,y)=x

fun f2(x,y)=x+x

fun f3(x,y)=y

val g = if p(a,b) then f1 else f2

val h = if q(a,b) then f1 else f3

in g(x, h) end

It is expressed in our language (extended with if-expressions) as the
following term M :

(λf1.λf2.λf3.λg.λh.g(x, h))
(λz.proj 1(z))(λz.proj 1(z) + proj 1(z))(λz.proj 2(z))
(if p(a, b) then f1 else f2 )(if q(a, b) then f1 else f3 ).
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By assigning the following types to bound variables:

f1, f2, g : (int × unit)→int
f3, h : unit ,

we can derive
Γ `M : int ⇒M ′

for

Γ = p : (int × int)→bool, q : (int × int)→bool, a : int , b : int , x : int and
M ′ = (λf1.λf2.λf3.λg.λh.g(x, ()))(λz.proj 1(z))

(λz.proj 1(z) + proj 1(z))()(if p(a, b) then f1 else f2 )().

(Here, we assumed that a and b are integers; the result does not change
for different assumptions on the types of a and b.) By eliminating
unnecessary projections and function applications to values containing
(), we obtain the following program:

let fun f1(x)=x

fun f2(x)=x+x

val g = if p(a,b) then f1 else f2

in g(x) end

This is the same as the result of Wand and Siveroni’s method [29]. 2

EXAMPLE 3.4. We can eliminate not only top-level parameters of
functions, but also a part of structured data. Consider the following
program:

let fun f(x,(y,z))=x+z in f(1,(2,3)) end

It is expressed as

(λf.f(1, (2, 3)))λu.(proj 1(u) + proj 2(proj 2(u)))

in our language. By assigning type int × (unit × int) → int to f , we
obtain

(λf.f(1, ((), 3)))λu.(proj 1(u) + proj 2(proj 2(u)))

as an output. By removing the unnecessary (), we obtain the following
program:

let fun f(x, z)=x+z in f(1, 3) end

2

In the next example, let-polymorphism plays an important role.

EXAMPLE 3.5. Consider the following program:
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let fun f(g,x)=g(x)

in

f(fn (x, y)=>x, (1, 2))+f(fn (x, y)=>x+y, (2, 3))

end

This is expressed in our language by the following term:

let f = λu.proj 1(u)(proj 2(u)) in
f(λv.proj 1(v), (1, 2)) + f(λv.proj 1(v) + proj 2(v), (2, 3))

We can transform it into

let f = λu.proj 1(u)(proj 2(u)) in
f(λv.proj 1(v), (1, ())) + f(λv.proj 1(v) + proj 2(v), (2, 3))

by assigning type ∀α, β.(((α→ β)× α)→ β) to f . By eliminating the
unnecessary (), we obtain the following program:

let fun f(g,x)=g(x)

in f(fn x=>x,1)+f(fn (x, y)=>x+y,(2,3)) end

Notice that this transformation cannot be performed without let-
polymorphism. It is indeed invalid without polymorphism because f

is used polymorphically in the transformed program. 2

The above example indicates that polymorphism provides more oppor-
tunities for UVE. The following example indicates that UVE in turn
brings more polymorphism.

EXAMPLE 3.6. The function f defined by:

fun f(x) = let val y = fst(x) in x end

has a type scheme ∀α, β.(α × β → α × β), but it has a more general
type scheme ∀α.(α→ α) after it is transformed into:

fun f(x) = x

2

3.2. Correctness

Correctness of our type-based UVE is expressed by the three theorems
given below. Theorem 3.7 says that there is at least one valid transfor-
mation for any well-typed term. Theorem 3.8 shows that the output of
the transformation is a well-typed term. Theorem 3.10 shows that the
transformed term evaluates to the same value as a source term. Note
that the transformation may not preserve divergence. See Section 6 for
a remedy of this.

THEOREM 3.7. If Γ `M : τ , then Γ `M : τ ⇒M ′ for some M ′.
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Proof. Because Γ `M : τ ⇒M always holds. 2

THEOREM 3.8 (Well-typedness of transformed terms). If Γ ` M :
τ ⇒M ′, then Γ `M ′ : τ .

Proof. Straightforward induction on the derivation of Γ `M : τ ⇒
M ′. Notice that for each transformation rule of the form

Γ1 `M1 : τ1 ⇒M ′1 · · · Γn `Mn : τn ⇒M ′n
Γ `M : τ ⇒M ′

the following is an instance of a typing rule:

Γ1 `M ′1 : τ1 · · · Γn `M ′n : τn

Γ `M ′ : τ

2

We use a kind of contextual equivalence to show that the trans-
formed term evaluates to the same value as a source term. The idea of
the contextual equivalence is to put two terms into an arbitrary well-
typed context producing an integer, and to compare the result; if two
terms cannot be distinguished by any contexts, they are considered
equivalent. The theorem follows after the definition of the contexts.

DEFINITION 3.9 (contexts). A context is an expression obtained from
a term by replacing one subterm with [ ]. It is defined by the following
syntax:

C[ ] ::= [ ] | C[ ] +M |M + C[ ] | λx.C[ ] | fix(f, x, C[ ]) | (C[ ])M
|M(C[ ]) | let x = C[ ] in M | let x = M in C[ ]
| if0 C[ ] then M1 else M2 | if0 M1 then C[ ] else M2

| if0 M1 then M2 else C[ ]
| proj 1(C[ ]) | proj 2(C[ ]) | (C[ ],M) | (M,C[ ])

C[M ] denotes a term obtained by replacing [ ] with M .

THEOREM 3.10 (Contextual equivalence). 4 Suppose that Γ ` M :
τ ⇒ M ′ holds and that C[ ] is a context. If C[M ] ⇓ n holds and
∅ ` C[ ] : int is derivable from Γ ` [ ] : τ , then C[M ′] ⇓ n.

This is obtained as a corollary of the following lemma, which states
that a transformed term is evaluated to a value obtained by trans-
forming the evaluation result of the original term. The substitution
[V1/x1, . . . , Vn/xn] (where V1, . . . , Vn are closed value terms) in the
lemma models the environment in which terms are evaluated.

4 Since this theorem says nothing about the case where M diverges, it might be
better to say “contextual approximation.”
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LEMMA 3.11. If x1 :∀−→α1.τ1, . . . , xn :∀−→αn.τn ` M : τ ⇒ M ′, ∅ ` Vi :
τi ⇒ V ′i for each i ∈ {1, . . . , n}, and [V1/x1, . . . , Vn/xn]M ⇓ V , then
[V ′1/x1, . . . , V

′
n/xn]M ′ ⇓ V ′ and ∅ ` V : τ ⇒ V ′ for some V ′.

Proof. See Appendix A.

Using this lemma, we can prove Theorem 3.10 as follows.

Proof of Theorem 3.10. From the derivation of ∅ ` C[ ] : int ,
we can obtain a derivation of ∅ ` C[M ] : int ⇒ C[M ′] by replacing
Γ ` [ ] : τ with Γ ` M : τ ⇒ M ′ and replacing each application of a
typing rule (T-XX) with that of the corresponding transformation rule
(Tr-XX). (Here, we exploit that the identity transformation is always
valid. Formally, this can be proved by induction on the derivation of
∅ ` C[ ] : int .) So, it must be the case that C[M ′] ⇓ V and ∅ ` n :
int ⇒ V for some V by Lemma 3.11 (let n = 0 in the lemma). By
the transformation rules in Figure 3, ∅ ` n : int ⇒ V must be derived
using (Tr-Int). So, V must be n. 2

In the above theorem, the correctness is stated based on the op-
erational semantics. The following reasoning based on denotational
semantics is very informal but may be more intuitive. Think of a
cpo-based denotational semantics (for example, see [17]) for a lazy
functional language and consider a cpo ≤ that satisfies ⊥ ≤ x where ⊥
represents (), divergence, or an error, and x is any other element of the
cpo. If M ′ is a term obtained by replacing some subterms of M with (),
then, the denotation [[M ′]] of M ′ is less than [[M ]] (intuitively because
M ′ yields less information than M). Now, suppose M is evaluated to an
integer n in the call-by-value semantics. Then, M is evaluated to n also
in the call-by-need semantics, and hence [[M ]] = n. So, [[M ′]] is either
⊥ or n. If [[M ′]] = ⊥, then M ′ evaluates to (), diverges, or causes an
error in the call-by-need semantics, and hence also in the call-by-value
semantics. However, this is not the case because M ′ is a well-typed term
and because M must diverge if M ′ diverges by the construction of M ′.
Therefore, M ′ must be evaluated to n in the call-by-value semantics.

3.3. Optimality of the Transformation

We formalized UVE as a transformation that replaces some subterms
with () while preserving the evaluation result. It is easy to check that
our type-based UVE is complete in the sense that it can derive any
sound type-preserving transformations that replace subterms with ().”
The algorithm described in Section 4 finds the optimal transformation
(that replaces more subterms with () than any other transformations)
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among transformations obtained by using our type-based method (The-
orem 4.4). So, from the completeness result (Theorem 3.13 below),
we know that the algorithm finds the optimal transformation among
any (i.e., not limited to those obtained by our type-based method)
type-preserving UVE transformations.

First, we introduce the relation M � M ′, meaning that M ′ is
obtained from M by replacing subterms with ().

DEFINITION 3.12. A binary relation � on terms is the least relation
satisfying the following rules:

M � ()
n � n
x � x
M +N �M ′ +N ′ if M �M ′ and N � N ′
λx.M � λx.M ′ if M �M ′
fix(f, x,M) � fix(f, x,M ′) if M �M ′
MN �M ′N ′ if M �M ′ and N � N ′
let x = M1 in M2 � let x = M ′1 in M ′2 if M1 �M ′1 and M2 �M ′2
if0 M1 then M2 else M3 � if0 M ′1 then M ′2 else M ′3

if M1 �M ′1,M2 �M ′2, and M3 �M ′3
(M,N) � (M ′, N ′) if M �M ′ and N � N ′
proj i(M) � proj i(M

′) if M �M ′

The following theorem shows that any valid transformation can be
obtained by using our type-based transformation.

