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Abstract. Higher-order model checking has been recently applied to
automated verification of higher-order functional programs, but there
have been difficulties in dealing with algebraic data types such as lists
and trees. To remedy the problem, we propose an automata-based ab-
straction of tree data, and a counterexample-guided refinement of the
abstraction. By combining them with higher-order model checking, we
can construct a fully-automated verification tool for higher-order, tree-
processing functional programs. We formalize the verification method,
prove its correctness, and report experimental results.

1 Introduction

Higher-order model checking [14, 9], or the model checking of higher-order re-
cursion schemes (HORS), has been recently applied to automated verification of
functional programs [9, 18, 15, 11, 17]. Since a HORS is essentially a simply-typed
higher-order functional program with recursion and finite base types (such as
Booleans, not integers), the control structure of a (higher-order) functional pro-
gram can be precisely modeled and verified. Thus, with a suitable abstraction of
data, we can verify functional programs fully automatically by using higher-order
model checking. For example, Kobayashi et al. [11] used predicate abstraction
and CEGAR (counterexample-guided abstraction refinement) for abstracting in-
tegers to Booleans, and constructed a fully automated verification tool MoCHi
for simply-typed higher-order functional programs with recursion and integers.

There have, however, been limitations in the treatment of algebraic data
types such as trees and lists. Sato et al. [17] extended MoCHi to deal with alge-
braic data types by encoding algebraic data into functions; for example, a list
may be encoded as a function that maps an index to the corresponding element.
That approach has not been so successful, because the encoding makes both pro-
grams and specifications complex. In another line of work, Kobayashi et al. [12]
proposed a verification method for HMTT, a kind of higher-order tree transduc-
ers. The HMTT model is however much more restricted than the usual functional
programs: there is a distinction between input and output trees, and input trees
are read-only, and output trees are write-only. Unno et al. [18] later extended
HMTT to allow conversion between input and output trees so that the model is



as expressive as an ordinary functional language, but annotations are required
for the conversion. Ong and Ramsay [15] introduced a verification method for an
extension of HORS called pattern-matching recursion schemes (PMRS). PMRS
supports pattern matching on tree-structured data, but the verification method,
however, uses pattern-based abstraction, which is not powerful enough.

To remedy the situation above, we propose a new approach to using higher-
order model checking for automated verification of higher-order tree-processing
programs. As in [11], we apply abstraction to approximate a source program
by a higher-order functional program over finite base types, so that the latter
can be verified by higher-order model checking. Instead of using predicates on
integers, however, we use an automaton for abstracting tree data: each tree is
abstracted to a state of the automaton that accepts the tree. Using the automata-
based abstraction, we can transform a higher-order tree-processing program to
a higher-order functional program with finite data domains, so that the latter
overapproximates the behavior of the source program. Thus, verification prob-
lems for the former can be reduced to those for the latter, which can further be
reduced to higher-order model checking.

As an example, consider the following program.

double x = twice (add x) Z. twice f x = f(f x).

add x y = match x with Z => y | S x’ => add x’ (S y).

Here, Z and S are tree constructors. The program consists of two functions double
and add . The main function double takes a natural number x (in the unary tree
representation) and returns x + x. Suppose that we wish to verify that the
output of double is always even, i.e, a unary tree of the form (S)2nZ. We can
use a tree automaton that distinguishes (S)2nZ and (S)2n+1Z, consisting of two
states q0, from which trees of the form (S)2nZ is accepted, and q1, from which
trees of the form (S)2n+1Z is accepted. Using the automaton, the program above
is abstracted to:

main() = (double q0)�(double q1). double x = twice (add x) Z.

twice f x = f(f x). s x = match x with q0 => q1 | q1 => q0
add x y = match x with q0 => y�(add q1 (s y)) | q1 => add q0 (s y).

Here, � represents a non-deterministic choice, and s is now a function on states.
The new main function main non-deterministically invokes double q0 or double
q1; here, the argument of double is now a state of the automaton, instead of a
tree. The call double q0 (double q1, resp.) simulates the case where the input
is an even (odd, resp.) number. The case analysis on tree x in function add has
now been replaced by a case analysis on states. The case x = q0 models the case
where x is of the form (S)2nz in the source program; since both of the branches
are possible in the source program, the abstract program non-deterministically
evaluates (the abstract version of) them. On the other hand, the case x = q1
models the case where x is of the form (S)2n+1Z; since only the second branch
of the source program is possible, the abstract program evaluates add q0 (s y)

deterministically. To check that the return value of the source program is always
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Fig. 1. Our method

even (given (S)nZ as an input), it suffices to check that the return value of the
abstract program is always q0.

Figure 1 illustrates our overall method. As mentioned above, we apply an
automata-based abstraction to reduce a given verification problem to that on a
functional program with finite data domains. The latter problem can be decided
by a reduction to higher-order model checking [9]. If the abstract program has
no error path then we can conclude that the answer to the original verification
problem is “yes”. Otherwise, we inspect an error path returned by a higher-
order model checker. If a source program has a corresponding error path, we can
conclude that the answer to the original verification problem is “no”. Otherwise,
the abstraction was not precise enough, so the automaton used for abstraction is
refined, and the cycle is repeated until the answer is found. (Since the verification
problem is undecidable, the cycle may be repeated forever.)

A challenge arises on how to refine the automaton used for abstraction when
a spurious error path is found. Unlike the case for predicate abstraction for
integer values [11], we cannot use an interpolant-based method for predicate
discovery. Given an initial automaton for abstraction, we split each state of the
automaton to obtain a new automaton with an unknown transition function.
From spurious error paths, we accumulate constraints on the transition func-
tion, which represent necessary conditions for eliminating spurious error paths.
Then by using an SMT solver, we obtain a transition function that satisfies the
constraints. This refinement procedure is relatively complete, in the sense that if
there exists an automaton with which the abstract program can be proved to be
safe, the procedure can eventually find such an automaton and the verification
succeeds. Our contributions are: (i) The idea of an automata-based abstraction
of tree-processing higher-order programs, and its formalization as typed-based
program transformation. (ii) A refinement method for automata-based abstrac-
tion, and a proof of its relative completeness. (iii) An implementation of the



proposed method and experiments. The rest of this paper is organized as fol-
lows. Section 2 reviews the definitions of tree automata. Section 3 introduces
our verification problem. Section 4 formalizes the automata-based abstraction.
Section 5 describes an abstraction refinement method. Section 6 reports exper-
imental results. Section 7 discusses related work, and Section 8 concludes this
paper.

2 Preliminaries

In this section, we recall the standard notion of tree automata [4], which will be
used for program specification and also for abstraction.

A ranked alphabet, written Σ, is a map from a finite set of symbols to the
set of non-negative integers. An element C of dom(Σ) (the domain of Σ) may
be considered a tree constructor of arity Σ(C). The set TreesΣ of finite trees
is inductively defined by: T1, . . . , TΣ(C) ∈ TreesΣ ⇒ C T1 · · · TΣ(C) ∈ TreesΣ .
Note that Σ(C) may be 0 above, so C ∈ TreesΣ if Σ(C) = 0.

