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ABSTRACT. The model checking of higher-order recursion schemes has important applications in
the verification of higher-order programs. Ong has previously shown that the modal µ-calculus model
checking of trees generated by order-n recursion scheme is n-EXPTIME complete, but his algorithm
and its correctness proof were rather complex. We give an alternative, type-based verification method:
Given a modal mu-calculus formula, we can construct a type system in which a recursion scheme is
typable if, and only if, the (possibly infinite, ranked) tree generated by the scheme satisfies the for-
mula. The model checking problem is thus reduced to a type checking problem. Our type-based ap-
proach yields a simple verification algorithm, and its correctness proof (constructed without recourse
to game semantics) is comparatively easy to understand. Furthermore, the algorithm is polynomial-
time in the size of the recursion scheme, assuming that the formula and the largest order and arity of
non-terminals of the recursion scheme are fixed.

1. INTRODUCTION

The model checking of infinite structures generated by higher-order recursion schemes has
drawn growing attention from both theoretical and practical communities. From a theoretical per-
spective, the recent interest was sparked by the discovery of Knapik et al. [14] that higher-order
recursion schemes satisfying a syntactic constraint called safety generate the same class of (possibly
infinite, ranked) trees as higher-order pushdown automata. Remarkably they also showed that these
trees have decidable monadic second-order (MSO) theories [15], subsuming earlier well-known
MSO decidability results for regular (or order-0) trees [30] and algebraic (or order-1) trees [7].
(MSO logic is a kind of gold standard of expressivity for logics that describe computational proper-
ties: all the standard temporal logics can be embedded into it, and it is hard to extend it meaningfully
without sacrificing decidability where it holds.) Ong [27] has subsequently shown that the modal
μ-calculus model checking problem for trees generated by arbitrary order-n recursion schemes is
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n-EXPTIME complete (and hence these trees have decidable MSO theories); further these schemes
are equi-expressive with a new class of automata, called collapsible pushdown automata [10]. On
the practical side, Kobayashi [17] has recently shown that the verification of higher-order programs
can be reduced to that of higher-order recursion schemes. He constructed a transformation of a
higher-order program into a recursion scheme that generates a (possibly infinite) tree represent-
ing all the possible event sequences of the program; thus, temporal properties of the program can
be verified by model-checking the recursion scheme. Following his work, a number of program
verification methods based on the model checking of recursion schemes have been proposed, and
automated verification tools for functional programs have been implemented [21, 22, 23, 28, 36].

Ong’s algorithm for verifying higher-order recursion schemes is rather complex and probably
hard to understand: The algorithm reduces the model-checking problem to a parity game over vari-
able profiles, and its correctness proof relies on game semantics [12]. Hague et al. [10] gave an
alternative proof via a reduction of the model checking of recursion schemes to that of collapsible
pushdown automata; their reduction is also based on game semantics. Kobayashi [17] showed that
given a Büchi tree automaton with a trivial acceptance condition (the class which Aehlig [1] has
called trivial automata), one can construct an intersection type system in which a recursion scheme
is typable if, and only if, the tree generated by the scheme is accepted by the automaton. (Prior to
Kobayashi’s work [17], Aehlig [1] has also proposed a verification method for the same class of
trivial automata. Kobayashi’s type system is closely related to Aehlig’s, which was not presented in
the form of a type system: See Section 6.) The advantages of the type system are that the correctness
of the algorithm is much simpler, and it is easier to optimize the algorithm in a number of special
cases, by standard methods for type inference. Specifically, Kobayashi [17] has shown that, assum-
ing that the automaton and the largest order and arity of non-terminals of the recursion scheme are
fixed, the verification algorithm runs in time linear in the size of the recursion scheme. Based on the
type system, Kobayashi [16, 18] has also constructed practical model checking algorithms, which
work reasonably well for typical inputs despite the extremely high worst-case complexity.

This paper builds on Kobayashi’s type system [17] and extends it to a type system capable
of the modal μ-calculus model checking of trees generated by higher-order recursion schemes.
Equivalently (thanks to Emerson and Jutla [8]), given an alternating parity tree automaton A, one
can construct a type system TA in which a recursion scheme G is well-typed if, and only if, the tree
generated by G is accepted by A. Thus, the modal μ-calculus model checking problem is reduced
to a type inference problem.

Our type-based verification algorithm has a number of advantages:
• The algorithm is simple: the type system, to which the model checking problem is reduced,

is defined by induction over four rules. The correctness proof is, arguably, considerably easier to
understand than that of Ong’s original approach [27]. The correctness of the algorithm has two parts:
the correctness of the type system, and that of the type inference algorithm. For both parts, standard
methods (such as proving type soundness via type preservation) remain applicable, although the
reasoning about parity conditions is novel and non-trivial. It is also worth noting that this is the first
proof of Ong’s result without recourse to game semantics.1

• It is much easier to discuss the parametrized complexity and possible optimization of the
model-checking algorithm. In fact, our type-based verification algorithm runs in time polynomial
in the size of the recursion scheme, assuming that the automaton and the largest order and arity
of non-terminals of the recursion scheme are fixed. In contrast, Ong’s algorithm [27] runs in time
n-fold exponential in the size of the scheme, under the same assumption. Furthermore, almost all

1Since the first publication of our proof [19], Salvati and Walukiewicz [32] provided another proof that does not rely
on game semantics.



