
A Type System Equivalent to the Modal Mu-Calculus Model Checking of
Higher-Order Recursion Schemes

N. Kobayashi C.-H. L. Ong
Tokohu University University of Oxford

Abstract

The model checking of higher-order recursion schemes
has important applications in the verification of higher-
order programs. Ong has previously shown that the modal
mu-calculus model checking of trees generated by order-
n recursion scheme is n-EXPTIME complete, but his algo-
rithm and its correctness proof were rather complex. We
give an alternative, type-based verification method: Given
a modal mu-calculus formula, we can construct a type sys-
tem in which a recursion scheme is typable if, and only if,
the (possibly infinite, ranked) tree generated by the scheme
satisfies the formula. The model checking problem is thus
reduced to a type checking problem. Our type-based ap-
proach yields a simple verification algorithm, and its cor-
rectness proof (constructed without recourse to game se-
mantics) is comparatively easy to understand. Further-
more, the algorithm is polynomial-time in the size of the
recursion scheme, assuming that the sizes of types and the
formula are bounded above by a constant.

1 Introduction

The model checking of infinite structures generated by
higher-order recursion schemes has drawn growing atten-
tion from both theoretical and practical communities. From
a theoretical perspective, the recent interest was sparked by
the discovery of Knapik et al. [9] that higher-order recur-
sion schemes satisfying a syntactic constraint called safety
generate the same class of (possibly infinite, ranked) trees
as higher-order pushdown automata. Remarkably they also
showed that these trees have decidable monadic second-
order (MSO) theories [10], subsuming earlier well-known
MSO decidability results for regular (or order-0) trees [16]
and algebraic (or order-1) trees [2]. (MSO logic is a kind of
gold standard of expressivity for logics that describe com-
putational properties: all the standard temporal logics can
be embedded into it, and it is hard to extend it meaningfully
without sacrificing decidability where it holds.) Ong [15]
has subsequently shown that the modal mu-calculus model

checking problem for trees generated by arbitrary order-
n recursion schemes is n-EXPTIME complete (and hence
these trees have decidable MSO theories); further [5] these
schemes are equi-expressive with a new class of automata,
called collapsible pushdown automata. On the practical
side, Kobayashi [11] has recently shown that the verification
of higher-order programs can be reduced to that of higher-
order recursion schemes. He constructed a transformation
of a higher-order program into a recursion scheme that gen-
erates a (possibly infinite) tree representing all the possible
event sequences of the program; thus, temporal properties
of the program can be verified by model-checking the re-
cursion scheme.

Ong’s algorithm for verifying higher-order recursion
schemes is rather complex and probably hard to under-
stand: The algorithm reduces the model-checking problem
to a parity game over variable profiles, and its correctness
proof relies on game semantics [7]. Hague et al. [5] gave
an alternative proof via a reduction of the model checking
of recursion schemes to that of collapsible pushdown au-
tomata; their reduction is also based on game semantics.
Kobayashi [11] showed that given a Büchi tree automaton
with a trivial acceptance condition (a class which Aehlig [1]
has called trivial automata), one can construct an intersec-
tion type system in which a recursion scheme is typable if,
and only if, the tree generated by the scheme is accepted by
the automaton. (Prior to Kobayashi’s work [11], Aehlig [1]
has also proposed a verification method for the same class
of trivial automata. Kobayashi’s type system is closely re-
lated to Aehlig’s, which was not presented in the form of a
type system: See Section 6.) The advantages of the type
system are that the correctness of the algorithm is much
simpler, and it is easier to optimize the algorithm in a num-
ber of special cases, by standard methods for type infer-
ence. Specifically, Kobayashi [11] has shown that under
the assumption that the sizes of types and the automaton
are bounded above by a constant, the verification algorithm
runs in time linear in the size of the recursion scheme.

This paper builds on Kobayashi’s type system [11] and
extends it to a type system capable of the modal mu-
calculus model checking of trees generated by higher-order

1

recursion schemes. Equivalently (thanks to Emerson and
Jutla [3]), given an alternating parity tree automaton A, one
can construct a type system TA in which a recursion scheme
G is well-typed if, and only if, the tree generated by G is ac-
cepted by A. Thus, the modal mu-calculus model checking
problem is reduced to a type-checking problem.

Our type-based verification algorithm has a number of
advantages:

• The algorithm is simple: the type system, to which the
model checking problem is reduced, is defined by induction
over four rules. The correctness proof is, arguably, consid-
erably easier to understand than that of Ong’s original ap-
proach [15]. The correctness of the algorithm is divided into
two parts: the correctness of the type system, and that of the
type-checking algorithm. For both parts, standard methods
(such as proving type soundness via type preservation) re-
main applicable, although a part of the proofs for reasoning
about parity conditions is entirely novel and non-trivial. It
is also worth noting that this is the first proof of Ong’s result
without recourse to game semantics.

• It is much easier to discuss the complexity and possi-
ble optimization of the verification algorithm. In fact, our
type-based verification algorithm runs in time polynomial in
the size of the recursion scheme under the assumption that
the sizes of types and the automaton are bounded above by
a constant. In contrast, Ong’s algorithm [15] runs in time
n-EXPTIME in the size of the scheme, under the same as-
sumption.

• Framed as a type system, we believe that it is easy to
modify the verification algorithm to deal with various exten-
sions of higher-order recursion schemes. For example, one
can extend higher-order recursion schemes with a limited
form of polymorphism that admits (say) a non-terminal of
kind (o → o) ∧ ((o → o) → (o → o)) where o describes
trees, and also with finite data domains such as booleans:
see Section 7.

From a type-theoretic point of view, the type system has
a number of novel features which we think are interesting:
(i) variable bindings in a type environment have flags and
priorities to express when the variables can be used, and
(ii) the well-typedness of recursive definitions is defined via
the winning condition of a parity game. The latter is a non-
trivial generalization of the usual treatment of recursion in
type systems for programming languages.

The rest of this paper is organized as follows. Sec-
tion 2 gives preliminary definitions. Section 3 defines the
type system equivalent to the model-checking of recursion
schemes, and Section 4 proves its correctness. Section 5
discusses the type-checking algorithm (which serves as a
model-checking algorithm for recursion schemes) and its
complexity. Section 6 discusses related work and Section 7
concludes.

2 Preliminaries

This section reviews basic definitions used throughout
the paper. We first review the definition of higher-order re-
cursion schemes in Section 2.1. We then review the defini-
tion of alternating parity tree automata in Section 2.2. Al-
ternating parity tree automata are used for expressing prop-
erties of infinite trees. They are equi-expressive with logics
such as MSO and modal μ-calculus. Finally, we review the
definition of parity games [4] in Section 2.3. Parity games
are often used in the context of modal μ-calculus model
checking; in fact, Ong’s algorithm [15] reduces the model
checking of higher-order recursion schemes to the solvabil-
ity of a parity game. We shall use it for defining the type
system (more specifically, for the purpose of typing recur-
sive definitions).

2.1 Higher-Order Recursion Schemes

A higher-order recursion scheme is a grammar for de-
scribing an infinite tree. The set of kinds1 is defined by:

κ ::= o | κ1 → κ2

Intuitively, o describes trees, while κ1 → κ2 describes a
function that takes an entity of kind κ1 and returns an entity
of kind κ2. The order and arity of κ, written ord(κ) and
arity(κ) respectively, are defined by:

ord(o) := 0 ord(κ1 → κ2) := max (ord(κ1) + 1, ord(κ2))
arity(o) := 0 arity(κ1 → κ2) := arity(κ2) + 1

A (deterministic) higher-order recursion scheme (or re-
cursion scheme, for short) G is a quadruple (Σ,N ,R, S),
where

• Σ is a ranked alphabet i.e. a map from a finite set of
symbols called terminals to kinds of order 0 or 1.

• N is a map from a finite set of symbols called non-
terminals to kinds.

• R is a map from the set of non-terminals
(i.e. dom(N)) to terms of the form λx̃.t. 2 Here, x̃ abbre-
viates a sequence of variables, and t is a term constructed
from non-terminals, terminals, and variables (see below).

• S is a special non-terminal called the start symbol.
We require that N (S) = o. The set of (typed) terms is
defined in the standard manner: A symbol (i.e., a terminal,
non-terminal, or variable) of kind κ is a term of kind κ. If
terms t1 and t2 have kinds κ1 → κ2 and κ1 respectively,
then t1 t2 is a term of kind κ2. For each R(F) = λx̃.t, F x̃
and t must be terms of kind o,3 and the variables that occur

1They are usually called types [15]. We use the term “kinds” to avoid
confusion with the intersection types introduced later.

2Thus we assume that recursion schemes are deterministic in this paper.
3By the definition of terms, t does not contain λ-abstractions. We think

however that the type system presented in Section 3 is correct even if λ-
abstractions are allowed in t.

2

in t are contained in x̃. The order of a recursion scheme is
the highest order of its non-terminals.

By abuse of notation, we often write a ∈ Σ and F ∈ N
for a ∈ dom(Σ) and F ∈ dom(N).

The rewriting relation −→G is defined inductively by:

• F s̃ −→G [s̃/x̃]t if R(F) = λx̃.t.

• If t −→G t′, then ts −→G t′s and st −→G st′.

We omit the subscript G whenever it is clear from the con-
text.

Let Δ be a set of symbols. A Δ-labelled tree is just a par-
tial function t from {1, . . . , n}∗ (for some fixed n ≥ 1) to Δ
such that dom(t) is prefix-closed. Note that t is unranked
i.e. nodes in t that have the same label are not required to
have the same number of children. When considering the
possibly infinite term-trees that are generated by recursion
schemes, we assume a given ranked alphabet Σ (say). Let
n be the largest arity of symbols in Σ; a Σ-labelled tree is
thus a partial function t from {1, . . . , n}∗ to dom(Σ) such
that dom(t) is prefix-closed. Further, t is said to be ranked
just if whenever t(w) = a and arity(Σ(a)) = m, then
{i | wi ∈ dom(t)} = {1, . . . , m}. A (possibly infinite) se-
quence π over {1, . . . , n} is a path of t if every finite prefix
of π is in dom(t).

We often use the usual term representation for trees. For
example, we write a c (b c) for the tree:

{ε �→ a, 1 �→ c, 2 �→ b, 2 1 �→ c}.

Given a term t, we define a (finite) tree t⊥ by:

t⊥ =

⎧⎨
⎩

f if t is a terminal f
t1

⊥t2
⊥ if t is of the form t1t2 and t1

⊥ �= ⊥
⊥ otherwise

For example, (f (F a) b)⊥ = f ⊥ b. Let 	 be the partial
order on dom(Σ) ∪ {⊥} defined by ∀a ∈ dom(Σ).⊥ 	
a. It is extended to a partial order on trees by: t 	 s iff
∀w ∈ dom(t).(w ∈ dom(s)∧ t(w) 	 s(w)). For example,
⊥ 	 f ⊥ ⊥ 	 f ⊥ b 	 f a b. For a directed set T of trees,
we write

⊔
T for the least upper bound of elements of T

with respect to 	.
The tree generated by G, or the value tree of G, written

[[G]], is defined by:

[[G]] :=
⊔

{t⊥ | S −→∗
G t}.

