
A Practical Linear Time Algorithm for Trivial

Automata Model Checking of Higher-Order
Recursion Schemes

Naoki Kobayashi

Tohoku University

Abstract. The model checking of higher-order recursion schemes has
been actively studied and is now becoming a basis of higher-order pro-
gram verification. We propose a new algorithm for trivial automata
model checking of higher-order recursion schemes. To our knowledge, this
is the first practical model checking algorithm for recursion schemes that
runs in time linear in the size of the higher-order recursion scheme, under
the assumption that the size of trivial automata and the largest order
and arity of functions are fixed. The previous linear time algorithm was
impractical due to a huge constant factor, and the only practical previous
algorithm suffers from the hyper-exponential worst-case time complex-
ity, under the same assumption. The new algorithm is remarkably simple,
consisting of just two fixed-point computations. We have implemented
the algorithm and confirmed that it outperforms Kobayashi’s previous
algorithm in a certain case.

1 Introduction

The model checking of higher-order recursion schemes [9, 19] (higher-order model
checking, for short) has been studied extensively, and recently applied to higher-
order program verification [12, 10, 17, 16, 20]. A higher-order recursion scheme [9,
19] is a grammar for describing a possibly infinite tree, and the higher-order
model checking is concerned about whether the tree described by a given higher-
order recursion scheme satisfies a given property (typically expressed by the
modal μ-calculus or tree automata). Higher-order model checking can be consid-
ered a generalization of finite-state and pushdown model checking. Just as soft-
ware model checkers for procedural languages like BLAST [4] and SLAM [3] have
been constructed based on finite-state and pushdown model checking, one may
hope to construct software model checkers for higher-order functional languages
based on higher-order model checking. Some evidence for such a possibility has
been provided recently [12, 10, 17, 16, 20].

The main obstacle in applying higher-order model checking to program ver-
ification is its extremely high worst-case complexity: n-EXPTIME complete-
ness [19] (where n is the order of a given higher-order recursion scheme). Kobayashi
and Ong [12, 15] showed that, under the assumption that the size of properties
and the largest order and arity of functions are fixed, the model checking is ac-
tually linear time in the size of the higher-order recursion scheme for the class

of properties described by trivial automata [2], and polynomial time for the
full modal μ-calculus. Their algorithms were however of only theoretical inter-
est; because of a huge constant factor (which is n-fold exponential in the other
parameters), they are runnable only for recursion schemes of order 2 at highest.

The only practical algorithm known to date is Kobayashi’s hybrid algo-
rithm [10], used in the first higher-order model checker TRecS [11]. According
to experiments, the algorithm runs remarkably fast in practice, considering the
worst-case complexity of the problem. The worst-case complexity of the hybrid
algorithm is, however, actually worse than Kobayashi’s näıve algorithm [12]: Un-
der the same assumption that the other parameters are fixed, the worst-case time
complexity of the hybrid algorithm [10] is still hyper-exponential in the size of
the recursion scheme. In fact, one can easily construct a higher-order recursion
scheme for which the hybrid algorithm suffers from an n-EXPTIME bottleneck
in the size of the recursion scheme. Thus, it remained as a question whether
there is a practical algorithm that runs in time polynomial in the size of the
higher-order recursion scheme. The question is highly relevant for applications
to program verification [12, 17], as the size of a higher-order recursion scheme
corresponds to the size of a program.

The present paper proposes the first (arguably) practical, linear time1 algo-
rithm for trivial automata model checking of recursion schemes (i.e. the problem
of deciding whether the tree generated by a given recursion scheme G is ac-
cepted by a given trivial automaton B). Like Kobayashi and Ong’s previous al-
gorithms [12, 10, 15], the new algorithm is based on a reduction of model checking
to intersection type inference, but the algorithm has also been inspired by game
semantics [19, 1] (though the game semantics is not explicitly used). The resulting
algorithm is remarkably simple, consisting of just two fixedpoint computations.
We have implemented the new algorithm, and confirmed that it outperforms
Kobayashi’s hybrid algorithm [10] in a certain case. Another advantage of the
new algorithm is that it works for non-deterministic trivial automata, unlike the
hybrid algorithm (which works only for deterministic trivial automata).

Unfortunately, the current implementation of the new algorithm is signifi-
cantly slower than the hybrid algorithm [10] (which already incorporates a num-
ber of optimizations) in most cases. However, the new algorithm provides a hope
that, with further optimizations, one may eventually obtain a model checking
algorithm that scales to large programs (because of the fixed-parameter linear
time complexity).

The rest of this paper is structured as follows. Section 2 reviews higher-order
recursion schemes and previous type-based model checking algorithms for recur-
sion schemes. Section 3 presents a new model checking algorithm, and Section 4
proves the correctness of the algorithm. Section 5 reports preliminary experi-
ments. Section 6 discusses related work and Section 7 concludes.

1 Under the same assumption as [12, 15] that the other parameters are fixed.

2 Preliminaries

We write dom(f) for the domain of a map f . We write x̃ for a sequence x1, . . . , xk,
and write [t1/x1, . . . , tk/xk]u for the term obtained from u by replacing x1, . . . , xk

in u with t1, . . . , tk. A Σ-labeled tree (where Σ is a set of symbols), written T , is
a map from [m]∗ (where m is a positive integer and [m] = {1, . . . , m}) to Σ such
that (i) ε ∈ dom(T), (ii) xi ∈ dom(T) implies {x, x1, . . . , x(i−1)} ⊆ dom(T) for
any x ∈ [m]∗ and i ∈ [m].

Higher-Order Recursion Schemes. A higher-order recursion scheme [19] is a tree
grammar for generating an infinite tree, where non-terminal symbols can take
parameters. To preclude illegal parameters, each non-terminal symbol has a sort.
The set of sorts is given by: κ ::= o | κ1 → κ2. Intuitively, the sort o describes
trees, and the sort κ1 → κ2 describes functions that take an element of sort κ1

as input, and return an element of sort κ2. The arity and order are defined by:

arity(o) = 0 arity(κ1 → κ2) = 1 + arity(κ2)
order (o) = 0 order (κ1 → κ2) = max (1 + order (κ1), κ2)

Formally, a higher-order recursion scheme (recursion scheme, for short) is a
quadruple G = (Σ,N ,R, S), where Σ is a set of symbols called terminals and
N is a set of symbols called non-terminals. Each terminal or non-terminal α
has an associated sort, denoted by sort(α). The order of the sort of a terminal
must be 0 or 1. We write arity(α) for arity(sort(α)) and call it the arity of
α. (Thus, Σ is a ranked alphabet.) R, called rewriting rules, is a finite map
from N to λ-terms of the form λx̃.t where t is an applicative term constructed
from the variables x̃, terminals, and non-terminals. R(F) must have sort sort(F)
(under the standard simple type system). S is a special non-terminal called the
start symbol. The order of a recursion scheme G is the largest order of the sorts
of its non-terminals. We use lower letters for terminals, and upper letters for
non-terminals.

Given a recursion scheme G, the rewriting relation −→G is the least relation
that satisfies: (i) F u1 . . . , uk −→G [u1/x1, . . . , uk/xk]t if R(F) = λx1. · · ·λxk.t,
and (ii) a t1 · · · tn −→G a t1 · · · ti−1 t′i ti+1 · · · tn if ti −→G t′i.

2 The value tree
of G, written [[G]], is the (possibly infinite) (Σ ∪ {⊥})-labelled tree generated
by a fair, maximal reduction sequence from S. More precisely, define t⊥ by
(a t1 · · · tk)⊥ = a t1

⊥ · · · tk
⊥, and (F t1 · · · tk)⊥ = ⊥. [[G]] is

⊔{t⊥ | S −→∗
G t},

where
⊔

is the least upper bound with respect to the least compatible (i.e. closed
under contexts) relation � on trees that satisfies ⊥ � T for every tree T .

Example 1. Consider the recursion scheme G0 = ({a, b, c}, {S, F},R, S), where
R and the sorts of symbols are given by:

R = {S �→ F b c, F �→ λf.λx.(a (f x) (F f (f x)))}
a : o → o → o, b : o → o, c : o, S : o, F : (o → o) → o → o

2 Note that we allow only reductions of outermost redexes.

a

b

c

a

b

b

c

a

b a

b b

· · ·· · ·
· · ·

(a)

q0

q0

q1

q0

q0

q1

q1

q0

q0 q0

q1 q0

· · ·· · ·
· · ·

(b)

Fig. 1. The tree generated by the recursion scheme G0 and a run tree of it

S is rewritten as follows, and the tree in Figure 1(a) is generated.

S −→ F b c → a (b c) (F b (b c)) → a (b c) (a (b(b c)) (F b (b (b c))) → · · ·

Trivial Automata Model Checking. The aim of model-checking a higher-order
recursion scheme is to check whether the tree generated by the recursion scheme
satisfies a certain regular property. In the present paper, we consider the proper-
ties described by trivial automata [2], which are sufficient for program verification
problems considered in [12, 17].

A trivial automaton B is a quadruple (Σ, Q, Δ, q0), where Σ is a set of input
symbols, Q is a finite set of states, Δ ⊆ Q×Σ×Q∗ is a transition function, and q0

is the initial state. A Σ-labeled tree T is accepted by B if there is a Q-labeled tree
R (called a run tree) such that: (i) dom(T) = dom(R); (ii) R(ε) = q0; and (iii) for
every x ∈ dom(R), (R(x), T (x), R(x1) · · ·R(xm)) ∈ Δ where m = arity(T (x)).
For a trivial automaton B = (Σ, Q, Δ, q0) (with ⊥ 	∈ Σ), we write B⊥ for the
trivial automaton (Σ ∪ {⊥}, Q, Δ∪ {(q,⊥, ε) | q ∈ Q}, q0).

