
Type-Based Verification of Correspondence
Assertions for Communication Protocols

Daisuke Kikuchi and Naoki Kobayashi

Graduate School of Information Sciences, Tohoku University
{kikuchi,koba}@kb.ecei.tohoku.ac.jp

Abstract. Gordon and Jeffrey developed a type system for checking
correspondence assertions. The correspondence assertions, proposed by
Woo and Lam, state that when a certain event (called an “end” event)
happens, the corresponding “begin” event must have occurred before.
They can be used for checking authenticity in communication protocols.
In this paper, we refine Gordon and Jeffrey’s type system and develop a
polynomial-time type inference algorithm, so that correspondence asser-
tions can be verified fully automatically, without any type annotations.
The main key idea that enables polynomial-time type inference is to
introduce fractional effects; Without the fractional effects, the type in-
ference problem is NP-hard.

1 Introduction

Woo and Lam [11] introduced the notion of correspondence assertions for stating
expected authenticity properties formally. The correspondence assertions consist
of begin-assertions and end-assertions, and assert that whenever an end-event
occurs, the corresponding begin-event must have occurred before. For example,
consider a simple transmit-acknowledgment-handshake protocol, where a process
A sends a message to B and waits for an acknowledgment. Let the event that
B receives a message from A be a begin-event, and the event that A receives
an acknowledgment be an end-event. By checking that the begin event always
precedes the end-event, one can verify that whenever A believes that the message
has been received by B, the message has indeed been delivered to B.

Gordon and Jeffrey [7] introduced an extension of the π-calculus with cor-
respondence assertions, and proposed a type-and-effect system for checking cor-
respondence assertions. Since well-typed processes satisfy correspondence as-
sertions, the problem of checking correspondence assertions is reduced to the
type-checking problem. They further extended the type system to deal with
cryptographic primitives [4–6].

In this paper, we refine Gordon and Jeffrey’s type system for correspon-
dence assertions and develop a polynomial-time type inference algorithm, so
that correspondence assertions can be verified fully automatically without any
type annotations (which were necessary for Gordon and Jeffrey’s type checking

algorithm [7]). The key idea to enable type inference is to introduce fractional
effects, which are mappings from events to rational numbers; In Gordon and
Jeffrey’s type system, effects are multisets of events, or mappings from events to
natural numbers. We show that with fractional effects (and with the assumptions
that the size of simple types is polynomial in the size of untyped programs and
that the size of events is bound by a constant), type inference can be performed
in polynomial time, while without fractional effects, the type inference problem
is NP-hard (even with the assumption that both the size of simple types and the
size of events are bound by a constant).

The rest of this paper is structured as follows. Section 2 introduces πCA,
Gordon and Jeffrey’s calculus without type-and-effect annotations. Section 3
introduces a type system with fractional effects. Section 4 describes a polynomial-
time type inference algorithm, and also shows that the type inference problem is
NP-hard without fractional effects. Section 5 discusses related work and Section 6
concludes.

2 πCA: π-Calculus with Correspondence Assertions

In this section, we introduce the language πCA, the π-calculus extended with
correspondence assertions. The language is essentially the same as Gordon and
Jeffrey’s calculus [7], except that there are no type annotations in our language.

2.1 Syntax

Definition 1 (processes) The set of processes, ranged over by P , is given by:

P (Processes) ::= 0 | x![ỹ] | x?[ỹ].P | (P1 |P2) | ∗P | (νx)P
| if x = y then P else Q | begin L.P | end L.P

L (Event labels) ::= 〈x1, . . . , xn〉
Here, ỹ abbreviates a sequence of names y1, . . . , yn. The meta-variables xi and
yj range over the set N of names.

The processes begin L.P and end L.P are special processes for declaring
correspondence assertions; begin L.P raises a “begin L” event and then behaves
like P , while end L.P raises an “end L” event and then behaves like P . An event
label L is a sequence of names.

The remaining processes are those of the standard polyadic, asynchronous π-
calculus. The process 0 is an inaction. The process x![ỹ] sends a tuple of names ỹ
on channel x. The process x?[ỹ].P waits to receive a tuple of names on channel x,
binds ỹ to them, and then behaves like P . P1 |P2 runs P1 and P2 in parallel, while
∗P runs infinitely many copies of P in parallel. The process (νx)P creates a fresh
name, binds x to it, and behaves like P . The process if x = y then P else Q
behaves like P if x and y are the same name, and behaves like Q otherwise.

The prefixes x?[ỹ] and (νx) bind ỹ and x respectively. We identify processes
up to α-conversion. We assume that α-conversion is implicitly applied so that

bound variables are always different from each other and free variables. We often
omit trailing 0, and write end L for end L.0.

Example 1. The transmit-acknowledgment-handshake protocol mentioned in Sec-
tion 1 can be expressed as follows [7]:

(νc)(Sender(a, b, c) | Receiver(a, b, c)),

where Sender(a, b, c) and Receiver(a, b, c) are:

Sender(a, b, c)
�
= (νmsg)(νack)(c![msg , ack] | ack?[].end 〈a, b,msg〉)

Receiver(a, b, c)
�
= c?[m, r].begin 〈a, b,m〉.r![]

Sender(a, b, c) creates a fresh message msg , creates a new channel for receiving an
acknowledgment, and sends a pair consisting of them on channel c. It then waits
for an acknowledgment and raises the “end 〈a, b,msg〉”-event. Receiver(a, b, c)
waits to receive a pair [m, r] on channel c, raises a “begin 〈a, b,m〉”-event (where
m is bound to msg), and then sends an acknowledgment on r.