By construction, [[G]] is a possibly infinite, ranked (Σ ∪
{⊥})-labelled tree (but see Remark 2.1).

Example 2.1 Consider the recursion scheme G0 =
(Σ,N ,R, S), where:

Σ = {a : o → o → o, b : o → o, c : o}
N = {S : o, F : o → o}
R = {S �→ F c, F �→ λx.a x (F (bx))}

S is reduced as follows.

S −→ F c
−→ a c (F (b c))
−→ a c (a (b c) (F (b(b c))))
−→ · · ·

The value tree [[G0]] is depicted as follows.
a� �

c a� �
b a

c
� �
b a

b
�
b

..

�

c

..

2.2 Alternating Parity Tree Automata

Given a finite set X , the set B+(X) of positive Boolean
formulas over X is defined as follows:

B+(X) � θ ::= t | f | x | θ ∧ θ | θ ∨ θ

where x ranges over X . We say that a subset Y of X sat-
isfies θ just if assigning true to elements in Y and false to
elements in X \ Y makes θ true.

An alternating parity tree automaton (or APT for short)
over Σ-labelled trees is a tuple A = (Σ, Q, δ, qI ,Ω) where

• Σ is a ranked alphabet; let m be the largest arity of the
terminal symbols.

• Q is a finite set of states, and qI ∈ Q is the initial state.
• δ : Q × Σ −→ B+({1, . . . , m} × Q) is the transi-

tion function where, for each f ∈ Σ and q ∈ Q, we have
δ(q, f) ∈ B+({1, . . . , arity(f)} × Q).

• Ω : Q −→ {0, · · · ,M − 1} is the priority function.
A run-tree of an alternating parity tree automaton A over

a Σ-labelled ranked tree t is a (dom(t) × Q)-labelled un-
ranked tree r satisfying:

• ε ∈ dom(r) and r(ε) = (ε, qI); and
• for every β ∈ dom(r) with r(β) = (α, q), there is a

set S that satisfies δ(q, t(α)); and for each (i, q′) ∈ S, there
is some j such that β j ∈ dom(r) and r(β j) = (α i, q′).

Let π = π1 π2 · · · be an infinite path in r; for each i ≥ 0,
let the state label of the node π1 · · ·πi be qni

where qn0 , the
state label of ε, is qI . We say that π satisfies the parity con-
dition just if the largest priority that occurs infinitely often
in Ω(qn0)Ω(qn1)Ω(qn2) · · · is even. A run-tree r is accept-
ing if every infinite path in it satisfies the parity condition.

We use alternating parity tree automata for describing
properties of (the value tree of) recursion schemes, instead
of modal μ-calculus formulas.

Ong [15] showed that there is a procedure that, given a
recursion scheme G and an alternating parity tree automaton
A, decides whether A accepts the value tree of G.

3

Theorem 2.1 (Ong [15]) Let G be a recursion scheme of
order n, and A be an alternating parity tree automaton. The
problem of checking whether A accepts [[G]] is n-EXPTIME-
complete.

Remark 2.1 In this paper, we only consider recursion
schemes whose value trees do not contain ⊥. Given a re-
cursion scheme G and an alternating parity tree automaton
A, one can construct G′ and A′ such that (i) the value tree
of G′ does not contain ⊥, and (ii) A′ accepts G′ if, and only
if, A accepts G.

Example 2.2 Let Σ be the alphabet used in Exam-
ple 2.1. Let A1 be the alternating parity tree automaton
(Σ, {q0, q1}, δ1, q0, {q0 �→ 2, q1 �→ 1}), where, for each
q ∈ {q0, q1},

δ1(q, a) = (1, q) ∧ (2, q) δ1(q, b) = (1, q1)
δ1(q, c) = true

Then, A1 accepts a Σ-labelled tree t if, and only if, in every
path of t, c occurs eventually after b occurs.

Example 2.3 Let Σ be the same alphabet as above.
Let A2 be the alternating parity tree automaton
(Σ, {q0, q1}, δ2, q0,Ω2), where

δ2(q, a) = (1, q1) ∧ (2, q) for each q ∈ {q0, q1}
δ2(q, b) = (1, q) for each q ∈ {q0, q1}
δ2(q, c) = true
Ω2(q0) = 2 Ω2(q1) = 1

A2 accepts a Σ-tree t if, and only if, for every path of t, if
the path takes the left branch of a node labeled by a, then
the path contains c.

2.3 Parity Games

A parity game is a tuple (V∀, V∃, v0, E,Ω) such that E ⊆
V × V is the edge relation of a directed graph whose node-
set V is the disjoint union of V∀ and V∃; v0 ∈ V is the start
node; and Ω : V −→ {0, · · · ,M − 1} assigns a priority to
each node. A play consists in the players, ∀ and ∃, taking
turns to move a token along the edges of the graph. At a
given stage of the play, suppose the token is on node v ∈ V∀
(respectively v ∈ V∃), then ∀ (respectively ∃) chooses an
edge (v, v′) and moves the token onto v′. At the start of a
play, the token is placed on v0. Thus we define a play to be
a finite or infinite path π = v0 vn1 vn2 · · · in the graph that
starts from v0. Suppose π is a maximal play. The winner of
π is determined as follows:

• If π is finite, and it ends in a V∃-node (respectively
V∀-node), then ∀ (respectively ∃) wins.

• If π is infinite, then ∃ wins if π satisfies the parity
condition i.e. the largest number that occurs infinitely often
in the sequence Ω(v0)Ω(vn1)Ω(vn2) · · · is even; otherwise
∀ wins.

q

q1 q2

The largest priority in this
path (including the root

node and q2) is m2

The largest priority
in this path

(including the root
and q1) is m1

Figure 1. A tree function described by
(q1,m1) ∧ (q2,m2) → q

A ∃-strategy (or strategy, for short) W is a map from
plays that end in a V∃-node to a node that extends the play.
We say that a strategy W is winning just if ∃ wins every
(maximal) play π that conforms with the strategy (i.e. for
every prefix π0 of π that ends in a V∃-node, π0 W(π0) is a
prefix of π). Finally a strategy W is memoryless just if W’s
action is determined by the last node of the play; formally,
for all plays π1 and π2 that are consistent with W , if their
respective last nodes are the same V∃-node, then W(π1) =
W(π2). We say that a parity game is solvable just if there
is a winning strategy (for player ∃). It is known that if there
is a winning strategy for a parity game, then there is also a
memoryless winning strategy for the game.

3 Type system

Given an alternating parity tree automaton A =
(Q,Σ, δ, qI ,Ω), we construct a type system TA in which a
recursion scheme is well-typed if, and only if, the tree gen-
erated by the recursion scheme is accepted by A. Let q and
m respectively range over the states and priorities of A. We
define:

Atomic types θ ::= q | τ → θ
Types τ ::=

∧
{(θ1,m1), . . . , (θk,mk)}

Notations We write (θ1,m1) ∧ · · · ∧ (θk,mk), or simply∧k
i=1 (θi,mi), for types

∧
{(θ1,m1), . . . , (θk,mk)}. We

write � for the type
∧
∅. Given a priority Ω(q) for each

element q of Q, we extend it to all atomic types by Ω(τ →
θ) := Ω(θ).

Intuitively, the type (q1,m1) ∧ · · · ∧ (qk,mk) → q de-
scribes a function that takes a tree (say, x) that can be ac-
cepted from each of the states q1, . . . , qk, and returns a tree
that is accepted from state q. The priority mi describes the
maximal priority in the path from the root of the output tree
(of type q) to the input tree of type qi. In other words, the
input tree can be used as a tree of type qi only after visiting
a state of priority mi, and before visiting a state of priority
greater than mi. See Figure 1 for an illustration.

The set of “well-formed” types is defined by the relations
τ :: κ and θ ::a κ, which should be read “τ is a type of kind

4

κ” and “θ is an atomic type of kind κ” respectively. We also
impose a condition on priorities.

Definition 3.1 (Well-formed types) The relations τ :: κ
and θ ::a κ are the least relations closed under the following
rules:

qi ::a o
τ :: κ1 θ ::a κ2

τ → θ ::a κ1 → κ2

θi ::a κ for each i ∈ {1, . . . , n}∧
{(θ1,m1), . . . , (θn,mn)} :: κ

A type τ (respectively, atomic type θ) is well-formed just if
(i) τ :: κ (respectively, θ ::a κ) for some κ, and (ii) for each
subexpression of the form

∧k
i=1 (θi,mi) → θ′, we have

mi ≥ max(Ω(θ′),Ω(θi)) for each 1 ≤ i ≤ k.

For example, q1 ∧ ((q2, 1) → q3) is not well-formed, as
it combines types of different kinds. (q1,m1)∧ (q2,m2) →
q is well-formed if m1 ≥ Ω(q),Ω(q1) and m2 ≥
Ω(q),Ω(q2); this reflects the intuition that m1 and m2 are
the largest priorities in the paths shown in Figure 1, includ-
ing the root and leaf nodes. Henceforth we consider only
well-formed types.

Type Environment and Judgement A type judgement
has the form Γ � t : θ, where t is a λ-term (where non-
terminals are treated as variables), and Γ, called a type en-
vironment, is a set of bindings of the form x : (θ,m)b. Ex-
pressions of the form, (θ,m)b where b ∈ {t, f}, are called
flagged types, which are ranged over by meta-variables σ.

Note that Γ may contain multiple occurrences of the
same variable. In the type environment Γ, each (atomic)
type of a variable is annotated with a flag b, indicating when
variable can be used as a value of that type. For example,
x : (q,m)t ∈ Γ means that x can be used only before vis-
iting a state with priority larger than m. If the flag is f
(i.e. x : (q,m)f ∈ Γ), then it is additionally required that x
can be used only after visiting a state with priority m. Thus,
if x : (q,m)f ∈ Γ, then the largest priority seen in the path
(of the value tree) from the current tree node to the node
where x is used must be exactly m.

Example 3.1 Suppose the priority of q, Ω(q), is 0.
(i) The judgement {x : (q, 1)f} � x : q is invalid. The

type environment says that x can be used only after visiting
a state of priority 1, but the current state q has only priority
0, so x cannot be used.

(ii) The judgement {x:(q, 1)t} � x : q is however valid:
since the flag is t, x can be used any time before a priority
larger than 1 is seen.

