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Abstract

In 1970’s, Nivat studied recursive program schemes (a.k.a order-1 higher-
order recursion schemes in modern terminology), first-order tree grammars
for generating possibly infinite trees. We consider the inclusion problem be-
tween the frontier language of a non-deterministic recursive program scheme
(equivalently, an order-2 word language or indexed language) and the Dyck
language, and prove that it is undecidable by a reduction from the undecid-
ability of Hilbert’s 10th problem. Essentially the same result has recently
been proved by Uezato and Minamide, but our proof is arguably more direct,
demonstrating the expressive power of higher-order grammars.

Keywords: recursive program schemes, higher-order languages, Dyck
language, Diophantine equations

1. Introduction

In 1970’s, Nivat et al. [1, 2, 3, 4] studied recursive program schemes,
first-order tree grammars that generate possibly infinite trees. They were
later extended to higher-order ones (called higher-order recursion schemes or
HORS in short, in modern terminology) [5, 6], and associated model checking
problems (of checking whether the trees generated by HORS satisfy a given
property) have been studied recently [7, 8, 9]. The studies on HORS model
checking further laid a foundation for automated verification of higher-order
programs [10, 11, 9, 12].

From a language-theoretic point of view (cf. the automata-theoretic ap-
proach to model checking [13, 14]), the HORS model checking problem may
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be viewed as the inclusion problem (or the membership problem, if HORS
is deterministic) between higher-order languages and (ω-)regular word/tree
languages. Since finite state model checking problems may be viewed as
the inclusion problem between ω-regular languages, HORS model checking
may be considered an extension of finite state model checking, where the
lefthand side of the language inclusion has been extended from regular (i.e.
order-0) to higher-order languages. In contrast, extending the righthand
side has been considered difficult. In fact, even the inclusion between reg-
ular and context-free languages is known to be undecidable [15]. A few
positive results exist, however: the inclusion between context-free and su-
perdeterministic languages is decidable [16]. Furthermore, as a special case,
the inclusion between context-free languages and the Dyck language can be
decided in polynomial time [17, 18]. A natural question is, therefore, whether
these positive results can be extended to the case where the lefthand side is
a higher-order language.

In the present article, we give a negative answer to the question above.

More precisely, the inclusion problem: L
?
⊆ D is undecidable, where L

is an order-2 word language (equivalently, the frontier language of a non-
deterministic recursive program scheme) [6] and D is the Dyck language.
The proof is based on a reduction from the undecidability of Hilbert’s 10th
problem (i.e., unsolvability of Diophantine equations) [19]. Incidentally, the
Dyck language was also the subject of studies of Nivat [20]. Since the class
of order-2 word languages coincides with that of indexed languages [21],
our result is essentially the same as that of Uezato and Minamide [22] on
the undecidability of the inclusion between indexed languages and the Dyck
language. Our proof is, however, arguably more direct.1

The rest of this article is structured as follows. Section 2 reviews basic
definitions. Sections 3 and 4 prove the main result stated above. Section 5
discusses related work and Section 6 concludes the article.

2. Preliminaries

We recall below the definition of (unsafe) non-deterministic higher-order
recursion schemes [7, 8] as generators of word/tree languages, and the rela-
tionship with relevant notions, such as recursive program schemes studied

1Actually, our result was announced earlier than theirs [22] through the unpublished
manuscript titled “Balancedness of the Words Generated by a Recursion Scheme is Un-
decidable”, cited by [9]. The present paper is a revised version of the manuscript.
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by Nivat et al. [1, 2, 3, 4] and high-level languages studied by Damm [6].
We write dom(f) for the domain of a map f . For two maps f and

g such that dom(f) ∩ dom(g) = ∅, we write f ∪ g for the map h such
that dom(h) = dom(f) ∪ dom(g), h(x) = f(x) for each x ∈ dom(f), and
h(x) = g(x) for each x ∈ dom(g). We write {x1 7→ c1, . . . , xk 7→ ck}
for the map f such that dom(f) = {x1, . . . , xk} and f(xi) = ci for each
i ∈ {1, . . . , k}.

