
Inclusion Between the Frontier Language of a
Non-Deterministic Recursive Program Scheme and the

Dyck Language is Undecidable

Naoki Kobayashi

Department of Computer Science, The University of Tokyo, Japan

Abstract

In 1970’s, Nivat studied recursive program schemes (a.k.a order-1 higher-
order recursion schemes in modern terminology), first-order tree grammars
for generating possibly infinite trees. We consider the inclusion problem be-
tween the frontier language of a non-deterministic recursive program scheme
(equivalently, an order-2 word language or indexed language) and the Dyck
language, and prove that it is undecidable by a reduction from the undecid-
ability of Hilbert’s 10th problem. Essentially the same result has recently
been proved by Uezato and Minamide, but our proof is arguably more direct,
demonstrating the expressive power of higher-order grammars.

Keywords: recursive program schemes, higher-order languages, Dyck
language, Diophantine equations

1. Introduction

In 1970’s, Nivat et al. [1, 2, 3, 4] studied recursive program schemes,
first-order tree grammars that generate possibly infinite trees. They were
later extended to higher-order ones (called higher-order recursion schemes or
HORS in short, in modern terminology) [5, 6], and associated model checking
problems (of checking whether the trees generated by HORS satisfy a given
property) have been studied recently [7, 8, 9]. The studies on HORS model
checking further laid a foundation for automated verification of higher-order
programs [10, 11, 9, 12].

From a language-theoretic point of view (cf. the automata-theoretic ap-
proach to model checking [13, 14]), the HORS model checking problem may

Email address: koba@is.s.u-tokyo.ac.jp (Naoki Kobayashi)

Preprint submitted to Theoretical Computer Science September 7, 2018



be viewed as the inclusion problem (or the membership problem, if HORS
is deterministic) between higher-order languages and (ω-)regular word/tree
languages. Since finite state model checking problems may be viewed as
the inclusion problem between ω-regular languages, HORS model checking
may be considered an extension of finite state model checking, where the
lefthand side of the language inclusion has been extended from regular (i.e.
order-0) to higher-order languages. In contrast, extending the righthand
side has been considered difficult. In fact, even the inclusion between reg-
ular and context-free languages is known to be undecidable [15]. A few
positive results exist, however: the inclusion between context-free and su-
perdeterministic languages is decidable [16]. Furthermore, as a special case,
the inclusion between context-free languages and the Dyck language can be
decided in polynomial time [17, 18]. A natural question is, therefore, whether
these positive results can be extended to the case where the lefthand side is
a higher-order language.

In the present article, we give a negative answer to the question above.

More precisely, the inclusion problem: L
?
⊆ D is undecidable, where L

is an order-2 word language (equivalently, the frontier language of a non-
deterministic recursive program scheme) [6] and D is the Dyck language.
The proof is based on a reduction from the undecidability of Hilbert’s 10th
problem (i.e., unsolvability of Diophantine equations) [19]. Incidentally, the
Dyck language was also the subject of studies of Nivat [20]. Since the class
of order-2 word languages coincides with that of indexed languages [21],
our result is essentially the same as that of Uezato and Minamide [22] on
the undecidability of the inclusion between indexed languages and the Dyck
language. Our proof is, however, arguably more direct.1

The rest of this article is structured as follows. Section 2 reviews basic
definitions. Sections 3 and 4 prove the main result stated above. Section 5
discusses related work and Section 6 concludes the article.

2. Preliminaries

We recall below the definition of (unsafe) non-deterministic higher-order
recursion schemes [7, 8] as generators of word/tree languages, and the rela-
tionship with relevant notions, such as recursive program schemes studied

1Actually, our result was announced earlier than theirs [22] through the unpublished
manuscript titled “Balancedness of the Words Generated by a Recursion Scheme is Un-
decidable”, cited by [9]. The present paper is a revised version of the manuscript.