Definition 1 (tree automata). A (bottom-up) tree automatonM is a quadruple
(Σ,Q,∆, F ) where (i) Σ is a ranked alphabet. (ii) Q is a set of states. (iii) ∆,
called a transition function, is a subset of dom(Σ)×Q∗×Q such that (C, q1 · · · qn, q)
∈ ∆ implies n = Σ(C). (iv) F is a subset of Q. Elements of F are called final
states. We define the transition relation T −→M T ′ on TreesΣ∪{q 7→0|q∈Q} by:

C q1 · · · qn −→M q if (C, q1 · · · qn, q) ∈ ∆.

A tree T ∈ TreesΣ is accepted by M if T −→∗M q ∈ F for some q. The
language accepted by M, written L(M), is the set of trees accepted by M. We
often write ΣM, QM, ∆M, FM for the four components ofM. We write L(M, q)
and L(M, Q) for L((ΣM, QM, ∆M, {q})) and L((ΣM, QM, ∆M, Q)) respec-
tively. An automaton (Σ,Q,∆, F ) is deterministic if for every C ∈ dom(Σ) and
q1 · · · qΣ(C) ∈ Q∗, there exists at most one q such that (C, q1 · · · qΣ(C), q) ∈ ∆. An
automaton (Σ,Q,∆,F ) is total if for every C ∈ dom(Σ) and q1 · · · qΣ(C) ∈ Q∗,
there exists at least one q such that (C, q1 · · · qΣ(C), q) ∈ ∆. When an automaton
M is deterministic and total, we write ∆M(C, q1 · · · qΣM(C)) for the state q such
that (C, q1 · · · qΣM(C), q) ∈ ∆M.

Example 1. Consider an automatonM = (Σ, {q1, q2, q3}, ∆, {q1, q2}) whereΣ =
{E 7→ 0, A 7→ 1, B 7→ 1} and

∆ = {(E, ε, q1), (A, q1, q2), (A, q2, q2), (A, q3, q3), (B, q1, q1), (B, q2, q3), (B, q3, q3)}

The automaton M is total and deterministic, and L(M) = A∗B∗E. Here, we
have identified unary trees with words, and used a regular expression for a set
of unary trees. The regular expression A∗B∗E denotes

{A(· · · (A︸ ︷︷ ︸
m

(B(· · · (B︸ ︷︷ ︸
n

E))))) | m ≥ 0, n ≥ 0}.

We often use this kind of notation for a set of unary trees.



Henceforth, we consider only deterministic and total automata; this does not
lose generality, as we are considering bottom-up automata.

3 The Verification Problem

This section introduces the language of tree processing programs, which is used
as the target of our verification, and defines the verification problem. The target
of verification is a higher-order, tree-processing functional program. We fix a
ranked alphabet Σ. We sometimes write {ei}ni=1 for {e1, . . . , en}, and also write
{f(x)}x∈S for {f(x) | x ∈ S}.

Definition 2 (programs). The set of expressions, ranged over by e, is given
by:

e ::= C | x | fail | e1 e2 | case eof{Ci ỹi ⇒ ei}ni=1.

Here, C ranges over dom(Σ), and x ranges over the set of variables and function
symbols. A program P is a set of function definitions {f1 x̃1 = e1, . . . fm x̃m =
em} where fi is a function symbol, and x̃i is a sequence of variables. The set of
function symbols {f1, . . . , fm} must contain the main function symbol “main”.
We write arity(fi) for the length of the sequence x̃i.

The expression fail aborts the execution. The expression case eof{Ci ỹi ⇒
ei}ni=1 evaluates e to a tree, and then evaluates [T̃ /ỹi]ei if the tree matches

Ci T̃ . We assume that the patterns of every case expression are exhaustive; if
not, we can insert a clause Ci ỹi ⇒ fail. We consider only programs that are
well-typed in the standard simple type system. The set of (simple) types, ranged
over by κ, is given by: κ ::= o | κ1 → κ2. Here, o is the type of trees, and
κ1 → κ2 is the type of functions from κ1 to κ2. A type judgment is of the form
K ` e : κ, where K, called a type environment, is a map from a finite set of
variables (which may include function symbols) to the set of types. It is defined
by the following rules.

K ` C : o→ · · · → o︸ ︷︷ ︸
Σ(C)

→ o K, x : κ ` x : κ
K ` e1 : κ1 → κ2 K ` e2 : κ1

K ` e1 e2 : κ2

K ` fail : κ
K ` e : o K, ỹi : õ ` ei : κ(for each i ∈ {1, . . . , n})

K ` case eof{Ci ỹi ⇒ ei}ni=1 : κ
We write ` P : K if: (i) P = {fi xi,1 · · · xi,ki = ei}ni=1; (ii) dom(K) = {f1, . . . , fn};
(iii) K(fi) = κi,1 → · · · → κi,ki → o and K, xi,1 : κi,1, . . . , xi,ki : κi,ki ` ei : o
for every i ∈ {1, . . . , n}; and (iv) K(main) = o → o (in other words, the main
function is a first-order function on trees). A program P is well-typed if ` P : K
for some K. Henceforth, we consider only well-typed programs.

The sets of evaluation contexts and values are defined respectively by:

E (evaluation contexts) ::= [ ] | E v | e E | case E of {Ci ỹi ⇒ ei}ni=1

v (values) ::= f v1 · · · vn (n < arity(f)) | C v1 · · · vn (n ≤ Σ(C))



The reduction relation e −→P e′ is defined by: (i) E[fail] −→P fail;
(ii) E[f v1 · · · vn] −→P E[[v1 · · · vn/x1 · · ·xn]e] if f x1 · · ·xn = e ∈ P; and
(iii) E[case ak ṽ of {Ci ỹi ⇒ ei}ni=1] −→P E[[ṽ/ỹk]ek]. We often omit the sub-
script P.

Example 2. Consider the following program P0:

{main x = add x x, add x y = casexof Z⇒ y | S x′ ⇒ add x′ (S y).}

The expression main (S(Z)) is evaluated as follows.

main (S(Z)) −→ add (S(Z)) (S(Z)) −→ case (S(Z)) of · · · −→ add Z (S(S(Z)))
−→ case Z of · · · −→ S(S(Z))

Example 3. The program in Section 1 is expressed as:

P1 = {main x = twice (add x) Z, twice f x = f (f x),
add x y = case x of Z⇒ y | S x′ ⇒ add x′ (S y)}

The expression main (S(Z)) is evaluated as follows.

main (S(Z)) −→ twice (add (S(Z))) Z −→ add (S(Z))(add (S(Z)) Z) −→∗ S(S(Z)).

Definition 3 (verification problem). Let MI and MO be tree automata.
We write |= (P,MI ,MO) if, for every T ∈ L(MI), main T 6−→∗P fail and
main T −→∗P t′ ∈ TreesΣ implies t′ ∈ L(MO). The verification problem
(P,MI ,MO) is the problem of deciding whether |= (P,MI ,MO) holds.

Intuitively, |= (P,MI ,MO) means that given a tree accepted by MI as an
input, P does not fail, and if it returns a (finite) tree, it is accepted by MO.

