
A ZDD-based Efficient Higher-order Model
Checking Algorithm

Taku Terao and Naoki Kobayashi

The University of Tokyo

Abstract. The model checking of higher-order recursion schemes, aka.
higher-order model checking, has recently been applied to automated
verification of higher-order programs. Despite its extremely high worst-
case complexity, practical algorithms have been developed that work
well for typical inputs that arise in program verification. Even the state-
of-the-art algorithms are, however, not scalable enough for verification
of thousands or millions of lines of programs. We, therefore, propose a
new higher-order model checking algorithm. It is based on Broadbent
and Kobayashi’s type and saturation-based algorithm HorSat, but we
make two significant modifications. First, unlike HorSat, we collect flow
information (which is necessary for optimization) in linear time by using
a sub-transitive flow graph. Thanks to this, the resulting algorithm runs
in almost linear time under a fixed-parameter assumption. Secondly, we
employ zero-suppressed binary decision diagrams to efficiently represent
and propagate type information. We have confirmed through experiments
that the new algorithm is more scalable for several families of inputs than
the state-of-the-art higher-order model checkers HorSat and Preface.

1 Introduction

Higher-order model checking is the problem of deciding whether the (possibly
infinite) tree generated by a given higher-order recursion scheme (HORS) satis-
fies a given property [19]. Higher-order model checking has recently been applied
to automatic verification of higher-order functional program [9, 13, 20, 12, 14].

A major challenge in applying higher-order model checking to practice is to
develop an efficient higher-order model checker. Actually, the higher-order model
checking problem is k-EXPTIME complete for order-k HORS [19, 11], so there
is no hope to obtain an algorithm that works well for all the inputs. Neverthe-
less, several practical algorithms have been developed and implemented, which
run reasonably fast for many typical inputs [9, 8, 18, 3, 21]. The state-of-the-art
higher-order model checkers HorSat [3] and Preface [21] can handle HORS
consisting of hundreds of lines of rewriting rules (and it has been reported [21]
that Preface works even for thousands of lines of HORS for a specific problem
instance). Despite the recent advance, they are still not scalable enough to be
applied to verification of thousands or millions of lines of programs.

In the present paper, we improve the HorSat algorithm [3] in two significant
ways. HorSat computes (a finite representation of) the backward closure of

error configurations (i.e., the set of terms that generate error trees) by using
intersection types, and checks whether the initial configuration belongs to the
set. It has two main bottlenecks: one is the flow analysis (based on 0CFA [23])
employed to compute only a relevant part of the backward closure. In theory, (the
known upper-bound of) the worst-case complexity of the flow analysis is almost
cubic time [16], whereas the other part of the HorSat algorithm is actually fixed-
parameter linear time.1 The other bottleneck is that the number of intersection
types used for representing a set of terms may blow up quickly. This blow up
immediately slows down the whole algorithm, since each saturation step (for
computing the backward closure by iteratively computing the backward image
of a set of terms) picks and processes each type one by one. To overcome the
first problem, we employ a linear-time sub-transitive control flow analysis (which
constructs a graph whose transitive closure is a flow graph) [5] and use it for
the optimization. This guarantees that the whole algorithm runs in time linear
in the size of HORS, under the same fixed-parameter assumption as before. To
address the second problem, we represent a set of intersection types using a zero-
suppressed binary decision diagram (ZDD) [17], and develop a new saturation
algorithm that can process a set of intersection types (represented in the form
of ZDD) simultaneously.

We have implemented the new algorithm mentioned above and confirmed
that it scales better (with respect to the size of HORS) than HorSat and
Preface for several classes of inputs parametrized by the size of HORS.

The rest of the paper is structured as follows. Section 2 reviews the higher-
order model checking problem, the model checking algorithm HorSat, and
ZDD. Section 3 describes our new algorithm. Section 4 reports experiments.
Section 5 discusses related work and Section 6 concludes the paper.

2 Preliminaries

We review higher-order recursion schemes (HORS) and higher-order model check-
ing [19]. To save the definitions, we consider here a specialized version of higher-
order model checking called co-trivial ATA model checking of HORS [3].

2.1 Higher-order Recursion Schemes and Co-Trivial ATA Model
Checking

The set of sorts, written Sorts, is defined by: κ ::= o | κ1 → κ2. Intuitively,
o describes trees, and κ1 → κ2 describes functions from κ1 to κ2. A sorted
alphabet is a map from a finite set of symbols to Sorts. The arity and order
of Sorts are defined by:

arity(o) = 0 arity(κ1 → κ2) = 1 + arity(κ2)
order(o) = 0 order(κ1 → κ2) = max(1 + order(κ1), order(κ2))

1 Actually, in the previously reported implementation of HorSat [3], the other part
also took more than linear time due to the naive implementation. In the present
work, we have also improved on that point.

2

Let X be a sorted alphabet. The (family of) sets TermsX,κ of applicative
terms of sort κ over X is inductively defined by: (i) If X(a) = κ, then a ∈
TermsX,κ; and (ii) If t1 ∈ TermsX,κ2→κ and t2 ∈ TermsX,κ2

, then t1t2 ∈
TermsX,κ. We write TermsX for the union of TermsX,κ for all sorts.

Definition 1 (Higher-order recursion schemes (HORS)). A higher-order
recursion scheme is a tuple G = (Σ,N ,R, S) where: (i) Σ and N are sorted
alphabets, where N (S) = o, dom(Σ) ∩ dom(N) = ∅, and order(Σ(a)) ≤ 1 for
every a ∈ dom(Σ); (ii) R is a set of rewriting rules of the form F x1 · · · xn → t
where N (F) = κ1 → · · · → κn → o and t ∈ TermsΣ∪N∪{ x1:κ1,...,xn:κn },o. We
require that R has exactly one rule for each F ∈ dom(N). The reduction
relation t1 −→G t2 is the least binary relation on TermsΣ∪N ,o that satis-
fies: (i) F t1 · · · tn −→G [t1/x1, . . . , tn/xn]t if F x1 · · · xn → t ∈ R, and (ii)
a t1 · · · ti · · · tn −→G a t1 · · · t′i · · · tn if ti −→G t′i and a ∈ dom(Σ). The value
tree of G, written Tree(G), is the least upper bound of { t⊥ | S −→∗G t } (with
respect to the least precongruence v that satisfies ⊥ v t for every tree t), where
t⊥ is defined by (F t1 · · · tn)⊥ = ⊥ for each F ∈ dom(N) and (a t1 · · · tn)⊥ =
a t⊥1 · · · t⊥n for each a ∈ dom(Σ). We call each xi in F x1 · · · xn → t a variable.
We assume that all variables are distinct from each other. X denotes the sorted
alphabet of all variables.