THEOREM 3.13 (completeness). If Γ ` M : τ , Γ ` M ′ : τ , and
M �M ′, then Γ `M : τ ⇒M ′.

Proof. We show a stronger property “If Γ ` M ′ : τ and M � M ′,
then Γ ` M : τ ⇒ M ′” by induction on the structure of M ′. We show
only main cases. The other cases are similar and trivial.

− Case M ′ = (). In this case, τ must be unit . So, by using
(Tr-Unit), we obtain Γ `M : unit ⇒M ′.

− Case M ′ = x: By the assumption M � M ′, M must be x. So, by
using (Tr-Var), we obtain Γ `M : τ ⇒M ′.

− Case M ′ = λx.M ′1: It must be the case that M = λx.M1 and
M1 � M ′1. Γ ` M ′ : τ can be derived only by using (T-Abs). So,
it must be the case that τ = τ1 → τ2 and Γ, x : τ1 ` M ′1 : τ2. By
induction hypothesis, we have Γ, x : τ1 ` M1 : τ2 ⇒ M ′1. So, by
using (Tr-Abs), we obtain Γ `M : τ ⇒M ′ as required.
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− Case M ′ = let x = M ′1 in M ′2: It must be the case that M =
let x = M1 in M2, Mi � M ′i , Γ ` M ′1 : τ1, and Γ, x : ∀−→α .τ1 `
M ′2 : τ with {−→α } = FV (τ1)\FV (Γ). By induction hypothesis,
Γ ` M1 : τ1 ⇒ M ′1 and Γ, x : ∀−→α .τ1 ` M2 : τ ⇒ M ′2. So, by using
(Tr-Let), we obtain Γ `M : τ ⇒M ′.

− Case M ′ = M ′1M
′
2: It must be the case that M = M1M2, Mi �M ′i ,

Γ ` M ′1 : τ1 → τ , and Γ ` M ′2 : τ1. By induction hypothesis,
Γ ` M1 : τ1 → τ ⇒ M ′1 and Γ ` M2 : τ1 ⇒ M ′2. By using
(T-App), we obtain Γ `M : τ ⇒M ′.

2

REMARK 3.14. The above theorem does not exclude the possibility of
a better transformation that does more than merely replacing subterms
with (). For example, the program:

let fun f(x, y) = if true then x else y

in f(1, 2) end

can be simplified to: let fun f(x) = x in f(1) end. We regard this
as a combination of UVE and other transformations. The program can
be first transformed into let fun f(x, y) = x in f(1, 2) end by
using the equality if true then M1 else M2 = M1 and then UVE can
be applied to it (2 is replaced with () and then the unnecessary () is
eliminated). Section 6.3 discusses more fundamental limitations.

4. Transformation Algorithm

In this section, we give an algorithm for finding an optimal transfor-
mation and discuss its computational cost. In the monomorphic case
(i.e., without let-polymorphism), an optimal transformation is found
in almost linear time. In the polymorphic case, the algorithm costs
exponential time in the worst case, but we believe that it works well in
practice.

4.1. Monomorphic Case

4.1.1. Overview of the Algorithm
An input is a triple (Γ,M, τ) such that Γ ` M : τ . We assume that
the interface of a program outside M cannot be changed. Therefore,
the goal is to find the least (w.r.t. �) M ′ such that Γ ` M : τ ⇒ M ′.
(Alternatively, we can assume that only M is given as an input; in that
case, we can obtain a principal typing Γ ` M : τ in time linear in the
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size of M [12].) Without loss of generality, we can assume that Γ and
τ do not contain free type variables: Otherwise, we can replace them
with arbitrary non-unit types (int , for example) that do not contain free
type variables. (This ensures that those variables are not instantiated
with unit by the transformation algorithm below. The output of the
algorithm does not depend on which types are chosen.)

By the transformation rules, in order to find an optimal transfor-
mation of a typed term Γ ` M : τ , it is sufficient to find a derivation
Γ ` M : τ ⇒ M ′ that uses (Tr-Unit) as much as possible. Basically,
we can obtain such an optimal derivation by performing type inference
on-demand. By (Tr-Unit), a subterm N can be replaced with () as
long as it can have type unit in the translated term. So, we need to
solve type constraints on N only when it is found that N must be
transformed into a term of type other than unit .

We use an algorithm similar to the linear-time type-reconstruction
algorithm for the simply-typed λ-calculus (see Proposition 3.3 of [12]).
Imagine a type derivation, each node of which is x1 : τ1, . . . , xn : τn `
N : τN ⇒ N ′. For each node, there are always two possible rules: one
is (Tr-Unit) and the other is the rule whose conclusion matches the
constructor of the term. If the type of the term N is not unit , then the
rule must be the latter one and some equality constraints must be met.
For example, if N is a variable xi, it must be the case that the rule is
(Tr-Var) and τi = τN ; if N is N1N2, then it must be the case that
τN1 = τN2→τN . Otherwise, the rule may be (Tr-Unit) (which is pre-
ferred because it produces a better output) and no further constraints
need to be met. Therefore, by introducing a type variable αN repre-
senting the type of each subterm N and a type variable βx representing
the type of each variable bound in type environments, we can generate
a set of constraints of the form αN 6= unit ⇒ C(N) where C(N) is a
set of equality constraints on types. For example, for a subterm N1N2,
the constraint (αN1N2 6= unit) ⇒ {αN1 = αN2→αN1N2} is generated.
Every type derivation can be obtained by properly instantiating type
variables so that the constraints are met.

After generating constraints, we can solve the constraints by using
a unification algorithm. The differences from an ordinary unification
algorithm are that equality constraints may be added lazily ( C(N) is
added only when it is found that αN cannot be instantiated with unit)
and that the occurrence check can be omitted (because we assume that
an input term is well typed).

After obtaining the most general substitution for type variables,
we can obtain an optimal derivation by instantiating remaining type
variables with unit .
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EXAMPLE 4.1. Consider a typed term ∅ ` (λx.proj 1(x))(1, 2) : int .
We can construct the following template of a derivation tree.

x :βx ` x : αx ⇒ N7

x :βx ` proj 1(x) : αproj1(x)
⇒ N6

∅ ` λx.proj 1(x) : αλx.proj1(x) ⇒ N2

∅ ` 1 : α1 ⇒ N4 ∅ ` 2 : α2 ⇒ N5

∅ ` (1, 2) : α(1,2) ⇒ N3

∅ ` (λx.proj 1(x))(1, 2) : α(λx.proj1(x))(1,2)
⇒ N1

Instantiate type variables so that the following conditions are met:

α(λx.proj 1(x))(1,2) 6= unit ⇒ {αλx.proj 1(x) = α(1,2) → α(λx.proj 1(x))(1,2)}
αλx.proj 1(x) 6= unit ⇒ {αλx.proj 1(x) = βx → αproj 1(x)}
αproj 1(x) 6= unit ⇒ {αx = αproj 1(x) × γproj 1(x)}
αx 6= unit ⇒ {αx = βx}
α(1,2) 6= unit ⇒ {α(1,2) = α1 × α2}
α1 6= unit ⇒ {α1 = int}
α2 6= unit ⇒ {α2 = int}

We can obtain a derivation tree by replacing subtrees whose conclusion
is of the form Γ ` N : unit ⇒ N ′ with instances of the axiom Γ ` N :
unit ⇒ (). 2

4.1.2. Formal Description of the Algorithm
Now we are ready to describe the algorithm more formally.

4.1.2.1. Extracting Constraints As explained above, we assign a type
variable αN to each subterm N of M and a type variable βx to each
variable x appearing in M . For multiple occurrences of the same term
in M , we assign different type variables; specifically, if M contains n
occurrences of the same variable x, then we introduce n type variables
αx1 , . . . , αxn although the indexes are omitted below. We also assign a
type variable γN to each subterm N of the form proj i(N).

The set C(N) defined below gives a set of equality constraints to be
met in order for the rule matching N to be applied.
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DEFINITION 4.2. Let M be a term. For each subterm N of M , the
set C(N) of constraints is defined by:

C(()) = {α() = unit}
C(x) = {αx = βx}
C(n) = {αn = int}
C(M1 +M2) = {αM1+M2 = int , αM1 = int , αM2 = int}
C(λx.N) = {αλx.N = βx→αN}
C(fix(f, x,N)) = {αfix(f,x,N) = βx→αN , βf = βx→αN}
C(M1M2) = {αM1 = αM2→αM1M2}
C(if0 M1 then M2 else M3 ) =
{αM1 = int , αM2 = αM3 = αif0 M1 then M2 else M3

}
C((M1,M2)) = {α(M1,M2) = αM1 × αM2}
C(proj 1(N)) = {αN = αproj 1(N) × γproj 1(N)}
C(proj 2(N)) = {αN = γproj 2(N) × αproj 2(N)}

Notice that the type derivation tree each node of which is
x1 :βx1 , . . . , xn :βxn ` N : αN ⇒ N ′ is a valid derivation tree for
Γ `M : τ ⇒M ′ if the following conditions are satisfiable:

{(αN 6= unit)⇒ C(N) | N is a subterm of M}
∪{Γ(x) = βx | x ∈ dom(Γ)} ∪ {τ = αM}.

4.1.2.2. Solving Constraints We solve the above constraints by com-
puting a valid equivalence relation [22] (see Definition B.8 in Ap-
pendix B) on type terms. Let N (M) be the set of nodes of dags
(directed acyclic graphs) representing type terms appearing in {C(N) |
N is a subterm of M}. We write ∼ for an equivalence relation over
N (M). The expression [τ ]∼ is the representative element of the equiv-
alence class containing τ , and we assume that the representative
element is chosen so that if [τ ]∼ is a type variable then the equiv-
alence class of τ contains only type variables. We write ∼ ⊕{τ11 =
τ12, . . . , τn1 = τn2} for the least equivalence relation ∼′ such that
∼′⊇∼ ∪{(τ11, τ12), . . . , (τn1, τn2)}. An algorithm for solving constraints
is given in terms of the following rewriting relation on pairs consisting
of a set S of equality constraints and an equivalence relation ∼.