Example 4. Consider the verification problem (P1,M1,M2) where P1 is the
program given in Example 3, and

M1 = (Σ, {q1}, ∆1, {q1}) ∆1 = {(Z, ε, q1), (S, q1, q1)}
M2 = (Σ, {q2, q3}, ∆2, {q2}) ∆2 = {(Z, ε, q2), (S, q2, q3), (S, q3, q2)}

The languages accepted byM1 andM2 are (S)∗Z and (S S)∗Z respectively. The
answer to the verification problem (P1,M1,M2) is “yes”.

We consider above only programs that take a single tree as an argument. A
program that takes multiple input trees can be treated by considering tuple
constructors as tree constructors.

4 Automata-Based Abstraction

This section formalizes our automata-based abstraction method. We first define
the target language of the abstraction, and then formalize the automata-based
abstraction as a type-based program transformation.



4.1 Abstract Programs

The target language of the automata-based abstraction has a finite enumeration
type as the base type, instead of tree types. The enumeration type consists of
the states of automata used for abstraction.

Definition 4 (abstract programs). The set of (abstract) expressions, ranged
over by t, is given by:

t ::= q | x | t1 t2 | case tof{qi ⇒ ti}mi=1 | t1 � t2 | fail.

Here, q ranges over the set {q1, . . . , qm} of values of the finite enumeration type
and x ranges over a set of variables (including defined function symbols fi’s). An
abstract program D is a set of function definitions {f1 x̃1 = t1, . . . , fn x̃n = tn},
where main ∈ {f1, . . . , fn}.

The expression case tof{qi ⇒ ti}mi=1 is a case analysis on the finite enumera-
tion type; it first evaluates t, and evaluates ti if the value is qi. The expression
t1 � t2 evaluates t1 or t2 in a non-deterministic manner. As for source programs,
we require that abstract programs are simply-typed. The set of types is given
by: τ ::= d | τ1 → τ2. Here, d is the finite enumeration type, consisting of values
q1, . . . , qm. We show only the typing rules for q and case-expressions; the other
typing rules for expressions are essentially the same as those for source programs.

Θ ` q : d
Θ ` t : d Θ ` ti : τ

Θ ` case tof{qi ⇒ ti}mi=1 : τ
We write ` D : Θ if: (i)D = {fi xi,1 · · · xi,ki = ti}ni=1; (ii) dom(Θ) = {f1, . . . , fn};
(iii) Θ(fi) = τi,1 → · · · → τi,ki → d and Θ, xi,1 : τi,1, . . . , xi,ki : τi,ki ` ti : d for
every i ∈ {1, . . . , n}; and (iv) Θ(main) = d → d A program D is well-typed if
` D : Θ for some Θ.

We define the call-by-value, small-step reduction relation below. The sets of
evaluation contexts and values, ranged over by E and v, are defined by:

E ::= [ ] | E v | t E | caseE of {qi ⇒ ti}mi=1 v ::= f v1 · · · vn (n < arity(f)) | q

The relation t1 −→D t2 is defined by: (i) E[f v1 · · · vn] −→D E[[v1 · · · vn/x1 · · ·xn]t]
if f x1 · · ·xn = t ∈ D; (ii) E[case qk of {qi ⇒ ti}mi=1] −→D E[tk]; (iii) E[fail] −→D
fail; and (iv) E[t1 � t2] −→D E[ti] for i ∈ {1, 2}.

Definition 5 (safety problem). Let D be an abstracted program and FI and
FO be finite subsets of {q1, . . . , qm}. We write |= (D, FI , FO) if, for every q ∈ FI ,
(i) main q 6−→∗Dfail; and (ii) main q −→∗D q′ implies q′ ∈ FO. The safety problem
(D, FI , FO) is the problem of deciding whether |= (D, FI , FO) holds.

The safety problem above is decidable by a reduction to higher-order model
checking [9]. Furthermore, if |= (D, FI , FO) does not hold, we can obtain an error
reduction sequence main q −→∗D fail or main q −→∗D q′ 6∈ FO by using a higher-
order model checker [3, 8]. The knowledge of higher-order model checking and
the reduction method is not required for understanding the rest of this paper;
an interested reader may wish to consult [9].



4.2 Abstraction Method

We now formalize the automata-based abstraction. In order to allow a differ-
ent automaton to be used for abstracting each expression of tree type, we use
abstraction types, which specify how each expression should be abstracted. The
notion of abstraction types has been introduced by Kobayashi et al. [11], but
both the syntax of abstraction types and the rules for abstraction are different.

The set of abstraction types is defined by: σ ::= oM | σ1 → σ2. Here, M is a
(total, deterministic) automaton. Intuitively, oM describes trees that should be
abstracted by using the automaton M. The type σ1 → σ2 describes functions
whose argument should be abstracted according to σ1, and return value should
be abstracted according to σ2. For example, consider the automataM1 andM2

in Example 4. The type oM1
→ oM2

describes a function whose input tree should
be abstracted using the automaton M1, and output tree should be abstracted
using the automaton M2. Using this type, the identity function λx.x would be
abstracted to λx. casexof q1 ⇒ (q2 � q3); the argument is abstracted to q1, and
since there is no information about whether the original value of x is even or
not, the function returns q2 (which is an abstraction of trees of the form s2nZ)
or q3 (which is an abstraction of trees of the form s2n+1Z) non-deterministically.
If the abstraction type was oM2 → oM2 , then λx.x would be abstracted to λx.x.

The abstraction is formalized as a type-based program transformation re-
lation Γ ` e : σ ; t, where Γ , called an abstraction type environment, is a
map from a finite set of variables to the set of abstraction types. Intuitively,
Γ ` e : σ ; t means that assuming that each variable x has been abstracted
according to Γ (x), the expression e should be abstracted to t according to the
abstraction type σ. How to obtain an appropriate abstraction type environment
is discussed in Appendix B. The transformation relation is defined by the fol-
lowing rules.

Γ, x : σ ` x : σ ; x
(A-Var)

Γ ` a : oM → · · · → oM︸ ︷︷ ︸
Σ(a)

→ oM ; fa,M
(A-Const)

Γ ` e : oM ; t Γ, ỹi : õM ` ei : σ ; ti (for each i ∈ {1, . . . , n})
Γ ` case eof{Ci ỹi ⇒ ei}ni=1 : σ ; case tof{q ⇒ � {[q̃/ỹ`]t`}(C`,q̃,q)∈∆M}q∈QM

(A-Case)

Γ ` e1 : σ1 → σ2 ; t1 Γ ` e2 : σ1 ; t2

Γ ` e1 e2 : σ2 ; t1 t2
(A-App)

Γ ` fail : σ ; fail
(A-Fail)

Here, � {t1, . . . , tn} is an abbreviation of t1 � (t2 � · · · � (tn−1 � tn)). In the
rule for case-expressions, ỹi : õM abbreviates yi,1 : oM, . . . , yi,k : oM; note that
the type of yi,k is the same as that of e.)