2



by Nivat et al. [1, 2, 3, 4] and high-level languages studied by Damm [6].
We write dom(f) for the domain of a map f . For two maps f and

g such that dom(f) ∩ dom(g) = ∅, we write f ∪ g for the map h such
that dom(h) = dom(f) ∪ dom(g), h(x) = f(x) for each x ∈ dom(f), and
h(x) = g(x) for each x ∈ dom(g). We write {x1 7→ c1, . . . , xk 7→ ck}
for the map f such that dom(f) = {x1, . . . , xk} and f(xi) = ci for each
i ∈ {1, . . . , k}.

Let A be a ranked alphabet, i.e., a map from a finite set of symbols to
the set Nat of natural numbers. For a symbol a ∈ dom(A), A(a) is called
the arity of a. The set of A-labeled trees, denoted by TreeA, is inductively
defined by the rule: a T1 · · · Tk ∈ TreeA ifA(a) = k and T1, . . . , Tk ∈ TreeA
(note that k may be 0; thus, a ∈ TreeA if A(a) = 0).

The set of types is given by:

κ ::= o | κ1 → κ2.

Intuitively, the type o describes trees (or words, represented as unary trees),
and the type κ1 → κ2 describes functions that take an element of type κ1
and return an element of type κ2. The order of a type κ, written order(κ)
is defined by:

order(o) = 0 order(κ1 → κ2) = max(order(κ1) + 1, κ2).

As usual, we assume that → is right-associative, so that κ1 → κ2 → κ3
means κ1 → (κ2 → κ3). We often write κn → κ′ for κ→ · · ·κ︸ ︷︷ ︸

n

→ κ′. A type

environment is a map from a finite set of symbols to types. For a ranked
alphabet A, we write KA for the type environment {a 7→ oA(a) → o | a ∈
dom(A)}. The set of applicative terms of type κ under a type environment K,
written ATermsK, κ, is defined inductively by: (i) x ∈ ATermsK, κ if K(x) =
κ, and (ii) t1t2 ∈ ATermsK, κ if t1 ∈ ATermsK, κ′→κ and t2 ∈ ATermsK, κ′ .
When t ∈ ATermsK∪{x1 7→κ1,...,xk 7→κk}, κ and ti ∈ ATermsK, κi for each i ∈
{1, . . . , k}, we write [t1/x1, . . . , tk/xk]t ∈ ATermsK, κ for the applicative
term obtained from t by simultaneously replacing each occurrence of xi
with ti. When t1 ∈ ATermsK, κ→κ and t2 ∈ ATermsK, κ, we often write
t`1t2 for the term t1(· · · (t1︸ ︷︷ ︸

`

t2) · · ·). We assume that there exists a countably

infinite set V of variables.

Definition 1. A (non-deterministic) higher-order recursion scheme (HORS,
for short) G is a quadruple (A,N ,R, S), where

3



• A is a ranked alphabet. We call an element of dom(A) a terminal
symbol.

• N is a map from a finite set of symbols called non-terminals to types.
We use metavariables F,G, . . . for non-terminals.

• R is a set of rewrite rules of the form F x1 · · · xk → t, where x1, . . . , xk ∈
V,N (F ) = κ1 → · · · → κk → o, and t ∈ ATermsKA∪N∪{x1 7→κ1,...,xk 7→κk}, o
for some κ1, . . . , κk.

• S, called the start symbol, is a non-terminal such that N (S) = o.

The order of a HORS is the largest order of the types of non-terminals.
A rewriting relation t −→G t′, where t, t′ ∈ ATermsKA∪N , o, is defined

by: (i) F t1 · · · tk −→G [t1/x1, . . . , tk/xk]t if F x1 · · · xk → t ∈ R; and (ii)
a t1 · · · ti · · · tk −→G a t1 · · · t′i · · · tk if ti −→G t′i.

The tree language of G, written by TL(G), is defined by:

TL(G) = {T ∈ TreeA | S −→∗G T}.

Given a HORS G, we sometimes refer to the four components of G by
AG , NG , RG , and SG . An order-1 HORS is just a non-deterministic recursive
program scheme studied by Arnold and Nivat [3] (though they considered
non-deterministic recursive program schemes also as generators of infinite
trees; see Section 5).