(iii) The judgement {x : (q, 1)f, y : ((q, 1) → q, 0)f} �
y x : q is also valid, because y uses the argument x only
after visiting a state of priority 1.

(iv) The judgement {x : (q, 0)f, y : ((q, 1) → q, 0)f} �
y x : q is invalid: x’s type (q, 0) requires that the largest
priority seen before using x must be less than or equal to 0,
but y uses x after visiting a state of priority 1.

Notations We shall often drop the set braces to save writ-
ing. We write Γ, x :

∧k
i=1 (θi,mi)

bi as a shorthand for

Γ ∪ {x : (θ1,m1)
b1 , . . . , x : (θk,mk)bk}

where x is assumed not to occur in Γ. We write dom(Γ)
for the set {x | ∃θ,m, b . x : (θ,m)b ∈ Γ}. For techni-
cal convenience, we assume type environments Γ satisfy an

injectivity condition: If x : (θ,m)b
, x : (θ,m)b′ ∈ Γ then

b = b′.
The type judgement Γ � t : θ is defined by induction

over the following rules.

(θ,m)b ↑ Ω(θ) = (θ,m)t

x : (θ,m)b � x : θ
(T-VAR)

{(i, qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
∅ �
a :

∧k1
j=1(q1j ,m1j) → · · · →

∧kn

j=1(qnj ,mnj) → q

where mij = max(Ω(qij),Ω(q))
(T-CONST)

Γ0 � t0 : (θ1,m1) ∧ · · · ∧ (θk,mk) → θ
Γi ↑ mi � t1 : θi for each i ∈ {1, . . . , k}

Γ0 ∪ Γ1 ∪ · · · ∪ Γk � t0 t1 : θ
(T-APP)

Γ, x :
∧

i∈I (θi,mi)
f � t : θ I ⊆ J

Γ � λx.t :
∧

i∈J(θi,mi) → θ
(T-ABS)

The operation (·)↑m used in the rules T-VAR and T-APP

above are defined as follows.

(θ,m)b ↑ m′ :=

⎧⎨
⎩

(θ,m)b if m′ < m

(θ,m)t if m′ = m
undefined if m′ > m

{x1 : σ1, . . . , xn : σn} ↑ m := {x1 : σ1 ↑ m, . . . , xn : σn ↑ m}.

In T-VAR, x can be used either if b = t and the current
priority is less than or equal to m, or if b = f and the current
priority is m. The rule T-CONST is for input symbols. The
premise means that when reading a, the automaton A in
state q can spawn new states qij , and read the i-th subtree
with state qij . Thus, in order for a tree a t1 · · · tn to have
type q (i.e. to be accepted from state q), it is sufficient that
ti has type qij for every j ∈ {1, . . . , ki}. For example, for
the automaton A1 in Example 2.2, a has type (q0, 2) →
(q0, 2) → q0 and (q1, 1) → (q1, 1) → q1.

5

In T-APP, the first premise requires that the argument of
t0 should have types θ1, . . . , θk. Thus, the second premise
requires that t1 has these types. Furthermore, the first
premise means that the argument is used as a value of type
θi only in a context where the largest priority that has been
seen (since the function t0 is called) is mi. The operation
Γi ↑ mi takes that into account.

The rule T-ABS for abstraction is standard, except that
weakening on x is allowed,4 and that the bindings on x are
annotated with flag f, indicating that x can be used only
after the expected priority is seen.

Remark 3.1 In rule T-APP, k can be 0. Thus, for example,
x : (� → θ,Ω(q))f � x t : q is derivable for any t, even if t
is ill-typed or contains variables other than x.

Example 3.2 Recall the automaton A1 in Example 2.2. By
using rule T-CONST, we obtain the following types for in-
put symbols.

a : (q,Ω1(q)) → (q,Ω1(q)) → q for each q ∈ {q0, q1}
b : (q1,Ω1(q)) → q for each q ∈ {q0, q1}
c : q for each q ∈ {q0, q1}

Let θ = (q0, 2) ∧ (q1, 2) → q0, θa = (q0, 2) →
(q0, 2) → q0, and Γ1 = F : (θ, 2)t, x : (q1, 2)t. The term
λx.a x (F (bx)) is typed as follows.

∅ � a : θa x : (q0, 2)t � x : q0 Γ1 � F (bx) : q0

F : (θ, 2)f, x : (q0, 2)f ∧ (q1, 2)f � a x (F (bx)) : q0

F : (θ, 2)f � λx.a x (F (bx)) : θ

Here, Γ1 � F (bx) : q0 is derived by:

F : (θ, 2)t � F : θ Γ2 � bx : q0 Γ2 � bx : q1

Γ1 � F (bx) : q0

where Γ2 = x : (q1, 2)t, and Γ2 � bx : qi is derived from
∅ � b : (q1,Ω1(qi)) → qi and Γ2 � x : q1.

Typing for recursion schemes We now define the typing
relation �A G for recursion schemes. In type systems for
programming languages, a standard rule for recursion F =
t is:

Γ, F : τ � t : τ

Γ � F : τ

Kobayashi [11] used essentially the same rule for the re-
stricted class of automata (Büchi automata with a trivial ac-
ceptance condition).

4For technical convenience, this is the only place where weakening is
allowed.

The standard rule for recursion is however insufficient
for dealing with the properties described by alternating par-
ity tree automata (or equivalently, MSO or modal μ-calculus
formula): see Remark 3.2 below. We shall define the typing
relation �A G : q in terms of parity games.

Definition 3.2 Given an alternating parity tree au-
tomaton A = (Σ, Q, δ, qI ,Ω) and a recursion
scheme G = (Σ,N ,R, S), we define a parity game
(V∀, V∃, (S, qI ,Ω(qI)), E,Ω′) as follows.

V∃ = {(F, θ,m) | F ∈ dom(N), θ :: N (F)}
V∀ = {Γ | dom(Γ) ⊆ dom(N), all flags in Γ are f}
E = {((F, θ,m),Γ) | Γ � R(F) : θ} ∪

{(Γ, (F, θ,m)) | F : (θ,m)f ∈ Γ}

and the priority function Ω′ maps (F, θ,m) to m and Γ to
0. G is well-typed, written �A G, if player ∃ has a winning
strategy for the game.

The above definition may be understood intuitively as
follows. The player ∃ tries to prove that the recursion
scheme is well-typed, and the other player ∀ tries to dis-
prove it. At a node (F, θ,m), the player ∃ has to pick a type
environment Γ under which R(F) has type θ. The player
∀ then picks a binding F ′ : (θ′,m′)f from Γ, and asks ∃ to
show why F ′ has type θ′, and then it is again the player ∃’s
turn to choose a type environment Γ′ under which R(F ′)
has type θ′. The play continues indefinitely, or ends when
one of the players is unable to move. The player ∃ wins a
play if at some point, it chooses the empty type environment
(so that ∀ cannot pick a binding), or if the play is infinite,
and the largest priority occurring infinitely often is even.
The recursion scheme is well-typed if the player ∃ has a
strategy that wins every play, whatever choice is made by
the player ∀.

Example 3.3 Recall the recursion scheme G in Exam-
ple 2.1 and the automaton A1 in Example 2.2. Let θ be
(q0, 2) ∧ (q1, 2) → q0. Then, valid judgements include
(recall Example 3.2 for the derivation of the second judge-
ment):

F : (θ, 2)f � F c : q0

F : (θ, 2)f

� λx.a x (F (bx)) : θ

A memoryless winning strategy W for the parity game is
given by:

W(S, q0, 2) = F : (θ, 2)f

W(F, θ, 2) = F : (θ, 2)f

Remark 3.2 Note that it is unsound to use the usual rule
for recursion:

Γ, F : (θ,m)f � R(F) : θ

Γ � R(F) : θ

6

and define �A G by ∅ � S : qI . For example, let A′
1 be

the alternating parity tree automaton obtained from A1 of
Example 2.2 by replacing the inital state replaced with q1,
and let G be the recursion scheme G = (Σ, {S}, {S �→
b(S)}, S). Then, ∅ � S : q1 would be derivarable by:

∅ � b : (q1, 1) → q1 S : (q1, 1)t � S : q1

S : (q1, 1)f � b(S) : q1

∅ � S : q1

The value tree of G is however not accepted by A′
1.

The standard rule for recursion can be considered a de-
generate case of our definition (using parity games), where
all the priorities are 0. In fact, Kobayashi’s type system [11]
is obtained as a special case of our type system TA where
the priorities are restricted to 0.

4 Correctness of the Type System

This section shows that the type system is sound and
complete: a higher-order recursion scheme G is well-typed
if, and only if, the tree generated by G is accepted by the
alternating parity tree automaton.

4.1 Soundness

Suppose that we are given a recursion scheme G =
(Σ,N ,R, S) and an alternating parity tree automaton A
such that �A G. The goal is to show that there exists an
accepting run-tree of A over [[G]].

We shall define a rewrite system for generating an ac-
cepting run-tree of A over the value tree of G. The rewrite
relation is a binary relation on (finite, unranked) RLab-
labelled trees, where an element of RLab is either of the
form 〈α, q〉 or 〈α, l,Γ � t : q〉 where Γ � t : q holds. Here l
is a natural number, and α is an element of {1, . . . , w}∗,
where w is the largest arity of the terminal symbols of
G. By the assumption �A G, there exists a (memoryless)
winning strategy W for the parity game associated with
�A G. W can be considered as a map from tuples of the
form (F, θ,m) to type environments. We write Γ(F,θ,m) for
W(F, θ,m) below.

In a type judgment Γ � F t̃ : q, we often annotate the
head symbol F with its type and priority, as Γ � F (θ,m)t̃ :
q. It means that Γ � F t̃ : q is derived from the typing
F : (θ,m)b � F : θ for the occurence of F as the head
symbol, followed by applications of T-APP.