A variable is abstracted to itself. A tree constructor is transformed to a func-
tion fa,M defined below. A case expression is transformed to a case expression
on the states of M. If the value of t matches q, then the value T of the original



expression e is accepted byM from state q. So, T must be of the form a T1 · · · Tk
such that (a, q1 · · · qk, q) ∈ ∆M with Ti ∈ L(M, qi). Thus, the body of the clause
for q is a non-deterministic branch on such cases. For example, consider the ex-
pression: casexof{Z⇒ e1, S y ⇒ e2}, with the abstraction type x : oM2 (where
M2 is that of Example 4). It is transformed to:

casexof{q2 ⇒ (t1 � [q3/y]t2), q3 ⇒ [q2/y]t2},

where x : oM2
` e1 : σ ; t1 and x : oM2

, y : oM2
` e2 : σ ; t2. The rule A-App

for applications transforms e1 and e2 in a compositional manner, but it ensures
that the argument abstraction type of e1 is equal to the abstraction type of e2,
so that the abstraction is consistent.

A program is transformed by the following rule.

P = {fi x̃i = ei}ni=1 D = {fi x̃i = ti}ni=1 ∪ D′
Γ = {fi : σ̃i → oMi

}ni=1 Γ, x̃i : σ̃i ` ei : oMi
; ti (for each i)

D′ = {fC,M x1 · · · xΣ(C) = tC,M}C∈dom(Σ),M∈Automata(Γ )

` P : Γ ; D
(A-Prog)

Here, Automata(Γ ) is the set of automata occurring in Γ , and tC,M is:

case (x1, . . . , xΣ(C)) of{(q1, . . . , qΣ(C))⇒ q}(C,q1···qΣ(C),q)∈∆.

We have used a case expression on tuples for clarity; it can be easily flattened
to case expressions on each of x1, . . . , xΣ(C). In the rule A-Prog, σ̃ → oM and
x̃ : σ̃ abbreviate σ1 → · · · → σk → oM and x1 : σ1, . . . , xk : σk respectively.

Remark 1. Since the rule A-Var forces x to be abstracted according to Γ (x),
the identity function f defined by f x = x can have only a type of the form
oM → oM, unlike the example of the transformation of λx.x given informally
at the beginning of this subsection. We can change the abstraction, by explicitly
inserting a copy function like f x = copyx, then applying the transformation
rules above.

The soundness of the abstraction is stated as follows; see Appendix C for a
proof.

Theorem 1 (soundness). Let (P,MI ,MO) be a verification problem. If `
P : Γ ; D and Γ (main) = oM′

I
→ oM′

O
with L(M′I , FI) = L(MI) and

L(M′O, FO) = L(MO), then |= (D, FI , FO) implies |= (P,MI ,MO).

Example 5. Recall the verification problem (P1,M1,M2) given in Example 4.
Let Γ1 be:

{main : oM2
→ oM2

, add : oM2
→ oM2

→ oM2
}.

We have ` P1 : Γ1 ; D1, where:

D1 = {main x = add x x,
add x y = casexof | q2 ⇒ y � (add q3 (fS,M2

y)), | q3 ⇒ add q2 (fS,M2
y),

fS,M2 x = casexof | q2 ⇒ q3 | q3 ⇒ q2}

By Theorem 1, it suffices to verify |= (D1, {q2, q3}, {q2}).



1: function verify(P,MI ,MO)
2: Γ0 := infer abst tenv(P,MI ,MO); Split := 1; CnstSet := ∅; Γ := Γ0;
3: loop
4: let (D, FI , FO) = abstract((P,MI ,MO), Γ )
5: case check reachability(D, FI , FO) of
6: | Yes → return Yes;
7: | No(ep) →
8: let Cnst =gen cnst(ep, (P,MI ,MO))
9: case solve cnst(Cnst) of

10: | Satisfiable(θ) → return No;
11: | Unsatisfiable →
12: CnstSet := CnstSet ∪ {Cnst};
13: loop
14: let cond =gensmt(CnstSet , Γ0,Split)
15: case smt solver(cond) of
16: | Satisfiable(sol) → Γ := refine(Γ0,Split , sol); break;
17: | Unsatisfiable → Split := Split + 1;}}

Fig. 2. Pseudo code of our method

Example 6. Consider the verification problem (P1,M1,M2) where P1 is defined
in Example 3 and the automataM1 andM2 are given in Example 4. Let Γ1 be:

{main : oM1
→ oM2

, add : oM1
→ oM2

→ oM2
,

twice : (oM2
→ oM2

)→ oM2
→ oM2

}.

Then, ` P1 : Γ1 ; D1, where D1 consists of:

main x = twice (add x) q2 fS,M2
x = casexof q2 ⇒ q3 | q3 ⇒ q2

twice f x = f (f x) add x y = casexof q1 ⇒ y � (add q1 (fS,M2 y)).

See Appendix A for the derivation of the abstraction for the function “add”. The
verification problem has been reduced to the safety problem (D1, {q1}, {q2}).
(|= (D1, {q1}, {q2}) does not hold, however, as shown in Section 5.1; we need to
refine the abstraction using the method described in Section 5.2.) ut

5 Abstraction Refinement

This section discusses how to refine the automata used for abstraction when they
are not precise enough. The pseudo code of our verification method is shown in
Figure 2. Our method first infers the initial abstraction type environment, and
performs some initialization (line 2). The verification problem is reduced to a
safety problem as explained in Section 4.2 (line 4). The safety problem is solved
by an existing higher-order model checker (line 5). If the answer to the problem is
“no” (line 7), we inspect whether the abstract error path returned by the model



checker is feasible, i.e., the source program has a corresponding error path (lines
8–9). If the error path is feasible, the answer to the verification problem is “no”
(line 10). Otherwise, our method refines the abstraction by splitting each state
of the automaton for abstraction so that the spurious error path is eliminated
from the future abstraction (lines 12–17).

We explain below the feasibility checking (lines 8–9) and the abstraction
refinement (lines 12–17) in Sections 5.1 and 5.2 respectively. The inference of
the initial abstraction type environment (line 2) is explained in Appendix B.

5.1 Feasibility Check

If the answer to a safety problem is “no”, a higher-order model checker [3, 8]
outputs an error path of the abstract program. To check whether the source
program has a corresponding error execution path, we evaluate the source pro-
gram symbolically along the error path, and generate constraints on variables
(line 8). We then check the satisfiability of constraints (line 9).

For example, recall the safety problem (D1, {q1}, {q2}) in Example 6. The
answer to this safety problem is “no”, and one of the error paths output by a
model checker is as follows.

main q1 −→D1
twice (add q1) q2 −→D1

add q1 (add q1 q2)
−→∗D1

add q1 (q2 � (add q1 (fS,M2
q2))) −→D1

add q1 q2
−→∗D1

q2 � (add q1 (fS,M2
q2)) −→D1

add q1 (fS,M2
q2)

−→∗D1
add q1 q3 −→∗D1

q3 � (add q1 (fS,M2
q3)) −→D1

q3

We first prepare a concise version of the error path (of the abstract program),
which is just a sequence TR of the transition rules used for abstracting the
values inspected by each case expression. Here, we ignore the case-expressions
in the definition of fC,M, which have no corresponding case-expressions in the
source program. For the example above, TR = (Z, ε, q1)(S, q1, q1)(Z, ε, q1). The i-
th element (i ∈ {1, 2, 3}) corresponds to the evaluation of the i-th case expression
evaluated in the error path above. For example, the first element corresponds to
the first case expression; since the expression being evaluated to q1 means that
the corresponding value of the source program has been considered Z, and it was
abstracted to q1 by using the transition rule (Z, ε, q1).

