
Undecidability of 2-Label BPP Equivalences and Behavioral

Type Systems for the π-Calculus

Naoki Kobayashi Takashi Suto
{koba,tsuto}@kb.ecei.tohoku.ac.jp

Tohoku University

Abstract

The trace equivalence of BPP was shown to be undecidable by Hirshfeld. We
show that the trace equivalence remains undecidable even if the number of labels is
restricted to two. The undecidability result holds also for the simulation of two-label
BPP processes. These results imply undecidability of some behavioral type systems
for the π-calculus.

1 Introduction

BPP [2] is a process calculus which has prefixes (lP ), sum, parallel composition, and
recursion as process constructors. Hirshfeld [3] has shown that the trace equivalence of
two BPP processes is undecidable, by encoding the halting problem of a Minsky machine
into the trace inclusion relation between two BPP processes. Hüttel [4] extended the
undecidability result to other preorders between processes.

In this paper, we show that the trace inclusion of BPP processes remains undecidable
even if we restrict the number of action labels to two. In the rest of the paper, we call the
restriction of BPP to two labels 2-label BPP. Hirshfeld’s encoding of a Minsky machine
requires 6 action labels, hence his result does not immediately extend to the case of
2-label BPP processes.

One may think that the undecidability for 2-label BPP processes can be easily ob-
tained by encoding an action label into a sequence of the two labels, so that P ≤tr Q
if and only if [[P ]] ≤tr [[Q]], where P ≤tr Q means that the trace set of P is a sub-
set of the trace set of Q, and [[P ]] is the 2-label BPP process obtained from P by
using the label encoding. Then, the undecidability of the trace inclusion for 2-label
BPP (and hence also the undecidability of the trace equivalence) would follow from
the undecidability for general BPP processes. We basically follow this approach, but
there are two main difficulties. First, because of the existence of parallel composition,
encoding of some action of a process may be simulated by interleaving execution of
encodings of two or more actions of the other process. For example, consider two pro-
cesses P1 = l2 | l2 and Q1 = (l2 | l2) + l3l1l1 and choose the following label encoding:
[[l1]] = a, [[l2]] = ba, [[l3]] = bb. Then, the trace sets of P1 and Q1 are of course different,
but the trace sets of [[P1]] = ba | ba and [[Q1]] = (ba | ba) + bbaa are equivalent. Second, a
naive encoding may also invalidate the equivalence of processes. For example, consider

1



P2 = l2 | l2 and Q2 = l2l2. These have the same trace sets (and they are even bisimi-
lar). With the above encoding, however, [[P2]] has the trace bbaa while [[Q2]] does not.
To overcome the first problem, we choose an encoding of labels such that a shuffle of
two or more encoded labels (i.e., a partial trace of [[l1]] | · · · | [[lm]]) cannot be confused
with encoding [[l]] of a single action. To avoid the second problem, we prepare a process
Inv that simulates invalid sequences. With Inv , we can establish that P ≤tr Q if and
only if [[P ]] ≤tr [[Q]] | Inv , since Inv simulates all the invalid sequences of [[P ]] (which are
generated by interleaving execution of more than one encoded actions). A similar (but
a little more complicated) technique can also be used to show the undecidability of the
simulation preorder of 2-label BPP processes.1

As an application of the undecidability results above, we show that the type checking
problems for some behavioral type systems for the π-calculus are also undecidable.2

In the behavioral type systems, channel types are augmented with usage expressions
(usages, in short), describing how each communication channel is used. The usages can
be regarded as 2-label BPP processes. Since the trace preorder between two usages
can be reduced to the typability of a certain process, the type checking problem is
undecidable.

The rest of this paper is structured as follows. Section 2 introduces BPP. Section 3
proves the undecidability of trace inclusion of 2-label BPP. Section 4 applies a similar
technique to prove that the simulation preorder is also undecidable for 2-label BPP.
Section 5 applies the undecidability results to show that certain behavioral type systems
for the π-calculus are undecidable. Section 6 discusses related work, and Section 7
concludes.

2 Basic Parallel Processes (BPP)

BPP [2] is a calculus of processes consisting of prefixes, parallel composition, internal
choice, and recursion. Unlike in CCS [16], there is no synchronization mechanism (such
as the transition a.P | a.Q

τ−→ P |Q).
The syntax of processes is given by:

P ::= 0 | X | lP | (P |Q) | P + Q | μX.P

Here, X and l are meta-variables ranging over the sets of process variables and action
labels respectively. We write Act for the set of action labels, and write BPPAct for the
set of BPP processes whose action labels are in the set Act.

The process 0 does nothing. A process lP first performs l and then behaves like P .
P |Q is a parallel composition of P and Q, and P + Q is an internal choice of P or Q.
μX.P stands for the recursive process X usually defined by the equation X = P .

We often omit 0 and just write a for a0. We give a higher-precedence to unary
prefixes, +, and | in this order, so that l1P1|l2P2 + l3P3 means (l1P1)|((l2P2) + (l3P3)).

We say that P is guarded by l in lP . A recursive process μX.P is guarded if X
appears only in guarded positions of P . A process is guarded if all its recursive processes
are guarded. In the rest of this paper, we consider only closed, guarded processes.3

1Note that the trace inclusion (as well as the simulation preorder) is decidable for 1-label BPP
processes.

2Actually, investigation into the type checking problems lead us to the study of the trace and simu-

2



lP
l−→ P

(Tr-Act)

P
l−→ P ′

P |Q l−→ P ′ |Q
(Tr-ParL)

P
l−→ P ′

P + Q
l−→ P ′

(Tr-OrL)

[μX.P/X]P l−→ Q

μX.P
l−→ Q

(Tr-Rec)

Q
l−→ Q′

P |Q l−→ P |Q′
(Tr-ParR)

Q
l−→ Q′

P + Q
l−→ Q′

(Tr-OrR)

Figure 1: Transition rules of BPP processes

The transition relation P
l−→ Q is the least relation closed under the rules in Fig-

ure 1. We write P
l1···ln−→ Q if P

l1−→ · · · ln−→ Q.
2-label BPP is BPP where the set Act of action labels is restricted to the set {a, b}.

Hence, the set of 2-label BPP processes is BPP{a,b}.

3 Undecidability of Trace Equivalence

In this section, we show that the trace equivalence of 2-label BPP processes is unde-
cidable. As sketched in Section 1, we show an encoding of general BPP processes into
2-label BPP processes, so that the trace preorder is preserved. Then, the undecidabil-
ity follows from the undecidability result for general BPP [3]. The undecidability of the
trace equivalence can be shown also by using the encoding in Section 4, but the encoding
presented in this section is simpler and easier to understand.