A TYPE SYSTEM EQUIVALENT TO THE MODAL μ-CALCULUS MODEL CHECKING OF HORS 3

the known practical model-checking algorithms [16, 18, 23, 26] (albeit for subclasses of the modal
μ-calculus) are based on the type-based approach, although some of them [18, 26] also use game-
semantics. The only exception is Broadbent et al.’s saturation-based algorithm for model checking
of collapsible pushdown systems [2].

• Framed as a type system, we believe that it is easy to modify the verification algorithm to
deal with various extensions of higher-order recursion schemes. In fact, Kobayashi’s type system for
trivial automaton model checking of higher-order recursion schemes has been extended to deal with
finite data domains (such as booleans) [22, 26] and untyped higher-order recursion schemes [37].

From a type-theoretic point of view, the type system has a number of novel features which we
think are interesting: (i) variable bindings in a type environment have priorities to express when
the variables can be used, and (ii) the well-typedness of recursive definitions is defined via the
winning condition of a parity game. The latter is a non-trivial generalization of the usual treatment
of recursion in type systems for programming languages.

The rest of this paper is organized as follows. Section 2 gives preliminary definitions. Section 3
defines the type system equivalent to the model checking of recursion schemes, and Section 4 proves
its correctness. Section 5 discusses the type inference algorithm (which serves as a model-checking
algorithm for recursion schemes) and its complexity. Section 6 discusses related work and Section 7
concludes.

A preliminary summary of this article appeared in Proceedings of LICS 2009 [19]. The main
new contributions compared with the preliminary version are:

• Simplification of the type system: We have removed the flags used in the earlier type sys-
tem [19], and simplified the type system accordingly.

• More detailed proofs.
• More extensive discussion of related work, including those since 2009.

2. PRELIMINARIES

This section reviews basic definitions used throughout the paper. We first review the definition
of higher-order recursion schemes [15, 27] in Section 2.1. We then review the definition of alternat-
ing parity tree automata [9] in Section 2.2. Alternating parity tree automata are used for expressing
properties of infinite trees, and are equi-expressive with logics such as MSO and modal μ-calculus.
Finally, we review the definition of parity games [9] in Section 2.3. Parity games are often used in
the context of modal μ-calculus model checking; in fact, Ong’s algorithm [27] reduces the model
checking of higher-order recursion schemes to the solvability of a parity game. We shall use it for
defining the type system (more specifically, for typing recursion schemes).

We write {x1 �→ v1, . . . , xn �→ vn} or {x1 :v1, . . . , xn :vn}2 for the map f such that dom(f) =
{x1, . . . , xn} and f(xi) = vi for i ∈ {1, . . . , n}. For a map f , we write dom(f) and codom(f)
for the domain and co-domain of f respectively. We write f{x �→ v} for the map f ′ such that
dom(f ′) = dom(f) ∪ {x}, f ′(x) = v, and f ′(y) = f(y) for y ∈ dom(f) \ {x}.

2.1. Higher-Order Recursion Schemes. A higher-order recursion scheme is a grammar for de-
scribing an infinite tree.

2We prefer the latter notation when vi contains a symbol similar to �→, like →.
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The set of sorts3 is defined by:
κ ::= o | κ1 → κ2

Intuitively, o describes trees, while κ1 → κ2 describes a function that takes an entity of sort κ1 and
returns an entity of sort κ2. The order and arity of κ, written ord(κ) and arity(κ) respectively, are
defined by:

ord(o) := 0 ord(κ1 → κ2) := max (ord (κ1) + 1, ord (κ2))
arity(o) := 0 arity(κ1 → κ2) := arity(κ2) + 1

A ranked alphabet Σ is a map from a finite set of symbols to sorts of order 0 or 1. The sort
judgment is of the form K; Σ � t : κ, where K is a map from a finite set of variables to sorts, t
is a λ-term (that may contain elements of dom(Σ as constants), and κ is a sort. The relation is
inductively defined by the following rules.

K(x) = κ

K; Σ � x : κ

Σ(a) = κ

K; Σ � a : κ

K; Σ � t1 : κ2 → κ K; Σ � t2 : κ2
K; Σ � t1t2 : κ

K{x �→ κ1}; Σ � t : κ2
K; Σ � λx.t : κ1 → κ2

When K and Σ are fixed, there is at most one κ such that K; Σ � t : κ. We often call κ “the sort of t”
and say “t has sort κ”. A λ-term t that does not contain λ-abstractions is called an applicative term.
We often write ·̃ to indicate a (possibly empty) sequence. For example, λx̃.t means λx1. · · ·λxm.t
(where m can be 0). We write |s̃| for the length of the sequence s̃.

