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Abstract

Hüttel [3] gave a proof of the undecidability of BPP equivalences. In this note,
we point out some of the flaws in his proof, and provide a new, actually simpler
proof.

1 Flaws in Hüttel’s Proof

Hüttel [3] proves that all BPP equivalences between ready simulation equivalence and
trace equivalence are undecidable by encoding a Minsky machine M into two BPP
processes L and L, so that (i) If M halts, then the trace set of L is not a subset of the
trace set of L, and (ii) If M does not halt, then L ready-simulates L. The proof contains
the following major flaws.

1. The proof of Theorem 6 (the main theorem) says:
“If M does not halt, Lk = Lstop is unreachable, and R = · · · is seen to be a ready-
simulation.”
This is wrong, because L may reach Lstop by invalid transitions. Therefore, the
definition of the relation R must be modified, at least to include a pair having
Lstop on the left-hand side. Moreover, the first pair:

(Lj |Cm
i |Cn

i+1 |Lc0 |Lc1, Lj |Cm
i |Cn

i+1 |Lc0 |Lc1)

does not satisfy the conditions required for R to be a ready-simulation. For exam-
ple, if j is a type 1 instruction, the lefthand side can make the following transition:

Lj |Cm
i |Cn

i+1 |Lc0 |Lc1
l′′2i−→ l′′2iG |Cm

i |Cn
i+1 |Lc0 |Lc1.

It should be matched by:

Lj |Cm
i |Cn

i+1 |Lc0 |Lc1
l′′2i−→ HS |Cm

i |Cn
i+1 |Lc0 |Lc1

for some S ⊆ Act2. However, l′′′2i is in the ready set of HS |Cm
i |Cn

i+1 |Lc0 |Lc1 but
not in that of l′′2iG |Cm

i |Cn
i+1 |Lc0 |Lc1.
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2. The proof of Corollary 8 (which deduces the undecidability of equivalence relations
from the undecidability of preorders) says:
“As any equivalence �′ from ready simulation downwards in the hierarchy of Fig-
ure 1 is ... and satisfies

E �′ F iffE �′ E + F

where �′ is the equivalence closure of �′”
This does not hold in general. For example, let �′ be the ready simulation, and
E = a and F = 0. Then, E �′ E + F but E ��′ F .

The second flaw is not so hard to fix. On the other hand, we worked hard to fix the
first flaw, but failed. We change (or actually simplify) the encoding of Minsky machines
and give a new proof using the simplified encoding. In the rest of this note, we first
introduce the syntax and semantics of BPP processes and Minsky machines in Sections 2
and 3. We then prove that all the equivalences between trace equivalence and ready
simulation equivalence are undecidable, using the new encoding.

2 Basic Parallel Processes (BPP)

BPP [1] is a calculus of processes consisting of prefixes, parallel composition, internal
choice, and recursion. Unlike in CCS [4], there is no synchronization mechanism (such
as the transition a.P | a.Q

τ−→ P |Q).

2.1 Syntax

The syntax of processes is given by:

P ::= 0 | X | lP | (P |Q) | P + Q | μX.P

Here, X and l are meta-variables ranging over the sets of process variables and action
labels respectively. We write Act for the set of action labels, and write BPPAct for the
set of BPP processes whose action labels are in the set Act.

The process 0 does nothing. A process lP first performs l and then behaves like P .
P |Q is a parallel composition of P and Q, and P + Q is an internal choice of P or Q.
μX.P stands for the recursive process X usually defined by the equation X = P .

We often omit 0 and just write a for a0. We give a higher-precedence to unary
prefixes, +, and | in this order, so that l1P1 | l2P2 + l3P3 means (l1P1) | ((l2P2) + (l3P3)).

We say that P is guarded by l in lP . A recursive process μX.P is guarded if X
appears only in guarded positions of P . In the rest of this paper, we consider only
closed processes whose recursive processes are all guarded.

In this paper, we identify BPP processes up to the monoid laws: the associativity
and commutativity of | , and the law P | 0 = P . For example, (a | b) | b and b | (b | a) are
considered identical.
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lP
l−→ P

(Tr-Act)

P
l−→ P ′

P |Q l−→ P ′ |Q
(Tr-ParL)

P
l−→ P ′

P + Q
l−→ P ′

(Tr-OrL)

[μX.P/X]P l−→ Q

μX.P
l−→ Q

(Tr-Rec)

Q
l−→ Q′

P |Q l−→ P |Q′
(Tr-ParR)

Q
l−→ Q′

P + Q
l−→ Q′

(Tr-OrR)

Figure 1: Transition rules of BPP processes

2.2 Operational semantics

The transition relation P
l−→ Q is the least relation closed under the rules in Figure 1.