The initial tree of the rewrite system is
〈ε, 1, S0 : (qI ,Ω(qI))

f � S0 : qI〉. Here, each non-
terminal symbol is annotated with a natural number, to
indicate when the symbol was introduced. The rewrite
relation t � t′ is defined by induction over the following
rules:

(i) If Γ � F
l′,(θ,m)
i t̃ : q holds, then

〈α, l,Γ � F l′
i t̃ : q〉 � 〈α, l + 1,Γ′ � [t̃/x̃]ρ(t′) : q〉

writing ρ(−) := [F l
1/F1, . . . , F

l
n/Fn](−) and R(Fi) =

λx̃.t′. Here, Γ′ is determined as follows: Take the deriva-
tion of Γ � F

l′,(θ,m)
i t̃ : q, and replace the T-VAR instance

F : (θ,m)b � F : θ by ρ(Γ(Fi,θ,m)) � ρ(R(Fi)) : θ,
yielding (a derivation for) Γ1 ∪ ρ(Γ(Fi,θ,m)) � ρ(R(Fi))t̃.
Note that Γ1 ∪ {F : (θ,m)b} = Γ holds but not necessarily
Γ1 = Γ \ {F : (θ,m)b}. By the type preservation prop-
erty (Appendix A.1, Lemma A.1), there exists Γ′ such that
Γ′ ⊆ Γ1 ∪ ρ(Γ(Fi,θ,m)) and Γ′ � [t̃/x̃]ρ(t′) : q. Thus, we
choose one such Γ′ above.
Note that it is necessary to rename non-terminals Fi to Fl,i

in order to state Lemma 4.2.
(ii) If {(i, qi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies

δA(q, a), and Γ � at1 · · · tn : q is derived from Γi,j � ti :
qi,j , then

〈α, l, Γ � at1 · · · tn : q〉 �
〈α, q〉(〈α1, l, Γ1,1 � t1 : q1,1〉, . . . , 〈α1, l, Γ1,k1 � t1 : q1,k1〉

. . . 〈αn, l, Γn,1 � tn : qn,1〉, . . . , 〈αn, l, Γn,kn � tn : qn,kn〉)

(iii) If T � T ′ then C[T] � C[T ′] for every tree context
C.

The following lemma follows from the definition of � .

Lemma 4.1 If 〈ε, 1, S0 : (qI ,Ω(qI))
f � S0 : qI〉 �∗

C[〈α, l,Γ � t : q〉], then Γ � t : q holds.

Example 4.1 Consider the order-0 recursion scheme G
with rules

S → aG G → bH H → cS

and an APT A with transition map

(a, q1) �→ (1, q2) (b, q2) �→ (1, q3) (c, q3) �→ (1, q1)

and the priority of qi is i. Thus we have the typings:

a : (q2, 2) → q1 b : (q3, 3) → q2 c : (q1, 3) → q3

The reduction sequence is:

〈ε, 1, S0 : (q1, 1)f � S0 : q1〉
� 〈ε, 2, G1 : (q2, 2)f � aG1 : q1〉
� 〈ε, q1〉(〈ε1, 2, G1 : (q2, 2)t � G1 : q2〉)
� 〈ε, q1〉(〈ε1, 3,H2 : (q3, 3)f � bH2 : q2〉)
� 〈ε, q1〉〈ε1, q2〉(〈ε11, 3,H2 : (q3, 3)t � H2

: q3〉)
� 〈ε, q1〉〈ε1, q2〉(〈ε11, 4, S3 : (q1, 3)f � cS3 : q3〉)
� 〈ε, q1〉〈ε1, q2〉〈ε11, q3〉(〈ε1111, 4, S3 : (q1, 3)t � S3 : q1〉)
� · · ·

7

By the priority of a tree context C[]q (wherein the hole []
is assumed to have the state q), written Ω(C[]q), we mean
the largest priority occurring in the path from the root of
C[]q to its hole []q . The following lemma confirms that
variables in the type environment are used correctly, ac-
cording to the intuition on type environments explained in
Section 3.

Lemma 4.2 Suppose 〈α0, l0,Γ0 � s0 : q0〉 �∗

C[〈α, l,Γ � F (θ,m)t̃ : q〉], and F is not introduced by
renaming (i.e. via ρ(−)) in any of the intermediate re-
duction steps. Then, either (i) F : (θ,m)f ∈ Γ0 and
m = Ω(C[]q); or (ii) F : (θ,m)t ∈ Γ0 and m ≥ Ω(C[]q)
hold.

Theorem 4.3 (Soundness) Let A be an alternating parity
tree automaton, and G be a recursion scheme. If �A G, then
the tree generated by G is accepted by A.

Proof We write T � for the (unranked) tree obtained
by replacing each label of the form 〈α, l,Γ � t : q〉 with
〈α, q〉. Let T0 � T1 � T2 � T3 � · · · be a maximal5

fair (possibly infinite) reduction sequence, where T0 :=
〈ε, 1, S0 : (qI ,Ω(qI))

f � S0 : qI〉. By the definition of � ,
every Ti

� is a prefix6 of a run-tree of A (see Appendix A.2,
Lemma A.5 for more details). By Lemma 4.1, reductions
of 〈ε, 1, S0 : (qI ,Ω(qI))

f � S0 : qI〉 never get stuck: It ei-
ther ends up with a finite tree all of whose labels are of the
form 〈α, q〉, or continues indefinitely. Thus, every leaf of
the form 〈α, l,Γ � t : q〉 occuring in the sequence is even-
tually reduced. Thus, together with the assumption that the
value tree of G does not contain ⊥ (Remark 2.1), it follows
that T :=

⋃
i∈ω Ti

� is a run-tree (i.e. a tree that satisfies the
conditions on accepting run-trees except the parity condi-
tion) of A over the value tree of [[G]].

It remains to show that T satisfies the parity condition.
Now, for any infinite path π of T , there must exist an infinite
reduction sequence:

〈ε, 1, S0 : (qI ,Ω(qI))
f � S0 : qI〉

� ∗ C1[〈α1, l1,Γ1 � F 1
i1

t̃1 : q1〉]
� ∗ C1[C2[〈α2, l2,Γ2 � F l1

i2
t̃2 : q2〉]]

� ∗ C1[C2[C3[〈α3, l3,Γ3 � F l2
i3

t̃3 : q3〉]]] � ∗ · · ·

such that the holes of C1, C1[C2], C1[C2[C3]], . . .
occur in the path. For each k ≥ 0,
the reduction 〈αk, lk,Γk � F

lk−1
ik

t̃k : qk〉 �∗

Ck+1[〈αk+1, lk+1,Γk+1 � F lk
ik+1

t̃k+1 : qk+1〉] must be

5A reduction sequence is maximal if it is either infinite or finite and the
last tree is irreducible.

6A tree T1 is a prefix of T2 if dom(T1) ⊆ dom(T2) and T1(α) =
T2(α) for every α ∈ dom(T1).

of the form

〈αk, lk,Γk � F
lk−1
ik

t̃k : qk〉
� 〈αk, lk + 1,Γ′

k � [t̃k/x̃]ρ(t′) : qk〉
�∗ Ck+1[〈αk+1, lk+1,Γk+1 � F

lk,(θk+1,mk+1)
ik+1

t̃k+1 : qk+1〉]

where ρ := [F lk
1 /F1, . . . , F

lk
n /Fn] and R(Fik

) = λx̃.t′,
with Γ′

k ⊆ Γ1 ∪ ρ(Γ(Fik
,θk,mk)). Note that all the

bindings on F lk
ik+1

in ρ(Γ(Fik
,θk,mk)) have the flag f.

Thus, by Lemma 4.2, Ω(Ck+1[]qk+1) = mk+1 and
F lk

ik+1
: (θk+1,mk+1)

f ∈ Γ′
k, which implies Fik+1 :

(θk+1,mk+1)
f ∈ Γ(Fik

,θk,mk).
Now from the preceding infinite � -reduction sequence,

we can extract an infinite sequence

(F1, qI ,Ω(qI)) Γ(F1,qI ,0) (Fi1 , θ1,m1) Γ(Fi1 ,θ1,m1)

(Fi2 , θ2,m2) Γ(Fi2 ,θ2,m2) · · ·

which is a winning play. It follows that the largest priority
that occurs infinitely often in m1,m2, . . . is even. There-
fore, the largest priority that occurs in the infinite path π of
t must also be even. �

4.2 Completeness

Let A be an alternating parity tree automaton. Assume
an accepting run-tree of A over the value tree of a recursion
scheme G. The goal is to show �A G.

We define a reduction relation � on (finite, unranked)
RLab′-labelled trees as follows, where an element of
RLab′ is either of the form 〈α, q〉 or 〈β, l, t, q〉. Here l
is a natural number, β is a sequence of pairs of natural num-
bers, and α is an element of {1, . . . , A}∗, where A is the
largest arity of the terminal symbols of G. We use β and
l to uniquely identify each leaf introduced by reductions.
The initial tree is 〈ε, 0, S, qI〉. The reduction relation � is
defined by induction over the following rules:

(i) If R(F) = λx̃.t′, then:

〈β, l, F t̃, q〉 � 〈β, l + 1, [t̃/x̃]t′, q〉

(ii) If fst(β) = α and the children of the node 〈α, q〉 of
the run-tree are

〈α1, q1,1〉, . . . , 〈α1, q1,k1〉, . . . , 〈αn, qn,1〉, . . . , 〈αn, qn,kn
〉

then:

〈β, l, at1 · · · tn, q〉 �

〈fst(β), q〉(〈β(1, 1), l, t1, q1,1〉, . . . , 〈β(1, k1), l, t1, q1,k1〉,
. . . 〈β(n, 1), l, tn, qn,1〉, . . . , 〈β(n, kn), l, tn, qn,kn〉)

Here fst((m1, n1)(m2, n2)(m3, n3) · · ·) = m1m2m3 · · ·.
(iii) If t � t′, then C[t] � C[t′] for any tree context C.

8

There is a (fair) infinite reduction sequence

〈ε, 0, S, qI〉 � T1 � T2 � · · ·

such that
⊔

Ti
⊥ coincides with the accepting run-tree of A

over the value tree of G. We pick one such infinite reduction
sequence, and extract type information from it, as shown
below.

We assume below that each subterm is implicitly
labelled, so that different occurrences of the same
term are distinguished. For example, when we write
〈β, l, t0t1, q〉 �

∗ C[〈β′, l′, t1t2, q′〉], we assume that t1 in
t1t2 originates from t1 in the argument position of t0t1
(i.e. the former t1 is a residual of the latter t1 w.r.t. the re-
duction sequence). As before, we write Ω(C[]q) for the
largest priority in the path from the root of the RLab′-tree
context C to the hole []q which is assumed to have state q.

Type θ(t0,β,l) of a prefix t0 A term t0 is called a prefix
of t if t is of the form t0t1 · · · tk. For each leaf 〈β, l, t, q〉
and a prefix t0 of t, we can determine the type θ(t0,β,l) by
induction on the kind of t0 as follows.

(i) If the kind of t0 is o, then θ(t0,β,l) := q (note that the
leaf is 〈β, l, t0, q〉).

(ii) If the kind of t0 is κ1 → · · · → κn → o,
then the leaf is of the form 〈β, l, t0t1 · · · tn, q〉. Let
Si be the set of pairs (θ(ti,β′,l′),Ω(C[]q′)) such that
〈β, l, t0t1 · · · tn, q〉 �

∗ C[〈β′, l′, tit̃′, q′〉]. Note that since
the kind of κi is less than that of t0, by the induc-
tion hypothesis, we can determine θ(ti,β′,l′). Note also
that although the set of trees C[〈β′, l′, tit̃′, q′〉] such that
〈β, l, t0t1 · · · tn, q〉 �

∗ C[〈β′, l′, tit̃′, q′〉] may be infinite,
Si is finite. Thus we can define

θ(t0,β,l) :=
∧

S1 → · · · →
∧

Sn → q.