Intuitively, each symbol a ∈ dom(Σ) (called a terminal symbol) is a tree con-
structor of arity arity(Σ(a)), and F ∈ dom(R) (called a non-terminal symbol) is
a (higher-order) function on trees defined by the rewriting rules.

Example 1. Consider the HORS G0 = (Σ,N ,R, S) where Σ = {a : o → o →
o, b : o → o, c : o}, N = {S : o, F : (o → o) → o, T : (o → o) → o → o}, and R
consists of the rules:

S → F (T b) F f → a (f c) (F (T f)) T g x→ g(g(x))

S is reduced as follows.

S −→ F (T b) −→ a (T b c) (F (T (T b))) −→ a (b(b c)) (F (T (T b))) −→ · · ·

It generates an infinite tree having a path akb2
k

c for every k ≥ 1.

Higher-order model checking is the problem of deciding whether Tree(G)
satisfies a given tree property. We use alternating tree automata (for finite trees)
to describe the tree property. We consider below an element of TermsΣ,o as a
tree.

Definition 2 (Alternating Tree Automata (ATA)). An alternating tree
automaton is a tuple (Σ,Q, δ, qI) where: (i) Σ is a sorted alphabet; (ii) Q is
a finite set; (iii) δ ⊆ Q× dom(Σ)× 2N×Q such that whenever (q, a, U) ∈ δ and
(i, q′) ∈ U , 1 ≤ i ≤ arity(Σ(a)); and (iv) qI ∈ Q. A configuration is a set
of pairs of the form (t, q) ∈ TermsΣ,o × Q, and the transition relation over
configurations is defined by:

C ∪ { (a t1 · · · tk, q) } −→ C ∪ { (ti, q
′) | (i, q′) ∈ U } (if (q, a, U) ∈ δ).

3

A tree t ∈ TermsΣ,o is accepted if { (qI , t) } −→∗ ∅. We write L(A) for the set
of trees accepted by A. For an ATA A = (Σ,Q, δ, qI) (with ⊥ 6∈ dom(Σ)), we
write A⊥ for (Σ ∪ {⊥ 7→ o } , Q, δ, qI).

Example 2. Consider the automaton A0 = (Σ, { q0, q1 } , δ, q0) where Σ is the
same as that of Example 1, and δ is:

{ (qi, a, { (j, qi) }) | j ∈ { 1, 2 } , i ∈ { 0, 1 } }
∪ { (q0, b, { (1, q1) }), (q1, b, { (1, q0) }), (q1, c, ∅) }

It accepts all the trees that have a finite path containing an odd number of b’s.

We can now define a special case of higher-order model checking called the co-
trivial model checking of HORS [3].

Definition 3 (Co-trivial Model Checking for HORS). We write G |= A
if there exists a term t such that S −→∗ t and t⊥ ∈ L(A⊥). The co-trivial ATA
model checking of HORS is the problem of deciding whether G |= A holds, given
an ATA A = (Σ,Q, δ, qI) and a HORS G as input.

Intuitively, the ATA describes the property of invalid trees, and the condition
“S −→∗ t and t⊥ ∈ L(A⊥)” means that a prefix of Tree(G) is invalid (hence so
is Tree(G)). Note that the co-trivial model checking of G with respect to A is
equivalent to the trivial model checking of G with respect to A (where A is the
complement of A) considered in [1, 9, 3].

Example 3. Recall G0 in Example 1 and A0 in Example 2. Then, G0 6|= A0

holds. In other words, every finite path (that ends in c) Tree(G) contains an
even number of b’s.

2.2 Broadbent and Kobayashi’s Algorithm

We quickly review Broadbent and Kobayashi’s saturation-based algorithm Hor-
Sat for co-trivial automata model checking of HORS [3]. We fix an ATA A =
(Σ,Q, δ, qI) and a HORS G = (Σ,N ,R, S) in the following discussion.

Definition 4 (Intersection types). The sets ITypes and STypes of inter-
section types and strict types, ranged over by σ and θ respectively, are defined
by:

σ ::= { θ1, . . . , θn } θ ::= q |
∧
σ → θ

Here q ∈ Q and n is a non-negative integer.

Intuitively, the type q describes trees accepted by the automaton from state
q, and

∧
σ → θ describes functions that take an argument that has all (strict)

types in σ and returns a value of type θ.
We say θ is a refinement of κ, written θ :: κ, when it is derivable by the

following rules.

q :: o
σ :: κ1 θ :: κ2

(
∧
σ → θ) :: (κ1 → κ2)

θ :: κ for each θ ∈ σ
σ :: κ

4

An (intersection) type environment is a map Γ : dom(N) → ITypes
such that ∀f ∈ dom(N). Γ (f) ::N (f). The union of type environments Γ1 ∪ Γ2

is defined by (Γ1 ∪ Γ2)(x) = Γ1(x) ∪ Γ2(x).