As explained in Section 1, the property “whenever Sender receives an ac-
knowledgment for msg , Receiver has received it” can be captured by the property
that whenever an “end 〈a, b,msg〉”-event occurs, a “begin 〈a, b,msg〉”-event
must have occurred before.

2.2 Semantics

We give below the operational semantics of πCA and then define the safety of a
process, meaning that whenever an end-event occurs, the corresponding begin-
event must have occurred before. Note that the semantics is essentially the same
as that of Gordon and Jeffrey’s calculus.

The operational semantics is defined via the reduction relation 〈Ψ,E,N〉 −→
〈Ψ ′, E′, N ′〉, where Ψ is a multiset of processes, N is a set of names, and E is a
multiset consisting of event labels L such that the event begin L has been raised
but end L has not. The reduction relation is defined by the rules in Figure 1.

〈Ψ � {x?[ỹ].P, x![z̃]}, E, N〉 −→ 〈Ψ � {[z̃/ỹ]P}, E, N〉
〈Ψ � {P |Q}, E, N〉 −→ 〈Ψ � {P, Q}, E, N〉
〈Ψ � {∗P}, E, N〉 −→ 〈Ψ � {∗P, P}, E, N〉

〈Ψ � {(νx)P}, E, N〉 −→ 〈Ψ � {[y/x]P}, E, N ∪ {y}〉 (y /∈ N)
〈Ψ � {if x = y then P else Q}, E, N〉 −→ 〈Ψ � {P}, E, N〉 (if x = y)
〈Ψ � {if x = y then P else Q}, E, N〉 −→ 〈Ψ � {Q}, E, N〉 (if x 	= y)

〈Ψ � {begin L.P}, E, N〉 −→ 〈Ψ � {P}, E � {L}, N〉
〈Ψ � {end L.P}, E � {L}, N〉 −→ 〈Ψ � {P}, E, N〉

Fig. 1. Operational Semantics

We write 〈Ψ,E,N〉 −→ Error if end L.P ∈ Ψ but L /∈ E. We write −→∗

for the reflexive and transitive closure of −→. The safety of a process is defined
as follows.

Definition 2 (safety) A process P is safe if 〈{P}, ∅, N〉 �−→∗ Error, where N
is the set of free names in P .

3 Type System

In this section, we introduce a type-and-effect system for checking the safety of a
process. The main differences between our type system and Gordon and Jeffrey’s
type system [7] (GJ type system, in short) are (i) an effect in our type system is
a mapping from event labels to rational numbers whereas an effect in GJ type
system is a mapping from event labels to natural numbers, and (ii) processes are
implicitly-typed in our type system.

3.1 Types and Effects

We first introduce the syntax of types and effects.

Definition 3 (effects) The sets of types and effects, ranged over by T and e,
are given by:

T (Types) ::= Name | Ch(T1, . . . , Tn)e
e (Effects) ::= [L1 	→ t1, . . . , Ln 	→ tn]

L (extended event labels) ::= 〈α1, . . . , αk〉
α (extended names) ::= x | ι

ι (indices) ::= ↑ ι | 1 | 2 | · · ·

Here, t1, . . . , tn ranges over the set of non-negative rational numbers.

Note that an event label has been extended to a sequence of extended names.
An extended name is either a name (ranged over by x, y, . . .), or an index ι of
the form ↑ · · · ↑n.

An effect [L1 	→ t1, . . . , Ln 	→ tn] denotes the mapping f from the set of
events to the set of rational numbers such that f(Li) = ti for i ∈ {1, . . . , n} and
f(L) = 0 for L �∈ {L1, . . . , Ln}.

A type is either the type Name of pure names (which are not used as a chan-
nel), or a channel type of the form Ch(T1, . . . , Tn)e. Here, Ch(T1, . . . , Tn)e is the
type of channels that can be used for transmitting tuples consisting of values of
types T1, . . . , Tn with a latent effect e. The latent effect e describes capabilities
for raising end-events that are passed from a sender to a receiver through the
channel. For example, if x has type Ch(Name)[〈y〉 	→ 2, 〈z, w〉 	→ 1], then x can
be used for passing one name, and when a communication on x occurs, the capa-
bilities to raise “end 〈y〉” events twice and an “end 〈z, w〉” event once are passed
from the sender to the receiver (so that x?[u].end 〈y〉.end 〈z, w〉.end 〈y〉 is a

