
Noname manuscript No.
(will be inserted by the editor)

Functional Programs as Compressed Data

Naoki Kobayashi · Kazutaka Matsuda ·
Ayumi Shinohara · Kazuya Yaguchi

Received: date / Accepted: date

Abstract We propose an application of programming language techniques to loss-

less data compression, where tree data are compressed as functional programs that

generate them. This “functional programs as compressed data” approach has several

advantages. First, it follows from the standard argument of Kolmogorov complexity

that the size of compressed data can be optimal up to an additive constant. Secondly,

a compression algorithm is clean: it is just a sequence of β-expansions (i.e., the inverse

of β-reductions) for λ-terms. Thirdly, one can use program verification and transforma-

tion techniques (higher-order model checking, in particular) to apply certain operations

on data without decompression. In this article, we present algorithms for data com-

pression and manipulation based on the approach, and prove their correctness. We

also report preliminary experiments on prototype data compression/transformation

systems.

Keywords Semantics based program manipulation · Program transformation · Data

compression · Functional programs · Higher-order Model Checking

1 Introduction

Data compression plays an important role in today’s information processing technolo-

gies. Its advantages are not limited to the decrease of data size, which enables more

data to be stored in a device. Recent computer systems have a large memory hierar-

chy, from CPU registers to several levels of cache memory, main memory, hard disk,
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etc., so that decreasing the data size enables more data to be stored in faster memory,

leading to more efficient computation. Some data compression schemes allow various

operations to be performed without decompression in time polynomial in the size of

the compressed data, so that one can sometimes achieve super-polynomial speed-up by

compressing data. Data compression can also be applied to knowledge discovery [15].

In this paper, we are interested in the (lossless) compression of string/tree data as

functional programs. The idea of “programs as compressed data” can be traced back

at least to Kolmogorov complexity [28, 29], where the complexity of data is defined as

the size of the smallest program that generates the data. The use of the λ-calculus in

the context of Kolmogorov complexity has also been studied before [47]. Despite the

generality and potential of the “functional programs as compressed data” (FPCD, for

short) approach, however, it did not seem to have attracted enough attention, especially

in the programming language community.

The goal of the present paper is to show that we can use programming language

techniques, program verification/transformation techniques in particular, to strengthen

the FPCD approach, so that the approach becomes not only of theoretical interest but

potentially of practical interest. The approach has the following advantages.

1. Generality and optimality: In principle, it subsumes arbitrary compression schemes.

Imagine some compression scheme and suppose that w is the compressed form of data

v in the scheme. Let f be a functional program for decompression. Then, v can be

expressed as the (closed) functional program f w. This is larger than w only by a

constant, i.e. the size of the program f . This is actually the same as the argument

for Kolmogorov complexity. We use a functional language (or more precisely, the λ-

calculus) instead of a universal Turing machine, but it is easy to observe that the size

of (a certain binary representation of) a λ-term representing the original data can be

optimal with respect to Kolmogorov complexity, up to an additive constant.

We can also naturally mimic popular compression schemes used in practice. For exam-

ple, consider the run-length coding. The string “abaabaababbbb” can be compressed

as [3, “aba”, 4, “b”], meaning that the string consists of 3 repetitions of “aba” and 4

repetitions of “b”. This can be expressed as:

(repeat 3 "aba" (repeat 4 "b" ""))

where repeat is a function that takes a non-negative integer n and strings s1 and s2,

and returns the string sn1 s2. For another example, consider grammar-based compres-

sion, where strings or trees are expressed as (a restricted form of) context-free (tree)

grammars [4, 18, 30]. The grammar-based compression has recently been studied ac-

tively, and used in practice for compression of XML data [4]. For instance, consider the

tree shown in Figure 1 (which has been taken from [4]). It can be compressed as the

following tree grammar:

S = B(B(A)) A = c(a, a) B(y) = c(A, d(A, y))

Using the λ-calculus, we can express it by:

let A = c a a in let B = λy.cA (dAy) in B(B(A))

where the sharing of the tree context c(A, d(A, [ ])) is naturally expressed by the λ-

term. The data compression by a common pattern extraction then corresponds to an

inverse β-reduction step. The previous grammar-based compression uses context-free

grammars and their variants, while the λ-calculus has at least the same expressive

power as higher-order grammars [9]. Thus, as far as data compression is concerned,
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Fig. 1 A tree.

our approach can be considered a higher-order extension of the grammar-based com-

pression. Our approach can achieve a theoretically higher compression ratio: the word

generated by a straight-line program (a context-free grammar without recursion) can

be only (single-)exponentially larger than the program, but the word generated by a

λ-term can be hyperexponentially larger than the term. For example, as discussed in

Example 1 in Section 2, the term:

(λf. f f · · · f︸ ︷︷ ︸
n

a c)(λg.λx.g(g(x)))

generates the word a

n︷ ︸︸ ︷
22
···2

c. This is due to the use of higher-order functions.

2. Data manipulation without decompression: Besides the compression ratio and

the efficiency of the compression/decompression algorithms, an important criterion is

what operations can be directly applied to compressed data without decompression. In

fact, the main strength of the grammar-based approach [4, 18, 31, 32, 37] is that a large

set of operations, such as pattern matching and string replacement, can be performed

without decompression. That is particularly important when the size of original data is

too large to fit into memory, but the size of the compressed data is small enough. As we

show in the present paper, the FPCD approach also enjoys such a property, by using

program verification and transformation techniques. For example, consider a query q

to ask whether a given tree T matches a certain pattern P . Given a program M as

a compressed form of T , answering the query without decompressing M is considered

a static program analysis problem: see Figure 2. If the pattern P is regular, then one

can construct a corresponding tree automaton AP that accepts the trees that match

P . Thus, the problem can be further rephrased as: “Given a functional program M , is

the tree generated by M accepted by AP ?” If M is a simply-typed program, then this

is just an instance of higher-order model checking problems [21, 22, 34].

Pattern matching should often return not just a yes/no-answer, but extra information

such as the position of the first match and the number of occurrences. Such operations

can be expressed by tree transducers. Thus, the problem of performing such operations

without decompression can be formalized as the following program transformation

problem (see also the lower diagram in Figure 2):

“Given a tree transducer f and a functional program M that generates a tree

T , construct a program M ′ that generates f(T ).”
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Fig. 2 Query/transformation of compressed data as program analysis/transformation.

Thanks to the FPCD approach, the construction of the program M ′ is trivial: M ′ =

f̂(M), where f̂ is a representation of transducer f as a functional program. Of course,

f̂(p) may not be an ideal representation, both in terms of the size of the program and

the efficiency for further transformations. Fortunately, M is a tree generator and f̂ is

a consumer, so that we can apply the standard fusion transformation [13] to simplify

f̂(M). An alternative, more sophisticated approach is, as discussed later, to extend a

higher-order model checking algorithm to directly construct M ′.
3. Applications to knowledge and program discovery: This is a more speculative

advantage. It is folklore that compressed data contains the essence of the data, hence

knowledge can be discovered by compressing data to the extreme [15]. As already

discussed, the use of functional programs allows us to compress data to the limit (up

to an additive term), so that we may be able to extract knowledge, represented in the

form of a program, by compressing data. In fact, consider the following Church numeral

representation of 9: λs.λz.s(s(s(s(s(s(s(s(s(z))))))))). Our prototype compressor for λ-

terms produces:

(λn.λf.n(nf))(λs.λx.s(s(s(x)))).

The part λs.λx.s(s(s(x))) is the Church numeral 3, and the part λn.λf.n(nf) is a

square function for Church numerals (which is also the Church numeral 2). Thus,

the equation 32 = 9 and the square function have been automatically discovered by

compression. Charikar et al. [5] notes “comprehensibility (to recognize patterns) is an

important attraction of grammar-based compression relative to otherwise competitive

compression schemes”. As observed above, our FPCD approach has a similar advan-

tage.

In the rest of this article, we first introduce the λ-calculus as the language for ex-

pressing compressed data, and discuss the relationship with Kolmogorov complexity in

Section 2. We then describe an algorithm for compressing trees as λ-terms in Section 3.

In Section 4, we extend and apply program verification/transformation techniques to

achieve processing of compressed trees (represented in the form of λ-terms) without

decompression. Section 5 reports preliminary experiments on data compression and

processing. Section 6 discusses related work and Section 7 concludes.
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The main contributions of this article are:

(i) Showing that typed λ-calculus with intersection types provides an optimal com-

pression size up to an additive constant (Section 2.2).

(ii) Developing an algorithm to compress trees as λ-terms (Section 3).

(iii) Showing that higher-order model checking can be used to answer pattern match

queries without decompression (Section 4.1).

(iv) An extension of higher-order model checking and an application of the fusion

transformation to manipulate compressed data without decompression (Section 4.2).

(v) Implementation and experiments on the algorithms for data compression and

data manipulations without decompression (Section 5).

The preliminary version of this article has appeared in [24]. From the previous version,

we have added proofs, examples, discussions, and experiments.

2 λ-Calculus as a Data Compression Language

2.1 Syntax

We use the λ-calculus for describing tree data and tree-generating programs. To rep-

resent a tree, we assume a ranked alphabet (i.e., a mapping from a finite set of symbols

to non-negative integers) Σ. We write a, b, . . . for elements of the domain of Σ and call

them terminal symbols (or just symbols). They are used as tree constructors below.

The set TermsΣ of λ-terms, ranged over by M , is defined by:

M ::= x | a | λx.M |M1M2.

Here, the meta-variables x and a range over variables and symbols (a, b, . . .) respec-

tively. Note that, if symbols are considered free variables, this is exactly the syntax

of the λ-calculus. As usual, λx is a binder for the variable x, and we identify terms

up to α-conversion. We also use the standard convention that the application M1M2

is left-associative, and binds tighter than lambda-abstractions, so that λx.axx means

λx.((ax)x). We sometimes write let x = M1 in M2 for (λx.M2)M1. We write −→β for

the standard (one-step) β-reduction relation, and −→∗β for its reflexive and transitive

closure.

The size of M , written #M , is defined by:

#x = #a = 1 #(λx.M) = #M + 1 #(M1M2) = #M1 + #M2 + 1

The set of Σ-labeled trees, written TΣ , is the least subset of λ-terms closed under

the rule:

∀M1, . . . ,Mn ∈ TΣ .Σ(a) = n⇒ a M1 · · · Mn ∈ TΣ .

(Note here that n may be 0, which constitutes the base case.) We often use the meta-

variable T to denote an element of TΣ .

If M has a β-normal form, we write [[M ]] for it. In the present paper, we are

interested in the case where [[M ]] is a tree (i.e. an element of TΣ). When [[M ]] is a tree

T , we often call M a program that generates T , or a program for T in short. The goal

of our data compression is, given a tree T , to find a small program for T .
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Example 1 Let T be a9(c), i.e., a(a(· · · (a︸ ︷︷ ︸
9

(c)) · · · )).

It is generated by the following program M1:

(λn.n(n a)c)(λs.λx.s(s(s(x)))).

Note that #T = 19 > #M1 = 18.

In general, the size of a program M for T can be hyper-exponentially smaller than

the size of T . For example, consider the tree:

T := a

n︷ ︸︸ ︷
22
···2

c

It is generated by: M2,n := (λf. f f · · · f︸ ︷︷ ︸
n

a c)(λg.λx.g(g(x))). ut

Example 2 Consider the following term, which generates a unary tree a57(c).

let b0 = λn.λs.λz.n s (n s z) in

let b1 = λn.λs.λz.s (n s (n s z)) in

let zero = λs.λz.z in

b1(b0(b0(b1(b1(b1(zero)))))) a c

The part b1(b0(b0(b1(b1(b1(zero)))))) corresponds to the binary representation 111001

of 57, with the least significant bit first.

The last line can be replaced with:

let twice = λf.λx.f(f(x)) in

let thrice = λf.λx.f(f(f(x))) in b1(twice b0(thrice b1(zero))) a c

b1(twice b0(thrice b1(zero))) then corresponds to the run-length coding of the binary

representation 111001.

ut

2.2 Typing

We considered the untyped λ-calculus above, but we can actually assume that any pro-

gram that generates a tree is well-typed in the intersection type system given below.

The assumption that programs are well-typed is important for the program transforma-

tions discussed in Section 4. The use of intersection types is important for guaranteeing

that we do not lose any expressive power for expressing finite trees: see Theorem 1 be-

low.

The set of (intersection) types, ranged over by τ , is given by:

τ ::= o | τ1 ∧ · · · ∧ τk → τ

Here, k may be 0, in which case we write > → τ for τ1 ∧ · · · ∧ τk → τ . We assume

that ∧ binds tighter than → and → is right-associative, so that o ∧ o→ o→ o means

(o ∧ o) → (o → o), not (o ∧ (o → o)) → o. We require that in τ1 ∧ · · · ∧ τk → τ ,

τ1, . . . , τk are (syntactically) different from each other. For example, o ∧ o → o is not
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allowed. Intuitively, o describes a tree, and τ1 ∧ · · · ∧ τk → τ describes a function that

takes an element having all of the types τ1, . . . , τk, and returns an element of type τ .

We sometimes write
∧
i∈{1,...,k} τi → τ for τ1 ∧ · · · ∧ τk → τ . We also write ok → o for

o→ · · · → o︸ ︷︷ ︸
k

→ o.

A type environment is a finite set of type bindings of the form x :τ . Unlike ordinary

type environments, we allow multiple occurrences of the same variable, like {x : o →
o, x : (o → o) → (o → o)}. We often omit { } and just write x1 : τ1, . . . , xn : τn for

{x1 : τ1, . . . , xn : τn}. We write dom(Γ ) for the set of variables that occur in Γ , i.e., for

the set {x | x : τ ∈ Γ}.
The type judgment relation is of the form Γ ` M : τ where Γ is a type environ-

ment. It is inductively defined by the following typing rules:

Γ, x : τ ` x : τ
Σ(a) = k

Γ ` a : ok → o

Γ, x : τ1, . . . , x : τn `M : τ x 6∈ dom(Γ )

Γ ` λx.M : τ1 ∧ · · · ∧ τn → τ

Γ `M1 : τ1 ∧ · · · ∧ τn → τ ∀i ∈ {1, . . . , n}.Γ `M2 : τi

Γ `M1M2 : τ

Please note that in the rule for applications, n can be 0, in which case M2 need

not be typed.

Example 3 Let Σ = {c 7→ 0}, τ0 = o → o and τ1 = τ0 → τ0. ((λx.xx)λy.y)c is typed

as follows.

x : τ1, x : τ0 ` x : τ1 x : τ1, x : τ0 ` x : τ0
x : τ1, x : τ0 ` xx : τ0

∅ ` λx.xx : τ1 ∧ τ0 → τ0

x : τ0 ` x : τ0
∅ ` λx.x : τ1

x : o ` x : o
∅ ` λx.x : τ0

∅ ` (λx.xx)λy.y : o→ o ∅ ` c : o

∅ ` ((λx.xx)λy.y)c : o

We can also type a weakly-normalizing but not strongly-normalizing term. Let Ω be

(λx.x x)(λx.x x). Then we have ∅ ` (λx.c)Ω : o by:

∅ ` c : o

∅ ` λx.c : > → o

∅ ` (λx.c)Ω : o

ut

Example 4 Recall M2,n = (λf. f f · · · f︸ ︷︷ ︸
n

a c)(λg.λx.g(g(x))) in Example 1. Let τ0 =

o→ o and τk+1 = τk → τk. Then, we have:

f : τ1, · · · , f : τn ` f f · · · f︸ ︷︷ ︸
n

a c : o

∅ ` λg.λx.g(g(x)) : τk (for each k ∈ {1, . . . , n}).
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(The first judgment is obtained by assigning type τk to the k-th rightmost occurrence

of f .) From the first judgment, we have:

∅ ` f f · · · f︸ ︷︷ ︸
n

a c : τ1 ∧ · · · ∧ τn → o.

