A Type System Equivalent to the Modal Mu-Calculus Model Checking of
Higher-Order Recursion Schemes

N. Kobayashi

Tokohu University

Abstract

The model checking of higher-order recursion schemes
has important applications in the verification of higher-
order programs. Ong has previously shown that the modal
mu-calculus model checking of trees generated by order-
n recursion scheme is n-EXPTIME complete, but his algo-
rithm and its correctness proof were rather complex. We
give an alternative, type-based verification method: Given
a modal mu-calculus formula, we can construct a type sys-
tem in which a recursion scheme is typable if, and only if,
the (possibly infinite, ranked) tree generated by the scheme
satisfies the formula. The model checking problem is thus
reduced to a type checking problem. Our type-based ap-
proach yields a simple verification algorithm, and its cor-
rectness proof (constructed without recourse to game se-
mantics) is comparatively easy to understand. Further-
more, the algorithm is polynomial-time in the size of the
recursion scheme, assuming that the sizes of types and the
formula are bounded above by a constant.

1 Introduction

The model checking of infinite structures generated by
higher-order recursion schemes has drawn growing atten-
tion from both theoretical and practical communities. From
atheoretical perspective, the recent interest was sparked by
the discovery of Knapik et a. [9] that higher-order recur-
sion schemes satisfying a syntactic constraint called safety
generate the same class of (possibly infinite, ranked) trees
as higher-order pushdown automata. Remarkably they also
showed that these trees have decidable monadic second-
order (MSO) theories [10], subsuming earlier well-known
M SO decidability results for regular (or order-0) trees [16]
and algebraic (or order-1) trees[2]. (MSO logic isakind of
gold standard of expressivity for logics that describe com-
putational properties: all the standard temporal logics can
be embedded into it, and it is hard to extend it meaningfully
without sacrificing decidability where it holds.) Ong [15]
has subsequently shown that the modal mu-calculus model

C.-H. L. Ong
University of Oxford

checking problem for trees generated by arbitrary order-
n recursion schemes is n-EXPTIME complete (and hence
these trees have decidable M SO theories); further [5] these
schemes are equi-expressive with a new class of automata,
caled collapsible pushdown automata. On the practica
side, Kobayashi [11] hasrecently shown that the verification
of higher-order programs can be reduced to that of higher-
order recursion schemes. He constructed a transformation
of ahigher-order program into arecursion scheme that gen-
erates a (possibly infinite) tree representing all the possible
event sequences of the program; thus, temporal properties
of the program can be verified by model-checking the re-
cursion scheme.

Ong's algorithm for verifying higher-order recursion
schemes is rather complex and probably hard to under-
stand: The algorithm reduces the model-checking problem
to a parity game over variable profiles, and its correctness
proof relies on game semantics [7]. Hague et al. [5] gave
an alternative proof via a reduction of the model checking
of recursion schemes to that of collapsible pushdown au-
tomata; their reduction is also based on game semantics.
Kobayashi [11] showed that given a Biichi tree automaton
with atrivial acceptance condition (aclasswhich Aehlig [1]
has called trivial automata), one can construct an intersec-
tion type system in which arecursion scheme is typable if,
and only if, the tree generated by the scheme is accepted by
the automaton. (Prior to Kobayashi’s work [11], Aehlig [1]
has also proposed a verification method for the same class
of trivial automata. Kobayashi’s type system is closely re-
lated to Aehlig's, which was not presented in the form of a
type system: See Section 6.) The advantages of the type
system are that the correctness of the algorithm is much
simpler, and it is easier to optimize the algorithm in a num-
ber of special cases, by standard methods for type infer-
ence. Specifically, Kobayashi [11] has shown that under
the assumption that the sizes of types and the automaton
are bounded above by a constant, the verification algorithm
runsin time linear in the size of the recursion scheme.

This paper builds on Kobayashi’s type system [11] and
extends it to a type system capable of the modal mu-
calculus model checking of trees generated by higher-order

recursion schemes. Equivaently (thanks to Emerson and
Jutla[3]), given an alternating parity tree automaton .4, one
can construct atype system 74 in which arecursion scheme
G iswell-typed if, and only if, the tree generated by G isac-
cepted by A. Thus, the modal mu-calculus model checking
problem is reduced to a type-checking problem.

Our type-based verification algorithm has a number of
advantages:

e Thealgorithmissimple: the type system, to which the
model checking problem isreduced, is defined by induction
over four rules. The correctness proof is, arguably, consid-
erably easier to understand than that of Ong's original ap-
proach [15]. The correctness of the algorithm isdivided into
two parts: the correctness of the type system, and that of the
type-checking algorithm. For both parts, standard methods
(such as proving type soundness via type preservation) re-
main applicable, although a part of the proofsfor reasoning
about parity conditions is entirely novel and non-trivial. It
isalso worth noting that thisisthefirst proof of Ong'sresult
without recourse to game semantics.

e Itismuch easier to discuss the complexity and possi-
ble optimization of the verification algorithm. In fact, our
type-based verification algorithm runsin time polynomial in
the size of the recursion scheme under the assumption that
the sizes of types and the automaton are bounded above by
a constant. In contrast, Ong's algorithm [15] runs in time
n-EXPTIME in the size of the scheme, under the same as-
sumption.

e Framed as atype system, we believe that it is easy to
modify the verification algorithm to deal with various exten-
sions of higher-order recursion schemes. For example, one
can extend higher-order recursion schemes with a limited
form of polymorphism that admits (say) a non-terminal of
kind (o0 — o) A ((o0 — o) — (o — o)) where o describes
trees, and also with finite data domains such as booleans:
See Section 7.

From atype-theoretic point of view, the type system has
a number of novel features which we think are interesting:
(i) variable bindings in a type environment have flags and
priorities to express when the variables can be used, and
(i) the well-typedness of recursive definitionsis defined via
the winning condition of a parity game. The latter isanon-
trivial generalization of the usual treatment of recursion in
type systems for programming languages.

The rest of this paper is organized as follows. Sec-
tion 2 gives preliminary definitions. Section 3 defines the
type system equivalent to the model-checking of recursion
schemes, and Section 4 proves its correctness. Section 5
discusses the type-checking algorithm (which serves as a
model-checking algorithm for recursion schemes) and its
complexity. Section 6 discusses related work and Section 7
concludes.

2 Preliminaries

This section reviews basic definitions used throughout
the paper. We first review the definition of higher-order re-
cursion schemes in Section 2.1. We then review the defini-
tion of alternating parity tree automata in Section 2.2. Al-
ternating parity tree automata are used for expressing prop-
erties of infinite trees. They are equi-expressive with logics
such as MSO and modal p-calculus. Finally, we review the
definition of parity games [4] in Section 2.3. Parity games
are often used in the context of modal p-calculus model
checking; in fact, Ong's algorithm [15] reduces the model
checking of higher-order recursion schemes to the solvabil-
ity of a parity game. We shall use it for defining the type
system (more specifically, for the purpose of typing recur-
sive definitions).

2.1 Higher-Order Recursion Schemes

A higher-order recursion scheme is a grammar for de-
scribing an infinite tree. The set of kinds! is defined by:

K:i=0|Kl — Ko

Intuitively, o describes trees, while k1 — ko describes a
function that takes an entity of kind «; and returns an entity
of kind k5. The order and arity of «, written ord(x) and
arity(r) respectively, are defined by:

ord(o) :=0

arity(o) := 0 arity(k1 — ko) := arity(ke) + 1

A (deterministic) higher-order recursion scheme (or re-
cursion scheme, for short) G is a quadruple (3, NV, R, S),
where

e Y isaranked alphabet i.e. a map from a finite set of
symbols called terminals to kinds of order 0 or 1.

e N isamap from a finite set of symbols called non-
terminals to kinds.

e R is a map from the set of non-terminas
(i.e. dom(N)) to terms of the form \z.t. 2 Here, 7 abbre-
viates a sequence of variables, and ¢ is a term constructed
from non-terminals, terminals, and variables (see below).

e Sisaspecia non-terminal called the start symbol.
We require that N'(S) = o. The set of (typed) terms is
defined in the standard manner: A symboal (i.e., aterminal,
non-terminal, or variable) of kind x isaterm of kind «. If
terms t; and ¢, have kinds k1 — ko and k; respectively,
then ¢, to isatermof kind k.. For esch R(F) = \2.t, F &
and ¢ must be terms of kind o, and the variables that occur

1They are usually called types [15]. We use the term “kinds’ to avoid
confusion with the intersection types introduced later.

2Thus we assume that recursion schemes are deter ministic in this paper.

3By the definition of terms, ¢ does not contain A-abstractions. We think
however that the type system presented in Section 3 is correct even if \-
abstractions are allowed in ¢.

ord(k1 — ko) := maz(ord(ky1) + 1, ord(k2))

int are contained in z. The order of arecursion scheme is
the highest order of its non-terminals.

By abuse of notation, we often writea € X and F € N
fora € dom(X) and F € dom(N).

The rewriting relation — ¢ is defined inductively by:

o F's —g [s/x]tif R(F) = \T.t.
o Ift —g ¢/, thents —¢ t's and st —¢ st'.

We omit the subscript G whenever it is clear from the con-
text.