Given a concise error sequence TR, we replace TR with a corresponding
concise transition sequence TR0 for the initial abstraction, which is obtained
by replacing each transition rule (C, q̃, q) with the corresponding transition rule
(C, q̃′, q′) of the automata occurring in the initial abstraction type environment
Γ0. This is always possible by the construction of the refinement procedure de-
scribed in Section 5.2; each state of an automaton in the current abstraction
type environment is of the form q(i), and we just need to replace q(i) with q.

The symbolic evaluation of the original program is formalized as the rela-
tion (e,Cnst ,TR) −→P (e′,Cnst ′,TR′), where e is an expression of the original
program, Cnst is the set of constraints being accumulated, and TR is a concise
error sequence. The relation is defined by the following rules:



f x1 · · ·xn = e ∈ P
(E[f v1 · · · vn],Cnst ,TR) −→P (E[[v1 · · · vn/x1 · · ·xn]e],Cnst ,TR)

TR = (Ck, q̃, q) · TR′ Cnst ′ = {(v = Ck x̃), v : q, (x̃ : q̃)} ∪ Cnst (x̃ fresh)

(E[case v of {Ci ỹi ⇒ ek}mi=1],Cnst ,TR) −→P (E[[x̃/ỹk]ek],Cnst ′,TR′)

The first rule is for a function call, which is a deterministic evaluation that
does not require information about the error path. The second rule is for case-
expressions, where the first element of TR is looked up (and consumed) to decide
which branch should be taken. The premise TR = (Ck, q̃, q) · TR′ means that v
has been abstracted to q using the transition rule (Ck, q̃, q). So, the constraints
v = Ck x̃, v : q, and x̃ : q̃ are added. Here, v is a tree expression consisting of
variables and tree constructors; the latter constraint x̃ : q̃ is an abbreviation of
x1 : q1, . . . , xk : qk, which means that the value of xi should belong to L(M, qi).
(Here, the states of automata in Automata(Γ ) are disjoint from each other;
so M is uniquely identified by qi.) By applying the rules above, we obtain a
symbolic execution sequence: (main x, ∅,TR0) −→∗P (e,Cnst , ε). We let Cnst
be the output of gen const on line 8 of Figure 2. By the rules, it should be
clear that if we instantiate each variable in the symbolic evaluation sequence so
that Cnst is satisfied, then we get an actual error path of the source program.
Therefore, Cnst is satisfiable if and only if the source program has an error path
corresponding to the abstract error path TR0.

We now discuss how to check the satisfiability of Cnst . Cnst consists of a set
Cnst1 of equality constraints v1 = v2 and a set Cnst2 of constraints of the form
v : q. By the symbolic evaluation rules, if a variable x occurs in Cnst1, it must
also occur in Cnst2. We first apply a standard unification algorithm to solve
Cnst1. If Cnst1 is unsatisfiable, we can conclude that Cnst is also unsatisfiable.
Otherwise, let θ be the most general unifier of Cnst1. Without loss of generality,
we can assume that all the variables in the co-domain of θ occur in Cnst (hence
also in Cnst2). Then, it suffices to check whether ∆′(θv) = q holds for each
v : q ∈ Cnst , where ∆′ is defined by:

∆′(v) =

{
q (if v = x ∧ (x : q) ∈ Cnst)

∆(C,∆′(v1) · · ·∆′(vΣ(C))) (if v = C v1 · · · vΣ(C))

with ∆ =
⋃
{∆M | M ∈ Automata(Γ0)}. Here Γ0 is the initial abstraction

type environment. Note that we are assuming that the states of the automata
in Automata(Γ0) are disjoint from each other.

If the condition above holds, let θ′ be a substitution that instantiate each
variable x with an element of L(M, q) such that x : q ∈ Cnst2. Recall that we
assumed L(M, q) 6= ∅ in Section B. Then θ′ ◦ θ is a solution of Cnst . Thus, the
above condition is sufficient and necessary for the satisfiability of Cnst .

Example 7. Recall the verification problem (D1, {q1}, {q2}) and the (concise)
abstract error path TR = (Z, ε, q1)(S, q1, q1)(Z, ε, q1) considered above. We have



the following symbolic execution sequence.

(main x1, ∅, (Z, ε, q1)(S, q1, q1)(Z, ε, q1))

−→∗ (add x1 (casex1 of Z⇒ Z | Sx′ ⇒ add x′(S Z)), ∅, (Z, ε, q1)(S, q1, q1)(Z, ε, q1))

−→ (add x1 Z, {x1 : q1, x1 = Z}, (S, q1, q1)(Z, ε, q1))

−→ (casex1 of Z⇒ Z | Sx′ ⇒ add x′ (S Z)), {x1 : q1, x1 = Z}, (S, q1, q1)(Z, ε, q1))

−→ (add x2 (S Z), {x1 : q1, x1 = Z, x1 = S x2, x2 : q1}, (Z, ε, q1))

−→ (casex2 of Z⇒ S Z | S x′ ⇒ add x′ (S (S Z)),

{x1 : q1, x1 = Z, x1 = S x2, x2 : q1}, (Z, ε, q1))

−→ (S Z, {x1 : q1, x1 = Z, x1 = S x2, x2 : q1, x2 = Z}, ε)

We therefore get constraints {x1 : q1, x1 = Z, x1 = S x2, x2 : q1, x2 = Z}. Because
the constraints are unsatisfiable (there are conflicting equalities x1 = Z and
x1 = S x2), the error path is infeasible. Note that the infeasible error path has
been obtained because the variable x1 has been copied as add x1 (add x1 Z)
and instantiated differently (the first occurrence as S Z and the second as Z) due
to the imprecise abstraction, which abstracts both Z and S Z to the same state
q1. The procedure described in the next subsection refines the abstraction by
splitting the state q1 in order to avoid this confusion between Z and S Z.

5.2 Abstraction Refinement

As mentioned above, when the error path of the abstracted program is infea-
sible, our method refines the abstraction by splitting each automaton state q
to q(1), . . . , q(n), where n, called the split number, is kept in variable Split in
Figure 2. It is set to 1 initially (line 2), and gradually increased.

We refine each automaton M ∈ Automata(Γ0) to M′, so that: (i) ∀q ∈
QM.L(M, q) = L(M′, {q(1), . . . , q(n)}); and (ii) the same error path (TR0 in
Section 5.1) never occurs again.