Thus, we have ∅ `M2,n : o. ut

It follows from the standard argument for intersection types [2, 50] that any program

that generates a (finite) tree is well-typed, and conversely, any well-typed program of

type o generates a (finite) tree.

Theorem 1 Let M be a λ-term. Then, ∅ ` M : o if and only if there exists a tree T

such that T = [[M ]].

Proof This follows from standard results on intersection types [2, 49, 50].

For the “only if” part, we first note the facts (i) ∅ ` M : o implies that M has a

β-normal form ([49], Theorem 2.1.14), (ii) if M is in β-normal form and ∅ ` M : o,

then M is a tree, and (iii) typing is preserved by β-reductions ([49], Corollary 2.1.11).

Fact (ii) follows by easy induction on the size of M : If M is a β-normal form and

∅ `M : o, then M must be of the form aM1 · · · Mk with Σ(a) = k and ∅ `Mi : o for

i ∈ {1, . . . , k}. By the induction hypothesis, M1, . . . ,Mk must be trees, so that M is

also a tree. Now, suppose ∅ `M : o. By (i), there exists a β-normal form [[M ]] of M . By

(iii), ∅ ` [[M ]] : o. By (ii), [[M ]] is a tree as required. Appendix A shows a self-contained

proof using syntactic techniques.

To show the “if” part, we note the facts: (iv) if M is a tree, then ∅ ` M : o,

and (v) typing is preserved by β-expansions (i.e. ∅ ` N : τ and M −→β N imply

∅ ` M : τ) ([49], Corollary 2.1.11). Fact (iv) follows by straightforward induction on

the tree M . Now, suppose [[M ]] exists and it is a tree. By (iv), ∅ ` [[M ]] : o. By (v), we

have ∅ `M : o as required. ut

Example 5 By Theorem 1 above, diverging terms such as Ω = (λx.x x)(λx.x x) and

(λx.a (xx))(λx.a (xx)) cannot be typed, although the latter generates an infinite tree.

As we consider only programs representing (finite) trees, thanks to the theorem

above, we can safely assume that all the programs in consideration are well-typed (in

the intersection type system above) in the rest of this article.

Remark 1 Instead of the λ-calculus with intersection types, one may use the simply-

typed λ-calculus as a data compression language. The simply-typed λ-calculus also

enables a hyper-exponential compression ratio. Recall M2,n discussed in Examples 1

and 4. It is not simply-typed, but the same tree can be generated by the following

simply-typed λ-term:

(λf1. · · ·λfn.fn · · · f1 a c) (λg.λx.g(g(x))) · · · (λg.λx.g(g(x)))︸ ︷︷ ︸
n

.

Whether we allow intersection types or not, however, makes the following big differences

in theoretical properties:

– The theoretical optimality (with respect to Kolmogorov complexity discussed in

Section 2.3) is lost if types are restricted to simple ones.
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– The set {M | [[M ]] = T and M is typed with intersection types} is recursively enu-

merable but not recursive. Thus, the optimality of data representation is undecid-

able in the presence of intersection types. On the other hand, the set {M | [[M ]] =

T and M is simply-typed} is recursive; note that whether a given term is simply-

typed is decidable, and any simply-typed term is strongly normalizing. Therefore,

the optimality of data representation is decidable if types are restricted to sim-

ple ones. In fact, the following simple algorithm always terminates and finds the

smallest term M such that [[M ]] = T .

let compressST(T, Candidates) =

let M :: Candidates ′ = Candidates in

if simply-typed(M) and [[M ]] = T then M

else compressST(T, Candidates ′)
in compressST(T, genterms(T))

Here, genterm(T ) returns a list consisting of all the terms no larger than T , sorted

in the increasing order of term size.

In practice, an advantage of the restriction to the simply-typed λ-calculus is not so clear.

First, even the simply-typed λ-calculus is too powerful for its expressive power to be

fully exploited. In the algorithm above, the problem of deciding the equality [[M ]] = T

is non-elementary [41, 45]. Thus, in practice, other restrictions, such as bounding the

order of types (where the order is defined by order(o) = 0, order(τ1 ∧ · · · ∧ τk → τ) =

max({order(τi) + 1 | i ∈ {1, . . . , k}} ∪ {order(τ)})) may be more useful. Secondly, the

restriction to the simply-typed λ-calculus seems to forbid some natural compression:

recall the simply-typed version of M2,n above, where the term λg.λx.g(g(x)) had to

be duplicated just because of the difference in types. ut

2.3 Relationship with Kolmogorov Complexity

As already discussed in Section 1, the FPCD approach provides a universal compression

scheme, in the sense that any compressed data can be expressed in the form of (typed)

λ-terms. As sketched below, our representation of compressed data in the form of λ-

terms is optimal with respect to Kolmogorov complexity, up to an additive constant [28,

29]. A reader not familiar with Kolmogorov complexity may wish to consult [28, 29].

Let U be a plain universal Turing machine, where the input tape alphabet of the

simulated machine is {0, 1,#} and # is used as the delimiter of an input [29]. (Plain)

Kolmogorov complexity [28, 29] of a binary string (an element of {0, 1}∗) v, written

K(v), is defined by:

K(v) := min{|w| | w ∈ {0, 1}∗, U(w) = v}.

Here, |w| is the length of w.

Let BM ∈ {0, 1}∗ be a self-delimiting binary code of λ-term M (so that there is

no λ-terms M and N such BM is a proper prefix of BN ). Tromp’s coding [47], for

example, satisfies this property. Define Kλ(v) by:

Kλ(v) := min{|BMw| | [[Mŵ]] = v̂}.

Here, ŵ is an encoding of a binary string w into a λ-term.



10

Since the λ-calculus is Turing complete, there exists a λ-term Uλ such that U(w) =

v if and only if [[Uλ(ŵ)]] = v̂. Thus, Kλ(v) ≤ min{|BUλw| | U(w) = v} = |BUλ |+K(v).

As |BUλ | is independent of v, the result implies that our FPCD approach (combined

with a binary coding of λ-terms) achieves an optimal compression size up to an additive

constant.

2.4 Relationship with Grammar-based Compression

Grammar-based compression schemes, in which a string or a tree is expressed as a

grammar that generates it, have been actively studied recently [4, 18, 30, 37]. Our com-

pression scheme using the λ-calculus can naturally mimic grammar-based compression

schemes. For example, consider the compression scheme using context-free grammars

(with the restriction of cycle-freeness) or straight-line programs. A string s is expressed

as a grammar of the following form:

X1 = e1, X2 = e2, · · · , Xn = en,

where ei is either a terminal symbol a, or XjXk with 1 ≤ j, k < i, and Xn is the start

symbol. It can be expressed as

let X1 = λy.e
(y)
1 in let X2 = λy.e

(y)
2 in · · ·

let Xn = λy.e
(y)
n in Xn(e),

where e(y) is defined by: a(y) = a(y) and (XjXk)(y) = Xj(Xk(y)). It generates s in

the form of a linear tree, with e as an end-marker. Note that each substring a1 · · · ak
is expressed as a function of type o → o, which takes (the tree-representation of)

a string s′ that follows it and, returns a1(· · · ak(s′) · · · ). We can also express various

extensions of straight-line programs, such as context-free tree grammars [4] and collage

systems [18] as λ-terms.

Example 6 Fibonacci words1 are variations of Fibonacci numbers, obtained by replac-

ing the addition + with the string concatenation, and the first and second elements

with b and a. The n-th word is expressed by the following straight-line program:

X0 = b, X1 = a, X2 = X1X0, . . . , Xn = Xn−1Xn−2.

It is encoded as:

let X0 = b in let X1 = a in let X2 = λx.X1(X0(x)) in · · ·
let Xn = λx.Xn−1(Xn−2(x)) in Xn(e)

For n = 2m, we have a more compact encoding:

let concat = λx.λy.λz.x(y(z)) in let g = λk.λx.λy.k y (concat y x) in

twice(· · · (twice︸ ︷︷ ︸
m

(g)) · · · ) (λx.λy.x) b a e

A similar encoding is also possible for an arbitrary number n by using b0 and b1 in

Example 2. ut
1 Fibonacci words and its generalization called Sturmian words have been studied in a field

called Stringology [8].
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3 Compression as β-Expansions

In the previous section, we have introduced a typed λ-calculus as a language for rep-

resenting compressed data, and shown that it allows optimal compression up to an

additive constant. As discussed in Remark 1, however, there is no terminating algo-

rithm that takes a tree as an input and outputs its optimal representation. Such an

algorithm exists if the language is restricted to simply-typed λ-calculus, but the algo-

rithm is still unrealistic to be used in practice. We describe below an (arguably) more

realistic tree compression algorithm, which, given a tree T , finds a small λ-term M

(well-typed under the intersection type system) such that [[M ]] = T . Although it does

not guarantee the optimality of the output, it has the following interesting features.

– Simplicity: each step of a compression can be regarded as the inverse of β-reduction,

followed by simplification of λ-terms.

– Reuse of existing tree compression algorithms: The algorithm is parametrized by a

tree compression algorithm and repeatedly applies it by viewing λ-terms as trees.

Therefore, it can be made at least as good as any grammar-based algorithm in

terms of the compression ratio (except some overhead caused by the λ-calculus

representation), by employing it as the tree compression algorithm and representing

its output as a λ-term as discussed in Section 2.4.

– Hyper-exponential compression ratio (in the best case): The algorithm achieves

hyper-exponential compression ratio for certain inputs. It also takes advantage of

intersection types and outputs terms that are not necessarily simply-typed (see

Example 8 below).

The algorithm is still too slow to be used for compression of large data, and it is left for

future work to find an algorithm that achieves a better balance between the efficiency

and the compression ratio.

We reuse existing algorithms for (context-free) grammar-based tree compression [4,

30], by regarding a λ-term as a term tree (identified up to α-conversion) as follows.

x] = x a] = a (λx.M)] = λx

M ]

(MN)] = @

M ] N ]

As we have seen in Section 2.4, compressed data in the form of a context-free gram-

mar can be easily translated to a λ-term. Thus, a grammar-based tree compression

algorithm can be regarded as an algorithm for compression of λ-terms. By repeatedly

applying such an algorithm to an initial tree T , we can obtain a small λ-term M such

that [[M ]] = T . (There is, however, no guarantee that the resulting term is the small-

est such M .) Note that the repeated applications are possible because the input and

output languages for the compression algorithm are the same: the λ-calculus.

Figure 3 shows our algorithm, parametrized by two auxiliary algorithms:

compressAsTree and simplify . Given a λ-term M (or a tree as a special case), we just

invoke a tree compression algorithm to obtain compressed data in the form of λ-term

M1. It is then simplified by using properties of λ-terms (such as the η-equality). We

repeat these steps until the size of a term can no longer be reduced. (In the actual

implementation, compressAsTree returns multiple candidates, which are inspected for

further compression in a breadth-first manner. The termination condition #M2 ≥
#M is also relaxed to deal with the case where the term size does not monotonically

decrease: See Section 5.)
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compressTerm(M) =
let M1 = compressAsTree(M) in
let M2 = simplify(M1) in
if #M2 ≥ #M then M else compressTerm(M2)

Fig. 3 Compression algorithm for λ-terms.

Because of the repeated applications of compressAsTree, we can actually use the

following very simple algorithm for compressAsTree, which just finds and extracts a

common tree context, rather than more sophisticated algorithms [4, 30]. Let us define

a context with (up to) k-holes by:

C ::= [ ]1 | · · · | [ ]k | x | a | CC | λx.C

We write C[M1, . . . ,Mk] for the term obtained by replacing each [ ]i in C with Mi.

Note that ignoring binders, a context is just a tree context with up to k holes. Then,

compressAsTree just needs to find (non-deterministically) contexts C0, C1, C2, C3 and

terms M1, . . . ,Mk, N1, . . . , Nk such that

– (i)M = C0[C1[C2[M1, . . . ,Mk], C2[N1, . . . , Nk]]] or (ii)M = C0[C1[C2[M1, . . . ,Mk]]]∧
Mi = C3[C2[N1, . . . , Nk]];

– the free variables in M1, . . . ,Mk, N1, . . . , Nk are not bound in C2, and the free

variables in C2 are not bound in C1; and

– every hole of C0, C1, C2 occurs at least once. (For example, if C2 is a context with

two holes, C2 must contain both [ ]1 and [ ]2 at least once.)

Here, in the first condition above, (i) and (ii) are the cases where the common context

C2 occurs horizontally and vertically, respectively: see Figure 4. The output is:

C0[(λf.C1[f M1 · · · Mk, f N1 · · · Nk])(λx̃.C2[x̃])]

in case (i), and

C0[(λf.C1[f M1 · · · Mi−1M
′
iMi+1 · · · Mk])(λx̃.C2[x̃])]

where M ′i = C3[f N1 · · · Nk] in case (ii), and x̃ denotes the sequence x1, . . . , xk.

The third condition above ensures that no vacuous λ-abstractions are introduced.

For example, if we allowed a two-hole context C2 = [ ]2 (which does not contain [ ]1),

λx1.λx2.x2 would be introduced by the transformation above.

The transformation above is a restricted form of β-expansion step: C[[N/x]M ] −→
C[(λx.M)N ], applicable only when M contains two occurrences of x.

The sub-procedure compressAsTree above is highly non-deterministic in the choice

of contexts. In our prototype implementation, we pick every pair (M ′,M ′′) of subterms

of M and find the maximum common context C2 such that M ′ = C2[M1, . . . ,Mk] and

M ′′ = C2[N1, . . . , Nk]. For splitting the enclosing context into C0 and C1, we choose

the largest2 C1 that satisfies the condition on bound variables. The resulting procedure

is still non-deterministic in the choice of the pairs (M ′,M ′′), and our implementation

applies the depth-first search. See Section 5 for more details.

For the simplification procedure simplify , we apply the following rules until no more

rules become applicable.

2 It may also make sense to choose the smallest one instead.
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Fig. 4 Cases where the common context C2 occurs horizontally (left, case (i)), and vertically
(right, case (ii)).

– η-conversion: λx.M x −→M if x is not free in M .

– β-reduction when the argument is a variable: (λx.M)y −→ [y/x]M .

– β-reduction for linear functions: (λx.M)N −→ [N/x]M if x occurs (syntactically)

at most once in M .