2.3 Traces, simulations, and ready simulations

Definition 2.1 [trace preorder]: The set of traces of P , written trace(P ), is {a1a2 · · · an |
P

a1−→ P1
a2−→ · · · an−→ Pn}. The trace preorder ≤tr is defined by: P ≤tr Q iff

trace(P ) ⊆ trace(Q).

The simulation preorder is defined by:

Definition 2.2 [simulation]: A binary relation R on BPP processes is a simulation
if:

∀P, Q, l.((PRQ ∧ P
l−→ P ′) =⇒ ∃Q′.(Q l−→ Q′ ∧ P ′RQ′)).

The simulation preorder ≤sim is the union of all simulations, i.e., P ≤sim Q if and only
if there exists a simulation R such PRQ. We write P =sim Q if P ≤sim Q ∧ Q ≤sim P .

Definition 2.3 [ready simulation]: A binary relation R on BPP processes is a ready
simulation iff whenever PRQ,

• If P
a−→ P ′ then there exists an Q′ such that Q

a−→ Q′ and P ′RQ′.

• readies(P ) = readies(Q)

Here, readies(P ) denotes the ready set {a | ∃P ′.P a−→ P ′}.

P ≤ready Q if and only if there exists a ready simulation R such that PRQ. We write
P =ready Q if P ≤ready Q ∧ Q ≤ready P .

3 Minsky machine

A Minsky machine [5] has two counters, and consists of a sequence of the following
instructions:
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• Type 1 instruction: ci := ci + 1;goto k

• Type 2 instruction: if ci = 0 then goto k1 else ci := ci − 1;goto k2

• Halt instruction

Formally, Minsky machines can be defined as follows.

Definition 3.1: A Minsky machine M is a mapping from a finite set AddrM of natural
numbers to the set of instructions:

{Inci,k | i ∈ {0, 1}, k ∈ Addr ∪ {⊥}} ∪ {Condi,k1,k2 | i ∈ {0, 1}, k1, k2 ∈ Addr ∪ {⊥}}.

A state of a Minsky machine is a triple 〈k, m0, m1〉. The initial state σI of a Minsky
machine is 〈0, 0, 0〉. The transition relation l−→M (where l ∈ {inci, theni, elsei | i ∈
{0, 1}}) is defined by:

M(k) = Inci,k′ m′
i = mi + 1 m′

1−i = m1−i

〈k, m0, m1〉 inci−→M 〈k′, m′
0, m

′
1〉

M(k) = Condi,k1,k2 mi = 0

〈k, m0, m1〉 theni−→M 〈k1, m0, m1〉

M(k) = Condi,k1,k2 mi > 0 m′
i = mi − 1 m′

1−i = m1−i

〈k, m0, m1〉 elsei−→M 〈k2, m
′
0, m

′
1〉

We write σ
l1···ln=⇒M σ′ if σ

l1−→M · · · ln−→M σ′ for some l1, . . . , ln. We also write σ =⇒M σ′

if σ =⇒M σ′ for some s. A Minsky machine M halts if there is a reduction sequence
σI =⇒M 〈⊥, m1, m2〉 for some m1, m2.

The halting problem of Minsky machines is known to be undecidable [5]. In the rest
of this paper, we omit M and write l−→ and s=⇒ for l−→M and s=⇒M .

4 Undecidability of BPP Process Equivalences

In this section, we show that all the preorders between the trace preorder and the ready
simulation preorder on BPP (i.e., all the preorders ≤ such that ≤ready ⊆≤⊆≤tr ) are
undecidable. Those undecidability results have been already claimed by Hüttel [3], but
we believe that our proof is simpler and more convincing (in fact, his proof seems to
contain some flaws, which we found hard to fix).

The idea of our proof is the same as that of Hüttel [3]: Given the initial state σI of
a Minsky machine M , we prepare two BPP processes [[M ]]L and [[M ]]R, so that:

• If M halts, then [[M ]]L �≤tr [[M ]]R.
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• If M does not halt, [[M ]]L ≤ready [[M ]]R.