Let A beaset of symbols. A A-labelled treeisjust apar-
tial functiont from {1, ..., n}* (forsomefixedn > 1)to A
such that dom(t) is prefix-closed. Note that ¢ is unranked
i.e. nodes in ¢ that have the same label are not required to
have the same number of children. When considering the
possibly infinite term-trees that are generated by recursion
schemes, we assume a given ranked alphabet . (say). Let
n be the largest arity of symbolsin X; a X-labelled treeis
thus a partial function ¢ from {1,...,n}* to dom(X) such
that dom(t) is prefix-closed. Further, ¢ is said to be ranked
just if whenever t(w) = a and arity(X(a)) = m, then
{i |wi € dom(t)} ={1,...,m}. A (possibly infinite) se-
quence r over {1,...,n} isapath of ¢ if every finite prefix
of wisin dom(t).

We often use the usual term representation for trees. For
example, wewritea c (b c) for the tree:

{e—a,1—c,2—Db,21+ c}.
Given aterm ¢, we define a (finite) tree t- by:

f if tisatermina f
tt =< ittt iftisof theformt ity andtyt # L
il otherwise

For example, (f (F a)b)" = f L b. Let C bethe partial
order on dom (%) U {L} defined by Va € dom(X).L C
a. It is extended to a partial order on treesby: ¢ C s iff
Yw € dom(t).(w € dom(s) At(w) C s(w)). For example,
1CfLLEfLbOC fab. Foradirected set T of trees,
we write | | T for the least upper bound of elements of 7'
with respect to C.

The tree generated by G, or the value tree of G, written
[G], is defined by:

[G] = | J{t" |5 —5t)

By construction, [G] is a possibly infinite, ranked (X U
{L})-labelled tree (but see Remark 2.1).

Example2.1 Consider the recursion scheme G, =
(X, N,R,S), where:

Y={a:0—0—o0,b:0o—o0,c:0}
N={S:0,F:0— o0}
R={S—Fc, Fw dxazx(F(bx))}

S isreduced as follows.

S — Fc
— ac(F(bc))
— ac(a(bc) (F(b(bc))))

—_ e

The valuetree [Gy] is depicted as follows.

a
— ™~

c a
— T~

b a

| — ~

C

o

a
‘ — >~
b b
L \
2.2 Alternating Parity Tree Automata

Given afinite set X, the set BT (X)) of positive Boolean
formulas over X is defined as follows:

BY(X)20 == t|f|lz|OAO]|OVE

where x ranges over X. We say that a subset Y of X sat-
isfies 0 just if assigning true to elementsin Y and false to
elementsin X \ Y makes 6 true.

An alternating parity tree automaton (or APT for short)
over X-labelledtreesisatuple A = (X, Q, 9, g1,) where

e Y isaranked alphabet; let m bethelargest arity of the
terminal symbols.

e (Qisafiniteset of states, and ¢; € Q@ istheinitial state.

e :QxX — BT({1,...,m} x Q) is the transi-
tion function where, for each f € ¥ and ¢ € @, we have
5(q, f) € BY({L,..., arity(f)} x Q).

e 0:Q—{0,---, M — 1} isthepriority function.

A run-tree of an alternating parity tree automaton .4 over
a X-labelled ranked tree ¢ is a (dom(t) x Q)-labelled un-
ranked tree r satisfying:

o ¢ € dom(r)andr(e) = (¢ qr); and

e for every 8 € dom(r) with r(8) = (a, q), thereisa
set S that satisfies §(q, t(a)); and for each (i, ¢') € S, there
issome j suchthat 5j € dom(r)andr(5j) = («i,q’).

Letm = m mo --- beaninfinitepathinr; foreachi > 0,
let the state |abel of the node 7 - - - 7; be g,,, where g, the
state label of ¢, isq;. We say that 7 satisfies the parity con-
dition just if the largest priority that occurs infinitely often
iNQ(qng) Qqn,) Qgn,) - - - iseven. A run-treer isaccept-
ing if every infinite path in it satisfies the parity condition.

We use alternating parity tree automata for describing
properties of (the value tree of) recursion schemes, instead
of modal p-calculus formulas.

Ong [15] showed that there is a procedure that, given a
recursion scheme G and an alternating parity tree automaton
A, decides whether A accepts the value tree of G.

Theorem 2.1 (Ong[15]) Let G be a recursion scheme of
order n, and A be an alter nating parity tree automaton. The
problem of checking whether .4 accepts [G] isn-EXPTIME-
complete.

Remark 2.1 In this paper, we only consider recursion
schemes whose value trees do not contain 1. Given are-
cursion scheme G and an alternating parity tree automaton
A, one can construct G’ and A" such that (i) the value tree
of G’ doesnot contain L, and (ii) A’ accepts G’ if, and only
if, A accepts G.

Example2.2 Let ¥ be the aphabet used in Exam-
ple 2.1. Let A; be the alternating parity tree automaton
(2,{90,q1},61,90,{q0 — 2,q1 — 1}), where, for each
7€{q0,q}

d1(g,a) = (Lg) A (2,9)
01(g, c) = true

61 (Q7 b) = (17 QI)

Then, A; acceptsaX-labelled treet if, and only if, in every
path of ¢, c occurs eventually after b occurs.

Example2.3 Let ¥ be the same aphabet as above.
Let A, be the dternating parity tree automaton
(2, {q0, 41}, 62, g0, 22), where

62(q,a) = (1,q1) A (2,q) foreach g € {qo, ¢1}
d2(q,b) = (1,q) foreach g € {qo, q1}

d2(q, c) = true

Qa(q0) =2 Qo) =1

Ay accepts a X-tree ¢t if, and only if, for every path of ¢, if
the path takes the left branch of a node labeled by a, then
the path contains c.

2.3 Parity Games

A parity gameisatuple (Vy, V3, v, E, Q) suchthat E C
V' x V isthe edge relation of adirected graph whose node-
set V isthe digjoint union of V4, and V3; vy € V isthe start
node; and 2 : V. — {0,--- , M — 1} assignsapriority to
each node. A play consists in the players, V and 3, taking
turns to move a token along the edges of the graph. At a
given stage of the play, supposethetokenisonnodev € V4,
(respectively v € V3), then V (respectively) chooses an
edge (v, v") and moves the token onto v’. At the start of a
play, the token is placed on vy. Thus we define aplay to be
afinite or infinite path m = vg vy, vy, - - - inthe graph that
starts from vy. Suppose 7 isamaximal play. The winner of
7 is determined as follows:

e If 7 isfinite, and it ends in a V3-node (respectively
V4-node), then V (respectively J) wins.

e If 7 isinfinite, then 3 wins if = satisfies the parity
condition i.e. the largest number that occurs infinitely often
in the sequence 2(vg) Q(vy,) Q(v,,) - - - iSeven; otherwise
YV wins.

The Iargest priority
in this path
(including the root
and ql) is my

The largest priority in this
path (including the root
node and g,) is m,

Figure 1. A tree function described by
(q1,m1) A (g2,m2) — ¢

A d-strategy (or strategy, for short) VW is a map from
plays that end in a V3-node to a node that extends the play.
We say that a strategy WV is winning just if 3 wins every
(maximal) play 7 that conforms with the strategy (i.e. for
every prefix mo of 7 that ends in a V3-node, 7o W(m) isa
prefix of 7). Finaly astrategy W is memorylessjust if W's
action is determined by the last node of the play; formally,
for al plays 7; and 7, that are consistent with WV, if their
respective last nodes are the same V5-node, then W () =
W(ms). We say that a parity game is solvable just if there
isawinning strategy (for player 9). It isknown that if there
isawinning strategy for a parity game, then thereisaso a
memoryless winning strategy for the game.

3 Typesystem

Given an dternating parity tree automaton A =
(Q,%,9,qr,), we construct a type system 74 in which a
recursion scheme is well-typed if, and only if, the tree gen-
erated by the recursion schemeis accepted by A. Let ¢ and
m respectively range over the states and priorities of A. We
define:

Atomictypes 0 = q | T— 0
Types 7 = A{(B1,m1),...,

(O, mp)}

Notations Wewrite (61, mq) A -+ A (0x, my), or Simply
N, (8;,m;), for types A{(61,m1), ..., (O, mp)}. We
write T for the type A 0. Given a priority Q(q) for each
element ¢ of), we extend it to al atomic types by Q(r —
0) := Q(0).

Intuitively, the type (qi,m1) A -+ A (qr, mi) — q de-
scribes a function that takes a tree (say, x) that can be ac-
cepted from each of the states ¢4, . . . , qx, and returns a tree
that is accepted from state ¢q. The priority m; describes the
maximal priority in the path from the root of the output tree
(of type ¢) to the input tree of type ¢;. In other words, the
input tree can be used as atree of type ¢; only after visiting
a state of priority m;, and before visiting a state of priority
greater than m;. See Figure 1 for an illustration.

The set of “well-formed” typesis defined by therelations
T kand0::, k, which should beread “ r isatype of kind

k" and “6 isan atomic type of kind " respectively. We also
impose a condition on priorities.

Definition 3.1 (Well-formed types) The relations 7 :: &
and 6 ::, r aretheleast relations closed under the following
rules:

TR 0 ::g Ko

i *a © T— 04 K1 — Ko
0; g foreachie {l,...,n}
AN{(01,m1),...,(0n,my)} R

A type 7 (respectively, atomic type) is well-formed just if
(i) 7 :: k (respectively, 6 ::,) for some «, and (ii) for each
subexpression of the form /\f:1 (0;,m;) — @', we have
m; > max(2(0"),Q(0;)) foreach 1 <i < k.