Remark 2 The output of our compression algorithm above belongs to λ-I calculus [6],

where each λ-abstraction λx.M contains at least one occurrence of x in M . To observe

it, recall that compressAsTree applies the β-expansion C[[N/x]M ] −→ C[(λx.M)N ]

only when M contains two occurrences of x. The three simplification transformations

given above also preserve the property that each bound variable occurs at least once.

By the above observation, we know that the term in Example 2 cannot be gener-

ated by our compression algorithm, since the term contains a vacuous λ-abstraction

let zero = λs.λz.z in (where s does not occur in the body of λs). The following

slight variation (obtained by replacing b1 zero by λs.s) can however be obtained by our

algorithm:
let b0 = λn.λs.λz.n s (n s z) in

let b1 = λn.λs.λz.s (n s (n s z)) in

b1(b0(b0(b1(b1(λs.s))))) a c

ut

Example 7 Consider a tree a9(c). Let C0, C1, C2, C3,M1, N1 be:

C0 = [ ]1 C1 = [ ]1 C2 = a3[ ]1 C3 = [ ]1 M1 = a6(c) N1 = a3(c)

Then, case (ii) applies and the following term is obtained:

(λf.f(f(a3(c))))λx.a3(x)

Next, we again extract the common context a3[ ]1, and obtain

(λg.(λf.f(f(g(c))))λx.g x)(λx.a3(x))

By using the η-equality λx.g x = g, we get:

(λg.(λf.f(f(g(c))))g)(λx.a3(x)).

As a part of the simplification procedure, we also β-reduce terms of the form (λx.M)y

and obtain: (λg.g(g(g(c))))(λx.a3(x)). In the third iteration, we can extract the com-

mon context [ ]1([ ]1([ ]1 [ ]2)) and obtain (λh.(λg.h g c)(λx.h ax))(λf.λx.f(f(f x))). By
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simplifying the term (by η-conversion and β-reduction for the linear function λg.h g c),

we obtain:

(λh.(h (h a) c))(λf.λx.f(f(f x))). ut

Example 8 We give an example for which our compression algorithm generates a term

that is not simply-typed (but well-typed in the intersection type system). Consider the

tree a4(c). By extracting the common context a2[ ]1, we obtain:

(λf.(f(f c)))(λx.a(ax)).

By extracting the context [ ]1([ ]1 [ ]2), we further obtain:

(λg.(λf.g f c)(λx.g ax))(λh.λx.h(hx)),

which can be simplified as follows.

(λg.(λf.g f c)(λx.g ax))(λh.λx.h(hx))

−→η (λg.(λf.g f c)(g a))(λh.λx.h(hx))

−→β (λg.g (g a) c)(λh.λx.h(hx)).

By extracting the context [ ]1([ ]1 [ ]2) again, we obtain:

(λf.(λg.f g a c)(λh.λx.f h x))(λk.λx.k(k x)),

which is simplified as follows.

(λf.(λg.f g a c)(λh.λx.f h x))(λk.λx.k(k x))

−→∗η (λf.(λg.f g a c)f)(λk.λx.k(k x))

−→β (λf.f f a c)(λk.λx.k(k x)).

This is M2,2 in Example 1.

We show informally that M2,n in Example 1 is obtained from a2↑↑nc, where 2↑↑n =
n︷ ︸︸ ︷

22
···2

, by induction on n. By repeatedly extracting the context [ ]1([ ]1 [ ]2) (in a manner

to similar to the transformation of a4 c to (λg.g (g a) c)(λh.λx.h(hx)) above), we obtain

(λg. g(g(· · · g︸ ︷︷ ︸
2↑↑(n−1)

(a) · · · )c)λh.λx.h(hx).

By induction hypothesis, the part g(g(· · · g︸ ︷︷ ︸
2↑↑(n−1)

(a) · · · )(= g2↑↑(n−1) a) can be compressed

to (λf. f f · · · f︸ ︷︷ ︸
n−1

g a)λh.λx.h(hx). Thus, we obtain:

(λg.(λf. f f · · · f︸ ︷︷ ︸
n−1

g a)(λh.λx.h(hx))c)λh.λx.h(hx).

By extracting the common term λh.λx.λh(hx), we obtain

(λk.(λg.(λf. f f · · · f︸ ︷︷ ︸
n−1

g a)k c)k)λh.λx.h(hx),
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which can be simplified as follows.

(λk.(λg.(λf.

n−1︷ ︸︸ ︷
f f · · · f g a)k c)k)λh.λx.h(hx)

−→β (λk.(λg.

n−1︷ ︸︸ ︷
k k · · · k g a c)k)λh.λx.h(hx)

−→β (λk. k k · · · k︸ ︷︷ ︸
n

a c)λh.λx.h(hx).

Thus, we have obtained M2,n. ut

Example 9 Recall the tree in Figure 1. By extracting the first two occurrences of the

common context (with zero holes) c a a, we obtain:

(λx.cx (dx (c (c a a) (d (c a a) (c a a)))))(c a a).

By further extracting the common context c a a repeatedly (and applying simplify), we

get (λC.cC (dC (cC (dC C))))(c a a). By extracting the common context a, we obtain

(λC.cC (dC (cC (dC C))))((λA.(cAA))a).

This corresponds to the DAG representation in Figure 1 of [31] and also to the reg-

ular grammar representation in Figure 2 of [4]. By extracting the common context

λy.cC (dC y), the term is further transformed to:

(λC.(λB.B(B(C)))(λy.cC (dC y)))((λA.(cAA))a).

This corresponds to the sharing graph representation in Figure 1 of [31] and to the

CFG representation in Figure 1 of [4]. ut

Relationship with CFG-based Tree Compression Algorithms. As demonstrated in Ex-

ample 9, context-free grammar-based tree compression algorithms [4, 30] can be mim-

icked by our compression method based on λ-calculus. In fact, they may be viewed as a

controlled and restricted form of our compression algorithm. For example, for efficient

compression, Busatto et al. [4] impose restrictions on the number of holes and the

size of common contexts, and also introduce certain priorities among subterms from

which common contexts are searched. (There is also another difference that Busatto’s

algorithm finds more than two occurrences of a common context at once, but it can be

mimicked by repeated applications of compressAsTree above.)

A more fundamental restriction of the previous approaches is that they [4] extract

only common tree contexts with first-order types, of the form o → · · · → o → o.

Because of this difference, our compression algorithm based on the λ-calculus is more

powerful than ordinary grammar-based compression algorithms. For example, the com-

pression discussed in Example 7 is not possible with CFG-based compression: note that

the context [ ]1([ ]1([ ]1 [ ]2)) (expressed by λf.λx.f(f(f x))) extracted during the com-

pression has an order-2 type (o → o) → o → o; therefore, it cannot be shared in the

context-free tree grammar approach [4].
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Limitations. The compression algorithm sketched above is neither efficient nor com-

plete. By the incompleteness, we mean that there is a λ-term M and a tree T such

that [[M ]] = T but M cannot be obtained from T by the algorithm.

For example, consider the following tree (represented as a term) T1:

br (a (b (x (y (c (d e)))))) (a (b (z (c (d e)))))

It can be expressed by the following term M :

let f = λg.a (b (g (c (d e)))) in br (f λu.x(y u)) (f z),

but M cannot be obtained by our algorithm. To enable the above compression, we

need to β-expand T1 to:

br (a (b ((λu.x(y u)) (c (d e))))) (a (b (z (c (d e)))))

before applying our algorithm. Such pre-processing is however non-trivial in general.

For another example, consider the following tree (represented as a term) T2:

br (a1 (a2 · · · (an e) · · · )) (an · · · (a2 (a1 (e))) · · · ),

which consists of a linear tree representing the sequence a1, . . . , an and its reverse.

The following term M generates T , but the common pattern h cannot be found by

our algorithm.

let h = λa.λk.λx.λy.k (a x) (λz.y(a(z))) in

let id = λz.z in

h an(· · · (h a2 (h a1 (λx.λy.brx (y e)))) · · · ) e id

Actually, finding terms h, k, x, y such that

[[h an(· · · (h a2(h a1 k)))x y]] = T2

is an instance of the higher-order matching problem [42]. Thus, higher-order matching

algorithms may be applicable to our data compression scheme. We leave for future work

a good characterization of the terms obtained by our compression algorithm (besides

the characterization by λ-I calculus in Remark 2), as well as extensions (e.g. with

higher-order matching) to obtain more powerful and/or efficient algorithms.

4 Processing of Compressed Data

This section discusses how to process compressed data without decompression.
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4.1 Pattern Matching as Higher-Order Model Checking

We first discuss the problem of answering whether [[M ]] matches P , given a program

M and a regular tree pattern P . For instance, we may wish to check whether some

path from the root of the tree [[M ]] contains ab as a subpath, or check whether [[M ]]

contains a subtree of the shape:

c

d

· · ·

d

· · ·
Such a pattern matching problem can be formalized as an acceptance problem for tree

automata [7].

Below we write dom(f) for the domain of a map f .

Definition 1 (tree automata) A (top-down, alternating) tree automaton A is a quadru-

ple (Σ,Q, qI ,∆), where Σ is a ranked alphabet, Q is a set of states, qI is the initial state,

and ∆(⊆ Q× dom(Σ)× 2{1,...,m}×Q) is a transition function (where m is the largest

arity of symbols in Σ), such that (q, a, S ∪{(i, q′)}) ∈ ∆ implies 1 ≤ i ≤ Σ(a). The re-

duction relation V1 −→ V2 on subsets of Q×TΣ is defined by: V ∪{(q, a T1 · · · Tn)} −→
V ∪{(q′, Ti) | (i, q′) ∈ S} if (q, a, S) ∈ ∆. A tree T is accepted by A if {(qI , T )} −→∗ ∅.
We write L(A) for the set of trees accepted by A.

Example 10 Consider the automaton A1 = (Σ1, {q0, q1}, q0,∆) where Σ1 = {a 7→
1, b 7→ 1, e 7→ 0} and ∆ is given by:

∆ = {(q0, a, {(1, q1)}), (q0, b, {(1, q0)}), (q1, a, {(1, q1)}), (q1, b, ∅)}

Then, a Σ1-labeled tree T contains a subtree of the form a(b(· · · )) if and only if T is

accepted by A1. ut

Example 11 Let Σ2 = {b 7→ 1, c 7→ 2, d 7→ 1, e 7→ 0}. Consider the automaton A2 =

(Σ2, {q0, q1}, q0,∆2) where ∆2 is given by:

∆2 = {(q0, b, {(1, q0)}), (q0, c, {(1, q1), (2, q1)}), (q0, c, {(1, q0)}),
(q0, c, {(2, q0)}), (q0, d, {(1, q0)}), (q1, d, ∅)}

Then, a Σ2-labeled tree T contains a subtree of the form c (d · · · ) (d · · · ) if and only

if T is accepted by A2. ut

Remark 3 The definition of alternating tree automata above is different from the stan-

dard definition [7], where the transition function is defined as a map from Q×dom(Σ)

to positive boolean formulas constructed from atomic formulas of the form (i, q). For

instance, ∆2 in Example 11 is defined as:

∆2(q0, b) = (1, q0) ∆2(q1, b) = false

∆2(q0, c) = ((1, q1) ∧ (2, q1)) ∨ (1, q0) ∨ (2, q0) ∆2(q1, c) = false

∆2(q0, d) = (1, q0) ∆2(q1, d) = true

Both the definitions are equivalent in the expressive power although the size of the

descriptions of automata can be different; our definition corresponds to the case where

the image of transition functions is restricted to formulas in disjunctive normal form.

Our definition is motivated to make the definitions of tree automata and tree trans-

ducers (introduced in Definition 3) similar. ut
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The goal here is, given a (well-typed) program M and an automaton A, to check

whether [[M ]] ∈ L(A) holds. A simple decision algorithm is to decompress M (i.e. fully

β-reduce M) to a tree T (= [[M ]]) and run the automaton A for T . This is however

inefficient if T is large or the reduction sequence of M is long. Instead, we use the

type-based technique for model checking higher-order recursion schemes [22, 48], to

reduce [[M ]]
?
∈ L(A) to a type-checking problem for M . Because of subtle differences

between higher-order recursion schemes [19, 34] and the language considered here (see

Remark 6), we give a direct construction of the type system below.

Definition 2 (refinement intersection types) Let A = (Σ,Q, qI ,∆) be a tree au-

tomaton. The set RTyQ of refinement intersection types, ranged over by θ, is given

by:

θ ::= q (∈ Q) | θ1 ∧ · · · ∧ θk → θ

Here, k may be 0, in which case we write > → θ for θ1∧· · ·∧θk → θ. We assume some

strict total order < (e.g., the lexicographic order) on refinement intersection types, and

require that θ1 < θ2 < · · · < θk holds in θ1 ∧ · · · ∧ θk → θ.

Intuitively, q describes the set of trees accepted by A from the state q (i.e., accepted

by (Σ,Q, q,∆)). The type θ1∧· · ·∧θk → θ describes a function that takes an element of

types θ1, . . . , θk, and returns an element of type θ. For example, recall the automaton

A2 in Example 11. The symbol b has type q0 → q0, since b(T ) is accepted from q0 if T

is accepted from q0. The term λx.cxx has type q0 → q0, since cT T is accepted from

q0 if T is accepted from q0. It has also types q1 → q0.

Remark 4 The restriction on the syntax of refinement intersection types above en-

forces that the intersection type constructor is essentially idempotent, commutative

and associative: there is a unique representation for types that are mutually equiva-

lent with respect to the laws of idempotency, commutativity, and associativity on ∧.

Based on the assumption, we sometimes write
∧
i∈I θi → θ (where I is a finite set of

indices) for θ′1 ∧ · · · ∧ θ′k → θ when {θi | i ∈ I} = {θ′1, . . . , θ′k}. In some previous type

systems for higher-order model checking [20, 25], we represented an intersection type

as a set instead of a sequence, i.e., used the notation
∧
{θ1, . . . , θk} → θ instead of

θ1 ∧ · · · ∧ θk → θ. This automatically enforces that intersection types are idempotent,

commutative, and associative. Having the order between θ1, . . . , θk is however impor-

tant for the development in Section 4.2.1. ut

We shall construct below a type system for reasoning about the types of terms.

A refinement type environment Ψ is a finite set of type bindings of the form x : θ,

where multiple occurrences of the same variable are allowed as in the intersection type

system in Section 2.2. We write dom(Ψ) for the set {x | x : θ ∈ Ψ} of variables. The

type judgment relation Ψ `A M : θ is defined by:

Ψ, x : θ `A x : θ

(q, a, {(i, qj) | 1 ≤ i ≤ Σ(a), j ∈ Ii}) ∈ ∆
Ψ `A a :

∧
j∈I1 qj → · · · →

∧
j∈IΣ(a)

qj → q

Ψ, x : θ1, . . . , x : θn `A M : θ x does not occur in Ψ

Ψ `A λx.M : θ1 ∧ · · · ∧ θn → θ

Ψ `A M1 : θ1 ∧ · · · ∧ θn → θ ∀i ∈ {1, . . . , n}.Ψ `A M2 : θi

Ψ `A M1M2 : θ
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Note that these typing rules are the same as those for the intersection type system

in Section 2.2 except the rule for constants. The type of a constant a depends on the

transition function ∆. The condition (q, a, {(i, qj) | 1 ≤ i ≤ Σ(a), j ∈ Ii}) ∈ ∆ means

that in order for a tree of the form (aT1 · · · Tk) to be accepted from state q, it suffices

that each Ti is accepted from qj for all j ∈ Ii, i.e., Ti has type
∧
j∈Ii qj . Thus, a can

be viewed as a function of type
∧
j∈I1 qj → · · · →

∧
j∈IΣ(a)

qj → q.