3.1 Trace Set, Trace Preorder, and Trace Equivalence

Definition 3.1 [trace set]: The trace set of P , written traces(P ), is defined by:

traces(P ) = {l1 . . . ln | P
l1−→ · · · ln−→ Pn}

Definition 3.2: The trace preorder ≤tr and the trace equivalence ∼tr are defined by:

P ≤tr Q
def⇔ traces(P ) ⊆ traces(Q)

P ∼tr Q
def⇔ P ≤tr Q ∧ Q ≤tr P

3.2 Encoding

We first define the encoding of labels. Since the number of labels occurring in a given pro-
cess is finite, we assume here that the set Act of action labels is a finite set {l0, . . . , lN−1}.
In the rest of this section and Section 4, we use meta-variables P, Q, . . . for processes in
BPP{l0,...,lN−1},and use meta-variables E, F, . . . for processes in BPP{a,b}.

lation preorders for 2-label BPP in this paper.
3Actually, any recursive process can be transformed to a bisimilar, guarded recursive process. For

example, μX.(X | lX) is equivalent to the guarded process μX.l(X |X). μX.X is bisimilar to 0.

3



Definition 3.3: A mapping [[·]] from Act to {a, b}∗ is defined by:

[[li]] = abiab2N−1−i

Here, ai stands for the sequence of a of length i. For example, a3 = aaa.
We now define encoding of a process. As mentioned in Section 1, we use different

encodings for P and Q in P ≤tr Q.

Definition 3.4:
Mappings [[·]]L and [[·]]R from BPP{l0,...,lN−1} to BPP{a,b} are defined by:

[[0]]L = 0
[[X]]L = X
[[lP ]]L = [[l]][[P ]]L

[[P |Q]]L = [[P ]]L | [[Q]]L
[[P + Q]]L = [[P ]]L + [[Q]]L
[[μX.P ]]L = μX.[[P ]]L

[[P ]]R = [[P ]]L | Inv
where Inv =

∑
k<N,k+l<2N−1

abkablaG and G = μX.(aX + bX)

The role of the process Inv in [[P ]]R is to simulate invalid transition sequences (caused
by interleaving execution of [[li]] and [[lj ]]).

3.3 Undecidability of Trace Equivalence

The main result of this section is stated as follows.

Theorem 3.5: P ≤tr Q if and only if [[P ]]L ≤tr [[Q]]R.

Since P ≤tr Q is undecidable for general BPP [3], we obtain the following corollary.

Corollary 3.6: The trace inclusion E ≤tr F and trace equivalence E ∼tr F are unde-
cidable for 2-label BPP.

Proof: If the trace inclusion ≤tr were decidable for 2-label BPP, then we could decide
P ≤tr Q for general BPP by deciding [[P ]]L ≤tr [[Q]]R, hence a contradiction. To see
that E ∼tr F is also undecidable, it suffices to observe that E ≤tr F if and only if
E + F ∼tr F . � �

The rest of this section is devoted to the proof of Theorem 3.5. The followings are
key lemmas needed to prove Theorem 3.5.

Lemma 3.7: Let m ∈ {L, R}. If P
l−→ Q, then [[P ]]m

[[l]]−→ [[Q]]m.

Lemma 3.8: Let m ∈ {L, R}. If [[P ]]m
[[l]]−→ E, then there exists a process Q such that

E = [[Q]]m and P
l−→ Q.

Lemma 3.7, which follows by straightforward induction on the derivation of P
l−→ Q,

says that any transition of P can be simulated by [[P ]]L and [[P ]]R. Lemma 3.8 says that
any valid (in the sense that the transition label sequence corresponds to a label of P )
transition sequence of [[P ]]L or [[P ]]R can be simulated by P .

4



Lemma 3.8 follows by induction on the derivation of the first transition of [[P ]]m
[[l]]−→

E; See Appendix A for the full proof of Lemma 3.8. The proof makes use of the following
key property, which essentially says that the first problem mentioned in Section 1 (that a
single action may be simulated by interleaving execution of two or more actions) cannot
occur.

Lemma 3.9: If [[P1 |P2]]L
[[l]]−→ E, then either (i) [[P1]]L

[[l]]−→ E1 and E = E1 | [[P2]]L or

(ii) [[P2]]L
[[l]]−→ E2 and E = [[P1]]L |E2

Proof sketch: By the transition rules, we have: (i) [[P1]]L
s1−→ E1, (ii) [[P2]]L

s2−→ E2,
(iii) E = E1 |E2, and (iv) [[l]] is a shuffle of s1 and s2. It suffices to show that either
s1 or s2 is an empty sequence. Suppose that s1 and s2 are not empty. Then s1 and s2

must be of the form abj1 and abj2 where j1, j2 ≤ N − 1. Then, [[l]]L cannot be a shuffle
of s1 and s2, since [[l]]L contains 2N − 1 occurrences of b, whereas j1 + j2 ≤ 2N − 2. �

Proof: See Lemma A.6 in Appendix A. �

We state another key lemma below. Let InvTr = {s ∈ {a, b}∗ | ¬∃s′, l.(s = [[l]]s′)}.
In other words, InvTr is the set of label sequences whose prefixes do not match [[l]].

Lemma 3.10: If s ∈ InvTr ∩ traces([[P ]]L), then s ∈ traces(Inv).

Proof: See Appendix A.2. �

Lemma 3.10 means that any initially invalid sequence generated by [[P ]]L can be simu-
lated by Inv . Thus, the second problem mentioned in Section 1 is resolved.

We obtain the following lemma as an immediate corollary of Lemmas 3.7 and 3.8.

Lemma 3.11: Let m ∈ {L, R}. If P
lk1

···lkn−→ Q, then [[P ]]m
[[lk1

]]···[[lkn ]]−→ [[Q]]m. Conversely,

if [[P ]]m
[[lk1

]]···[[lkn ]]−→ E, then P
lk1

···lkn−→ Q and [[Q]]m = E.

We can now prove Theorem 3.5.

Proof of Theorem 3.5:

• “Only if”: Suppose P ≤tr Q and s ∈ traces([[P ]]L). We need to show s ∈
traces([[Q]]R). s must be of the form [[lk1 ]] · · · [[lkn ]]s′ where s′ ∈ InvTr. By

Lemma 3.11, there exists P1 such that P
lk1

···lkn−→ P1 and s′ ∈ traces([[P1]]L). By the

assumption, there must exist Q1 such that Q
lk1

···lkn−→ Q1. By using Lemma 3.11

again, we get [[Q]]R
[[lk1

···lkn ]]−→ [[Q1]]R. By Lemma 3.10, we have s′ ∈ traces(Inv) ⊆
traces([[Q1]]R). Thus, we have s ∈ traces([[Q]]R) as required.

• “If”: Suppose [[P ]]L ≤tr [[Q]]R and lk1 · · · lkn ∈ traces(P ). By Lemma 3.11,
[[lk1 ]] · · · [[lkn ]] ∈ traces([[P ]]L). By the assumption [[P ]]L ≤tr [[Q]]R, we have [[lk1 ]] · · · [[lkn ]] ∈
traces([[Q]]R). By using Lemma 3.11 again, we obtain lk1 · · · lkn ∈ traces(Q) as re-
quired.