For example, g1 A ((g2,1) — ¢3) isnot well-formed, as
it combines types of different kinds. (g1, m1) A (g2, ms) —
q is well-formed if m; > Q(q),Qq) and me >
Q(q), (g2); this reflects the intuition that m, and m. are
the largest priorities in the paths shown in Figure 1, includ-
ing the root and leaf nodes. Henceforth we consider only
well-formed types.

Type Environment and Judgement A type judgement
has the form I + ¢ : 6, where t is a A\-term (where non-
terminals are treated as variables), and I, called a type en-
vironment, is a set of bindings of the form 2 : (9, m)". Ex-
pressions of the form, (6, m)” where b € {t, £}, are called
flagged types, which are ranged over by meta-variables o.

Note that I' may contain multiple occurrences of the
same variable. In the type environment I", each (atomic)
type of avariableisannotated with aflag b, indicating when
variable can be used as a value of that type. For example,
T (q,m)t € T means that = can be used only before vis-
iting a state with priority larger than m. If the flag is £
(i.e x: (q,m)f € I), then it is additionally required that «
can be used only after visiting a state with priority m. Thus,
if x: (q, m)f € T, then the largest priority seen in the path
(of the value tree) from the current tree node to the node
where z is used must be exactly m.

Example 3.1 Suppose the priority of ¢, Q(q), isO.

(i) Thejudgement {z : (¢,1)"} F z : g isinvalid. The
type environment saysthat = can be used only after visiting
astate of priority 1, but the current state ¢ has only priority
0, so « cannot be used.

(i) Thejudgement {x:(g,1)*} F 2 : ¢ ishowever valid:
since the flag ist, « can be used any time before a priority
larger than 1 is seen.

(iii) Thejudgement {z: (¢,1)",y: ((¢,1) — ¢,0)"} F
y o : g isalso valid, because y uses the argument 2 only
after visiting a state of priority 1.

(iv) The judgement {x : (¢,0)",y: ((¢,1) — ¢,0)"} F
y x : g isinvalid: z’s type (¢,0) requires that the largest
priority seen before using = must be less than or equal to 0,
but y uses x after visiting a state of priority 1.

Notations We shall often drop the set bracesto save writ-
ing. WewriteT", z:: A¥_, (6;, m;)"" asashorthand for

TU{z: (61, m)"™, ... 2 (6, mp)*}

where x is assumed not to occur in I'. We write dom(T")
for the set {z | 30, m,b.z : (4, m)" € T'}. For techni-
cal convenience, we assume type environments I" satisfy an
injectivity condition: If z : (8, m)", z : (0,m)" € T then
b=1.

The type judgement T + ¢ :
over the following rules.

0 is defined by induction

(6,m)" 19(0) = (0,m)"
z:(0,m)'Fx:0

(T-VAR)

{(i,qi5) | 1 <i <, 1 < j < k;} satisfies 4(q, a)
0F

a: /\] 1(q177m17 "_>/\j 1 qn]vmn])_)q
where m;; = max(Q(g;;), 2(q))
(T-ConsT)

Foktol(el,ml)/\"'/\(ak,ﬁlk)HG
I‘lezl—tlﬁzforeaChze{l,,k}

(T-APP)
FQUF1U"'UFk|_t0t119
Doz Njey (05,m) Ht:0 TCJ
x /\zGI(m) = (T-ABS)
CEAet: N (05,m) — 0

Theoperation () Tm usedintherules T-VAR and T-APP
above are defined as follows.
if m" <m

. (6,m)"
0,m)"1Tm':=¢ (0,m)" ifm =m
undefined if m’ > m

{x1:01,...;xn:opnt Tm:={z1:01Tm,...,

In T-VAR, x can be used either if b = t and the current
priority islessthan or equal tom, or if b = £ and the current
priority ism. Therule T-CoONST isfor input symbols. The
premise means that when reading a, the automaton A in
state ¢ can spawn new states ¢;;, and read the i-th subtree
with state g;;. Thus, in order for atree at; - - -t, to have
type ¢ (i.e. to be accepted from state q), it is sufficient that
t; hastype g;; for every j € {1,...,k;}. For example, for
the automaton A; in Example 2.2, a has type (qo,2) —
(q0,2) — go and (q1,1) — (q1,1) — qu1.

Ty i op MY

In T-APp, the first premise requires that the argument of
to should have types 6, .. ., 0. Thus, the second premise
requires that ¢; has these types. Furthermore, the first
premise means that the argument is used as a value of type
6; only in a context where the largest priority that has been
seen (since the function ¢, is called) is m;. The operation
I'; T m; takesthat into account.

The rule T-ABs for abstraction is standard, except that
wesakening on z is allowed,* and that the bindings on z are
annotated with flag £, indicating that = can be used only
after the expected priority is seen.

Remark 3.1 Inrule T-APP, k can be 0. Thus, for example,
z: (T —0,94¢)" Fazt:qisderivablefor any t, evenif ¢
isill-typed or contains variables other than .

Example 3.2 Recall the automaton A, in Example 2.2. By
using rule T-CoNST, we obtain the following types for in-
put symbols.

a: (g, (q)) — (¢,(q)) — qforeachq € {qo,q1}
b: (q1,Q(q)) — g foreachq € {qo,q1}
c:qforeachq € {qo, 1}

Let & = (q0.2) A (¢1,2) — qo, ba = (q0,2) —
(q0,2) — qo, and 'y = F:(0,2)",z: (q1,2)". Theterm
Az.az (F(bz)) istyped asfollows.
DFa:6., z:(q,2)Fx:q I'iFF(bz):q
F:(0,2)2:(90,2) A (q1,2)" Faxz (F(bz)) : qo
F:(0,2) - z.az (F(bzx)):0

Here, T’y - F(bx) : qo isderived by:

F:(0,2°FF:0 Tobbr:q Tobbz:q
I EF(bx):qo

whereT'y = z: (¢1,2)",and 'y F bz : ¢; is derived from
OFb:(q1,%(q)) = ¢andla -2 : gy

Typing for recursion schemes We now define the typing
relation 4 G for recursion schemes. In type systems for
programming languages, a standard rule for recursion F' =
tis

F:rkHt: 7T
'EF:71

Kobayashi [11] used essentially the same rule for the re-
stricted class of automata (Biichi automatawith atrivial ac-
ceptance condition).

4For technical convenience, this is the only place where weakening is
allowed.

The standard rule for recursion is however insufficient
for dealing with the properties described by alternating par-
ity tree automata (or equivalently, M SO or modal p-calculus
formula): see Remark 3.2 below. We shall define the typing
relationt4 G : ¢ interms of parity games.

Definition 3.2 Given an alternating parity tree au-
tomaton A = (3,Q,d,¢q;,Q2) and a recursion
scheme ¢ = (X,N,R,S), we define a parity game
Vo, Va, (S, q1,2(qr)), E,) asfollows.

Vs = {(F,0,m) | F € dom(N),0 = N(F)}

Vg = {T'| dom(T') C dom(N), al flagsinT" are £}

E = {(F,0,m),T) | TFR(F):0} U
{(T,(F,0,m)) | F:(§,m)" €T}

and the priority function Q" maps (F, 6, m) tom and T" to
0. G iswell-typed, written -4 G, if player 3 hasawinning
strategy for the game.

The above definition may be understood intuitively as
follows. The player 3 tries to prove that the recursion
scheme is well-typed, and the other player V tries to dis-
proveit. Atanode (F, 6, m), the player 3 hasto pick atype
environment I" under which R(F') has type 6. The player
v then picks abinding F” : (¢',m’)* from T, and asks 3 to
show why I hastype ¢’, and then it is again the player 3's
turn to choose a type environment I under which R(F")
has type 6. The play continues indefinitely, or ends when
one of the players is unable to move. The player 3 wins a
play if at some point, it chooses the empty type environment
(so that v cannot pick a binding), or if the play is infinite,
and the largest priority occurring infinitely often is even.
The recursion scheme is well-typed if the player 3 has a
strategy that wins every play, whatever choice is made by
the player V.

Example 3.3 Recall the recursion scheme G in Exam-
ple 2.1 and the automaton A; in Example 2.2. Let 6 be
(g0,2) A (¢1,2) — qo- Then, vaid judgements include
(recall Example 3.2 for the derivation of the second judge-
ment):

F:(0,2)FFc:q

F:(0,2)f

FAzaxz (F(bx)):0

A memoryless winning strategy W for the parity game is
given by:

W(Sa q072) =F: (972)f

W(F,0,2) = F:(6,2)*
Remark 3.2 Note that it is unsound to use the usual rule
for recursion:

T,F:(6,m) -R(F):6
I'-R(F):0

and definet-4 G by 0 + S : g;. For example, let A} be
the alternating parity tree automaton obtained from A; of
Example 2.2 by replacing the inital state replaced with ¢,
and let G be the recursion scheme G = (3,{S},{S —
b(S)},S). Then, @ = S : ¢, would be derivarable by:

Ql_b (QM)_)ql Sl(th)tl—S:ql
S (g, 1) Fb(S):qu
DES:q

The value tree of G ishowever not accepted by Aj.

The standard rule for recursion can be considered a de-
generate case of our definition (using parity games), where
all the prioritiesare 0. In fact, Kobayashi’stype system [11]
is obtained as a special case of our type system 74 where
the priorities are restricted to 0.