Definition 2.1. A (deterministic) higher-order recursion scheme (or recursion scheme, for short) G
is a quadruple (Σ,N ,R, S), where

• Σ is a ranked alphabet. The elements of Σ are called terminals.
• N is a map from a finite set of symbols called non-terminals to sorts.
• R is a map4 from the set of non-terminals (i.e. dom(N )) to λ-terms of the form λx̃.t, where

t is an applicative term. We require that (i) N ; Σ � R(F ) : N (F ), and (ii) if R(F ) = λx̃.t and t is
an applicative term, then t must have sort o.

• S is a special non-terminal called the start symbol, such that N (S) = o.
The order of a non-terminal F is ord(N (F )). The order of a recursion scheme is the highest order
of its non-terminals.

By abuse of notation, we often write a ∈ Σ and F ∈ N for a ∈ dom(Σ) and F ∈ dom(N ).
Next, we define the tree generated by a recursion scheme. The rewriting relation −→G is

defined inductively by:
• F s̃ −→G [s̃/x̃]t if R(F ) = λx̃.t.

3It is usually called a type [27]. We use the term “sorts” to avoid confusion with the intersection types introduced
later.

4Thus we assume that there is exactly one rewriting rule for each non-terminal symbol, i.e., that recursion schemes
are deterministic in this paper.
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• If t −→G t′, then ts −→G t′s and st −→G st′.
Here, [s̃/x̃]t denotes the term obtained from t by replacing variables in x̃ with the corresponding
terms in t̃ (with the assumption that |s̃| = |x̃|). We omit the subscript G whenever it is clear from
the context.

Let L be a set of symbols. A L-labelled tree is just a partial function T from {1, . . . , n}∗ (for
some fixed n ≥ 1) to L such that πi ∈ dom(t) implies {π}∪{πj | j ∈ 1 ≤ j ≤ i} ⊆ dom(t). Note
that t is unranked i.e. nodes in t that have the same label are not required to have the same number of
children. When considering the possibly infinite term-trees that are generated by recursion schemes,
we assume a given ranked alphabet Σ (say). Let n be the largest arity of symbols in Σ; a Σ-labelled
ranked tree is thus a dom(Σ)-labelled tree such that whenever T (w) = a and arity(Σ(a)) = m,
then {i | wi ∈ dom(T )} = {1, . . . ,m}. A (possibly infinite) sequence π over {1, . . . , n} is a path
of T if every finite prefix of π is in dom(T ).

We often use the usual term representation for trees. For example, we write a c (b c) for the
tree:

{ε �→ a, 1 �→ c, 2 �→ b, 2 1 �→ c}.
Given a term t, we define a (finite) tree t⊥ by:

t⊥ =

⎧⎨
⎩
f if t is a terminal f
t1

⊥t2⊥ if t is of the form t1t2 and t1⊥ 
= ⊥
⊥ otherwise

For example, (f (F a) b)⊥ = f ⊥ b. Let � be the partial order on dom(Σ) ∪ {⊥} defined by
∀a ∈ dom(Σ).⊥ � a. It is extended to a partial order on trees by: t � s iff ∀w ∈ dom(t).(w ∈
dom(s) ∧ t(w) � s(w)). For example, ⊥ � f ⊥ ⊥ � f ⊥ b � f a b. For a directed set T of trees,
we write

⊔
T for the least upper bound of elements of T with respect to �.

We are now ready to define the tree generated by a recursion scheme.

Definition 2.2 (value trees). Let G = (Σ,N ,R, S) be a higher-order recursion scheme. The tree
generated by G, or the value tree of G, written [[G]], is defined by:

[[G]] :=
⊔

{t⊥ | S −→∗
G t}.

Note that [[G]] is well-defined because −→G is confluent and t −→∗
G u implies t⊥ � u⊥. By

construction, [[G]] is a possibly infinite, ranked (Σ{⊥ �→ o})-labelled tree (but see Remark 2.1).

Example 2.1. Consider the order-1 recursion scheme G0 = (Σ,N ,R, S), where:

Σ = {a : o → o → o, b : o → o, c : o}
N = {S : o, F : o → o}
R = {S �→ F c, F �→ λx.a x (F (bx))}

S is reduced as follows.
S −→ F c

−→ a c (F (b c))
−→ a c (a (b c) (F (b(b c))))
−→ · · ·

The value tree [[G0]] is shown on the left-hand side of Figure 1.

Example 2.2. Consider the order-2 recursion scheme G1 = (Σ,N1,R1, S), where:

Σ = {a : o → o → o, b : o → o, c : o}
N1 = {S : o, F : (o → o) → o,D : (o → o) → o → o}
R1 = {S �→ F b, F �→ λf.a (f c) (F (D f)), D �→ λf.λx.f(f x)}
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Figure 1: The value trees [[G0]] (on the left-hand side) and [[G1]] (on the right-hand side).