The type judgment relation Γ `I t : θ is defined by the following typing
rules:

θ ∈ Γ (f)

Γ `I f : θ

(q, a, U) ∈ δ
Γ `I a :

∧
U |1 → · · · →

∧
U |arity(Σ(a)) → q

Γ `I t1 :
∧
σ → θ Γ `I t2 : θ′ for each θ′ ∈ σ

Γ `I t1 t2 : θ

Here, U |i = { q | (j, q) ∈ U, j = i }.
A type environment Γ can be considered a finite representation of the set

of terms: ITermsΓ,qI = { t | Γ `I t : qI }. The set ITerms∅,qI described by the
empty type environment is exactly the set of terms t such that t⊥ ∈ L(A⊥). Hor-
Sat starts from the empty type environment, and iteratively expand it to obtain
a type environment Γ such that ITermsΓ,qI = { t | ∃s.t −→∗ s ∧ s⊥ ∈ L(A⊥) }∩
RTerms, where RTerms is an over-approximation of the set of terms reach-
able from S, i.e., { t | S −→∗ t }. Once such Γ is obtained, the co-trivial model
checking amounts to checking whether Γ `I S : qI , i.e., whether qI ∈ Γ (S)
holds.

HorSat makes use of flow information to efficiently compute Γ above.

Definition 5. Flowap : dom(X) → P(TermsΣ∪N) (recall that X is a sorted
alphabet of variables in G) is (approximate) flow information, if Flowap(xi) ⊆
TermsΣ∪N ,X (xi) and if ti ∈ Flowap(xi) holds for each i ∈ { 1, . . . , k } whenever
S −→∗ t and F t1 · · · tk occurs as a subterm of t with F x1 · · · xk → t ∈ R.

Using Flowap, the function to iteratively expand a type environment is de-
fined as follows.

Definition 6. The function FG over type environments is given by:

FG(Γ)(F) = Γ (F)∪

∧∆(x1)→ · · · →
∧
∆(xn)→ q

∣∣∣∣∣∣
F x1 · · · xn → t ∈ R,
Γ `I t : q =⇒ ∆,
Inhabited(Γ,∆)

 .

(1)
Here, Inhabited(Γ,∆) ⇐⇒ ∀x ∈ dom(∆). ∃t ∈ Flowap(x).∀θ ∈ ∆(x). Γ `I
t : θ. The relation Γ `I t : θ =⇒ ∆ is defined by:

Γ `I t : θ

Γ `I t : θ =⇒ ∅
∃t ∈ Flowap(x). Γ `I t : θ

Γ `I x : θ =⇒ {x : θ }

Γ `I t1 : θ1 ∧ · · · ∧ θn → θ =⇒ ∆0 ∀i ∈ { 1, . . . , n } . Γ `I t2 : θi =⇒ ∆i

Γ `I t1 t2 : θ =⇒
⋃n
i=0∆i

5

The rules for Γ `I t : θ =⇒ ∆ can be read as an algorithm to compute ∆
such that Γ ∪ ∆ `I t : θ. For example, the rule for t1t2 says that given Γ
and θ, we should first enumerate all the pairs (θ1 ∧ · · · ∧ θn, ∆0) such that
Γ `I t1 : θ1 ∧ · · · ∧ θn → θ =⇒ ∆0, and then for each such pair, enumerate
all (∆1, . . . ,∆n) such that Γ `I t2 : θi =⇒ ∆i, and return

⋃n
i=0∆i for all the

combinations of ∆0, ∆1, . . . ,∆n.
HorSat is based on the following theorem, and computes Γ =

⋃
i∈ω F iG(∅)

and checks whether qI ∈ Γ (S) holds.

Theorem 1 ([3]). Let G = (Σ,N ,R, S) be a HORS. qI ∈ (
⋃
i∈ω F iG(∅))(S) if

and only if G |= A.

Example 4. Recall G0 in Example 1 and A0 in Example 2. The map

{ f 7→ {T kb | k ≥ 1 } , g 7→ {T kb | k ≥ 0 } , x 7→ { bkc | k ≥ 0 } }

is a valid flow map Flowap . Since ∅ `I f(f x) : q1 =⇒ ∆ and Inhabited(∅, ∆)
hold for ∆ = { f : { q0 → q1, q1 → q0 } , x : q1 }, we have
FG0(∅) = {S : ∅, F : ∅, T : { (q0 → q1) ∧ (q1 → q0)→ q1 → q1 } } and
(
⋃
i∈ω F iG(∅))(S) = { q1 }. Thus, we have G0 6|= A0.

3 A ZDD-based Algorithm

We now discuss our new algorithm. The main limitations of HorSat and our
approach to address them are summarized as follows.

1. First, although
⋃
i∈ω F iG(∅) is guaranteed to be finite, it sometimes be-

comes quite large, containing “similar” types q1 → q3 → q, q2 → q3 → q,
q1 → q4 → q, and q2 → q4 → q, which could be represented by a single type
q1 ∨ q2 → q3 ∨ q4 → q if we had union types as well. The blow-up of the size
of a type environment also significantly affects the cost of intermediate compu-
tation of FG(Γ)(F), as we have to enumerate ∆ such that Γ `I t : q =⇒ ∆
and Inhabited(Γ,∆) one by one, and construct new types. This suggests that
the intersection types (in the syntactic representation) may not be an optimal
representation for computing

⋃
i∈ω F iG(∅). We use ZDD to represent intersection

types and type environments, and re-define FG accordingly.
2. Secondly, HorSat uses 0CFA to compute approximate flow information

Flowap , whose worst-case complexity is almost cubic time [16]. As the defini-
tion of FG suggests, however, what we actually need is not Flowap itself but
the set { { θ | Γ `I t : θ } | t ∈ Flowap(x) } (for each x). The latter can be more
efficiently computed (in fact, in linear time under a fixed-parameter assump-
tion) by first computing sub-transitive flow information [5] and then directly
computing the set { { θ | Γ `I t : θ } | t ∈ Flowap(x) } using the sub-transitive
flow information.

We discuss the first issue in Sections 3.1 and 3.2, and the second issue in
Section 3.3.

6

3.1 ZDD types

We use ZDD [17] to represent a set of intersection types compactly. ZDD is
an efficient data structure for representing a set of (finite) sets. The follow-
ing description is actually based on set operations, and not tied to the specific
data structure of ZDD; thus one may use other representations such as ordered
boolean decision diagrams (OBDD) and boolean formulas to implement the al-
gorithm below. Using ZDD, however, we expect that the representation is more
compact and the set operations can be efficiently performed: see Remark 1 below.