Let A be a ranked alphabet, i.e., a map from a finite set of symbols to
the set Nat of natural numbers. For a symbol a ∈ dom(A), A(a) is called
the arity of a. The set of A-labeled trees, denoted by TreeA, is inductively
defined by the rule: a T1 · · · Tk ∈ TreeA ifA(a) = k and T1, . . . , Tk ∈ TreeA
(note that k may be 0; thus, a ∈ TreeA if A(a) = 0).

The set of types is given by:

κ ::= o | κ1 → κ2.

Intuitively, the type o describes trees (or words, represented as unary trees),
and the type κ1 → κ2 describes functions that take an element of type κ1
and return an element of type κ2. The order of a type κ, written order(κ)
is defined by:

order(o) = 0 order(κ1 → κ2) = max(order(κ1) + 1, κ2).

As usual, we assume that → is right-associative, so that κ1 → κ2 → κ3
means κ1 → (κ2 → κ3). We often write κn → κ′ for κ→ · · ·κ︸ ︷︷ ︸

n

→ κ′. A type

environment is a map from a finite set of symbols to types. For a ranked
alphabet A, we write KA for the type environment {a 7→ oA(a) → o | a ∈
dom(A)}. The set of applicative terms of type κ under a type environment K,
written ATermsK, κ, is defined inductively by: (i) x ∈ ATermsK, κ if K(x) =
κ, and (ii) t1t2 ∈ ATermsK, κ if t1 ∈ ATermsK, κ′→κ and t2 ∈ ATermsK, κ′ .
When t ∈ ATermsK∪{x1 7→κ1,...,xk 7→κk}, κ and ti ∈ ATermsK, κi for each i ∈
{1, . . . , k}, we write [t1/x1, . . . , tk/xk]t ∈ ATermsK, κ for the applicative
term obtained from t by simultaneously replacing each occurrence of xi
with ti. When t1 ∈ ATermsK, κ→κ and t2 ∈ ATermsK, κ, we often write
t`1t2 for the term t1(· · · (t1︸ ︷︷ ︸

`

t2) · · ·). We assume that there exists a countably

infinite set V of variables.

Definition 1. A (non-deterministic) higher-order recursion scheme (HORS,
for short) G is a quadruple (A,N ,R, S), where
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• A is a ranked alphabet. We call an element of dom(A) a terminal
symbol.

• N is a map from a finite set of symbols called non-terminals to types.
We use metavariables F,G, . . . for non-terminals.

• R is a set of rewrite rules of the form F x1 · · · xk → t, where x1, . . . , xk ∈
V,N (F ) = κ1 → · · · → κk → o, and t ∈ ATermsKA∪N∪{x1 7→κ1,...,xk 7→κk}, o
for some κ1, . . . , κk.

• S, called the start symbol, is a non-terminal such that N (S) = o.

The order of a HORS is the largest order of the types of non-terminals.
A rewriting relation t −→G t′, where t, t′ ∈ ATermsKA∪N , o, is defined

by: (i) F t1 · · · tk −→G [t1/x1, . . . , tk/xk]t if F x1 · · · xk → t ∈ R; and (ii)
a t1 · · · ti · · · tk −→G a t1 · · · t′i · · · tk if ti −→G t′i.

The tree language of G, written by TL(G), is defined by:

TL(G) = {T ∈ TreeA | S −→∗G T}.

Given a HORS G, we sometimes refer to the four components of G by
AG , NG , RG , and SG . An order-1 HORS is just a non-deterministic recursive
program scheme studied by Arnold and Nivat [3] (though they considered
non-deterministic recursive program schemes also as generators of infinite
trees; see Section 5).