The value tree [[G1]] is shown on the right-hand side of Figure 1,x where bk denotes k repeated
occurrences of b.

2.2. Alternating Parity Tree Automata. Given a finite set X, the set B+(X) of positive Boolean
formulas over X is defined as follows:

B+(X) � ψ ::= true | false | x | ψ ∧ ψ | ψ ∨ ψ
where x ranges over X. We say that a subset Y of X satisfies ψ just if assigning true to elements in
Y and false to elements in X \Y makes ψ true. For example, {(1, q0), (2, q1)} satisfies the formula
((1, q0) ∨ (2, q0)) ∧ (2, q1), since (true ∨ false) ∧ true is equivalent to true.

Definition 2.3 (alternating parity tree automata). An alternating parity tree automaton (or APT for
short) over Σ-labelled trees is a tuple A = (Σ, Q, δ, qI ,Ω) where
- Σ is a ranked alphabet; let m be the largest arity of the terminal symbols.
- Q is a finite set of states, and qI ∈ Q is the initial state.
- δ : Q×Σ −→ B+({1, . . . ,m} ×Q) is the transition function where, for each f ∈ Σ and q ∈ Q,

we have δ(q, f) ∈ B+({1, . . . , arity(f)} ×Q).
- Ω : Q −→ {0, · · · ,M − 1} is the priority function.

A run-tree of an alternating parity tree automaton A over a Σ-labelled ranked tree T is a
(dom(T )×Q)-labelled unranked tree R satisfying:
- ε ∈ dom(R) and R(ε) = (ε, qI); and
- for every β ∈ dom(R) with R(β) = (α, q), the set {(i, q′) | ∃j.R(βj) = (αi, q′)} satisfies
δ(q, T (α)).

Let π = π1 π2 · · · be an infinite path in R; for each i ≥ 0, let the state label of the node
π1 · · · πi be qni where qn0 , the state label of ε, is qI . We say that π satisfies the parity condition just
if the largest priority that occurs infinitely often in Ω(qn0)Ω(qn1)Ω(qn2) · · · is even. A run-tree R
is accepting if every infinite path in it satisfies the parity condition. Finally, an alternating parity
tree automaton A accepts a Σ-labeled ranked tree T if there is an accepting run-tree of A over T .

We use alternating parity tree automata for describing properties of (the value tree of) recursion
schemes, instead of modal μ-calculus formulas.

Ong [27] showed that there is a procedure that, given a recursion scheme G and an alternating
parity tree automaton A, decides whether A accepts the value tree of G.
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(ε, q0)

(1, q0) (2, q0)

(21, q0)

(211, q1)

(22, q0)

(221, q0)

(2211, q1)

(22111, q1)

(222, q0)

(2221, q0)

· · ·

· · ·

Figure 2: An accepting run-tree of A1 over [[G0]].

Theorem 2.1 (Ong [27]). Let G be a recursion scheme of order n, and A be an alternating parity
tree automaton. The problem of checking whether A accepts [[G]] is n-EXPTIME-complete.

Remark 2.1. In this paper, we only consider recursion schemes whose value trees do not contain ⊥.
Given a recursion scheme G and an alternating parity tree automaton A, one can construct G′ and A′
such that (i) the value tree of G′ does not contain ⊥, and (ii) A′ accepts G′ if, and only if, A accepts
G. Let G = (Σ,N ,R, S) be an arbitrary recursion scheme and A = (Σ{⊥ �→ 0}, Q, δ, qI ,Ω) be
an alternating parity tree automaton. Define G′ = (Σ′,N ,R′, S) and A′ = (Σ′, Q′, δ′, qI ,Ω′) by:

Σ′ = Σ{loop �→ 1}
R′ = {F �→ λx̃.loop(t) | R(F ) = λx̃.t}
Q′ = Q ∪ {q′i | qi ∈ Q}

δ′(q, a) =

⎧⎪⎪⎨
⎪⎪⎩
δ(q, a) if q ∈ Q and a ∈ dom(Σ)
δ(qi, a) if q = q′i with qi ∈ Q and a ∈ dom(Σ)
(1, q′) if q ∈ Q and a = loop

(1, q) if q = q′i with qi ∈ Q and a = loop

Ω′(q) =

⎧⎨
⎩

2 + Ω(q) if q ∈ Q
0 if q = q′i with qi ∈ Q and δ(q,⊥) = true
1 if q = q′i with qi ∈ Q and δ(q,⊥) = false

Then G′ and A′ satisfy the conditions (i) and (ii) above.