valid process). Note that we allow fractional effects. For example, if x has type
Ch()[〈y〉 	→ 0.5], then a half of the capability to raise an end 〈y〉 event is passed
each time x is used for communication. The process x?[].end 〈y〉 is therefore in-
valid, but x?[].x?[].end 〈y〉 is valid. Dependencies of a latent effect on transmit-
ted names are expressed by using indices. The type Ch(Name,Name)[〈1, 2〉 	→
1], which corresponds to the type Ch(x : Name, y : Name)〈x, y〉 in GJ type
system, describes a channel such that when a pair of names x and y are passed
through the channel, a capability to raise an end 〈x, y〉 event is passed. The in-
dex constructor ↑ is used to refer to the name occurring in an outer position. For
example, ↑ 1 in the type Ch(Name,Ch()[〈↑ 1〉 	→ 1])〈1, 2〉 refers to the name
passed as the first argument (of type Name). Note that the type corresponds
to Ch(x : Name, y : Ch()〈x〉)〈x, y〉 in GJ type system. Thanks to this canoni-
cal representation of types, renaming is unnecessary for unification or matching
of two types; That is convenient for the type inference algorithm described in
Section 4.

A substitution [x1/ι1, . . . , xk/ιk], denoted by meta-variable θ, is a mapping
from indices to names, The substitution, summation, least upper-bound, and
order ≤ on effects are defined by:

(θe)(L) = Σ{e(L′) | θL′ = L}
(e1 + e2)(L) = e1(L) + e2(L)
(e1 ∨ e2)(L) = max(e1(L), e2(L))
e ≤ e′ ⇔ ∀L.e(L) ≤ e′(L)

The substitution θT on types is defined by:

θName = Name
θCh(T1, . . . , Tn)e = Ch((↑ θ)T1, . . . , (↑ θ)Tn)θe

Here, ↑[x1/ι1, . . . , xk/ιk] denotes [x1/ ↑ ι1, . . . , xk/ ↑ ιk].

3.2 Typing Rules

We introduce three judgment forms: Γ � �, meaning that the type environment
Γ is well-formed; N � T , meaning that the type T is well-formed under the
set N of names; and Γ � P : e, meaning that P has effect e under the type
environment Γ . The judgment N � T is used to exclude ill-formed types like
Ch(Name)[〈2〉 	→ 1] (which refers to a non-existent index 2). The judgment
Γ � P : e intuitively means that P may raise end-events described by e that
are not preceded by begin-events. In other words, P is a good process on the
assumption that P is given the capabilities to raise end-events described by e.
For example, x : Name, y : Name � begin 〈x〉.end 〈x, y〉.end 〈x〉 : [〈x, y〉 	→ 1]
and x:Ch(Name)[〈1〉 	→ 2] � x?[y].end 〈y〉.end 〈y〉 :[] are valid judgments. The
latter process receives a capability to raise two “end 〈y〉” events through x. On
the other hand, x:Name � begin 〈x〉.end 〈x〉.end 〈x〉:[] is an invalid judgment.

The relations Γ � �, N � T , and Γ � P : e are defined by the rules in
Figure 2. In the figure, θy1,...,yk

denotes the substitution [y1/1, . . . , yk/k]. N(e)
denotes the set

⋃{N(L) | e(L) > 0}, where N(L) is the set of extended names
occuring in L. For example, N([〈x, y〉 	→ 0.5, 〈y, z〉 	→ 0]) = {x, y}. The typing
rules are basically the same as those of Gordon and Jeffrey’s type system [7],
except that the syntax of types has been changed and effects have been replaced
by mappings from names to rational numbers. In rule WT-Chan, ↑N denotes
the set {↑ ι | ι ∈ N} ∪ (N ∩ N). For example, ↑{x, 1, ↑ 2} = {x, ↑ 1, ↑ ↑ 2}. In
T-If, [y/x]Γ is defined as follows.

[y/x]Γ = [y/x](x1 : T1, . . . , xn : Tn) =
([y/x]x1) : ([y/x]T1); . . . ; ([y/x]xn) : ([y/x]Tn)

where Γ ;x : T is Γ if x ∈ dom(Γ), and is Γ, x : T otherwise

Example 2. The process Receiver(a, b, c) in Example 1 is typed as follows.

Γ0,m : Name, r : T2 � r![] : [〈a, b,m〉 	→ 1]
Γ0,m : Name, r : T2 � begin 〈a, b,m〉.r![] : []

Γ0 � Receiver(a, b, c) : []

Here, Γ0 = a : Name, b : Name, c : Ch(Name,Ch()[〈a, b, ↑ 1〉 	→ 1])[] and T2 =
Ch()[〈a, b,m〉 	→ 1].

Similarly, Sender(a, b, c) is typed as follows.

Γ2 � c![msg , ack] : []
Γ2 � end 〈a, b,msg〉 : [〈a, b,msg〉 	→ 1]

Γ2 � ack?[].end 〈a, b,msg〉 : []
Γ2 � c![msg , ack] | ack?[].end 〈a, b,msg〉 : []

Γ1 � (νack)(c![msg , ack] | ack?[].end 〈a, b,msg〉) : []
Γ0 � Sender(a, b, c) : []

Here, Γ1 = Γ0,msg : Name and Γ2 = Γ1, ack : Ch()[〈a, b,msg〉 	→ 1]. By using
T-Par, we obtain:

Γ0 � Sender(a, b, c) |Receiver(a, b, c) : [].

3.3 Type Soundness

The following theorem states that a process is safe if it is well-typed and has an
empty effect.