(S ] {τ1 = τ2},∼)

;


(S,∼) if [τ1]∼ = [τ2]∼
(S ∪ subC ([τ1]∼, [τ2]∼) ∪ newC (τ1, τ2,∼),∼ ⊕{τ1 = τ2})

if [τ1]∼ 6= [τ2]∼ and subC ([τ1]∼, [τ2]∼) 6= fail
fail if [τ1]∼ 6= [τ2]∼ and subC ([τ1]∼, [τ2]∼) = fail
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Here, S1 ]S2 denotes the union of disjoint sets S1 and S2. subC (τ1, τ2)
and newC (τ1, τ2,∼) are defined by:

subC (τ1, τ2) =


∅ if τ1 or τ2 is a type variable
{τ11 = τ21, τ12 = τ22}

if (i)τ1 = τ11 × τ12 ∧ τ2 = τ21 × τ22 or
(ii)τ1 = τ11→τ12 ∧ τ2 = τ21→τ22

fail otherwise

newC (τ1, τ2,∼) =



⋃
{C(N) | αN ∼ τ1}

if [τ1]∼ is a type variable
and [τ2]∼ is neither a type variable nor unit⋃

{C(N) | αN ∼ τ2}
if [τ2]∼ is a type variable
and [τ1]∼ is neither a type variable nor unit

∅ otherwise

subC (τ1, τ2) adds equality constraints on subterms of τ1 and τ2. newC
adds C(N) if αN is found not to be unit for some N .

Given a valid type judgment Γ ` M : τ as an input, apply the
above rewriting rule repeatedly to the initial pair ({Γ(x) = βx | x ∈
dom(Γ)} ∪ {τ = αM}, {(τ, τ) | τ ∈ N (M)}), until it becomes a pair
of the form (∅,∼). Then, an optimized term M ′ is obtained from M
by replacing each subterm N of M with () if [α]∼ is a type variable or
unit (replace larger terms first).

EXAMPLE 4.3. Let ∅ ` (λx.proj 1(x))(1, 2) : int be an input. The
initial configuration is:

({αM = int},∼id)

where M = (λx.proj 1(x))(1, 2) and ∼id= {(τ, τ) | τ ∈ N (M)}. It is
rewritten as follows:

({αM = int}, {(τ, τ) | τ ∈ N (M)})
; ({αλx.proj 1(x) = α(1,2) → αM},∼id ⊕{αM = int})

(C(M) has been added)
; ({αλx.proj 1(x) = βx → αproj 1(x)},
∼id ⊕{αM = int , αλx.proj 1(x) = α(1,2) → αM})
(C(λx.proj 1(x)) has been added)

; ({βx = α(1,2), αproj 1(x) = αM},
∼id ⊕{αM = int , αλx.proj 1(x) = α(1,2) → αM = βx → αproj 1(x)})

(subconstraints of α(1,2) → αM = βx → αproj 1(x) has been added)
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; ({βx = α(1,2), αx = αproj 1(x) × γproj 1(x)},
∼id ⊕{αM = αproj 1(x) = int ,

αλx.proj 1(x) = α(1,2) → αM = βx → αproj 1(x)}(=∼1))
(C(proj 1(x)) has been added)

; ({βx = α(1,2), αx = βx},∼1 ⊕{αx = αproj 1(x) × γproj 1(x)})
(C(x) has been added)

; ({βx = α(1,2)},∼1 ⊕{αx = βx = αproj 1(x) × γproj 1(x)})
(αx = βx has been moved to the equivalence relation)

; ({α1 × α2 = α(1,2)},∼1 ⊕{αx = βx = α(1,2) = αproj 1(x) × γproj 1(x)})
(C((1, 2)) has been added)

; ({α1 = αproj 1(x), α2 = γproj 1(x)},
∼1 ⊕{αx = βx = α(1,2) = αproj 1(x) × γproj 1(x) = α1 × α2})

(subconstraints of αproj 1(x) × γproj 1(x) = α1 × α2 has been added)
; ({α1 = int , α2 = γproj 1(x)},

∼1 ⊕{αx = βx = α(1,2) = αproj 1(x) × γproj 1(x) = α1 × α2,
α1 = αproj 1(x)})

(C(1) has been added)
;∗ (∅,∼id ⊕{αM = αproj 1(x) = α1 = int ,

αλx.proj 1(x) = α(1,2) → αM = βx → αproj 1(x),
αx = βx = α(1,2) = αproj 1(x) × γproj 1(x) = α1 × α2,
α2 = γproj 1(x)})

(All the equations have been moved to the equivalence relation)

By instantiating α2 with unit , we obtain

αM = αproj 1(x) = α1 = int
αλx.proj 1(x) = int × unit → int
αx = α(1,2) = int × unit
α2 = unit .

Because α2 is type unit , we obtain (λx.proj 1(x))((1, ())) by replacing
2 with (). 2

4.1.3. Correctness
The correctness of the above algorithm follows from the fact that each
rewriting transforms a set of constraints into an equivalent set of con-
straints, the fact that rewriting always terminates without failure, and
the fact that the resulting ∼ is a valid equivalence relation [22].

THEOREM 4.4. Suppose Γ ` M : τ . Then, ({Γ(x) = βx | x ∈
dom(Γ)} ∪ {τ = αM}, {(τ, τ) | τ ∈ N (M)}) can be always rewritten
by ; to (∅,∼) for some ∼. Let M ′ be a term obtained by replacing
with () each subterm N of M s.t. [αN ]∼ is unit or a type variable.
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Then, Γ ` M : τ ⇒ M ′. Moreover, M ′ is an optimal output, i.e.,
M ′′ �M ′ holds for every M ′′ such that Γ `M : τ ⇒M ′′.

Proof. See Appendix B. 2

4.1.4. Efficiency of the algorithm
We show that the time complexity of the algorithm is almost linear
(strictly speaking, O(nα(n)), where α is the inverse of the Ackerman
function and n is the size of an input Γ `M : τ). We assume that types
of the input term are expressed by directed acyclic graphs. Because
the initial set-up (for allocating type variables and computing the pair
({Γ(x) = βx | x ∈ dom(Γ)} ∪ {τ = αM}, {(τ, τ) | τ ∈ N (M)})) and
the final step (for replacing subterms of M with ()) can be performed
in linear time, it is sufficient to show that the rewriting step can be
performed in almost linear time.

First, we estimate the cost of each rewriting step. Notice that non-
constant operations involved in each rewriting step are only those
for merging two equivalence classes and looking up the representa-
tive element of an equivalent class. So, the time complexity of each
rewriting step is bound by those of merge and lookup-operations, whose
amortized cost is O(α(n)) [27].

Next, we show that the number of rewriting steps is O(n). Because
one element is removed from the set S in each rewriting step, the
number of rewriting steps is the size of the initial S plus the number
of elements added by subC and newC . The size of the initial S is
clearly O(n). Whenever subC (τ1, τ2) is added, two equivalence classes
are merged into one. So, subC (τ1, τ2) can be added at most (|N (M)|−1)
times. Moreover, the size of subC (τ1, τ2) is at most 2. Therefore, the
number of elements added by subC is O(n). The number of elements
added by newC is also O(n), because for each subterm N of M , the
size of C(N) is at most 3 and C(N) is added at most once.

By the above arguments, the time complexity of the algorithm is
O(nα(n)).

4.2. Polymorphic Case

The basic idea of the algorithm is the same as in the monomorphic case:
type inference for each subterm is performed on-demand, only when it
is found that its type must not be unit . The only difference from the
monomorphic case is that the unification constraints in C(N) above
are replaced by semi-unification constraints [13] of the form τ1 ≤ τ2

(τ1 ≤ τ2 is defined to hold if and only if there exists a substitution θ
such that θτ1 = τ2).
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In order to obtain C(N), we can use Henglein’s type system based on
semi-unification constraints [10]. His type system has been developed
for performing type inference in the presence of polymorphic recursion.
In his polymorphic type system, a type judgment is of the form Γ; ρ `
M : τ , where ρ ranges over monotypes and Γ contains only monotypes.
He keeps in the additional type parameter ρ information on which type
variables cannot be used polymorphically. So, the judgment x : ∀α.(α→
β) ` M : int is expressed as x :α→ β;β ` M : int . Following his type
system, we can reformalize transformation rules as follows:

Γ; ρ `M : unit ⇒ () (Tr2-Unit)

τ × ρ ≤ τ ′ × ρ
Γ, x : τ ; ρ ` x : τ ′ ⇒ x

(Tr2-Var)

Γ; ρ ` n : int ⇒ n (Tr2-Int)

Γ; ρ `M1 : int ⇒M ′1 Γ; ρ `M2 : int ⇒M ′2
Γ; ρ `M1 +M2 : int ⇒M ′1 +M ′2

(Tr2-Add)

Γ, x : τ1; τ1 × ρ `M : τ2 ⇒M ′

Γ; ρ ` λx.M : τ1→τ2 ⇒ λx.M ′
(Tr2-Abs)

Γ; ρ `M1 : τ1 ⇒M ′1 Γ, x : τ1; ρ `M2 : τ2 ⇒M ′2
Γ; ρ ` let x = M1 in M2 : τ2 ⇒ let x = M ′1 in M ′2

(Tr2-Let)

Γ; ρ `M1 : int ⇒M ′1 Γ; ρ `M2 : τ ⇒M ′2 Γ; ρ `M3 : τ ⇒M ′3
Γ; ρ ` if0 M1 then M2 else M3 : τ ⇒ if0 M ′1 then M ′2 else M ′3

(Tr2-If)

Γ, f : τ1→τ2, x : τ1; (τ1 → τ2)× ρ `M : τ2 ⇒M ′

Γ; ρ ` fix(f, x,M) : τ1→τ2 ⇒ fix(f, x,M ′)
(Tr2-Fix)

Γ; ρ `M1 : τ1→τ2 ⇒M ′1 Γ; ρ `M2 : τ1 ⇒M ′2
Γ; ρ `M1M2 : τ2 ⇒M ′1M

′
2

(Tr2-App)

Γ; ρ `M1 : τ1 ⇒M ′1 Γ; ρ `M2 : τ2 ⇒M ′2
Γ; ρ ` (M1,M2) : τ1 × τ2 ⇒ (M ′1,M

′
2)

(Tr2-Pair)
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Γ; ρ `M : τ1 × τ2 ⇒M ′

Γ; ρ ` proj i(M) : τi ⇒ proj i(M
′)

(Tr2-Proj)

The rule (Tr2-Var) allows the type variables in τ except for those
appearing in ρ to be instantiated. The rule (Tr2-Abs) disallows x to
be used polymorphically by recording its type τ1 in the righthand side
of “;”. On the other hand, the rule (Tr2-Let) does not record the type
of x, so the let-bound variable x can be used polymorphically.