Then, it is easy to deduce that, for any preorder ≤ such that ≤ready ⊆≤⊆≤tr , a Minsky
machine M halts if and only if [[M ]]L ≤ [[M ]]R holds. Since it is undecidable whether M
halts, the preorder ≤ is also undecidable.

The basic idea of encodings is the same as that of Hirshfeld [2] used for proving the
undecidability of the trace preorder (except for some new tricks to equalize the ready
sets of [[M ]]L and [[M ]]R). A state 〈j, m0, m1〉 of a Minsky machine is represented by
processes of the form Lj |Cm0

0 |Cm1
1 and Lj |Cm0

0 |Cm1

1 , where Pm denotes the parallel
composition of m copies of P . Basically, Lj and Lj are defined so that Lj can do more
actions than Lj , except the case j = ⊥: L⊥ can do a special action w, while L⊥ cannot.
Thus, Lj can simulate the behavior of Lj as long as the Minsky machine does not halt.

We first give the definition of [[M ]]L:

Definition 4.1: Let M be a Minsky machine. [[M ]]L is defined by:

[[M ]]L = L0

Ci = ldi

Lj =

⎧⎨
⎩

lI(Ci |Lk) + U if M(j) = Inci,k

l〈iTi,k1 + l[Ei,k2 + U if M(j) = Condi,k1,k2

wU + U if j = ⊥
Ti,k = l〉iLk + U Ei,k = l]iLk + U

U =
∑

a∈Act0

aU ′ U ′ =
∑
Act1

aU ′

Here, Act0 = {lI , ld0 , ld1 , l〈0 , l〈1 , l〉0 , l〉1 , l[, l]0 , l]1 , w} and Act1 = Act0 \ {w} ∪ {l�}.
Intuitively, a transition of label inci of a Minsky machine is simulated by the action

lI . A transition of label theni is simulated by the action sequence l〈i l〉i , and a transition
of label elsei is simulated by l[ldi l]i . If M(j) = Inci,k, Lj performs the action lI and
increments the value of the counter i (by spawning a fresh copy of Ci). The role of
the process U is to force the ready set to be always Act0. In simulating the Minsky
machine, U is not intended to be used for simulating the Minsky machine; if U is used,
the special action l� would be put into the ready set.

If M(j) = Condi,k1,k2 , then Lj executes the then-branch and the else-branch in
a non-deterministic manner. Thus, [[M ]]L may execute invalid instructions that the
machine M cannot execute. Such invalid transitions are simulated by the special process
G of [[M ]]R given below.
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Definition 4.2: Let M be a Minsky machine. [[M ]]R is defined by:

[[M ]]R = L0

Ci = l]i + l〈i

Lj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lI(Ci |Lk) +
∑

i∈{0,1}
ldiG + U if M(j) = Inci,k

l〈iT i,k1 + l[Ei,k2 +
∑

i∈{0,1}
ldiG + l〉iG + U if M(j) = Condi,k1,k2

0 if j = ⊥
T i,k = l〉iLk + ld1−iG + U

Ei,k = ldiLk + ld1−iG + l]iG + U

G =
∑

a∈Act0

aG + U

The main differences of [[M ]]R from [[M ]]L are as follows.

• L⊥ cannot do any action, so that the process L⊥ |Cm0

0 |Cm1

1 (which corresponds
to the halting state of the Minsky machine) fails to simulate L⊥ |Cm0

0 |Cm1
1 .

• A process of the form lG is added to Lj , where G is a kind of universal process that
can simulate any behavior. G is used to simulate transitions of Lj that are invalid
with respect to the Minsky machine. For example, in the state Lj |Cm0

0 |Cm1
1

where M(j) = Inci,k, the only valid action corresponding to an action of the
Minsky machine is lI , but Lj |Cm0

0 |Cm1
1 can also perform an action ldi if mi > 0.

Such an action is simulated by the sub-process ldiG of Lj .

• The roles of l]i and ldi in Ci and Ei,k have been swapped: This is to take care
of the case where Lj |Cm0

0 |Cm1
1 performs invalid transitions l[l]i (recall that the

valid transition sequence is l[ldi l]i). In that case, Lj |Cm0

0 |Cm1

1 can simulate the

transitions by Lj |Cm0

0 |Cm1

1

l[−→ Ej,k |Cm0

0 |Cm1

1

l]i−→ G |Cm0

0 |Cm1

1 .