Theorem 1 (type soundness). If Γ � P : [], then P is safe.

The proof is essentially the same as that of the type sound theorem for GJ
type system [7].

∅ � � (TE-Empty)

dom(Γ) � T x /∈ dom(Γ)

Γ, x : T � � (TE-Ext)

N � Name
(WT-Name)

↑(N ∪ {1, . . . , i − 1}) � Ti (for each i ∈ {1, . . . , n})
N(e) ⊆ N ∪ {1, . . . , n}
N � Ch(T1, . . . , Tn)e

(WT-Chan)

Γ � P : e e ≤ e′ N(e′) ⊆ dom(Γ)

Γ � P : e′
(T-Subsum)

Γ � �
Γ � 0 : []

(T-Zero)

Γ � x : Ch(T1, . . . , Tn)e
Γ � yi : (↑ θy1,...,yi−1)Ti (for each i ∈ {1, . . . , n})

Γ � x![y1, . . . , yn] : θy1,...,yne
(T-Out)

Γ � x : Ch(T1, . . . , Tn)e1 Γ, y1 : T ′
1, . . . , yn : T ′

n � P : e2

T ′
i = (↑ θy1,...,yi−1)Ti (for each i ∈ {1, . . . , n})

e2 ≤ θy1,...,yne1 + e (N(e) ∪ N(e1)) ∩ {y1, . . . , yn} = ∅
Γ � x?[y1, . . . , yn].P : e

(T-In)

Γ � P1 : e1 Γ � P2 : e2

Γ � P1 |P2 : e1 + e2

(T-Par)

Γ � P : []

Γ � ∗P : []
(T-Rep)

Γ, x : T � P : e x /∈ N(e)

Γ � (νx)P : e
(T-Res)

Γ � x : T Γ � y : T [y/x]Γ � [y/x]P : [y/x]eP Γ � Q : eQ

Γ � if x = y then P else Q : eP ∨ eQ

(T-Cond)

Γ � P : e + [L �→ 1] N(L) ⊆ dom(Γ)

Γ � begin L.P : e
(T-Begin)

Γ � P : e N(L) ⊆ dom(Γ)

Γ � end L.P : e + [L �→ 1]
(T-End)

Fig. 2. Typing Rules

3.4 Comparison with GJ Type System

Our type system is strictly more expressive than GJ type system [7]. Note that
the only difference between our type system and GJ type system is that an effect
is a mapping from names to rational numbers in our type system, while it is a
mapping from names to natural numbers in GJ type system. Therefore, it should
be trivial that any process well-typed in GJ type system is also well-typed in
our type system. On the other hand, there is a process that is typable in our
type system but not in GJ type system. Consider the following process:1

begin 〈a〉.(c![] | c![]) | c?[].c?[].end 〈a〉.

The process on the lefthand side first raises a begin-event, and then sends a
capability to raise an end-event on channel c, while the process on the righthand
side receives the capability from channel c, and raises the end-event.

In our type system, the process is typed under the type environment: a :
Name, c : Ch(Name)[〈a〉 	→ 0.5]. Note that c carries a half of the capability to
raise the end-event. Since two messages are sent on c, 0.5 + 0.5 = 1 capability is
passed from the left process to the right process.

To see why the above process is not typable in GJ type system, let the type
of c be Ch()e where e(〈a〉) = n. In order for the left process to be typable, it
must be the case that n + n ≤ 1. On the other hand, for the right process to be
typable, it must be the case that n + n ≥ 1. There is no natural number n that
satisfies both the constraints.

4 Type Checking Algorithm

This section describes an algorithm which, given a process P , judges whether
there exists a type environment Γ such that Γ � P : [].

The algorithm consists of the following steps.

– Step 1: Generate constraints on effects based on the typing rules.
– Step 2: Reduce the constraints on effects into linear inequalities on rational

numbers.
– Step 3: Check whether the linear inequalities have a solution.

We first explain the first and second steps below. We then show in Subsection 4.4
that the algorithm runs in time polynomial in the size of the process (provided
that the size of the simple type of each name is polynomial in the size of the
process and that the size of each begin/end-event is bound by a constant). In
Subsection 4.5, we show that without fractional effects, the type inference prob-
lem is NP-hard.

1 The example was suggested by Tachio Terauchi.

4.1 Step 1: Generating Constraints on Effects

Figure 3 gives an algorithm Inf , which takes a closed process P as an input, and
generates a set C of constraints. C expresses a necessary and sufficient condition
for Γ � P : [] where all the effects in Γ are empty.