Type environment Γ(t0,β,l) of a prefix t0 Next, we de-
termine a type environment Γ(t0,β,l) for each prefix term
t0 of the leaf 〈β, l, t0t1 · · · tn, q〉, with a view to proving
Γ(t0,β,l) � t0 : θ(t0,β,l), by induction on the structure of the
term.

• If t0 = a (∈ Σ), then Γ(t0,β,l) := ∅.
• If t0 = F (∈ N), then Γ(F,β,l) := F :

(θ(F,β,l),Ω(q))f.
• If t0 = t0,1t0,2, then let S be the set of triples

(β′, l′,Ω(C[]q′))

such that 〈β, l, t0t1 · · · tn, q〉 �
∗ C[〈β′, l′, t0,2t̃

′, q′〉]. Let
S′ be a subset of S such that for every (β′′, l′′,m) ∈
S, there exists exactly one (β′, l′,m) ∈ S′ such that
θ(t0,2,β′,l′) = θ(t0,2,β′′,l′′). We then define Γ(t0,β,l) as

Γ(t0,1,β,l) ∪ (
⋃

{Γ(t0,2,β′,l′) ⇑ m | (β′, l′,m) ∈ S′})

where Γ ⇑ m := {x : (θ, max(m,m′))b | x : (θ,m′)b ∈ Γ}.

Remark 4.1 The typing rule T-APP requires that there is
exactly one type environment for each (θi,mi). Accord-
ingly, by construction S′ contains exactly one element for
each (θ,m) of type t0,2.

The following lemma intuitively states that for each
binding of a type environment Γ(t,β,l), there exists at least
one corresponding use of the variable.

Lemma 4.4 If 〈ε, 0, S, qI〉 �
∗ C[〈β, l, t, q〉] and F :

(θ,m)f ∈ Γ(t,β,l), then there exist C ′, β′, l′, t̃′, q′ such that
〈β, l, t, q〉 �

∗ C ′[〈β′, l′, F t̃′, q′〉] and m = Ω(C ′[]q′) with
θ = θ(F,β′,l′).

The following lemma guarantees the consistency of typ-
ing: the conclusion says that the body of F , R(F) = λx̃.t,
can be given the same type (i.e. θ(F,β,l)) as F . (Note that
the last reduction comes from an expansion of the defintion
of F .)

Lemma 4.5 If 〈ε, 0, S, qI〉 �
∗ C[〈β, l, F s̃, q〉] �

C[〈β, l + 1, [s̃/x̃]t, q〉], then there exists Γ such that
Γ � λx̃.t : θ(F,β,l) and Γ ⊆ Γ([es/ex]t,β,l+1).

Proof By Lemma A.8, there exists Γ such that:

Γ, x1 :
∧g1

j=1 (θ1,j ,m1,j)
f
, . . . , xk :

∧gk

j=1 (θk,j ,mk,j)
f

� [s̃/x̃]t : q
{(θi,j ,mi,j) | 1 ≤ j ≤ gi} = {(θ(si,β′,l′),Ω(C ′[]q′)) |

〈β, l, [s̃/x̃]t, q〉 �
∗ C ′[〈β′, l′, sit̃

′, q′〉]}
Γ ⊆ Γ([es/ex]t,β,l+1)

By the second definition and the construction of θ(F,β,l), it
must be the case that

θ(F,β,l) =
g1∧

j=1

(θ1,j ,m1,j) → · · · →
gk∧

j=1

(θk,j ,mk,j) → q.

Thus, Γ � λx̃.t : θ(F,β,l) is obtained by applying T-ABS. �

Theorem 4.6 (Completeness) Let A be an alternating
parity tree automaton, and G be a recursion scheme. If the
tree generated by G is accepted by A, then �A G.

Proof From an accepting run-tree of A over the value tree
of G, we can construct an infinite reduction sequence

〈ε, 0, S, qI〉 � T1 � T2 � · · ·

that converges to the run-tree. We shall construct a win-
ning strategy W for the parity game (V∀, V∃, v0, E,Ω) as-
sociated with �A G : qI below. We annotate each state Γ
of V∀ occurring in W with a label of the form [β, l, t] to

9

indicate the corresponding node in the reduction sequence
〈ε, 0, S, qI〉 � T1 � T2 � · · ·. Note that by the con-
struction of W below, Γ[β,l,t] ⊆ Γ(t,β,l) holds. The win-
ning strategy W is defined as follows. Consider a play
π (F, θ,m) ∈ (V∃V∀)∗V∃ that conforms to W . Let Γ[β,l,t]

be (S : (qI ,Ω(qI))
f)[ε,0,S] if π = ε; otherwise, let it be the

last state of π (in V∀). It must be the case that F : (θ,m)f ∈
Γ[β,l,t] ⊆ Γ(t,β,l). By Lemma 4.4, there must exist C, β′, l′

such that

〈β, l, t, qt〉
�

∗ C[〈β′, l′, F s̃, q′〉] � C[〈β′, l′ + 1, [s̃/x̃]tF , q′〉]

with Ω(C[]q′) = m and θ = θ(F,β′,l′) where R(F) =
λx̃.tF .

By Lemma 4.5, there exists Γ′ such that Γ′ � λx̃.tF :
θ(F,β′,l′) and Γ′ ⊆ Γ([es/ex]R(F),β′,l′+1). We pick one such

Γ′, and define W(π (F, θ,m)) as Γ′[β′,l′+1,[es/ex]tF].
To check that W is indeed winning, consider an infinite

play:

(F0, q0,m0) Γ[β0,l0,t0]
0 (F1, θ1,m1) Γ[β1,l1,t1]

1

(F2, θ2,m2) · · ·
that conforms to W where (F0, q0,m0) = (S, qI ,Ω(qI)).
Then the reduction sequence 〈ε, 0, S, qI〉 � T1 � T2 � · · ·
must be of the form:

〈ε, 0, S, qI〉 � 〈β0, l0,R(S), q0〉
�

∗ C1[〈β1, l1 − 1, F1s̃1, q1〉] � C1[〈β1, l1, t1, q1〉]
�

∗ C1[C2[〈β2, l2 − 1, F2s̃2, q2〉]] � C1[C2[〈β2, l2, t2, q2〉]]
�

∗ · · ·

where Ω(Ci[]qi
) = mi(i ≥ 1). Since the reduction se-

quence converges to the accepting run-tree of A over the
value tree of G, the largest priority that occurs infinitely of-
ten in m0,m1,m2, . . . must be even. Thus, we have �A G.

�

5 Type-Checking Algorithm

Thanks to the development of the previous sections, the
model checking of higher-order recursion schemes is re-
duced to a type-checking problem. The reduction allows us
to analyze the parameterized complexity of model checking
higher-order recursion schemes. The main result is that, as-
suming that the size of kinds, the largest priority, and the
number of states of the alternating parity tree automaton
are bounded by a constant, the time complexity of the type
checking problem (hence also the recursion scheme model
checking problem) is polynomial in the size of the grammar.

The type-checking algorithm consists of the following
two phases:

• Step 1: Construct the parity game (V∀, V∃, v0, E,Ω)
associated with the type system.

• Step 2: Decide whether there is a winning strategy for
the parity game.

We assume below that each rule of the recursion scheme
has one of the form F �→ λx̃.c (F1 x̃1) · · · (FJ x̃J), where
c is a terminal, a non-terminal, or a variable, and J may be
0. Note that any recursion scheme G can be transformed
into G′ such that G′ satisfies the assumption above and the
size of G′ is linear in that of G.

We write A for the maximum arity, N for the order of
the recursion scheme, P for the number of rewrite rules, Q
for the number of states of the automaton, and M − 1 for
the largest priority of the states. For a kind κ of order n, an
upper-bound of the number of types of kind κ, written Kn,
is given by:

K0 = Q Kn+1 = Q2AMKn .

Note that Kn is bounded by expn((AQM)1+ε) for any ε >
0, where expn(x) is defined by:

exp0(x) = x expi+1(x) = 2expi(x).

For step 1, we first compute the set

Si := {(Γ, θ) | Γ � R(Fi) : θ and all flags in Γ are f.}

for each non-terminal Fi. Assume that R(Fi) is of the
form λx̃.c(F ′

1x̃1) · · · (F ′
J x̃J). We first compute:

Si,0 := {(Γ0, θ0) | Γ0 � c : θ0, and θ0 ::a κc}

where κc is the kind of c and all flags in Γ0 must be f. Γ0

is a singleton set or empty, so that |Si,0| is at most MKN .
Next, for each (Γ0, τ1 → · · · → τJ → θ′0) ∈ Si0 with
τj =

∧
k∈Ij

(θj,k,mj,k), we compute

Sj,k := {Γj,k | Γj,k ↑ mj,k � F ′
j x̃j : θj,k

and all flags in Γj,k are f}.

The number of candidates for the type of F ′
j is at most KN ,

so that |Sj,k| is at most MKn for each j, k. Note also
that since the order of the kind of θj,k is at most N − 1,
|Ij | is bounded by MKN−1. By choosing one element
Γj,k from each of the sets Sj,k, we can derive a judgement
Γ0 ∪ (

⋃
j,k Γj,k) � c(F ′

1x̃1) · · · (F ′
J x̃J) : θ′0. Si is the set

of all pairs (Γ, θ) such that Γ � λx̃.c(F ′
1x̃1) · · · (F ′

J x̃J) :
θ is obtained by applying T-ABS to Γ0 ∪ (

⋃
j,k Γj,k) �

c(F ′
1x̃1) · · · (F ′

J x̃J) : θ′0. The number of elements of Si

generated from each element of Si,0 is at most KN ×
Πj,k|Sj,k|, which is bounded by KN (MKN)AMKN−1 .
Thus, the size of Si is bounded by

(MKN)×(KN (MKN)AMKN−1) = expN (O((AQM)1+ε))

for N ≥ 2.

10

Since the size of each type environment in Si is at
most 1 + |I1| + · · · + |IJ | ≤ 1 + AMKN−1, both the
set V∀ ∪ V∃ of vertices and the set E of edges have size
P × expN (O((AQM)1+ε)).

In Step 2, we can use Jurdziński’s algorithm [8] for solv-
ing parity games. The time complexity for Step 2 is

O(|V∀∪V∃||E|�M/2) = O(P 1+�M/2	expN (O((AQM)1+ε))).