• Ci can also perform l〈i action. This is to take care of the case where M(j) is
Condi,k1,k2 , mi > 0 but Lj |Cm0

0 |Cm1
1 performs the actions l〈i l〉i . That invalid

transition sequence can be simulated by Lj |Cmi

i |Cm1−i

1−i

l〈i−→ Lj |Cmi−1
i |Cm1−i

1−i

l〉i−→
G |Cmi−1

i |Cm1−i

1−i .

Remark 4.3: In Hirshfeld’s encoding [2], a then-branch is modeled by a single action
li (instead of the two actions l〈i l〉i in our case), and Ci is of the form l]i + liG. That
encoding does not seem to work for the result below.

Now we state the main result.

Theorem 4.4:

1. If 〈0, 0, 0〉 =⇒M 〈⊥, m0, m1〉, then [[M ]]L �≤tr [[M ]]R.
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2. If 〈0, 0, 0〉 �=⇒M 〈⊥, m0, m1〉, then [[M ]]L ≤ready [[M ]]R.

Proof: See Section 4.1 �

Corollary 4.5: If R is a preorder on BPP processes and ≤ready ⊆ R ⊆≤tr , then the
relation R is undecidable.

Proof: Trivial from the fact that M does not halt if and only if [[M ]]LR[[M ]]R. �

Corollary 4.6: If R is an equivalence relation on BPP processes and =ready ⊆ R ⊆=tr ,
then the relation R is undecidable.

Proof: It suffices to show that M does not halt if and only if [[M ]]L + [[M ]]RR[[M ]]R.
If M halts, then [[M ]]L �≤tr [[M ]]R, which implies that there is a sequence s such that
s ∈ trace([[M ]]L) but s �∈ trace([[M ]]R). Thus, [[M ]]L + [[M ]]R �=tr [[M ]]R, which implies
¬([[M ]]L + [[M ]]RR[[M ]]R).

If M does not halt, then [[M ]]L ≤ready [[M ]]R. Let R1 be a ready simulation such that
([[M ]]L, [[M ]]R) ∈ R1. Then, R1∪{([[M ]]L +[[M ]]R, [[M ]]R)}∪ Id (where Id is the identity
relation) is a ready simulation, which implies [[M ]]L + [[M ]]R ≤ready [[M ]]R. [[M ]]R ≤ready

[[M ]]L+[[M ]]R also holds, since {([[M ]]R, [[M ]]L+[[M ]]R)}∪Id is a ready simulation. Thus,
we have [[M ]]L + [[M ]]R =ready [[M ]]R, which implies [[M ]]L + [[M ]]RR[[M ]]R. �

4.1 Proof of Theorem 4.4

The rest of this section is devoted to the proof of Theorem 4.4.

Definition 4.7: Let σ = 〈j, m0, m1〉 be a state of a Minsky machine M . The BPP
processes [[σ]]L and [[σ]]R are defined by:

[[〈j, m, n〉]]L = Lj |Cm
0 |Cn

1

[[〈j, m, n〉]]R = Lj |Cm
0 |Cn

1

Here, Lj , Lj , Ci, and Ci are those defined in Definition 4.1.

Definition 4.8: Let λ be an element of {inci, theni, elsei | i ∈ {0, 1}}. Then, [[λ]] is
defined by:

[[inci]] = lI [[theni]] = l〈i l〉i [[elsei]] = l[ldi l]i

The following lemma means that [[σ]]L can simulate transitions of the Minsky ma-
chine.

Lemma 4.9: If σ
λ−→ σ′, then [[σ]]L

[[λ]]−→ [[σ′]]L

Proof: Trivial by the definition of [[σ]]L. �

The following lemma means that [[M ]]R can simulate a transition of the Minsky
machine only either by either performing valid actions, or by using the universal process
U .
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Lemma 4.10: If σ
λ−→ σ′ and [[σ]]R

[[λ]]−→ P , then P = [[σ′]]R or P = U ′ |Cm0

0 |Cm1

1 for
some m0 and m1.

Proof: Let σ = 〈j, m0, m1〉 and σ′ = 〈j′, m′
0, m

′
1〉. Case analysis on λ.

• Case λ = inci. In this case, M(j) = Inci,j′ and [[σ]]R = Lj |Cm0

0 |Cm1

1 , with
m′

i = mi + 1 and m′
1−i = m1−i. By the definition of Lj , P must be either

(Ci |Lj′) |Cm0

0 |Cm1

1 = [[σ′]]R or U ′ |Cm0

0 |Cm1

1 .