Inf calls a sub-procedure inf , which takes a type environment and a process,
and generates a pair (e, C) where C is a necessary and sufficient condition for
Γ � P : e. We assume that the simple type of each name has been already inferred
by the standard type inference algorithm,2 and that typeof(x) decorates the
simple type of x with fresh effect variables and returns it. For example, if the sim-
ple type of x is Ch(Ch(Name)), typeof(x) returns Ch(Ch(Name)ρ1)ρ2 where
ρ1 and ρ2 are fresh. In the definition of inf (the clauses for input and output pro-
cesses), Ch(T1, . . . , Tn)e = Γ (x) expresses a matching of Γ (x) against the pat-
tern Ch(T1, . . . , Tn)e. For example, if n = 1 and Γ (x) = Ch(Ch(Name)ρ1)ρ2,
then T1 and e are instantiated to Ch(Name)ρ1 and ρ2 respectively. In the
clauses for input and output processes, a substitution θ works as an operation
for types but as an constructor for effects. For example, let θ = [a/x, b/1]. Then
θCh(Ch(Name)ρ1)ρ2 is Ch(Ch(Name)[a/x, b/ ↑ 1]ρ1)[a/x, b/1]ρ2. teq(T1, T2)
matches T1 and T2, and generates equality constraints on effects. For example,
teq(Ch(Ch(Name)e1)e2,Ch(Ch(Name)e′1)e

′
2) generates {e1 = e′1, e2 = e′2}.

Note that the number of equality constraints generated by teq(T1, T2) is linear
in the size of T1 and T2. Note also that the matching of types never fails be-
cause of the assumption that type inference for the simple type system has been
already performed. The substitution operation θT can be performed in time
O(mn), where m is the size of T and n is the size of θ. wf (N,T) generates the
conditions for T being well-formed under the names N .

Inf generates constraints of the following forms:

– inequalities on effects e1 ≥ e2, where e1 and e2 are expressions constructed
from effect constants ([L 	→ 1]), effect variables, substitutions, and summa-
tion (+).

– equalities on effects e1 = e2, where e1 and e2 are either [] or of the form
θ1 · · · θkρ.

– notin(x, e), where e is [] or an effect variable.
– N(e) ⊆ N , where e is of the form θ1 · · · θkρ.

The algorithm Inf is sound and complete with respect to the type system in
Section 3 in the following sense.

Lemma 1. Inf (P) is satisfiable if and only if Γ � P : [] holds for a type envi-
ronment Γ such that all the effects in Γ are empty.

Remark 1. The reason why we require that all the effects in Γ are empty is
that P may be executed in parallel with an untrusted process Q. The condition
that the effects in Γ are empty ensures that P does not expect to receive any

2 If there is an undetermined type, let it be Name.

capability (to raise end-events) from Q. Thus, even in the presence of the un-
trusted process Q, the correspondence assertions in P hold. (Since Q may not
be simply-typed, execution of P |Q may get stuck, however.)

4.2 Step 2: Reducing Constraints on Effects

Let N1 be the set of all the names occurring in P (including bound names), and
let N2 be the set of indices of the form ↑k l. Here, k is less than or equal to the
maximum depth of the type of a channel occurring in P , and l is less than or
equal to the maximum width of the type of a channel occurring in P (in other
words, the maximum size of tuples sent along channels). Let w be the maximal
size of the begin/end-events occurring in P . (Here, the size of 〈x1, . . . , xk〉 is k.)
Then, we need to consider only events in the following set L:

{〈α1, . . . , αk〉 | k ≤ w,α1, . . . , αk ∈ N1 ∪N2}.
Note that the size of N1 ∪ N2 is polynomial in the size of P , since both the
maximum depth and the maximum width of simple types are polynomial in the
size of P . On the assumption that the maximum size of events is bound by a
constant, therefore, the size N of L is polynomial in the size of P .

Let L = {L1, . . . , LN}. For each effect variable ρ in C, prepare N variables
ξρ,L1 , . . . , ξρ,LN

, ranging over rational numbers. Then, the constraints C on effect
variables are replaced with constraints on ξρ,L as follows.

cconv(e1 ≥ e2) = {econv(e1)(L) ≥ econv(e2)(L) | L ∈ L}
cconv(e1 = e2) = {econv(e1)(L) = econv(e2)(L) | L ∈ L}

cconv(notin(x, e)) = {econv(e)(L) = 0 | L ∈ L ∧ x ∈ N(L)}
cconv(N(e) ⊆ N) = {econv(e)(L) = 0 | L ∈ L ∧ N(L) �⊆ N}

econv(ρ) = {L1 	→ ξρ,L1 , . . . , LN 	→ ξρ,LN
}

econv(e1 + e2) = {L1 	→ econv(e1)(L1) + econv(e2)(L1), . . . ,
Ln 	→ econv(e1)(LN) + econv(e2)(LN)}

econv(θe) = {L1 	→ Σ{econv(e)(L) | θL = L1}, . . . ,
LN 	→ Σ{econv(e)(L) | θL = LN}}

4.3 Example

Recall the process in Example 1. By the standard type inference, the following
types are assigned to names:

a : Name, b : Name, c : Ch(Name,Ch()ρ0)ρc,msg : Name,
ack : Ch()ρack ,m : Name, r : Ch()ρr

Here, ρ0, ρc, ρack are effect variables to express unknown effects.
By running the constraint generation algorithm for Sender(a, b, c), we obtain

the following constraints.