�

5



4 Undecidability of Simulation Equivalence

In this section, we show that the simulation preorder and equivalence are also unde-
cidable for 2-label BPP. We use the undecidability of the simulation preorder for the
general BPP [4].4

Definition 4.1: A binary relation R on BPP processes is a simulation if, for any P, Q, l

such that PRQ and P
l−→ P ′, there exists Q′ such that Q

l−→ Q′ and P ′RQ′. The
simulation preorder ≤sim is the union of all simulations, i.e., P ≤sim Q if and only if
there exists a simulation R such PRQ. We write P ∼sim Q if P ≤sim Q ∧ Q ≤sim P .

Note that ≤sim itself is a simulation (hence, the largest simulation).
We show the undecidability of the simulation preorder for 2-label BPP, by reduction

of the simulation preorder for general BPP into that for 2-label BPP. We first need to
change the encoding [[·]]R of the right-hand side process.

Definition 4.2: A mapping [[·]]R′ from BPP{l0,...,lN−1} to BPP{a,b} is defined by:

[[0]]R′ = 0
[[X]]R′ = X
[[lP ]]R′ = a[[P ]]s,1,0 (as = [[l]])

[[P |Q]]R′ = [[P ]]R′ | [[Q]]R′

[[P + Q]]R′ = [[P ]]R′ + [[Q]]R′

[[μX.P ]]R′ = μX.[[P ]]R′

[[P ]]ε,k1,k2 = [[P ]]R′

[[P ]]as,1,k = a[[P ]]s,2,k + aH(2N−2−k)

[[P ]]bs,1,k = b[[P ]]s,1,k+1 + aH(2N−2−k)

[[P ]]bs,2,k = b[[P ]]s,2,k+1 + aG

H(k) =
{

aG (k = 0)
bH(k−1) + aG (k > 0)

Note that the process G has been defined in Definition 3.4.

Intuitively, [[P ]]s,k1,k2 represents an intermediate state for simulating a single action of
the original process. The sequence s ∈ {a, b}∗ is the remaining sequence of actions
to be performed, and k1 and k2 are the numbers of a and b actions that have been
already performed. The roles of aH(2N−2−k) and aG in the definitions of [[P ]]s,k1,k2 are
to simulate invalid transitions.

Theorem 4.3: P ≤sim Q if and only if [[P ]]L ≤sim [[Q]]R′ .

To show the “if” part, it suffices to show that the relation {(P, Q) | [[P ]]L ≤sim [[Q]]R′}
is a simulation. To show the “only if” part, we use the following, standard up-to
technique:

Lemma 4.4 [up-to technique]: Let R be a binary relation on BPP processes. If R
satisfies:

∀P, Q, P ′, l.((PRQ ∧ P
l−→ P ′) ⇒ ∃Q′.(Q l−→ Q′ ∧ P ′ ≤sim R ≤sim Q′)),

then R ⊆≤sim .

Proof: This follows from the fact that R∪ (≤sim R ≤sim) is a simulation. �
4The proofs in [4] contain some flaws, but the undecidability results are valid. Please refer to [15] for

the flaws and corrected proofs of the undecidability for the general BPP.

6



To show the “only if” part of Theorem 4.3, it suffices to show that the following relation
is a simulation up to ≤sim (i.e., satisfies the assumption of Lemma 4.4).

[[≤sim ]] = {(E, E) | E ∈ BPP{a,b}}
∪ {([[P ]]L, [[Q]]R′) | P ≤sim Q}
∪ {(E, F ) | P ≤sim Q ∧ P ′ ≤sim Q′ ∧ s1s2 = [[l]] ∧ s1, s2 �= ε∧

[[P ]]L
s1−→ E

s2−→ [[P ′]]L ∧ [[Q]]R′
s1−→ F

s2−→ [[Q′]]R′}
E and F in the third set are intermediate states for simulating a single action of general
BPP processes. If E performs a valid action and becomes E′, then F can also perform a
valid action to become F ′ so that the pair (E′, F ′) is again in the second or third set. If
E performs an invalid action to become E′, then F can transit to a process containing
H(2N−2−k) or G, which can simulate any transitions of E′. See Appendix A for the full
proof.

As a corollary of the above theorem and the undecidability for general BPP [4, 15],
we obtain the undecidability for 2-label BPP.

Corollary 4.5: The relations ≤sim and ∼sim are undecidable for 2-label BPP.

5 Application to Behavioral Type Systems

In this section, we apply the undecidability results of the previous sections to show the
undecidability of certain behavioral type systems for the π-calculus.

Behavioral type systems [1, 5, 7, 10, 11, 19–21] use types to control how processes
may interact with each other. They have been used for analyzing deadlocks [5, 7, 11],
race conditions [5], termination [21], etc. The version of behavioral type systems we
discuss below is a type system with channel usages [9–11, 17], which express how each
communication channel is used for input and output.

5.1 Syntax of Usages, Types, and Processes

The syntax of usages and types are given by:

U (usages) ::= 0 |?U |!U | (U1 |U2) | U1 + U2 | X | μX.U
τ (types) ::= chanU [τ1, . . . , τn]

The syntax of usages is almost the same as that of 2-label BPP, except that X may
be unguarded in μX.U . For example, μX.X is allowed and is sometimes distinguished
from 0 [10, 11]. The transition relation U

l→ U ′ (where l ∈ {?, !}) is the same as that of
BPP{?,!}. We often omit 0 and just write ! and ? for !0 and ?0. We write FV (U) for
the set of free variables in U .

Table 1 summarizes intuitive meaning of usages. For example, the usage ? | ! describes
a channel that should be used once for input and once for output in parallel.

The type chanU [τ1, . . . , τn], abbreviated to chanU [τ̃ ], describes a channel that should
be used for passing a tuple of channels of types τ1, . . . , τn, and used according to U . For
example, the type chan?![ ] describes a channel that should be first used for receiving,
and then for sending a null tuple. A channel of type chan?[chan![ ]] should be used for
receiving a channel, and then the received channel should be used for sending a null
tuple.

7



Table 1: Intuitive Meaning of Usages
0 not used at all
?U used for input, and then according to U

!U used for output, and then according to U

U1 |U2 used according to U1 and U2, possibly in parallel
U1 + U2 used according to either U1 or U2

X usage variable bound by μ.
μX.U used recursively according to X = U .

The subtyping relation τ1 ≤ τ2 (which means that a value of type τ may be used as
a value of type τ ′) is inductively defined by:

U ≤ U ′

chanU [τ̃ ] ≤ chanU ′ [τ̃ ]
(SubT)

Here, the subusage relation U ≤ U ′ means that U represents a more liberal usage of
channels, so that a channel of usage U may be used as a channel of usage U ′. For
example, ?+! ≤? should hold. There are several reasonable definitions of the subusage
relation [8–11], depending on the property that should be ensured by the type system.
The following definition is the simplest one among such reasonable definitions; other
definitions are discussed later.