4 Correctness of the Type System

This section shows that the type system is sound and
complete: a higher-order recursion scheme G is well-typed
if, and only if, the tree generated by G is accepted by the
alternating parity tree automaton.

4.1 Soundness

Suppose that we are given a recursion scheme G =
(3,N,R,S) and an aternating parity tree automaton A
such that -4 G. The goal is to show that there exists an
accepting run-tree of A over [G].

We shall define a rewrite system for generating an ac-
cepting run-tree of A over the value tree of G. The rewrite
relation is a binary relation on (finite, unranked) RLab-
labelled trees, where an element of RLab is either of the
form (o, q) or (o, I,T' ¢ : q) whereT' F ¢ : ¢ holds. Here!
is a natural number, and « is an element of {1,...,w}*,
where w is the largest arity of the terminal symbols of
G. By the assumption 4 G, there exists a (memoryless)
winning strategy W for the parity game associated with
Fa G. W can be considered as a map from tuples of the
form (F, 6, m) to type environments. Wewrite I' g g ,,,) for
WI(F, 0, m) below.

In atype judgment I' - Ft : ¢, we often annotate the
head symbol F with its type and priority, asT' + F(@-m)¢ .
g. ltmeansthat I' - Ft : ¢ is derived from the typing
F:(6,m)" - F : 0 for the occurence of F as the head
symbol, followed by applications of T-APP.

The initid tree of the rewrite system is
(6,1,5%: (qr,Q(qr))" F SO : qp). Here, each non-
terminal symbol is annotated with a natural number, to
indicate when the symbol was introduced. The rewrite
relation ¢ > ¢’ is defined by induction over the following
rules:

@) 1f T+ F"O™F . ¢ holds, then

(. LT FF'T:q) & [B/7p(t') - q)
writing p(—) = [Fl/Fy,...,F./F,](=) and R(F;) =
Az.t'. Here, I is determined as follows: Take the deriva-
tionof I' - Fl Om)E : ¢, and replace the T-VAR instance

F:(0.m)" £ F 2 0by p(Timom) b p(R(F)) : 6,
yielding (aderivation for) Ty U p(T(r,.0,m)) F p(R(F}))E.
Notethat Iy U {F : (6, m)"} = T holds but not necessarily
Iy =T\ {F:(6,m)"}. By the type preservation prop-
erty (Appendix A.1, LemmaA.1), there exists I such that
I" C Ty Up(L(p,0m)) and I’ - [t/Z]p(t') : q. Thus, we
choose one such I above.
Note that it is necessary to rename non-terminals F; to F; ;
in order to state Lemma4.2.

(i) M {(4,qi5) | 1 < i < n,1 <j < k;} satisfies
da(g,a),and T - aty ---t, : g isderived fromT'; ; - ¢; :
Qi g, then

(o, 1+ 1,7

(a,,T'Faty-tn:q) >
(v,) ({al, L, T Etr i qua), ...,
A{an, L, T Ftn i i), .-

(al, [, Ty, 1 quey)
Aan, LT ey, Ftn t @ik)

(iii)y f T > T" then C[T] > C[T"] for every tree context
C.
The following lemma follows from the definition of © .

Lemmad.l If (e,1,5%: (q1,Q(qr)) F S :qr) >~
Clla,,T Ft:q)],thenT k¢ : ¢ holds.

Example4.1 Consider the order-O recursion scheme G
with rules

S —aG G—bH H—cS
and an APT A with transition map
(av (11) = (17(]2) (b7q2) = (17(]3) (CaqS) = (17(11)

and the priority of ¢; isi. Thuswe have the typings:

a:(g,2)—q b:(g33)—q c:(q,3) =g

The reduction sequenceis:

O (g, 1) F S0 qr)
Vi (2.2)" FaGl i qr)
€, >(<61727G1 : (Q272)t FG! Z(]2>)
>(<61’3’H2 (Q?n)f F bH2 : Q2>)
)(el, q2)((e11,3, H? : (g3,3)" - H2q3))
;261,q2>(<e11 4,8%: (q1,3)" FcS3:g3))

(€,
(€,
(
(€,
E
< el ga) (€11, gs) (el 111, 4, 5

1,5
2,G
T
Q1
»q1
T
T

(q1,3)" F 8% qu))

vV VvV vV Vv VvV VvV VvV

By thepriority of atree context C'[], (whereinthehole|]
is assumed to have the state ¢), written Q(C[],), we mean
the largest priority occurring in the path from the root of
Cl]q toitshole [],. The following lemma confirms that
variables in the type environment are used correctly, ac-
cording to the intuition on type environments explained in
Section 3.

Lemma4.2 S,Ippose <Oéo, lQ,FQ Fso: q0> >*
Cl{a,1,T = FOm¢ . ¢)], and F is not introduced by
renaming (i.e. via p(—)) in any of the intermediate re-
duction steps. Then, either (i) F : (4,m)" € I, and
m = Q(C[],); or (i) F: (§,m)* € Ty andm > Q(C[],)
hold.

Theorem 4.3 (Soundness) Let A be an alternating parity
tree automaton, and G be a recursion scheme. If -4 G, then
the tree generated by G is accepted by A.

Proof We write 7% for the (unranked) tree obtained
by replacing each label of the form («,l,T'Ft: ¢) with
(a,q). Let Ty > Ty > Ty > Ty > --- be a maximal®
fair (possibly infinite) reduction sequence, where T, :=
(6,1,5%: (qr,Q(qr))" F S° : q;). By the definition of >,
every T;* isa prefix® of arun-tree of A (see Appendix A.2,
Lemma A.5 for more details). By Lemma 4.1, reductions
of (,1,5%: (qr,qr))" F S° : qr) never get stuck: It ei-
ther ends up with afinite tree al of whose labels are of the
form (a, ¢), or continues indefinitely. Thus, every lesf of
the form («,I,T" F ¢ : ¢) occuring in the sequence is even-
tually reduced. Thus, together with the assumption that the
value tree of G does not contain L (Remark 2.1), it follows
that T := J,., T:* isarun-tree (i.e. atree that satisfies the
conditions on accepting run-trees except the parity condi-
tion) of A over the value tree of [G].

It remains to show that 7" satisfies the parity condition.
Now, for any infinite path 7 of 7", there must exist an infinite
reduction sequence:

(e, 1,8%: ((]I,Q((JI))i SR ar)
> * 01[<041,l1,F1 F f‘jll1 t1 :g1>]
> * Cl[CQKOQ,ZQ,FQ ~ le; tz EQ>H
> * 01[02[03[<a3,l3,F3 |—le32 t3 ZQ3>]]] >

such that the holes of Cl, (o [02], Cy [CQ [03]}, -
occur in the path. For each &k > 0,
the reduction (g, I, T Fil:*fk) >

Crr1[{ohs1, ler1, Trg1 F FZ:+1%vk+1 tqk+1)] must be

5A reduction sequence is maximal if it is either infinite or finite and the
last treeisirreducible.

A tree T} is a prefix of Ty if dom(T1) C dom(Ty) and Ty () =
T> () for every o € dom(T1).

of theform

(g, g, T F Filfffk)
> (ag, lp + 1L, T F [te/Z]p(t') : qr)

Ues(Ok41mir1)7
> Crpa (g1, leyr, Tior B FCT th1 ¢ Q1)

where p := [Fl*/Fy,... Fl*/F,] ad R(F;,) = A\&.t/,
with 1—‘;@ c It u p(F(Fikﬂkvmk))' Note that all the

bindings on FZ:H in p(U(r,, 0,.my)) have the flag £.

Thus, by Lemma 4.2, Q(Cii1llg..,) = mpyr and

Fj ¢ (Okpr,miqn)” € T, which implies F;

k41 :
(O, mii1)" € L(F,, o,mi)-
Now from the preceding infinite > -reduction sequence,

we can extract an infinite sequence

(F17 qr, Q(QI)) F(Fl,qI,O) (Fi1) 917 ml) F(Fi1,91,m1)
(E27923 m2) F(F52,02,m2) U

which isawinning play. It follows that the largest priority
that occurs infinitely often in my, mo, ... iseven. There-
fore, the largest priority that occurs in the infinite path 7 of
t must a so be even. O

4.2 Completeness

Let A be an dternating parity tree automaton. Assume
an accepting run-tree of A over the value tree of arecursion
scheme G. Thegoa isto show 4 G.

We define areduction relation > on (finite, unranked)
RLab’-labelled trees as follows, where an element of
RLab' is either of the form («,q) or (3,1,t,q). Herel
isanatural number, 3 isasequence of pairs of natural num-
bers, and « is an element of {1,..., A}*, where A isthe
largest arity of the terminal symbols of G. We use 3 and
[to uniquely identify each leaf introduced by reductions.
Theinitia treeis (¢, 0, .5, ¢;). Thereduction relation > is
defined by induction over the following rules:

(i) H R(F) = A\z.¢/, then:

(B,1,Ft,q) > (B,1+1,[t/7|t',q)

(ii) If fst(8) = aand the children of the node («, ¢) of
the run-tree are

<a17QI71>7 ey <a17QI7k1>a ey <OK’I'L, qn,l)a ey <om, QTL,k?n>
then:

<ﬁ7lzat1 t 'tn7q> >
<f8t(ﬂ)7q>(<ﬁ(17 1)alvt17q171>7 (RN </8(17k1)7lat17q17k1>7
tee <ﬁ(n7 1)7latnaq’ﬂ»1>a ceey </8(n’ k’ﬂ)vlvt?hqn,kn»

Here fst((my,n1)(ma, n2)(ms,n3) -+) = mymams - - -.
(iii) Ift > ¢/, then C[t] > C[t'] for any tree context C.