Let us define mappings from refinement types (resp., refinement type environments)

to types (resp., type environments) by:

α(q) = o

α((θ1 ∧ · · · ∧ θk → θ)) = α(θ1) ∧ · · · ∧ α(θk)→ α(θ)

α({x1 : θ1, . . . , xk : θk}) = {x1 : α(θ1), . . . , xk : α(θk)}

Here, in α(θ1)∧· · ·∧α(θk), we assume that duplicated elements are deleted; for example,

(o → o) ∧ (o → o → o) ∧ (o → o) = (o → o) ∧ (o → o → o). The refinement type

system above is indeed a refinement of the type system introduced in Section 2 in the

following sense.

Lemma 1 If Ψ `A M : θ, then α(Ψ) `M : α(θ).

Proof This follows by straightforward induction on the derivation of Ψ `A M : θ. ut

The refinement type system is sound and complete for the problem in consideration.

Theorem 2 Let M be a program and A = (Σ,Q, qI ,∆) be a tree automaton. Then,

[[M ]] ∈ L(A) if and only if ∅ `A M : qI .

Proof We use the following facts:

(i) For every Σ-labeled tree T , T ∈ L(A) if and only if ∅ `A T : qI .

(ii) Typing is preserved by β-reduction, i.e., Ψ `M : θ andM −→β N imply Ψ ` N : θ.

(iii) Typing is preserved by β-expansion, i.e., Ψ ` N : θ and M −→β N imply Ψ `M :

θ.

Fact (i) follows by straightforward inductions on the structure of T . The proofs of (ii)

and (iii) are standard [22, 49], hence omitted.

To show the “if” part, suppose ∅ `A M : qI . By Lemma 1, we have ∅ `M : o. By

Theorem 1, [[M ]] exists. By (ii), ∅ `A [[M ]] : qI . By (i), we have [[M ]] ∈ L(A).

To show the “only if” part, suppose [[M ]] ∈ L(A). By (i), we have ∅ `A [[M ]] : qI .

By (iii), we have ∅ `A M : qI as required. ut

Suppose that a derivation for ∅ ` M : o is given. The result of Tsukada and

Kobayashi ([48], Theorem 5) implies that to check whether ∅ `A M : qI holds, we just

need to generate a finite set of candidates of derivation trees for ∅ `A M : qI , and

check whether one of them is valid. To state it more formally, we need to introduce

some terminologies. The refinement relation θ :: τ is defined by:

q ∈ Q
q :: o

θ :: τ ∀j ∈ {1, . . . ,m}.∃i ∈ {1, . . . , k}.θj :: τi

(θ1 ∧ · · · ∧ θm → θ) :: (τ1 ∧ · · · ∧ τk → τ)

Intuitively, θ ::τ holds if θ matches the shape determined by τ . For example, (q1∧q2 →
q) :: (o→ o) holds but (q1 → q2 → q) :: (o→ o) does not. The “shape” itself can contain

intersection types: ((q1 ∧ q2 → q) ∧ (q1 → q) ∧ (q1 → q2 → q)→ q) :: ((o→ o) ∧ (o→
o→ o)→ o) holds.



20

We extend the refinement relation to the relation on type environments by:

Ψ :: Γ ⇔ ∀x : θ ∈ Ψ.∃τ.(x : τ ∈ Γ ∧ θ :: τ).

Let π and π′ be derivation trees for Ψ `A M : θ and Γ ` M : τ respectively. π is a

refinement of π′, written π :: π′, if for each node labeled by Ψ1 `A M1 : θ1 in π, there

exists a corresponding node labeled by Γ1 `M1 : τ1 in π′ such that Ψ1 ::Γ1 and θ1 ::τ1.

More precisely, the refinement of derivation trees is inductively defined as follows.

•
Ψ, x : θ `A x : θ

is a refinement of
Γ, x : τ ` x : τ

if Ψ :: Γ and θ :: τ .

•
Ψ `A a :

∧
j∈I1 qj → · · · →

∧
j∈Ik qj → q

is a refinement of
Γ ` a : ok → q

if Ψ ::Γ .

• π

Ψ `A λx.M : θ1 ∧ · · · ∧ θn → θ
is a refinement of

π′

Γ ` λx.M : τ1 ∧ · · · ∧ τk → τ
if π

is a refinement of π′ with Ψ :: Γ and (θ1 ∧ · · · ∧ θn → θ) :: (τ1 ∧ · · · ∧ τk → τ).

• π0
Ψ `A M1 : θ1 ∧ · · · ∧ θn → θ

π1
Ψ `A M2 : θ1

· · · πn
Ψ `A M2 : θn

Ψ `A M1M2 : θ
is a refinement of:

π′0
Γ `A M1 : τ1 ∧ · · · ∧ τk → τ

π′1
Γ `M2 : τ1

· · · π′k
Γ `M2 : τk

Ψ `M1M2 : τ

if
π0

Ψ `A M1 : θ1 ∧ · · · ∧ θn → θ
is a refinement of

π′0
Γ `M1 : τ1 ∧ · · · ∧ τk → τ

, and

for each i ∈ {1, . . . , n}, there exists j ∈ {1, . . . , k} such that
πi

Ψ `A M2 : θi
is a

refinement of
π′j

Γ `M2 : τj
.

The following is the result of Tsukada and Kobayashi ([48], Theorem 5), rephrased

for the language of this paper.

Theorem 3 ([48]) If there are derivation trees π and π′ respectively for ∅ ` M : o

and ∅ `A M : qI , then there exists a derivation tree π′′ for ∅ `A M : qI such that π′′

is a refinement of π.

Let us define the type size of a judgment Γ `M : τ by:

#(Γ `M : τ) = #Γ + #τ

#(x1 : τ1, . . . , xn : τn) = #τ1 + · · ·+ #τn
#o = 1 #(τ1 ∧ · · · ∧ τk → τ) = #τ1 + · · ·+ #τn + #τ + 1

Define the type width of a derivation tree for Γ ` M : τ as the largest type size of a

node of the derivation.

The following theorem follows immediately from Theorem 3 above.

Theorem 4 Given an automaton A and a type derivation tree for ∅ ` M : o, [[M ]]
?
∈

L(A) can be decided in time linear in the size of M , under the assumption that the size

of A and the type width of derivation trees are bounded by a constant.
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Proof Due to Theorems 2 and 3, it suffices to check whether there exists a derivation

tree π for ∅ `A M : qI that is a refinement of the derivation tree π′ for ∅ `M : o. Since

the type width of π′ is bounded by a constant, for each subterm N of M , the number

of possible judgments that can occur in π is also bounded by a constant (although the

constant can be huge). Thus, based on the refinement typing rules, we can enumerate

all the valid judgments for N in time linear in the size of N : for example, to enumerate

the typing for M1M2, first enumerate valid typings for M1 and M2 and combine them

by using the application rule. Thus, valid typings for M can also be enumerated in

time linear in the size of M , and then it suffices to just check whether ∅ `A M : qI is

among the valid judgments. ut

Remark 5 The complexity is non-elementary if the size of the automaton A and the

type width of derivation trees are not bounded. As in ordinary higher-order model

checking [26, 34], if the largest order k of types is fixed, the complexity is k-EXPTIME

in the size of the automaton A and the type width of derivation trees.

The fixed-parameter linear-time algorithm in the proof above is impractical due

to the huge constant factor. We can instead use Kobayashi’s fixed-parameter linear-

time algorithm for higher-order model checking [23]. The algorithm is designed for

terms of the simply-typed λ-calculus with recursion, represented as a system of top-

level function definitions. However, his algorithm can be easily adapted for our language

with intersection types: It suffices to convert an input λ-term to a system of toplevel

function definitions and then apply Kobayashi’s algorithm as it is.

Remark 6 Higher-order model checking [22, 34] usually refers to model checking of the

tree generated by a higher-order recursion scheme (HORS), which can be considered

a functional program. The only differences between HORS and our language are: (i)

HORS can be used to describe infinite trees, while our language is only used for de-

scribing finite trees, and (ii) HORS must be simply-typed, but our language allows

intersection types. Actually, our language can be considered a restriction of the exten-

sion of HORS considered by Tsukada and Kobayashi [48]. Because of the restriction to

terms generating finite trees, the model checking problem is also closely related to the

problem RegLang(r) considered by Terui [45], although he considers the simply-typed

λ-calculus.

4.2 Data Processing as Program Transformation

In the previous subsection, we considered pattern match queries to answer just yes or

no. In practice, it is often required to provide extra information, such as the position of

the first match and the number of matching positions. Computation of such extra in-

formation can be expressed as tree transducers [7, 10, 11]. The tree transducers defined

below are equivalent to the generalized finite state transformations (GFST) introduced

by Engelfriet [10] (see Remark 7 below).

Definition 3 (tree transducers) A tree transducer X is a quadruple (Σ,Q, qI , Θ),

where Σ is a ranked alphabet, Q is a set of states, qI is the initial state, and Θ (⊆
Q× dom(Σ)× 2{1,...,m}×Q ×TermsΣ) (where m is the largest arity of the symbols in

Σ) satisfies: if (q, a, S,M) ∈ Θ, then (i, q′) ∈ S implies 1 ≤ i ≤ Σ(a) and ∅ ` M :
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o→ · · · → o︸ ︷︷ ︸
|S|

→ o. The transduction relation (q, T ) −→X M is defined inductively by

the rule:

Σ(a) = n (qi,j , Ti) −→X Mi,j for each i ∈ {1, . . . , n}, j ∈ {1, . . . , wj}
(q, a, {(i, qi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ wj},M) ∈ Θ

(q, a T1 · · · Tn) −→X MM1,1 · · · M1,w1 · · · Mn,1 · · · Mn,wn

Here, we assume that qi,j < qi,j′ if j < j′ with respect to the linear order on refinement

types (recall Definition 2). We write X (T ) for the set of trees {[[M ]] | (qI , T ) −→X M},
and call an element of X (T ) an output of the transducer X for T .

A transducer X = (Σ,Q, qI , Θ) is deterministic if, for each pair (q, a) ∈ Q ×
dom(Σ), there is at most one (S,M) such that (q, a, S,M) ∈ Θ.

When X (T ) is a singleton set, by abuse of notation, we sometimes write X (T ) for

the element of X (T ). Note that, for a deterministic transducer, X (T ) is empty or a

singleton set.

Example 12 Let Σ2 = {a 7→ 1, b 7→ 1, s 7→ 1, e 7→ 0}. Consider the transducer X1 =

(Σ2, {q0, q1}, q0, Θ) where Θ is given by:

Θ = {(q0, b, {(1, q1)}, λx.x), (q0, a, {(1, q0)}, s), (q1, b, {(1, q1)}, s), (q1, a, ∅, e)}

Given a Σ2-labeled tree T without s, X1 returns the depth of the first occurrence

of a subterm of the form b(a(· · · )) in unary representation. For example, for T =

a(b(a(a(b(b(e)))))), we have: (q0, T ) −→X s((λx.x)e). Thus, X1(T ) = {s(e)}. ut

Example 13 Let Σ3 = {a 7→ 1, b 7→ 1, e 7→ 0, br 7→ 2}. Consider the transducer

X2 = (Σ3, {q0, qodd , qeven}, q0, Θ) where Θ is given by:

Θ = {(q0, br, {(1, qodd ), (2, qeven )}, λx.λy.br y x), (q0, br, {(1, qodd ), (2, qodd )}, br),

(q0, br, {(1, qeven ), (2, qeven )}, br), (q0, br, {(1, qeven ), (2, qodd )}, br),

(qodd , a, {(1, qeven )}, a), (qeven , a, {(1, qodd )}, a), (qeven , e, ∅, e)}

It takes a tree of the form br (am(e)) (an(e)) as an input, and swaps the subtrees

am(e) and an(e) only if m is odd and n is even. The transducer is not deterministic,

but outputs a singleton set. ut

Remark 7 The definition of tree transducers above deviates from the standard defini-

tion of top-down tree transducers [7], in that transducers may copy or ignore the result

of processing subtrees. For example, consider the transducer X3 = ((q0, a, {a 7→ 1, b 7→
2, e 7→ 0}, {q0}, q0, Θ3), where Θ3 is given by:

Θ = {(q0, a, {(1, q0)}, λx.bxx), (q0, e, ∅, e)}

Then X3 transforms a unary tree of the form ame to a complete binary tree of height

m, which is not possible for standard top-down tree transducers [7, 10]. As mentioned

already, the tree transducers defined above are equivalent to GFST [10], which properly

subsume both (ε-free) bottom-up and top-down transducers. ut

The goal of this subsection is, given a program M and a tree transducer X , to

construct a program N that produces an element of X ([[M ]]). The construction should

satisfy the following properties.
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P1: It should be reasonably efficient (which also implies N is not too large). In par-

ticular, it should be often faster than actually constructing [[M ]] and then applying

the transducer.

P2: It should be easy to apply further operations (such as pattern matching as dis-

cussed in the previous section) on N .

A naive approach to construct N would be to express the transducer X as a program

f , and let N be f(M).3 This approach obviously does not satisfy the second criterion,

however.

We first discuss an approach based on an extension of higher-order model checking

in Section 4.2.1, and then discuss an alternative approach based on fusion transforma-

tion [13, 44] in Section 4.2.2.

4.2.1 Model Checking Approach

We extend the higher-order model checking discussed in Section 4.1 to compute the

output of a transducer (without decompression). Let X = (Σ,Q, qI , Θ) be a tree

transducer. We shall define a type-directed, non-deterministic transformation relation

Ψ `X M : θ =⇒ N , where θ is a refinement type introduced in Section 4.1. Intuitively,

it means that if the value of M is traversed by transducer X as specified by θ, then

the output of the transducer is (the tree or function on trees represented by) N . As a

special case, if M represents a tree and if Ψ `X M : qI =⇒ N , then N is an output of

X , i.e., [[N ]] ∈ X ([[M ]]). The relation Ψ `X M : θ =⇒ N is inductively defined by the

following rules.

Ψ, x : θ `X x : θ =⇒ xθ
(Tr-Var)

(q, a, {(i, qi,j) | 1 ≤ i ≤ Σ(a), 1 ≤ j ≤ wi}, N) ∈ Θ
Ψ `X a :

∧
j∈{1,...,w1} q1,j → · · · →

∧
j∈{1,...,wΣ(a)} qΣ(a),j → q =⇒ N

(Tr-Const)

Ψ, x : θ1, . . . , x : θn `X M : θ =⇒ N x does not occur in Ψ

Ψ `X λx.M : θ1 ∧ · · · ∧ θn → θ =⇒ λxθ1 . · · ·λxθn .N
(Tr-Abs)

Ψ `X M1 : θ1 ∧ · · · ∧ θn → θ ⇒ N1 ∀i ∈ {1, . . . , n}.Ψ `X M2 : θi ⇒ N2,i

Ψ `X M1M2 : θ ⇒ N1N2,1 · · · N2,n

(Tr-App)

Basically, the transformation works in a compositional manner. Note that if we

remove the part “=⇒ N”, the rules above are essentially the same as the refinement

typing rules. In rule Tr-Const, the transformation for constants is determined by

the transducer. In rule Tr-App, if the argument M2 in the original program should

have multiple refinement types θ1, . . . , θn, we separately translate the argument M2

for each type and replicate the argument, as the result of the transformation depends

on the type of M2. Thus, in rule Tr-Abs for functions, the function λx.M of type

θ1 ∧ · · · ∧ θn → θ is transformed into a function that takes n arguments.