ρc! ≥ [msg/1, ack/2]ρc, ρack? + ρack ≥ [〈a, b,msg〉 	→ 1]
ρs ≥ ρc! + ρack?, ρack = [msg/ ↑ 1]ρ0,notin(msg , ρs),notin(ack , ρs)
N(ρ0) ⊆ {a, b, ↑ 1}, N(ρc) ⊆ {a, b, 1, 2}, N(ρack) ⊆ {a, b, c,msg}

Inf (P) =
let

Γ = {x : typeof(x) | x ∈ N(P)}
(e, C1) = inf (Γ, P)
C2 = {e = []}

∪{e1 = [] | e1 appears in Γ}
in C1 ∪ C2

inf (Γ,0) = ([], ∅)

inf (Γ, x![y1, . . . , yn]) =
let

Ch(T1, . . . , Tn)e = Γ (x)
C = {teq(Γ (yi), (↑ θy1,...,yi−1)Ti)

| i ∈ {1, . . . , n}}
in (ρ, C ∪ {ρ ≥ θy1,...,yne})

where ρ is fresh

inf (Γ, x?[y1, . . . , yn].P) =
let

Γ ′ = Γ, ỹ : typeof(ỹ)
(eP , CP) = inf (Γ ′, P)
Ch(T1, . . . , Tn)e = Γ (x)
C1 = {teq(Γ ′(yi), (↑ θy1,...,yi−1)Ti)

| i ∈ {1, . . . , n}}
C2 = {notin(yi, ρ) | i ∈ {1, . . . , n}}
C3 = {ρ + θy1,...,yne ≥ eP }
C4 =

⋃
1≤i≤n wf (↑({y1, . . . , yi−1}

∪dom(Γ)), Γ (yi))
in (ρ, CP ∪ C1 ∪ C2 ∪ C3 ∪ C4)

where ρ is fresh

inf (Γ, P |Q) =
let

(eP , CP) = inf (Γ, P)
(eQ, CQ) = inf (Γ, Q)

in (ρ, CP ∪ CQ ∪ {ρ ≥ eP + eQ})
where ρ is fresh

inf (Γ, ∗P) =
let (eP , CP) = inf (Γ, P)
in ([], CP ∪ {eP = []})

inf (Γ, (νx)P) =
let T = typeof(x)

(eP , CP) = inf ((Γ, x : T), P)
in (ρ, CP ∪ {ρ ≥ eP } ∪ {notin(x, eP)}

∪wf (dom(Γ), T))
where ρ is fresh

inf (Γ, if x = y then P else Q) =
let

(eP , CP) = inf ([y/x]Γ, [y/x]P)
(eQ, CQ) = inf (Γ, Q)
C1 = {[y/x]ρ ≥ eP , ρ ≥ eQ}

in (ρ, CP ∪ CQ ∪ C1 ∪ {teq(Γ (x), Γ (y))})
where ρ is fresh

inf (Γ,begin L.P) =
let (eP , CP) = inf (Γ, P)
in (ρ, CP ∪ {ρ + [L �→ 1] ≥ eP })

where ρ is fresh and N(L) ⊆ dom(Γ)

inf (Γ, end L.P) =
let (eP , CP) = inf (Γ, P)
in (ρ, CP ∪ {ρ ≥ eP + [L �→ 1]})

where ρ is fresh and N(L) ⊆ dom(Γ)

teq(T, T) = ∅

teq(Ch(T̃)e1,Ch(T̃ ′)e2) =

{e1 = e2} ∪ teq(T̃ , T̃ ′)

wf (N,Name) = ∅

wf (N,Ch(T1, . . . , Tn)e)
= (

⋃
1≤i≤n wf (↑(N ∪ {1, . . . , i − 1}), Ti))

∪{N(e) ⊆ N ∪ {1, . . . , n}}

Fig. 3. Constraint Generation Algorithm

Here, ρs, ρc!, and ρack? are effects of the processes Sender(a, b, c), c![msg , ack],
and ack?[]. · · · respectively. The constraints on the first line come from the out-
put and input processes, and those on the second line come from the parallel com-
position and ν-prefixes. Those on the third line come from the well-formedness
conditions (wf in the algorithm).

Similarly, we obtain the following constraints from Receiver(a, b, c):

ρbg + [〈a, b,m〉 	→ 1] ≥ ρr, ρrec + [m/1, r/2]ρc ≥ ρbg , ρr = [m/ ↑ 1]ρ0

notin(m, ρrec),notin(r, ρrec),N(ρr) ⊆ {a, b, c,m}

From the entire process (νc)(Sender(a, b, c) | Receiver(a, b, c)), we also obtain:

ρsys ≥ ρs + ρrec , ρsys = []

The next step is to reduce the above constraints into linear inequalities. The
set L of relevant events is:

{〈x1, x2, x3〉 | x1, x2, x3 ∈ {a, b, c,msg , ack ,m, r, 1, 2, ↑ 1}}

We prepare a variable ξi,L for each effect variable ρi and event L. (In practice,
we can reduce the number of variables by looking at the substitutions and events
occurring in the effect constraints.)