Thereisa (fair) infinite reduction sequence
<6a0757q1> > T1 > T2 > ..

such that | | 7;* coincides with the accepting run-tree of A
over thevaluetree of G. We pick one such infinite reduction
sequence, and extract type information from it, as shown
below.

We assume below that each subterm is implicitly
labelled, so that different occurrences of the same
term are distinguished. For example, when we write
<ﬁ, l, tol1, q> >* CK/B/, l/, t1to, q/>], we assume that ¢; in
t1to originates from ¢; in the argument position of tyt;
(i.e. the former ¢, isaresidual of the latter ¢; w.r.t. the re-
duction sequence). As before, we write Q(C[],) for the
largest priority in the path from the root of the RLab’-tree
context C' to the hole [], which is assumed to have state g.

Type 01,5,y Of a prefix to A term ¢ is called a prefix
of ¢ if ¢ is of the form ¢ot, - - - ty. For each leaf (3,1,¢,q)
and a prefix ¢o of ¢, we can determine the type 0;, s,1) by
induction on the kind of ¢, asfollows.

(i) If thekind of ¢y iso, then 6, 5, := q (note that the
leaf is (3,1, t0,q)).

(i) If the kind of tq is k1 — — Kp — O,
then the leaf is of the form (3,1, tot1 - t,,q). Let
S; be the set of pairs (6, 5 1), 2C[]y)) such that
(B,1,toty - tn,q) >* C{{B,I',t;t',q")]. Note that since
the kind of «; is less than that of ¢y, by the induc-
tion hypothesis, we can determine 6, ;). Note aso
that although the set of trees C[(3',1,t;t, ¢')] such that
(B, toty - tn,q) >* C[(B,1',t;t',¢')] may be infinite,
S; isfinite. Thus we can define

G(tOﬂJ) = /\Sl —> s > /\Sn — (.
Type environment T, 5 ;) of a prefix ¢, Next, we de-
termine a type environment I'(,, 5 ;) for each prefix term
to of the leaf (3,1, toty - -tn,q), with aview to proving
T, F to = 0,0y, Dy induction on the structure of the
term.

o Iftg=ua (G Z), then F(to,ﬁ,l) = 0.

o lf toc = F (E N), then F(F,B,l) = F:
(H(F,,BJ)»Q(q))f'

o If tg = to1t0,2, thenlet S be the set of triples

(8.7, 2(Clq))

such that (8,1, tot1 - - -tn,q) >* C[(B',1',to2t’,¢')]. Let
S’ be a subset of S such that for every (5”,1",m) €
S, there exists exactly one (5',1’,m) € S’ such that
e(to,mﬁ’,l’) = 9(,50’2”3//’1//). We then define F(to,ﬁ,l) as

F(to,l,ﬁ,l) U (U{F(to,mﬁ’,l') frm | (5/7 l/7 m) € S/})

whereT 1 m := {z: (6, max(m,m’))" | z: (6, m")" € T}.

Remark 4.1 The typing rule T-APP requires that there is
exactly one type environment for each (6;,m;). Accord-
ingly, by construction S’ contains exactly one element for
each (6, m) of typetg o.

The following lemma intuitively states that for each
binding of a type environment I'¢; 35, there exists at least
one corresponding use of the variable.

Lemmad4 If (¢0,S,q;) >* C[(B,l,t,q)] and F :
(0, m)" € T4 g1y, thenthereexist C”, 3, 1', ', ¢’ such that
(B,1,t,q) >* C"[{B',I', Ft',¢)] andm = Q(C"[],) with
9 = G(Fiﬁlyl,).

The following lemma guarantees the consistency of typ-
ing: the conclusion says that the body of F', R(F) = \z.t,
can be given the same type (i.e. 0 ,)) as F'. (Note that
the last reduction comes from an expansion of the defintion
of F.)

Lemma45 If (¢0,S,q;) >* C[G,,Fs,q)] >
Cl(B,1+1,[s/Z]t,q)], then there exists I' such that
'zt 9(F,ﬁ,l) andT’ C F([E/E]t,,@,l+1)-

Proof By LemmaA.8, thereexistsI' such that:

Doy s T2y (Or,ma) mn s 92y Ok gy mi)

F[s/Z]t: q
{(0i5,mi;) [1< <gi} = {080, AUC[]g)) |
(8,1, [s/2]t,q) > C'[(BV,sit’,¢)]}

I C T s/ae8040)

By the second definition and the construction of 6z g), it
must be the case that

g1 9k

O = /\ (Or,mi;) == N (Ocjme;) —
j=1 j=1

Thus, ' = Azt : 05 g, is obtained by applying T-ABs. [J

Theorem 4.6 (Completeness) Let A be an alternating
parity tree automaton, and G be a recursion scheme. If the
tree generated by G isaccepted by A, thent4 G.

Proof From an accepting run-tree of A over the valuetree
of G, we can construct an infinite reduction sequence

(,0,8,q1) > Ty » Ty > -

that converges to the run-tree. We shall construct a win-
ning strategy WV for the parity game (Vy, V3,00, E,Q) as-
sociated with -4 G : ¢; below. We annotate each state I'
of 15 occurring in W with a label of the form [5,1,¢] to

indicate the corresponding node in the reduction sequence
(,0,5,q;) » Ty > T, > ---. Note that by the con-
struction of W below, I'#t8 C T, 5,y holds. The win-
ning strategy W is defined as follows. Consider a play
7 (F,0,m) € (Valk)*V3 that conformsto W. Let T'1#:11
be (S : (g7, Qqr))")e%5Tif 7 = ¢; otherwise, let it be the
|ast state of (in V4). It must bethe case that F': (8, m)" €
I3 C Ty 5. By Lemmad4.4, there must exist C, 3,/
such that

<ﬁal7ta qt>
>* Cl0, U, Fs,q)] > C{B I +1,[5/Z]tr, ¢")]
with Q(C[]y) = m and 0 = Op g 1y Where R(F) =

AT .tp.

By Lemma 4.5, there exists IV such that TV = A\Z.tp :
Q(F,ﬁ’,l/) and IV C F([E/E]R(F),ﬁ/,lurl)- We pick one such
I, and define W(x (F, 6, m)) asT’18"1'+1[5/tr],

To check that W isindeed winning, consider an infinite
play:

(Fo, g0, mo) TE™) (Fy, 03, mq) D0
(F27625m2) ce
that conforms to W where (Fo, qo, mo)

Then the reduction sequence (e, 0, S, ¢r)
must be of the form:

(6,0,S,q1) > (Bo,lo, R(S), qo)
>* C1[(B1, 00 — 1, Fis1,qu)] > Ci[(Bi,l,t,q1))

= (SaQLQ(QI))
>T > Ty > ---

>* C1[Ca[(Ba, 2 — 1, Fy52,q2)]] > C1[C3[(B2,12, 12, q2)]]

>* oL

where Q(C;[]4,) = m;(i > 1). Since the reduction se-
guence converges to the accepting run-tree of A over the
value tree of G, the largest priority that occurs infinitely of-
teninmg, m1, ma, ... must be even. Thus, we havel 4 G.

[

5 Type-Checking Algorithm

Thanks to the development of the previous sections, the
model checking of higher-order recursion schemes is re-
duced to atype-checking problem. The reduction allows us
to analyze the parameterized complexity of model checking
higher-order recursion schemes. The main result isthat, as-
suming that the size of kinds, the largest priority, and the
number of states of the alternating parity tree automaton
are bounded by a constant, the time complexity of the type
checking problem (hence also the recursion scheme model
checking problem) is polynomial in the size of the grammar.

The type-checking algorithm consists of the following
two phases:

e Step 1: Construct the parity game (V, V3, v, E, Q)
associated with the type system.

10

e Step 2: Decide whether thereisawinning strategy for
the parity game.

We assume below that each rule of the recursion scheme
has one of theform F' +— AZ.c (Fy 1) --- (Fy Z7), where
cisaterminal, anon-terminal, or avariable, and J may be
0. Note that any recursion scheme G can be transformed
into G’ such that G’ satisfies the assumption above and the
sizeof G islinear in that of G.

We write A for the maximum arity, N for the order of
the recursion scheme, P for the number of rewrite rules, @
for the number of states of the automaton, and M — 1 for
the largest priority of the states. For akind « of order n, an
upper-bound of the number of types of kind «, written K,,,
isgiven by:

Ko =0Q Kpi1 = Q24ME,
Notethat K, isbounded by exp,, ((AQM)**¢) for any € >
0, where exp,, (x) is defined by:

expy(z) = = exp;,, () = 29Pi(@).

For step 1, we first compute the set
S; :={(I,0) |TFR(F;) : fand @l flagsinT are .}

for each non-terminal F;. Assume that R(F;) is of the
form A\z.c(Fiz1) - - - (F2 7). Wefirst compute:

SZ',() = {(Fmgo) ‘ Tobc:6y, andby::, HC}

where k. isthe kind of ¢ and all flagsinI'y must be £. T’
isasingleton set or empty, so that |.S; o| isat most MKy .
Next, for each (Tg, 71 — -+ — 75 — 0}) € Sip with
T = /\kelj (0%, m; 1), Wwe compute

Sj,k = {Fj,k: | Fj,k ij,k: F F_]/%] . Qj,k
anddl flagsinT'; , aref}.