We first modify the representation of a strict type.

Definition 7 (ZDD types). Let θ be a strict type. The ZDD strict type
corresponding to θ, written [θ], is defined as:

[q] = { q } [
∧
σ → θ] = { (arity(

∧
σ → θ), θ′) | θ′ ∈ σ } ∪ [θ]

A ZDD intersection type is a collection of ZDD strict types. The set of ZDD
intersection types is written ITypesZDD. Let Γ be an intersection type environ-
ment, The ZDD type environment corresponding to Γ , written [Γ], is the map
from dom(Γ) to ZDD intersection types such that for each F ∈ dom(Γ), [Γ](F) =
{ [θ] | θ ∈ Γ (F) }.
For example, the strict type q1 ∧ q2 → q3 → q is now expressed by the set
{ (2, q1), (2, q2), (1, q3), q }.2 The intersection type (or, the set of strict types):

{ q1 → q3 → q, q1 → q4 → q, q2 → q3 → q, q2 → q4 → q }

is expressed by a set of sets:

{ { (2, q1), (1, q3), q } , { (2, q1), (1, q4), q } , { (2, q2), (1, q3), q } , { (2, q2), (1, q4), q } } .

A careful reader will notice that we can then use a compact representation like
((2, q1)∨(2, q2))∧((1, q3)∨(1, q4))∧q to represent the intersection type. Note that
the set representation is not nested. For example, (q1∧q2 → q)∧(q3 → q)→ q is
expressed by: { (1, q1 ∧ q2 → q), (1, q3 → q), q }. The strict types q1 ∧ q2 → q and
q3 → q are lazily converted to ZDD strict types as necessary inside the algorithm
described below. We use meta-variables θ, σ, and Γ for ZDD strict types, ZDD
intersection types and ZDD type environments respectively. (In general, we shall
use x as the meta-variable for the ZDD version of x below.)

In the saturation-based algorithm (recall Definition 6), we need to compute
the set of pairs (θ,∆) such that Γ `I t : θ =⇒ ∆ for given Γ and t. We therefore
prepare a representation for such a set.

Definition 8. Let θ be a strict type, and ∆ be an intersection type environment.
The ZDD constraint type corresponding to θ =⇒ ∆, written [θ =⇒ ∆], is
defined by:

[θ =⇒ ∆] = [θ] ∪ [∆]s (2)

[∆]s = { (x, θ) | x ∈ dom(∆), θ ∈ ∆(x) } (3)

2 This is actually similar to the representation of Ong’s variable profiles [19]:
({ (x2, q1), (x2, q2), (x1, q3) } , q).

7

We use the meta-variable ∆ for a subset of X × STypes, and τ for a ZDD
constraint type. Please notice the difference between [Γ] and [∆]s. In the former,
types are converted to ZDD ones, while in the latter, types are kept as they are.
For example, a constraint strict type q1 → q =⇒ {f : {q1 → q2}, x : {q1, q2}}
is represented as a ZDD constraint type {q, (1, q1), (f, q1 → q2), (x, q1), (x, q2)}.
Since ZDD strict type is a subset of Q ∪ (N× STypes), and a ZDD constraint
type is a subset of Q∪ (N×STypes)∪ (X ×STypes), a collection of them can
be represented using ZDD, by treating elements of Q,N×STypes,X ×STypes
as atomic elements.

Let τ be a collection of ZDD constraint types, q ∈ Q, Θ be a subset of
N × STypes and ∆ be a subset of X × STypes. We write (q,Θ,∆) ∈ τ when
{q}∪Θ∪∆ ∈ τ . We write (q,Θ) ∈ σ when σ is a ZDD intersection type and {q}∪
Θ ∈ σ. The notation Θ(i) and ∆(x) respectively denote the sets { θ | (i, θ) ∈ Θ }
and { θ | (x, θ) ∈ ∆ } (which is based on the standard set representation of a
map).

We define a conversion from ZDD intersection types to intersection types.

Definition 9. Let σ be a ZDD intersection type, and n be a non-negative inte-
ger. The intersection type corresponding to σ with the arity n, written enum(τ, n)
is defined by:

enum(σ, n) =
{∧

Θ(n)→ · · · →
∧
Θ(1)→ q

∣∣∣ (q,Θ) ∈ σ
}

(4)

3.2 Saturation algorithm using ZDD types

We now present the new saturation-based algorithm using ZDD types.

Definition 10. Let G = (Σ,N ,R, S) be a HORS. The function FG over ZDD
type environments is defined by:

F(Γ)(F) = Γ (F) ∪
{
rename(inhabited(τ, Γ))

∣∣∣∣ F xn · · · x1 → t ∈ R,
Γ `ZDD t : τ

}
(5)

Here, rename(τ), inhabited(τ, Γ), and Γ `ZDD t : τ are defined by:

rename(τ) = { {q} ∪ { (i, θ) | (xi, θ) ∈ ∆ } | (q, ∅,∆) ∈ τ }
inhabited(τ, Γ) = {{q} ∪∆|(q, ∅,∆) ∈ τ, ∃σ.∆(x) ⊆ σ ∧ σ ∈ typesof(x, Γ)}

F ∈ dom(N)

Γ `ZDD F : Γ (F)

a ∈ dom(Σ)

Γ `ZDD a :

{
{q} ∪

{
(k, q′)

∣∣∣∣ (j, q′) ∈ U
k = arity(Σ(a))− j + 1

} ∣∣∣∣ q ∈ Q,
(q, a, U) ∈ δ

}
x ∈ dom(X)

Γ `ZDD x :
{

[θ] ∪ {(x, θ)}
∣∣ θ ∈ ⋃ typesof(x, Γ)

}
8

Γ `ZDD t1 : τ1 Γ `ZDD t2 : τ2 n = arity(t1)

Γ `ZDD t1 t2 :

 {q} ∪Θ′ ∪∆ ∪∆′
∣∣∣∣∣∣

(q,Θ,∆) ∈ τ1
∆
′ ∈
⊗

θ∈Θ(n) g(τ2, θ)

Θ′ = Θ \ { (n, θ) | θ ∈ Θ(n) }

where S1⊗S2 = { s1 ∪ s2 | s1 ∈ S1, s2 ∈ S2 }, Θ(n) = { (j, θ) | (j, θ) ∈ Θ,n = j },
and g(τ, θ) = {∆ | (q,Θ,∆) ∈ τ, [θ] = {q} ∪Θ }.
typesof(x, Γ) = { enum(σΓ,t, arity(X (x))) | t ∈ Flowap(x) } where σΓ,t is the

(unique) intersection type such that Γ `ZDD t:σΓ,t. (Since t is closed, τ such that

Γ `ZDD t : τ contains no free variables, hence it is actually a ZDD intersection
type.)