• Case λ = theni. In this case, M(j) = Condi,j′,k and [[σ]]R = Lj |Cm0

0 |Cm1

1 , with

mi = m′
i = 0 and m′

1−i = m1−i. Suppose [[σ]]R
l〈i−→ P1

l〉i−→ P . By the definition
of Lj , P1 must be either T i,j′ |Cm0

0 |Cm1

1 or U ′ |Cm0

0 |Cm1

1 . In the latter case, P
must be U ′ |Cm0

0 |Cm1

1 . In the former case, by the definition of T i,j′ , P must be
either Lj′ |Cm0

0 |Cm1

1 or U ′ |Cm0

0 |Cm1

1 .

• Case λ = elsei. In this case, M(j) = Condi,k,j′ and [[σ]]R = Lj |Cm0

0 |Cm1

1 , with

m′
i = mi − 1 ≥ 0 and m′

1−i = m1−i. Suppose [[σ]]R
l[−→ P1

ldi−→ P2

l]i−→ P . By
the definition of Lj , P1 must be either U ′ |Cm0

0 |Cm1

1 or Ei,j′ |Cm0

0 |Cm1

1 . In the

former case, P must be of the form U ′ |Cm′′
0

0 |Cm′′
1

1 for some m′′
0 and m′′

1. In the
latter case, P2 must be either U ′ |Cm0

0 |Cm1

1 or Lj′ |Cm0

0 |Cm1

1 . In the former case,

P must be U ′ |Cm′′
0

0 |Cm′′
1

1 for some m′′
0 and m′′

1. In the latter case, P must be
either U ′ |Cm0

0 |Cm1

1 or Lj′ |Cm′
0

0 |Cm′
1

1 .

�

We can now prove the first part of Theorem 4.4.

Lemma 4.11: If 〈0, 0, 0〉 s=⇒ 〈⊥, m0, m1〉, then [[M ]]L �≤tr [[M ]]R.

Proof: Suppose 〈0, 0, 0〉 s=⇒ 〈⊥, m0, m1〉. By Lemma 4.9, we have [[s]]w ∈ trace([[M ]]L).

Suppose [[M ]]R
[[s]]−→ P . Then, by Lemma 4.10, P must be [[〈⊥, m0, m1〉]]R = C

m0

0 |Cm1

1

or U ′ |Cm′
0

0 |Cm′
1

1 . In either case, P � w−→. Therefore, [[s]]w �∈ trace([[M ]]R). �

To show the second part of Theorem 4.4, we use the following up-to technique.

Lemma 4.12: [up-to technique] Let R be a binary relation on BPP processes, which
satisfies the following conditions:

• If PRQ and P
l−→ P ′, then Q

l−→ Q′ and P ′ ≤ready R ≤ready Q′ for some Q′.

• If PRQ, then readies(P ) = readies(Q).

Then, R ⊆≤ready .
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Proof: This follows from the fact that R ∪ (≤ready R ≤ready) is a ready simulation.
�

The following lemma states that G is universal in the sense that it can simulate any
(even invalid) state resulting from [[M ]]L (except for a process of the form U ′ |Cm0

0 |Cm1
1 ).

Lemma 4.13 [properties of G]: The following conditions hold for any m0, m1, n0, n1.

Lj |Cm0
0 |Cm1

1 ≤ready G |Cn0

0 |Cn1

1 Ti,j |Cm0
0 |Cm1

1 ≤ready G |Cn0

0 |Cn1

1

Ei,j |Cm0
0 |Cm1

1 ≤ready G |Cn0

0 |Cn1

1 U |Cm0
0 |Cm1

1 ≤ready G |Cn0

0 |Cn1

1

U ′ |Cm0
0 |Cm1

1 ≤ready U ′ |Cn0

0 |Cn1

1

Proof: It suffices to show that the following relation R is a ready simulation.