The trivial automata model checking is the problem of deciding whether [[G]]
is accepted by B⊥, given a recursion scheme G and a trivial automaton B.3

Example 2. Consider the trivial automaton B0 = ({a, b, c}, {q0, q1}, Δ, q0), where
Δ = {(q0, a, q0q0), (q0, b, q1), (q1, b, q1), (q0, c, ε), (q1, c, ε)}. B0 accepts a {a, b, c}-
labeled ranked tree just if a does not occur below b. The tree generated by G0

of Example 1 is accepted by B0. The run tree is shown in Figure 1(b).

Type Systems Equivalent to Trivial Automata Model Checking One can con-
struct an intersection type system (parameterized by a trivial automaton B =
(Σ, Q, Δ, q0)) that is equivalent to trivial automata model checking, in the sense
that a recursion scheme G is well typed if, and only if, [[G]] is accepted by B⊥ [12].
Define the set of types by:

θ (atomic types) ::= q | τ → θ τ (intersections) ::=
∧{θ1, . . . , θm}

3 In the literature [19, 15], it is often assumed that the value tree of G does not contain
⊥. Under that assumption, the acceptance by B⊥ and B are equivalent.

Here, q ranges over the states of B. We often write θ1 ∧ · · · ∧ θm or
∧

i∈{1,...,m} θi

for
∧{θ1, . . . , θm}. We also write � for

∧ ∅, and θ for
∧{θ}. ∧

binds tighter
than →. Intuitively, q is a refinement of sort o, describing trees accepted by B
with the initial state replaced by q. θ1 ∧ · · · ∧ θm → θ describes functions that
take an element that has types θ1, . . . , θm as input, and return an element of
type θ. For example, q0 ∧ q1 → q0 describes a function that takes a tree that
can be accepted from both q0 and q1, and returns a tree accepted from q0. We
define the refinement relation θ :: κ inductively by: (i) q :: o for every q ∈ Q and
(ii) (

∧
i∈S θi → θ) :: (κ1 → κ2) if ∀i ∈ S.θi :: κ1 and θ :: κ2.

The typing rules for terms and rewriting rules are given as follows.

(q, a, q1 · · · qk) ∈ Δ

Γ �B a : q1 → · · · qk → q

x : θ ∈ Γ

Γ �B x : θ

∀i ∈ S.(Γ �B t : θi)
Γ �B t :

∧
i∈S θi

Γ �B t1 : τ → θ
Γ �B t2 : τ

Γ �B t1t2 : θ

Γ, x : θ1, . . . , x : θm �B t : θ
x 	∈ dom(Γ)

Γ �B λx.t : θ1 ∧ · · · ∧ θm → θ

dom(Γ) ⊆ dom(R)
∀(F : θ) ∈ Γ.(Γ �B R(F) : θ)

�B R : Γ

Here, Γ is a set of bindings of the form x :θ where non-terminals are also treated
as variables, and Γ may contain more than one binding for each variable. We
write dom(Γ) for {x | x : θ ∈ S}. A recursion scheme G = (Σ,N ,R, S) is well
typed under Γ , written �B G : Γ , if �B R : Γ , ∀(F : θ) ∈ Γ.(θ :: sort(F)), and
S : q0 ∈ Γ . We write �B G if �B G : Γ for some Γ .

The following theorem guarantees the correspondence between model check-
ing and type checking.

Theorem 1 (Kobayashi [12]). [[G]] is accepted by B⊥ if and only if �B G.

Example 3. Recall the recursion scheme G0 in Example 1 and the trivial automa-
ton B0 in Example 2. �B0 G0 : Γ holds for Γ = {S : q0, F : (q1 → q1) ∧ (q1 →
q0) → q1 → q0}

Theorem 1 above yields a straightforward, fixedpoint-based model checking
algorithm. Let ShrinkG,B be the function on type environments defined by:
ShrinkG,B(Γ) = {F : θ ∈ Γ | Γ �B R(F) : θ}, and let Γmax be {F : θ |
F ∈ N , θ :: sort(F)}. Then, by the definition, �B G : Γ if and only if there
exists Γ ⊆ Γmax such that Γ ⊆ ShrinkG,B(Γ) and S : q0 ∈ Γ . (Note that
Γ ⊆ ShrinkG,B(Γ) if and only if �B R : Γ .) Thus, to check whether �B G holds,
it is sufficient to compute the greatest fixedpoint Γgfp of ShrinkG,B and checks
whether S : q0 ∈ Γgfp. This is Kobayashi’s näıve algorithm.

NAIVE ALGORITHM [12]:
1. Γ := Γmax;
2. Repeat Γ := ShrinkG,B(Γ) until Γ = ShrinkG,B(Γ);
3. Output whether S : q0 ∈ Γ.

Suppose that the size of B and the largest size of sorts of symbols are fixed.
Then, the size of Γmax is linear in the size of G, since for a given κ, the number

of types that satisfy θ :: κ is bounded above by a constant. Thus, using Rehof
and Mogensen’s optimization [21], the above algorithm is made linear in the size
of G. The algorithm does not work in practice, however, as the constant factor is
too large. Even at the first iteration of the fixedpoint computation, we need to
pick each binding F : θ from Γmax and check whether Γmax �B R(F) : θ holds.
This is impractical, as Γmax is too large; In fact, even when |Q| = 2, for a symbol
of sort ((o → o) → o) → o, the number of corresponding types is 2513 ≈ 10154.

Kobayashi’s hybrid algorithm [10] starts the greatest fixedpoint computation
from a type environment much smaller than Γmax. To find an appropriate start-
point of the fixedpoint computation, his algorithm reduces the recursion scheme a
finite number of times, and infers candidates of the types of each non-terminal,
by observing how each non-terminal is used in the reduction sequence. The
following is an outline of the hybrid algorithm (see [10] for more details):

HYBRID ALGORITHM [10]:
1. Reduce S a finite number of steps;
2. If a property violation is found, output ‘no’ and halt;
3. Γ := type bindings extracted from the reduction sequence;
4. Repeat Γ := ShrinkG,B(Γ) until Γ = ShrinkG,B(Γ);
5. If S : q0 ∈ Γ then output ‘yes’ and halt;
6. Go back to 1 and reduce S further.

The algorithm works well in practice [10, 17], but has some limitations: (i) No
theoretical guarantee that the algorithm is efficient. In fact, the worst-case run-
ning time is hyper-exponential [13]: see Section 5. (ii) The efficiency of the al-
gorithm crucially depends on the selection of terms to be reduced in Step 1.
The implementation relies on heuristics for choosing reduced terms, and there
is no theoretical justification for it. (iii) It works only for deterministic trivial
automata (i.e. trivial automata such that |Δ ∩ {q} × {a} × Q∗| ≤ 1 for every
q ∈ Q, a ∈ Σ.) Though it is possible to extend the algorithm to remove the
restriction, it is unclear whether the resulting algorithm is efficient in practice.

The limitations above motivated us to look for yet another algorithm, which
is efficient both in practice and in theory (where an important criterion for the
latter is that the time complexity should be linear in the size of the recursion
scheme, under the assumption that the other parameters are fixed). That is the
subject of this paper, discussed in the following sections.

3 The New Model Checking Algorithm

3.1 Main Idea

In the previous section, a reader may have wondered why we do not compute the
least fixedpoint, instead of the greatest one. The näıve least fixedpoint computa-
tion however does not work. Let us define FB by: FB(Γ) = {F : θ | Γ �B R(F) :
θ}. How about computing the least fixedpoint Γlfp of FB, and checking whether
S : q0 ∈ Γlfp? This does not work for two reasons. First of all, S : q0 ∈ Γlfp is not

a necessary condition for the well-typedness of G. For example, for G0 of Exam-
ple 1, Γlfp = ∅. Secondly, for each iteration to compute FB(∅),F2

B(∅),F3
B(∅), . . .,

we have to guess a type θ of F and check whether Γ �B R(F) : θ. The possi-
ble types of F are however too many, hence the same problem as the greatest
fixedpoint computation.

The discussion above however suggests that a least fixedpoint computation
may work if, in Γ �B R(F) : θ, (i) we relax the condition on Γ (that Γ must have
been obtained from the previous iteration steps), and (ii) we impose a restriction
on θ, to disallow θ to be synthesized “out of thin air”. This observation motivates
us to modify FB(Γ) as follows:

F ′
B(Γ) =

⋃
{{F : θ′} ∪ Γ ′ | Γ ′ �B R(F) : θ′, Γ �O Γ ′, θ �P θ′, (F : θ) ∈ Γ}.

Here, Γ �O Γ ′ (which will be defined later) indicates that Γ ′ is not identical, but
somehow similar to Γ . The condition “θ �P θ′ for some F : θ ∈ Γ” also indicates
that F : θ′ is somehow similar to an existing type binding F : θ of Γ .

To see how �O and �P may be defined, let us consider G0 and B0 of Exam-
ples 1 and 2. In order for [[G0]] to be accepted by B0

⊥, S should have type q0.
So, let us first put S : q0 into the initial type environment: Γ0 := {S : q0}.
Now, in order for the body F b c of S to have type q0, F must have a type of
the form · · · → · · · → q0. So, let us put F :� → � → q0 (note that � → � → q0

is a subtype of any type of the form τ1 → τ2 → q0 with respect to the standard
subtype relation; see Appendix A): Γ1 := {S : q0, F : � → � → q0}.