Note that the relation Γ `I t : θ =⇒ ∆ has now been replaced by Γ `ZDD t : τ .
Since τ represents a set of pairs (θ1, ∆1), . . . , (θn, ∆n), Γ `I t : τ means that Γ `I
t : θi =⇒ ∆i holds for all such pairs. Thanks to this modification, the algorithm
to compute τ such that Γ `I t : τ is deterministic, and implemented by using
ZDD. The set typesof(x, Γ) used above is based on flow information Flowap .
How to represent Flowap and compute typesof(x, Γ) using it is explained later
in Section 3.3.

The following lemma formally states the correspondence between Γ `I t :
θ =⇒ ∆ and Γ `ZDD t : τ mentioned above.

Lemma 1. Let Γ be an intersection type environment over N , t be an applica-
tive term. For any θ and ∆, if Γ `I t : θ =⇒ ∆ then there exists τ such that
[Γ] `ZDD t : τ and [θ =⇒ ∆] ∈ τ . Conversely, for any ϕ and τ , if [Γ] `ZDD t : τ
and ϕ ∈ τ , there exist θ and ∆ such that Γ `I t : θ =⇒ ∆ and ϕ = [θ =⇒ ∆].

Based on the above lemma, we can obtain the following correspondence be-
tween the step functions used for saturation.

Lemma 2. Let G = (Σ,N ,R, S) be a HORS and Γ be an intersection type
environment over N . Then the following equation holds.

FG([Γ]) = [FG(Γ)] (6)

The following theorem is an immediate corollary of Theorem 1 and Lemma 2.

Theorem 2. Let G = (Σ,N ,R, S) be a HORS. qI ∈
⋃
i∈ω(F iG(∅))(S) if and

only if G |= A.

Remark 1. The formalization above does not rely on the specific data structure
of ZDD [17]. We could, therefore, use OBDD instead. In fact, our initial imple-
mentation used OBDD rather than ZDD. According to our earlier experiments,
however, ZDD tends to be more efficient. Our rationale for this is that in many
of the benchmarks, while the “width” of each intersection type (i.e., the size
σ) tends to be small, the number of strict types θ that occur in a set of in-
tersection types can be large. Due to this property, suppressing zero’s in ZDD
brings a benefit. This argument is however yet to be confirmed through more
experiments.

9

3.3 Approximation of Control-flow information

Next, we discuss how to compute Flowap and typesof(x, Γ) efficiently. To ob-
tain (a finite representation of) Flowap , we use Heintze and Mcallester’s sub-
transitive flow analysis [5].

Definition 11 (Sub-transitive flow graph). Let G = (Σ,N ,R, S) be a HORS.
A sub-transitive flow graph of G is a quadruple (V,E, ξ, ρ) such that: (i)
(V,E) is a directed acyclic graph, (ii) each leaf v in V is labeled by ξ(v) ∈
TermsΣ∪N∪X , and (iii) ρ : dom(X) → V . The flow map represented by a
sub-transitive flow graph (V,E, ξ, ρ) is the least (with respect to the pointwise
ordering) map h : dom(X)→ TermsΣ,N such that

h(x) = { t ∈ subst(ξ(v)) | v is reachable from ρ(x) } .

Here, subst(t) is defined inductively by:

subst(a) = { a } subst(F) = {F } subst(x) = h(x)
subst(t1 t2) = { t′1 t′2 | t′1 ∈ subst(t1), t′2 ∈ subst(t2) }

A sub-transitive flow graph is sound if its flow map h is approximate flow infor-
mation.

Example 5. Recall G0 in Example 1. A sub-transitive flow graph for G0 is de-
picted as below:

g

b f

T b T f

x

c f x

Here, the label for each non-leaf node shows the map f (e.g., x means that ρ(x)
is the node labeled by x in the graph), and the label for each leaf node shows
the map ξ.

We can compute a sub-transitive flow graph whose flow map is equivalent to
the result of 0CFA in time linear in the size of HORS by using Heintze and
Mcallester’s algorithm[5], under the assumption that the size of the largest type
used in HORS is fixed. Therefore, the size of the sub-transitive flow graph is also
linear in the size of HORS. We use it as a finite representation of Flowap below.

Let G = (V,E, ξ, ρ) be a sound sub-transitive flow graph. Let Γ be a ZDD
type environment over N . We present an algorithm to compute typesof(x, Γ).
We define the function HΓ : (dom(X) → P(ITypesZDD)) → (dom(X) →
P(ITypesZDD)) by:

HΓ (Ξ)(x) = Ξ(x) ∪ {σ | v is reachable from ρ(x), Γ ;Ξ `ZDD ξ(v) : σ } (7)

where Γ ;Ξ `ZDD t : σ is given by:

10

f ∈ dom(N) ∪ dom(Σ) Γ `ZDD f : σ

Γ ,Ξ `ZDD f : σ

σ ∈ Ξ(x)

Γ ,Ξ `ZDD x : σ

Γ ,Ξ `ZDD t1 : σ1 Γ ,Ξ `ZDD t2 : σ2 n = arity(t1)

Γ ,Ξ `ZDD t1 t2 :

 {q} ∪Θ′
∣∣∣∣∣∣

(q,Θ) ∈ σ1

Θ(n) ⊆ enum(σ2, arity(t2))
Θ′ = Θ \ { (n, θ) | θ ∈ Θ(n) }

Lemma 3. Let Ξ0 = {x : ∅ | x ∈ dom(X) }, and Ξ(ω) =

⋃
n∈ω(HΓ)n(Ξ0), and

x ∈ dom(X). ∀t ∈ Flowap(x).∃σ ∈ Ξ(ω). Γ `ZDD t : σ, and ∀σ ∈ Ξ(ω)(x). ∃t ∈
Flowap(x). Γ `ZDD t : σ.