In the present article, we are only interested in HORS’s as generators of
word languages. There are two ways to define the word language generated
by a HORS [6]. One is via the so called front operation [6]. For a tree T ,
we define front(T ) ∈ {a | A(a) = 0}∗ inductively by: (i) front(a) = a if
A(a) = 0, and (ii) front(a T1 · · · Tk) = front(T1) · · · front(Tk). Then, the
frontier language of G, written FL(G), is defined by:

FL(G) = {front(T ) | T ∈ TL(G)}.

The other way is to consider paths. When the arity of each terminal
symbol of a HORS G is at most 1, for each (unary) tree T ∈ TreeAG ,
we define path(T ) inductively by: (i) path(a) = ε if A(a) = 0 and (ii)
path(a T ) = a path(T ) if A(a) = 1. The word (or path) language generated
by G is defined by:

L(G) = {path(T ) | T ∈ TL(G)}.

Henceforth, we call the word language generated by an order-k HORS an
order-k word language.

4



Example 1. Consider the order-1 HORS G1 = ({br 7→ 2, a 7→ 0, b 7→ 0, c 7→
0},N ,R, S) where

N = {S 7→ o, F : o→ o→ o→ o}
R = {S → F a b c,

F x y z → brx (br y z),
F x y z → F (br ax) (br b y) (br c z)}.

We can rewrite S as follows.

S → F a b c→∗ F ((br a)m−1a) ((br b)m−1b) ((br c)m−1c)
→ br ((br a)m−1a) (br ((br b)m−1b) ((br c)m−1c)).

Thus, FL(G1) = {ambmcm | m ≥ 1}. �

Example 2. Consider the order-2 HORS G2 = ({a 7→ 1, b 7→ 1, c 7→ 1, e 7→
0},N ,R, S) where

N = {S 7→ o, F : (o→ o)→ (o→ o)→ (o→ o)→ o,
C : (o→ o)→ (o→ o)→ o→ o}

R = {S → F a b c,
F x y z → x(y(z e)),
F x y z → F (C ax) (C b y) (C c z),
C x y w → x(y w)}.

We can rewrite S as follows.

S → F a b c→∗ F ((C a)m−1a) ((C b)m−1b) ((C c)m−1c)
→ ((C a)m−1a)(((C b)m−1b) (((C c)m−1c)e))
→∗ am(bm(cm e)).

Thus, L(G2) = {ambmcm | m ≥ 1}. �

We summarize below known relationships between order-k word lan-
guages and other notions of word languages.

• The class of order-k word languages includes that of Damm’s level-k
OI languages [6]. In fact, the definition is almost identical except the
subtle condition on “safety” (we do not discuss the safety condition
here; see, e.g., [23]). The two classes coincide [24] up to order-2, but
it is open whether the inclusion is strict for order-3 or higher.

• The classes of order-0, order-1, and order-2 word languages respec-
tively coincide with those of regular, context-free, and indexed lan-
guages [6, 25].

5



• For k ≥ 1, the class of order-k word languages that do not contain the
empty word ε coincides with the class of frontier languages of order-(k−
1) HORS’s [6, 26].2 In particular, the class of order-2 word languages
that do not contain ε coincides with the class of frontier languages of
non-deterministic recursive program schemes. Furthermore, given an
order-k HORS G with a ranked alphabet consisting of symbols of arity
at most 1, an order-(k − 1) HORS G′ such that FL(G′) = L(G) \ {ε}
can be effectively constructed, and vice versa [26].

We consider the inclusion problem between an order-k word language
and the Dyck language D, i.e., the set of well-bracketed words. In this
article, we write a and b for left and right brackets.

Definition 2 (Dyck language). We write #a(w) (#b(w), resp.) for the
number of occurrences of a (b, resp.) in w. The Dyck language, written D,
is the set of words w ∈ {a, b}∗ such that (i) #a(w) = #b(w), and (ii) for
every prefix v of w, #a(v) ≥ #b(v).

The following property, which we use later, follows immediately from the
definition.

Fact 1. Let p and q be natural numbers. apbqaqbp 6∈ D if and only if p < q.

3. Main Result

This section proves the undecidability of the inclusion problem between
an order-2 word language and the Dyck language (Theorem 3 below). The
proof uses the following lemma, whose proof is deferred to Section 4.