Let us now look at the definition of F , to check whether the body of F
has type � → � → q0. The body doesn’t, but it has a slightly modified type:
(� → q0) → � → q0, so we update the type of F : Γ2 := {S : q0, F : (� → q0) →
� → q0}.
Going back to the definition of S, we know that F is required to have a type
like (q1 → q0) → � → q0 (because b has type q1 → q0, not � → q0). Thus, we
further update the type of F : Γ3 := {S : q0, F : (q1 → q0) → � → q0}.

By looking at the definition of F again, we know that x should have type q1

and that f should have q1 as a return type, from the first and second arguments of
a respectively. Thus, we get an updated type environment: Γ4 := {S :q0, F :(q1 →
q0) ∧ (� → q1) → q1 → q0}. By checking the definition of S again, we get:

Γ5 := {S : q0, F : (q1 → q0) ∧ (q1 → q1) → q1 → q0}.
Thus, we have obtained enough type information for G0 (recall Example 3).

In the above example, the type of F has been expanded as follows.

� �O � → � → q0 �P (� → q0) → � → q0 �O (q1 → q0) → � → q0

�P (q1 → q0) ∧ (� → q1) → q1 → q0 �O (q1 → q0) ∧ (q1 → q1) → q1 → q0.

Here, the expansions represented by �O come from constraints on call sites of
F , and those represented by �P come from constraints on the definition of F .
We shall formally define these expansion relations and obtain a fixedpoint-based
model checking algorithm in the following sections.

Remark 1. A reader familiar with game semantics [1, 19] may find a connection
between the type expansion sequence above and a play of a function. For exam-
ple, the type (� → q0) → � → q0 may be considered an abstraction of a state of
a play where the opponent of F has requested a tree of type q0, and the propo-
nent has requested a tree of type q0 in response. The type (q1 → q0) → � → q0

represents the next state, where the opponent has requested a tree of type q1 in
response, and the type (q1 → q0) ∧ (� → q1) → q1 → q0 represents the state
where, in response to it, the proponent has requested trees of type q1 to the
first and second arguments. Thus, the expansion relations �O and �P represent
opponent’s and proponent’s moves respectively. Although we do not make this
connection formal, this game semantic intuition may help understand how our
algorithm described below works. In particular, the intuition helps us under-
stand why necessary type information can be obtained by gradually expanding
types as in the example above; for a valid type of a function,4 there should be a
corresponding play of the function, and by following the play, one can obtain a
type expansion sequence that leads to the valid type.

3.2 Expansion relations

We now formally define the expansion relations �O and �P mentioned above.
They are inductively defined by the following rules.

q �O q q �P q
τ �P τ ′ θ �O θ′

τ → θ �O τ ′ → θ′
τ �O τ ′ θ �P θ′

τ → θ �P τ ′ → θ′

∀j ∈ S′ \ S.∃q.θ′j = � → · · · → � → q
∀j ∈ S.θj �O θ′j S ⊆ S′

∧
j∈S θj �O

∧
j∈S′ θ′j

∀j ∈ S.θj �P θ′j∧
j∈S θj �P

∧
j∈S θ′j

Note that the four relations: θ �O θ′, τ �O τ ′, θ �P θ′, and τ �P τ ′ are
defined simultaneously. Notice also that �P and �O are swapped in the argument
position of arrow types; this is analogous to the contravariance of the standard
subtyping relation in the argument position of function types. Another way to
understand the relations is: θ �O θ′ (θ �P θ′, resp.) holds if θ′ is obtained from
θ by adding atomic types (of the form q) to positive (negative, resp.) positions.

In the last two rules, S can be an empty set. So, we can derive � �O � → q0,
from which � → � → q0 �P (� → q0) → � → q0 follows. The expansion
relation �O is extended to type environments by: Γ �O Γ ′ if and only if ∀x ∈
dom(Γ) ∪ dom(Γ ′).Γ (x) �O Γ ′(x)). Here, Γ (x) =

∧{θ | x : θ ∈ Γ}. Γ �P Γ ′ is
defined in a similar manner.

Let ≤ be the standard subtyping relation on intersection types (see Ap-
pendix A). The following lemmas state the relationship between the expansion
and subtyping relations.
4 Strictly speaking, we should interpret a type as a kind of linear type; for example,

the type q1 → q0 should be interpreted as a function that takes a tree of type q1 and
uses it at least once to return a tree of type q0.

Lemma 1. 1. θ1 �O θ2 and τ1 �O τ2 imply θ1 ≥ θ2 and τ1 ≥ τ2 respectively.
2. θ1 �P θ2 and τ1 �P τ2 imply θ1 ≤ θ2 and τ1 ≤ τ2 respectively.

Proof. This follows by a straightforward mutual induction on the derivations.

Note that the converse does not hold; for example, � → q0 ≤ (q1 → q0) → q0

but � → q0 	�P (q1 → q0) → q0. In the game-semantic view (recall Remark 1),
θ �P θ′ (θ �O, respectively) mean that θ′ is obtained from θ by only adding
base types to positions corresponding to proponent’s moves (opponent’s moves,
resp.).

3.3 Type generation rules

We now define the relation Γ1 � Γ2 �B
P t : θ1 � θ2, which means that, given

a candidate of type judgment Γ1 � t : θ1 (which may not be valid), a valid
judgment Γ2 �B t : θ2 is obtained by “adjusting” Γ1 and θ1 in a certain manner.
Γ1 � Γ2 �B

P t : θ1 � θ2 corresponds to the condition (Γ2 �B t : θ2) ∧ (Γ1 �O

Γ2)∧ (θ1 �P θ2) used in the informal definition of F ′
B in Section 3.1. In fact, the

rules below ensure that Γ1 �Γ2 �B
P t : θ1 � θ2 implies that (Γ2 �B t : θ2)∧ (Γ1 �O

Γ2)∧ (θ1 �P θ2) holds. Thus, the “adjustment” of Γ1 and θ1 is allowed only in a
restricted manner. For example, (f :q1 → q0)�(f :q1 → q0, x:q1) �B

P f x : q0�q0 is
allowed, but (f :� → q0)� (f : q1 → q0, x : q1) �B

P f x : q0 � q0 is not. In the latter,
the change of the type of function f makes the assumption on the behavior of
f that upon receiving a request for tree of type q0, f requests a tree of type q1

as an argument. That assumption is speculative and should be avoided, as its
validity can be determined only by looking at the environment, not the term
f x.

Definition 1. Γ1 � Γ2 �B
P t : θ1 � θ2 and Γ1 � Γ2 �B

P t : τ1 � τ2 are the least
relations that satisfy the following rules.

θ1 �P θ2

x : θ2 � x : θ2 �B
P x : θ1 � θ2

(VarP)
τ1 �O θ2

x : τ1 � x : θ2 �B
P x : θ2 � θ2

(VarO)

(q, a, q1 · · · qn) ∈ Δ ∀i ∈ {1, . . . , n}.τi ∈ {�, qi}
∅ � ∅ �B

P a : (τ1 → · · · → τn → q) � (q1 → · · · → qn → q)
(Const)

Γ1 � Γ ′
1 �B

P t1 : (τ → θ) � (τ ′ → θ′) Γ2 � Γ ′
2 �B

P t2 : τ ′′ � τ ′

Γ1 ∪ Γ2 � Γ ′
1 ∪ Γ ′

2 �B
P t1t2 : θ � θ′

(App)

(Γ1, x : τ1) � (Γ2, x : τ2) �B
P t : θ1 � θ2

Γ1 � Γ2 �B
P λx.t : (τ1 → θ1) � (τ2 → θ2)

(Abs)

∀i ∈ S.(Γi � Γ ′
i �B

P t : θi � θ′i)
(
⋃

i∈S Γi) � (
⋃

i∈S Γ ′
i) �B

P t : (
∧

i∈S .θi) � (
∧

i∈S .θ′i)
(Int)

In the rules above, we write x :
∧

i∈S θi for {x : θi | i ∈ S}. It is implicitly
assumed that the sort of each variable is respected, i.e., if x:θ ∈ Γ , then θ::sort(x)
must hold. The rule VarP is used for adjusting the type of x to the type provided
by the environment, while the rule VarO is used for adjusting the environment to
the type of x. For example, (x:q1 → q2)�(x : q1 → q2) �B

P x : (� → q2)�(q1 → q2)
is obtained from the former, and x :� � (x : � → q2) �B

P x : (� → q2) � (� → q2)
is obtained from the latter. In the rule App, the left and right premises adjust
the types of the function and the argument respectively. (In the game semantic
view, the former accounts for a move of the function, and the latter accounts for
a move of the argument.)

3.4 Model Checking Algorithm

We are now ready to describe the new algorithm. Let G = (Σ,N ,R, S) be a
recursion scheme and B be a trivial automaton. Define ExpandG,B by:

ExpandG,B(Γ) = Γ∪(
⋃

{Γ ′∪{F :θ′} | Γ1�Γ ′ �B
P R(F) : θ�θ′, F :θ ∈ Γ, Γ1 ⊆ Γ})

Our new algorithm just consists of two fixedpoint computations:

NEW ALGORITHM:
1. Γ := {S : q0};
2. Repeat Γ := ExpandG,B(Γ) until Γ = ExpandG,B(Γ);
3. Repeat Γ := ShrinkG,B(Γ) until Γ = ShrinkG,B(Γ);
4. Output whether S : q0 ∈ Γ.