3 Strictly speaking, as our language does not have deconstructors for tree constructors
a1, . . . , an ∈ dom(Σ), we need to transform M into M ′ a1 · · · an where M ′ is a pure λ-term,
and then transform it into f M ′ a1 · · · an.
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Example 14 Consider the following program to compute (ab)2e:

let twice = λf.λz.f(f(z)) in twice (λz.a(b(z))) e

Let us consider the transducer X given in Example 12. Let ρ and Ψ be (q1 → q0)∧(> →
q1)→ >→ q0 and twice : ρ respectively. Then, we have:

Ψ `X twice : ρ =⇒ twiceρ
Ψ `X λz.a(b(z)) : q1 → q0 =⇒ λzq1 .s((λx.x)zq1)

Ψ `X λz.a(b(z)) : > → q1 =⇒ e

Thus, we obtain:

Ψ `X twice(λz.a(b(z)))e : q0 =⇒ twiceρ (λzq1 .s((λx.x)zq1)) e

The body of twice is transformed as follows.

∅ `X λf.λz.f(f(z)) : ρ =⇒ λfq1→q0 .λf>→q1 .fq1→q0f>→q1

Thus, after some obvious simplifications (such as (λx.x)M =β M), we obtain the

following program.

let twice = λf1.λf2.f1(f2) in twice (λz.s z) e

By evaluating it, we get (s e), which is the output of X applied to (ab)2e. ut

The following theorem guarantees the correctness of the transformation.

Theorem 5 Let X be a tree transducer. If ∅ `X M : qI =⇒ N , then [[N ]] ∈ X ([[M ]]).

Conversely, if X ([[M ]]) is not empty, then there exists N such that ∅ `X M : qI =⇒ N

and [[N ]] ∈ X ([[M ]]).

We prepare a few lemmas to prove the theorem above. For a transducer X =

(Σ,Q, qI , Θ), we write AX for the automaton (Σ,Q, qI ,∆) where ∆ = {(q, a, S) |
(q, a, S,N) ∈ Θ}. We first show that the transformation is a conservative extension of

the refinement type system in the following sense.

Lemma 2 If Ψ `X M : θ =⇒ N , then Ψ `AX M : θ. Conversely, if Ψ `AX M : θ,

then there exists N such that Ψ `X M : θ =⇒ N .

Proof This follows immediately from the fact that each refinement rule is obtained

from a transformation rule Tr-XX by removing the part “=⇒ N”. ut

Next, we show that the transformation preserves typing. We define the translation

(·)[ from refinement types (resp., refinement type environments) to simple types (resp.

simple type environments) by:

q[ = o

(θ1 ∧ · · · ∧ θk → θ)[ = θ1
[ → · · · → θk

[ → θ[

(x1 : θ1, . . . , xk : θk)[ = x1,θ1 : θ1
[, . . . , xk,θk : θk

[

Lemma 3 If Ψ `X M : θ =⇒ N , then Ψ [ `AX N : θ[.
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Proof This follows by induction on the derivation of Ψ `X M : θ =⇒ N , with case

analysis on the last rule.

– Case Tr-Var. In this case, Ψ = Ψ ′, x : θ with M = x and N = xθ. Since Ψ [ =

Ψ ′
[
, xθ : θ[, we have Ψ [ ` xθ : θ[ as required.

– Case Tr-Const. In this case, M = a with θ =
∧
j∈{1,...,w1} q1,j → · · · →∧

j∈{1,...,wΣ(a)} qΣ(a),wΣ(a)
→ q and (q, a, {(i, qi,j) | 1 ≤ i ≤ Σ(a), 1 ≤ j ≤

wi}, N) ∈ ΘX . By the definition of transducers, we have ∅ ` N : ow1+···+wΣ(a) → o.

Thus, we have Ψ [ ` N : θ[ as required.

– Case Tr-Abs. In this case, we have:

M = λx.M1 N = λxθ1 . · · ·λxθk .N1 θ = θ1 ∧ · · · ∧ θk → θ0
Ψ, x : θ1, . . . , x : θk `X M1 : θ0 =⇒ N1

By the induction hypothesis, we have Ψ [, xθ1 :θ1
[, . . . , xθk :θk

[ ` N1 : θ0
[. By using

T-Abs, we get Ψ [ ` N : θ[ as required.

– Case Tr-App. In this case, we have:

M = M0M1 N = N0N1 · · ·Nk
Ψ `X M0 : θ1 ∧ · · · θk → θ =⇒ N0

Ψ `X M1 : θi =⇒ Ni (for each i ∈ {1, . . . , k})

By the induction hypothesis, we have: Ψ [ ` N0 : θ1
[ → · · · → θk

[ → θ[ and

Ψ [ ` Ni : θi
[ for i ∈ {1, . . . , k}. By applying Tr-App, we obtain Ψ [ ` N : θ[ as

required.

ut

Remark 8 By Lemma 3 above, the output of the transformation is always simply-

typed: no intersection types are needed. Thus, the output of the transformation may

not be sufficiently compressed, and we may wish to apply a post-processing to further

compress the output. Recall the term M2,n in Example 1 where n = 2:

(λf.f f a c)(λg.λx.g(g x)).

Consider the identity transducer: X = ({a 7→ 1, c 7→ 0}, {q}, q, Θ) where:

Θ = {(q, a, {(1, q)}, a), (q, c, ∅, c)}.

Then we obtain

(λfθ1 .λfθ2 .fθ2 fθ1 a c)(λgθ1 .λxθ0 .gθ1(gθ1 xθ0))(λgθ0 .λxq.gθ0(gθ0 xq))

as the output of the transformation. Here, θ0 = q → q, θ1 = θ0 → θ0, and θ2 = θ1 → θ1.

By extracting the common term λg.λx.g(g(x)) as discussed in Section 3, we obtain:

(λf.(λfθ1 .λfθ2 .fθ2 fθ1 a c)f f)(λg.λx.g(g x)).

By simplifying the part (λfθ1 .λfθ2 .fθ2 fθ1 a c)f f , we get

(λf.f f a c)(λg.λx.g(g x)).

Thus we have restored the original term, which is not simply-typed. ut
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As a corollary of the lemmas above, we obtain:

Corollary 1 If ∅ `X M : q =⇒ N , then ∅ `M : o and ∅ ` N : o.

Proof ∅ `M : o follows from Lemmas 1 and 2. ∅ ` N : o follows from Lemma 3. ut

Next, we show that substitutions and β-reductions preserve the transformation

relation.

Lemma 4 Suppose that Ψ, x : θ1, . . . , x : θk `X M : θ =⇒ N and Ψ `X M0 : θi =⇒
Ni for each i ∈ {1, . . . , k}, with x 6∈ dom(Ψ). Then Ψ `X [M0/x]M1 : θ1 =⇒
[N1/xθ1 , . . . , Nk/xθk ]N .

Proof The derivation for Ψ `X [M0/x]M1 : θ1 =⇒ [N1/xθ1 , . . . , Nk/xθk ]N can be

obtained from that for Ψ, x : θ1, . . . , x : θk `X M : θ =⇒ N , by replacing each leaf

Ψ, Ψ ′, x : θ1, . . . , x : θk `X x : θi =⇒ xθi of the derivation with Ψ, Ψ ′ `X M0 : θi =⇒ Ni.

ut

Lemma 5 If Ψ `X M : θ =⇒ N and M −→β M ′, then there exists N ′ such that

N −→∗β N
′ and Ψ `X M ′ : θ =⇒ N ′.

Proof This follows by induction on the derivation of M −→β M
′. Since the induction

steps are trivial, we show only the base case, where M = (λx.M1)M2 and M ′ =

[M2/x]M1. Suppose Ψ `X M : θ =⇒ N . Then, we have:

N = (λxθ1 , . . . , xθk .N1)N2,1 · · · N2,k

Ψ `X M2 : θi =⇒ N2,i for each i ∈ {1, . . . , k}
Ψ, x : θ1, . . . , x : θk `X M1 : θ =⇒ N1

Let N ′ be [N2,1/xθ1 , . . . , N2,k/xθk ]N1. By Lemma 4, we have Ψ `X M ′ : θ =⇒ N ′.
Furthermore, N −→∗β N

′ holds as required. ut

The transformation is also preserved by the inverse of substitutions and β-expansions,

as stated in Lemmas 6 and 7.

Lemma 6 If Ψ `X [M2/x]M1 : θ =⇒ N , then Ψ, x : θ1, . . . , x : θk `X M1 : θ =⇒ N1

and Ψ `X M2 : θi =⇒ N2,i with Ψ `X [M2/x]M1 : θ =⇒ [N2,1/xθ1 , . . . , N2,k/xθk ]N1

for some N1, N2,1, . . . , N2,k, θ1, . . . , θk (where k may be 0).

Proof The condition Ψ `X [M2/x]M1 : θ =⇒ [N2,1/xθ1 , . . . , N2,k/xθk ]N1 follows from

the other conditions and Lemma 4; so, we show only the other conditions. The proof

proceeds by induction on the structure of M1.

– Case M1 = x. The required result holds for N1 = xθ and N2,1 = N with k = 1 and

θ1 = θ.

– Case M1 = y( 6= x). In this case, N = yθ and y : θ ∈ Ψ . The required result holds

for k = 0 and N1 = N .

– Case M1 = a. The required result holds for k = 0 and N1 = N .

– Case M1 = λy.M3. In this case, we have:

Ψ, y : θ′1, . . . , y : θ′` `X [M2/x]M3 : θ′0 =⇒ N3

θ = θ′1 ∧ · · · ∧ θ′` → θ′0 N = λyθ′1 . · · ·λyθ′` .N3
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By the induction hypothesis, we have:

Ψ, y : θ′1, . . . , y : θ′`, x : θ1, . . . , x : θk `X M3 : θ′0 =⇒ N3,1

Ψ, y : θ′1, . . . , y : θ′` `X M2 : θi =⇒ N2,i (for each i ∈ {1, . . . , k})

We may assume without loss of generality that y does not occur in M2, so that we

have Ψ `X M2 : θi =⇒ N2,i for each i ∈ {1, . . . , k}. Let N1 be λyθ′1 . · · ·λyθ′` .N3,1.

Then we have Ψ, x : θ1, . . . , x : θk `X M1 : θ =⇒ N1 as required.

– Case M1 = M1,1M1,2. In this case, we have:

Ψ `X [M2/x]M1,1 : θ′1 ∧ · · · θ′` → θ =⇒ N ′1
Ψ `X [M2/x]M1,2 : θ′j =⇒ N ′2,j (for each j ∈ {1, . . . , `})

By the induction hypothesis, we have:

Ψ, x : θ0,1, . . . , x : θ0,k0 `X M1,1 : θ′1 ∧ · · · θ′` → θ =⇒ N ′1,1
Ψ, x : θj,1, . . . , x : θj,kj `X M1,2 : θ′j =⇒ N ′1,2,j (for each j ∈ {1, . . . , `})
Ψ `X M2 : θi,j =⇒ N ′2,i,j (for each i ∈ {0, 1, . . . , `}, j ∈ {1, . . . , ki})

Let {θ1, . . . , θk} = {θi,j | i ∈ {0, . . . , `}, j ∈ {1, . . . , ki}}. For each i ∈ {1, . . . , k},
pick a pair of indices (ji, j

′
i) such that θi = θji,j′i and let N2,i be N ′2,ji,j′i

. Let N1

be N ′1,1N
′
1,2,1 · · ·N ′1,2,`. Then we have the required result.

ut

Remark 9 In the lemma above, note that N = [N2,1/xθ1 , . . . , N2,k/xθk ]N1 may not

hold if X is non-deterministic. For example, consider the transducer:

X = ({a 7→ 1, b 7→ 1, e 7→ 0}, {q0, q1}, q0,
{(q0, a, {(1, q0)}, a), (q0, a, {(1, q1)}, b),

(q1, b, {(1, q0)}, b), (q0, b, {(1, q0)}, a), (q0, e, ∅, e)}).

Let M1 = x(x(e)) and M2 = λz.a(b z) with N = (λzq0 .b(b zq0))((λzq0 .a(a zq0))e).

Then, we can obtain ∅ `X [M2/x]M1 : q0 =⇒ N from: ∅ `X M2 =⇒ λzq0 .b(b zq0) and

∅ `X M2 =⇒ λzq0 .a(a zq0). However, the proof above only yieldsN1 = xq0→q0(xq0→q0(e))

with N2,1 = λzq0 .a(a zq0) or N2,1 = λzq0 .b(b zq0). Thus, N 6= [N2,1/xq0→q0 ]N1. This

comes from the restriction on the syntax of refinement types, that θ1, . . . , θk must be

different from each other in θ1 ∧ · · · ∧ θk → θ. This problem can be avoided by re-

moving the restriction (and modifying the rule Tr-Abs to avoid the clash of variable

names). ut

Lemma 7 If Ψ `X M ′ : θ =⇒ N ′ and M −→β M
′, then there exist N and N ′′ such

that N −→∗β N
′′ with Ψ `X M : θ =⇒ N and Ψ `X M ′ : θ =⇒ N ′′.

Proof The proof proceeds by induction on the derivation of M −→β M
′. As the induc-

tion steps are straightforward, we discuss only the base case, where M = (λx.M1)M2

and M ′ = [M2/x]M1. Suppose Ψ `X M ′ : θ =⇒ N ′. By Lemma 6, we have Ψ, x :

θ1, . . . , x : θk `X M1 : θ =⇒ N1 and Ψ `X M2 : θi =⇒ N2,i with Ψ `X [M2/x]M1 :

θ =⇒ [N2,1/xθ1 , . . . , N2,k/xθk ]N1. Thus, the required result holds for

N = (λxθ1 . · · ·λxθk .N1)N2,1 · · ·N2,k and N ′′ = [N2,1/xθ1 , . . . , N2,k/xθk ]N1. ut

The following lemma states that, for a tree, the transformation computes an output

of the transducer.
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Lemma 8 Let T be a Σ-labeled tree. Then, ∅ `X T : q =⇒ N if and only if (q, T ) −→X
N .

Proof This follows by induction on the structure of T . Suppose T = aT1 . . . Tk with

Σ(a) = k. If ∅ `X T : q =⇒ N , then we have:

N = N0N1,1 · · · N1,w1 · · · Nk,1 · · · Nk,wk
(q, a, {(i, qi,j) | i ∈ {1, . . . , k}, j ∈ {1, . . . , wi}}, N0) ∈ ΘX
∅ `X Ti : qi,j =⇒ Ni,j for each i ∈ {1, . . . , k} and j ∈ {1, . . . , wi}.