It follows by the same argument as [10] that the above rules are
equivalent to the original rules in the following sense.

THEOREM 4.5.

1. Let {ρ1, . . . , ρk} = FV (x1 :∀−→α1.τ1, . . . , xn : ∀−→αn.τn), and suppose
that the sets of type variables {−→α1}, . . . , {−→αn}, and {−→ρ } are disjoint
from each other. If x1 :∀−→α1.τ1, . . . , xn :∀−→αn.τn `M : τ ⇒M ′, then
x1 : τ1, . . . , xn : τn; ρ1 × · · · × ρk `M : τ ⇒M ′ holds.

2. Suppose {−→βi} = FV (τi)\FV (ρ). If x1 : τ1, . . . , xn : τn; ρ ` M : τ ⇒
M ′, then x1 :∀−→β1.τ1, . . . , xn : ∀−→βn.τn `M : τ ⇒M ′ holds.

We can now obtain an algorithm for finding an optimal transforma-
tion in a similar manner to the monomorphic case. Let a (valid) type
judgment x1 :∀−→α1.τ1, . . . , xn :∀−→αn.τn `M : τ be an input. Assign fresh
type variables αN , α

′
N to each subterm N and a fresh type variable βx

to each variable x. The variable α′N stands for the ρ-part of a judgment
Γ; ρ ` N : τ ⇒ N ′. Assign a fresh type variable γN also to each subterm
N of the form proj j(N

′). Then, consider a derivation tree for

x1 : τ1, . . . , xn : τn; ρ1 × · · · × ρm `M : τ ⇒M ′

such that each node is labelled by a judgment

y1 :βy1 , . . . , yk :βyk ;α′N ` N : αN ⇒ N ′

and {ρ1, . . . , ρm} = FV (x1 : ∀−→α1.τ1, . . . , xn :∀−→αn.τn). It is a valid
derivation if and only if the following conditions are satisfiable:

{τ1 = βx1 , . . . , τn = βxn , τ = αM , α
′
M = ρ1 × · · · × ρm}

∪{(αN 6= unit)⇒ Cp(N) | N is a subterm of M}.
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Here, Cp(N) is given by (Cases where N is (N1, N2), proj i(N1), or
if0 N1 then N2 else N3 are omitted.):

Cp(()) = {α() = unit}
Cp(x) = {βx × α′x ≤ αx × α′x}
Cp(n) = {αn = int}
Cp(M1 +M2) = {αM1+M2 = αM1 = αM2 = int , α′M1+M2

= α′M1
= α′M2

}
Cp(λx.M) = {αλx.M = βx → αM , α

′
M = βx × α′λx.M}

Cp(let x = M1 in M2) =
{αM1 = βx, αlet x=M1 in M2 = αM2 , α

′
let x=M1 in M2

= α′M1
= α′M2

}
Cp(fix(f, x,M)) =

{αfix(f,x,M) = βf = βx → αM , α
′
M = βf × α′fix(f,x,M)}

Cp(M1M2) = {αM1 = αM2 → αM1M2 , α
′
M1

= α′M2
= α′M1M2

}

The main differences between C(N) and Cp(N) are that the equality
constraint in C(x) has been replaced by a semi-unification constraint
in Cp(x), and that the constraints on α′N (which keeps the type vari-
ables that cannot be used polymorphically) have been added in Cp(N).
We can solve them on-demand by using Henglein’s graph-based semi-
unification algorithm [10]. When the constraints have been solved, we
can obtain an optimal output from the input M by replacing with ()
every subterm N such that there is no constraint of the form αN = τ
or αN ≤ τ for a type τ other than unit .

The worst-case cost in the polymorphic case is exponential in the
size of an input, as for the ordinary type-reconstruction problem
for ML [12]. We think, however, that the algorithm works well for
realistic, well-typed programs: Henglein [10] has shown that his type-
reconstruction algorithm runs in time polynomial in the size of the
explicitly-typed program (which implies that type inference costs ex-
ponential time only if the size of inferred types is exponential in the
size of the original program). We think that performing UVE after the
usual type reconstruction is likely to just double the cost of performing
only the usual type reconstruction.

5. Elimination of Useless Projections and Null Tuples

This section briefly explains the second step of UVE: how to simplify
results of the transformation given in Sections 3 and 4 by eliminating
useless constructions/destructions of pairs containing (). For simplicity,
we first deal with the monomorphic case.

Elimination of useless projections and () can be again formalized
as a type-based transformation. Assume that a valid type judgment
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Γ ` M : τ (which is output by the transformation algorithm in Sec-
tion 4) is given. Without loss of generality, we can assume that Γ and τ
do not contain type unit : otherwise, we can rename the () generated by
UVE and its type unit so that they can be distinguished from those that
were present in the source program. (Notice that without this assump-
tion, replacing a pair (M, ()) with M is not always valid: Consider the
case where the pair is passed to an external function f = λx.proj 1(x),
whose code cannot be changed.) Under this assumption, Figure 5 shows
rules for eliminating the () and unnecessary constructions/destructions
of pairs. (In this case, we need not perform type inference, since the
type of each subexpression is known after the first step.) In the figure,
empty(τ) is true if and only if τ is composed only of unit and ×.
Key rules are (El-Unit), (El-Proj1), and (El-Pair1). The rules
(El-Unit) and (El-Pair1) allow us to transform unnecessary pairing
of (). For example, ((), ((), ())) is transformed into (), and (1, (2, ())) is
transformed into (1, 2). The rule (El-Proj1) allows us to eliminate un-
necessary projections. For example, the projection proj 1(M : int × ())
is eliminated: It is valid because M is transformed into a value of
type int by another key rule (El-Pair1). The rules in Figure 5 are
exhaustive: The rule (El-Unit) covers the case where the type of
the original term is empty. The other cases are covered by the other
rules. Notice that the rules (El-Proj1) and (El-Pair1) cover the cases
where one element of the pair has an empty type, while (El-Proj2)
and (El-Pair2) cover the cases where neither element has an empty
type.

We do not show the correctness of the transformation here, but we
expect that we can prove a theorem corresponding to Theorem 3.10
in a similar manner, by first showing the property corresponding to
Lemma 3.11.

Elimination of useless λ-abstractions and applications on () (like
λx : unit .M and M()) is not covered in the rules of Figure 5. It is not
so trivial (except for the case where they appear in the form (λx.M)()),
because replacing λx : unit .M with M may increase the cost of evalua-
tion. One solution is to classify the function types into those of functions
whose bodies are values and those of functions whose bodies may not
be values. We can then perform type inference and replace λx.M with
M and N() with N only when λx.M and N has types of the former
class.

In the polymorphic case, not all pairs of the form ((),M) can be
replaced with M . For example, consider the following program:

let fun f(x, y) = (y, x)

in (#1(f((), 1)), f(2, 3)) end
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Because there is a call f(2, 3), f must remain a function of type
∀α, β.(α× β → β × α). So, the call f((), 1) cannot be replaced with
f(1): It is fine that f is used as a type unit × int → int × unit , but
if the type unit is removed, the resulting type int → int is no longer
an instance of ∀α, β.(α × β → β × α). This problem can also be dealt
with based on type information. We can replace unit with two new
types, one that can be substituted for a polymorphic type variable and
one that cannot. We only eliminate () of the latter type. Because () in
f((),1) has the former type, it cannot be eliminated.

6. Discussions

6.1. Equality Type

In ML, fn (x,y)=>x=y is assigned a type ’’a *’’a ->bool, where ’’a
is an equality type variable. Since it can be instantiated with unit , naive
application of our method wrongly transforms (fn (x,y)=>x=y)(1,2)

into (fn (x,y)=>()=())((), ()). To avoid this, it is sufficient to dis-
tinguish the null tuple () and its type unit of ML from those used in
our transformation. Let us rename () and unit in our transformation
as ()′ and unit ′. Then, we can replace the rule (Tr-Unit) with the
following two rules:

Γ `M : unit ′ ⇒ ()′ (Tr-Unit1)

Γ ` () : unit ⇒ () (Tr-Unit2)

An equality type variable should not be instantiated with unit ′.
In general, similar problems may occur whenever the source lan-

guage has primitive operations that take the null tuple () as an
argument. The same solution (of distinguishing the null tuple of the
source language from () used in the transformation) would be applicable
in such cases.