Definition 5.1: U1 ≤ U2
def⇔ U2 ≤tr U1.

Here, ≤tr is the trace inclusion relation for BPP{?,!}.
The syntax of processes is given by:

P ::= 0 | x![y1, . . . , yn]. P | x?[y1, . . . , yn]. P | (P |Q) | ∗P | (νx : U) P

A sequence y1, . . . , yn is abbreviated to ỹ. The process x![ỹ]. P sends the tuple [ỹ] of
channels on channel x, and then behaves like P . The process x?[ỹ]. P waits to receive
a tuple consisting of channels z̃ on channel x, binds ỹ to them, and then behaves like
P . The process P |Q runs P and Q in parallel, and the process ∗P runs infinitely
many copies of P in parallel. The process (νx : U) P creates a fresh communication
channel, binds x to it, and then behaves like P . An important point here is that x is
annotated with a usage U , which specifies a programmer’s intention on how x should be
used. As observed later, this usage declaration makes the type system described below
undecidable. We do not consider choice P + Q and name matching [x = y]P ; The type
system remains undecidable in the presence of those constructors.

Example 5.2: In the π-calculus, a lock (i.e., a binary semaphore) can be expressed
as a channel, where the locked (unlocked, resp.) state is represented by the absence
(presence, resp.) of a message. For example, the process lck?[ ]. x?[y]. lck ![ ] locks lck ,
reads from x, and then releases lck . To enforce that the channel lck is indeed used
as a lock (i.e., the channel is first used for output to initialize the lock, and then used
according to ?! an arbitrary number of times), one can declare a usage of lck as (νlck :
(! |μX.(0 + (?! |X)))) P . The type system introduced in the next subsection ensures
that P uses lck according to the declared usage.

8



Operation on type environments:

(Γ1 |Γ2)(x) =

⎧⎨
⎩

(Γ1(x)) | (Γ2(x)) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) if x ∈ dom(Γ1) \ dom(Γ2)
Γ2(x) if x ∈ dom(Γ2) \ dom(Γ1)

where chanU1 [τ̃ ] | chanU2 [τ̃ ] = chanU1 |U2
[τ̃ ]

(∗Γ)(x) = ∗(Γ(x))
where ∗chanU [τ̃ ] = chanμX.(U |X)[τ̃ ]

Typing:

∅ � 0
(T-Zero)

Γ � P Δ � Q

Γ |Δ � P |Q (T-Par)

Γ, x : chanU [τ̃ ] � P

Γ � (νx : U) P
(T-New)

Γ, x : chanU [τ̃ ] � P

(Γ, x : chan!U [τ̃ ]) | ỹ : τ̃ � x![ỹ]. P
(T-Out)

Γ � P

∗Γ � ∗P (T-Rep)

Γ, x : τ � P τ ′ ≤ τ

Γ, x : τ ′ � P
(T-Sub)

Γ � P x �∈ dom(Γ) U ≤ 0

Γ, x : chanU [τ̃ ] � P
(T-Weak)

Γ, x : chanU [τ̃ ], ỹ : τ̃ � P

Γ, x : chan?U [τ̃ ] � x?[ỹ]. P
(T-In)

Figure 2: A Behavioral Type System

5.2 Type System

A type judgment for processes is of the form Γ � P , where Γ is a type environment of
the form x1 : τ1, . . . , xn : τn. It means that P behaves as specified by Γ. For example,
x : chan?[chan![ ]] � P means that P uses x for receiving a channel of type chan![ ], and
then uses the received channel for sending a null tuple.

Typing rules and related definitions are given in Figure 2.

Remark 5.3: Although a usage of the form U1 + U2 does not appear in Figure 2, it
can be introduced by rule T-Sub. For example, the process:
x![y] |x?[z]. z![ ] |x?[z]. z?[ ].0 is typed under x : chan! | ? | ?[chan!+?[ ]], y : chan!+?[ ].

5.3 Undecidability of Type Checking Problem

We show that the problem of deciding whether ∅ � P holds or not is undecidable. The
key observation for the proof is that, given two usages U1 and U2, we can construct a
process P such that ∅ � (νx : U1) P if and only if U1 ≤ U2. We use show the following
key lemma.

Lemma 5.4: Let U be a usage and suppose FV (U) ⊆ {X1, . . . , Xn}. Then there exists
a process P such that the followings are equivalent for any U ′, U1, . . . , Un.

1. U ′ ≤ [U1/X1, . . . , Un/Xn]U

2. x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanU ′ [ ] � P .

Here, U⊥ = μX.(0+?X+!X).

9



We obtain the following result as a corollary of Lemma 5.4 and Corollary 3.6.

Theorem 5.5: The relation ∅ � P is undecidable.

Proof: Let U1, U2 be usages. By Lemma 5.4, there exists a process P1 such that
r : chanU1 [ ] � P1 if and only if U1 ≤ U2. Hence, ∅ � (νr : U1) P1 if and only if U1 ≤ U2.
Since the latter is undecidable, the type checking problem is also undecidable. � �

Undecidability results for other definitions of U1 ≤ U2 The above undecidability
result holds for various other definitions of the subusage relation. For example, let
≤def

=≥sim . Since Lemma 5.4 remains valid, and U1 ≤sim U2 is undecidable, the type
checking problem is also undecidable. Here we sketch other definitions of subusage
relations for which the type checking problem remains undecidable.

• Define a predicate U↓ inductively by the rules:

0↓
U1 ↓ U2↓
(U1 |U2)↓

Ui↓
(U1 + U2)↓

[μX.U/X]U↓
μX.U↓

Then add the condition U1↓ ⇒ U2↓ to the requirement for each element (U1, U2)
in the simulation relation ≤sim . Let ≤ex

sim be the extended simulation relation, and
define U1 ≤ U2 as U2 ≤ex

sim U1.

• Extend the trace set using the above predicate:

extraces(U) = {l1 · · · ln | U
l1−→ · · · ln−→ U ′} ∪ {l1 · · · ln↓ | U

l1−→ · · · ln−→ U ′↓}

Then define U1 ≤ U2 as extraces(U2) ⊆ extraces(U1).

• Add a transition U
τ−→ U ′ by introducing the synchronization rule:

U1
?−→ U ′

1 U2
!−→ U ′

2

U1 |U2
τ−→ U ′

1 |U ′
2

Then re-define the trace set, and define ≤ as the trace inclusion relation.