By the induction hypothesis, we have (qi, Ti,j) −→X Ni,j for each i ∈ {1, . . . , k} and

j ∈ {1, . . . , wi}. Thus, we have (q, T ) −→X N .

Conversely, suppose (q, T ) −→X N . Then, we have:

N = N0N1,1 · · · N1,w1 · · · Nk,1 · · · Nk,wk
(q, a, {(i, qi,j) | i ∈ {1, . . . , k}, j ∈ {1, . . . , wi}}, N0) ∈ ΘX
(qi,j , Ti) −→X Ni,j for each i ∈ {1, . . . , k} and j ∈ {1, . . . , wi}.

By the induction hypothesis, we get ∅ `X Ti : qi,j =⇒ Ni,j for each i ∈ {1, . . . , k} and

j ∈ {1, . . . , wi}. Thus, we have ∅ `X T : q =⇒ N as required. ut

We are now ready to prove Theorem 5.

Proof of Theorem 5. Suppose ∅ `X M : qI =⇒ N . By Lemma 1 and Theorem 1,

there exists T (= [[M ]]) such that M −→∗β T . By Lemma 5, there exists N ′ such that

N −→∗β N
′ and ∅ `X T : qI =⇒ N ′. By Lemma 8, we have (qI , T ) −→X N ′, which

implies [[N ′]] ∈ X ([[M ]]). By the condition N −→∗β N
′, we have [[N ]] = [[N ′]] ∈ X ([[M ]]),

as required.

Conversely, suppose that T ∈ X ([[M ]]). By the definition of X ([[M ]]), there exists

N ′ such that (qI , [[M ]]) −→X N ′. By Lemma 8, we have ∅ `X [[M ]] : qI =⇒ N ′. By

Lemma 7, there exists N such that ∅ `X M : qI =⇒ N . By the first part of this

theorem, we have [[N ]] ∈ X ([[M ]]) as required. ut

Remark 10 Because of the problem mentioned in Remark 9, the second part of the

theorem above does not guarantee that every element of X ([[M ]]) is obtained by the

transformation if X is non-deterministic. This is due to the limitation discussed in

Remark 9. ut

Remark 11 The transformation above is also applicable to an extension of trans-

ducers called high-level transducers (Σ,Q, qI , Θ,N1, . . . , N`) [12, 46], where for each

(q, a, S,N) ∈ Θ, N has a higher-order function of type (κ1 → · · · → κ` → o)|S| →
(κ1 → · · · → κ` → o), and X (T ) is defined as {[[N N1 · · · N`]] | (qI , T ) −→X M}. ut

Algorithm. Suppose that a derivation tree for ∅ ` M : o and a transducer X =

(Σ,Q, qI , Θ) are given. Thanks to the above theorem, we can reuse the algorithm

presented in Section 4.1, to decide whether X ([[M ]]) is non-empty, and if so, out-

put an element of X ([[M ]]): Let AX be an associated automaton (Σ,Q, qI ,∆), where

∆ = {(q, a, S) | (q, a, S,M ′) ∈ Θ}. Given a program M that generates a tree, we

can first check whether ∅ `AX M : qI holds. If it does not hold, then X ([[M ]]) is

empty, so we are done. Otherwise, we have a derivation tree for ∅ `AX M : qI , from
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which we can construct a derivation tree for the program transformation relation:

∅ `X M : qI =⇒ N , and output N .

By Theorem 4, the above algorithm runs in time linear in the size of M , under the

assumption that the size of X and the type width of the derivation tree for ∅ ` M : o

is bounded by a constant (though the constant factor can be huge as in higher-order

model checking).

4.2.2 Fusion Approach

We discuss another approach, based on the idea of shortcut fusion [13, 44]. Recall that

the goal was to construct a program N that produces X ([[M ]]). Here, we can regard

M as a tree generator, and transducer X as a tree consumer. Thus, by using shortcut

fusion, we can construct a program N that computes X ([[M ]]) without constructing the

intermediate data [[M ]]. For the sake of simplicity, we assume below that the transducer

X = (Σ,Q, q0, Θ) is deterministic and total, i.e., for each (q, a) ∈ Q × dom(Σ), there

exists exactly one (S,M) such that (q, a, S,M) ∈ Θ.

A (deterministic and total) transducer X = (Σ,Q, q0, Θ) (where Q = {q0, . . . , qn})
can be viewed as the following homomorphism hX from o (i.e., the set of Σ-labeled

trees) to Q→ o:

hX (a x1 . . . xk) = fa (hX x1) . . . (hX xk) (Σ(a) = k)

Here, fa is given by:

fa g1 · · · gk q =

case q of

q0 ⇒M0 (g1 q0,1,1) · · · (g1 q0,1,w0,1) · · · (gk q0,k,1) · · · (gk q0,k,w0,k
)

| · · ·
| qn ⇒Mn (g1 qn,1,1) · · · (g1 qn,1,wn,1) · · · (gk qn,k,1) · · · (gk qn,k,wn,k )

where (q`, a, {(i, q`,i,j) | 1 ≤ i ≤ k, 1 ≤ j ≤ w`,i},M`) ∈ Θ. By using Church encoding,

qi can be encoded as the function λq0. · · ·λqn.qi. Thus, fa above becomes:

λg1. · · ·λgk.λq.q (M0 (g1 q
′
0,1,1) · · · (g1 q

′
0,1,w0,1

) · · · (gk q
′
0,k,1) · · · (gk q

′
0,k,w0,k

)) · · ·
(Mn (g1 q

′
n,1,1) · · · (g1 q

′
n,1,wn,1) · · · (gk q

′
n,k,1) · · · (gk q

′
n,k,wn,k

)),

of type τh → · · · → τh︸ ︷︷ ︸
k

→ τh, where τh = (o→ · · · → o︸ ︷︷ ︸
n+1

→ o) → o and q′`,i,j =

λq0. · · ·λqn.q`,i,j . The following lemma guarantees the correctness of the representation

of a transducer as the homomorphism.

Lemma 9 Let X = (Σ,Q, q0, Θ) (where Q = {q0, . . . , qn}) be a deterministic and

total transducer. Then, [[h(T )λq0. · · ·λqn.q0]] = X (T ).

Proof It suffices to show that, for every tree U , hX (T )λq0. · · ·λqn.q` −→∗β U if and only

if (q`, T ) −→X−→∗β U . The proof proceeds by induction on the structure of T . Suppose

T = aT1 · · · Tk and (q`, a, {(i, qi,j) | i ∈ {1, . . . , k}, j ∈ {1, . . . , wi}},M) ∈ ΘX .

To show the “only if” part, assume that hX (T )λq0. · · ·λqn.q` −→∗β U for some tree

U . Then, by the definition of hX , we have:

hX (T )λq0. · · ·λqn.q`
−→∗β M (hX (T1)λq0. · · ·λqn.q1,1) · · · (hX (T1)λq0. · · ·λqn.q1,w1) · · ·

(hX (Tk)λq0. · · ·λqn.qk,1) · · · (hX (Tk)λq0. · · ·λqn.qk,wk )

−→∗β U.
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As hX (Ti)λq0. · · ·λqn.qi,j has type o, by Theorem 1, we have hX (Ti)λq0. · · ·λqn.qi,j −→∗β
Ui,j for some tree Ui,j for each i ∈ {1, . . . , k}, j ∈ {1, . . . , wi}. By the induction hy-

pothesis, we have (qi,j , Ti) −→X Ni,j −→∗β Ui,j . By

M (hX (T1)λq0. · · ·λqn.q1,1) · · · (hX (T1)λq0. · · ·λqn.q1,w1) · · ·
(hX (Tk)λq0. · · ·λqn.qk,1) · · · (hX (Tk)λq0. · · ·λqn.qk,wk )

−→∗β U

and the confluence of −→∗β , we have: M U1,1 · · · U1,w1 · · · Uk,1 · · · Uk,wk −→
∗
β U ,

which also implies

M N1,1 · · · N1,w1 · · · Nk,1 · · · Nk,wk −→
∗
β U.

Since (q`, T ) −→X M N1,1 · · · N1,w1 · · · Nk,1 · · · Nk,wk , we have (q`, T ) −→X−→∗β U
as required.

To show the “if” part, assume that (q`, T ) −→X−→∗β U . By the definition of

−→X , we have (qi,j , Ti) −→X Ni,j (for each i ∈ {1, . . . , k} and j ∈ {1, . . . , wi}) and

M N1,1 · · · N1,w1 · · · Nk,1 · · · Nk,wk −→
∗
β U . By Theorem 1, there exists a tree Ui,j

such that Ni,j −→∗β Ui,j . By the confluence of −→∗β , we have:

M U1,1 · · · U1,w1 · · · Uk,1 · · · Uk,wk −→
∗
β U.

By the induction hypothesis, we have hX (Ti)λq0. · · ·λqn.qi,j −→∗β Ui,j , so that we

obtain:

hX (T )λq0. · · ·λqn.q`
−→∗β M (hX (T1)λq0. · · ·λqn.q1,1) · · · (hX (T1)λq0. · · ·λqn.q1,w1) · · ·

(hX (Tk)λq0. · · ·λqn.qk,1) · · · (hX (Tk)λq0. · · ·λqn.qk,wk )

−→∗β M U1,1 · · · U1,w1 · · · Uk,1 · · · Uk,wk
−→∗β U

as required. ut

Now, extend hX to the homomorphism on λ-terms by:

hX (x) = x h(a) = fa
hX (M1M2) = hX (M1)hX (M2) hX (λx.M) = λx.hX (M)

h just replaces each tree constructor a with fa.

The following property follows immediately from the definition.

Lemma 10 If M −→β N , then hX (M) −→β hX (N).

Proof This follows by induction on the derivation of M −→β N . As the induction steps

are trivial, we discuss only the base case, where M = (λx.M1)M2 and N = [M2/x]M1.

In this case, we have

hX (M) = (λx.hX (M1))hX (M2) −→β [hX (M2)/x]hX (M1) = hX ([M2/x]M1) = hX (N)

as required. ut

As stated in Theorem 6 below, N = hX (M)λq0. · · ·λqn.q0 gives an output of the

transducer.
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Theorem 6 Suppose that M is a program of type o. Let X = (Σ,Q, q0, Θ) be a deter-

ministic and total transducer. Then, we have:

[[hX (M)λq0, . . . , qn.q0]] = X ([[M ]]).

Proof Let T = [[M ]], i.e., M −→∗β T . Then by using Lemmas 9 and 10, we obtain:

N = hX (M)λq0. · · ·λqn.q0
−→∗β hX (T )λq0. · · ·λqn.q0
−→∗β X (T )

as required. ut

We used syntactic reasoning in the above proof. Alternatively, we can use semantic

techniques [13, 44].

We have assumed above that X is deterministic and total. One way to remove the

assumption would be to extend the homomorphism hX so that it returns a function

that maps a state to a list of trees, and express the list by using Church encoding. We

omit the details since the encoding is tedious and the result of transformation would

be too complex for a practical use.

Example 15 Recall Example 14. With the fusion-based approach, we get the following

program as the output of transformation:

let q′0 = λq0.λq1.q0 in

let q′1 = λq0.λq1.q1 in

let fa = λg.λq.q (s(g q′0)) e in

let fb = λg.λq.q ((λx.x)(g q′1)) (s(g q′1)) in

let fe = λq.q⊥⊥ in

let twice = λf.λz.f(f(z)) in twice(λz.fa(fb(z))) fe q
′
0

Here, ⊥ is a special tree constructor denoting an undefined tree, introduced to make

X total. ut

There are trade-offs between the two approaches (model checking and fusion ap-

proaches). Recall the two properties P1 and P2 discussed at the beginning of this

section.

– Property P1 is satisfied by both the model checking and fusion approaches, al-

though the latter is better. The model checking approach runs in time linear in the

program size only under the assumption that the type width for the type derivation

of the program is fixed. In the worst case, the constant factor can be as large as the

size of the uncompressed tree [[M ]], in which case the model checking approach is as

costly as the naive approach of constructing [[M ]] and then applying the transducer.

However, thanks to the model checking algorithm, this problem does not always

show up, as confirmed by experiments. The fusion approach runs in time linear in

the program size unconditionally.

– Property P2 is better satisfied by the model checking approach. As is clear from

Examples 14 and 15, the model checking approach reduces the program more ag-

gressively than the fusion approach, which just postpones the computation involved

in the transducer. Furthermore, the fusion approach raises the order of the program

(where the order of a program is the largest order of the type of a function) by
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two. This can have a very bad effect on further pattern match queries or data ma-

nipulations based on higher-order model checking (described in Section 4.1). The

model checking approach does not raise the order, although it may raise the arity of

functions (e.g., in Remark 8, the unary function λf.f f a c has been transformed to

the binary function λfθ1 .λfθ2 .fθ2 fθ1 a c). Note that for higher-order model check-

ing, the order of programs is the most important factor that affects the worst-case

complexity [26, 34, 45].

Despite the drawback of the fusion approach, we think it is still better (in terms of

property P2) than the naive approach of expressing the transducer as a program f

and just returning f(M), in that the fusion approach avoids the construction of the

intermediate tree [[M ]] when the output of the transducer needs to be computed.

– The terms generated by the model checking approach is always simply-typed (recall

Remark 8), while those generated by the fusion approach may not.

Because of the second points, we think the model checking approach is preferable,

and the fusion approach (or the other naive approaches discussed at the beginning of

Section 4.1) should be used only when the model checking approach is too slow.

5 Implementation and Experiments

We have implemented the following two prototype systems, which can be tested at

http://www-kb.is.s.u-tokyo.ac.jp/~koba/compress/.

1. A data compression system based on the algorithm described in Section 3: It takes

a tree as an input, and outputs a λ-term that generates the tree. It is based on the

algorithm described in Section 3, but it has a few parameters to adjust heuristics:

D,N , and W . D is the depth of the search of the algorithm of Figure 3. The system

first applies compressAsTree up to depth D, and returns up to W smallest terms.

The system then repeats this up to N times. (Thus, the total search depth is N×D,

but some candidates are dropped due to the width parameter W .)

2. A system to manipulate compressed data: It takes a program M in the form of a

higher-order recursion scheme [34] and an automaton A (or a transducer X , resp.)

as input, and answers whether [[M ]] is accepted by A (or outputs a program that

generates X ([[M ]])). We have implemented a new version of a higher-order model

checker based on a refinement of Kobayashi’s linear-time algorithm [23] (as the

previous model checkers [21, 23] are not fast enough for our purpose), and then

added a feature to produce the output of a transducer based on the transformation

given in Section 4.

The data compression system mentioned above does not scale to large data, since the

sub-algorithm used as compressAsTree(M) (in Figure 3) checks each pair of subtrees,

which costs a time quadratic in the size of M . Thus, we have also implemented another

algorithm for compressAsTree, which extracts the most frequent pattern, and used it

in the experiments in Section 5.1.2.