We show only inequalities relevant to 〈a, b,msg〉:

ξc!,〈a,b,msg〉 ≥ ξc,〈a,b,↑ 1〉, ξack?,〈a,b,msg〉 + ξack ,〈a,b,msg〉 ≥ 1
ξs,〈a,b,msg〉 ≥ ξc!,〈a,b,msg〉 + ξack?,〈a,b,msg〉, ξack ,〈a,b,msg〉 = ξ0,〈a,b,↑ 1〉
ξs,〈a,b,msg〉 = 0
ξbg,〈a,b,m〉 + 1 ≥ ξr,〈a,b,m〉, ξc,〈a,b,1〉 ≥ ξbg,〈a,b,m〉, ξr,〈a,b,m〉 = ξ0,〈a,b,↑ 1〉
ξsys,〈a,b,msg〉 ≥ ξs,〈a,b,msg〉 + ξrec,〈a,b,msg〉, ξsys,〈a,b,msg〉 = 0

Additionally, we have the inequality ξi,L ≥ 0 for every variable.
The above inequalities have the following solution:

ξack ,〈a,b,msg〉 = ξr,〈a,b,m〉 = ξ0,〈a,b,↑ 1〉 = 1,
ξc!,〈a,b,msg〉 = ξc,〈a,b,msg〉 = ξc,〈a,b,1〉 = ξack?,〈a,b,msg〉 = ξbg,〈a,b,m〉

= ξrec,〈a,b,msg〉 = ξs,〈a,b,msg〉 = ξsys,〈a,b,msg〉 = 0.

Thus, we obtain the following type for each name:

a : Name, b : Name, c : Ch(Name,Ch()[〈a, b, ↑ 1〉 	→ 1])[],msg : Name,
ack : Ch()[〈a, b,msg〉 	→ 1],m : Name, r : Ch()[〈a, b,m〉 	→ 1],

4.4 Efficiency of the Algorithm

Let |P | be the size of the input P of the algorithm Inf . We show that, if the size of
simple types is polynomial in |P |, and the size of begin/end-events is bounded by
a constant, then our algorithm runs in time polynomial in |P |. First, the number
of the constraints generated by Inf (P) is polynomial in |P |. Note here that by the

assumption on the size of simple types, the size of teq(T1, T2) is also polynomial
in |P |: the number of effect equalities generated by teq(T1, T2) is linear in the
size of T1, and the size of effect expressions occurring in each equality is also
polynomial in |P |. Since the size of the event set L is polynomial in the size of
the process, the second step runs in time polynomial in |P | and generates linear
inequalities of size polynomial in |P |. Since linear inequalities can be solved in
polynomial time, the third step can also be performed in polynomial time.

Remark 2. Note that in general, the size of simple types (expressed as terms
instead of graphs) can be exponential in the size of |P |. For example consider
the following process:

x0![x1, x1] |x1![x2, x2] | · · · |xn![xn+1, xn+1]

The size of the type of x0 is exponential in n. We believe, however, that in
practice, the maximum size of types depends on what data structures and com-
munication protocols are used in the program, and it is generally independent
of the size of the program itself. If the assumption on the size of simple types is
not met or if there are recursive types, we can use graph representation of simple
types and assign the same effect to the same type node. Then, our algorithm still
runs in time polynomial in the size of the program, although the completeness
of the inference algorithm would be lost.

4.5 Complexity of GJ Type System

Next, we show that the typability in GJ type system [7] is NP-hard without type
annotations (in other words, if fractional effects in our type system are replaced
by multisets of events as in GJ type system).

Since the 3-SAT problem is NP-complete, in order to prove NP-hardness, it
suffices to show that any instance q of 3-SAT problem can be encoded into a
process SAT2P(q) so that the size of SAT2P(q) is polynomial in the size of q,
and so that q is satisfiable if and only if ∅ � SAT2P(q) : [] is typable.

Let a 3-SAT problem q be d1 ∧ · · · ∧ dn where di is Ai1 ∨ Ai2 ∨ Ai3 and Aij

is either a variable Xk or its negation Xk. By representing the truth value by 1
and 0 (and assuming that each variable ranges over {0, 1}), we can encode each
disjunction di into an integer constraint f2ic(di), which is one of the following
forms:

X + Y + Z ≥ 1 X ≤ Y + Z X + Y ≤ Z + 1 X + Y + Z ≤ 2

For example, X1 ∨ X2 ∨ X3 is expressed by X1 + (1 − X2) + X3 ≥ 1, which is
equivalent to X2 ≤ X1 + X3.

For each of the above inequalities, define the following processes:

PX+Y +Z≥1 = cX?[x].cY ?[y].cZ?[z].
if x = y then if y = z then end 〈x〉 else 0 else 0

PX≤Y +Z = cY ?[y].cZ?[z].if y = z then cX ![y] else 0
PX+Y ≤Z+1 = cZ?[z].begin 〈z〉.(cX ![z] | cY ![z])
PX+Y +Z≤2 = (νa)begin 〈a〉.begin 〈a〉.(cX ![a] | cY ![a] | cZ ![a])

Then, for each inequality β, β holds if and only if

cX : Ch(Name)[〈1〉 	→ X], cY : Ch(Name)[〈1〉 	→ Y],
cZ : Ch(Name)[〈1〉 	→ Z] � Pβ : []

holds.
For each variable X, let QX be the process (νa)begin 〈a〉.cX ![a]. Then,

0 ≤ X ≤ 1 if and only if cX : Ch(Name)[〈1〉 	→ X] � QX .
For an instance of 3-SAT problem q = d1 ∧ · · · ∧ dn, define SAT2P(q) by:

SAT2P(d1 ∧ · · · ∧ dn) =
(νcX1) · · · (νcXm

)(QX1 | · · · |QXm
|Pf2ic(d1) | · · · |Pf2ic(dn)).