Because the number of all intersection types are finite, we can compute Ξ(ω)

and use it to compute FG(Γ).

3.4 Fixed-Parameter Linear Time Algorithm

We now discuss how to compute
⋃
i∈ω(F iG(∅)) (recall Theorem 2) in time linear

in the size of HORS, under the assumption that (i) the largest order and size
of types in HORS and (ii) the property automaton A are fixed. This fixed-
parameter assumption is the same as the assumption made in the literature [9,

10, 8, 3, 21]. The naive fixed computation of
⋃
i∈ω(F iG(∅)) and

⋃
n∈ω(HΓ)n(Ξ0)

is polynomial time, but not linear: both the number of iterations to compute
FG(Γ) and the cost for each iteration are linear in the size of HORS even if we
assume

⋃
n∈ω(HΓ)n(Ξ0) can be computed in linear time. We can, however, use

the standard technique for optimizing a fixed-point computation over a finite
semi-lattice [22], as follows.

We compute the following information incrementally.

– For each non-terminal F , Γ (F).
– For each sub-term t of the right-hand side of a rule, τt such that Γ `ZDD t : τt

(for the current value of Γ and typesof).
– For each node v of the sub-transitive flow graph (V,E, ξ, ρ), the set Uv of

(ZDD) intersection types that may be taken by the term ξ(v). (Without loss
of generality, we assume here that for each subterm t of the right-hand side
of a rule, there is a node v such that ξ(v) = t.)

The values Γ (F), τt and Uv are updated in an on-demand manner when other
values have been updated.

– Γ (F) is recomputed and updated as necessary, when τt for the body t of F’s
rule or Uv such that ρ(xi) = v (where xi is a formal parameter of F) has
been updated,

11

– τx is recomputed and updated as necessary, when Uv such that ρ(x) = v has
been updated.

– τa is updated only initially.
– τF is recomputed and updated as necessary, when Γ (F) has been updated.
– τt1t2 is recomputed and updated as necessary, when τt1 or τt2 has been

updated.
– Uv is recomputed and updated as necessary, when (i) Uv′ such that (v, v′) ∈
E has been updated, (ii) ξ(v) = F and τF has been updated, or (iii) ξ(v) =
t1t2 and Uv′ such that ξ(v′) ∈ { t1, t2 } has been updated.

Since each update monotonically increases the values of Γ (F), τt, and Uv (which
range over finite sets), the termination is guaranteed. Under the fixed-parameter
assumption, the size of the sets ranged over by Γ (F), τt, and Uv is bounded
above by a constant. Thus, each recomputation and update can be performed in
a constant time. The number of recomputations is linearly bounded by the size
of HORS and the size of the subtransitive flow graph, where the latter is linear
in the size of HORS. Thus, the whole algorithm runs in time linear in the size
of HORS under the fixed-parameter assumption.

Example 6. Recall G0 in Example 1 and A0 in Example 2. After saturation, Uv
and Γ are

Uρ(x) = { { q0 } , { q1 } }
Uρ(g) = { { q0 → q1, q1 → q0 } , { q0 → q0, q1 → q1 } }
Γ (T) = {(q0 → q1) ∧ (q1 → q0)→ q0 → q0, (q0 → q1) ∧ (q1 → q0)→ q1 → q1,

(q0 → q0)→ q0 → q0, (q1 → q1)→ q1 → q1}
Γ (F) = { (q1 → q1)→ q1 } Γ (S) = { q1 }

For readability, we wrote types in the non-ZDD notation.

4 Experiments

4.1 Data sets and evaluation environment

We have implemented our ZDD-based algorithm in the tool named HorSatZDD,
evaluated its performance by existing problem instances, and compared the re-
sults with the two state-of-the-art previous higher-order model checkers: Hor-
Sat [3] and Preface [21].

The problem instances used in the benchmark are classified into three cat-
egories. The first one consists of two families of HORS, Gm,n [8] and tn [21].
They are parametrized by m,n and have been used to evaluate the scalability
of Preface [21]. The second one consists of instances automatically generated by
program verification tools such as the HMTT verification tool [13], MoCHi [12],
PMRS model checker [20], and exact control flow analysis [24]. They have also
been used in the benchmarks for HorSat [3] and Preface [21]. The third one
consists of new instances added to clarify the advantages of the new algorithm.
They are also parametrized by a size parameter.

12

We conducted the experiments on a computer with 2.3GHz Intel Core i7
CPU, 16GB RAM and OSX 10.9.3 operating system. HorSatZDD is written
in Haskell, and compiled with GHC 7.8.2. HorSat was compiled with ocamlopt
version 4.01.0, and Preface was run on Mono JIT compiler version 3.2.4.

4.2 Experimental results

Figure 1 and Table 1 show the results of our experiments. In each table, columns
D, S, O, and Q represent the expected decision (Y means Yes, N means No),
the size of HORS (the number of occurrences of symbols in the righthand side of
the rewriting rules), the order of HORS, and the number of states of automaton
respectively, and the other columns represent the running time of each model
checker measured in seconds.

For the instances Gm,n HorSatZDD scaled almost linearly with respect to
the grammar size n. HorSatZDD scaled better than the other model checkers
with respect to the grammar order m, although the running time was exponential
in the grammar order due to the explosion of the sub-transitive flow graph. For
the tn instances Preface did not scale well (as reported in [21]), while both
HorSatZDD and HorSat scaled well.