Remark 5.6: The undecidability results above may be disappointing, given that be-
havioral type systems are useful for checking various properties [1, 7, 10, 11, 19, 21] and
that the above type system is one of the simplest forms of behavioral type systems. It
should be noted, however, that the source of the undecidability result is the program-
mer’s capability to declare arbitrary usages (by (νx : U) ). In fact, Kobayashi’s type
systems for deadlock-freedom and information flow [10, 11] are much more complex, but
the type checking problem is decidable (note that they do not allow type declaration).
In order to allow declaration of usages as in this paper while keeping the decidability of
type checking, we need to restrict the class of usages that can be declared by program-
mers. For example, type checking is decidable if the class of declared usages is restricted
to the class of usages whose trace sets are deterministic Petri net languages [18].

10



6 Related Work

As already mentioned in Section 1, Hirshfeld [3] showed the undecidability of the trace
equivalence for general BPP, and Hüttel [4] extended the result to show undecidability
of other equivalence relations (except bisimilarity, which is decidable [2]). They [3, 4]
both encode Minsky machines into BPP. Since their encoding uses more than two action
labels, their results do not immediately imply the undecidability for 2-label BPP.

Srba [6] proposed a general method for encoding a labeled transition system into
a transition system with a single label, so that certain properties are preserved by the
encoding. His encoding is, however, not applicable to BPP.

A number of behavioral type systems for the π-calculus have been proposed recently
for checking various properties including deadlock, race, liveness, termination, and in-
formation flow [1, 5, 7, 10, 11, 19–21]. Usage-based behavioral type systems studied in
Section 5 were first proposed in [17] (in a less general form, without full recursion),
and have been extended since then [1, 5, 10–13]. In some of the most recent type sys-
tems [1, 5, 13], CCS-like process calculi, which are more expressive than BPP, are used
as usages or types. The undecidability result presented in this paper indicates that ex-
plicit usage or type declarations must be restricted in order to make those type systems
decidable.

7 Conclusion

We have shown that the trace equivalence and simulation relation for 2-label BPP is un-
decidable. The undecidability result also implies the undecidability of certain behavioral
type systems for the π-calculus.

Acknowledgments.

We would like to thank Hans Hüttel for discussions on the undecidability of BPP equiv-
alences. We would also like to thank anonymous reviewers for useful comments.

References

[1] S. Chaki, S. Rajamani, and J. Rehof. Types as models: Model checking message-
passing programs. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Prin-
ciples of Programming Languages, pages 45–57, 2002.

[2] S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability, decidability and
axiomatisability for bisimulation equivalence on basic parallel processes. In Pro-
ceedings of IEEE Symposium on Logic in Computer Science, pages 386–396, 1993.

[3] Y. Hirshfeld. Petri nets and the equivalence problem. In Computer Science Logic,
volume 832 of Lecture Notes in Computer Science, pages 165–174. Springer-Verlag,
1993.

[4] H. Hüttel. Undecidable Equivalence for Basic Parallel Processes. In Proceedings
of TACS94, volume 789 of Lecture Notes in Computer Science, pages 454–464.
Springer-Verlag, 1994.

11



[5] A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1-3):121–163, 2004.

[6] Jiŕı. On the power of labels in transition systems. In Proceedings of CONCUR 2001,
volume 2154 of Lecture Notes in Computer Science, pages 277–291. Springer-Verlag,
2001.

[7] N. Kobayashi. TyPiCal: A type-based static analyzer for the pi-calculus. Tool
available at http://www.kb.ecei.tohoku.ac.jp/~koba/typical/.

[8] N. Kobayashi. A type system for lock-free processes. Information and Computation,
177:122–159, 2002.

[9] N. Kobayashi. Type systems for concurrent programs. In Proceedings of UNU/IIST
20th Anniversary Colloquium, volume 2757 of Lecture Notes in Computer Science,
pages 439–453. Springer-Verlag, 2003.

[10] N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta In-
formatica, 42(4-5):291–347, 2005.

[11] N. Kobayashi. A new type system for deadlock-free processes. In Proceedings of
CONCUR 2006, volume 4137 of Lecture Notes in Computer Science, pages 233–247.
Springer-Verlag, 2006.

[12] N. Kobayashi, S. Saito, and E. Sumii. An implicitly-typed deadlock-free process cal-
culus. In Proceedings of CONCUR2000, volume 1877 of Lecture Notes in Computer
Science, pages 489–503. Springer-Verlag, August 2000.

[13] N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis for the pi-
calculus. Logical Methods in Computer Science, 2(3:4):1–42, 2006.

[14] N. Kobayashi and T. Suto. Undecidability of 2-label BPP equivalences and be-
havioural type systems for the π-calculus, 2007. Full version. Available from
http://www.kb.ecei.tohoku.ac.jp/~koba/publications.html.

[15] N. Kobayashi and T. Suto. Undecidability of BPP equivalences revisited, 2007.
Available from http://www.kb.ecei.tohoku.ac.jp/~koba/publications.html.

[16] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[17] E. Sumii and N. Kobayashi. A generalized deadlock-free process calculus. In
Proc. of Workshop on High-Level Concurrent Language (HLCL’98), volume 16(3)
of ENTCS, pages 55–77, 1998.

[18] T. Suto and N. Kobayashi. Channel usage declaration for concurrent programming
languages. IPSJ Transaction on Programming, 2007. to appear (in Japanese).

[19] N. Yoshida. Graph types for monadic mobile processes. In FST/TCS’16, volume
1180 of Lecture Notes in Computer Science, pages 371–387. Springer-Verlag, 1996.

[20] N. Yoshida. Type-based liveness guarantee in the presence of nontermination and
nondeterminism. Technical Report 2002-20, MSC Technical Report, University of
Leicester, April 2002.

12



[21] N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi-calculus.
Information and Computation, 191(2):145–202, 2004.

13



Appendix

A Proofs

We give proofs omitted in Sections 3–5. Section A.1 shows common properties of the
encoding functions [[·]]L, [[·]]R, and [[·]]R′ . Section A.2 proves properties specific to each
encoding. Section A.3 proves Theorem 4.3, and Section A.4 proves Lemma 5.4.

A.1 Common Properties of the Encoding Functions

Let t ∈ {a, b} and s ∈ {a, b}∗. We write #t(s) for the number of occurrences of t in s.
The following lemma is a generalization of Lemma 3.7 to the case for m ∈ {L, R, R′}.

Lemma A.1: Let m ∈ {L, R, R′}. If P
l−→ Q, then [[P ]]m

[[l]]−→ [[Q]]m.

Proof: Straightforward induction on the derivation of P
l−→ Q, with case analysis

on the last rule used. To show the case where m = R′ and where Tr-Act has been
used to derive P

l−→ Q, observe that [[P1]]s,k1,k2
s−→ [[P1]]R′ if #a(s) + k1 = 2 and

#b(s) + k2 = 2N − 1. �

We define the set Images of 2-label processes that can appear as images of the
encoding functions [[·]]L, [[·]]R, and [[·]]R′ :

Definition A.2: The set Images is defined by:

Images = {[[P ]]L | P ∈ BPP{l0,...,lN−1}} ∪ {[[P ]]R | P ∈ BPP{l0,...,lN−1}}
∪{[[P ]]R′ | P ∈ BPP{l0,...,lN−1}} ∪ {Inv}

Lemma A.3: If E ∈ Images, then E
b

�−→ and E
abN

�−→.