In the present article, we are only interested in HORS’s as generators of
word languages. There are two ways to define the word language generated
by a HORS [6]. One is via the so called front operation [6]. For a tree T ,
we define front(T ) ∈ {a | A(a) = 0}∗ inductively by: (i) front(a) = a if
A(a) = 0, and (ii) front(a T1 · · · Tk) = front(T1) · · · front(Tk). Then, the
frontier language of G, written FL(G), is defined by:

FL(G) = {front(T ) | T ∈ TL(G)}.

The other way is to consider paths. When the arity of each terminal
symbol of a HORS G is at most 1, for each (unary) tree T ∈ TreeAG ,
we define path(T ) inductively by: (i) path(a) = ε if A(a) = 0 and (ii)
path(a T ) = a path(T ) if A(a) = 1. The word (or path) language generated
by G is defined by:

L(G) = {path(T ) | T ∈ TL(G)}.

Henceforth, we call the word language generated by an order-k HORS an
order-k word language.
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Example 1. Consider the order-1 HORS G1 = ({br 7→ 2, a 7→ 0, b 7→ 0, c 7→
0},N ,R, S) where

N = {S 7→ o, F : o→ o→ o→ o}
R = {S → F a b c,

F x y z → brx (br y z),
F x y z → F (br ax) (br b y) (br c z)}.

We can rewrite S as follows.

S → F a b c→∗ F ((br a)m−1a) ((br b)m−1b) ((br c)m−1c)
→ br ((br a)m−1a) (br ((br b)m−1b) ((br c)m−1c)).

Thus, FL(G1) = {ambmcm | m ≥ 1}. �

Example 2. Consider the order-2 HORS G2 = ({a 7→ 1, b 7→ 1, c 7→ 1, e 7→
0},N ,R, S) where

N = {S 7→ o, F : (o→ o)→ (o→ o)→ (o→ o)→ o,
C : (o→ o)→ (o→ o)→ o→ o}

R = {S → F a b c,
F x y z → x(y(z e)),
F x y z → F (C ax) (C b y) (C c z),
C x y w → x(y w)}.

We can rewrite S as follows.

S → F a b c→∗ F ((C a)m−1a) ((C b)m−1b) ((C c)m−1c)
→ ((C a)m−1a)(((C b)m−1b) (((C c)m−1c)e))
→∗ am(bm(cm e)).

Thus, L(G2) = {ambmcm | m ≥ 1}. �

We summarize below known relationships between order-k word lan-
guages and other notions of word languages.

• The class of order-k word languages includes that of Damm’s level-k
OI languages [6]. In fact, the definition is almost identical except the
subtle condition on “safety” (we do not discuss the safety condition
here; see, e.g., [23]). The two classes coincide [24] up to order-2, but
it is open whether the inclusion is strict for order-3 or higher.

• The classes of order-0, order-1, and order-2 word languages respec-
tively coincide with those of regular, context-free, and indexed lan-
guages [6, 25].
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• For k ≥ 1, the class of order-k word languages that do not contain the
empty word ε coincides with the class of frontier languages of order-(k−
1) HORS’s [6, 26].2 In particular, the class of order-2 word languages
that do not contain ε coincides with the class of frontier languages of
non-deterministic recursive program schemes. Furthermore, given an
order-k HORS G with a ranked alphabet consisting of symbols of arity
at most 1, an order-(k − 1) HORS G′ such that FL(G′) = L(G) \ {ε}
can be effectively constructed, and vice versa [26].

We consider the inclusion problem between an order-k word language
and the Dyck language D, i.e., the set of well-bracketed words. In this
article, we write a and b for left and right brackets.

Definition 2 (Dyck language). We write #a(w) (#b(w), resp.) for the
number of occurrences of a (b, resp.) in w. The Dyck language, written D,
is the set of words w ∈ {a, b}∗ such that (i) #a(w) = #b(w), and (ii) for
every prefix v of w, #a(v) ≥ #b(v).