Example 2.3. Let Σ be the alphabet used in Example 2.1. Let A1 be the alternating parity tree
automaton (Σ, {q0, q1}, δ1, q0, {q0 �→ 2, q1 �→ 1}), where, for each q ∈ {q0, q1},

δ1(q, a) = (1, q) ∧ (2, q) δ1(q, b) = (1, q1)
δ1(q, c) = true

Then, A1 accepts a Σ-labelled tree t if, and only if, in every path of t, c occurs eventually after b
occurs. Figure 2 shows an accepting run-tree of A1 over the tree [[G0]] in Figure 1. Note that it has
the only one infinite path labelled by (ε, q0)(2, q0)(22, q0)(222, q0) · · ·, which satisfies the parity
condition.
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(ε, q0)

(2, q0)

(22, q0)

(222, q0)

· · ·

Figure 3: An accepting run-tree of A3 over [[G0]].

Example 2.4. Let Σ be the same alphabet as above. Let A2 be the alternating parity tree automaton
(Σ, {q0, q1}, δ2, q0,Ω2), where

δ2(q, a) = (1, q1) ∧ (2, q) for each q ∈ {q0, q1}
δ2(q, b) = (1, q) for each q ∈ {q0, q1} δ2(q, c) = true
Ω2(q0) = 2 Ω2(q1) = 1

A2 accepts a Σ-tree t if, and only if, for every path of t, if the path takes the left branch of a node
labeled by a, then the path is finite, ending with c.

Example 2.5. The shape of a run-tree can be different from that of a Σ-labelled tree. Let Σ be the
same alphabet as above, and let A3 be the alternating parity tree automaton (Σ, {q0}, δ3, q0,Ω3),
where

δ3(q0, a) = (2, q0) δ3(q, b) = δ3(q, c) = false Ω3(q0) = 0.

A3 accepts a Σ-labelled tree T if and only if its rightmost path is labelled by aω. Figure 3 shows an
accepting run-tree of A3 over the tree [[G0]] in Figure 1.

2.3. Parity Games. A parity game is a tuple (V∀, V∃, v0, E,Ω) such that E ⊆ V × V is the edge
relation of a directed graph whose node-set V is the disjoint union of V∀ and V∃; v0 ∈ V is the
start node; and Ω : V −→ {0, · · · ,M − 1} assigns a priority to each node. A play consists in the
players, ∀ and ∃, taking turns to move a token along the edges of the graph. At a given stage of the
play, suppose the token is on node v ∈ V∀ (respectively v ∈ V∃), then ∀ (respectively ∃) chooses
an edge (v, v′) and moves the token onto v′. At the start of a play, the token is placed on v0. Thus
we define a play to be a finite or infinite path π = v0 vn1 vn2 · · · in the graph that starts from v0.
Suppose π is a maximal play, i.e. either π is infinite, or ends in a node v such that ¬∃v′.(v, v′) ∈ E.
The winner of π is determined as follows:
- If π is finite, and it ends in a V∃-node (respectively V∀-node), then ∀ (respectively ∃) wins.
- If π is infinite, then ∃ wins if π satisfies the parity condition i.e. the largest number that occurs

infinitely often in the sequence Ω(v0)Ω(vn1)Ω(vn2) · · · is even; otherwise ∀ wins.
A ∃-strategy (or strategy, for short) W is a map from plays that end in a V∃-node to a node

that extends the play. We say that a strategy W is winning just if ∃ wins every (maximal) play π
that conforms with the strategy (i.e. for every prefix π0 of π that ends in a V∃-node, π0 W(π0) is a
prefix of π). Finally a strategy W is memoryless just if W’s action is determined by the last node
of the play; formally, for all plays π1 and π2 that conform with W , if their respective last nodes are
the same V∃-node, then W(π1) = W(π2). We say that a parity game is solvable just if there is a
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winning strategy (for player ∃). It is known that if there is a winning strategy for a parity game, then
there is also a memoryless winning strategy for the game [8].

3. TYPE SYSTEM

Following Kobayashi’s type system [17] for trivial-automaton model checking of recursion
schemes, for a given APT A, we construct a type system TA in which a recursion scheme is well-
typed if, and only if, the tree generated by the recursion scheme is accepted by A. Henceforth we
fix an APT A = (Q,Σ, δ, qI ,Ω).

3.1. Types. We first introduce intersection types to capture the shape of trees and tree contexts
represented by terms. Following Bakel [39], we use the normalized form of intersection types,
where intersection type constructors occur only in the lefthand side of function types.

Definition 3.1. Let q andm respectively range over the states and priorities of A. The sets of atomic
types and types are given by:

Atomic types θ ::= q | τ → θ
Types τ ::=

∧
{(θ1,m1), . . . , (θk,mk)}

Notations. We write (θ1,m1)∧· · ·∧(θk,mk), or simply
∧k

i=1 (θi,mi), for types
∧
{(θ1,m1), . . . , (θk,mk)}.

We write � for the type
∧

∅. Given a priority Ω(q) for each element q ofQ, we extend it to all atomic
types by Ω(τ → θ) := Ω(θ).

Intuitively, the type q describes a tree that can be accepted from q by A, i.e., accepted by
A′ = (Q,Σ, δ, q,Ω). In other words, q describes a tree that has a run-tree whose root is labeled
by q.