5.1 Compression

We report experiments on the data compression system. The main purposes of the

experiments are: (i) to check whether interesting patterns can be obtained (to confirm
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the third advantage discussed in Section 1), and (ii) to check whether there is an

advantage in terms of the compression ratio. The first and second points are reported

in Sections 5.1.1 and 5.1.2 respectively.

5.1.1 Knowledge/Program Discovery

Natural Number The first experiment is for (unary) trees of the form an(c). For n = 9

(with parameters N = 3, D = 1,W = 4), the output was:

let thrice = λf.λx.f(f(f(x))) in thrice(thrice a)c.

For n = 16 (with N = 10, D = 1,W = 4), the output was:

let twice = λf.λx.f(f(x)) in (twice twice) twice a c.

This is M2,3 in Example 1.

Here, we have renamed variables with common names such as twice. Thus, com-

mon functions such as twice and thrice have been automatically discovered. The part

thrice(thrice a) also corresponds to the square function for Church numerals, and

(twice twice) twice corresponds to the exponential 22
2

= 16. This indicates that our

algorithm can achieve hyper-exponential compression ratio. (In fact, by running our

algorithm by hand, we get 65536 = 22
22

; recall Example 8.)

Thue-Morse Sequence Thue-Morse Sequence (A010060 in http://oeis.org/) tn is the

0-1 sequence generated by:

t0 = 0 tn = tn−1sn−1

where si is the sequence obtained from ti by interchanging 0s and 1s. For example,

t3 = 01101001 and t4 = 0110100110010110.

We have encoded a 0-1-sequence into a unary tree consisting of a (for 0), b (for 1),

and e (for the end of the sequence): for example, 011 was represented by a (b (b e)).

For the 10th sequence t10 (with N = 20, D = 1,W = 4), the output was:

let rep = λx.λy.λz.x (y (y (x z))) in

let step = λf.λa.λb.rep (f a b) (f b a) in

let iter = step (step (step rep)) in

let t8 = iter a b in let s8 = iter b a in

t8 (s8 (s8 (t8 e)))

This is an interesting encoding of the Thue-Morse Sequence. It is known that tn =

tn−2sn−2sn−2tn−2 holds for all n ≥ 2. The above encoding uses this recurrence equa-

tion (which has been somehow discovered automatically from only the 10th sequence,

not from the definition of Thue-Morse Sequence!), and represents t10 as t8s8s8t8. Using

the above equation, t8 and s8 were represented by (step3 rep) a b and (step3 rep) b a

respectively.

As for the compression ratio, the length of n-th Thue-Morse Sequence is O(2n),

while the size of the above representation is O(n). For a larger k, the part stepk rep

(in iter above) can further be compressed as in the compression of natural numbers

discussed above; thus the hyper-exponential compression ratio is achieved by our algo-

rithm.
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Fibonacci Word For the 7th Fibonacci word abaababaabaababaababa (with N =

10, D = 1,W = 4), one of the outputs was:

let f2 = λy.a (b y) in let f3 = λy.f2 (a y) in

let f4 = λy.f3 (f2 y)) in let f5 = λy.f4 (f3 y) in

f5 (f4 (f5 e))

This is almost the definition of Fibonacci word; the last line is equivalent to let f6 =

λy.f5 (f4 y) in f6 (f5 e). (Note again that we have not given the definition of Fibonacci

word; we have only given the specific instance.) The system could not, however, find

a more compact representation such as the one in Example 6. This is probably due to

the limitation discussed at the end of Section 3, that our compression algorithm is not

powerful enough to extract some higher-order patterns.

L-system Consider an instance of L-systems, defined by [33]:

F0 = f Fn+1 = Fn[+Fn]Fn[−Fn]Fn

where “[”, “]”, “+”, “−” and f are terminal symbols. Given the unary tree repre-

sentation of the sequence F3 (which is given in Figure 6 of [33]), our system (with

N = 50, D = 1,W = 4) output the following program in 38 seconds:

let step = λg.λz.g(let h = λz.g(](g z)) in [(+(h([−(h z)))))

in step(step(step(f))) e.

The function step is equivalent to: λg.λz.g[+g]g[−g]g z, where the applications are

treated as right-associative here to avoid too many parentheses. The above output is

exactly (a compressed form of) the definition of F3. Please compare the above result

with the following output of Sequitur for F3 [33]:

S → BFAGA A → B]B B→ DFCGC C → D]D

D → fFEGE E → f]f F →[+ G → [−

The output of Sequitur is also compact, but does not tell much about how F3 has been

produced.

English sentences We examined a part of (simple) English text extracted from the

article of “Jupiter” in Simple-English version of Wikipedia http://simple.wikipedia.

org/wiki/Jupiter. The text had 1017 words including punctuations; e.g., “Jupiter’s”

is considered as 3 words “Jupiter”, an apostrophe, and “s”. The text was encoded as

a unary tree, whose node is labelled by a word instead of a character.

In addition to frequently-appearing phrases such as “million miles away”, “in

1979.”, and “km/h”, interesting higher-order patterns were extracted, such as:

let s = λy.APOS (“s” y) in let possessive = Q s in . . .

The pattern Qs = λn.λy.n(APOS (“s” y)) expresses the possessive form “A’s B”. The

following combinators B and Q were also extracted.

B = λf.λg.λx.f (g x)

Q = λf.λg.λx.g (f x)
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Bilingual sentences We have also tested our system to compress a sequence of pairs

of an English sentence and its French translation by using Google translation (http:

//translate.google.com/). Given an input containing:

pair (I(like(him(period)))) (Je(le(aime(bien(period)))))

and

pair (I(like(her(period)))) (Je(la(aime(bien(period))))),

our system produced the following output:

let xE = λz.pair (I(like(z(period)))) in

let xF = λz.(Je(z(aime(bien(period))))) in

· · · (xE him (xF (le))) · · · (xE her (xF (la))) · · ·

Thus, the correspondences like “him” vs “le”, “her” vs “la”, and “I like xxx” vs “Je

xxx aime bien” have been discovered.

For another example, we have taken 14 simple English sentences from a textbook

used in an English course of a kindergarten and fed them and their French translations

to our compression system. The word-word or phrase-phrase correspondences that have

been found include: “plays with a ...” vs “joue avec un ...”, “friend” vs “ami”, “ball” vs

“ballon”, etc. We expect that the reason for the good result is that the English sentences

are written for beginners of English language and contain repetitions of simple phrases,

so that it is easy to guess the structure of sentences not only for human beings but

also for a data compressor.

5.1.2 Compression Size

In this subsection, we report experiments to evaluate the effectiveness of the FPCD

approach in terms of the compression size. As mentioned at the beginning of this

section, since our naive implementation of the compression algorithm does not scale,

we have prepared another implementation, which finds the most frequent tree context

and makes it shared at each compression step. We used the following input data, some

of which are already used in Section 5.1.1.

– Synthetic data.

– a4096 = a4096.

– thue-morse-seq11 is the 11th Thue-Morse sequence.

– fib-word14 (resp. fib-word15) is the 14th (resp. 15th) Fibonacci word.

– L3 = F3 and L4 = F4, where Fn is defined in the instance of L-system considered

in Section 5.1.1.

– cantor-dust is another instance of L-system, consisting of a sequenceA0, A1, . . . , A6,

where Ai is defined by mutual recursions An = An−1Bn−1An−1 and Bn =

Bn−1Bn−1Bn−1 for n ≥ 1, with A0 = a and B0 = b. That is, A1 = aba,

A2 = ababbbaba, A3 = ababbbababbbbbbbbbababbbaba, and so on.

– square-seq15 (resp. square-seq20) is a sequence of c(ai
2

) for i = 1, 2, . . . , 15

(resp. for i = 1, 2, . . . , 20).

– geometric-seq8 is a sequence of c(a2
i

) for i = 0, 1, . . . , 8.

– binary-number-gray6 is a sequence of integers 0, 1, . . . ,63 represented by 6 bits

Gray code. That is, c[aaaaaa], c[aaaaab], c[aaaabb], c[aaaaba], . . . , c[baaaaa].
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name Original RE HORE HO
a4096 8193 89 28 -

thue-morse-seq11 2049 137 137 53
fib-word14 1221 89 89 83
fib-word15 1975 97 97 87

L3 623 135 135 38
L4 3123 195 195 40

cantor-dust 2201 204 189 147
square-seq15 2541 168 156 -
square-seq20 5821 215 200 -

geometric-seq8 1059 110 101 87
binary-number-gray6 1025 491 491 345

wikipedia-jupiter 2035 1951 1951 -
dna-1000 2001 1087 1084 -
dna-5000 10001 4029 4017 -
dna-10000 20001 7227 7211 -

enwik8-100KB 20235 1362 1346 -
enwik8-200KB 40533 2274 2246 -
enwik8-500KB 101407 4686 4651 -

Table 1 Comparison of the compression size, without/with higher-order patterns.

– DNA sequence: the complete genome of the E. Coli bacterium, taken from the

Canterbury Corpus4. dna-1000 (resp. dna-5000, dna-10000) is its prefix of length

1000 (resp. 5000, 10000).

– XML Data of Wikipedia, taken from enwik8, which is the target data of a com-

pression competition Hutter Prize5. As in the experiments for tree compression

in [4, 30], we removed PCData and attributes, and used the binary-tree encoding.

enwik8-100KB (resp. enwik8-200KB, enwik8-500KB) consists of the first 100KB

(resp. enwik8-200KB, enwik8-500KB) from enwik8.

The results of the experiments are summarized in Table 1. The first column shows

the names of the data, and the second column their original sizes, measured by the size

of terms. In the third column “RE”, we show the sizes of compressed data, obtained

by using first-order tree contexts only (thus, essentially equivalent to compressions

based on context-free tree grammars [4, 30]). The fourth column “HORE” (Higher-

Order REpair) shows the sizes of compressed data, obtained by further compressing

the result of the third column by using higher-order tree contexts. The last column

“HO” shows the result for the naive compression algorithm used in the experiments of

Section 5.1.1. As it is too slow, we have not run it for large data. (For L4, the result

shown in the column “HO” has been obtained by running the compression algorithm

by hand.)

According to the results shown in the columns “RE” and “HORE”, except for an

extreme case (of a4096), there is no clear evidence that the higher-order compression

(using higher-order patterns) is effective in terms of the compression size. We should

note however that HORE uses the fixed heuristic for choosing tree contexts (i.e., most

frequent contexts), hence it is not taking a full advantage of the higher-order compres-

sion. In fact, the naive algorithm, which searches common higher-order contexts more

exhaustively, outputs better results, although it takes a significantly longer time.

4 http://corpus.canterbury.ac.nz/descriptions/large/E.coli.html
5 http://prize.hutter1.net/
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We plan to test other variations of compression algorithms (e.g. an algorithm that

chooses the largest common tree context). We also plan to test the higher-order com-

pression for other variations of data, like music scores and large bilingual texts. For

more detailed evaluation of the compression size, we also need to encode the resulting

λ-terms into bit strings. It is left for future work.

5.2 Data Processing

We have applied various pattern match queries and transformations to Fibonacci words,

to check the scalability of our system with respect to the size of compressed data.

Table 2 shows the results. The 2mth Fibonacci words (for m = 4, 6, 8, 10, 12, 14) were

represented by using the encoding of Example 6. The size of the representation of the

n-th Fibonacci word is O(logn) (or O(m)). The queries and transformations are: Q1:

contains aa, Q2: contains no bb, Q3: contains no aaa, T1: the first occurrence of aab, T2:

count the number of ab, T3: replace ab with bb, TQ3: T3 followed by query “contains

bbb?”). In the row TQ3, the times do not contain those for applying T3 (which are

shown in the row T3). All the experiments were conducted on a machine with Intel(R)

Xeon(R) CPU with 3 GHz and 8 GB memory.

Our system based on higher-order model checking could quickly answer pattern

match queries or apply transformations. The increase of the time with respect to m

varies depending on the query or transformation, but an exponential slowdown was

not observed for any of the queries and transformations. Note that the length of n-th

Fibonacci word is greater than 1.6n−1, so that it is impossible to actually (no matter

whether eagerly or lazily) construct the word and then apply a pattern match query

or transformation. Even with the grammar-based compression based on context-free

grammars, the size of the representation of n-th Fibonacci word is O(n); thus our ap-

proach (which runs in time O(logn)) is exponentially faster than the grammar-based

approach for this experiment. Our system was relatively slower for TQ3. This is prob-

ably because the transformation T3 increased the arity of functions, which had a bad

effect on model checking. It may be possible to reduce this problem by post-processing

the output of the transformation using other program transformation techniques.

It should be noted however that the above result is an extreme case that shows the

advantage of our approach. For the real-life data discussed in Section 5.1.2, for which

the effect of compression is small, the advantage of compressing data and manipulating

them without decompression can be easily offset by the inefficiency of the current

higher-order model checker. In order to take advantage of data processing without

decompression, we have to wait for further advance of implementation techniques for

higher-order model checkers.

6 Related Work

The idea of compressing strings or tree data as functional programs is probably not

new; in fact, Tromp [47] studied Kolmogorov complexity in the setting of λ-calculus.

We are, however, not aware of any serious previous studies of the approach that propose

data compression/manipulation algorithms with a similar capability.

In the context of higher-order model checking, Broadbent et al. ([3], Corollary 3)

showed that if t is the tree generated by an order-n higher-order recursion scheme and
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Table 2 Times for processing queries and transformations on 2mth Fibonacci words, measured
in seconds.

m=4 m=6 m=8 m=10 m=12 m=14
Q1 0.12 0.12 0.12 0.26 0.27 0.27
Q2 0.03 0.03 0.04 0.12 0.12 0.12
Q3 0.14 0.14 0.14 0.14 0.14 0.14
T1 0.13 0.13 0.13 0.27 0.27 0.27
T2 0.04 0.04 0.12 0.12 0.13 0.13
T3 0.04 0.04 0.12 0.12 0.13 0.13
TQ3 0.47 0.62 1.32 1.53 1.84 2.09

I is a well-formed MSO-interpretation, I(t) can be generated by an order-(n + 1) re-

cursion scheme. As a higher-order recursion scheme can be viewed as a simply-typed

λ-term (with recursion) and a transducer can be expressed as a MSO-interpretation,

this gives another procedure for the data transformation discussed in Section 4.2 (for

the case where the program M is simply-typed). Their transformation is however in-

direct and quite complex, as it goes through collapsible higher-order pushdown au-

tomata [14]. Their transformation also increases the order of the program, as opposed

to our transformation given in Section 4.2.1. Thus, we think their transformation is

mainly of theoretical interest (indeed, it has never been implemented).

As discussed in Section 2.4, our FPCD approach can be regarded as a generaliza-

tion of grammar-based compression [1, 4, 30, 33, 36, 38, 39] where a string or a tree is

represented as a context-free (string or tree) grammar. Since the problem of comput-

ing the smallest CFG that exactly generates w is known to be NP-hard [43], various

heuristic compression algorithms have been proposed, including Re-pair [27, 30]. Pro-

cessing of compressed data without decompression has been a hot topic of studies

in the grammar-based compression, and our result in Section 4 can be considered a

generalization of it to higher-order grammars. In the context of CFG-based compres-

sion, however, more operations can be performed without decompression, including

the equivalence checking (“given two compressed strings, do they represent the same

string?”) [35] and compressed pattern matching (“given a compressed string and a

compressed pattern, does the string match the pattern?”) [17]. It is left for future work

to investigate whether those operations extend to higher-order grammars.