The following property, which we use later, follows immediately from the
definition.

Fact 1. Let p and q be natural numbers. apbqaqbp 6∈ D if and only if p < q.

3. Main Result

This section proves the undecidability of the inclusion problem between
an order-2 word language and the Dyck language (Theorem 3 below). The
proof uses the following lemma, whose proof is deferred to Section 4.

Lemma 2. Let Pi(x1, . . . , xm)(i ∈ {1, 2, 3, 4}) be polynomials with non-
negative integer coefficients. Then, one can effectively construct an order-2
HORS G such that

L(G) = {aP1(x1,...,xm)bP2(x1,...,xm)aP3(x1,...,xm)bP4(x1,...,xm) | x1, . . . , xm ∈ Nat}.

Theorem 3. The decision problem “Given an order-k HORS G, does L(G) ⊆
D hold?” is undecidable for k ≥ 2.

2Note that by the definition, FL(G) does not contain ε.
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Proof. The proof is by reduction from the undecidability of Hilbert’s 10th
problem (i.e., the unsolvability of Diophantine equations) [19]. LetD(x1, . . . , xm)
be a polynomial (possibly with both positive and negative integer coeffi-
cients). Then, we have D(x1, . . . , xm) = 0 if and only if D(x1, . . . , xm)2−1 <
0. D(x1, . . . , xm)2 − 1 can be represented in the form P (x1, . . . , xm) −
Q(x1, . . . , xm) by using polynomials P and Q with non-negative integer co-
efficients. For such polynomials P and Q, D(x1, . . . , xm) = 0 has a solution
(in natural numbers) if and only if P (x1, . . . , xm) < Q(x1, . . . , xm) has a
solution.

By Lemma 2, one can construct an order-2 HORS G such that:

L(G) = {aP (x1,...,xm)bQ(x1,...,xm)aQ(x1,...,xm)bP (x1,...,xm) | x1, . . . , xm ∈ Nat}.

By Fact 1, L(G) ⊆ D if and only if ¬∃x1, . . . , xm ∈ Nat.P (x1, . . . , xm) <
Q(x1, . . . , xm), if and only if ¬∃x1, . . . , xm ∈ Nat.D(x1, . . . , xm) = 0. Since
the last property is undecidable [19], so is L(G) ⊆ D. �

By slightly modifying the proof of the theorem above, we also obtain the
following variations.

Theorem 4. Let L1 = {w ∈ {a, b}∗ | #a(w) ≥ #b(w)} and L2 = {w ∈

{a, b}∗ | #a(w) 6= #b(w)}. The decision problems: L(G)
?
⊆ L1 and L(G)

?
⊆

L2 are undecidable for order-2 HORS G.

Proof. For L(G)
?
⊆ L1, prepare the same polynomials P and Q as those in

the proof of Theorem 3. By Lemma 2, one can construct an order-2 HORS
G such that:

L(G) = {aP (x1,...,xm)bQ(x1,...,xm) | x1, . . . , xm ∈ Nat}

(let the polynomials P1, P2, P3 and P4 be P , Q, 0 and 0 respectively).
Then, D(x1, . . . , xm) = 0 is not satisfiable if and only if P (x1, . . . , xm) ≥

Q(x1, . . . , xm) for all x1, . . . , xm ∈ Nat, if and only if L(G)⊆L1. For L(G)
?
⊆

L2, let P (x1, . . . , xm) and Q(x1, . . . , xm) be polynomials with non-negative
coefficients such that D(x1, . . . , xm) = P (x1, . . . , xm) − Q(x1, . . . , xm), and
construct an order-2 HORS G such that:

L(G) = {aP (x1,...,xm)bQ(x1,...,xm) | x1, . . . , xm ∈ Nat}.

Then, D(x1, . . . , xm) = 0 is not satisfiable if and only if L(G)⊆L2. �

Remark 1. We do not know whether the following problem is decidable for
order-2 HORS G.