Thus, the time complexity of our algorithm is

O(P 1+�M/2	expN (O((AQM)1+ε))).

for N ≥ 2. If N , A, Q, and M are bounded by constants,
then the algorithm runs in time O(P 1+�M/2). Since P is
bounded by the size of the recursion scheme, the time com-
plexity is polynomial in the size of the recursion scheme.

6 Related Work

Model checking recursion schemes As summarized in
Section 1, studies of model checking recursion schemes
were sparked by Knapik et al. [9, 10], who showed the de-
cidability of the MSO theory for safe recursion schemes.
Their verification algorithm is based on a reduction of the
model-checking of an order-n recursion scheme to that of a
recursion scheme of order n − 1.

For the full higher-order recursion schemes (without the
safety restriction), there are two previous proofs of the de-
cidability of the modal μ-calculus model checking. One is
Ong’s original proof [15], and the other is due to Hague et
al. [5]. The former reduces the model checking problem
to parity games over variable profiles, while the latter re-
duces it to a parity game over the configuration graph of a
collapsible pushdown automaton. Both proofs use game se-
mantics, and are probably rather hard to understand (at least
for readers unfamiliar with game semantics).

For a restricted class of properties called trivial automata
(but for the full recursion schemes), Aehlig [1] gave a sim-
pler proof. His approach is based on a novel finite seman-
tics for simply-typed lambda term-trees: the meaning of
an infinite tree is the set of states starting from which the
given automaton has an infinite run. Kobayashi [11] re-
cently showed a simple type-based proof based on a similar
idea.

Our type-based approach is a generalization of
Kobayashi’s type system [11]; when priorities are restricted
to 0, our type system coincides with his system. Our type
system is also inspired by Ong’s variable profiles [15]. In
fact, variable bindings (in type environments) in our type
system are similar to Ong’s variable profiles: both are as-
sertions for variables about the state being simulated and the
largest priority encountered for a relevant part of the com-
putation, and both are defined by recursion over the kind in

question. Nevertheless, the details of their constructions are
dissimilar, and they give rise to radically different correct-
ness arguments.

In addition to the advantages discussed in Section 1, a
general advantage of the type-based approach is that, when
the verification succeeds, it is easy to understand why the
recursion scheme satisfies the property, by looking at the
type of each non-terminal (and the winning strategy).

Type systems for model checking Naik and Pals-
berg [14, 13] constructed an intersection type system that
is equivalent to model checking of an imperative language
and an interrupt calculus. They consider only the reach-
ability problem, and do not treat higher-order languages.
Kobayashi [11] showed that the model checking of tem-
poral properties of higher-order programs can be (rather
straightforwardly) reduced to that of higher-order recursion
schemes. Thus, combined with Kobayashi’s reduction, our
type system can be regarded as an extension of Naik and
Palsberg’s scenario to the full modal μ-calculus and higher-
order programs.

Type systems for tree-processing programs Type sys-
tems for tree-manipulating programs have been studied in
the context of programming languages for XML process-
ing [6]. There are substantial differences between those
type systems and our type system. On one hand, program-
ming languages for XML processing are concerned about
finite trees, while our type system deals with infinite trees;
that is why we need the notion of priorities and parity games
for typing recursion. On the other hand, programming lan-
guages for XML have pattern match constructs on trees and
one of the main issues in designing type systems for XML
processing is how to type patterns, while recursion schemes
do not have such constructs.

7 Conclusion

We have presented a novel type system that is equivalent
to the modal μ-calculus model checking of higher-order re-
cursion schemes. Compared to existing approaches [15, 5],
our type-based method gives a simpler algorithm, and its
correctness proof seems easier to understand. Furthermore,
our approach yields a polynomial-time algorithm under the
assumption that the sizes of types and automata are bound
above by a constant. From a type-theoretic point of view,
our type system introduces a novel approach to typing re-
cursion, via parity games. Future work includes: (i) imple-
mentation of a model checker, (ii) studies of the complexity
of the model-checking problem for various restricted frag-
ments of the modal μ-calculus, and (iii) extensions of the
type system for various extensions of recursion schemes.

11

Our type-based approach seems indeed convenient for the
second and third points. For (ii), the reader is referred to
[12]. For (iii), for instance, one can easily extend rewrit-
ing rules of recursion schemes with boolean parameters,
and conditionals on them. For example, F defined by the
rewrite rule

F b x y �→ if b then x else y

would be given an intersection type (true → (q0,Ω(q0)) →
� → q0) ∧ (false → � → (q1,Ω(q1)) → q1).

References

[1] K. Aehlig. A finite semantics of simply-typed lambda terms
for infinite runs of automata. Logical Methods in Computer
Science, 3(3), 2007.

[2] B. Courcelle. The monadic second-order logic of graphs IX:
machines and their behaviours. Theoretical Computer Sci-
ence, 151:125–162, 1995.

[3] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). In FOCS 1991, pages
368–377, 1991.

[4] E. Grädel, W. Thomas, and T. Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research,
volume 2500 of LNCS. Springer-Verlag, 2002.

[5] M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Col-
lapsible pushdown automata and recursion schemes. In
Proceedings of 23rd Annual IEEE Symposium on Logic in
Computer Science, pages 452–461. IEEE Computer Society,
2008.

[6] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression
types for XML. ACM Trans. Program. Lang. Syst., 27(1):46–
90, 2005.

[7] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for
PCF: I. Models, observables and the full abstraction prob-
lem, II. Dialogue games and innocent strategies, III. A fully
abstract and universal game model. Information and Com-
putation, 163:285–408, 2000.

[8] M. Jurdziński. Small progress measures for solving parity
games. In Proc. STACS, volume 1770 of LNCS, pages 290–
301. Springer-Verlag, 2000.

[9] T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic
theories of hyperalgebraic trees. In TLCA 2001, volume 2044
of LNCS, pages 253–267. Springer-Verlag, 2001.

[10] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order
pushdown trees are easy. In FoSSaCS 2002, volume 2303
of LNCS, pages 205–222. Springer-Verlag, 2002.

[11] N. Kobayashi. Types and higher-order recursion schemes
for verification of higher-order programs. In Proc. of POPL,
2009.

[12] N. Kobayashi and C.-H. L. Ong. Complexity of model
checking higher-order recursion schemes. In preparation,
2009.

[13] M. Naik. A type system equivalent to a model checker. Mas-
ter Thesis, Purdue University.

[14] M. Naik and J. Palsberg. A type system equivalent to a model
checker. In ESOP 2005, volume 3444 of LNCS, pages 374–
388. Springer-Verlag, 2005.

[15] C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. In LICS 2006, pages 81–90. IEEE
Computer Society Press, 2006.

[16] M. O. Rabin. Decidability of second-order theories and au-
tomata on infinite trees. Trans. Amer. Maths. Soc, 141:1–35,
1969.

12

Appendix

A Proofs

A.1 Type Preservation by β-Reduction

This section proves the following basic property.

Lemma A.1 (Type preservation by β-reduction) If Γ �
(λx.t0)t1 : θ, then there exists Γ′ such that Γ′ � [t1/x]t0 : θ
and Γ′ ⊆ Γ.

Lemma A.2 If Γ ↑ m is well-defined, Γ � t : θ implies
Γ ↑ m � t : θ

Proof Straightforward induction on derivation of Γ � t :
θ. �

Lemma A.3 If Γ � t : θ, then Γ ↑ Ω(θ) is well-defined.
Furthermore, if Γ ↑ Ω(θ) = Γ′ ↑ Ω(θ) then Γ′ � t : θ.

Proof The proof proceeds by induction on the derivation
of Γ � t : q, with case analysis on the last rule used.

• Case T-VAR: In this case, we have t = x and Γ =
x : (θ,m)b with (θ,m)b ↑ Ω(θ) = (θ,m)t. Thus, Γ ↑ Ω(θ)
is well-defined. If Γ ↑ Ω(θ) = Γ′ ↑ Ω(θ), then we have

Γ′ = x : (θ,m)b′ and (θ,m)b′ ↑Ω(θ) = (θ,m)t. Therefore,
we have Γ′ � t : θ as required.

• Case T-CONST: Trivial, as Γ = ∅.
• Case T-APP: In this case, we have:

t = t0t1
Γ0 � t0 : (θ1,m1) ∧ · · · ∧ (θk,mk) → θ
Γi ↑ mi � t1 : θi for each i ∈ {1, . . . , k}
Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γk

By the induction hypothesis, Γ0 ↑ Ω(θ) is well-defined. By
the well-formedness of (θ1,m1) ∧ · · · ∧ (θk,mk) → θ, it
must be the case that mi ≥ Ω(θ). So, Γi ↑Ω(θ) is also well-
defined. Thus, Γ ↑ Ω(θ) is also well-defined as required.
If Γ ↑ Ω(θ) = Γ′ ↑ Ω(θ), then there exist Γ′

0, . . . ,Γ
′
k such

that
Γ′ = Γ′

0 ∪ Γ′
1 ∪ · · · ∪ Γ′

k

Γi ↑ Ω(θ) = Γ′
i ↑ Ω(θ) (i ∈ {0, . . . , k})

Since mi ≥ Ω(θ) holds, the latter condition implies
Γi ↑ mi ↑ Ω(θ) = Γi ↑ Ω(θ) ↑ mi = Γ′

i ↑ Ω(θ) ↑ mi =
Γ′

i ↑ mi↑Ω(θ). Thus, by the induction hypothesis, we have:

Γ′
0 � t0 : (θ1,m1) ∧ · · · ∧ (θk,mk) → θ

Γ′
i ↑ mi � t1 : θi for each i ∈ {1, . . . , k}

By applying T-APP, we obtain Γ′ � t : θ as required.

• Case T-ABS:
In this case, we have:

t = λx.t0 θ =
∧

i∈J(θi,mi) → θ0 I ⊆ J

Γ, x :
∧

i∈I (θi,mi)
f � t0 : θ0

By the induction hypothesis, Γ ↑ Ω(θ) is well-defined.
Moreover, if Γ ↑ Ω(θ) = Γ′ ↑ Ω(θ), then we have

Γ′, x :
∧
i∈I

(θi,mi)
f � t0 : θ0

by the induction hypothesis (note that Ω(θ) = Ω(θ0)). By
applying T-ABS, we obtain Γ′ � t : θ as required.

�
We define Γ ↑b m by:

Γ ↑b m =
{

Γ ↑ m if b = f
Γ if b = t and Γ ↑ m is well-defined.

Lemma A.4 (Substitution) If

Γ0, x :
∧k

i=1 (θi,mi)
bi � t0 : θ

Γi ↑bi
mi � t : θi (for each 1 ≤ i ≤ k)

then Γ0 ∪ Γ1 ∪ · · · ∪ Γk � [t/x]t0 : θ holds.

Proof The proof proceeds by induction on derivation of
Γ0, x :

∧k
i=1 (θi,mi)

bi � t0 : θ, with case analysis on the
last rule used.