Here, X1, . . . , Xm are the variables in q. Then, q is satisfiable if and only if
∅ � SAT2P(q) : [] holds. Since the size of SAT2P(q) is linear in the size of q and
the 3-SAT problem is NP-complete, the typability (i.e., the problem of judging
whether there exists Γ such that Γ � P : [] holds) is NP-hard.

Remark 3. Note that the above encoding uses only events of the form 〈a〉 and
types of the form Ch(Name)e and Name. Thus, the type inference problem is
NP-hard even on the assumption that the sizes of simple types and events are
bound by a constant.

5 Related Work

As already mentioned, this work is based on Gordon and Jeffrey’s type system
for correspondence assertions [7]. We have extended effects to fractional effects
and removed explicit type annotations. The resulting type system is more expres-
sive than their type system, and is more suitable for automatic type inference.
Gordon and Jeffrey [4–6] have extended their type system to verify authenticity
of security protocols using cryptographic primitives. It is left for future work
to check whether type inference algorithms for those type systems can be con-
structed in a similar manner.

Blanchet [1, 2] studied completely different techniques for checking correspon-
dence assertions in cryptographic security protocols, and implemented protocol
verification systems. Like in our type system (and unlike in Gordon and Jeffrey’s
type systems [4–7]), his systems do not require any annotations (except for cor-
respondence assertions). It is difficult to make fair comparison between our work
and his techniques because we have not yet extended the type system to deal
with cryptographic primitives. A possible advantage of our type-based approach
is that our algorithm runs in polynomial time. On the other hand, there seem
to be no guarantee that his systems terminate [1]. A clear advantage of his re-
cent work [2] over the type-based methods is that it can guarantee soundness
in the computational model (rather than in the formal model with the perfect
encryption assumption).

The idea of using rational numbers in type systems have been proposed by
Boyland [3] and Terauchi and Aiken [9, 10]. They used rational numbers (ranging

over [0, 1], rather than [0,∞) in our type system) to prevent interference of
read/write operations on reference cells or channels. Terauchi and Aiken [10]
observed that type inference can be performed in polynomial time thanks to
the use of rational numbers. A main difference between their system and ours
is that effects are mapping from channel handles to rational numbers in their
system [10], while effects are mapping from names to rational numbers in ours.
Because of the name-dependent feature of GJ type system, reduction of the
typability to linear programming was less trivial.

Gordon and Jeffrey’s type system for checking correspondence assertions [7]
can be regarded as an instance of the generic type system for the π-calculus [8].
Thus, it would be interesting to extend the idea of this paper to develop a type
inference algorithm for the generic type system.

6 Conclusion

We have extended Gordon and Jeffrey’s type system by introducing fractional
effects, and developed a polynomial-time type inference algorithm. Future work
includes implementation of the type inference algorithm and extension of the
type system to deal with cryptographic primitives.

7 Acknowledgment

We would like to thank Tachio Terauchi for discussions on this work. We would
also like to thank anonymous referees for useful comments.

References

1. B. Blanchet. From Secrecy to Authenticity in Security Protocols. In 9th Inter-
national Static Analysis Symposium (SAS’02), volume 2477 of Lecture Notes in
Computer Science, pages 342–359. Springer-Verlag, 2002.

2. B. Blanchet. Computationally sound mechanized proofs of correspondence asser-
tions. In 20th IEEE Computer Security Foundations Symposium (CSF’07), pages
97–111. IEEE, 2007.

3. J. Boyland. Checking interference with fractional permissions. In Proceedings
of SAS 2003, volume 2694 of Lecture Notes in Computer Science, pages 55–72.
Springer-Verlag, 2003.

4. A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. In
Proceedings of the 14th IEEE Computer Security Foundations Workshop (CSFW
2001), pages 145–159. IEEE Computer Society Press, 2001.

5. A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic
protocols. In 15th IEEE Computer Security Foundations Workshop (CSFW-15),
pages 77–91, 2002.

6. A. D. Gordon and A. Jeffrey. Typing one-to-one and one-to-many correspon-
dences in security protocols. In Software Security – Theories and Systems, Mext-
NSF-JSPS International Symposium (ISSS 2002), volume 2609 of Lecture Notes
in Computer Science, pages 263–282. Springer-Verlag, 2002.

7. A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communication
protocols. Theoretical Computer Science, 300:379–409, 2003.

8. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1-3):121–163, 2004.

9. T. Terauchi and A. Aiken. Witnessing side-effects. In Proceedings of International
Conference on Functional Programming, pages 105–115. ACM, 2005.

10. T. Terauchi and A. Aiken. A capability calculus for concurrency and determin-
ism. In Proceedings of CONCUR 2006, volume 4137 of Lecture Notes in Computer
Science, pages 218–232. Springer-Verlag, 2006.

11. T. Y. Woo and S. S. Lam. A semantic model for authentication protocols. In RSP:
IEEE Computer Society Symposium on Research in Security and Privacy, pages
178–193, 1993.