L(G)
?
⊆ {w ∈ {a, b}∗ | #a(w) = #b(w)}.
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4. Proof of Lemma 2

To clarify the idea of the construction of a HORS that satisfies the
property of Lemma 2, we first give an order-3 HORS that generates the
same word language:

L0 = {aP1(x1,...,xm)bP2(x1,...,xm)aP3(x1,...,xm)bP4(x1,...,xm) | x1, . . . , xm ∈ Nat}.

We then modify the construction to obtain an order-2 HORS that generates
the same language.

The idea of the first part is to construct a HORS that corresponds to the
following grammar, which uses natural numbers and operations on them in
addition to ordinary primitives for HORS.

S → F 0 · · · 0.
F x1 · · · xm → Gx1 · · · xm.
F x1 · · · xm → F (x1 + 1)x2 · · · xm.
· · ·
F x1 · · · xm → F x1 x2 · · · (xm + 1).
G x1 · · · xm → AP1 x1 · · · xm(BP2 x1 · · · xm(AP3 x1 · · · xm(BP4 x1 · · · xm e))).

AP1 x1 · · · xm y → aP1(x1,...,xm)(y).

BP2 x1 · · · xm y → bP2(x1,...,xm)(y).

AP3 x1 · · · xm y → aP3(x1,...,xm)(y).

BP4 x1 · · · xm y → bP4(x1,...,xm)(y).

By using the rules for S and F , we can rewrite S to Gn1 · · · nm for any
natural numbers n1, . . . , nm. The term Gn1 · · · nm can then be rewritten
to:

aP1(n1,...,nm)(bP2(n1,...,nm)(aP3(n1,...,nm)(bP4(n1,...,nm)e))),

by using the rules for G, AP1 , BP2 , AP3 , and BP4 . Thus, the above rewriting
rules generate the language L0.

It remains to remove operations on natural numbers, which can be easily
performed in the order-3 case, by using the Church encoding:

Zero x y → y. Succ nx y → nx (x y).
Plus mnxy → mx (nx y). Mult mnxy → m (nx)y.

Here, non-terminals have the following types:

Zero : nat
Succ : nat→ nat

Plus,Mult : nat→ nat→ nat
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where nat is an abbreviation of (o → o) → o → o. (Note that since
HORS must be simply-typed, not all operations on natural numbers can be
represented as non-terminals; for example, we cannot express subtraction.)
By using the encodings above, we can replace 0 and xi + 1 with Zero and
Succ xi respectively. We can also define non-terminals P ′i (i ∈ {1, 2, 3, 4})
such that P ′i x1 · · · xm y z, . . . , reduces to yPi(x1,...,xm)(z). For example, if
m = 2 and Pi(x1, x2) = x21 + x2, then P ′i can be defined by:

P ′i x1 x2 y z → Plus (Mult x1 x1) x2 y z.

Thus, the rules for AP1 , BP2 , AP3 , BP4 can be replaced with:

AP1 x1 · · · xm z → P ′1 x1 · · · xm a y.
BP2 x1 · · · xm z → P ′2 x1 · · · xm b y.
AP3 x1 · · · xm z → P ′3 x1 · · · xm a y.
BP4 x1 · · · xm z → P ′4 x1 · · · xm b y.

The resulting rewriting rules form an order-3 HORS, which generates the
language L0.