To guarantee the first condition, it suffices to guarantee that for each rule
(C, q1 · · · qk, q) ∈ ∆M,

∀i1, . . . , ik ∈ {1, . . . , n}.∃i ∈ {1, . . . , n}.(C, q(i1)1 · · · q(ik)k , q(i)) ∈ ∆M′

holds. Thus, M′ is determined by a function g(C,q1···qk,q) ∈ {1, . . . ,Split}k →
{1, . . . ,Split} for each (C, q1 · · · qk, q) ∈ ∆M. We prepare an uninterpreted func-
tion symbol g(C,q1···qk,q) for representing the unknown function, and generate the
constraints on g(C,q1···qk,q)’s so that the second condition is guaranteed.

To guarantee the second condition, for each constraint Cnst in CnstSet
(which accumulates the set of constraints generated from spurious error paths
found so far), we generate the following SMT formula FCnst .

∀x1, . . . , x` ∈ {1, . . . ,Split}.
∨
v1=v2∈Cnst(state(v1) 6= state(v2)).

Here, state(v) is defined by: (i) state(x) = x; and (ii) state(C v1 · · · vk) =
g(C,q1··· qk,q)(state(v1), . . . , state(vk)) if ∆′(v1) = q1, . . . ,∆

′(vk) = qk, and



∆′(C v1, . . . vk) = q, where ∆′(v) is as defined in Section 5.1. Then, gensmt
outputs the conjunction of the above formula

∧
Cnst∈CnstSet FCnst . If it is satis-

fiable, then we obtain a refined abstraction type environment Γ . Otherwise, we
increase Split until the SMT constraint becomes satisfiable.

Example 8. Recall the verification problem in Example 7 and suppose Split = 2.
The generated SMT formula is:

∀x1, x2 ∈ {1, 2}.x1 6= g(Z,ε,q1)() ∨ x1 6= g(S,q1,q1)(x2) ∨ x2 6= g(Z,ε,q1)()

One of the solutions is g(Z,ε,q1) = 1, g(S,q1,q1)(1) = 2, g(S,q1,q1)(2) = 1. The transi-

tion function of the refined automaton is: {(Z, ε, q(1)1 ), (S, q
(1)
1 , q

(2)
1 ), (S, q

(2)
1 , q

(1)
1 )}.

Using this automaton, the verification succeeds.

The following theorem ensures that if there is an appropriate abstraction type
environment with which the verification succeeds, then the algorithm eventually
find such an abstraction type environment. See Appendix C for a proof.

Theorem 2 (relative completeness). Let (P,MI ,MO) be a verification prob-
lem. Suppose there exists Γ such that ` P : Γ ; D, |= (D, FI , FO), and
Γ (main) = oM′

I
→ oM′

O
with L(MI) = L(M′I , FI) and L(MO) = L(M′O, FO).

Then the algorithm eventually terminates and outputs “Yes”.

We say that check reachability in Figure 2 is fair if every concise error
path is eventually generated; it is guaranteed if check reachability always
returns a shortest concise error path, for example. We can also guarantee:

Theorem 3 (completeness of refutation). Let (P,MI ,MO) be a verifica-
tion problem such that 6|= (P,MI ,MO). If check reachability is fair, then
the algorithm eventually terminates and outputs “No”.

6 Implementation and Experiments

We have implemented a verification tool based on our method, and evaluated
it through experiments. The experiments were conducted on a machine with
Intel(R) Xeon(R) CPU E5620 2.40GHz and 3.73GB memory. We used HorSat
[3] as the higher-order model checker (except for the program “homrep-rev” for
which we used [8] due to a problem of HorSat) and Z3 [5] as the SMT solver.

Table 1 shows the result of the experiments. The column “S” represents
the size of the programs. The size of a program is the number of occurrences of
constants and variables on the right side of the rules in the program. The column
“O” represents the order of the programs. The order of a program is the largest
order of the types of functions. Here, the order order(κ) of the type κ is defined
by: order(o) = 0, order(κ1 → κ2) = max{order(κ1)+1, order(κ2)}. The column
“R” represents the number of refinements in the verification. The column “T”
shows the running time (measured in seconds). We ran each program 3 times
and show the average running time. “TO” in the column “T” means a time-out,



where we set the time-out to 1000 seconds. For comparison, we have also run
the verification tools for HMTT [12] and EHMTT [18] and show their running
times in the columns “TH” and “TE” respectively. The “N/A” means that the
tool is inapplicable; that is the case for the HMTT verification tool, when trees
are repeatedly constructed and deconstructed inside the program. The EHMTT
verification tool is inapplicable when there is no appropriate annotation; see
the discussion below. We have also tried to compare our tool with the PMRS
verification tool [15], but unfortunately we could not obtain its source code.

The benchmark programs consist of three categories (separated by lines in the
table). The first category (the programs from “reverse” to “mincaml-k”) has been
taken from the benchmark set for the EHMTT verification tool [18]. The original
programs contain annotations required for EHMTT, and they have been removed
for the experiments on our new tool. The second category has been taken from
the benchmark set for the PMRS verification tool [15], available at http://

mjolnir.cs.ox.ac.uk/cgi-bin/horsc/recheck-horsc/input. The third cat-
egory contains a new benchmark set. The program “double” is the verification
problem given in Example 4. The program “isort2” sorts a given list consisting
of “A” and “B” by the insertion sort algorithm. The specification asserts that
the result is a sorted list. The program “issorted” sorts a given list consisting of
“A” and “B” by the insertion sort, and then (inside the program) checks that
the result is a sorted list; if not, the program fails. The specification is that the
program does not fail. The program “mergesort2” is the same as “insertionsort”
except that the merge sort algorithm is used. The program “mapswsort” sorts
a given list and maps a function that swaps “A” and “B” on the list. In the
programs above, lists are encoded as trees constructed from cons, nil, A, and
B. The program “remove0” takes a list of integers (in the unary representation)
and removes 0 from the list.

Our tool could verify the benchmark programs, except “xmarkq1” and “gapid”.
For the program “xmarkq1”, the tool failed to construct the initial abstraction.
This is because the automata given as the specification of the program is large,
and the current tool naively applies a product construction to make the automa-
ton used for abstraction. For the program “gapid”, the abstraction refinement
loop did not terminate within the given time limit. This is because the automaton
required for abstracting intermediate trees is quite different from the automata
given as the input/output specification.

As for the comparison with the HMTT/EHMTT verification tools, the HMTT
tool is applicable to only a few of the benchmark programs. That is because
HMTT [12] classifies trees into input trees and output trees, and pattern match-
ing can be applied only to input trees, and tree constructors can be applied only
to output trees. Most of the programs in the benchmark set repeatedly construct
and deconstruct trees.

The EHMTT tool works for the first benchmark set, but it relies on user
annotations. Like HMTT, EHMTT also distinguishes between input and output
trees, but allows an explicit coercion of output trees to input trees. Each coercion
must be annotated with an invariant on the shape of trees that are coerced, and



that invariant is used for abstraction. Thus, since an appropriate abstraction
is given by hand, EHMTT is faster than our tool when it is applicable. For
the second and third categories, we have also added annotations for EHMTT,
when applicable. For many of the benchmark programs in the second and third
categories, however, there are no appropriate annotations that make the EHMTT
verification succeed. There are two main reasons for this. One reason, which is
somehow specific to the current implementation, is that the EHMTT tool allows
only deterministic top-down automata as output specifications. Since the class
of deterministic top-down tree automata is a strict subclass of deterministic
bottom-up tree automata, some of the specifications cannot be handled by the
EHMTT tool. The other reason is more fundamental. Consider the following
function “iszero”.

iszero x t f = casexof Z⇒ t | S y ⇒ f.