Lemma 2. Let Pi(x1, . . . , xm)(i ∈ {1, 2, 3, 4}) be polynomials with non-
negative integer coefficients. Then, one can effectively construct an order-2
HORS G such that

L(G) = {aP1(x1,...,xm)bP2(x1,...,xm)aP3(x1,...,xm)bP4(x1,...,xm) | x1, . . . , xm ∈ Nat}.

Theorem 3. The decision problem “Given an order-k HORS G, does L(G) ⊆
D hold?” is undecidable for k ≥ 2.

2Note that by the definition, FL(G) does not contain ε.

6



Proof. The proof is by reduction from the undecidability of Hilbert’s 10th
problem (i.e., the unsolvability of Diophantine equations) [19]. LetD(x1, . . . , xm)
be a polynomial (possibly with both positive and negative integer coeffi-
cients). Then, we have D(x1, . . . , xm) = 0 if and only if D(x1, . . . , xm)2−1 <
0. D(x1, . . . , xm)2 − 1 can be represented in the form P (x1, . . . , xm) −
Q(x1, . . . , xm) by using polynomials P and Q with non-negative integer co-
efficients. For such polynomials P and Q, D(x1, . . . , xm) = 0 has a solution
(in natural numbers) if and only if P (x1, . . . , xm) < Q(x1, . . . , xm) has a
solution.

By Lemma 2, one can construct an order-2 HORS G such that:

L(G) = {aP (x1,...,xm)bQ(x1,...,xm)aQ(x1,...,xm)bP (x1,...,xm) | x1, . . . , xm ∈ Nat}.

By Fact 1, L(G) ⊆ D if and only if ¬∃x1, . . . , xm ∈ Nat.P (x1, . . . , xm) <
Q(x1, . . . , xm), if and only if ¬∃x1, . . . , xm ∈ Nat.D(x1, . . . , xm) = 0. Since
the last property is undecidable [19], so is L(G) ⊆ D. �

By slightly modifying the proof of the theorem above, we also obtain the
following variations.

Theorem 4. Let L1 = {w ∈ {a, b}∗ | #a(w) ≥ #b(w)} and L2 = {w ∈

{a, b}∗ | #a(w) 6= #b(w)}. The decision problems: L(G)
?
⊆ L1 and L(G)

?
⊆

L2 are undecidable for order-2 HORS G.

Proof. For L(G)
?
⊆ L1, prepare the same polynomials P and Q as those in

the proof of Theorem 3. By Lemma 2, one can construct an order-2 HORS
G such that:

L(G) = {aP (x1,...,xm)bQ(x1,...,xm) | x1, . . . , xm ∈ Nat}

(let the polynomials P1, P2, P3 and P4 be P , Q, 0 and 0 respectively).
Then, D(x1, . . . , xm) = 0 is not satisfiable if and only if P (x1, . . . , xm) ≥

Q(x1, . . . , xm) for all x1, . . . , xm ∈ Nat, if and only if L(G)⊆L1. For L(G)
?
⊆

L2, let P (x1, . . . , xm) and Q(x1, . . . , xm) be polynomials with non-negative
coefficients such that D(x1, . . . , xm) = P (x1, . . . , xm) − Q(x1, . . . , xm), and
construct an order-2 HORS G such that:

L(G) = {aP (x1,...,xm)bQ(x1,...,xm) | x1, . . . , xm ∈ Nat}.

Then, D(x1, . . . , xm) = 0 is not satisfiable if and only if L(G)⊆L2. �

Remark 1. We do not know whether the following problem is decidable for
order-2 HORS G.

L(G)
?
⊆ {w ∈ {a, b}∗ | #a(w) = #b(w)}.

7



4. Proof of Lemma 2

To clarify the idea of the construction of a HORS that satisfies the
property of Lemma 2, we first give an order-3 HORS that generates the
same word language:

L0 = {aP1(x1,...,xm)bP2(x1,...,xm)aP3(x1,...,xm)bP4(x1,...,xm) | x1, . . . , xm ∈ Nat}.

We then modify the construction to obtain an order-2 HORS that generates
the same language.

The idea of the first part is to construct a HORS that corresponds to the
following grammar, which uses natural numbers and operations on them in
addition to ordinary primitives for HORS.