We first expand the set of type candidates by using ExpandG,B, and then shrink
it by filtering out invalid types by ShrinkG,B. The only change from the näıve
algorithm is that Γmax has been replaced by the least fixedpoint of ExpandG,B.

Example 4. Recall G0 and B0 of Examples 1 and 2. Let Γ0 = {S : q0}. We have:

Γ1 = ExpandG0,B0
(Γ0) = {S : q0, F : � → � → q0}

Γ2 = ExpandG0,B0
(Γ1) = Γ1 ∪ {F : (� → q0) → � → q0}

Γ3 = ExpandG0,B0
(Γ2) = Γ2 ∪ {F : (q1 → q0) → � → q0, . . .}

Γ4 = ExpandG0,B0
(Γ3) = Γ3 ∪ {F : (q1 → q0) → q1 → q0, . . .}

Γ5 = ExpandG0,B0
(Γ4) = Γ3 ∪ {F : (q1 → q0) ∧ (� → q1) → q1 → q0, . . .}

Γ6 = ExpandG0,B0
(Γ5) = Γ4 ∪ {F : (q1 → q0) ∧ (q1 → q1) → q1 → q0, . . .}

Γ7 = ExpandG0,B0
(Γ6) = Γ6

In the second step (for computing Γ2), the type (� → q0) → � → q0 of F is
obtained from the following derivation.

∅ � f : � → q0 �B
P a (f x) : (� → q0) � (q0 → q0) Δ1 � Δ1 �B

P (F f (f x)) : q0 � q0

Δ1 � Δ2 �B
P a (f x) (F f (f x)) : q0 � q0

Δ1 � Δ1 �B
P λf.λx.a (f x) (F f (f x)) : � → � → q0 � (� → q0) → � → q0

Here, Δ1 = F : � → � → q0, Δ2 = Δ1 ∪ {f : � → q0}, and ∅ � f : � → q0 �B
P

a (f x) : (� → q0) � (q0 → q0) is derivable from ∅ � f : (� → q0) �B
P f : � → q0 �

� → q0 and ∅ � ∅ �B
P a : (� → � → q0) � (q0 → q0 → q0).

By repeatedly applying ShrinkG,B to Γ6, we obtain: Γ = {S : q0, F : (q1 →
q0) ∧ (q1 → q1) → q1 → q0, F : (� → q0) → � → q0, . . .} as a fixedpoint. Since
S : q0 ∈ Γ , we know that G0 is well-typed, i.e. [[G]] is accepted by B⊥.

The least fixedpoint Γ6 of ExpandG0,B0
contains type bindings like F : (� →

q0) → � → q0, which are not required for typing G (recall Example 3). However,
ExpandG0,B0

does not add completely irrelevant type bindings like F :� → � →
q1. Thus, we can expect that the least fixedpoint of ExpandG0,B0

is often much
smaller than Γmax, which will be confirmed by the experiments in Section 5.

4 Correctness of the Algorithm

This section discusses the correctness and complexity of the algorithm.

4.1 Termination and Complexity

We first show that the algorithm always terminates.
The termination follows immediately from the following facts: (i) Γ increases

monotonically in the first loop, (ii) Γ decreases monotonically in the second loop,
and (iii) Γ ranges over a finite set.

Theorem 2. The algorithm always terminates and outputs “yes” or “no”.

From the termination argument, the complexity result also follows.

Theorem 3. Suppose that both (i) the largest size of the sorts of non-terminals
and terminals of G and (ii) the size of automaton B are fixed. Then, the algorithm
terminates in time quadratic in |G|.
Proof. By the assumption, the size of Γmax is O(|G|). Thus, the two loops termi-
nate in O(|G|) iterations. At each iteration, ExpandG,B(G) and ShrinkG,B(G)
can be computed in time O(|G|),5 hence the result. ��

Actually, we can use Rehof and Mogensen’s algorithm [21] to accelerate the
above algorithm, and obtain a linear time algorithm. (The idea is just to re-
compute ExpandG,B and ShrinkG,B only for variables whose relevant bindings
were updated. As Γ (x) is updated only a constant number of times for each
variable x, and the number of typing bindings that are affected by the update
is a constant, the resulting algorithm runs in time linear in |G|.) More precisely,
if the number of states of B is |Q| and the largest arity of functions is A, the
algorithm runs in time O(|G|expn(p(A|Q|)), where p(x) is a polynomial of x,
and expn(x) is defined by: exp0(x) = x, expk+1(x) = 2expk(x).

5 To guarantee this, we need to normalize the rewrite rules of G in advance [15], so
that the size of body R(F) of each non-terminal F is bounded by a constant.

4.2 Soundness

The soundness of the algorithm follows immediately from that of Kobayashi’s
type system [12].

Theorem 4. If the algorithm outputs “yes”, then [[G]] is accepted by B⊥.

Proof. By the definition of the algorithm, Γ at the last line satisfies Γ ⊇
ShrinkG,B(Γ). Thus, the result follows by Theorem 1.

4.3 Completeness

A recursion scheme is in normal form if each rewrite rule is either of the form
(i) F �→ λx̃.t where t does not contain terminals, or (ii) F �→ λx̃.a x̃. We show
that the algorithm is complete when the given recursion scheme is in normal
form.6 We now prove the completeness, i.e., if [[G]] is accepted by B⊥, then
the algorithm outputs “yes”. From the game semantic intuition described in
Remark 1, the reason for the completeness is intuitively clear: If a function
behaves as described by a type θ in a reduction sequence of the given recursion
scheme, then there should be a sequence of interactions between the function and
the environment that conforms to θ. As the sequence of interactions evolves, the
function’s behavior should gradually evolve from � → · · · → � → q (which
represents a state where the environment has just called the function to ask for
a tree of type q) to � → · · · → (� → · · · → � → q′) → · · · → � → q (which
represents a state where the function has responded to ask the environment to
provide a tree of type q′), and eventually to θ. Such evolution of the function’s
type can be computed by ExpandG,B, and θ should be eventually generated.

The actual proof is however rather involved. We defer the proof to Ap-
pendix C and just state the theorem here.

Theorem 5. Suppose G is in normal form. If [[G]] is accepted by B⊥, then the
algorithm outputs “yes”.

5 Experiments

We have implemented the new model checking algorithm, and tested it for several
recursion schemes. The result of the preliminary experiments is shown in Table 1.
The experiments were conducted on a machine with Intel(R) Xeon(R) CPU with
3Ghz and 8GB memory. More information about the benchmark is available at
http://www.kb.ecei.tohoku.ac.jp/˜koba/gtrecs/.

6 Note that this does not lose generality, as we can always transform a recursion scheme
into an equivalent recursion scheme in normal form before applying the algorithm,
by introducing the rule A �→ λex.a ex for each terminal a, and replace all the other
occurrences of a with A. We conjecture that the algorithm is complete without the
normal form assumption.

The column “order” shows the order of the recursion scheme. The columns
“hybrid” and “new” show the running times of the hybrid and new algorithms
respectively, measured in seconds. The cell marked by “–” in the column “hybrid”
shows that the hybrid algorithm has timed out (where the time limit is 10 min.)
or run out of stack. The columns “Γ1” and “Γ2” show the numbers of atomic
types in the type environment Γ after the first and second loops of the new
algorithm.

The table on the lefthand side shows the result for the following recursion
scheme Gn,m [13]:

{S �→ F0 Gn−1 · · · G2 G1 G0,
F0 �→ λf.λx̃.F1 (F1 f) x̃, · · · , Fm−1 �→ λf.λx̃.Fm (Fm f) x̃, Fm �→ λf.λx̃.Gn f x̃,
Gn �→ λf.λz.λ.x̃.f (f z) x̃, · · · ,G2 �→ λf.λz.f (f z),G1 �→ λz.a z, G0 �→ c}

S is reduced to aexpn(m)(G0) and then to aexpn(m)(c). The verified property
is that the number of a is even. The hybrid algorithm [10] requires O(expn(m))
expansions to extract the type information on G0, so that it times out except
for the case n = 3, m = 1. In contrast, the new algorithm works even for the
case n = 4, m = 10. For a fixed n, the size of type environments (the columns
Γ1 and Γ2) is almost linear in m. The running times are not linear in m due
to the näıveness of the current implementation, but exponential slowdown with
respect to m is not observed. As expected, the sizes of type environments (the
columns Γ1 and Γ2) are much smaller than that of Γmax. For G3,1, the size of
Γmax is about 3×22057, so that the näıve algorithm does not work even for G3,1.

In the table on the righthand side, Example1 is the recursion scheme given
in Example 1, where the trivial automaton is given in Example 2. The recursion
schemes Twofiles – Lock2 have been taken from the benchmark set used in
[10], obtained by encoding the resource usage verification problems [12]. We
have used the refined encoding given in [14] however.7 Unfortunately, for these
recursion schemes, the new algorithm is slower than the hybrid algorithm by
several orders of magnitude. Further optimization is required to see whether
this is a fundamental limitation of the new algorithm. Finally, Nondet is an
order-3 recursion scheme that generates a tree representation of an infinite list
[(0, 1); (1, 2); (2, 3); · · ·], where each natural number n is represented by the tree
sn(z). A non-deterministic trivial automaton is used for expressing the property
that each pair in the list is either a pair of an even number and an odd number,
or a pair of an odd number and an even number. Our new algorithm works well,
while the hybrid algorithm (which works only for deterministic trivial automata)
is not directly applicable.8

7 The encoding in [12] produces order-4 recursion schemes, while that of [14] produces
order-3 recursion schemes. An additional optimization is required to handle the
encoding of [12]: see Appendix D.