Proof: E
b

�−→ follows immediately from the definition of the encoding functions.

Inv
abN

�−→ also follows immediately from the definition of Inv . Suppose E = [[P ]]m and

E
a−→ E′. We show E′ bN

�−→ by induction on the derivation of E
a−→ E′.

• Case Tr-Act: In this case, P = lP1 and m ∈ {L, R′}. If m = L, E′ bN

�−→ follows
immediately from the definition of the encoding. If m = R′, then E′ = [[P1]]b

iabj ,1,0

with abiabj = [[l]]. By induction on i, we can easily show that [[P1]]b
iabj ,1,0

bi+1

�−→.
Since abiabj = [[l]], we have i ≤ N − 1 by the definition of the label encoding.

Hence, we have E′ bN

�−→ as required.

• Case Tr-OrL: In this case, E = [[P1 + P2]]m and [[P1]]m
a−→ E′. Hence, the

required result follows immediately from the induction hypothesis.

• Case Tr-OrR: Similar to the case above.

14



• Case Tr-ParL: In this case, E = E1 |E2 and E′ = E′
1 |E2 with E1

a−→ E′
1.

Moreover, E1, E2 ∈ Images. By the induction hypothesis, E′
1

bN

�−→. We also have

E2

b
�−→. Therefore, we have E′ bN

�−→ as required.

• Case Tr-ParR: Similar to the case above.

• Case Tr-Rec: In this case, P = μX.P1 and [[[P/X]P1]]m = [[[P ]]m/X][[P1]]m
a−→

E′, with m ∈ {L, R′}. The required result follows immediately from the induction
hypothesis.

�

Lemma A.4: Suppose m ∈ {L, R′}. If [[P ]]m
t−→ E, then t = a and there exists s, l

and P ′ such that [[P ]]m
a−→ E

s−→ [[P ′]]m and as = [[l]].

Proof: Straightforward induction on the derivation of [[P ]]m
t−→ E. �

Lemma A.5: If E1, E2 ∈ Images and E1 |E2
s1−→ E′ s2−→ E′′ with s1s2 = [[l]], then

E′ = E′
1 |E′

2 and E′′ = E′′
1 |E′′

2 , with either (i) E1
s1−→ E′

1
s2−→ E′′

1 and E2 = E′
2 = E′′

2 or
(ii) E1 = E′

1 = E′′
1 and E2

s1−→ E′
2

s2−→ E′′
2 .

Proof: By the definition of the transition relation, we have:

E1
s11−→ E′

1
s21−→ E′′

1

E2
s12−→ E′

2
s22−→ E′′

2

s1 is a shuffle of s11 and s12

s2 is a shuffle of s21 and s22

By the definition of [[l]], the label a must occur twice in [[l]]. If s1is2i contains no a, then by
Lemma A.3, s1is2i must be the empty sequence ε, so that the result follows immediately.
Suppose that each of s11s21 and s12s22 contains one a. Then, by Lemma A.3, s11s21 =
abx1 and s12s22 = abx2 with x1, x2 ≤ N − 1. This contradicts with the fact that [[l]] is a
shuffle of s11s21 and s12s22, since the number of b in [[l]] is 2N − 1 but x1 +x2 ≤ 2N − 2.
�

We are now ready to show a generalization of Lemma 3.8 to also the case for [[P ]]R′ .

Lemma A.6: Let m ∈ {L, R, R′}. If [[P ]]m
[[l]]−→ E, then there exists a process Q such

that E = [[Q]]m and P
l−→ Q.

Proof: We first prove the case for m ∈ {L, R′} by induction on the derivation of the

first transition step of [[P ]]L
[[l]]−→ E, with case analysis on the last rule used.

• Case Tr-Act: In this case, [[P ]]m must be of the form aE1. By the definition of
the encoding, P must be of the form lP1. If m = L, then [[P ]]m = [[l]][[P1]]m, so
that Q = P1 satisfies the required property. For the case m = R′, it suffices to
show that if [[P1]]s,k1,k2

s−→ E with #a(s) + k1 = 2 and #b(s) + k2 = 2N − 1, then

E = [[P1]]R′ . This follows by induction on the length of s, using the fact H(k)
k+1
�−→.

15



• Case Tr-ParL: In this case, P = P1 |P2. By Lemma A.5, it must be the case that

[[P1]]m
[[l]]−→ E1 and E = E1 | [[P2]]m. By the induction hypothesis, there exists Q1

such that P1
l−→ Q1 and E1 = [[Q1]]m. Hence, Q = Q1 |P2 satisfies the required

condition.

• Case Tr-ParR: Similar to the above case.

• Case Tr-OrL: In this case, P = P1 + P2, with [[P1]]m
[[l]]−→ E. By the induction

hypothesis, there exists Q such that P1
l−→ Q and [[Q]]m = E. By using Tr-OrL,

we obtain P
l−→ Q as required.

• Case Tr-OrR: Similar to the above case.

• Case Tr-Rec: In this case, P = μX.P ′ and [[[μX.P ′]]m/X][[P ′]]m = [[[μX.P ′/X]P ′]]m
[[l]]−→

E. By the induction hypothesis, there exists Q such that [μX.P ′/X]P ′ l−→ Q and
[[Q]]m = E. By using Tr-Rec, we obtain P

l−→ Q as required.

Now we show the case for m = R using the result for the case m = L. Suppose

[[P ]]R = [[P ]]L | Inv
[[l]]−→ E. Then by Lemma A.5, E = E1 |E2 and either (i) [[P ]]L

[[l]]−→ E1

and E2 = Inv , or (ii) Inv
[[l]]−→ E2 and E1 = [[P ]]L. The latter case is, however, impossible

by the definition of Inv . Hence, it must be the case that [[P ]]L
[[l]]−→ E1 and E = E1 | Inv .

By the result for the case m = L, there exists Q such that P
l−→ Q and [[Q]]L = E1.

Thus, we have [[Q]]R = E and P
l−→ Q as required. �

A.2 Properties Specific to Each Encoding

Proof of Lemma 3.10: Suppose s ∈ InvTr ∩ [[P ]]L. By the definition of InvTr and
Lemma A.3, s must be one of the following forms.

1. the empty sequence ε

2. abi where i < N

3. s = abiabj where i < N and i + j < 2N − 1

4. s = abiabjas′ where i < N and i + j < 2N − 1

In all the cases, s is a trace of Inv . �

The rest of the lemmas proved in this subsection will be used in the proof of Theo-
rem 4.3.

Lemma A.7: If E ∈ BPP{a,b} and E
bk+1

�−→, then E ≤sim H(k).