HorSatZDD processed all instances in the category 2 within the time limit.
HorSatZDD ran in ten seconds for most test cases in the category 2, but Hor-
SatZDD is significantly slower than the other model checkers for the instances
xhtmlf-div-2, xhtmlf-m-church, jwig-cal main, and cfa-life2. Except for cfa-life2,
this is attributed to the size of the property automaton, which blows up the size
of each ZDD. This suggests that further optimization of ZDD implementation
is required. As for cfa-life2, the majority of the running time of HorSatZDD
was for the computation of the sub-transitive flow graph. This suggests that a
further optimization may be necessary on the construction of sub-transitive flow
graphs.

Category 3 consists of two families of problem instances: ae3-n and abc-lenn.
The family ae3-n has been manually constructed to clarify the advantage of
using ZDD to represent (a set of) intersection types. It consists of the following
grammar:

S → br (F a1 e1 · · · a1 e1︸ ︷︷ ︸
n repetitions of a1 e1

) (F a2 e2 · · · a2 e2) (F a3 e3 · · · a3 e3)

F f1 x1 · · · fn xn → f1(x1(· · · (fn(xnend)) · · ·))

Here, the types of constants are:

ai : qi → q0,
ei : q0 → qi ∧

∧
{> → qj | j ∈ { 1, 2, 3 } \ { i } }

br : (q0 → >→ >q0) ∧ (> → q0 → >→ q0) ∧ (> → > → q0 → q0), end : q1 ∧ q2

(The point is that the composition of ai and ei has type q0 → q0 for every
i.) HorSat uses the naive representation of intersection types and enumerates

13

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

R
u
n
n
in

g
 T

im
e
 (

s
e
c
)

The Parameter n

HorsatZDD
Horsat

Preface

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 3 4 5 6 7 8 9

R
u
n
n
in

g
 T

im
e
 (

s
e
c
)

The Parameter m

HorsatZDD
Horsat

Preface

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

R
u
n
n
in

g
 T

im
e
 (

s
e
c
)

The Parameter n

HorsatZDD
Horsat

Preface

Fig. 1. Category 1: Benchmarks of G4,n (top), Gm.100 (middle), and tn (bottom).

14

inputs D S O Q ZDD HorSat Preface

checknz Y 93 2 1 0.020 0.003 0.318
merge4-2 N 141 2 27 0.998 0.028 0.369
merge4 Y 141 2 27 0.906 0.031 0.519
gapid-2 Y 182 3 9 0.431 0.027 0.545
last Y 193 2 1 0.053 0.014 0.326
checkpairs N 251 2 1 0.055 0.018 0.379
tails Y 259 3 1 0.063 0.021 0.331
map-plusone Y 302 5 2 0.165 0.035 0.457
safe-head Y 354 3 1 0.108 0.030 0.409
mc91-2 Y 358 4 1 0.222 0.060 1.934
map-head-filter N 370 3 1 0.112 0.076 0.410
mkgroundterm Y 379 2 1 0.103 0.042 0.347
safe-tail Y 468 3 1 0.171 0.039 0.445
filter-nonzero N 484 5 1 0.288 0.064 0.655
risers Y 563 2 1 0.154 0.047 0.457
safe-init Y 680 3 1 0.284 0.064 0.481
search-e-church N 837 6 2 6.065 0.297 4.601
map-head-filter-1 Y 880 3 1 0.475 0.133 0.467
filter-nonzero-1 Y 890 5 2 0.887 0.159 2.357
fold right Y 1310 5 2 3.647 21.646 0.370
fold fun list Y 1346 7 2 1.421 0.161 0.364
cfa-psdes Y 1819 7 2 2.796 0.128 0.417
specialize cps coerce1-c Y 2731 3 4 1.606 1.176 0.505
cfa-matrix-1 Y 2944 8 2 4.030 0.307 0.484
zip Y 2952 4 2 10.425 2.276 0.916
xhtmlf-div-2 N 3003 2 50 105.414 7.846 2.024
xhtmlf-m-church Y 3027 2 50 56.187 5.808 1.134
filepath Y 5956 2 1 0.693 0.396 0.665
jwig-cal main Y 7627 2 51 73.940 7.852 0.702
cfa-life2 Y 7648 14 2 35.978 1.849 1.15

ae3-6 Y 53 2 4 0.123 0.077 0..380
ae3-8 Y 69 2 4 0.201 4.748 0.320
ae3-10 Y 85 2 4 0.312 DNF 0.309
abc-len6 Y 70 3 1 0.012 0.002 0.372
abc-len8 Y 92 3 1 0.016 0.003 1.056
abc-len10 Y 114 3 1 0.023 0.003 9.597
abc-len12 Y 136 3 1 0.029 0.004 107.766
abc-len14 Y 158 3 1 0.037 0.004 DNF

Table 1. Benchmarks of categories 2 (top) and 3 (bottom)

15

all the types of the form: (qi1 → q0) → (q0 → qi1) → · · · (qin−1 → q0) →
(q0 → qin−1

) → (qin → q0) → (> → qin) → q0 (among others) for F . Since
the number of those intersection types is exponential in n, HorSat shows an
exponential behavior. HorSatZDD does not suffer from the problem, since
the above set of intersection types can be represented compactly. Preface works
well for a different reason: it keeps binding information for all the parameters of
each non-terminal together, so that it can utilize information that f1, . . . , fn and
x1, . . . , xn are respectively bound to the same value for each application of F .
Thus, it enumerates only types of the form: (qi → q0) → (q0 → qi) → · · · (qi →
q0)→ (q0 → qi)→ q0. While Preface is effective for ae3-n, the use of the precise
flow information causes a problem for the other instance abc-lenn. It consists of
the following rules:

S → F0G.
Gf1 · · · fn → f1(· · · (fne) · · ·).
Fi f → br (Fi+1(f a)) (Fi+1(f b)) (Fi+1(f c)). (for i = 0, . . . , n− 1)
Fn f → f.

Preface generates the bindings { f1 7→ x1, . . . , fn 7→ xn } for all x1, . . . , xn ∈
{ a, b, c }. Thus, Preface suffers from the exponential blow up of the size of the
abstract configuration graph with respect to n. The results in Table 1 confirms
the observation above. Although these examples have been artificially created,
we expect that the same problems can occur in HORS generated mechanically
from program verification problems.