If the first argument of the function “iszero” is an output tree, the argument
requires an annotation as follows.

iszero (coerceLe) et ef

Here, coerceLe converts an output tree constructed by e to an input tree, so
that pattern matching can be applied again. The annotation L is an invariant
on the value of e; in this case, L would be typically S∗Z (unless the value of e
can be statically determined). Given the annotation, the EHMTT converts the
body of iszero to a non-deterministic choice between t and f , ignoring the actual
value. Thus, if the property to be verified requires a case analysis on whether x
is Z or not, the EHMTT verification fails.

To summarize, compared with the HMTT/EHMTT verification tools, our
new tool works for a larger set of programs, requiring no special annotations,
although it may be slower when the previous tools are applicable. For the pro-
grams such as xmarkq1 and gapid, a compromise would be to allow users to
provide abstraction types as annotations. Such annotations do not suffer from
the problem of EHMTT annotations discussed above.

7 Related Work

As mentioned in Section 1, several approaches have been proposed for auto-
mated verification of functional programs based on higher-order model checking.
Kobayashi et al. [11] proposed predicate abstraction and CEGAR (counterexample-
guided abstraction refinement) for higher-order model checking, but they used
only predicates on integers for abstraction. They later supported some algebraic
data structures by encoding them into functions on integers. That encoding ap-
proach, however, complicates both programs and specifications. For example,
since a list is encoded into a pair consisting of its length and a function that
maps an index to the corresponding element, the property of a list: “1 occurs in
the list” would be converted to a refinement type specification:

n : int× {f : int→ int | ∃x.(0 ≤ x < n ∧ f(x) = 1)},



program S O R T TH TE

reverse 46 1 16 4.215 N/A 0.032
isort 29 1 0 0.103 N/A 0.022
mergesort 173 2 0 1.711 N/A 0.303
homrep-rev 97 4 14 2.338 N/A 0.043
split2 108 2 53 589.3 N/A 0.089
bib2html 103 2 1 3.568 N/A 0.376
xmarkq1 89 2 - TO N/A 0.767
xmarkq2 157 1 0 100.8 N/A 1.531
gapid 393 3 14 TO N/A 0.148
jwig-cal 96 1 0 143.5 N/A 0.570
jwig-guess 99 2 6 65.8 N/A 1.411
mincaml-k 683 2 0 532.3 N/A 1.830
last 20 1 1 0.129 N/A 0.027
safe-head 67 2 1 0.888 N/A N/A

program S O R T TH TE

mkground 46 1 4 0.892 N/A 0.043
filter-nz 31 2 1 0.472 N/A N/A
safe-tail 100 2 9 11.48 N/A N/A
maphead 53 2 5 2.489 N/A N/A
risers 78 1 3 2.006 N/A 0.079
safe-init 113 2 13 22.76 N/A N/A
checknz 8 1 0 0.018 0.011 0.009
checkpairs 35 1 0 0.082 N/A N/A
double 12 1 0 0.041 0.040 N/A
isort2 40 1 1 1.058 N/A N/A
issorted 127 1 6 12.45 N/A N/A
mapswsort 61 2 20 22.63 N/A N/A
mergesort2 96 1 0 3.178 N/A N/A
remove0 32 1 1 0.409 0.015 0.012

Table 1. Experimental results

which would be simply represented by ∗1 ∗ with a regular language (or au-
tomaton) specification. The above specification involves function variables and
existential quantifiers, which cannot be handled even by the recent extension of
MoCHi [1]. Even if the encoding works, the resulting program and specification
tends to become too complex and large, making automated verification difficult;
in fact, the current implementation of MoCHi does not work for the benchmark
programs in Section 6. That said, a limitation of our new approach is that we
cannot verify some co-relation between arguments and return values, like “Func-
tion f takes a list of length n, and returns a list of length 2×n.” This is because
we use automata for abstracting information about each tree, which loses the
relationship between multiple trees. A possible remedy to this problem would be
to use tree automatic relations [2] for abstraction. Another approach would be
to integrate our new approach with that of MoCHi.

We have already discussed HMTT [12] and EHMTT [18] in Section 6. Al-
though HMTT also abstracts trees by using an automaton, the automaton used
for the abstraction is fixed to the one specified as the input automaton. EHMTT
decompose the verification problem to multiple HMTT verification problems, by
using annotations. Again, the abstraction relies on the automata given as speci-
fications or annotations. There was no abstraction refinement loop mechanism in
the above work on HMTT/EHMTT verification. We have recently extended the
HMTT verification with abstraction refinement loops [13], but it was restricted
to HMTT (where there is a distinction between input/output trees), and the
relative completeness (cf. Theorem 2) was not guaranteed. In short, our new
method requires no annotations unlike EHMTT verification, and works (at least
in theory) for a strictly larger set of verification problems than our previous work
on HMTT/EHMTT verification.



Ong and Ramsay [15] introduced a verification method for
tree-processing programs called PMRS. Their method abstracts trees based on
finite patterns, so it cannot deal with general regular properties like “a tree con-
tains an even number of S”. For example, for the program P1 in Example 3:
they abstract the argument x of add based on the information about whether
x matches Z or Sx′. If the verification fails, they expand patterns by unfolding
functions; in the case of the above example, the new set of patterns would be
{Z, S Z, S (Sx)}. Thus, their abstraction never captures properties like “x is an
even number” (i.e., x is of the form S2nZ). For the benchmark programs used
in our experiments, PMRS works for the second category (because it has been
taken from the benchmark of the PMRS tool), but it would not work for most
of the benchmarks in the first and third categories.

Automata-based abstraction has also been recently used for µHORS model
checking [10]. The µHORS model checking is an extension of higher-order model
checking, where HORS has been extended with recursive types. They abstract
the whole program configuration (which can be represented as applicative terms)
by using a tree automaton, and gradually refines the abstraction using a simi-
lar technique utilizing an SMT solver. Since µHORS is Turing complete, their
approach can in theory be applied to the verification problems considered in
the present paper, but our approach would scale much better for tree-processing
programs. They abstract both control and data structures using automata in a
monolithic way, whereas we abstract only tree data using automata, and pre-
cisely analyze control structures thanks to the decidability of higher-order model
checking.

Besides approaches based on higher-order model checking, there have been a
few other approaches to (semi-)automated verification of higher-order functional
programs that support algebraic data types. Liquid types [16, 7, 19] is a notable
approach based on refinement types, but it requires a user’s hints on the pred-
icates used in refinement types. Genet [6] applies a tree automata completion
technique for term rewriting systems to static analysis of functional programs.
His approach uses tree automata for modeling the whole program state (like
in the µHORS model checking mentioned above), while our approach uses tree
automata only for abstracting tree data. His method does not guarantee the
relative completeness in the sense of ours.