The type (q1,m1)∧ · · · ∧ (qk,mk) → q describes a function (or more accurately a tree context,
as a tree function that can be expressed by higher-order recursion schemes cannot inspect its argu-
ments) that takes a tree that can be accepted from each of the states q1, . . . , qk, and returns a tree
that is accepted from state q. To understand the meaning of the priorities mi in the type, we need to
associate (higher-order) tree contexts with corresponding contexts on run-trees. For example, if the
arity of a is 1 and δ(q0, a) = (1, q0)∧ (1, q1), then the tree context on the left-hand side of Figure 4
(which takes a tree T and returns the tree aT by filling the hole H with T ) has the context on the
right-hand side as an associated context on run-trees. In fact, if a tree T (to fill the hole H) has two
run-trees R0 and R1 whose roots are labelled by q0 and q1 respectively, then a run-tree for aT is
obtained by filling the holesH0 andH1 withR0 andR1. In this manner, one can associate a (higher-
order) context on trees with a (higher-order) context on run-trees. The type of a term then describes
the shape of a context on run-trees associated with the tree context represented by the term. Hence-
forth, in illustrations of run-tree contexts, we omit the first component of a label and specify only the
second component (which is a state of the automaton). In the type (q1,m1) ∧ · · · ∧ (qk,mk) → q,
the priority mi describes the largest priority in the path from the root of the run-tree to the hole of
type qi. Figure 5 illustrates a tree context of type (q1,m1)∧(q2,m2) → q. For example, in Figure 4,
if Ω(q0) = 0 and Ω(q1) = 1, the run-tree (and the corresponding tree context on the left-hand side)
has type (q0, 0) ∧ (q1, 1) → q0.

More generally, (θ1,m1) ∧ · · · ∧ (θk,mk) → θ describes a higher-order context on trees that
has an associated run-tree context with holes of shapes θ1, . . . , θk where the largest priority from the
root to each hole of type θi is mi. When discussing the intuitions behind types, we do not explicitly
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a

H

( , q0)

H0 H1

( , q1)( , q0)

Figure 4: A context on trees and an associated context on run-trees (where only states are shown as
labels). Dashed triangles represent holes to be filled with trees. H0 and H1 are holes on
run-trees that correspond to the hole H on trees.

q

q1 q2

The largest priority in 
this path (including 

the root and q1) is m1

The largest priority in 
this path (including the 
root node and q2) is m2

Figure 5: A context on run-trees described by (q1,m1) ∧ (q2,m2) → q

distinguish between a tree and an associated run-tree, but note that when we speak of “the largest
priority in a path”, we mean a path in a run-tree.

The set of “well-formed” types is defined by the relations τ ::κ and θ ::aκ, which should be read
“τ is a type of sort κ” and “θ is an atomic type of sort κ” respectively. We also impose a condition
on priorities.

Definition 3.2 (Well-formed types). The relations τ :: κ and θ ::a κ are the least relations closed
under the following rules:

qi ::a o

τ :: κ1 θ ::a κ2
τ → θ ::a κ1 → κ2

θi ::a κ for each i ∈ {1, . . . , n}∧
{(θ1,m1), . . . , (θn,mn)} :: κ

A type τ (respectively, atomic type θ) is well-formed just if (i) τ ::κ (respectively, θ ::aκ) for some κ,
and (ii) for each subexpression of the form

∧k
i=1 (θi,mi) → θ′, we have mi ≥ max(Ω(θ′),Ω(θi))

for each 1 ≤ i ≤ k.

For example, q1 ∧ ((q2, 1) → q3) is not well-formed, as it combines types of different sorts.
(q1,m1) ∧ (q2,m2) → q is well-formed if m1 ≥ max(Ω(q),Ω(q1)) and m2 ≥ max(Ω(q),Ω(q2));
this reflects the intuition that m1 and m2 are the largest priorities in the paths shown in Figure 5,
including the start and end nodes. Henceforth we consider only well-formed types.

3.2. Typing for Terms. Henceforth we treat non-terminals as variables. A type judgement has the
form Γ �A t : θ where t is a λ-term, and Γ, called a type environment, is a set of bindings of the
form x : (θ,m). The intuition is that if Γ �A t : q and x : (θ,m) ∈ Γ, then x can be used as
the head term in a position where m is the largest priority seen in the path (of the run-tree) from the
root of the tree generated by t. Note that Γ may contain different bindings of the same variable.
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In the following we shall omit the subscript A from �A whenever it is clear from the context.

Example 3.1. Suppose the priority Ω(qi) of qi is i for i ∈ {0, 1}, and the transition rule for a is:
δ(q0, a) = (1, q1).

(i) The judgement {x : (q1, 1)} � a x : q0 is valid. The type environment stipulates that x can
only be used at a node such that the largest priority in the path from the root is 1; the path from
the root of a x to x is labelled by q0q1, which has largest priority 1.