8 As mentioned in Section 6, Lester et al. [18] recently extended the hybrid algorithm
to deal with alternating Büchi automata.

Table 1. The result of experiments. Times are in seconds.

order hybrid new Γ1 Γ2

G3,1 3 0.002 0.021 61 41

G3,5 3 – 0.135 161 97

G3,10 3 – 0.382 286 167

G4,1 4 – 0.563 302 206

G4,5 4 – 14.856 1079 703

G4,10 4 – 43.815 2054 1328

order hybrid new Γ1 Γ2

Example1 2 0.002 0.002 15 13

Twofiles 3 0.001 0.228 468 187

FileWrong 3 0.001 0.116 398 142

FileOcamlc 3 0.003 1.162 1610 414

Lock2 3 0.013 98.785 2464 1191

Nondet 3 N.A. 0.013 77 63

6 Related Work

We have already discussed the main related work in Section 1. There are several
algorithms for the model checking of higher-order recursion schemes (some of
which are presented in the context of showing the decidability). Besides those
already mentioned [19, 12, 10, 15], Hague et al. [6] reduce the modal μ-calculus
model checking to a parity game over the configuration graph of a collapsi-
ble pushdown automaton. Aehlig [2] gives a trivial automata model checking
algorithm based on a finite semantics, which runs in a fixed-parameter non-
deterministic linear time in the size of the recursion scheme. For recursion
schemes with the so called safety restriction, Knapik et al. [9] give another
decision procedure, which reduces a model checking problem for an order-n re-
cursion scheme to that for an order-(n − 1) recursion scheme. As mentioned
already, however, the only practical previous algorithm (which was ever imple-
mented) is Kobayashi’s hybrid algorithm [10], to our knowledge. Its worst-case
complexity is hyper-exponential in the size of recursion schemes, unlike our new
algorithm. Recently, Lester et al. [18] extended the hybrid algorithm to deal with
alternating Büchi automata. As the basic mechanism for collecting type infor-
mation remains the same, their algorithm also suffers from the same worst-case
behavior as Kobayashi’s hybrid algorithm.

As mentioned already, though our new algorithm is type-based, it has been
inspired from game semantics [1, 19]. In the previous type-based approach [12],
the types of a function provide coarse-grained information about the function’s
behavior, in the sense that the types tell us information about complete runs of
the function. On the other hand, the game-semantic view provides more fine-
grained information, about partial runs of a function. For example, F : � → q0

belonging to the least fixedpoint of ExpandG,B means that F may be called in a
context where a tree of type q0 is required, not necessarily that F returns a tree
of type q0 for arbitrary arguments. This enabled us to collect type information
by a least fixedpoint computation, yielding a realistic linear time algorithm. A
price to pay is that the information is too fine-grained, so that, as observed
in Section 5, it is actually often slower than the hybrid algorithm though the
worst-case complexity of the latter is hyper-exponential.

As explained in Section 2, the model checking of higher-order recursion
schemes has been reduced to the type checking problem for an intersection type
system. Thus, our algorithm may have some connection to intersection type
inference algorithms [22, 7, 5]. The connection is however not so clear. To our
knowledge, the existing inference algorithms have a process corresponding to
β-normalization [5], so that even for terms without recursion, the worst-case
complexity of intersection type inference is non-elementary in the program size.

7 Conclusion

Studies of the model checking of higher-order recursion schemes have started
from theoretical interests [8, 9], but it is now becoming the basis of automated
verification tools for higher-order functional programs [12, 17, 16, 20]. Thus, it
is very important to develop an efficient model checker for higher-order recur-
sion schemes. The new algorithm presented in this paper is the first one that
is efficient both in theory (in the sense that it is fixed-parameter linear time)
and in practice (in the sense that it is runnable for recursion schemes of or-
der 3 or higher). The practical efficiency is however far from satisfactory (recall
Section 5), so that further optimization of the algorithm is necessary. As the
structure of the new algorithm is simple, we expect that it is more amenable to
various optimization techniques, such as BDD representation of types. A com-
bination of the hybrid and new algorithms also seems useful. It does not seem
so difficult to extend the new algorithm to obtain a practical fixed-parameter
polynomial time algorithm for the full modal μ-calculus; It is left for future work.

References

1. S. Abramsky and G. McCusker. Game semantics. In Computational Logic: Pro-
ceedings of the 1997 Marktoberdorf Summer School, pages 1–56. Springer-Verlag,
1999.

2. K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science, 3(3), 2007.

3. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software
via static analysis. In Proceedings of ACM SIGPLAN/SIGACT Symposium on
Principles of Programming Languages (POPL), pages 1–3, 2002.

4. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker Blast. International Journal on Software Tools for Technology Transfer,
9(5-6):505–525, 2007.

5. S. Carlier, J. Polakow, J. B. Wells, and A. J. Kfoury. System E: Expansion variables
for flexible typing with linear and non-linear types and intersection types. In
Proceedings of ESOP’04, volume 2986 of Lecture Notes in Computer Science, pages
294–309, 2004.

6. M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown au-
tomata and recursion schemes. In Proceedings of 23rd Annual IEEE Symposium
on Logic in Computer Science, pages 452–461. IEEE Computer Society, 2008.

7. A. J. Kfoury and J. B. Wells. Principality and type inference for intersection types
using expansion variables. Theor. Comput. Sci., 311(1-3):1–70, 2004.

8. T. Knapik, D. Niwinski, and P. Urzyczyn. Deciding monadic theories of hyperal-
gebraic trees. In TLCA 2001, volume 2044 of Lecture Notes in Computer Science,
pages 253–267. Springer-Verlag, 2001.

9. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In
FoSSaCS 2002, volume 2303 of Lecture Notes in Computer Science, pages 205–222.
Springer-Verlag, 2002.

10. N. Kobayashi. Model-checking higher-order functions. In Proceedings of PPDP
2009, pages 25–36. ACM Press, 2009. See also [13].

11. N. Kobayashi. TRecS: A type-based model checker for recursion schemes.
http://www.kb.ecei.tohoku.ac.jp/ koba/trecs/, 2009.

12. N. Kobayashi. Types and higher-order recursion schemes for verification of higher-
order programs. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pages 416–428, 2009. See also [13].

13. N. Kobayashi. Model checking higher-order programs. Available at
http://www.kb.ecei.tohoku.ac.jp/˜koba/papers/hmc.pdf. A revised and extended
version of [12] and [10], 2010.

14. N. Kobayashi and C.-H. L. Ong. Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. In Proceedings of ICALP 2009, volume
5556 of Lecture Notes in Computer Science, pages 223–234. Springer-Verlag, 2009.

15. N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-
calculus model checking of higher-order recursion schemes. In Proceedings of LICS
2009, pages 179–188. IEEE Computer Society Press, 2009.

16. N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and cegar for higher-
order model checking. In Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2011.

17. N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages (POPL),
pages 495–508, 2010.

18. M. M. Lester, R. P. Neatherway, C.-H. L. Ong, and S. J. Ramsay. Model checking
liveness properties of higher-order functional programs. Unpublished manuscript,
2010.

19. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In LICS 2006, pages 81–90. IEEE Computer Society Press, 2006.

20. C.-H. L. Ong and S. Ramsay. Verifying higher-order programs with pattern-
matching algebraic data types. In Proceedings of ACM SIGPLAN/SIGACT Sym-
posium on Principles of Programming Languages (POPL), pages 587–598, 2011.

21. J. Rehof and T. Mogensen. Tractable constraints in finite semilattices. Science of
Computer Programming, 35(2):191–221, 1999.

22. S. R. D. Rocca and B. Venneri. Principal type schemes for an extended type theory.
Theor. Comput. Sci., 28:151–169, 1984.

Appendix

A Subtyping

The subtyping relations θ ≤ θ′ and τ ≤ τ ′ are inductively defined by the following
rules.

q → q

τ ′ ≤ τ θ ≤ θ′

τ → θ ≤ τ ′ → θ′

∀j ∈ S′.θj ≤ θ′j S′ ⊆ S∧
j∈S θj ≤ ∧

j∈S′ θ′j

B Algorithmic Interpretation of Type Expansion Rules

When computing ExpandG,B(Γ) defined in Section 3.4, we need to find Γ ′, θ′,
and Γ1 such that Γ1�Γ ′ �B

P t : θ�θ′ and Γ1 ⊆ Γ , for given Γ , t, and θ based on the
rules for the type expansion relation Γ � Γ ′ �B

P t : θ � θ′. Figure 2 shows such an
algorithm ExpSub(Γ, t, θ), which returns a set of tuples (Γ ′, θ′, Γ1) mentioned
above.

C Proof of Completeness (Theorem 5)

C.1 Proof of Theorem 5

The following is the key lemma, which states that by repeated applications of the
transformation represented by the expansition relation �B

P , one can eventually
obtain a valid type judgment Γ �B t : q such that Γ contains only type bindings
generated by ExpandG,B.

Lemma 2. Let t be a term consisting of only non-terminals, T be a finite Σ-
labeled tree, and suppose t −→∗

G T . If T is accepted by B from q, then there exist
Γ1(= ∅), Γ2, . . . , Γ2m, Θ, and � such that:

(i) Γ2i+1 � Γ2i+2 �B
P t : q � q (for each i ∈ {0, . . . , m − 1});

(ii) Γ2i+1 ⊆ Expand�
G,B(

⋃
j≤2i Γj) for each i ∈ {1, . . . , m − 1}; and

(iii) �B R : Θ ∧ Γ2m ⊆ Θ ⊆ Expand�
G,B(

⋃
j≤2m Γj).