S → F 0 · · · 0.
F x1 · · · xm → Gx1 · · · xm.
F x1 · · · xm → F (x1 + 1)x2 · · · xm.
· · ·
F x1 · · · xm → F x1 x2 · · · (xm + 1).
G x1 · · · xm → AP1 x1 · · · xm(BP2 x1 · · · xm(AP3 x1 · · · xm(BP4 x1 · · · xm e))).

AP1 x1 · · · xm y → aP1(x1,...,xm)(y).

BP2 x1 · · · xm y → bP2(x1,...,xm)(y).

AP3 x1 · · · xm y → aP3(x1,...,xm)(y).

BP4 x1 · · · xm y → bP4(x1,...,xm)(y).

By using the rules for S and F , we can rewrite S to Gn1 · · · nm for any
natural numbers n1, . . . , nm. The term Gn1 · · · nm can then be rewritten
to:

aP1(n1,...,nm)(bP2(n1,...,nm)(aP3(n1,...,nm)(bP4(n1,...,nm)e))),

by using the rules for G, AP1 , BP2 , AP3 , and BP4 . Thus, the above rewriting
rules generate the language L0.

It remains to remove operations on natural numbers, which can be easily
performed in the order-3 case, by using the Church encoding:

Zero x y → y. Succ nx y → nx (x y).
Plus mnxy → mx (nx y). Mult mnxy → m (nx)y.

Here, non-terminals have the following types:

Zero : nat
Succ : nat→ nat

Plus,Mult : nat→ nat→ nat

8



where nat is an abbreviation of (o → o) → o → o. (Note that since
HORS must be simply-typed, not all operations on natural numbers can be
represented as non-terminals; for example, we cannot express subtraction.)
By using the encodings above, we can replace 0 and xi + 1 with Zero and
Succ xi respectively. We can also define non-terminals P ′i (i ∈ {1, 2, 3, 4})
such that P ′i x1 · · · xm y z, . . . , reduces to yPi(x1,...,xm)(z). For example, if
m = 2 and Pi(x1, x2) = x21 + x2, then P ′i can be defined by:

P ′i x1 x2 y z → Plus (Mult x1 x1) x2 y z.

Thus, the rules for AP1 , BP2 , AP3 , BP4 can be replaced with:

AP1 x1 · · · xm z → P ′1 x1 · · · xm a y.
BP2 x1 · · · xm z → P ′2 x1 · · · xm b y.
AP3 x1 · · · xm z → P ′3 x1 · · · xm a y.
BP4 x1 · · · xm z → P ′4 x1 · · · xm b y.

The resulting rewriting rules form an order-3 HORS, which generates the
language L0.

We now modify the above construction to obtain an order-2 HORS that
generates the same language. The idea is, instead of passing the values
of x1, . . . , xm (of type nat = (o → o) → o → o) as parameters of F , to

pass λy.ax
k1
1 ···x

km
m (y) (abbreviated to ax

k1
1 ···x

km
m below) and λy.bx

k1
1 ···x

km
m (y),

of type o → o. For example, if m = 1, P1(x) = P4(x) = x2 + 2 and
P2(x) = P3(x) = 2x2 + 1, then we pass ax

2
, ax

1
(= ax), ax

0
(= a), bx

2
, bx

1

and bx
0

to F for each natural number x. Thus, in this case, an order-2
HORS that generates L0 is given by:

S → F I I a I I b.
F vx2 vx v1wx2 wxw1 → Gvx2 vx v1wx2 wxw1.
F vx2 vx v1wx2 wxw1 →

F (A(x+1)2 vx2 vx v1) (Ax+1 vx v1) v1 (A(x+1)2 wx2 wxw1) (Ax+1 vxw1)w1.

I y → y.
A(x+1)2 zx2 zx z1 y → zx2(zx(zx (z1 y))).

Ax+1 zx z1 y → zx (z1 y).
G vx2 vx v1wx2 wxw1 → P1 vx2 vx v1 (P2wx2 wxw1)(P2 vx2 vx v1 (P1wx2 wxw1 e))).
P1 zx2 zx z1 y → zx2 (z1 (z1 y)).
P2 zx2 zx z1 y → zx2 (zx2 (z1y)).