Proof: This follows from the fact that

R = {(E, H(k)) | E ∈ BPP{a,b} ∧ E
bk+1

�−→} ∪ {(E, G) | E ∈ BPP{a,b}}
is a simulation. �

16



Lemma A.8: If [[lP ]]R′
s1−→ E

s2−→ F and s1s2 = [[l]] with s1, s2 �= ε, then E = [[P ]]s2,k1,k2

where k1 = #a(s1) and k = #b(s1).

Proof: The proof proceeds by induction on the length of s1.

• Case where the length of s1 is 1: By the definition of the encoding, s1 must be a
and E = [[P ]]s2,1,0 as required.

• Case where s1 = s′1t with s′1 �= ε and t ∈ {a, b}. In this case, there exists E1 such

that [[lP ]]R′
s′1−→ E1

t−→ E. Let #a(s′1) = k′
1 and #b(s′1) = k′

2. By the induction
hypothesis, E1 = [[P ]]ts2,k′

1,k′
2 . Hence, (i) E = [[P ]]s2,k1,k2 , (ii) t = a, k′

1 = 1 and
E = H(2N−2−k′

2), or (iii) t = a, k′
1 = 2 and E = G. In the second case, #a(s1) = 2

and #b(s1) = k′
2 but E

b2N−1−k′2
�−→ . This contradicts with the assumption E

s2−→ and
s1s2 = [[l]]. In the third case, #a(s1s2) = 3, which contradicts with the assumption
s1s2 = [[l]]. Hence, it must be the case that E = [[P ]]s2,k1,k2 .

�

Lemma A.9: If [[P ]]R′
s1−→ E

s2−→ F and s1s2 = [[l]] with s1, s2 �= ε, then [[P ′]]s2,k1,k2 ≤sim

E for some P ′, where k1 = #a(s1) and k2 = #b(s1).

Proof: We show this by induction on the derivation of the first step of the transition
sequence [[P ]]R′

s1−→ E, with case analysis on the last rule used.

• Case Tr-Act: The required result follows immediately from Lemma A.8.

• Case Tr-OrL: In this case, we have P = P1 |P2 and [[P1]]R′
s1−→ E

s2−→ F .
Therefore, the required result follows immediately from the induction hypothesis.

• Case Tr-OrR: Similar to the above case.

• Case Tr-ParL: In this case, we have P = P1 |P2. By Lemma A.5, it must be
the case that E = E1 | [[P2]]R′ and F = F1 | [[P2]]R′ with [[P1]]R′

s1−→ E1
s2−→ F1.

By the induction hypothesis, [[P ′]]s2,k1,k2 ≤sim E1 for some P ′. Since E1 ≤sim

E1 | [[P2]]R′ = E, we have [[P ′]]s2,k1,k2 ≤sim E as required.

• Case Tr-ParR: Similar to the above case.

• Case Tr-Rec: In this case, we have P = μX.P1 and [[[P/X]P1]]R′ = [[[P ]]R′/X][[P1]]R′
s1−→

E
s2−→ F . Therefore, the required result follows immediately from the induction

hypothesis.

�

Lemma A.10: Suppose that the following conditions hold.

1. [[P ]]L
s1−→ E

s2−→ F with s1s2 = [[l]] and s1, s2 �= ε.

2. E
t−→ E′ for some t ∈ {a, b}.

3. There is no s′2 such that E′ s′2−→ F and ts′2 = s2.

17



Then, t = a and either (i) #a(s1) = 2 or (ii) #a(s1) = 1 and E′ b2N−1−#b(s1)

�−→ .

Proof: We show this by induction on the derivation of the first step of the transition
sequence [[P ]]R′

s1−→ E, with case analysis on the last rule used.

• Case Tr-Act: In this case, it must be the case that [[P ]]L = s1s2[[P1]]L, E =
s2[[P1]]L, and F = [[P1]]L. The required property holds vacuously, since the third
assumption of the lemma does not hold.

• Case Tr-OrL: In this case, we have P = P1 + P2 and [[P1]]L
s1−→ E

s2−→ F . The
required property follows immediately from the induction hypothesis.

• Case Tr-OrR: Similar to the above case.

• Case Tr-ParL: In this case, we have P = P1 |P2. By Lemma A.5 and the
first condition, it must be the case that E = E1 | [[P2]]L and F = F1 | [[P2]]L with
[[P1]]L

s1−→ E1
s2−→ F1. By the condition E

t−→ E′, we have either (i) E′ =
E′

1 | [[P2]]L and E1
t−→ E′

1, or (ii) E′ = E1 |E′
2 and [[P2]]L

t−→ E′
2.

– Case E′ = E′
1 | [[P2]]L and E1

t−→ E′
1: Suppose E′

1

s′2−→ F1. Then, we have

E′ s′2−→ F , which contradicts with the third condition of the lemma. Therefore

we have E′
1

s′2�−→ F1. By the induction hypothesis, we have t = a and either

(i-1) #a(s1) = 2, or (i-2) #a(s1) = 1 and E′
1

b2N−1−#b(s1)

�−→ . In the latter case,

by [[P2]]L
b

�−→ (Lemma A.3), we have E
b2N−1−#b(s1)

�−→ as required.

– Case E′ = E1 |E′
2 and [[P2]]L

t−→ E′
2: By Lemma A.3, we have t = a. By

the condition s1 �= ε and Lemma A.3, #a(s1) is either 1 or 2. Suppose

#a(s1) = 1 but E′ b2N−1−#b(s1)−→ . Then, there must exist i and j such that

E1
bi−→ and E′

2
bj−→ with i + j = 2N − 1 − #b(s1). However, by Lemma A.3,

it must be the case that #b(s1) + i ≤ N − 1 and j ≤ N − 1, which implies
i + j ≤ 2N − 2 − #b(s1); hence a contradiction. Thus, we have either (ii-1)

#a(s1) = 2, or (ii-2) #a(s1) = 1 and E′ b2N−1−#b(s1)

�−→ .

• Case Tr-ParR: Similar to the above case.

• Case Tr-Rec: In this case, we have P = μX.P1 and [[[P/X]P1]]L = [[[P ]]L/X][[P1]]L
s1−→

E
s2−→ F . The required property follows immediately from the induction hypoth-

esis.

�

A.3 Proof of Theorem 4.3

We now give a full proof of Theorem 4.3.

Proof: This follows from the fact that R∪ (≤sim R ≤sim) is a simulation. �

18



Proof of Theorem 4.3:

• “Only if” : Define the relation [[≤sim ]] by:

[[≤sim ]] = {(E, E) | E ∈ BPP{a,b}}
∪ {([[P ]]L, [[Q]]R′) | P ≤sim Q}
∪ {(E, F ) | P ≤sim Q ∧ P ′ ≤sim Q′ ∧ s1s2 = [[l]] ∧ s1, s2 �= ε∧

[[P ]]L
s1−→ E

s2−→ [[P ′]]L ∧ [[Q]]R′
s1−→ F

s2−→ [[Q′]]R′}
It suffices to show that [[≤sim ]] satisfies the condition of Lemma 4.4. Suppose
(E, F ) ∈ [[≤sim ]]. We perform case analysis on which set contains (E, F ). The case
(E, F ) is in the first set is trivial.