6.2. Preservation of Non-Termination and Side Effects

Because our transformation replaces whatever expression that can have
type unit with (), it does not preserve non-termination and side effects.
For example,

let fun f(x, y) =

if x<0 then () else (print x;f(x-1, y+1))

in f(2, 3) end
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empty(τ)

Γ `M : τ ; ()
(El-Unit)

¬empty(τ)

Γ, x : τ ` x : τ ; x
(El-Var)

Γ ` n : int ; n (El-Int)

Γ `M1 : int ; M ′1 Γ `M2 : int ; M ′2
Γ `M1 +M2 : int ; M ′1 +M ′2

(El-Add)

Γ, x : τ1 `M : τ2 ; M ′

Γ ` λx.M : τ1→τ2 ; λx.M ′
(El-Abs)

Γ, f : τ1→τ2, x : τ1 `M : τ2 ; M ′

Γ ` fix(f, x,M) : τ1→τ2 ; fix(f, x,M ′)
(El-Fix)

Γ `M1 : τ1→τ2 ; M ′1 Γ `M2 : τ1 ; M ′2
¬empty(τ2)

Γ `M1M2 : τ2 ; M ′1M
′
2

(El-App)
Γ `M1 : int ; M ′1 Γ `M2 : τ ; M ′2

Γ `M3 : τ ; M ′3 ¬empty(τ)

Γ ` if0 M1 then M2 else M3 : τ ; if0 M ′1 then M ′2 else M ′3
(El-If)

Γ `M : τ1 × τ2 ; M ′ ¬empty(τi) empty(τ3−i)

Γ ` proj i(M) : τi ; M ′

(El-Proj1)
Γ `M : τ1 × τ2 ; M ′ ¬empty(τ1) ¬empty(τ2)

Γ ` proj i(M) : τi ; proj i(M
′)

(El-Proj2)
Γ `M1 : τ1 ; M ′1 Γ `M2 : τ2 ; M ′2

¬empty(τi) empty(τ3−i)

Γ ` (M1,M2) : τ1 × τ2 ; M ′i
(El-Pair1)

Γ `M1 : τ1 ; M ′1 Γ `M2 : τ2 ; M ′2
¬empty(τ1) ¬empty(τ2)

Γ ` (M1,M2) : τ1 × τ2 ; (M ′1,M
′
2)

(El-Pair2)

Figure 5. Rules for Eliminating ()
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is transformed into ().
To avoid this, it suffices to change the rule (Tr-Unit) as follows:

M is effect-free

Γ `M : unit ⇒ ()
(Tr-Unit)

Here, the condition “M is effect-free” can be expressed by using ap-
propriate effect systems [26], depending on what kind of side effect we
want to preserve. By regarding calls to recursive functions and print

as having side effects (but ignoring overflow exceptions that may be
caused by the expression y+1), we can transform the above program
into:

let fun f(x, ()) =

if x<0 then () else (print x;f(x-1, ()))

in f(2, ()) end

6.3. More Aggressive Transformations

As indicated in Section 1, our optimality result does not exclude the
possibility of a better transformation that does not preserve types or
does more than replacing subterms with ().

If the output need not be a well-typed term, more subterms may be
replaced by (). For example, if0 0 then M1 else M2 can be replaced
with if0 0 then M1 else () . The optimality of non-type preserving
transformation is undecidable: Notice that, in the term

let f = λx.if0 x then M1 else M2 in f(0) + f(M3; 1),

M2 can be replaced with () if and only if M3 diverges.
Even when replacement of a subterm with () is invalid, it may be

valid to replace it with a dummy value of the same type. Consider the
following example:

(fn f=>(h(f), f(1, M)))(fn (x,y)=>x)

Suppose h is an external function of type (int × int → int) → int .
The term f(1, M) cannot be replaced with f(1, ()) because of typing
constraints, but it can be replaced with a dummy value 0. Although the
replacement does not eliminate the second parameter of f, it may make
variables in M useless. Damiani [2, 3] has already proposed a method
for replacing subterms with dummy values (which he called dead code
elimination). The optimality of this problem is also undecidable.
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7. Related Work

7.1. Comparison with Other Methods for UVE

7.1.0.1. Shivers’s UVE [25] Shivers [25] originated the idea of UVE
and presented an algorithm for UVE using his control-flow analysis.
His algorithm is the basis for Wand and Siveroni’s UVE [29], but the
description of the algorithm was rather informal and its correctness was
not formally proved.

7.1.0.2. Wand-Siveroni’s work [29] As mentioned in Section 1, Wand
and Siveroni [29] reformalized Shivers’s UVE [25] and proved its
correctness.

Our method is optimal and can be performed in almost linear time
for the simply-typed language, while Wand and Siveroni’s method is
based on 0CFA,5 which costs cubic time in the worst case [9]. The
reason for this is that the 0CFA-based method analyzes unnecessary
flow information. For example, consider the following expression

let val f = fn (x,y)=>x

val g = if b then f else fn (x,y)=>x+y

in f(1,2)+g(2,3) end

The 0CFA computes the flows into f and g separately and analyzes
that fn (x,y)=>x flows into f but fn (x,y)=>x+y does not. However,
this precise information is unnecessary: even with that information, we
cannot transform f(1,2) into f(1). Because fn (x,y)=>x flows into
both f and g, f and g must be called by using the same interface.
So, once it is found that the same value flows into some variables, it
is useless to keep separate flow information for those variables. This is
why an equality-based analysis like our type-based analysis is sufficient
for UVE.

In the case of a polymorphic language, our type-based method is still
optimal but the 0CFA-based method is not. In fact, the 0CFA based
method cannot perform the transformation shown in Example 3.5.

Replacing 0CFA with nCFA [25] does not help much. Of course,
there is a case where nCFA can produce a better result than 0CFA.
Consider the following program:

let

fun h(x,y) = x(y)

in

h(fn f => f(1,2),

5 On the other hand, the description of Shivers’s original UVE algorithm is
independent of particular CFA.
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fn (x,y)=>x)+h(fn g => g(2,3), fn (x,y)=>x+y)

end

With 1CFA, we know that only fn (x,y)=>x can flow into f, and
therefore, we can transform it into:

let

fun h(x,y) = x(y)

in

h(fn f => f 1, fn x=>x)

+h(fn g => g(2,3), fn (x,y)=>x+y)

end

However, 1CFA does not work for the slightly different program be-
low: Because it cannot analyze that only fn (x,y)=>x flow into f, the
function call f(1,2) cannot be replaced with f(1).

let

fun h(x,y) = x(y);

fun h’(x) = h(x)+h(x)

in

h’(fn f => f(1,2), fn (x,y)=>x)

+h’(fn g => g(2,3), fn (x,y)=>x+y)

end

Similarly, CFA with polymorphic splitting [30] would not be so effective
for UVE. Indeed, it does not work for the last example, either.6

In addition to the above problem of not being optimal, CFA-based
methods seem to suffer from the cost of unnecessary computation.
nCFA computes flow information for each pair of a program point and
a n-call string, but in order to change a function call f(x,y) to f(x),
every closure that may flow into f must be changed in the same way,
irrespectively of call strings.

7.1.0.3. Fischbach-Hannan’s work [5] Fischbach and Hannan’s
method guarantees preservation of effects by integrating a simple effect
analysis. It is, however, easy to extend our method to deal with effects,
as mentioned above. We think that it is preferable to keep a type system
for effect analysis and that for UVE separate, because complex type
systems such as subtyping and polymorphic recursion [28] are necessary
for precise analysis of effects, while simpler type systems suffice for
UVE. Fischbach and Hannan’s method does not deal with tuples and
polymorphism.

6 It is possible to refine CFA with polymorphic splitting to fully capture the
behavior of Hindley-Milner type inference: Then, UVE based on the analysis would
become optimal but would cost much time ([30], Sec.3.5).
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7.2. Other Related Work

Prunning of simply-typed λ-terms Berardi [1] considered essentially
the same problem (of replacing subterms with () so that typing is
preserved) as ours, for the simply-typed λ-calculus. He showed that
the semantics of a term is preserved as long as typing is preserved (as
we show in Theorem 3.10 for a polymorphic language). He also sketched
a transformation algorithm, but it seems less efficient than ours.

Deadcode elimination Damiani et al. [2, 3] treated a slightly different
problem: to replace subterms with dummy values of the same type,
rather than with (). It does not straightforwardly apply to UVE, since
even if a function f does not use the second parameter, the function
call f(M1,M2) is replaced only with f(M1, d) (where d is a dummy
value). In order to further replace f(M1, d) with f(M1), a method for
UVE like ours must be performed. Because of this difference, the non-
standard type system of Damiani et al. [2] allows subtyping (which we
do not allow).

Program slicing Program specialization by using program slicing [23]
is also closely related: If we are interested in only the first element of
the output of a program M , then we can obtain a program slice by
applying UVE to proj 1(M). Detailed comparisons with each technique
for program slicing are future work.

Use analysis For a monomorphically-typed language, a transforma-
tion similar to ours can be performed by using a restricted form of
Mogensen’s use analysis for lazy functional languages [18] (although his
analysis has been proposed for a different purpose). For a polymorphic
language, however, it is not clear how to extend the use analysis with
polymorphism so that the optimal transformation can be performed.

Type inference-based garbage collection The underlying idea behind
our method is similar to those of garbage-collection schemes [6, 11]
based on Reynolds’ abstraction/parametricity theorem [24], where type
inference is performed at run-time and a heap cell on which no type
constraint is imposed by the context is collected as a garbage. The
main differences between these techniques and ours are that our UVE
performs type inference at compile time and eliminates any terms on
which no type constraint is imposed by the context, not just heap
values.

Other work Heintze and McAllester [8] have developed a linear-time
algorithm for bounded-type programs that builds a directed graph
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whose transitive closure gives the information obtained by 0CFA. In-
terestingly, it is reported that some 0CFA-consuming analysis (for
bounded-type programs) can also be performed in linear time, by using
the obtained graph. Their work is not directly related with our work
in this paper, because the reason our algorithm is almost linear time is
that we need to perform only an equality-based analysis, not that we
have specialized 0CFA for the problem of UVE. However, for the prob-
lem of deadcode elimination (replacing subterms with dummy values),
it may be interesting to apply their algorithm.

There are also many other techniques for reducing procedure pa-
rameters (although the problems they deal with seem to be actually
quite different from the one treated in this paper). For example, in the
context of logic programming, Leuschel and Sørensen [15] presented a
method for removing redundant arguments of predicates. Danvy and
Schultz [4] presented a method for removing formal parameters by
replacing them with references to non-local variables, in the context
of lambda dropping.