The formal parameters vx2 , vx, v1, wx2 , wx, w1 of F are bound to ax
2
, ax, a1,

bx
2
, bx, and b1 respectively. The non-terminal A(x+1)2 defined in the fifth

9



rule computes a(x+1)2 , given ax
2
, ax, and a as the values of zx2 , zx and

z1, using the fact a(x+1)2(y) = ax
2+x+x+1(y) = ax

2
(ax(ax(a y))). Similarly,

Ax+1 computes ax+1, given ax and a as values of zx and z1. Thus, for every
natural number n, S can be rewritten to G an

2
an a1 bn

2
bn b1 (modulo the

semantic equivalence of terms). The non-terminals P1 and P2 defined in the
last two rules compute aP1(n) and aP2(n) respectively, given an

2
, an, and a

as the values of zn2 , zn and z1; thus G an
2
an a1 bn

2
bn b1 can be rewritten

to
aP1(n)(bP2(n)(aP3(n)(bP4(n)e))),

for P1(x) = P4(x) = x2 + 2 and P2(x) = P3(x) = 2x2 + 1.
We now present the general construction. Let di(i ∈ {1, . . . ,m}) be the

largest degree of P1(x1, . . . , xm) + · · ·+P4(x1, . . . , xm) in variable xi. Then,
each Pi(x1, . . . , xm) can be represented as a linear combination of monomials
xj11 · · ·x

jm
m (j1 ≤ d1, . . . , jm ≤ dm):∑

j1≤d1,...,jm≤dm

ci,j1,...,jmx
j1
1 · · ·x

jm
m .

Let ` be (d1 + 1) · · · (dm + 1). Then, an order-2 HORS GL0 that generates
L0 is given in Figure 1. Here, ṽ and w̃ denote the sequences of vari-
ables v

x
d1
1 ···x

dm
m
· · · vx01···x0m and w

x
d1
1 ···x

dm
m
· · · wx01···x0m respectively. The non-

terminalA
x
j1
1 ···(xk+1)jk ···xjmm

computes an
j1
1 ···(nk+1)jk ···njm

m , given an
d1
1 ···n

dm
m , . . .,

an
0
1···n0

m as the values of ṽ = v
x
d1
1 ···x

dm
m
, . . . , vx01···x0m . Thus, for every tuple

(n1, . . . , nm) of natural numbers, S can be rewritten to (modulo the seman-
tic equivalence of terms):

G an
d1
1 ···n

dm
m · · · an0

1···n0
m bn

d1
1 ···n

dm
m · · · bn0

1···n0
m .

It can then be rewritten to

aP1(n1,...,nm)(bP2(n1,...,nm)(aP3(n1,...,nm)(bP4(n1,...,nm)e))),

by using the rules for G and Pi. From the discussion above, it should be
clear that L(GL0) = L0. This completes the proof.

5. Related Work

Arnold and Nivat [3] considered non-deterministic recursive program
schemes (i.e. order-1 non-deterministic higher-order recursion schemes) as

10



GL0 = ({a 7→ 1, b 7→ 1},N ,R, S)
N = {S 7→ o, F 7→ (o→ o)2` → o, G 7→ (o→ o)2` → o, I 7→ o→ o}
∪{A

x
j1
1 ···x

jm
m
7→ (o→ o)` → o→ o | i ∈ {1, . . . ,m}, ji ∈ {0, . . . , di}}

∪{Pi 7→ (o→ o)` → o→ o | i ∈ {1, 2, 3, 4}}

R consists of:
S → F I · · · I︸ ︷︷ ︸

`−1

a I · · · I︸ ︷︷ ︸
`−1

b.

F ṽ w̃ → G ṽ w̃.
F ṽ w̃ →
F (A

(x1+1)d1 ···xdmm ṽ) · · · (A(x1+1)0···x0m ṽ) (A
(x1+1)d1 ···xdmm w̃) · · · (A(x1+1)0···x0m w̃).