8 Conclusion

In this paper, we have introduced a new method for fully automated verifica-
tion of tree-processing, higher-order functional programs. We have introduced
automata-based abstraction, and combined it with higher-order model checking.
The automata-based abstraction is formalized as a type-based program trans-
formation, and the abstraction is gradually refined based on counterexamples.
Compared with the previous methods based on higher-order model checking, the
new method is more automated (requires no annotations), and can deal with a
larger class of programs. Future work includes improvement of the scalability of



the verification method, and an integration of the proposed technique with the
predicate abstraction approach of MoCHi [11, 17, 1].
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Appendix

A An Example of Abstraction

Figure 3 shows The derivation of the abstraction for the body of the function
“add” in Example 6.

· · ·

...

; add x′
` add x′ : oM2

→ oM2

Γ, x : oM1
, y : oM2

, x′ : oM1

A-Const

; fs,M2

` S : oM2 → oM2

Γ, x : oM1 , y : oM2 , x
′ : oM1

· · ·
A-App

; fs,M2
y

` S y : oM2

Γ, x : oM1
, y : oM2

, x′ : oM1

A-App
Γ, x : oM1 , y : oM2 , x

′ : oM1 ` (add x′ (S y)) : oM2 ; add x′ (fs,M2 y)
A-Case

; casexof q1 ⇒ y � ([q1/x
′](add x′ (fs,M2 y)))

Γ, x : oM1
, y : oM2

` (casexof Z⇒ y | S x′ ⇒ add x′ (S y)) : oM2

Fig. 3. abstraction of “add”

B Inferring the Initial Abstraction Type Environment

In this section, we explain how to determine an abstraction type environment
Γ used for the initial abstraction. The abstraction type environment will be
later refined using the counterexample-guided abstraction refinement discussed
in Section 5.

Let (P,MI ,MO) be a verification problem. The abstraction type environ-
ment Γ should satisfy the following two conditions:

1. There exists D such that ` P : Γ ; D.
2. Γ (main) must be of the form oM′

I
→ oM′

O
, where there exist FI ⊆ QM′

I

and FO ⊆ QM′
O

such L(M′I , FI) = L(MI) and L(M′O, FO) = L(MO) (so
that Theorem 1 is applicable).

For the first condition, it is sufficient that ` P : Γ is derivable by the following
rules (which are obtained by just removing the output of transformation from
the rules A-XX).

Γ, x : σ ` x : σ

Γ ` C : oM → · · · → oM︸ ︷︷ ︸
Σ(C)

→ oM



Γ ` e : oM Γ, ỹi : õM ` ei : σ

Γ ` case eof{Ci ỹi ⇒ ei}ni=1 : σ

Γ ` e1 : σ1 → σ2 Γ ` e2 : σ1

Γ ` e1 e2 : σ2

Γ ` fail : σ

P = {fi x̃i = ei}ni=1 Γ = {fi : σ̃i → oMi
}ni=1

Γ, x̃i : σ̃i ` ei : oMi

` P : Γ

These are essentially the same as those of the simple type system in Section 3,
except that we allow more than one base type for trees. Thus, by the assumption
that the source program P is well-typed, there exists Γ that satisfies ` P : Γ ;
we can obtain the most general one (by allowing type variables) by a standard
simple type inference algorithm. Since the typing rules above actually do not
impose any restriction on the shape of automata, the most general type of main
is α→ β, where the type variables α and β are possibly the same.

For the second condition, if α and β above are different type variables, we
instantiate α and β to oMI

and oMO
respectively, and all the other type vari-

ables in Γ to oMtrivial
, where Mtrivial is a “trivial” automaton that has just

one state. If Γ (main) = α → α, then we instantiate α to oprod(MI ,MO), where
prod(MI ,MO) is the product automaton of MI and MO.

In the refinement procedure for abstraction types described in Section 5, an
automaton M occurring in the initial Γ will be refined to M′ by splitting each
state q ofM into multiple states q1, . . . , qk, so that L(M, q) = L(M′, {q1, . . . , qk}).
Thus, the above two conditions remain to hold after the refinement.

We assume, without loss of generality, that for the initial abstraction type
environment Γ , everyM∈ Automata(Γ ) has no garbage state, i.e., L(M, q) 6= ∅
for every q ∈ QM.

Example 9. Consider the verification problem (P1,M1,M2) in Example 6. By
type inference (for ensuring the first condition above), we get Γ = {main : α→
β, add : α → β → β, twice : (β → β) → β → β},. By the second condition
above, we instantiate α to M1 and β to M2. Thus, we get the abstraction type
environment used in Example 6.

C Proofs

Proof of Theorem 1. We extend the abstraction relation with the rule

T ∈ L(M, q)

Γ ` T : oM ; q

The following lemma (which we call the simulation lemma) is the key property;



If Γ ` e : σ ; t and e −→P e′, then Γ ` e′ : σ ; t′ and t −→∗D t′ for
some t′.

It can be proved by an easy induction on the derivation of Γ ` e :σ ; t. We can
also show that if T ∈ L(M, q) and Γ ` T : oM ; t, then t −→∗D q. Now, suppose
that ` P : Γ ; D and main : oM′

I
→ oM′

O
with |= (D, FI , FO), L(M′I , FI) =

L(MI) and L(M′O, FO) = L(MO). Suppose also T ∈ L(MI), which implies
T ∈ L(M′I , q) for some q ∈ FI . we need to show (i) mainT 6−→∗P fail, and (ii)
mainT 6−→∗P T ′ implies T ′ ∈ L(MO). We show (i) by contradiction. Suppose
mainT 6−→∗P fail. Then, we have Γ ` mainT : oM′

O
; main t and main t −→∗D

main q −→∗D fail. But this contradicts the assumption |= (D, FI , FO). To show
(ii), suppose mainT −→∗P T ′. By the simulation lemma, we have Γ ` mainT :
oM′

O
; main t and main t −→∗D main q −→∗D t′ −→∗D q′ with T ′ ∈ L(M′O, q′).

By the assumption |= (D, FI , FO), it must be the case that q′ ∈ FO, which
implies T ′ ∈ L(M′O, FO) = L(MO) as required. ut

Proof of Theorem 2. Let Γ0 be the initial abstraction type environment. Let
Γ1 be the abstraction type environment that can be obtained from Γ0 and Γ
by the pairwise product construction of automata (for example, if Γ0(main) =
oM′′

I
→ oM′′

O
, then Γ1(main) = oproduct(M′

I ,M′′
I )
→ oproduct(M′

O,M′′
O)). Let n

be the size of the largest automaton in Γ . Then, by letting Split be n, there
exists a refinement Γ ′1 of Γ0 that is equivalent to Γ1 (in the sense that for each
automaton M in Γ1, the corresponding automaton M′ of Γ ′1 satisfies ∀q ∈
QM.∃q′ ∈ QM′ .L(M, q) = L(M′, q′)). Because (i) for a given value of Split
in Figure 2, there are only finitely many refinements, (ii) each refinement loop
never creates the same abstraction type environment, and (iii) the value of Split
is increased only when there is no refinement for the current value of Split , the
algorithm will eventually find Γ ′1 (or outputs “yes” before that) and outputs
“yes”. ut