R = {(Lj |Cm0
0 |Cm1

1 , G |Cn0

0 |Cn1

1 ) | j ∈ dom(M) ∪ {⊥}, m0, m1, n0, n1 ≥ 0}
∪ {(Ti,j |Cm0

0 |Cm1
1 , G |Cn0

0 |Cn1

1 ) | i ∈ {0, 1}, j ∈ dom(M) ∪ {⊥}, m0, m1, n0, n1 ≥ 0}
∪ {(Ei,j |Cm0

0 |Cm1
1 , G |Cn0

0 |Cn1

1 ) | i ∈ {0, 1}, j ∈ dom(M) ∪ {⊥}, m0, m1, n0, n1 ≥ 0}
∪ {(U |Cm0

0 |Cm1
1 , G |Cn0

0 |Cn1

1 ) | m0, m1, n0, n1 ≥ 0}
∪ {(U ′ |Cm0

0 |Cm1
1 , U ′ |Cn0

0 |Cn1

1 ) | m0, m1, n0, n1 ≥ 0}
Suppose that (P, Q) is in the R. It is easy to check that readies(P ) = readies(Q): If
(P, Q) is in the fifth set, then readies(P ) = readies(Q) = Act1. Otherwise, readies(P ) =
readies(Q) = Act0.

It remains to show that P
l−→ P ′ implies that Q

l−→ Q′ and (P ′, Q′) ∈ R for some
Q′. The case where the transition P

l−→ P ′ comes from an action of Ci is trivial. For
other cases, we perform case analysis on P . We show only the main cases; the other
cases are similar or trivial.

• Case P = Lj |Cm0
0 |Cm1

1 : In this case, we have one of the following conditions:

– l = lI and P ′ = Lj |Cm′
0

0 |Cm′
1

1

– l = l〈i and P ′ = Ti,k |Cm0
0 |Cm1

1

– l = l[ and P ′ = Ei,k |Cm0
0 |Cm1

1

– l = w and P ′ = U |Cm0
0 |Cm1

1

– P ′ = U ′ |Cm0
0 |Cm1

1

Let Q′ be U ′ |Cn0

0 |Cn1

1 in the last case, and G |Cn0

0 |Cn1

1 in the other cases. Then,
we have Q

l−→ Q′ and (P ′, Q′) ∈ R as required.

• Case P = U |Cm0
0 |Cm1

1 . In this case, P ′ = U ′ |Cm0
0 |Cm1

1 . Thus, the required
result holds for Q′ = U ′ |Cn0

0 |Cn1

1 .

• Case P = U ′ |Cm0
0 |Cm1

1 . In this case, Q = U ′ |Cn0

0 |Cn1

1 and P ′ = P . The
required result holds for Q′ = Q.

�
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We are ready to prove Theorem 4.4.

Proof of Theorem 4.4:

1. This has been proved in Lemma 4.11.

2. Suppose 〈0, 0, 0〉 �=⇒M 〈⊥, m0, m1〉. Let R be:

Id
∪ {([[σ]]L, [[σ]]R) | σI =⇒M σ}
∪ {(Ti,k1 |Cm0

0 |Cm1
1 , T i,k1 |Cm0

0 |Cm1

1 )
| σI =⇒M 〈j, m0, m1〉 ∧ M(j) = Condi,k1,k2 ∧ mi = 0}

∪ {(Ti,k1 |Cm0
0 |Cm1

1 , Lj |Cm′
0

0 |Cm′
1

1 )
| σI =⇒M 〈j, m0, m1〉 ∧ M(j) = Condi,k1,k2 ∧ m′

i = mi − 1 ∧ m′
1−i = m1−i}

∪ {(Ei,k2 |Cm0
0 |Cm1

1 , Ei,k2 |Cm0

0 |Cm1

1 )
| σI =⇒M 〈j, m0, m1〉 ∧ M(j) = Condi,k1,k2}

∪ {(Ei,k2 |Cm′
0

0 |Cm′
1

1 , Lk2 |Cm0

0 |Cm1

1 )
| σI =⇒M 〈j, m0, m1〉 ∧ M(j) = Condi,k1,k2 ∧ m′

i = mi − 1 ∧ m′
1−i = m1−i}

It suffices to show that R is a ready simulation up to ≤ready . Suppose (P, Q) is in
R. We can immediately obtain readies(P ) = readies(Q) (note that if (P, Q) �∈ Id,
then readies(P ) = readies(Q) = Act0).

It remains to show that P
l−→ P ′ implies that Q

l−→ Q′ and P ′ ≤ready R ≤ready Q′

for some Q′. We perform case analysis on (P, Q). The case where (P, Q) ∈ Id

is trivial. In the other cases, if U is involved in the transition P
l−→ P ′, then

P ′ must be of the form U ′ |Cm0
0 |Cm1

1 . By Lemma 4.13, the result holds for

Q′ = U ′ |Cn0

0 |Cn1

1 . Suppose that U is not involved in the transition P
l−→ P ′.