The number of candidates for the type of £} isat most Ky,
S0 that |S; x| is a most MK, for each j, k. Note aso
that since the order of the kind of ¢, is a most N — 1,
|I;| is bounded by M Ky_,. By choosing one element
I'; » from each of the sets S; ;,, we can derive a judgement
I'y U (Uj,k Fj,k:) F C(Fllgl) s (F}:’EJ) : 06 S is the set
of al pars (I',0) such that T' - A\z.c(F{z1)--- (Fjzy) :
0 is obtained by applying T-ABs to T'g U (U; . I'jx) F
c(F{z1)--- (F}Zy) : 0. The number of elements of S;
generated from each element of S, is a most Ky x
11, | S;.k|, which is bounded by Ky (MK y)AME~N-1,
Thus, the size of S; is bounded by

(MEy)x(Kn(MEy)MHEv=1) = expy (O((AQM)'))

for N > 2.

Since the size of each type environment in S; is at
most 1 + |[I1| + -+ + |I;] < 1+ AMKx_1, both the
set 14, U V3 of vertices and the set £ of edges have size
P x expy (O((AQM)™+)).

In Step 2, we can use Jurdzihski’s algorithm [8] for solv-
ing parity games. The time complexity for Step 2 is

O(|VUV3||E|1M/2)) = O(P M2 exp \ (O((AQM)M).

Thus, the time complexity of our algorithmis
O(P' M lexp (O((AQM)'F))).

for N > 2. If N, A, Q, and M are bounded by constants,
then the algorithm runs in time O(P'+1*/2]), Since P is
bounded by the size of the recursion scheme, the time com-
plexity is polynomial in the size of the recursion scheme.

6 Reated Work

Model checking recursion schemes As summarized in
Section 1, studies of model checking recursion schemes
were sparked by Knapik et al. [9, 10], who showed the de-
cidability of the MSO theory for safe recursion schemes.
Their verification algorithm is based on a reduction of the
model-checking of an order-n recursion scheme to that of a
recursion scheme of order n — 1.

For the full higher-order recursion schemes (without the
safety restriction), there are two previous proofs of the de-
cidability of the modal p-calculus model checking. Oneis
Ong's original proof [15], and the other is due to Hague et
al. [5]. The former reduces the model checking problem
to parity games over variable profiles, while the latter re-
duces it to a parity game over the configuration graph of a
collapsible pushdown automaton. Both proofs use game se-
mantics, and are probably rather hard to understand (at least
for readers unfamiliar with game semantics).

For arestricted class of propertiescalled trivial automata
(but for the full recursion schemes), Aehlig [1] gave asim-
pler proof. His approach is based on a novel finite seman-
tics for simply-typed lambda term-trees. the meaning of
an infinite tree is the set of states starting from which the
given automaton has an infinite run. Kobayashi [11] re-
cently showed a simple type-based proof based on asimilar
idea.

Our type-based approach is a generdization of
Kobayashi’s type system [11]; when priorities are restricted
to 0, our type system coincides with his system. Our type
system is also inspired by Ong'’s variable profiles [15]. In
fact, variable bindings (in type environments) in our type
system are similar to Ong’s variable profiles: both are as-
sertionsfor variables about the state being simulated and the
largest priority encountered for a relevant part of the com-
putation, and both are defined by recursion over the kind in

11

guestion. Nevertheless, the details of their constructions are
dissimilar, and they give rise to radically different correct-
ness arguments.

In addition to the advantages discussed in Section 1, a
general advantage of the type-based approach is that, when
the verification succeeds, it is easy to understand why the
recursion scheme satisfies the property, by looking at the
type of each non-terminal (and the winning strategy).

Type systems for model checking Nak and Pas
berg [14, 13] constructed an intersection type system that
is equivalent to model checking of an imperative language
and an interrupt calculus. They consider only the reach-
ability problem, and do not treat higher-order languages.
Kobayashi [11] showed that the model checking of tem-
pora properties of higher-order programs can be (rather
straightforwardly) reduced to that of higher-order recursion
schemes. Thus, combined with Kobayashi’s reduction, our
type system can be regarded as an extension of Naik and
Palsberg’s scenario to the full modal y:-calculus and higher-
order programs.

Type systems for tree-processing programs Type sys-
tems for tree-manipulating programs have been studied in
the context of programming languages for XML process-
ing [6]. There are substantial differences between those
type systems and our type system. On one hand, program-
ming languages for XML processing are concerned about
finite trees, while our type system deals with infinite trees;
that iswhy we need the notion of prioritiesand parity games
for typing recursion. On the other hand, programming lan-
guages for XML have pattern match constructs on trees and
one of the main issues in designing type systems for XML
processing is how to type patterns, while recursion schemes
do not have such constructs.

7 Conclusion

We have presented a novel type system that is equivalent
to the modal p:-calculus model checking of higher-order re-
cursion schemes. Compared to existing approaches [15, 5],
our type-based method gives a simpler algorithm, and its
correctness proof seems easier to understand. Furthermore,
our approach yields a polynomial-time a gorithm under the
assumption that the sizes of types and automata are bound
above by a constant. From a type-theoretic point of view,
our type system introduces a novel approach to typing re-
cursion, via parity games. Future work includes: (i) imple-
mentation of amodel checker, (ii) studies of the complexity
of the model-checking problem for various restricted frag-
ments of the modal u-calculus, and (iii) extensions of the
type system for various extensions of recursion schemes.

Our type-based approach seems indeed convenient for the
second and third points. For (ii), the reader is referred to
[12]. For (iii), for instance, one can easily extend rewrit-
ing rules of recursion schemes with boolean parameters,
and conditionals on them. For example, I defined by the
rewrite rule

Fbxywr— if bthen x elsey

would be given an intersection type (true — (go, 2(qo)) —
T — qo) A (false = T — (q1,2q1)) — ¢1)-

References

[1] K. Aehlig. A finite semantics of simply-typed lambda terms
for infinite runs of automata. Logical Methods in Computer
Science, 3(3), 2007.

B. Courcelle. The monadic second-order logic of graphs [X:
machines and their behaviours. Theoretical Computer Sci-
ence, 151:125-162, 1995.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). In FOCS 1991, pages
368-377, 1991.

E. Gradel, W. Thomas, and T. Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research,
volume 2500 of LNCS. Springer-Verlag, 2002.

M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Col-
lapsible pushdown automata and recursion schemes. In
Proceedings of 23rd Annual IEEE Symposium on Logic in
Computer Science, pages 452—461. |EEE Computer Society,
2008.

H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression
typesfor XML. ACM Trans. Program. Lang. Syst., 27(1):46—
90, 2005.

J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for
PCF: I. Models, observables and the full abstraction prob-
lem, I1. Dialogue games and innocent strategies, 111. A fully
abstract and universal game model. Information and Com-
putation, 163;285-408, 2000.

M. Jurdzihski. Small progress measures for solving parity
games. In Proc. STACS, volume 1770 of LNCS, pages 290—
301. Springer-Verlag, 2000.

T. Knapik, D. Niwihski, and P. Urzyczyn. Deciding monadic
theories of hyperalgebraic trees. In TLCA 2001, volume 2044
of LNCS, pages 253-267. Springer-Verlag, 2001.

T. Knapik, D. Niwihski, and P. Urzyczyn. Higher-order
pushdown trees are easy. In FoSSaCS 2002, volume 2303
of LNCS, pages 205-222. Springer-Verlag, 2002.

N. Kobayashi. Types and higher-order recursion schemes
for verification of higher-order programs. In Proc. of POPL,
2009.

N. Kobayashi and C.-H. L. Ong. Complexity of model
checking higher-order recursion schemes. In preparation,
20009.

(2]

(3]

(4]

(9]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

12

[13] M. Naik. A type system equivalent to amodel checker. Mas-
ter Thesis, Purdue University.

[14] M. Naik and J. Palsberg. A type system equival ent to amodel
checker. In ESOP 2005, volume 3444 of LNCS, pages 374—

388. Springer-Verlag, 2005.

C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. In LICS 2006, pages 81-90. |[EEE
Computer Society Press, 2006.

M. O. Rabin. Decidability of second-order theories and au-
tomata on infinite trees. Trans. Amer. Maths. Soc, 141:1-35,
1969.

[15]

[16]

Appendix
A Proofs

A.1 Type Preservation by 3-Reduction

This section proves the following basic property.

LemmaA.l (Type preservation by g-reduction) If I' +
(Ax.to)ty : 0, thenthereexistsT” suchthat TV + [ty /x]tg : 6
andI” CT.

LemmaA.2 If I' T m iswell-defined, I' + ¢ : 6 implies
I'tmkEt:0

Proof Straightforward induction on derivation of T + ¢ :
6. O

LemmaA3 IfT ¢ : 6, thenT 1 Q(6) is well-defined.
Furthermore, if I' T Q(0) =T 1 Q(0) thenT" k¢ : 6.