We now modify the above construction to obtain an order-2 HORS that
generates the same language. The idea is, instead of passing the values
of x1, . . . , xm (of type nat = (o → o) → o → o) as parameters of F , to

pass λy.ax
k1
1 ···x

km
m (y) (abbreviated to ax

k1
1 ···x

km
m below) and λy.bx

k1
1 ···x

km
m (y),

of type o → o. For example, if m = 1, P1(x) = P4(x) = x2 + 2 and
P2(x) = P3(x) = 2x2 + 1, then we pass ax

2
, ax

1
(= ax), ax

0
(= a), bx

2
, bx

1

and bx
0

to F for each natural number x. Thus, in this case, an order-2
HORS that generates L0 is given by:

S → F I I a I I b.
F vx2 vx v1wx2 wxw1 → Gvx2 vx v1wx2 wxw1.
F vx2 vx v1wx2 wxw1 →

F (A(x+1)2 vx2 vx v1) (Ax+1 vx v1) v1 (A(x+1)2 wx2 wxw1) (Ax+1 vxw1)w1.

I y → y.
A(x+1)2 zx2 zx z1 y → zx2(zx(zx (z1 y))).

Ax+1 zx z1 y → zx (z1 y).
G vx2 vx v1wx2 wxw1 → P1 vx2 vx v1 (P2wx2 wxw1)(P2 vx2 vx v1 (P1wx2 wxw1 e))).
P1 zx2 zx z1 y → zx2 (z1 (z1 y)).
P2 zx2 zx z1 y → zx2 (zx2 (z1y)).

The formal parameters vx2 , vx, v1, wx2 , wx, w1 of F are bound to ax
2
, ax, a1,

bx
2
, bx, and b1 respectively. The non-terminal A(x+1)2 defined in the fifth
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rule computes a(x+1)2 , given ax
2
, ax, and a as the values of zx2 , zx and

z1, using the fact a(x+1)2(y) = ax
2+x+x+1(y) = ax

2
(ax(ax(a y))). Similarly,

Ax+1 computes ax+1, given ax and a as values of zx and z1. Thus, for every
natural number n, S can be rewritten to G an

2
an a1 bn

2
bn b1 (modulo the

semantic equivalence of terms). The non-terminals P1 and P2 defined in the
last two rules compute aP1(n) and aP2(n) respectively, given an

2
, an, and a

as the values of zn2 , zn and z1; thus G an
2
an a1 bn

2
bn b1 can be rewritten

to
aP1(n)(bP2(n)(aP3(n)(bP4(n)e))),

for P1(x) = P4(x) = x2 + 2 and P2(x) = P3(x) = 2x2 + 1.
We now present the general construction. Let di(i ∈ {1, . . . ,m}) be the

largest degree of P1(x1, . . . , xm) + · · ·+P4(x1, . . . , xm) in variable xi. Then,
each Pi(x1, . . . , xm) can be represented as a linear combination of monomials
xj11 · · ·x

jm
m (j1 ≤ d1, . . . , jm ≤ dm):∑

j1≤d1,...,jm≤dm

ci,j1,...,jmx
j1
1 · · ·x

jm
m .

Let ` be (d1 + 1) · · · (dm + 1). Then, an order-2 HORS GL0 that generates
L0 is given in Figure 1. Here, ṽ and w̃ denote the sequences of vari-
ables v

x
d1
1 ···x

dm
m
· · · vx01···x0m and w

x
d1
1 ···x

dm
m
· · · wx01···x0m respectively. The non-

terminalA
x
j1
1 ···(xk+1)jk ···xjmm

computes an
j1
1 ···(nk+1)jk ···njm

m , given an
d1
1 ···n

dm
m , . . .,

an
0
1···n0

m as the values of ṽ = v
x
d1
1 ···x

dm
m
, . . . , vx01···x0m . Thus, for every tuple

(n1, . . . , nm) of natural numbers, S can be rewritten to (modulo the seman-
tic equivalence of terms):

G an
d1
1 ···n

dm
m · · · an0

1···n0
m bn

d1
1 ···n

dm
m · · · bn0

1···n0
m .

It can then be rewritten to

aP1(n1,...,nm)(bP2(n1,...,nm)(aP3(n1,...,nm)(bP4(n1,...,nm)e))),

by using the rules for G and Pi. From the discussion above, it should be
clear that L(GL0) = L0. This completes the proof.