· · ·
F ṽ w̃ →
F (A

x
d1
1 ···(xm+1)dm

ṽ) · · · (Ax01···(xm+1)0 ṽ) (A
x
d1
1 ···(xm+1)dm

w̃) · · · (Ax01···(xm+1)0 w̃).

I y → y.
A
x
j1
1 ···(xk+1)jk ···xjmm

ṽ y →

v
x
i1
1 ···x

jk
k ···x

jm
m

(· · · (v
x
i1
1 ···x

j
k···x

jm
m

)(
jk
j )(· · · (v

x
i1
1 ···x0k···x

jm
m
y) · · ·) · · ·)

(for each k ∈ {1, . . . ,m}, j1 ≤ d1, . . . , jm ≤ dm).
G ṽ w̃ → P1 ṽ (P2 w̃(P3 ṽ(P4 w̃ e))).
Pi ṽ y → (v

x
d1
1 ···x

dm
m

)ci,d1,...,dm (· · · ((vx01 ···x0m)ci,0,...,0 y) · · ·) (for each i ∈ {1, 2, 3, 4}).

Figure 1: An order-2 HORS GL0 that generates L0.

11



generators of both finite tree languages (TL(G) in Section 2) and infinite
tree languages, and gave fixpoint characterizations.

Higher-order grammars as generators of word/tree languages have been
actively studied, especially in 1970’s and 80’s (see, e.g. [6, 23]). To our
knowledge, however, the inclusion problem with the Dyck language has
not been studied until recently. As already mentioned, Uezato and Mi-
namide [22] have shown that the inclusion between an indexed language and
the Dyck language is undecidable. Since the class of indexed languages and
the class of order-2 word languages (which is also known as OI languages)
coincide and there exist effective mutual translations ([21], Theorem 5.3),
the result of Uezato and Minamide [22] is the same as ours. Their proof is
somewhat indirect, however, which uses an undecidability result on DT0L
systems [27]. Our proof is arguably more direct, demonstrating the power
of order-2 grammars to express polynomials.

6. Conclusion

We have shown that the inclusion between an order-2 word language
and the Dyck language is undecidable, by a reduction from the undecidabil-
ity of Hilbert’s 10th problem. By using the technique of [10, 9] to convert
higher-order functional programs to HORS that generate the set of all the
event sequences, one can deduce from the undecidability result that certain
program verification problems like “Does a program output a string conform-
ing to a valid HTML?” and “Does a program access a certain resource in a
stack-like manner?” are undecidable even for a restricted, Turing-incomplete
higher-order language (more precisely, for the simply-typed λ-calculus with
recursion and primitives for printing strings or accessing resources).

Acknowledgment.. We thank anonymous referees for useful comments. This
work was supported by JSPS KAKENHI Grant Number JP15H05706.

[1] M. Nivat, Langages algébriques sur le magma libre et sémantique des
schémas de programme, in: ICALP, 1972, pp. 293–308.

[2] M. Nivat, On the interpretation of recursive program schemes, in: Sym-
posia Mathematica, 1975, pp. 255–281.

[3] A. Arnold, M. Nivat, Non deterministic recursive program schemes, in:
FCT, 1977, pp. 12–21.

12



[4] B. Courcelle, M. Nivat, The algebraic semantics of recursive program
schemes, in: Proceedings of MFCS 1978, Vol. 64 of Lecture Notes in
Computer Science, 1978, pp. 16–30.

[5] W. Damm, Higher type program schemes and their tree languages, in:
Theoretical Computer Science, 3rd GI-Conference, Vol. 48 of Lecture
Notes in Computer Science, 1977, pp. 51–72.

[6] W. Damm, The IO- and OI-hierarchies, Theoretical Computer Science
20 (1982) 95–207.

[7] T. Knapik, D. Niwinski, P. Urzyczyn, Higher-order pushdown trees
are easy, in: FoSSaCS 2002, Vol. 2303 of Lecture Notes in Computer
Science, Springer, 2002, pp. 205–222.

[8] C.-H. L. Ong, On model-checking trees generated by higher-order re-
cursion schemes, in: LICS 2006, IEEE Computer Society Press, 2006,
pp. 81–90.

[9] N. Kobayashi, Model checking higher-order programs, Journal of the
ACM 60 (3).