Proof The proof proceeds by induction on the derivation
of I' -t : g, with case analysis on the last rule used.

e Case T-VAR: Inthiscase, we havet = x and ' =
z: (6, m)” with (6,m)" 1 Q(0) = (6,m)*. Thus, T 1 Q(6)
is well-defined. If T' 1 Q(0) = TV 1 (0), then we have
I’ = 2:(0,m)" and (6, m)" 1Q(6) = (0, m)". Therefore,
wehavelI” It : 6 asrequired.

e Case T-CoNsT: Trivial, asT" = ().

e Case T-APP: In this case, we have:

t = toly
Fol—toz(91,m1)/\--~/\(0k,mk)—>9
FiTmil_tlZeiforemhiE{l,...,k}
I =ToUT,U---UT}

By the induction hypothesis, 'y 7 £2(0) is well-defined. By
the well-formedness of (61, m1) A -+ A (O, mi) — 0, it
must be the casethat m; > Q(6). So, I'; 12(0) isalso well-
defined. Thus, I' T 2(0) is also well-defined as required.
If T 1Q0) =T"71Q(0), then there exist Iy, . .., T}, such
that

I"=TouTiu---ury

T 1Q0)=T,1Q0) (i € {0,...,k})

Since m; > Q(0) holds, the latter condition implies
T; 1 m; TQ(0). Thus, by theinduction hypothesis, we have:

TyEto: (6r,mi) A= A(Og,my) — 0
Fngil_tlZ&iforea:hiE{l,...,k}

By applying T-APP, we obtain I - ¢ : 6 asrequired.

13

e Case T-ABS:
In this case, we have:

t = \x.to 0 = Nics(0s,mi) — o
F,CE : /\ZEI (Qi,mi)f = to : 00

I1CJ

By theinduction hypothesis, T 1 ©2(6) is well-defined.
Moreover, if ' T Q(0) = TV 1 Q(0), then we have

F/,l' : /\ (Qi,mi)f - to : 90
iel

by the induction hypothesis (note that Q2(6) = Q(6)). By
applying T-ABS, weaobtain I I ¢ : 6 asrequired.

0
We defineI" T, m by:

Tty = Tim ifb=t

b= if b=t and T T m iswell-defined.

Lemma A.4 (Substitution) If

Fo,QZ : /\f:1 (Gi,mi)b" = to 10
LTy, mi-t:0;(foreachl <i<k)

thenTy UL U---UT, [t/l’]to : 6 holds.

Proof The proof proceeds by induction on derivation of
Lo,z : APy (6:,m)" F to : 0, with case analysis on the
last rule used.

e Casesfor T-CONST:
The result follows immediately, as 2 does not occur in tg
and {(6;,m;,)" | i € {1,...,k}} isempty.

e Casefor T-VAR:
The case where ty # x istrivia. If ¢ = z, we have:

Ig=0 k=1 0 =0,
(61, m1)" 19(6) = (61,m1)"
F1Tblm1|—t291

If by =t,then'y T, my = 1"y, sothat wehavel'y ¢ :
asrequired.
If b, = £, then by the condition (6y,m;)™ T Q(8) =
(61,m1)", it must be the case that Q(f) = m;. Thus, by
LemmaA.3andI'y T, mq Ft: 601, wehavel'y - 1¢:06; as
required.

e Casefor T-APP:
In this case, we have:

01

to = t1to

Fo=AgUAU---UA;

SQUSlU-'-USl:{l,...,k}

Ao’x:/\iGSo (9i7mi)bi Fty /\;:1 (nj,mj) — 0
b;

(Ajvxz/\iesj (0i,m)"") T b=ta

LTy, miEt:6; (foreachi e {1,... k})

We shall show:

Ao UUjes, i b [E/2ltr : Nimy (njimg) — 0
(AJ‘ U Uiesjfi) Tnj [[t/x]tz i (fOf each 1 <5< l)

from which the result follows by the rule T-App.

The first condition follows immediately from the induc-

tion hypothesis. To show the second condition, let
bi b;

(Gz,ml) Jo= (Gz,ml) T’I‘Lj.

From T'; Ty, m; F ¢t f; and Lemma A.2, we get

i 1 nj Ty, mi-t:6;foreachi € S;. (Notethat I'; T nj is

well-defined: by the well-definedness of (;, mi)bl Tn;, we

have m; > n;, which, together with the well-definedness

of I'; Ty, m;, implies that I'; 1 n; is well-defined.) Since

I T nj Tbi m; =17 T n; sz:,j m;, We have

i Tng Te,, m Ft:o,

Thus, by using the induction hypothesis, we obtain:

(A; U (LT i€ S;1) Ty - [t/alts

asrequired.

e Casefor T-ABS:
In this case, to = Ay.t;. We can assume without loss of
generality that y # 2 and y does not occur in t. Thus, we
have:

0=Njec;(05,m

:nja

’-)—>9’ I1CJ

Fan /\]EI (egan) €T /\ze 1,. (927m1) » }_tl : 0/
TiTp,m; Et:6; (foreachi {1 Lk}
By the induction hypothesis, we have:
ToUTyU---Ulg,y: /\ to/l‘]
jel
By using T-ABS, we get the required result.
([

We are now ready to show that typing is preserved by
(-reduction.

Proof of LemmaA.1 By the assumption, we have:

Fo,l‘ : /\iEI (Oi,mi)f H to 10
I1CJ

F{LTWLZ ¢, :0;,foreachi € J
['=ToU(Ue,)

By LemmaA .4, we have:

U Ur

el

tl/x t()

Thus, the required result holdsfor IV = T'o U (|, I'). O

14

A.2 Proofs of Main Lemmas for Sound-
ness Theorem

We show two main lemmas used in the proof of Theo-
rem 4.3: Lemma4.2 and LemmaA.5 (given below).

Proof of Lemma 4.2 The proof proceeds by induction on
the length ¢ of the reduction sequence

<Oéo,l0,ro H So - qo) > C[<Oz,l,F - F(e’m)?: q>]

For the base case of ¢ = 0, we have ¢ = qo, I'o = T" and
the context C[], isnull. By the definition of the annotation
FOm) T FOm . o must have been derived from F :
(0,m)" + F : 0 where (6,m)" 1 Q(0) = (6,m)* and =
T — -+ — T — . Thus, it must be the case that F :
(8, m)" € T and either (i) b = £ and m = Q(#) = Q(q)
Q(C[]q), or (i) b =t and m > Q(C[],).

We show the inductive case by case analysis on the first
reduction step.

e Suppose the first reduction step is of the form

(0,10, To - Ff'o : qo)
> (o, + 1,1 /() - o)

where sg = F} 't with p(—) := [Fl°/Fy,...,Fl /E,](-)
and R(Fy) = Az.t'. Here, by the assumption that F' is
not introduced by the intermediate reduction steps, F' ¢

{Flo ... Fl}. By the induction hypothesis, either (i)
F:(0,m)" e T'\{Fl, ..., Flo} andm = Q(C[],); or (ii)

F:(0,m)" e T\ {Fj,... Flo}andm > Q(C[],) holds.
(Here, we write T" \ S for the type environment obtained
from I" by removing al the bindings on variablesin S.) By
the definition of >, we have I \ {Fl°,... Flo} C T.
Thus, the required result follows.

e Suppose the first reduction step is of the form

<O¢07lo7F0 [aty-- -ty : qo> >
(@0, q0) ({01, 10, T1,1 = t1 2 qu1),
cAaon,lo, T b tn i gna),

ey (aol,lo,FLh = t1 :

where sy = aty ---t,. Then, (i) C
(i) there exists 4,j(1 < i < n,1
Ti7j = C/Hq and

aTM oo Tn,kn and

< j < ky) such that

<Oé()i, lo,FiJ‘ = t,j : qq’/’j> >* Cl[<057 l, 'k F(G,m)'i': q>]

Note that Q(C[],) = max(Q(qo), 2(C’[],)). By thein-
duction hypothesis, F' : (H,m)b e T ;, and either (i)
b =fandm = QC'[],); or (i) b = tandm >
Q(C'[]y) hold. SinceT'y F aty---t, : qo is derived from
L Ft q,], it must be thecasethat Iy = U, T}

and T'; ; 5 T max(2(qo), 2(gi,;)). Thus, wéjhave

F:0,m" e FO with (6,m)"" T max(Q(qo), as,)) =

Q1)
L) <CM()TL, lOa F"ykn '_ tn : Qn,kn>)

(6, m)" for some . If ¥/ =
max(2(qo), 2(gi,;)) and m > Q(C'[],). We have there-
forem > max(Q(qo), QC’'[14)) = QC[]y). If ¥ = £ and
b = t, thenm = max(Q(qo), (g;,;)) and m > Q(C'[],).
so that we have m = Q(C[],) asrequired. Finaly, if b =
b = £, thenm > max(2(qo), 2(g;,5)) and m = Q(C'[],),
so that we have m = Q(C],) asrequired.

(]

= b t, then m >
!

We now move on to the second lemma. Let 7" be a
RLab-labelled tree. When o € dom(T), we write T'|,,
for the subtree of T" whose root positioniis c.

LemmaA.5 Let A be an alternating tree automata with
initial state ¢;, and G be a recursion scheme with start
symbol S. Let Ty be (e,1,5%: (qr,Q(qr))" F SO : g;). If
To > Ty > Ty > ---, then every T; satisfies the following
conditions:

e T;% isa prefix of a run-tree of A over [G].

e For every leaf of T; labeled by (o, [,T'F ¢ : q), [G] |
is generated from¢ by G.