(ii) The judgement {x : (q0, 1)} � x : q0 is invalid, because the path from the root to x is q0, which
has largest priority 0.

(iii) The judgement {x : (q0, 1), y : ((q0, 1) → q0, 0)} � y x : q0 is valid, because y uses the
argument x only in a node such that the path from the root has largest priority 1.

Notations. We shall often drop the set braces to save writing. We write Γ, x :
∧k

i=1 (θi,mi) as a
shorthand for

Γ ∪ {x : (θ1,m1), . . . , x : (θk,mk)}
where x is assumed not to occur in Γ. We write dom(Γ) for the set {x | ∃θ,m .x : (θ,m) ∈ Γ}.

The type judgement relation Γ � t : θ is defined by induction over the following rules.

x : (θ,Ω(θ)) �A x : θ
(T-VAR)

{(i, qij) | i ∈ {1, . . . , n}, j ∈ Ji} satisfies δA(q, a)
mij = max(Ω(qij),Ω(q)) for each i ∈ {1, . . . , n}, j ∈ Ji

∅ �A a :
∧

j∈J1(q1j ,m1j) → · · · →
∧

j∈Jn(qnj,mnj) → q
(T-CONST)

Γ0 �A t0 :
∧

i∈I(θi,mi) → θ Γi �A t1 : θi for each i ∈ I
∀i, j ∈ I.((θi,mi) = (θj ,mj) ⇒ i = j)

Γ0 ∪
⋃

i∈I(Γi ⇑mi) �A t0 t1 : θ
(T-APP)

Γ, x :
∧

i∈I(θi,mi) �A t : θ I ⊆ J

Γ �A λx.t :
∧

i∈J(θi,mi) → θ
(T-ABS)

Here, Γ ⇑m is defined by:

Γ ⇑m := {F : (θ,max (m,m′)) | F : (θ,m′) ∈ Γ}
In (T-VAR), x is used at the root, so that the largest priority of the path from the root to x is

Ω(θ). The rule (T-CONST) is for terminal symbols. The premise means that the automaton A in
state q, upon reading a, spawns a new automaton that reads the i-th subtree in state qij , for each
i ∈ {1, · · · , n} and j ∈ Ji. The tree aT1 · · · Tn and an associated run-tree are shown in Figure 6.
The figure suggests we can view the constant a as a function that takes trees T1, . . . , Tn as input
such that each Ti has types qi1, . . . , qiki , and returns a tree of type q. Furthermore, it uses a run-tree
of type qij in the position where the path from the root is labelled by qqij . Thus, a can be considered
a function of type ∧k1

j=1(q1j,m1j) → · · · →
∧kn

j=1(qnj,mnj) → q,

where mij = max(Ω(qij),Ω(q)). For example, for the automaton A1 in Example 2.3, a has types
(q0, 2) → (q0, 2) → q0 and (q1, 1) → (q1, 1) → q1.
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a

T1
… 

Tn

q

… 

q11 qn1

… 

q1k

… 
qnk1 n

S11 S1k1 Sn1 Snkn

Figure 6: The tree aT1 · · · Tn (on the left-hand side) and a run-tree for it. Sij is a run-tree for Ti,
where the root is given state qij .

In (T-APP), the first premise requires that the argument of t0 should have types θi for every i ∈
I . Correspondingly the second premise requires that t1 has these types. We explain the operations
on priorities using Figure 7, which shows the case for Γi = x : (θ′i,m

′
i) (for each i ∈ {0, 1, . . . , n})

and I = {1, . . . , k}. The upper-half corresponds to the premises of the rule. The premise Γ0 � t0 :∧
i∈I(θi,mi) → θ means that the tree context generated by t0 has a run-tree of the form S0 shown

on the left-hand side. Γi � t1 : θi means that the tree context generated by t1 has a run-tree of
the form Si (for each i ∈ I = {1, . . . , k}) shown on the right-hand side. Note that Si has a hole
of type θ′i in a position where the largest priority in the path from the root of Si is m′

i. By filling
the hole of type θi in S0 with Si (for each i ∈ {1, . . . , k}), we obtain a run-tree context for the
tree context generated by t1t2. Now, the hole x of type θ′i occurs in a position where the largest
priority in the path from the root to the hole is max (mi,m

′
i). Thus, t1t2 should be typed under

x : (θ′0,m
′
0), x : (θ

′
1,max (m1,m

′
1)), . . . , x : (θ

′
1,max (mk,m

′
k)), i.e., Γ0 ∪

⋃
i∈I(Γi ⇑mi). The last

premise of T-APP forbids, for example, the following derivation:
Γ0 � t0 : (θ1,m1) → θ Γ1 � t1 : θ1 Γ2 � t1 : θ1

Γ0 ∪ (Γ1 ⇑m1) ∪ (Γ2 ⇑m1) � t0t1 : θ
which combines different type environments for the same type (θ1,m1) of t1. Although the re-
striction does not affect the soundness and completeness of the type system, it is necessary for the
discussion of the complexity in Section 5.