5 Related Work

The complexity of higher-order model checking is known to be k-EXPTIME
complete for order-k HORS, even when the properties are restricted to safety
properties (as in the present paper) [19, 11]. Until recently, the main issue has
been how to cope with this hyper-exponential worst-case complexity and con-
struct a practical algorithm that works well for typical inputs. Kobayashi [7, 9]
first developed such an algorithm. Since then, a number of other practical algo-
rithms have been developed [8, 18, 2]. The recent development of HorSat and
Preface significantly improved the scalability of higher-order model checking,
and shifted the focus from how to cope with hyper-exponential complexity to
how to achieve (almost) linear-time complexity to deal with thousands of lines of
HORS. As already mentioned in Section 1, neither HorSat nor Preface has fully
achieved it; both HorSat and Preface are fixed-parameter polynomial time al-
gorithms (with the same fixed-parameter assumption), but HorSat suffers from
cubic bottleneck of 0CFA, and Preface runs in time exponential in the largest
arity of non-terminals (in other words, the order of polynomials is the largest
arity): recall abc-lenn in Section 4. The first practical linear-time algorithm is
actually due to Kobayashi [8], but because of a large constant factor, it is often
slower than other algorithms such as HorSat, and Preface.

16

All the algorithms mentioned above are for trivial automata model checking.
For more general, modal µ-calculus (or parity tree automata) model checking
of HORS (as originally considered in [6] and [19]) some practical algorithms
have also been developed [15, 4]. The state-of-the-art for the modal µ-calculus
mode checking for HORS is, however, much behind that for trivial automata
model checking. In theory, the problem still remains fixed-parameter polynomial
time [10], but not linear.

Higher-order model checkers have been used as backends of various au-
tomated verification tools for higher-order programs [9, 12, 13, 20, 24, 14]. The
HORS obtained in those verification tools are typically several times larger than
the source programs. Being able to handle thousands of lines of HORS is, there-
fore, important for enabling those tools to verify large programs.

6 Conclusion

We have proposed a new saturation-based, fixed-parameter linear time algo-
rithm for higher-order model checking and shown its effectiveness through exper-
iments. Although it is built on Broadbent and Kobayashi’s previous algorithm,
we have made two important modifications that use sub-transitive flow analy-
sis and ZDD-based representation of (a set of) intersection types. As for future
work, the implementation should be improved further, as the current implemen-
tation does not exhibit the exact (fixed-parameter) linear time complexity. The
use of more accurate flow information (like the one used in Preface) would im-
prove the efficiency further, and achieving it without losing the fixed-parameter
linear time complexity is also left for future work.

Acknowledgments. We would like to thank Steven Ramsay for providing the
source code of Preface, and anonymous reviewers for useful comments. This work
was supported by JSPS KAKENHI 23220001.

References

1. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science 3(3) (2007)

2. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: C-SHORe: a collapsible ap-
proach to higher-order verification. In: Proceedings of ICFP ’13. pp. 13–24 (2013)

3. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013. LIPIcs, vol. 23, pp. 129–148 (2013)

4. Fujima, K., Ito, S., Kobayashi, N.: Practical alternating parity tree automata model
checking of higher-order recursion schemes. In: Proceedings of APLAS 2013. Lec-
ture Notes in Computer Science, vol. 8301, pp. 17–32. Springer (2013)

5. Heintze, N., McAllester, D.A.: Linear-time subtransitive control flow analysis. In:
Proceedings of PLDI 97. pp. 261–272 (1997)

6. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
Proceedings of FoSSaCS 2002. LNCS, vol. 2303, pp. 205–222. Springer (2002)

17

7. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009. pp. 25–36. ACM Press (2009)

8. Kobayashi, N.: A practical linear time algorithm for trivial automata model check-
ing of higher-order recursion schemes. In: Proceedings of FoSSaCS 2011. LNCS,
vol. 6604, pp. 260–274. Springer (2011)

9. Kobayashi, N.: Model checking higher-order programs. Journal of the ACM 60(3)
(2013)

10. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009.
pp. 179–188. IEEE Computer Society Press (2009)

11. Kobayashi, N., Ong, C.H.L.: Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. Logical Methods in Computer Science 7(4)
(2011)

12. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of PLDI 2011. pp. 222–233. ACM Press
(2011)

13. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Proceedings of POPL
2010. pp. 495–508. ACM Press (2010)

14. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination ver-
ification for higher-order functional programs. In: Proceedings of ESOP 2014. Lec-
ture Notes in Computer Science, vol. 8410, pp. 392–411. Springer (2014)

15. Lester, M.M., Neatherway, R.P., Ong, C.H.L., Ramsay, S.J.: Model checking live-
ness properties of higher-order functional programs. In: Proceedings of ML Work-
shop 2011 (2011)

16. Midtgaard, J., Horn, D.V.: Subcubic control flow analysis algorithms. Higher-Order
and Symbolic Computation

17. Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems.
In: Proceedings of DAC ’93. pp. 272–277 (1993)

18. Neatherway, R.P., Ramsay, S.J., Ong, C.H.L.: A traversal-based algorithm for
higher-order model checking. In: ACM SIGPLAN International Conference on
Functional Programming (ICFP ’12). pp. 353–364 (2012)

19. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of LICS 2006. pp. 81–90. IEEE Computer Society Press
(2006)

20. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL 2011. pp. 587–598. ACM Press
(2011)

21. Ramsay, S., Neatherway, R., Ong, C.H.L.: An abstraction refinement approach to
higher-order model checking. In: Proceedings of POPL 2014 (2014)

22. Rehof, J., Mogensen, T.: Tractable constraints in finite semilattices. Science of
Computer Programming 35(2), 191–221 (1999)

23. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie-Mellon University (May 1991)

24. Tobita, Y., Tsukada, T., Kobayashi, N.: Exact flow analysis by higher-order model
checking. In: Proceedings of FLOPS 2012. LNCS, vol. 7294, pp. 275–289. Springer
(2012)

18