Proof The proof proceeds by induction on i. The case for
1 = Oistrivial. Supposei = k + 1. If Ty, > Typyq iS
derived from the rewrite rule (i), the result follows immedi-
ately from the induction hypothesis. Suppose 7}, > Ty11 IS
derived from the rewrite rule (ii), then we have:

Ty, = Cl{a,l,T Faty -+ t, : q)]
Ty =

C[<O‘7q>(<a17 lvrl,l F ty: q1,1>a ey <Oéla lvrl,/ﬁ F ty : Q1,k1>

co{an, LTy Fty i gna)s o {oam, Lk, F ot t qnky)]

where {(i,¢; ;) |1 <i<n,1 <j<k;}satisfiesda(q,a).
The required condition follows immediately from the in-
duction hypothesis. (Note that by the induction hypothesis,
[9] () =a) O

A.3 Proofs of Main Lemmas for Com-

pleteness Theorem

We prove main lemmas (Lemmas 4.4 and 4.5) used in
the proof of Theorem 4.6.
We first prepare afew lemmas.

LemmaA6 If T Uz : (6,m)” - ¢ : 6, then T U
(z:(0,m")") mTmbt:6for everym’ > 0.

Proof Straightforward induction on the derivation of I" U
z:(0,m)" ¢ 6. O

Next, we show that the calculation of 6, 5 ;) and T'(; 5,7
is correct.

LemmaA.7 If (¢,0,5,qr) >* C[(B,,tot1 - tn,q)] then
Cito.p0) 102 0t .0)-

15

Proof The proof proceeds by induction on the structure of
to.
e If ty = a, then we have:

<ﬂ7l7t0t1 o tn7q> >
(O‘:q>(<6(17 1)7l7t17q1,1>7 SRR <ﬁ(1,k1),l,t1,qu1>,
R <ﬁ(n7 1),17tn,qn,1>7 U </8(n7 kn)7l7tnaqn,kn>)

where o = fst(3) and the children of the node {(«, ¢) of the
run-tree are:

<O[1, q1,1>a e <O[1, Q1,k1>, DR <OLTL, Qn,1>, DR <0m»Qn,kn>~

By the construction of T, 3,y and 04, 5.1), we have:

Lo = 0

Oty 5.0) = Njlaij,mag) = - = Nj(@nj, mng) — @
where m;; = max(£2(gi;), 2(q)). By T-CONST, we obtain
To,8,0) F to = 04,5, @S required.

o If ty = F, then by the construction of I'(;, ;) and
Oto.0.0), We have: T, 5.y = F = (02,6, 20(t0,6.)) "
By the rule T-VAR, we have I';; g1y = to @ 0,8, 8
required.

o If tg = to,1t0,2, then by the construction of I'(, 3.
and 6, 5,1y, we have:

Ortor 50 = Nzt (B m3) = O(sg 1)

Cito.p0) = Ttoa,8) UL rmy U--- UTg A my,

(B, toty -+~ tn,q) >* Ci[(Bi, lis to,2ti, gi)]

0 = 9(t0,27/6i1l11)’ ;= F(t0‘2,ﬁi7l1ﬂ)? m; = Q(CZH%)

By the induction hypothesis, we have I'; - ¢y : 6; for
each i € {17 .. .,k‘} and F(to,l,ﬁ,l) Ftoq : e(to,l.ﬂ,l)' By
LemmaA.6, wehaveI'; f# m; Tm; - to,2 : 6;. By applying
T-App, weobtan T, gy I to : 04,3, aSrequired.

O

We are now ready to prove one of the main lemmas.

Proof of Lemma4.4 We show thefollowing strengthened
property by induction on the structure of ¢,.

If (,0,5,q;) >* C[(3,1,5,¢)] and F: (6, m)" €
L5, wWhere t is a prefix of s, then there
exist C’,3,1,t',q such that (B,1,t,q) >*
C'B U, FE)] andm = Q(C'[],) with§ =
Orpr1r)-
e Casetisatermina a or anon-termina F’ # F: This
cannot happen by the construction of I'¢; 3 ;).
e Caset = F': Therequired propertiesholdsfor C/ = []
G =p,I'=I,andq¢ = q.
e Caset = tgt;: By the definition of I'(; 3 ;), we have:

Papn = Lol (40,60,00) T maU---Ulq, g T

where <ﬁ,l,t0t1,q) >* CiKﬁiyliytlgiaq'i” and m;
QCi[]g). 1f F:(0,m)" € Ty 5, then the result fol-
lows immediately from the induction hypothesis. Other-
wise, we have F' : (0,m)" € T, 5,1,y 1 my for some
i. By the definition of - f m, we have F : (6, m')" e
I, 8,1, for some m’ such that m = max(m’,m;). By
(8,1, tot1,q) >* C;[(06:,1;, 1185, q;)] and the induction hy-
pothesis, we have:

(Bislist13s,qi) >* Ci[(B} U, Ft,q')]

withm' = Q(C}[]y) and 0 = 6 1) Thus, the required
properties hold for C' = C;[C!], 5 = p},and " = I.
O

We now turn to prove the second main lemma
(Lemma 4.5). We first prove the following lemma.

LemmaA.8 If <€a O» S» ql> >* C[<ﬂa l7t0t1 o 'tn; qﬂ
where ty = [s1/x1,...,sg/x;]u then there exist T'y and
0;;,m;; (1 <i<k,1<j<g)that satisfy:

Lo, a1 : AJLy (B15:mag)"s sz s AJEy (Brgymi)
Fu 0,80

{(0:5,mi ;) [1< <gi} {00, 2C []g)) |
<6» la tOtl e tn> q> > C/Kﬂ/, l/7 Si tla q/>]}

Lo C .80

Proof The proof proceeds by induction on the structure of
u.

e Casewhereuisa (€ X) or F (€ N):
The required conditions hold for T'y = T'(;, 3,y and g; = 0
(1<i<k).

e Casewhereu isz;:
In this case, ty = s;. The required conditions hold: Ty =
@,91"1 = H(to,g?l),mi’l = Q(q), and gi =1 and g; = 0 for
j#i.

e Casewherew isugus:
In this case, to = t070t071 where t0,0 = [g/:’E]UO and t071 =
[5/x]u;. By LemmaA.7 and the definition of ', 5y, we
have:

F(to‘o-ﬂ,l) Fto,0: a(to,oﬁyl)

F(to,hﬁh,lh) Fto, o(to,h,@mlh) _

(B, tots -+ tn,q) > Cpl{Bh,lnsto,1th, qn)]
mp, = Q(Chllg,) (forl <h < H)

L (ta,60) = Tt p,8.0 Y (UnZr Tt 1,8ty T 100)
e(to,oyﬁ,l) = /\hH:I e(to,lﬁh,lh,) - e(toﬁ,l)

By the induction hypothesis, we have:

Lo.0, 212 AJ2) (60,15, mo17)",. ..
2r: NJ25 Bk moks)" o Osg 0.6
{(80,i,5,m0,,5) | 1 <5 < g} {05,507, AUC[]¢)) |
(8,1, ([8/Zluo)tots -+ tn,q) > C'[(B,1,s:t’,q")]}
oo C Ttgo.8.0)

16

and, for1 < h < H,

Lon, oy ?’:i Onaasmuai)s ...,

o NJY Ongersmn) F o O(tor.Br.ln)

{(ah,i,j>mh,i,j2| 1<j < gnit € {(0s:,800), UC[g)) |
(Bhsln, ([5/Z)ur)th, qn) > C'[(B, 1, st "))}

Lon C Ltg0.8.00)-

Let m;L,m» = max(mp,;,5,mp) for1 <h < H1<i<
k1 <j<gni)andl§, :=Topn f mp. By LemmaA.g,
we have:

(Thp w1 ALY Ongomiy ;) -

okt NSt Onk s ml o)) T s O, L 6,00
Let m()’mv bem07i,j and I’y be FO’Q U F6,1 J---u F6,H' By
applying T-APP, we get:

e 9h,1 / £
Lo, 21 Apg j=1 (gh,l,jamh,m) REER

e gn .k f .
Tt Ao NGEY Onogegs i g)" F w0y 5y
Furthermore, we have:

I'o = TpoU F6,1 U---u Fé),H
< F(to,oﬁyl) U F(to,hﬁhll) frmyU-
= F(toﬁal)

o F(to,lﬁH,lH) frmp

and {(Onjmp;)" | 0 < h < H1 < j <
gniy consists of pairs (0, sy, UC[]4)) satisfying
(B, tot1 - tn,q) >* C'[(B,1',s:t',q')] asrequired.

O

We are now ready to prove the second lemma.

Proof of Lemma 45 Let {(0;;,m;;) | j € J;} bethe
Set:
{0,500, UC[N9) | (B, 1. [3/2t,q) > C'[(B', U, st d)] -
By LemmaA.8, there exists I" such that:

F,Il : /\j611 (el,j,ml,j)f, ey Lt /\jEIk (0k7j,mk,j)f

- [5/alt g
I; C J;foreachi € {1,... k}
I'C Ts/apep.141)

By the second definition of the construction of 6 gy, it
must be the case that

H(F)ﬂ:l) = /\ (917j7mlaj) —
JEJ1

— N Orjomey) —q
J€Jk

Thus, T' = Az.t : 05 g, isobtained by applying T-ABs. [J