8. Concluding Remarks

We have formalized a type-based method for UVE and shown its
correctness and optimality.

It is widely known that type systems and flow analyses are closely
related [7, 19, 20, 21]. For a monomorphic language, the main difference
between Wand and Siveroni’s 0CFA-based method and ours is whether
the analysis is subset-based or equality-based (or in the terminology of
type systems, whether subtyping is allowed or not); our conclusion on
this point is that an equality-based analysis is sufficient for UVE. For
an ML-style polymorphic language, polymorphism provides additional
power of UVE (recall Example 3.5). So, it would be safe to say that the
type-based method is more suitable for an ML-style language. Another
supporting argument for the type-based method is that it is guaranteed
to preserve typing.

One may argue that the CFA is still necessary for other optimiza-
tions and therefore the practical advantage of our method over Wand
and Siveroni’s method is small. However, because 0CFA costs cubic
time in the program size, and UVE can reduce the program size (by
eliminating some dead-code), it might be a good idea to perform
the type-based UVE first, and then to perform 0CFA for other op-
timizations. Generally, because one optimization may enable another
optimization, some compilers may perform several optimizations re-
peatedly; in that case, it is good to know what kind of analysis suffices
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for each optimization. Experiments are necessary to know whether our
UVE is really useful in practice, though.
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Appendix

A. Proof of Lemma 3.11

We first need some auxiliary lemmas.

LEMMA A.1. . If Γ, x : ∀−→α .τ1 `M : τ2 ⇒M ′ and {−→α } ⊆ {−→β } hold,

then Γ, x : ∀−→β .τ1 `M : τ2 ⇒M ′ also holds.
Proof. This follows by straightforward induction on derivation of

Γ, x : ∀−→α .τ1 `M : τ2 ⇒M ′. 2

LEMMA A.2. If Γ `M : τ ⇒M ′, then [τ ′/α]Γ `M : [τ ′/α]τ ⇒M ′

Proof. The proof is by induction on structure of M ′. We show only
the cases where M ′ is a variable or a let-expression: The other cases
are trivial.

− Case where M ′ = x: It must be the case that M = x, Γ =
(Γ′, x : ∀−→β .τ1), and [−→ρ /−→β ]τ1 = τ . We can assume without loss of

generality that {−→β } ∩ ({α} ∪ FV (τ ′)) = ∅. So, we have [τ ′/α]Γ =

[τ ′/α]Γ′, x :∀−→β .[τ ′/α]τ1. By using (Tr-Var), we obtain

[τ ′/α]Γ ` x : [([τ ′/α]−→ρ )/
−→
β ]([τ ′/α]τ1)⇒ x.

We have the required result because [([τ ′/α]−→ρ )/
−→
β ][τ ′/α]τ1 =

[τ ′/α]([−→ρ /−→β ]τ1) = [τ ′/α]τ holds.

− Case where M ′ = let x = M ′1 in M ′2: We have

M = let x = M1 in M2

Γ `M1 : τ1 ⇒M ′1
Γ, x : ∀−→β .τ1 `M2 : τ ⇒M ′2

with M = let x = M1 in M2 and {−→β } = FV (τ1)\FV (Γ). Without

loss of generality, we can assume that {−→β } ∩ ({α} ∪ FV (τ ′)) = ∅.
(Otherwise, we can rename β in Γ ` M1 : τ1 ⇒ M ′1 by applying
induction hypothesis to M ′1.) By induction hypothesis, we have

[τ ′/α]Γ `M1 : [τ ′/α]τ1 ⇒M ′1
[τ ′/α]Γ, x : [τ ′/α]∀−→β .τ1 `M2 : [τ ′/α]τ ⇒M ′2.

By the assumption {−→β } ∩ ({α} ∪ FV (τ ′)) = ∅, we have {−→β } ⊆
FV ([τ ′/α]τ1)\FV ([τ ′/α]Γ) and [τ ′/α]∀−→β .τ1 = ∀−→β .[τ ′/α]τ1. So,
by using (Tr-Let) and Lemma A.1, we obtain [τ ′/α]Γ ` M :
[τ ′/α]τ ⇒M ′ as required.
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2

LEMMA A.3 (Substitution). If Γ, x : ∀−→α .τ1 ` M : τ ⇒ M ′ and Γ `
N : τ1 ⇒ N ′ and {−→α }∩ (FV (Γ)∪FV (τ)) = ∅, then Γ ` [N/x]M : τ ⇒
[N ′/x]M ′.

Proof. The proof is by induction on the structure of M ′.

− Case for M ′ = (): In this case, τ = unit . Therefore, by (Tr-Unit),
we have Γ ` [N/x]M : τ ⇒ ()(= [N ′/x]M ′).

− Case for M ′ = x: By the assumption Γ, x : ∀−→α .τ1 ` M : τ ⇒ M ′,
it must be the case that M = x and [−→ρ /−→α ]τ1 = τ for some −→ρ .
So, Γ ` [N/x]M : τ ⇒ [N ′/x]M ′ follows immediately from the
assumption Γ ` N : τ1 ⇒ N ′ and Lemma A.2.

− Case for M ′ = y(6= x): It must be the case that [N/x]M =
[N ′/x]M ′ = y. So, we obtain Γ ` [N/x]M : τ ⇒ [N/x]M ′ from the
assumption.

− Case for M ′ = n: Trivial, since M = M ′ = [N/x]M = [N ′/x]M ′ =
n.

− Case for M ′ = M ′1 + M ′2: In this case, we have M = M1 + M2,
τ = int , (Γ, x : ∀−→α .τ1 ` M1 : int ⇒ M ′1), and (Γ, x : ∀−→α .τ1 `
M2 : int ⇒ M ′2). By induction hypothesis, Γ ` [N/x]M1 : int ⇒
[N ′/x]M ′1 and Γ ` [N/x]M2 : int ⇒ [N ′/x]M ′2. Therefore, we
obtain Γ ` [N/x]M : τ ⇒ [N ′/x]M ′ by using (Tr-Add).

− Case for M ′ = λy.M ′1: In this case, we have M = λy.M1 and
τ = τ2→τ3. Without loss of generality, we can assume that
y 6= x (by the assumption on implicit α-conversion). So, we
have Γ, x : ∀−→α .τ1, y : τ2 ` M1 : τ3 ⇒ M ′1. By the assumption
{−→α } ∩ (FV (Γ) ∪ FV (τ)) = ∅, we have {−→α } ∩ (FV (Γ, y : τ2) ∪
FV (τ3)) = ∅. So, by using induction hypothesis, we obtain
Γ, y : τ2 ` [N/x]M1 : τ3 ⇒ [N ′/x]M ′1, from which Γ ` λy.[N/x]M1 :
τ ⇒ λy.[N ′/x]M ′1(= [N ′/x](λy.M ′1)) follows.

− Case for M ′ = fix(f, x,M): Similar to the case for M ′ = λx.M .

− Case where M ′ is of the form M ′1M
′
2, proj i(M

′
1), (M ′1,M

′
2), or

if0 M ′1 then M ′2 else M ′3 : Similar to the case for (Tr-Add).

− Case for M ′ = let y = M ′1 in M ′2: It must be the case that
M = let y = M1 in M2. We can assume without loss of gener-
ality that y 6= x. We also have Γ, x :∀−→α .τ1 ` M1 : τ2 ⇒ M ′1
and Γ, x : ∀−→α .τ1, y :∀−→β .τ2 ` M2 : τ ⇒ M ′2, where {−→β } =
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FV (τ2)\(FV (Γ)∪FV (∀−→α .τ1)). Without loss of generality, we can
assume that {−→α } ∩ FV (τ2) = ∅. (If it does not hold, apply α-
conversion to ∀−→α .τ1.) So, by using induction hypothesis, we obtain

Γ ` [N/x]M1 : τ2 ⇒ [N ′/x]M ′1, and Γ, y : ∀−→β .τ2 ` [N/x]M2 :

τ ⇒ [N ′/x]M ′2. Let {−→γ } = FV (τ2)\FV (Γ). Then because {−→β } =
FV (τ2)\(FV (Γ) ∪ FV (∀−→α .τ1)) ⊆ FV (τ2)\FV (Γ) = {−→γ } holds,
we obtain Γ, y :∀−→γ .τ2 ` [N/x]M2 : τ ⇒ [N ′/x]M ′2 by using
Lemma A.1. So, we obtain the required result by using (Tr-Let).

2

Now we can prove Lemma 3.11:

If x1 : ∀−→α1.τ1, . . . , xn : ∀−→αn.τn ` M : τ ⇒ M ′, ∅ ` Vi : τi ⇒ V ′i
for each i ∈ {1, . . . , n}, and [V1/x1, . . . , Vn/xn]M ⇓ V , then
[V ′1/x1, . . . , V

′
n/xn]M ′ ⇓ V ′ and ∅ ` V : τ ⇒ V ′ for some V ′.

Proof of Lemma 3.11. We prove this lemma by induction on deriva-
tion of [V1/x1, . . . , Vn/xn]M ⇓ V , but in order to simplify the case
analysis, we show two cases independently: the case where M ′ = ()
and the case where M is a variable.

− Case where M ′ = (): In this case, τ = unit . Therefore, the required
properties hold for V ′ = ().

− Case where M is a variable: it must be the case that M = xi,
τ = [−→ρ /−→αi]τi, and V = Vi. M

′ must be xi or (). The latter case has
been shown above. So, suppose M ′ is xi. By applying Lemma A.2
to ∅ ` Vi : τi ⇒ V ′i , we get ∅ ` Vi : [−→ρ /−→αi]τi ⇒ V ′i . So, the result
holds for V ′ = V ′i .

Now, we show the other cases by induction on derivation of
[V1/x1, . . . , Vn/xn]M ⇓ V , with case analysis on the last rule
used. We can assume that M is not a variable and that M ′ 6=
(), since we have already shown those cases. We write Γ for
x1 : ∀−→α1.τ1, . . . , xn :∀−→αn.τn and write θ and θ′ for substitutions
[V1/x1, . . . , Vn/xn] and [V ′1/x1, . . . , V

′
n/xn] respectively. We can assume

without loss of generality that −→α1, . . . ,−→αn do not appear free in the
derivation of Γ `M : τ ⇒M ′.