[10] N. Kobayashi, Types and higher-order recursion schemes for verification
of higher-order programs, in: Proceedings of ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, ACM Press,
2009, pp. 416–428.

[11] N. Kobayashi, R. Sato, H. Unno, Predicate abstraction and CEGAR for
higher-order model checking, in: Proceedings of ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, ACM
Press, 2011, pp. 222–233.

[12] C.-H. L. Ong, S. Ramsay, Verifying higher-order programs with
pattern-matching algebraic data types, in: Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages,
ACM Press, 2011, pp. 587–598.

[13] O. Kupferman, M. Y. Vardi, P. Wolper, An automata-theoretic ap-
proach to branching-time model checking, Journal of the Association
for Computing Machinery (JACM) 47 (2) (2000) 312–360.

[14] M. Y. Vardi, An automata-theoretic approach to linear temporal logic,
in: F. Moller, G. M. Birtwistle (Eds.), Logics for Concurrency - Struc-
ture versus Automata (8th Banff Higher Order Workshop, August 27 -

13



September 3, 1995, Proceedings), Vol. 1043 of Lecture Notes in Com-
puter Science, Springer, 1995, pp. 238–266.

[15] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1979.

[16] S. A. Greibach, E. P. Friedman, Superdeterministic PDAs: A subcase
with a decidable inclusion problem, J. ACM 27 (4) (1980) 675–700.

[17] A. Tozawa, Y. Minamide, Complexity results on balanced context-free
languages, in: H. Seidl (Ed.), Foundations of Software Science and
Computational Structures, 10th International Conference, FOSSACS
2007, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2007, Braga, Portugal, March 24-April
1, 2007, Proceedings, Vol. 4423 of Lecture Notes in Computer Science,
Springer, 2007, pp. 346–360.

[18] A. Bertoni, C. Choffrut, R. Radicioni, The inclusion problem of context-
free languages: Some tractable cases, Int. J. Found. Comput. Sci. 22 (2)
(2011) 289–299.

[19] Y. V. Matiyasevich, Hilbert’s Tenth Problem, The MIT Press, 1993.

[20] M. Nivat, On some families of languages related to the dyck language,
in: P. C. Fischer, R. Fabian, J. D. Ullman, R. M. Karp (Eds.), Pro-
ceedings of the 2nd Annual ACM Symposium on Theory of Computing,
May 4-6, 1970, Northampton, Massachusetts, USA, ACM, 1970, pp.
221–225.

[21] M. J. Fischer, Grammars with macro-like productions, in: 9th Annual
Symposium on Switching and Automata Theory, Schenectady, New
York, USA, October 15-18, 1968, IEEE Computer Society, 1968, pp.
131–142.

[22] Y. Uezato, Y. Minamide, Monoid-based approach to the inclusion
problem on superdeterministic pushdown automata, in: S. Brlek,
C. Reutenauer (Eds.), Developments in Language Theory - 20th Inter-
national Conference, DLT 2016, Montréal, Canada, July 25-28, 2016,
Proceedings, Vol. 9840 of Lecture Notes in Computer Science, Springer,
2016, pp. 393–405.

[23] G. M. Kobele, S. Salvati, The IO and OI hierarchies revisited, Inf.
Comput. 243 (2015) 205–221.

14



[24] K. Aehlig, J. G. de Miranda, C.-H. L. Ong, Safety is not a restriction
at level 2 for string languages, in: FoSSaCS, Vol. 3441 of Lecture Notes
in Computer Science, Springer, 2005, pp. 490–504.

[25] M. Wand, An algebraic formulation of the Chomsky hierarchy, in: Cat-
egory Theory Applied to Computation and Control, Vol. 25 of Lecture
Notes in Computer Science, Springer, 1974, pp. 209–213.

[26] K. Asada, N. Kobayashi, On Word and Frontier Languages of Un-
safe Higher-Order Grammars, in: 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), Vol. 55 of
LIPIcs, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp.
111:1–111:13.

[27] A. Salomaa, M. Soittola, Automata-theoretic Aspects of Formal Power
Series, Springer-Verlag, 1977.

15