Proof. See Appendix C.2.

ExpSub(Γ, x t1 · · · tk, θ) = (* k may be 0 *)
let S = {θ1 | θ1 = τ1 → · · · → τk → θ′, x : θ1 ∈ Γ, θ 	P θ′}
in {(Θ, θ′, Γ ′) |

τ1 → · · · → τk → θ′ ∈ S,
Si = ExpSub(Γ, ti, τi)(for each i ∈ {1, . . . , k}),
(Θi, τ

′
i , Γi) ∈ Si,

Θ = {x : τ1 → · · · → τk → θ′} ∪ Θ1 ∪ · · · ∪ Θk,
Γ ′ = {x : τ ′

1 → · · · → τ ′
k → θ′} ∪ Γ1 ∪ · · · ∪ Γk}

ExpSub(Γ, a t1 · · · tk, θ) =
let S = {θ1 | θ1 = q1 → · · · → qn → q, (q, a, q1 · · · qn) ∈ Δ,

θ 	P qk+1 → · · · → qn → q}
in {(Θ, θ′, Γ ′) |

τ1 → · · · → τk → θ′ ∈ S,
Si = ExpSub(Γ, ti, τi)(for each i ∈ {1, . . . , k}),
(Θi, τ

′
i , Γi) ∈ Si,

Θ = Θ1 ∪ · · · ∪ Θk,
Γ ′ = Γ1 ∪ · · · ∪ Γk}

ExpSub(Γ, λx.t, τ → θ) =
let S = ExpSub(Γ ∪ {x : τ}, t, θ)
in {(Θ, τ ′ → θ′, Γ ′) |

(Θ ∪ {x : τ}, θ′, Γ ′ ∪ {x : τ ′}) ∈ S, x �∈ dom(Γ ′)}
ExpSub(Γ, t,

V
i∈I θi) =

let Si = ExpSub(Γ, t, θi) (for each i ∈ I)
in {(S

i∈I Θi,
V

i∈I θ′
i,

S
i∈I Γi) | (Θi, θ

′
i, Γi) ∈ Si for each i ∈ I}

Fig. 2. Algorithm ExpSub

Lemma 2 applies only to recursion schemes that generate finite trees. To deal
with a general recursion scheme G = (Σ, {F1, . . . , Fm},R, S), we construct an
approximation G(�) = (Σ ∪ {⊥},N (�),R(�), S(0)) where N (�) and R(�) are:

N (�) = {F (k)
i |1 ≤ i ≤ m, 0 ≤ k ≤ �}

R(�) = {F (k)
i �→ [F (k+1)

1 /F1, . . . , F
(k+1)
m /Fm]ti | 1 ≤ i ≤ m, 0 ≤ k < �}

∪{F (�)
i �→ λx̃.⊥ | 1 ≤ i ≤ m}

Here, ⊥ is the special terminal of arity 0, used in the definition of [[G]].
Lemma 2 guarantees that if G(�) is well-typed, then (a superset of) a type

environment for G(�) can be obtained by repeatedly applying ExpandG,B to
{S(0) : q0}. Let Γ be a type environment such that dom(Γ) ⊆ N (�) and let
Collapse(Γ) be {F : θ | F (k) : θ ∈ Γ}. The following lemma establishes a rela-
tionship between the typings of G(�) and G.

Lemma 3 ([13], Section 5.3.3). Suppose �B⊥ G(�) : Γ ′. If � is sufficiently
large, then �B G : Γ for some Γ ⊆ Collapse(Γ ′).

Now we are ready to prove the completeness.

θ1 	P θ2

x : θ1 � x : θ2 �B
O x : θ1 � θ1

(O-VarP)

θ1 	O θ2

x : θ1 � x : θ1 �B
O x : θ1 � θ2

(O-VarO)

Γ1 � Γ ′
1 �B

O t1 : (τ → θ) � (τ ′ → θ′) Γ2 � Γ ′
2 �B

O t2 : τ � τ ′′

(Γ1 ∪ Γ2) � (Γ ′
1 ∪ Γ ′

2) �B
O t1t2 : θ � θ′ (O-App)

(Γ1, x : τ1) � (Γ2, x : τ2) �B
O t : θ1 � θ2

Γ1 � Γ2 �B
O λx.t : (τ1 → θ1) � (τ2 → θ2)

(O-Abs)

∅ � ∅ �B
O t1 : � � (� → · · · → �| {z }

n+1

→ q)

∅ � ∅ �B
O t1t2 : � � (� → · · · → �| {z }

n

→ q)
(O-TopFun)

∅ � ∅ �B
O x : � � (� → · · · → � → q)

(O-TopVar)

∀i ∈ S.(Γi � Γ ′
i �B

O t : θi � θ′
i) ∀i ∈ S′ \ S.(∅ � ∅ �B

O t : � � θ′
i) S ⊆ S′

(
S

i∈S Γi) � (
S

i∈S Γ ′
i) �B

O t : (
V

i∈S θi) � (
V

i∈S′ θ′
i)

(O-INT)

Fig. 3. The relation Γ � Γ ′ �B
O t : θ � θ′

Proof of Theorem 5 Suppose that [[G]] is accepted by B⊥. Let � be a sufficiently
large number that satisfies Lemma 3. By the construction of G(�), [[G(�)]] is also
accepted by B⊥. By Lemma 2, we have Γ ′ such that �B⊥ G(�) : Γ ′ and Γ ′ ⊆
Expandm

G(�),B({S(0) : q0}) for some m. By Lemma 3, we have Γ ′′ such that
�B G : Γ ′′ and Γ ′′ ⊆ Collapse(Γ ′) ⊆ Collapse(Expandm

G(�),B({S(0) : q0})) ⊆
Expandm

G,B({S : q0}). Let Γr be the final value of Γ in the new algorithm. By
the standard fixedpoint theorem, Γr ⊇ Γ ′′ � S : q0, so that the algorithm must
output “yes”. ��

C.2 Proof of Lemma 2

To prove Lemma 2, we need to strengthen the statement by using another rela-
tion Γ �Γ ′ �B

O t : θ�θ′, which describes an expansion of types by the environment’
move. It is defined by the rules in Figure 3. For example, using O-VarP, we can
derive (F :� → q0)� (F : q1 → q0) �B

O F : (� → q0) � (� → q0), which represents
the move of an environment (or, the function F) that requests an argument of
type q1 in response to the request for an output of type q0. There is no rule
for constants; this is because the term t in Lemma 7 does not contain terminal
symbols.

The relations Γ � Γ ′ �B
P t : θ � θ′ and Γ � Γ ′ �B

O t : θ � θ′ satisfy the
following properties, which follow by straightforward induction on the derivations
of Γ � Γ ′ �B

P t : θ � θ′ and Γ � Γ ′ �B
O t : θ � θ′.

Lemma 4. If Γ � Γ ′ �B
P t : θ � θ′, then Γ ′ �B t : θ′, Γ �O Γ ′, and θ �P θ′.

Lemma 5. If Γ � Γ ′ �B
O t : θ � θ′, then Γ �B t : θ, Γ �P Γ ′, and θ �O θ′.

The rules for Γ � Γ ′ �B
P t : θ � θ′ and Γ � Γ ′ �B

O t : θ � θ′ can be interpreted as
those for transforming derivations for Γ � t : θ. (In fact, without that purpose,
we could define Γ � Γ ′ �B

O t : θ � θ′ as Γ �B t : θ ∧ Γ �P Γ ′ ∧ θ �O θ′.) We
define the consistency and stability of derivations of Γ � Γ ′ �B

P t : θ � θ′ and
Γ � Γ ′ �B

O t : θ � θ′ as follows.

Definition 2. A derivation πP of Γ ′ � Γ ′′ �B
P t : θ′ � θ′′ is consistent with a

derivation πO of Γ �Γ ′ �B
O t : θ�θ′ if the lefthand side of πP matches that of πO,

and for each subterm u of t, the corresponding types θ1, θ2, and θ3 assigned in
πO and πP satisfies θ1 �O θ2 = θ3 or θ1 = θ2 �P θ3. Similarly, a derivation πO

of Γ ′ � Γ ′′ �B
O t : θ′ � θ′′ is consistent with a derivation πP of Γ � Γ ′ �B

P t : θ � θ′

if the lefthand side of πO matches that of πP .
A derivation for Γ � Γ ′ �B

P t : θ � θ′ is stable if in every node Γ1 � Γ ′
1 �B

P u :
θ1 � θ′1 of the derivation tree, Γ1 = Γ ′

1 and θ1 = θ′1.

Remark 2. More formally, consistent derivations should be inductively defined.

For example, the derivation
π1

Γ1,1�Γ1,2�B
P

t1:(τ1→θ1)�(τ2→θ2)

π′
1

Γ2,1�Γ2,2�B
P

t2:τ′
1�τ2

Γ1,1∪Γ2,1�Γ1,2∪Γ2,2�B
P t1t2:θ1�θ2

is con-

sistent with
π0

Γ1,0�Γ1,1�B
O

t1:(τ0→θ0)�(τ1→θ1)

π′
0

Γ2,0�Γ2,1�B
O

t2:τ0�τ′
1

(Γ1,0∪Γ2,0)�(Γ1,1∪Γ2,1)�B
Ot1t2:θ0�θ1

if π1
Γ1,1�Γ1,2�B

P t1:(τ1→θ1)�(τ2→θ2)

is consistent with π0
Γ1,0�Γ1,1�B

Ot1:(τ0→θ0)�(τ1→θ1)
, and π′

1
Γ2,1�Γ2,2�B

P t2:τ ′
1�τ2

is consistent

with π′
0

Γ2,0�Γ2,1�B
Ot2:τ0�τ ′

1
.