• Cases for T-CONST:
The result follows immediately, as x does not occur in t0
and {(θi,mi)

bi | i ∈ {1, . . . , k}} is empty.
• Case for T-VAR:

The case where t0 �= x is trivial. If t0 = x, we have:

Γ0 = ∅ k = 1 θ = θ1

(θ1,m1)
b1 ↑ Ω(θ) = (θ1,m1)

t

Γ1 ↑b1 m1 � t : θ1

If b1 = t, then Γ1 ↑b1 m1 = Γ1, so that we have Γ1 � t : θ1

as required.
If b1 = f, then by the condition (θ1,m1)

b1 ↑ Ω(θ) =
(θ1,m1)

t, it must be the case that Ω(θ) = m1. Thus, by
Lemma A.3 and Γ1 ↑b1 m1 � t : θ1, we have Γ1 � t : θ1 as
required.

• Case for T-APP:
In this case, we have:

t0 = t1t2
Γ0 = Δ0 ∪ Δ1 ∪ · · · ∪ Δl

S0 ∪ S1 ∪ · · · ∪ Sl = {1, . . . , k}
Δ0, x :

∧
i∈S0

(θi,mi)
bi � t1 :

∧l
j=1 (ηj , nj) → θ

(Δj , x :
∧

i∈Sj
(θi,mi)

bi) ↑ nj � t2 : ηj

Γi ↑bi
mi � t : θi (for each i ∈ {1, . . . , k})

13

We shall show:

Δ0 ∪
⋃

i∈S0
Γi � [t/x]t1 :

∧l
j=1 (ηj , nj) → θ

(Δj ∪
⋃

i∈Sj
Γi) ↑ nj � [t/x]t2 : ηj (for each 1 ≤ j ≤ l)

from which the result follows by the rule T-APP.
The first condition follows immediately from the induc-
tion hypothesis. To show the second condition, let
(θi,mi)

bi,j := (θi,mi)
bi ↑ nj .

From Γi ↑bi
mi � t : θi and Lemma A.2, we get

Γi ↑ nj ↑bi
mi � t : θi for each i ∈ Sj . (Note that Γi ↑nj is

well-defined: by the well-definedness of (θi,mi)
bi ↑nj , we

have mi ≥ nj , which, together with the well-definedness
of Γi ↑bi

mi, implies that Γi ↑ nj is well-defined.) Since
Γi ↑ nj ↑bi

mi = Γi ↑ nj ↑bi,j
mi, we have

Γi ↑ nj ↑bi,j
mi � t : θi

Thus, by using the induction hypothesis, we obtain:

(Δj ∪ (
⋃

{Γi | i ∈ Sj})) ↑ nj � [t/x]t2 : ηj ,

as required.
• Case for T-ABS:

In this case, t0 = λy.t1. We can assume without loss of
generality that y �= x and y does not occur in t. Thus, we
have:

θ =
∧

j∈J(θ′j ,m
′
j) → θ′ I ⊆ J

Γ0, y :
∧

j∈I (θ′j ,m
′
j)

f
, x :

∧
i∈{1,...,k} (θi,mi)

bi � t1 : θ′

Γi ↑bi
mi � t : θi (for each i ∈ {1, . . . , k})

By the induction hypothesis, we have:

Γ0 ∪ Γ1 ∪ · · · ∪ Γk, y :
∧
j∈I

(θ′j ,m
′
j)

f � [t0/x]t1 : θ′.

By using T-ABS, we get the required result.
�

We are now ready to show that typing is preserved by
β-reduction.

Proof of Lemma A.1 By the assumption, we have:

Γ0, x :
∧

i∈I (θi,mi)
f � t0 : θ

I ⊆ J
Γ′

i ↑ mi � t1 : θifor each i ∈ J
Γ = Γ0 ∪ (

⋃
i∈J Γ′

i)

By Lemma A.4, we have:

Γ0 ∪ (
⋃
i∈I

Γ′
i) � [t1/x]t0 : θ.

Thus, the required result holds for Γ′ = Γ0 ∪ (
⋃

i∈I Γ′
i). �

A.2 Proofs of Main Lemmas for Sound-
ness Theorem

We show two main lemmas used in the proof of Theo-
rem 4.3: Lemma 4.2 and Lemma A.5 (given below).

Proof of Lemma 4.2 The proof proceeds by induction on
the length � of the reduction sequence

〈α0, l0,Γ0 � s0 : q0〉 �∗ C[〈α, l,Γ � F (θ,m)t̃ : q〉].

For the base case of � = 0, we have q = q0, Γ0 = Γ and
the context C[]q is null. By the definition of the annotation
F (θ,m), Γ � F (θ,m)t̃ : q must have been derived from F :
(θ,m)b � F : θ where (θ,m)b ↑ Ω(θ) = (θ,m)t and θ =
τ1 → · · · → τk → q. Thus, it must be the case that F :
(θ,m)b ∈ Γ and either (i) b = f and m = Ω(θ) = Ω(q) =
Ω(C[]q), or (ii) b = t and m ≥ Ω(C[]q).

We show the inductive case by case analysis on the first
reduction step.

• Suppose the first reduction step is of the form

〈α0, l0,Γ0 � F l′
k t̃0 : q0〉

� 〈α, l + 1,Γ′ � [t̃/x̃]ρ(t′) : q0〉

where s0 = F l′
k t̃0 with ρ(−) := [F l0

1 /F1, . . . , F
l0
n /Fn](−)

and R(Fk) = λx̃.t′. Here, by the assumption that F is
not introduced by the intermediate reduction steps, F �∈
{F l0

1 , . . . , F l0
n }. By the induction hypothesis, either (i)

F : (θ,m)f ∈ Γ′ \{F l0
1 , . . . , F l0

n } and m = Ω(C[]q); or (ii)
F : (θ,m)t ∈ Γ′ \ {F l0

1 , . . . , F l0
n } and m ≥ Ω(C[]q) holds.

(Here, we write Γ \ S for the type environment obtained
from Γ by removing all the bindings on variables in S.) By
the definition of � , we have Γ′ \ {F l0

1 , . . . , F l0
n } ⊆ Γ0.

Thus, the required result follows.
• Suppose the first reduction step is of the form

〈α0, l0, Γ0 � at1 · · · tn : q0〉 �
〈α0, q0〉(〈α01, l0, Γ1,1 � t1 : q1,1〉, . . . , 〈α01, l0, Γ1,k1 � t1 : q1,k1〉

. . . 〈α0n, l0, Γn,1 � tn : qn,1〉, . . . , 〈α0n, l0, Γn,kn � tn : qn,kn〉)

where s0 = at1 · · · tn. Then, (i) C = aT1,1 · · ·Tn,kn
and

(ii) there exists i, j(1 ≤ i ≤ n, 1 ≤ j ≤ kn) such that
Ti,j = C ′[]q and

〈α0i, l0,Γi,j � ti : qi,j〉 �∗ C ′[〈α, l,Γ � F (θ,m)t̃ : q〉].

Note that Ω(C[]q) = max(Ω(q0),Ω(C ′[]q)). By the in-
duction hypothesis, F : (θ,m)b ∈ Γi,j , and either (i)
b = f and m = Ω(C ′[]q); or (ii) b = t and m ≥
Ω(C ′[]q) hold. Since Γ0 � at1 · · · tn : q0 is derived from
Γi,j � ti : qi,j , it must be the case that Γ0 =

⋃
i,j Γ′

i,j

and Γi,j = Γ′
i,j ↑ max(Ω(q0),Ω(qi,j)). Thus, we have

F : (θ,m)b′ ∈ Γ0 with (θ,m)b′ ↑ max(Ω(q0),Ω(qi,j)) =

14

(θ,m)b for some b′. If b′ = b = t, then m ≥
max(Ω(q0),Ω(qi,j)) and m ≥ Ω(C ′[]q). We have there-
fore m ≥ max(Ω(q0),Ω(C ′[]q)) = Ω(C[]q). If b′ = f and
b = t, then m = max(Ω(q0),Ω(qi,j)) and m ≥ Ω(C ′[]q).
so that we have m = Ω(C[]q) as required. Finally, if b =
b′ = f, then m > max(Ω(q0),Ω(qi,j)) and m = Ω(C ′[]q),
so that we have m = Ω(C[]q) as required.
�

We now move on to the second lemma. Let T be a
RLab-labelled tree. When α ∈ dom(T), we write T |α
for the subtree of T whose root position is α.

Lemma A.5 Let A be an alternating tree automata with
initial state qI , and G be a recursion scheme with start
symbol S. Let T0 be 〈ε, 1, S0 : (qI ,Ω(qI))

f � S0 : qI〉. If
T0 � T1 � T2 � · · ·, then every Ti satisfies the following
conditions:

• Ti
� is a prefix of a run-tree of A over [[G]].

• For every leaf of Ti labeled by 〈α, l,Γ � t : q〉, [[G]] |α
is generated from t by G.

Proof The proof proceeds by induction on i. The case for
i = 0 is trivial. Suppose i = k + 1. If Tk � Tk+1 is
derived from the rewrite rule (i), the result follows immedi-
ately from the induction hypothesis. Suppose Tk � Tk+1 is
derived from the rewrite rule (ii), then we have:

Tk = C[〈α, l,Γ � at1 · · · tn : q〉]
Tk+1 =
C[〈α, q〉(〈α1, l,Γ1,1 � t1 : q1,1〉, . . . , 〈α1, l,Γ1,k1 � t1 : q1,k1〉

. . . 〈αn, l,Γn,1 � tn : qn,1〉, . . . , 〈αn, l,Γn,kn
� tn : qn,k1〉)]

where {(i, qi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a).
The required condition follows immediately from the in-
duction hypothesis. (Note that by the induction hypothesis,
[[G]] (α) = a.) �

A.3 Proofs of Main Lemmas for Com-
pleteness Theorem

We prove main lemmas (Lemmas 4.4 and 4.5) used in
the proof of Theorem 4.6.

We first prepare a few lemmas.

Lemma A.6 If Γ ∪ x : (θ,m)b � t : θ, then Γ ∪
(x : (θ,m′)b) ⇑ m ↑ m � t : θ for every m′ ≥ 0.

Proof Straightforward induction on the derivation of Γ ∪
x : (θ,m)b � t : θ. �

Next, we show that the calculation of θ(t,β,l) and Γ(t,β,l)

is correct.

Lemma A.7 If 〈ε, 0, S, qI〉 �
∗ C[〈β, l, t0t1 · · · tn, q〉] then

Γ(t0,β,l) � t0 : θ(t0,β,l).

Proof The proof proceeds by induction on the structure of
t0.