– Case where (E, F ) is in the second set: In this case, E = [[P ]]L and F = [[Q]]R′ ,
with P ≤sim Q. Suppose E

t−→ E′. Then by Lemma A.4, there exist s, l

and P ′ such that P
l−→ P ′ and E

t−→ E′ s−→ [[P ′]]L with ts = [[l]]. By the
condition P ≤sim Q, there exists Q′ such that Q

l−→ Q′ with P ′ ≤sim Q′. By
Lemma A.1, there exists F ′ such that [[Q]]R′

t−→ F ′ s−→ [[Q′]]R′ . The required
result follows, since (E′, F ′) is in the third set of [[≤sim ]].

– Case where (E, F ) is in the third set: In this case, we have:

P ≤sim Q P ′ ≤sim Q′ s1s2 = [[l]] s1, s2 �= ε

[[P ]]L
s1−→ E

s2−→ [[P ′]]L [[Q]]R′
s1−→ F

s2−→ [[Q′]]R′

Suppose E
t−→ E′. There are two cases to consider:

∗ Case E
t−→ E′ s′2−→ [[P ′]]L where s2 = ts′2. By the condition F

s2−→ [[Q′]]R′ ,

there exists F ′ such that F
t−→ F ′ s′2−→ [[Q′]]R′ . The required result

follows, since (E′, F ′) is in either the second or the third set.

∗ Case where E
t−→ E′ s′2−→ [[P ′]]L does not hold for s′2 such that ts′2 = s2.

By Lemma A.9 and the condition [[Q]]R′
s1−→ F

s2−→ [[Q′]]R′ , [[Q1]]s2,k1,k2 ≤sim

F for some Q1, where k1 = #a(s1) and k2 = #b(s1). By Lemma A.10,

we also have t = a and either (i) #a(s1) = 2 or (ii) E′ b2N−1−k

�−→ and
#a(s1) = 1. In case (i), by [[Q1]]s2,2,k2 ≤sim F , there exists F ′ such that
F

t−→ F ′ and G ≤sim F ′. Since R contains the identity relation, we have
E′ ≤sim GRG ≤sim F ′ as required. In case (ii), by [[Q1]]s2,1,k2 ≤sim F ,
there exists F ′ such that F

t−→ F ′ and H(2N−2−k2) ≤sim F ′. Moreover,

by Lemma A.7 and E′ b2N−1−k2

�−→ , we have E′ ≤sim H(2N−2−k2). Hence, we
have E′ ≤sim H(2N−2−k2)RH(2N−2−k2) ≤sim F ′ as required.

• “If” : Define the relation S by:

S = {(P, Q) | [[P ]]L ≤sim [[Q]]R′}

We prove that S is simulation. Suppose (P, Q) ∈ S and P
l−→ P ′. Then [[P ]]L

[[l]]−→
[[P ′]]L holds by Lemma 3.7. By the definition of S, [[P ]]L ≤sim [[Q]]R′ , so that there

19



exists some F such that [[Q]]R′
[[l]]−→ F and [[P ′]]L ≤sim F . By Lemma A.6, there

exists some Q′ such that F = [[Q′]]R′ and Q
l−→ Q′. We have (P ′, Q′) ∈ S as

required, since [[P ′]]L ≤sim [[Q′]]R′ holds.

�

A.4 Proof of Lemma 5.4

Proof: We show this by induction on the structure of U .

• U = 0: Let P = 0. Then, x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r :
chanU ′ [ ] � P if and only if U ′ ≤ U as required.

• U = Xi: Let P = xi![r].0. Then,

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanU ′ [ ] � P
⇐⇒ U ′ ≤ Ui |0
⇐⇒ U ′ ≤ Ui

• U =!V : By the induction hypothesis, there exists P1 such that

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanV ′ [ ] � P1

⇐⇒ V ′ ≤ [U1/X1, . . . , Un/Xn]V

Let P = x![ ]. P1. Then,

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanU ′ [ ] � P
⇐⇒ U ′ ≤![U1/X1, . . . , Un/Xn]V = [U1/X1, . . . , Un/Xn]U

• U =?V : Similar to the above case.

• U = V1 |V2: By the induction hypothesis, there exist P1 and P2 such that

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanV ′
1
[ ] � P1

⇐⇒ V ′
1 ≤ [U1/X1, . . . , Un/Xn]V1

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanV ′
2
[ ] � P2

⇐⇒ V ′
2 ≤ [U1/X1, . . . , Un/Xn]V2

Let P = P1 |P2. Then,

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanU ′ [ ] � P
⇐⇒ U ′ ≤ [U1/X1, . . . , Un/Xn]V1 | [U1/X1, . . . , Un/Xn]V2 = [U1/X1, . . . , Un/Xn]U

• U = V1 + V2: By the induction hypothesis, there exist P1 and P2 such that

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanV ′
1
[ ] � P1

⇐⇒ V ′
1 ≤ [U1/X1, . . . , Un/Xn]V1

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanV ′
2
[ ] � P2

⇐⇒ V ′
2 ≤ [U1/X1, . . . , Un/Xn]V2

20



Let P = (νu : U⊥) (u![r].0 |u?[r]. P1 |u?[r]. P2). Then,

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanU ′ [ ] � P
⇐⇒ U ′ ≤ [U1/X1, . . . , Un/Xn]V1 ∧ U ′ ≤ [U1/X1, . . . , Un/Xn]V2

⇐⇒ U ′ ≤ [U1/X1, . . . , Un/Xn]U

Here, note that U ≤ U1 ∧ U ≤ U2 if and only if U ≤ U1 + U2.

• U = μXn+1.V : By the induction hypothesis, there exists P1 such that

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]],
xn+1 : chanU⊥ [chanUn+1 [ ]], r : chanV ′ [ ] � P1

⇐⇒ V ′ ≤ [U1/X1, . . . , Un/Xn, Un+1/Xn+1]V

Let P = (νxn+1 : U⊥) (xn+1?[r]. P1 |xn+1![r].0). Then,

x1 : chanU⊥ [chanU1 [ ]], . . . , xn : chanU⊥ [chanUn [ ]], r : chanU ′ [ ] � P
⇐⇒ ∃Un+1.(U ′ ≤ Un+1 ∧ Un+1 ≤ [U1/X1, . . . , Un/Xn, Un+1/Xn+1]V )
⇐⇒ U ′ ≤ U

Here, we have used the fact that V1 ≤ [V1/X]V2 if and only if V1 ≤ μX.V2.

�

21