5. Related Work

Arnold and Nivat [3] considered non-deterministic recursive program
schemes (i.e. order-1 non-deterministic higher-order recursion schemes) as
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GL0 = ({a 7→ 1, b 7→ 1},N ,R, S)
N = {S 7→ o, F 7→ (o→ o)2` → o, G 7→ (o→ o)2` → o, I 7→ o→ o}
∪{A

x
j1
1 ···x

jm
m
7→ (o→ o)` → o→ o | i ∈ {1, . . . ,m}, ji ∈ {0, . . . , di}}

∪{Pi 7→ (o→ o)` → o→ o | i ∈ {1, 2, 3, 4}}

R consists of:
S → F I · · · I︸ ︷︷ ︸

`−1

a I · · · I︸ ︷︷ ︸
`−1

b.

F ṽ w̃ → G ṽ w̃.
F ṽ w̃ →
F (A

(x1+1)d1 ···xdmm ṽ) · · · (A(x1+1)0···x0m ṽ) (A
(x1+1)d1 ···xdmm w̃) · · · (A(x1+1)0···x0m w̃).

· · ·
F ṽ w̃ →
F (A

x
d1
1 ···(xm+1)dm

ṽ) · · · (Ax01···(xm+1)0 ṽ) (A
x
d1
1 ···(xm+1)dm

w̃) · · · (Ax01···(xm+1)0 w̃).

I y → y.
A
x
j1
1 ···(xk+1)jk ···xjmm

ṽ y →

v
x
i1
1 ···x

jk
k ···x

jm
m

(· · · (v
x
i1
1 ···x

j
k···x

jm
m

)(
jk
j )(· · · (v

x
i1
1 ···x0k···x

jm
m
y) · · ·) · · ·)

(for each k ∈ {1, . . . ,m}, j1 ≤ d1, . . . , jm ≤ dm).
G ṽ w̃ → P1 ṽ (P2 w̃(P3 ṽ(P4 w̃ e))).
Pi ṽ y → (v

x
d1
1 ···x

dm
m

)ci,d1,...,dm (· · · ((vx01 ···x0m)ci,0,...,0 y) · · ·) (for each i ∈ {1, 2, 3, 4}).

Figure 1: An order-2 HORS GL0 that generates L0.
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generators of both finite tree languages (TL(G) in Section 2) and infinite
tree languages, and gave fixpoint characterizations.

Higher-order grammars as generators of word/tree languages have been
actively studied, especially in 1970’s and 80’s (see, e.g. [6, 23]). To our
knowledge, however, the inclusion problem with the Dyck language has
not been studied until recently. As already mentioned, Uezato and Mi-
namide [22] have shown that the inclusion between an indexed language and
the Dyck language is undecidable. Since the class of indexed languages and
the class of order-2 word languages (which is also known as OI languages)
coincide and there exist effective mutual translations ([21], Theorem 5.3),
the result of Uezato and Minamide [22] is the same as ours. Their proof is
somewhat indirect, however, which uses an undecidability result on DT0L
systems [27]. Our proof is arguably more direct, demonstrating the power
of order-2 grammars to express polynomials.

6. Conclusion

We have shown that the inclusion between an order-2 word language
and the Dyck language is undecidable, by a reduction from the undecidabil-
ity of Hilbert’s 10th problem. By using the technique of [10, 9] to convert
higher-order functional programs to HORS that generate the set of all the
event sequences, one can deduce from the undecidability result that certain
program verification problems like “Does a program output a string conform-
ing to a valid HTML?” and “Does a program access a certain resource in a
stack-like manner?” are undecidable even for a restricted, Turing-incomplete
higher-order language (more precisely, for the simply-typed λ-calculus with
recursion and primitives for printing strings or accessing resources).
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[1] M. Nivat, Langages algébriques sur le magma libre et sémantique des
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