− Case for (E-Unit): In this case, M = M ′ = (), so it is subsumed
by the above case for M ′ = ().

− Case for (E-Int): In this case, M = M ′ = n. So, the required
properties hold for V ′ = n.
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− Case for (E-Add): The derivation must be of the form:

· · ·
θM1 ⇓ n1

· · ·
θM2 ⇓ n2

θM ⇓ n1+n2

with M = M1 + M2 and V = n1+n2. By the assumptions, we
also have M ′ = M ′1 + M ′2, τ = int , and Γ ` Mi : int ⇒ M ′i . By
applying induction hypothesis to the derivations of θMi ⇓ ni, we
obtain θ′M ′i ⇓ ni for i = 1, 2. So, by using (E-Add), we obtain
θ′M ′ ⇓ V . The result follows, since ∅ ` V : int ⇒ V .

− Case for (E-Abs): In this case, M = λy.M1, M ′ = λy.M ′1, τ =
τ ′→τ ′′, and Γ, y : τ ′ ` M1 : τ ′′ ⇒ M ′1. By repeated applications of
Lemma A.3 and the assumption that {−→α1}, . . . , {−→αn}, and FV (Γ)∪
FV (τ) are disjoint from each other, we have y : τ ′ ` θM1 : τ ′′ ⇒
θ′M ′1, from which we obtain

` λy.θM1 : τ ⇒ λy.θ′M ′1.

Therefore, the required result holds for V ′ = λy.θ′M ′1.

− Case for (E-Fix): In this case, M = fix(f, y,M1), M ′ =
fix(f, y,M ′1), τ = τ ′→τ ′′, V = λy.[θM/f ]θM1, and Γ, f : τ, y : τ ′ `
M1 : τ ′′ ⇒ M ′1. By (Tr-Abs), Γ, f : τ ` λy.M1 : τ ⇒ λy.M ′1.
By Lemma A.3 and the assumption Γ ` M : τ ⇒ M ′, we have
Γ ` λy.[M/f ]M1 : τ ⇒ λy.[M ′/f ]M ′1. Let V ′ = θ′λy.[M ′/f ]M ′1 =
λy.[θ′M ′/f ]θ′M ′1. By applying Lemma A.3 repeatedly, we obtain
∅ ` V : τ ⇒ V ′. We have also θ′M ′ ⇓ V ′ as required.

− Case for (E-App): The derivation must be of the form:

· · ·
θM1 ⇓ λy.M3

· · ·
θM2 ⇓W

· · ·
[W/y]M3 ⇓ V

θM ⇓ V

with M = M1M2. Moreover, by the assumption Γ ` M1M2 : τ ⇒
M ′, it must be the case that M ′ = M ′1M

′
2, Γ ` M1 : τ ′→τ ⇒ M ′1

and Γ ` M2 : τ ′ ⇒ M ′2. By applying induction hypothesis to
the derivation of θM1 ⇓ λy.M3, we obtain θ′M ′1 ⇓ λy.M ′3 and
∅ ` λy.M3 : τ ′→τ ⇒ λy.M ′3 for some M ′3. From the latter, we get
y : τ ′ ` M3 : τ ⇒ M ′3. By applying induction hypothesis to the
derivation of θM2 ⇓ W , we also obtain θ′M ′2 ⇓ W ′ and ∅ ` W :
τ ′ ⇒W ′ for some W ′. So, by applying induction hypothesis again
to the derivation of [W/y]M3 ⇓ V , we have [W ′/y]M ′3 ⇓ V ′ (from
which θ′M ′ ⇓ V ′ follows) and ∅ ` V : τ ⇒ V ′ for some V ′.
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− Case where the last rule is (E-Let): The derivation must be of the
form · · ·

θM1 ⇓W
· · ·

[W/x]θM2 ⇓ V
θM ⇓ V

with M = let x = M1 in M2. we also have M ′ =
let x = M ′1 in M ′2, Γ ` M1 : ρ ⇒ M ′1, and Γ, x : ∀−→α .ρ ` M2 :
τ ⇒ M ′2 with {−→α } = FV (ρ)\FV (Γ). By applying induction hy-
pothesis to the derivation of θM1 ⇓ W , we obtain θ′M ′1 ⇓ W ′

and ∅ ` W : ρ ⇒ W ′ for some W ′. By applying induction
hypothesis again to the derivation of [W/x]θM2 ⇓ V , we obtain
[W ′/x]θ′M ′2 ⇓ V ′ (which implies θ′M ′ ⇓ V ′) and ∅ ` V : τ ⇒ V ′

for some V ′, as required.

− Case for (E-IfT): The derivation must be of the form
· · ·

θM1 ⇓ 0
· · ·

θM2 ⇓ V
θM ⇓ V

with M = if0 M1 then M2 else M3 . We also have M ′ =
if0 M ′1 then M ′2 else M ′3 , Γ `M1 : int ⇒M ′1, and Γ `Mi : τ ⇒
M ′i for i = 2, 3. By applying induction hypothesis to the derivation
of θM1 ⇓ 0 and the fact Γ `M1 : int ⇒M ′1, we obtain θ′M ′1 ⇓ V ′1
and ∅ ` 0 : int ⇒ V ′1 for some V ′1 . By the transformation rules, V ′1
must be 0. By applying induction hypothesis again to θM2 ⇓ V
and Γ `M2 : τ ⇒M ′2, we also have θ′M ′2 ⇓ V ′ and ∅ ` V : τ ⇒ V ′

for some V ′. By using (E-IfT), we get θ′M ′ ⇓ V ′ as required.

− Case for (E-IfF): Similar to the case for (E-IfT).

− Case for (E-Proj): We show only the case where i in the rule is 1:
The case where i = 2 is similar. In this case, the derivation must
be of the form · · ·

θM1 ⇓ (V,W2)

θM ⇓ V
with M = proj 1(M1). We also have M ′ = proj 1(M ′1) and Γ `M1 :
τ × τ2 ⇒ M ′1. By induction hypothesis, we have θ′M ′1 ⇓ W ′ and
∅ ` (V,W2) : τ × τ2 ⇒ W ′ for some W ′. By transformation rules,
W ′ must be of the form (W ′1,W

′
2) and ∅ ` V : τ ⇒W ′1. The result

follows for V ′ = W ′1, since θ′M ′ = proj 1(θ′M ′1) ⇓ V ′.

− Case for (E-Pair): The derivation must be of the form
· · ·

θM1 ⇓W1

· · ·
θM2 ⇓W2

θM ⇓ V
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with M = (M1,M2) and V = (W1,W2). We also have M ′ =
(M ′1,M

′
2), τ = τ1 × τ2, Γ ` M1 : τ1 ⇒ M ′1, and Γ ` M2 : τ2 ⇒

M ′2. By induction hypothesis, we have θ′M ′1 ⇓ W ′1, θ′M ′2 ⇓ W ′2,
∅ ` W1 : τ1 ⇒ W ′1 and ∅ ` W2 : τ2 ⇒ W ′2 for some W ′1 and W ′2.
Therefore, θ′M ′ ⇓ V ′ and ∅ ` V : τ ⇒ V ′ hold for V ′ = (W ′1,W

′
2).

2

B. Proof of Theorem 4.4

Because the constraint (αN 6= unit) ⇒ C(N) is implicitly assumed for
each subterm N , the intended meaning of the pair (S,∼) is given as
follows.

DEFINITION B.1. [[(S,∼)]] is defined as

S∪{τ1 = τ2 | τ1 ∼ τ2}∪{(αN 6= unit)⇒ C(N) | [αN ]∼ is a type variable}.

NOTATION B.2. We write ΘM for the set of substitutions that maps
each type variable in

{αN | N is a subterm of M} ∪ {βx | x appears in M}
∪{γN | N is a subterm of M and is of the form proj j(N

′)}

to a type term containing no type variables.

DEFINITION B.3. Let θ ∈ ΘM . We write θ |= τ1 = τ2 if θτ1 and
θτ2 are syntactically equal. We also write θ |= (τ 6= unit) ⇒ {τ11 =
τ12, . . . , τn1 = τn2} if either θτ = unit or θτj1 = θτj2 for each j ∈
{1, . . . , n}. Let cj and c′j be constraints of the form τ1 = τ2 or (τ 6=
unit)⇒ {τ11 = τ12, . . . , τn1 = τn2}. We write θ |= {c1, . . . , cn} if θ |= cj
for each j ∈ {1, . . . , n}.

The following lemma states that [[(S,∼)]] is an invariant condition
preserved by the rewriting ;.

LEMMA B.4. If (S,∼) ; (S′,∼′), then θ |= [[(S,∼)]] ⇔ θ |= [[(S′,∼′)]]
for any θ ∈ ΘM .

We need some additional lemmas to prove this.

LEMMA B.5. If (S,∼) ; (S′,∼′) and [αN ]∼ is a type variable but
[αN ]∼′ is neither a type variable nor unit, then C(N) ⊆ S′.
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Proof. By the definition of ;, it must be the case that S = S1]{τ1 =
τ2}, S′ = S1 ∪ subC ([τ1]∼, [τ2]∼) ∪ newC (τ1, τ2,∼), and ∼′=∼ ⊕{τ1 =
τ2}. Because [αN ]∼ is a type variable but [αN ]∼′ is not, αN ∼ τi, and
[τi]∼ is a type variable but [τj ]∼ is not for i, j = 1, 2 or i, j = 2, 1. Since
[τj ]∼ = [αN ]∼′ , C(N) ⊆ newC (τ1, τ2,∼) ⊆ S′. 2

LEMMA B.6. If (S,∼) ; (S′,∼′), then θ |= S′ ∪ {τ1 = τ2 | τ1 ∼′ τ2}
implies θ |= S ∪ {τ1 = τ2 | τ1 ∼ τ2}.