Lemma 6 (inverse substitution). If Γ � Γ ′ �B
P [t/x]u : θ � θ′, then we have:

Γ = Γ1 ∪ Γ2

Γ ′ = Γ ′
1 ∪ Γ ′

2

(Γ1, x : τ ′) � (Γ ′
1, x : τ ′) �B

P u : θ � θ′

Γ2 � Γ ′
2 �B

P t : τ � τ ′

for some Γ1, Γ
′
1, τ, τ

′.
Similarly, if Γ � Γ ′ �B

O [t/x]u : θ � θ′, then we have:

Γ = Γ1 ∪ Γ2

Γ ′ = Γ ′
1 ∪ Γ ′

2

(Γ1, x : τ) � (Γ ′
1, x : τ) �B

O u : θ � θ′

Γ2 � Γ ′
2 �B

O t : τ � τ ′

for some Γ1, Γ
′
1, τ, τ

′.

Proof. (Γ1, x : τ ′) � (Γ ′
1, x : τ ′) �B

P u : θ � θ′ can be obtained by replacing each
sub-derivation of the form Δi � Δ′

i �B
P t : θi � θ′i with x : θ′i � x : θ′i �B

P x : θi � θ′i. τ
and τ ′

i are the intersections of all θi and θ′i respectively. Γ2 and Γ ′
2 are the unions

of all Δi and Δ′
i respectively.

Similarly, (Γ1, x :τ)�(Γ ′
1, x : τ) �B

O u : θ�θ′ can be obtained by replacing each
sub-derivation of the form Δi �Δ′

i �B
O t : θi �θ′i with x :θi �x : θi �B

O x : θi �θ′i. ��

We are now ready to prove the following strengthened version of Lemma 2.

Lemma 7. Suppose G is in normal form. Let t be a term consisting of only non-
terminals, T be a finite Σ-labeled tree, and suppose t −→∗

G T . If T is accepted
by B from q, then there exist Γ0(= ∅), Γ1, Γ2, . . . , Γ2m, Θ, � such that:

(i) Γ0 � Γ1 �B
O t : � � q;

(ii) Γ2i+1 � Γ2i+2 �B
P t : q � q (for each i ∈ {0, . . . , m − 1});

(iii) Γ2i � Γ2i+1 �B
O t : q � q (for each i ∈ {1, . . . , m − 1});

(iv) Γ2i+1 ⊆ Expand�
G,B(

⋃
j≤2i Γj) for every i ∈ {0, . . . , m − 1};

(v) There exists Θ such that �B R : Θ∧Γ2m ⊆ Θ ⊆ Expand�
G,B(

⋃
j≤2m Γj);

(vi) Γi+1 � Γi+2 �ψ t : q � q is consistent with Γi � Γi+1 �ψ t : q � q

where ψ ∈ {P, O} and P = O, O = P ; and
(vii) The derivation for Γ2m−1 � Γ2m �B

P t : q � q is stable.

Proof. We fix � to be |Γmax| + 1, so that Expand�
G,B(Γ) = Expand�+1

G,B(Γ) for
any Γ .

The proof proceeds by induction on the length of the sequence t −→∗
G T .

(Note that the length of the sequence t −→∗
G T is greater than 0, as t does not

contain terminals.)
Suppose t = F s̃ −→G [s̃/x̃]u −→∗

G T , where R(F) = λx̃.u. By the normal
form assumption, either u is of the form a x1 · · · xk (where k may be 0), or u
does not contain terminals.

If u is of the form a x1 · · · xk, then [s̃/x̃]u and T must be of the form
a s1 · · · sk and a T1 · · · Tk, with sj −→∗

G Tj(j ∈ {1, . . . , k}). As T is accepted
by B from q, there exists q1, . . . , qk such that (q, a, q1 · · · qk) ∈ ΔB and T1, . . . , Tk

are accepted from q1, . . . , qk. By the induction hypothesis (note that s̃ consist of
only non-terminals), we have:

Γ2i,j � Γ2i+1,j �B
O uj : q?

j � qj (q?
j = � if i = 0 and qj otherwise)

Γ2i+1,j � Γ2i+2,j �B
P uj : qj � qj

Γ2i+1,j ⊆ Expand�
G,B(

⋃
i′≤2i Γi′,j)

�B R : Θj ∧ Γ2m ⊆ Θj ⊆ Expand�
G,B(

⋃
j≤2m Γj)

Γ2mj−1,j = Γ2mj ,j

for every j ∈ {1, . . . , k}. Let m be max (m1, . . . , mk) + 1 and let Γi,j be Γ2mj ,j

for every 2mj < i ≤ 2m − 2. Then, the required conditions hold for:

Γ0 = Γ1 = ∅
Γ2 = F : � → · · · → � → q
Γi+2 =

⋃
j∈{1,...,k} Γi,j , F : q1 → · · · → qk → q (i ∈ {1, . . . , 2m − 2})

Θ = {F : q1 → · · · → qk → q} ∪ (
⋃

j∈{1,...,k} Θj)

Note that the initial sequence of derivations is obtained by:

∅ � ∅ �B
O F : � � (� → · · · → � → q)

Γ0 � Γ1 �B
O F s1 · · · sk : � � q

∅ � (F : � → · · · → � → q) �B
P F : (� → · · · → � → q) � (� → · · · → � → q)

Γ1 � Γ2 �B
P F s1 · · · sk : q � q

(F : � → · · · → � → q) � (F : q1 → · · · → qk → q) �B
O

F : (� → · · · → � → q) � (� → · · · → � → q)
Γ0,j � Γ1,j �B

O sj : � � qj for each j ∈ {1, . . . , k}
Γ2 � Γ3 �B

O F s1 · · · sk : q � q

(F : q1 → · · · → qk → q) � (F : q1 → · · · → qk → q) �B
P

F : (� → · · · → � → q) � (q1 → · · · → qk → q)
Γ1,j � Γ2,j �B

P sj : qj � qj for each j ∈ {1, . . . , k}
Γ3 � Γ4 �B

P F s1 · · · sk : q � q

If u consists only of non-terminal symbols, then by the induction hypothesis,
we have:

Γ ′
2i � Γ ′

2i+1 �B
O [s1/x1, . . . , sk/xk]u : q? � q

Γ ′
2i+1 � Γ ′

2i+2 �B
P [s1/x1, . . . , sk/xk]u : q � q

Γ ′
2i+1 ⊆ Expand�

G,B(
⋃

j≤2i Γ ′
j)

�B R : Θ′

Γ ′
2m′ ⊆ Θ′ ⊆ Expand�

G,B(
⋃

j≤2m′ Γ ′
j)

Γ ′
2m′ = Γ ′

2m′−1

By Lemma 6, we have

(Γ ′
2i,1, x̃ : τ̃2i) � (Γ ′

2i+1,1, x̃ : τ̃2i) �B
O u : q? � q

Γ ′
2i,2 � Γ ′

2i+1,2 �B
O s̃ : τ̃2i � τ̃2i+1

(Γ ′
2i+1,1, x̃ : τ̃2i+2) � (Γ ′

2i+2,1, x̃ : τ̃2i+2) �B
P u : q � q

Γ ′
2i+1,2 � Γ ′

2i+2,2 �B
P s̃ : τ̃2i+1 � τ̃2i+2

Γ ′
i = Γ ′

i,1 ∪ Γ ′
i,2

Here, Γ1 � Γ2 �B
P s̃ : τ̃ � τ̃ ′ means that there exist Γ1,i and Γ2,i (i ∈ {1, . . . , k})

such that Γ1,i�Γ2,i �B
P si : τi�τ ′

i for each i ∈ {1, . . . , k} with Γ1 = Γ1,1∪· · ·∪Γ1,k

and Γ2 = Γ2,1 ∪ · · · ∪ Γ2,k. Similarly for Γ1 � Γ2 �B
O s̃ : τ̃ � τ̃ ′.

Furthermore, by the construction of such derivations in the proof of Lemma 6,
the derivations for Γ ′

2i,2 � Γ ′
2i+1,2 �B

O s̃ : τ̃2i � τ̃2i+1 and Γ ′
2i+1,2 � Γ ′

2i+2,2 �B
P s̃ :

τ̃2i+1 � τ̃2i+2 are consistent.
Now, by the consistency condition, τ̃2i, τ̃2i+1, τ̃2i+2 can be divided into two

parts:
τ̃2i = τ̃2i,1 ∧ τ̃2i,2

τ̃2i+1 = τ̃2i+1,1 ∧ τ̃2i+1,2

τ̃2i+2 = τ̃2i+2,1 ∧ τ̃2i+2,2

τ̃2i,1 �O τ̃2i+1,1 = τ̃2i+2,1

τ̃2i,2 = τ̃2i+1,2 �P τ̃2i+2,2

Thus, from (Γ ′
2i+1,1, x̃ : τ̃2i+2) � (Γ ′

2i+2,1, x̃ : τ̃2i+2) �B
P u : q � q, we obtain

(Γ ′
2i+1,1, x̃ : τ̃2i,1 ∧ τ̃2i+2,2) � (Γ ′

2i+2,1, x̃ : τ̃2i+2) �B
P u : q � q.