• Case where (P, Q) is in the second set. In this case, we have P = Lj |Cm0
0 |Cm1

1

and Q = Lj |Cm0

0 |Cm1

1 , with σI =⇒M 〈j, m0, m1〉 and j �= ⊥. There are four
cases to consider.

– Case l = lI : In this case, M(j) = Inci,k and P ′ = Lk |Cm′
0

0 |Cm′
1

1 with
m′

i = mi + 1 and m′
1−i = m1−i. The required result holds for Q′ =

Lk |Cm′
0

0 |Cm′
1

1 .
– Case l = l〈i : In this case, M(j) = Condi,k1,k2 and P ′ = Ti,k1 |Cm0

0 |Cm1
1 .

Let Q′ be T i,k1 |Cm0

0 |Cm1

1 if mi = 0, and be Lj |Cm′
0

0 |Cm′
1

1 where m′
i =

mi − 1 and m′
1−i = m1−i. Then, the result follows.

– Case l = l[: In this case, M(j) = Condi,k1,k2 and P ′ = Ei,k2 |Cm0
0 |Cm1

1 .
Let Q′ be Ei,k2 |Cm0

0 |Cm1

1 . Then, the result follows, since (P ′, Q′) is in
the fifth set of R.
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– Case l = ldi : In this case, P ′ = Lj |Cm′
0

0 |Cm′
1

1 with m′
i = mi − 1 and

m′
1−i = m1−i. Let Q′ = G |Cm0

0 |Cm1

1 . Then, Q
l−→ Q′ and P ′ ≤ready Q′.

Since Id ⊆ R and ≤ready is transitive, we have P ′ ≤ready R ≤ready Q′ as
required.

• Case where (P, Q) is in the third set: In this case, we have P = Ti,k1 |Cm0
0 |Cm1

1

and Q = T i,k1 |Cm0

0 |Cm1

1 , with σI =⇒M 〈j, m0, m1〉, M(j) = Condi,k1,k2 ,
and mi = 0. There are two cases to consider.

– Case l = l〉i . In this case, P ′ = Lk1 |Cm0
0 |Cm1

1 . The required result holds
for Q′ = Lk1 |Cm0

0 |Cm1

1 .

– Case l = ld1−i . In this case, P ′ = Ti,k1 |Cm′
0

0 |Cm′
1

1 with m′
i = 0 and

m′
1−i = m1−i − 1. Let Q′ be G |Cm0

0 |Cm1

1 . Then, the result follows.
• Case where (P, Q) is in the fourth set: In this case, we have P = Ti,k1 |Cm0

0 |Cm1
1

and Q = Lj |Cm′
0

0 |Cm′
1

1 with M(j) = Condi,k1,k2 , m′
i = mi − 1 and m′

1−i =

m1−i. l must be either l〉i or ldi′ . Let Q′ be G |Cm′
0

0 |Cm′
1

1 . Then, the result
follows, since P ′ ≤ready Q′ by Lemma 4.13.

• Case where (P, Q) is in the fifth set: In this case, we have:

P = Ei,k2 |Cm0
0 |Cm1

1 Q = Ei,k2 |Cm0

0 |Cm1

1

σI =⇒M 〈j, m0, m1〉 M(j) = Condi,k1,k2

There are two cases to consider.
– Case l = ldi : Then, P ′ = Ei,k2 |Cm′

0
0 |Cm′

1
1 with m′

i = mi − 1 and m′
1−i =

m1−i. The required result holds for Q′ = Lk2 |Cm0

0 |Cm1

1 .
– Case l is ld1−i or l]i : The required result holds for Q′ = G |Cm0

0 |Cm1
1 .

• Case where (P, Q) is in the sixth set: In this case, we have:

P = Ei,k2 |Cm′
0

0 |Cm′
1

1 Q = Lk2 |Cm0

0 |Cm1

1

σI =⇒M 〈j, m0, m1〉 M(j) = Condi,k1,k2

m′
i = mi − 1 m′

1−i = m1−i

There are two cases to consider.
– Case l = l]i . In this case, P ′ = Lk2 |Cm′

0
0 |Cm′

1
1 . The required result holds

for Q′ = Lk2 |Cm′
0

0 |Cm′
1

1 .
– Case l = ldi′ . In this case, the required result holds for Q′ = G |Cm0

0 |Cm1

1 .

�
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