Proof. Trivial by the definition of ; (notice that ∼⊆∼′ and if
(S1 ∪ {τ1 = τ2},∼1) ; (S2,∼2) and τ1 = τ2 6∈ S2, then τ1 ∼2 τ2). 2

Proof of Lemma B.4.

⇐) We show that θ |= [[(S′,∼′)]] implies θ |= c for each constraint
c ∈ [[(S,∼)]]. The case where c comes from the first or second set
of [[(S,∼)]] follows immediately from Lemma B.6. So, we need to
consider only the case where c comes from the third set of [[(S,∼)]]
and it is not an element of the third set of [[(S′,∼′)]], i.e., case where
c is of the form (αN 6= unit)⇒ C(N) and [αN ]∼ is a type variable
but [αN ]∼′ is not. If [αN ]∼′ = unit , then θ |= c is vacuously true.
So, suppose [αN ]∼′ 6= unit . In this case, C(N) ⊆ S′ by Lemma B.5,
which implies θ |= c.

⇒) We show that θ |= [[(S,∼)]] implies θ |= c for each constraint c ∈
[[(S′,∼′)]]. The case where c comes from the second set is trivial,
since∼′⊆∼ ⊕S. If c comes from the first set S′ and is not contained
in S, then c is either in subC ([τ1]∼, [τ2]∼) or in newC (τ1, τ2,∼). In
the former case, θ |= c follows from (τ1 = τ2) ∈ S. In the latter
case, c must be an element of C(N) for some N such that αN ∼ τ1,
[τ1]∼ is a type variable, and [τ2]∼ is neither a type variable nor
unit . So, θ |= c follows from the fact θ |= (αN 6= unit)⇒ C(N).

Suppose that c comes from the third set of [[(S′,∼′)]]. In this case,
c is (αN 6= unit) ⇒ C(N) and [αN ]∼′ is a type variable. By the
definition of ;, we have ∼′⊇∼, which implies that [αN ]∼ is also
a type variable. So, it must be the case that c ∈ [[(S,∼)]]. By the
assumption θ |= [[(S,∼)]], θ |= c follows.

2

Next, we show that rewriting does not fail if the initial constraint
has a solution.

LEMMA B.7. If [[(S,∼)]] is satisfiable, then (S,∼) 6;∗ fail.
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Proof. Suppose (S,∼) ;∗ (S′,∼′) ; fail. By the definition of ;,
it must be the case that S′ = S1 ] {τ1 = τ2} and subC ([τ1]∼′ , [τ2]∼′) =
fail. By the definition of subC , [τ1]∼′ and [τ2]∼′ are not unifiable. So,
[[(S′,∼′)]] is not satisfiable. By Lemma B.4 and the assumption that
[[(S,∼)]] is satisfiable, however, [[(S′,∼′)]] must be satisfiable, hence a
contradiction. 2

Next, we want to check that the final ∼ is a valid equivalence relation
as defined below.

DEFINITION B.8. An equivalence relation ∼ on N (M) is valid [22]
if (i) τ1→τ2 ∼ τ ′1→τ ′2 or τ1 × τ2 ∼ τ ′1 × τ ′2 implies τ1 ∼ τ ′1
and τ2 ∼ τ ′2, (ii) there are no τ1, τ2, τ

′
1, τ
′
2 such that τ1→τ2 ∼

τ ′1 × τ ′2, and (iii) a binary relation {([α]∼, [τ ]∼) | τ ∈ N (M), τ 6=
α, and the type variable α appears in τ} is a strict partial order.

The third condition prevents cycles. For example, it excludes out the
following unsatisfiable equivalence relation: {α ∼ β × β, β ∼ α × α}.
Intuitively, a valid equivalence relation is a “solved form” of equality
constraints. From a valid equivalence relation ∼, we can obtain a most
general unifier mgu∼ of {τ1 = τ2 | τ1 ∼ τ2} by:

mgu∼(α) =

{
α if [α]∼ = α
[mgu∼(α1)/α1, . . . ,mgu∼(αn)/αn][α]∼ otherwise

Here, α1, . . . , αn are type variables appearing in [α]∼. (Note that
mgu∼(α) is well defined because of the third condition of the valid
equivalence relation.)

To prove that the rewriting rules always generate a valid equivalence
relation, it suffices to check that the following well-formedness condition
is preserved by rewriting.

DEFINITION B.9. We say that (S,∼) is well-formed if τi (∼ ⊕S) τ ′i
holds for i = 1, 2 whenever τ1→τ2 ∼ τ ′1→τ ′2 or τ1 × τ2 ∼ τ ′1 × τ ′2 holds.

LEMMA B.10. Suppose that [[(S,∼)]] is satisfiable. If (S,∼) ; (S′,∼′)
and (S,∼) is well-formed, then (S′,∼′) is also well-formed.

Proof. The only non-trivial is the case where (τ1opτ2) ∼′ (τ ′1opτ ′2)
but (τ1opτ2) 6∼ (τ ′1opτ ′2) for op = × or→. Suppose op = ×. (The case
where op =→ is similar.) In this case, there exist S1, τ3, and τ ′3 such
that:

S = S1 ] {τ3 = τ ′3}
S′ = S1 ∪ subC ([τ3]∼, [τ

′
3]∼) ∪ newC (τ3, τ

′
3,∼)

∼′=∼ ⊕{τ3 = τ ′3}
τ3 ∼ τ1 × τ2

τ ′3 ∼ τ ′1 × τ ′2
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By the last two conditions, the well-formedness of (S,∼) and the
satisfiability of [[(S,∼)]], it must be the case that

[τ3]∼ = ρ1 × ρ2 [τ ′3]∼ = ρ′1 × ρ′2
ρi(∼ ⊕S)τi for i = 1, 2 ρ′i(∼ ⊕S)τ ′i for i = 1, 2

for some ρ1, ρ2, ρ
′
1, and ρ′2. Because (∼ ⊕S1) ⊆ (∼′ ⊕S) holds, the last

two conditions imply ρi(∼′ ⊕S′)τi and ρ′i(∼′ ⊕S′)τ ′i . By the definition
of subC , we have:

{ρ1 = ρ′1, ρ2 = ρ′2} ⊆ subC ([τ3]∼, [τ
′
3]∼) ⊆ S′.

Therefore, we have τi(∼′ ⊕S′)ρi(∼′ ⊕S′)ρ′i(∼′ ⊕S′)τ ′i as required. 2

LEMMA B.11. Let ∼= {(τ, τ) | τ ∈ N (M)} and suppose [[(S,∼)]] is
satisfiable. If (S,∼) ;∗ (∅,∼′), then ∼′ is a valid equivalence relation.

Proof. Because ∼ is the identity relation, (S,∼) is well-formed.
By Lemmas B.4 and B.10, (∅,∼′) is also well-formed, from which the
first condition of a valid equivalence relation follows. Because [[(S,∼)]]
is satisfiable, by Lemma B.4, {τ1 = τ2 | τ1 ∼′ τ2} is also satisfiable.
Therefore, ∼′ satisfies the second and third conditions of the valid
equivalence relation. 2

Now we can check that our algorithm outputs a correct and optimal
term.

Proof of Theorem 4.4. By Lemma B.7, the rewriting does not fail.
In Section 4.1.4, we have shown (without using this theorem) that the
rewriting always terminates within O(n) steps. By Lemma B.11, mgu∼
is well defined. Let θ1 be a substitution [unit/α1, . . . , unit/αn] where
{α1, . . . , αn} is the set {α ∈ N (M) | [α]∼ is a type variable}. Then,
θ = θ1 ◦mgu∼ satisfies [[(∅,∼)]] = {τ1 = τ2 | τ1 ∼ τ2} ∪ {αN 6= unit ⇒
C(N) | [αN ]∼ is a type variable}. (Note that constraints in the second
set are vacuously true because θαN = unit .) By Lemma B.4, it also
satisfies

[[({Γ(x) = βx | x ∈ dom(Γ)} ∪ {τ = αM}, {(τ, τ) | τ ∈ N (M)}) ]] .

So, we can construct a derivation tree for Γ ` M : τ ⇒ M ′, whose
each node is of the form x1 : θ(βx1), . . . , xn : θ(βxn) ` N : θ(αN )⇒ N ′

(Recall the remark after Definition 4.2).
To show the last property, suppose there is a derivation tree for

Γ ` M : τ ⇒ M ′′, whose each node is of the form x1 : η′x1 , . . . , xn :
η′xn ` N : τ ′N ⇒ N ′′. Let τ ′N be unit if there is no node of the form
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∆ ` N : τ ′N ⇒ N ′′, and η′x be also unit if there is no node labelled by
∆ ` N : τ ′N ⇒ N ′′ such that x ∈ dom(∆). Define also ζN by:

ζproj 1(N) =

{
ρ2 if τ ′N is of the form ρ1 × ρ2

unit otherwise

ζproj 2(N) =

{
ρ1 if τ ′N is of the form ρ1 × ρ2

unit otherwise
ζN is undefined if N is not of the form proj j(N

′)

Then,

θ′ = [
−→
τ ′N/
−→αN ,
−→
η′x/
−→
βx,
−−−−−→
ζproj 2(N)/

−−−−−→γproj 2(N),
−−−−−→
ζproj 1(N)/

−−−−−→γproj 1(N)]

satisfies

[[({Γ(x) = βx | x ∈ dom(Γ)} ∪ {τ = αM}, {(τ, τ) | τ ∈ N (M)}) ]] .

By Lemma B.4, θ′ also satisfies ∼.
Suppose a subterm N of M is replaced with unit in the transforma-

tion Γ `M : τ ⇒M ′′. Then, τ ′N (= θ′(αN )) is unit . Since θ′ satisfies ∼,
mgu∼(αN ) must be either unit or a type variable. By the definition of
M ′, N or a term containing N is replaced with () in Γ `M : τ ⇒M ′,
which implies M ′′ �M ′ as required. 2
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