Therefore, we have:

Γ ′
2i+1,1 � Γ ′

2i+2,1 �B
P λx̃.u : (τ̃2i,1 ∧ τ̃2i+2,2 → q) � (τ̃2i+2 → q) (1)

The derivations for s̃ can also be split as follows.

Γ ′
2i,2,1 � Γ ′

2i+1,2,1 �B
O s̃ : τ̃2i,1 � τ̃2i+1,1 (2)

Γ ′
2i,2,2 � Γ ′

2i+1,2,2 �B
O s̃ : τ̃2i,2 � τ̃2i+1,2 (3)

Γ ′
2i+1,2,1 � Γ ′

2i+2,2,1 �B
P s̃ : τ̃2i+1,1 � τ̃2i+2,1 (4)

Γ ′
2i+1,2,2 � Γ ′

2i+2,2,2 �B
P s̃ : τ̃2i+1,2 � τ̃2i+2,2 (5)

Γ ′
2i,2 = Γ ′

2i,2,1 ∪ Γ ′
2i,2,2 (6)

Γ ′
2i+1,2 = Γ ′

2i+1,2,1 ∪ Γ ′
2i+1,2,2 (7)

From these, we obtain:

(i) (Γ ′
2i,2,1 ∪ Γ ′

2i,2,2, F : τF,2i) � (Γ ′
2i,2,1 ∪ Γ ′

2i+1,2,2, F : τF,2i) �B
O F s̃ : q? � q

(ii) (Γ ′
2i,2,1 ∪ Γ ′

2i+1,2,2, F : τF,2i)
�(Γ ′

2i,2,1 ∪ Γ ′
2i+2,2,2, F : τ̃2i,1 ∧ τ̃2i+2,2 → q) �B

P F s̃ : q � q
(iii) (Γ ′

2i,2,1 ∪ Γ ′
2i+2,2,2, F : τ̃2i,1 ∧ τ̃2i+2,2 → q)

�(Γ ′
2i+1,2,1 ∪ Γ ′

2i+2,2,2, F : τ̃2i+2 → q) �B
O F s̃ : q � q

(iv) (Γ ′
2i+1,2,1 ∪ Γ ′

2i+2,2,2, F : τ̃2i+2 → q) � (Γ ′
2i+2,2, F : τ̃2i+2 → q) �B

P F s̃ : q � q

Here, τF,2i is � if i = 0, and τ̃2i → q otherwise. (i) is obtained from (3) (and
Γ ′

2i,2,1 � Γ ′
2i,2,1 �B

O s̃ : τ̃2i,1 � τ̃2i,1). (ii) is obtained from (5) and (F : τF,2i) �

(F : τ̃2i,1 ∧ τ̃2i+2,2 → q) �B
P F : (τ̃2i,1 ∧ τ̃2i+2,2 → q) � (τ̃2i,1 ∧ τ̃2i+2,2 → q). (iii)

and (iv) follow from (2) and (4) respectively.
Now, let m = 2m′ and define Γ0, . . . , Γ2m, Θ by:

Γ4i = Γ ′
2i,2, F : τF,2i

Γ4i+1 = Γ ′
2i,2,1 ∪ Γ ′

2i+1,2,2, F : τF,2i

Γ4i+2 = Γ ′
2i,2,1 ∪ Γ ′

2i+2,2,2, F : τ̃2i,1 ∧ τ̃2i+2,2 → q
Γ4i+3 = Γ ′

2i+1,2,1 ∪ Γ ′
2i+2,2,2, F : τ̃2i+2 → q

Θ = Θ′ ∪ {F : τ̃2m → q}
By the above construction, we have consistent derivations for:

Γ0 � Γ1 �B
O t : � � q

Γ2i � Γ2i+1 �B
O t : q � q (for each i ∈ {1, . . . , m − 1})

Γ2i+1 � Γ2i+2 �B
P t : q � q (for each i ∈ {0, . . . , m − 1})

Furthermore, Γ2m−1 �O Γ2m �B
P t : q �P q is stable.

By the definition of Θ and Γ2m, and the induction hypothesis Γ ′
2m′ ⊆ Θ′, we

have Γ2m = Γ4m′ = Γ ′
2m′,2 ∪ {F : τ̃2m′ → q} ⊆ Θ. From (1), we obtain

Γ ′
2m′ �B

P λx̃.u : τ̃2m′ → q,

so that we have � R : Θ.

It remains to check Γ2i+1 ⊆ Expand�
G,B(

⋃
j≤2i Γj) and Θ ⊆ Expand�

G,B(
⋃

j≤2m Γj).
We show that

Γ ′
2i+1 ⊆ Expand�

G,B(
⋃

j≤4i Γj)
Γ ′

2i+2,1 ∪ {F : τ̃2i+2 → q} ⊆ Expand�
G,B(

⋃
j≤4i+2 Γj)

holds for every i ∈ {0, . . . , m′−1} by induction on i. For the base case (i.e. when
i = 0),

Γ ′
2i+1 ⊆ Expand�

G,B(
⋃

j≤4i

Γj) = Expand�
G,B(∅)

follows immediately from the hypothesis Γ ′
2i+1 ⊆ ExpandG,B(

⋃
j≤2i Γ ′

j) of the
outermost induction. Γ ′

2i+2,1 ∪ {F : τ̃2i+2 → q} ⊆ Expand�
G,B(

⋃
j≤4i+2 Γj) (for

i = 0) then follows from (1).
For the induction step (i.e. when i > 0), by the induction hypothesis, we

have:
Γ ′

2i,1 ⊆ Expand�
G,B(

⋃
j≤4i−2

Γj)

and
Γ ′

2i−1 ⊆ Expand�
G,B(

⋃
j≤4i−4

Γj).

Thus, by using the outer induction hypothesis, we get

Γ ′
2i+1 ⊆ Expand�

G,B(
⋃

j≤2i

Γ ′
j) ⊆ Expand�

G,B(
⋃

j≤4i

Γj).

By using (1), we obtain Γ ′
2i+2,1 ∪ {F : τ̃2i+2 → q} ⊆ Expand�

G,B(
⋃

j≤4i+2 Γj) as
required.

Thus, we have
Γ4i+1 ⊆ Expand�

G,B(
⋃

j≤4i Γj)
Γ4i+3 ⊆ Expand�

G,B(
⋃

j≤4i+2 Γj),

i.e., Γ2i+1 ⊆ Expand�
G,B(

⋃
j≤2i Γj) for 0 ≤ i ≤ m − 1.

Finally, the above condition also implies
⋃

j≤2m′ Γ ′
j ⊆ Expand�

G,B(
⋃

j≤2m Γj),
so that we have:

Θ = Θ′∪{F :τ̃2m → q} ⊆ Expand�
G,B(

⋃
j≤2m′

Γ ′
j)∪{F :τ̃2m → q} ⊆ Expand�

G,B(
⋃

j≤2m

Γj)

as required. ��

D Optimization

As mentioned in the footnote of Section 5, the implementation of the new al-
gorithm times out for the order-4 encodings of resource usage verification prob-
lems [12]. That is because the least-fixedpoint of ExpandG,B is still too large
for those order-4 recursion schemes.

One way to overcome that problem is to interleave the least and greatest
fixedpoint computations (the 2nd and 3rd lines of the new algorithm). Let us
consider a finite increasing sequence of type environments: Θ1 ⊆ Θ2 ⊆ · · · ⊆
Θm(= Γmax), and define Expand(j)

G,B by: Expand(j)
G,B(Γ) = ExpandG,B(Γ)∩Θj .

We modify the new algorithm as follows.

OPTIMIZED ALGORITHM:
1. Γ1 := {S : q0}; j := 1;

2. Repeat Γ1 := Expand(j)
G,B(Γ1) until Γ1 = Expand(j)

G,B(Γ1);
3. Γ2 := Γ1;
4. Repeat Γ2 := ShrinkG,B(Γ2) until Γ = ShrinkG,B(Γ2);
4. If S : q0 ∈ Γ2 then output ‘‘yes’’

else if j = m then output ‘‘no’’ else (j := j + 1; goto 2).

Since a fixedpoint of ShrinkG,B is computed before the least fixedpoint of
ExpandG,B is computed, the optimized algorithm often terminates faster if [[G]]
is accepted by B. (On the other hand, the refutation of the property does not get
faster; we need to run a similar algorithm for the negation of the automaton.)

We have implemented the optimized algorithm, where Θi is defined by:

Θi = {F : θ | θ :: sort(F), width(θ) ≤ i}.

Here, width(θ) is the largest size of intersections, defined by:

width(q) = 1 width(θ1 ∧ · · · ∧ θk → θ) = max (k, width(θ1), . . . , width(θk), width(θ))

Table 2 shows the running times for the optimized algorithm. Twofiles-4,
FileOcamlc-4, and Lock2-4 are order-4 recursion schemes obtained by using the
original encoding of resource usage verification problems [12]. We can observe
good speed-ups for those order-4 recursion schemes (for which the unoptimized
version times out) and for Lock2.

order opt (sec.)

G4,10 4 13.580

Example1 2 0.001

Twofiles 3 0.145

FileOcamlc 3 0.486

Lock2 3 4.794

Nondet 3 0.001

Twofiles-4 4 7.142

FileOcamlc-4 4 1.737

Lock2-4 4 22.142

Table 2. Benchmark results for an optimized version