Charikar et al. [5] introduced the notion of “grammar complexity”, which is the size

of the smallest context-free grammar that generates a given string. Its advantages over

Kolmogorov complexity are that the grammar complexity is computable, and also that

there is an efficient algorithm to compute an approximation of the grammar complexity.

It would be interesting to consider restrictions of the λ-calculus that subsume context-

free grammars but still satisfy such an approximability property.

Our experiment to discover knowledge from the compression of English-French

translation, discussed in Section 5.1, appears to be related to studies of example-based

machine translation [40], in particular, automatic extraction of translation templates

from a bilingual corpus [16]. Nevill-Manning and Witten [33] also report inference of

hierarchical (not higher-order, in the sense of the present paper) structures by grammar-

based compression.

We have not discussed the issue of how to compactly represent a λ-term (obtained

by our compression algorithm) as a bit string. There are a few previous studies to

address this issue. Tromp [47] gave two schemes for representing untyped λ-terms as
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bit strings, one through the de Brujin index representation, and the other through

the combinator representation. Vytiniotis and Kennedy [51] introduced a game-based

method for representing simply-typed λ-terms as bit-strings.

7 Conclusion

We have studied the approach of compressing data as functional programs, and shown

that programming language techniques can be used for compressing and manipulating

data. In particular, we have extended a higher-order model checking algorithm to

transform compressed data without decompression. The prototype compression and

transformation systems have been implemented and interesting experimental results

have been obtained.

The work reported in this article should be regarded just as an initial step of studies

of the FPCD approach. We plan to address the following issues in future work.

– Theoretical properties of the compression algorithm: As mentioned in Remark 2, the

output of our compression algorithm in Section 3 belongs to λ-I calculus. A better

characterization is required about the class of λ-terms output by the algorithm.

– Better compression algorithms: The current compression algorithm is not fast

enough to be used for large data, and does not exhibit a clear advantage over

grammar-based compression in terms of the compression ratio, except for some

special cases (recall the results reported in Section 5.1.2). A better compression

algorithm is required, which achieves a better balance between the efficiency and

the quality of the output.

– Restrictions of the data representation language: Related to the point above, the full

λ-calculus may be too powerful for the design of efficient compression algorithms

and good theoretical characterizations of them. Thus, it may be worth investigating

various restrictions of the λ-calculus. For example, the restriction to terms of order-

2 types (recall the definition of the order of types in Remark 1) already subsumes

context-free tree grammars.

– Killer applications: The effectiveness of higher-order functions for compression

should depend on application domains (natural languages, music data, voice, DNA,

etc.). It is currently unclear for what class of data higher-order functions are effec-

tive.

– Better higher-order model checking algorithms: We have shown that higher-order

model checking can be used manipulating compressed data. The current higher-

order model checking algorithms are however not fast enough for manipulating

large compressed data.
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Appendix

A Proofs for Section 2

In this section, we shall prove the following lemma, which corresponds to the “only if” direction
of Theorem 1.

Lemma 11 If ∅ `M : o, then there exists a tree T such that M −→∗β T .

As sketched in the proof of Theorem 1, the lemma follows from more or less standard properties
of intersection types [2, 50]. Nevertheless, we provide a self-contained proof of Lemma 11 below
to familiarize readers with the type-based transformation techniques used in Section 4.2.

We prove the lemma by using the strong normalization of the simply-typed λ-calculus. To
this end, we define a type-based transformation relation Γ ` M : τ =⇒ N , which transforms
a well-typed λ-term M (in the intersection type system) into a corresponding term N of the
simply-typed λ-calculus. It is defined by the following extension of typing rules.

Γ, x : τ ` x : τ =⇒ xτ
(STr-Var)

Σ(a) = k

Γ ` a : o→ · · · → o︸ ︷︷ ︸
k

→ o =⇒ a
(STr-Const)

Γ, x : τ1, . . . , x : τn `M : τ =⇒ N x 6∈ dom(Γ ) n ≥ 1

Γ ` λx.M : τ1 ∧ · · · ∧ τn → τ =⇒ λxτ1 . · · ·λxτn .N
(STr-Abs)

Γ `M : τ =⇒ N x 6∈ dom(Γ )

Γ ` λx.M : > → τ =⇒ λx?.N
(STr-AbsT)

Γ `M1 : τ1 ∧ · · · ∧ τn → τ =⇒ N1 ∀i ∈ {1, . . . , n}.Γ `M2 : τi =⇒ N2,i n ≥ 1

Γ `M1M2 : τ =⇒ N1N2,1 · · ·N2,n

(STr-App)

Γ `M1 : > → τ =⇒ N1

Γ `M1M2 : τ =⇒ N1 ( )
(STr-AppT)

Here, we assume that the simply-typed λ-calculus has a base type ?(6= o), inhabited by ( ). The
idea of the translation to the simply-typed λ-calculus is to replicate each function argument
according to its type. Thus, we replicate a formal parameter x to xτ1 , . . . , xτn in rule STr-Abs
above, and accordingly duplicate an actual parameter M2 to N2,1, . . . , N2,n in rule STr-App.
The dummy formal (actual, resp.) parameter x? (( ), resp.) is added in STr-AbsT (STr-AppT,
resp.) to enforce that the transformation preserves the “shape” of a term. Note that without
the dummy parameter, an application M1M2 would be transformed to a term of arbitrary
shape (when n = 0 in STr-AppT).

We first show that the result of the transformation is simply-typed. We write Γ `ST N : κ
for the standard type judgment relation for the simply-typed λ-calculus, where the syntax of
types are generated by

κ ::= o | ? | κ1 → κ2.

We define the translation ·† from intersection types to simple types by:

o† = o (> → τ)† = ?→ τ† (τ1 ∧ · · · ∧ τk → τ)† = τ1
† → · · · → τk

† → τ†(if k ≥ 1).

We extend the translation to type environments by:

Γ † = {xτ : τ† | x : τ ∈ Γ}.

We assume that xτ = x′
τ ′ if and only if x = x′ and τ = τ ′ so that Γ † is a simple type

environment.
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Lemma 12 If Γ `M : κ =⇒ N , then Γ † `ST N : κ†.

Proof This follows by straightforward induction on the derivation of Γ `M : κ =⇒ N . ut

Lemma 13 Suppose x 6∈ dom(Γ ). If Γ, x : τ1, . . . , x : τk `M : τ =⇒ N and Γ ` K : τi =⇒ Ni
for each i ∈ {1, . . . , k}, then Γ ` [K/x]M : τ =⇒ [N1/xτ1 , . . . , Nk/xτk ]N .

Proof This follows by induction on the structure of M .

– Case M = x: In this case, N = xτi and τ = τi for some i ∈ {1, . . . , k}. The result follows
immediately from Γ ` K : τi =⇒ Ni.

– Case M = y(6= x): In this case, we have y : τ ∈ Γ and N = yτ . Thus, [K/x]M = y
and [N1/xτ1 , . . . , Nk/xτk ]N = yτ . By using STr-Var, we have Γ ` [K/x]M : τ =⇒
[N1/xτ1 , . . . , Nk/xτk ]N as required.

– Case M = a: The result follows immediately, as M = N = a and τ = oΣ(a) → o.
– Case M = λy.M0: We can assume that y 6= x without loss of generality. By the assumption,

we have:
Γ, y : τ ′1, . . . , y : τ ′` `M0 : τ ′ =⇒ N0

(` ≥ 1 ∧N = λyτ ′1
. · · ·λyτ ′

`
.N0) ∨ (` = 0 ∧N = λy?.N0)

τ = τ ′1 ∧ · · · ∧ τ ′` → τ ′

By the induction hypothesis, we have Γ, y:τ1, . . . , y:τ` ` [K/x]M0 : τ ′ =⇒ [N1/xτ1 , . . . , Nk/xτk ]N0.
By applying STr-Abs or STr-AbsT, we obtain Γ ` [K/x]M : τ =⇒ N as required.

– Case M = M1M2: By the assumption, we have:

Γ `M1 : τ ′1 ∧ · · · ∧ τ ′` → τ =⇒ N ′1
Γ `M2 : τ ′i =⇒ N2,i for each i ∈ {1, . . . , `}
(` ≥ 1 ∧N = N ′1N2,1 · · ·N2,k) ∨ (` = 0 ∧N = N ′1 ( ))

By the induction hypothesis, we have:

Γ ` [K/x]M1 : τ1 ∧ · · · ∧ τk → τ =⇒ [N1/xτ1 , . . . , Nk/xτk ]N ′1
Γ ` [K/x]M2 : τi =⇒ [N1/xτ1 , . . . , Nk/xτk ]N2,i for each i ∈ {1, . . . , k}

By applying STr-App or STr-AppT, we obtain Γ ` [K/x]M : τ =⇒ [N1/xτ1 , . . . , Nk/xτk ]N
as required.

ut

The following is a special case of Lemma 13 above, where k = 0.

Corollary 1 If x 6∈ dom(Γ ) and Γ ` M : τ =⇒ N , then Γ ` [K/x]M : τ =⇒ N holds for
any K.

We are now ready to show the main lemmas (Lemmas 14 and 15 below), which say that
if Γ `M : τ =⇒ N , then reductions of M and N can be simulated by each other.

Lemma 14 If Γ ` M : τ =⇒ N and M −→β M
′, then there exists N ′ such that Γ ` M ′ :

τ =⇒ N ′ with N −→∗β N
′.

Proof This follows by easy induction on the derivation of Γ ` M : τ =⇒ N . We omit details
as the proof is similar to that of Lemma 5 in Section 4.2.1. ut

Lemma 15 If Γ ` M : τ =⇒ N and N −→β N ′, then there exist M ′ and N ′′ such that
Γ `M ′ : τ =⇒ N ′′ with M −→∗β M

′ and N ′ −→∗β N
′′.

Proof The proof proceeds by induction on derivation of ∅ ` M : τ =⇒ N , with case analysis
on the last rule used. By the assumption N −→β N ′, the last rule cannot be ST-Var or
ST-Const.

– Case STr-Abs: In this case, we have:

Γ, x : τ1, . . . , x : τk `M1 : τ ′ =⇒ N1

M = λx.M1 N = λxτ1 . · · ·λxτk .N1 N ′ = λxτ1 . · · ·λxτk .N ′1
N1 −→β N

′
1

τ = τ1 ∧ · · · ∧ τk → τ ′

By the induction hypothesis, we have M ′1 and N ′′1 such that Γ, x : τ1, . . . , x : τk ` M ′1 :
τ ′ =⇒ N ′′1 with M1 −→∗β M ′1 and N ′1 −→∗β N ′′1 . Thus, the required properties hold for

M ′ = λx.M ′1 and N ′′ = λxτ1 . · · ·λxτk .N ′1.
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– Case STr-AbsT: Similar to the case STr-Abs.
– Case STr-App: In this case, we have:

Γ `M1 : τ1 ∧ · · · ∧ τk → τ =⇒ N1 (k ≥ 1)
Γ `M2 : τi =⇒ N2,i for each i ∈ {1, . . . , k}
M = M1M2 N = N1N2,1 · · ·N2,k

By the assumption N −→∗β N
′, there are three cases to consider:

(1) N1 −→∗β N
′
1 with N ′ = N ′1N2,1 · · ·N2,k.

(2) N2,j −→∗β N2,j with N ′ = N1N2,1 · · ·N2,j−1N
′
2,j N2,j+1 · · ·N2,k.

(3) N1 = λx.N ′1 with N ′ = ([N2,1/x]N ′1)N2,2 · · ·N2,k.
The result for case (1) follows immediately from the induction hypothesis. In case (2),
by the induction hypothesis, we have Γ ` M ′2 : τj =⇒ N ′′2,j with M2 −→∗β M ′2 and

N ′2,j −→∗β N ′′2,j for some M ′2 and N ′′2,j . By Lemma 14, for each i ∈ {1, . . . , k} \ {j},
there exists N ′′2,i such that Γ ` M ′2 : τi =⇒ N ′′2,i and N2,i −→∗β N

′′
2,i. Let M ′ = M1M ′2

and N ′′ = N1N ′′2,1 · · ·N ′′2,k. Then we have Γ ` M ′ : τ =⇒ N ′′ with M −→∗β M ′ and

N ′ −→∗β N
′′ as required.

In case (3), by the transformation rules, Γ ` M1 : τ1 ∧ · · · ∧ τk → τ =⇒ N1 must have
been derived from STr-Abs, so that we have:

M1 = λy.M3

Γ, y : τ1, . . . , y : τk `M3 : τ =⇒ N3

(λx.N ′1) = (λyτ1 . · · ·λyτk .N3)

Let M ′ = [M2/x]M3 and N ′′ = [N2,1/yτ1 , . . . , N2,k/yτk ]N3. Then we have M −→∗β M
′

and N ′ −→∗β N
′′. Furthermore, by Lemma 13, we have Γ `M ′ : τ =⇒ N ′′ as required.

– Case STr-AppT: In this case, we have:

Γ `M1 : > =⇒ N1

M = M1M2 N = N1 ( )

By the assumption N −→∗β N
′, there are two cases to consider:

(1) N1 −→∗β N
′
1 with N ′ = N ′1 ( ).

(2) N1 = λx.N ′1 with N ′ = [( )/x]N ′1.
The result for case (1) follows immediately from the induction hypothesis. In case (2),
Γ `M1 : >τ =⇒ N1 must have been derived from STr-AbsT, so that we have:

M1 = λx.M3 Γ `M3 : τ =⇒ N ′1 x 6∈ dom(Γ )

By Lemma 12, we have Γ † `ST N ′1, so that x does not occur in N ′1. Thus, N ′ = [( )/x]N ′1 =
N ′1. Let M ′ be [M2/x]M3 and N ′′ be N ′. Then we have M −→∗β M

′ and N ′ −→∗β N
′′.

Furthermore, by Lemma 1 we have Γ `M ′ : τ =⇒ N ′′ as required.
ut

Lemma 16 If ∅ `M : o =⇒ N and N is a β-normal form, then M is a tree and M = N .

Proof The proof proceeds by induction on the structure of N . By Lemma 12, we have ∅ ` N : o.
Since N does not contain any β-redex, N must be of the form aN1 · · · Nk, where k may be
0. By the transformation rules, we have:

M = aM1 · · · Mk

Σ(a) = k
∅ `Mi : o =⇒ Ni for each i ∈ {1, . . . , k}

By the induction hypothesis, Mi is a tree and Mi = Ni. Thus, M is also a tree and M = N
as required. ut

We are now ready to prove Lemma 11.

Proof of Lemma 11. If ∅ `M : o, then by the transformation rules, there exists N such that
∅ ` M : o =⇒ N . By Lemma 12, we have ∅ `ST N : o. By the strong normalization property
of the simply-typed λ-calculus, there exists a β-normal form N ′ such that N −→∗β N ′. By

Lemma 15, there exists M ′ such that M −→∗β M
′ and ∅ ` M ′ : o =⇒ N ′. By Lemma 16, M ′

is a tree. ut