• If t0 = a, then we have:

〈β, l, t0t1 · · · tn, q〉 �

〈α, q〉(〈β(1, 1), l, t1, q1,1〉, . . . , 〈β(1, k1), l, t1, q1,k1〉,
. . . , 〈β(n, 1), l, tn, qn,1〉, . . . , 〈β(n, kn), l, tn, qn,kn〉)

where α = fst(β) and the children of the node 〈α, q〉 of the
run-tree are:

〈α1, q1,1〉, . . . , 〈α1, q1,k1〉, . . . , 〈αn, qn,1〉, . . . , 〈αn, qn,kn
〉.

By the construction of Γ(t0,β,l) and θ(t0,β,l), we have:

Γ(t0,β,l) = ∅
θ(t0,β,l) =

∧
j(q1j ,m1j) → · · · →

∧
j(qnj ,mnj) → q

where mij = max(Ω(qij),Ω(q)). By T-CONST, we obtain
Γ(t0,β,l) � t0 : θ(t0,β,l) as required.

• If t0 = F , then by the construction of Γ(t0,β,l) and
θ(t0,β,l), we have: Γ(t0,β,l) = F : (θ(t0,β,l),Ω(θ(t0,β,l)))

f.
By the rule T-VAR, we have Γ(t0,β,l) � t0 : θ(t0,β,l) as
required.

• If t0 = t0,1t0,2, then by the construction of Γ(t0,β,l)

and θ(t0,β,l), we have:

θ(t0,1,β,l) =
∧k

i=1(θi,mi) → θ(t0,β,l)

Γ(t0,β,l) = Γ(t0,1,β,l) ∪ Γ1 ⇑ m1 ∪ · · · ∪ Γk ⇑ mk

〈β, l, t0t1 · · · tn, q〉 �
∗ Ci[〈βi, li, t0,2t̃i, qi〉]

θi = θ(t0,2,βi,li), Γi = Γ(t0,2,βi,li), mi = Ω(Ci[]qi
).

By the induction hypothesis, we have Γi � t0,2 : θi for
each i ∈ {1, . . . , k} and Γ(t0,1,β,l) � t0,1 : θ(t0,1,β,l). By
Lemma A.6, we have Γi ⇑ mi ↑mi � t0,2 : θi. By applying
T-APP, we obtain Γ(t0,β,l) � t0 : θ(t0,β,l) as required.

�
We are now ready to prove one of the main lemmas.

Proof of Lemma 4.4 We show the following strengthened
property by induction on the structure of t0.

If 〈ε, 0, S, qI〉 �
∗ C[〈β, l, s, q〉] and F :(θ,m)f ∈

Γ(t,β,l) where t is a prefix of s, then there
exist C ′, β′, l′, t̃′, q′ such that 〈β, l, t, q〉 �

∗

C ′[〈β′, l′, F t̃′, q′〉] and m = Ω(C ′[]q′) with θ =
θ(F,β′,l′).

• Case t is a terminal a or a non-terminal F ′ �= F : This
cannot happen by the construction of Γ(t,β,l).

• Case t = F : The required properties holds for C′ = []
β′ = β, l′ = l, and q′ = q.

• Case t = t0t1: By the definition of Γ(t,β,l), we have:

Γ(t,β,l) = Γ(t0,β,l)∪Γ(t1,β1,l1) ⇑ m1∪· · ·∪Γ(t1,βk,lk) ⇑ mk

15

where 〈β, l, t0t1, q〉 �
∗ Ci[〈βi, li, t1s̃i, qi〉] and mi =

Ω(Ci[]qi
). If F : (θ,m)f ∈ Γ(t0,β,l), then the result fol-

lows immediately from the induction hypothesis. Other-
wise, we have F : (θ,m)f ∈ Γ(t1,βi,li) ⇑ mi for some
i. By the definition of · ⇑ m, we have F : (θ,m′)f ∈
Γ(t1,βi,li) for some m′ such that m = max(m′,mi). By
〈β, l, t0t1, q〉 �

∗ Ci[〈βi, li, t1s̃i, qi〉] and the induction hy-
pothesis, we have:

〈βi, li, t1s̃i, qi〉 �
∗ C ′

i[〈β′
i, l

′
i, F t̃′, q′〉]

with m′ = Ω(C ′
i[]q′) and θ = θ(F,β′

i,l
′
i)

. Thus, the required
properties hold for C = Ci[C ′

i], β′ = β′
i, and l′ = l′i.

�
We now turn to prove the second main lemma

(Lemma 4.5). We first prove the following lemma.

Lemma A.8 If 〈ε, 0, S, qI〉 �
∗ C[〈β, l, t0t1 · · · tn, q〉]

where t0 = [s1/x1, . . . , sk/xk]u then there exist Γ0 and
θi,j ,mi,j (1 ≤ i ≤ k, 1 ≤ j ≤ gi) that satisfy:

Γ0, x1 :
∧g1

j=1 (θ1,j ,m1,j)
f
, . . . , xk :

∧gk

j=1 (θk,j ,mk,j)
f

� u : θ(t0,β,l)

{(θi,j ,mi,j) | 1 ≤ j ≤ gi} ⊆ {(θ(si,β′,l′),Ω(C ′[]q′)) |
〈β, l, t0t1 · · · tn, q〉 �

∗ C ′[〈β′, l′, si t̃′, q′〉]}
Γ0 ⊆ Γ(t0,β,l)

Proof The proof proceeds by induction on the structure of
u.

• Case where u is a (∈ Σ) or F (∈ N):
The required conditions hold for Γ0 = Γ(t0,β,l) and gi = 0
(1 ≤ i ≤ k).

• Case where u is xi:
In this case, t0 = si. The required conditions hold: Γ0 =
∅, θi,1 = θ(t0,β,l),mi,1 = Ω(q), and gi = 1 and gj = 0 for
j �= i.

• Case where u is u0u1:
In this case, t0 = t0,0t0,1 where t0,0 = [s̃/x̃]u0 and t0,1 =
[s̃/x̃]u1. By Lemma A.7 and the definition of Γ(t0,β,l), we
have:

Γ(t0,0,β,l) � t0,0 : θ(t0,0,β,l)

Γ(t0,1,βh,lh) � t0,1 : θ(t0,1,βh,lh)

〈β, l, t0t1 · · · tn, q〉 �
∗ Ch[〈βh, lh, t0,1t̃h, qh〉]

mh = Ω(Ch[]qh
) (for 1 ≤ h ≤ H)

Γ(t0,β,l) = Γ(t0,0,β,l) ∪ (
⋃H

h=1 Γ(t0,1,βh,lh) ⇑ mh)
θ(t0,0,β,l) =

∧H
h=1 θ(t0,1,βh,lh) → θ(t0,β,l)

By the induction hypothesis, we have:

Γ0,0, x1 :
∧g0,1

j=1 (θ0,1,j ,m0,1,j)
f
, . . .

xk :
∧g0,k

j=1 (θ0,k,j ,m0,k,j)
f � u0 : θ(t0,0,β,l)

{(θ0,i,j ,m0,i,j) | 1 ≤ j ≤ gi} ⊆ {(θ(si,β′,l′),Ω(C ′[]q′)) |
〈β, l, ([s̃/x̃]u0)t0,1t1 · · · tn, q〉 �

∗ C ′[〈β′, l′, sit̃
′, q′〉]}

Γ0,0 ⊆ Γ(t0,0,β,l)

and, for 1 ≤ h ≤ H ,

Γ0,h, x1 :
∧gh,1

j=1 (θh,1,1,mh,1,1)
f
, . . . ,

xk :
∧gh,k

j=1 (θh,k,1,mh,k,1)
f � u1 : θ(t0,1,βh,lh)

{(θh,i,j ,mh,i,j) | 1 ≤ j ≤ gh,i} ⊆ {(θ(si,β′,l′),Ω(C ′[]q′)) |
〈βh, lh, ([s̃/x̃]u1)t̃h, qh〉 �

∗ C ′[〈β′, l′, sit̃
′, q′〉]}

Γ0,h ⊆ Γ(t0,0,βh,lh).

Let m′
h,i,j := max(mh,i,j ,mh) (for 1 ≤ h ≤ H, 1 ≤ i ≤

k, 1 ≤ j ≤ gh,i) and Γ′
0,h := Γ0,h ⇑ mh. By Lemma A.6,

we have:

(Γ′
0,h, x1 :

∧gh,1
i=1 (θh,1,j ,m

′
h,1,j)

f
, . . . ,

xk :
∧gh,k

j=1 (θh,k,1,m
′
h,k,1)

f) ↑ mh � u1 : θ(t0,1,βh,lh)

Let m′
0,i,j be m0,i,j and Γ0 be Γ0,0 ∪Γ′

0,1 ∪ · · · ∪Γ′
0,H . By

applying T-APP, we get:

Γ0, x1 :
∧H

h=0

∧gh,1
j=1 (θh,1,j ,m

′
h,1,j)

f
, . . . ,

xk :
∧H

h=0

∧gh,k

j=1 (θh,k,j ,m
′
h,k,j)

f � u : θ(t0,β,l).

Furthermore, we have:

Γ0 = Γ0,0 ∪ Γ′
0,1 ∪ · · · ∪ Γ′

0,H

⊆ Γ(t0,0,β,l) ∪ Γ(t0,1,β1,l1) ⇑ m1 ∪ · · ·Γ(t0,1,βH ,lH) ⇑ mH

= Γ(t0,β,l)

and {(θh,i,j ,m
′
h,i,1)

f | 0 ≤ h ≤ H, 1 ≤ j ≤
gh,i} consists of pairs (θ(si,β′,l′),Ω(C ′[]q′)) satisfying
〈β, l, t0t1 · · · tn, q〉 �

∗ C ′[〈β′, l′, sit̃
′, q′〉] as required.

�
We are now ready to prove the second lemma.

Proof of Lemma 4.5 Let {(θi,j ,mi,j) | j ∈ Ji} be the
set:

{(θ(si,β′,l′),Ω(C ′[]q′)) | 〈β, l, [s̃/x̃]t, q〉 �
∗ C ′[〈β′, l′, sit̃

′, q′〉]}.

By Lemma A.8, there exists Γ such that:

Γ, x1 :
∧

j∈I1
(θ1,j ,m1,j)

f
, . . . , xk :

∧
j∈Ik

(θk,j ,mk,j)
f

� [s̃/x̃]t : q
Ii ⊆ Ji for each i ∈ {1, . . . , k}
Γ ⊆ Γ([es/ex]t,β,l+1)

By the second definition of the construction of θ(F,β,l), it
must be the case that

θ(F,β,l) =
∧

j∈J1

(θ1,j ,m1,j) → · · · →
∧

j∈Jk

(θk,j ,mk,j) → q

Thus, Γ � λx̃.t : θ(F,β,l) is obtained by applying T-ABS. �

16