The rule (T-ABS) for abstraction is standard, except that weakening on x is allowed. For
technical convenience, this is the (only) place where weakening is introduced.

Remark 3.1. In rule (T-APP), k can be 0. Thus, for example, x : (� → q,Ω(q)) � x t : q is
derivable for any t, even if t is ill-typed or contains variables other than x.

Example 3.2. Recall the automaton A1 in Example 2.3. By using rule (T-CONST), we obtain the
following types for input symbols.

a : (q,Ω1(q)) → (q,Ω1(q)) → q for each q ∈ {q0, q1}
b : (q1,Ω1(q)) → q for each q ∈ {q0, q1}
c : q for each q ∈ {q0, q1}

Let θ = (q0, 2) ∧ (q1, 2) → q0, θa = (q0, 2) → (q0, 2) → q0, and Γ1 = F : (θ, 2), x : (q1, 2). The
term λx.a x (F (bx)) is typed as follows.

∅ � a : θa x : (q0, 2) � x : q0

F : (θ, 2) � F : θ x : (q1, 2) � bx : q0 x : (q1, 1) � bx : q1

F : (θ, 2), x : (q1, 2) � F (bx) : q0
F : (θ, 2), x : (q0, 2), x : (q1, 2) � a x (F (bx)) : q0

F : (θ, 2) � λx.a x (F (bx)) : θ
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S0

Sk

x: k

S1

x: 1

... x: 0

m 0

m1 mk

m 1 m k

S0

Si

x: ix: 0

m 0

m1 mk

m i1 k

Figure 7: A run-tree context for the tree context generated by t0t1 (shown on the lower-half). On
the upper-half, S0 is a run-tree context for the tree context generated by t0, and S1, . . . , Sn
are run-tree contexts for the tree context generated by t1.

Here, x : (q1, 2) � bx : q0 and x : (q1, 1) � bx : q1 are derived by:

∅ � b : (q1, 2) → q0 x : (q1, 1) � x : q1
(x : (q1, 1)) ⇑ 2 � bx : q0

and
∅ � b : (q1, 1) → q1 x : (q1, 1) � x : q1

(x : (q1, 1)) ⇑ 1 � bx : q1
Note that (x : (q1, 1)) ⇑ 2 = x : (q1, 2) and (x : (q1, 1)) ⇑ 1 = x : (q1, 1).

3.3. Typing for recursion schemes. We now define the typing relation �A G for recursion schemes.
In type systems for programming languages, a standard rule for recursion F = t is:

Γ, F : τ � t : τ
Γ � F : τ

(UNSOUND-REC)

Kobayashi [17] used essentially the same rule for the restricted class of automata (Büchi automata
with a trivial acceptance condition).

The standard rule for recursion is however insufficient for dealing with the properties described
by alternating parity tree automata (or equivalently, MSO or modal μ-calculus formula). For exam-
ple, let A′

1 be the alternating parity tree automaton obtained from A1 of Example 2.3 by replacing
the initial state replaced with q1, and let G be the recursion scheme G = (Σ, {S :o}, {S �→b(S)}, S).



14 NAOKI KOBAYASHI AND C.-H. LUKE ONG

Then, ∅ � S : q1 would be derivable by:
∅ � b : (q1, 1) → q1 S : (q1, 1) � S : q1

S : (q1, 1) � b(S) : q1
T-APP

∅ � S : q1
UNSOUND-REC

The value tree of G is however not accepted by A′
1.

We shall therefore define the typing relation �A G : q in terms of parity games.

Definition 3.3. Given an alternating parity tree automaton A = (Σ, Q, δ, qI ,Ω) and a recursion
scheme G = (Σ,N ,R, S), we define a parity game (V∀, V∃, (S, qI ,Ω(qI)), E,Ω′) as follows.

V∃ = {(F, θ,m) | F ∈ dom(N ), θ ::a N (F ),m ∈ dom(Ω)}
V∀ = {Γ | dom(Γ) ⊆ dom(N ) and ∀F : (θ,m) ∈ Γ.θ ::a N (F )}
E = {((F, θ,m),Γ) | Γ �A R(F ) : θ} ∪ {(Γ, (F, θ,m)) | F : (θ,m) ∈ Γ}

and the priority function Ω′ maps (F, θ,m) to m and Γ to 0. G is well-typed, written �A G, if player
∃ has a winning strategy for the game.

The above definition may be understood intuitively as follows. The player ∃ tries to prove that
the recursion scheme is well-typed, and the other player ∀ tries to disprove it. At a node (F, θ,m),
the player ∃ has to pick a type environment Γ under which R(F ) has type θ. The player ∀ then
picks a binding F ′ : (θ′,m′) from Γ, and asks ∃ to show why F ′ has type θ′, and then it is again
the player ∃’s turn to choose a type environment Γ′ under which R(F ′) has type θ′. The play
continues indefinitely, or ends when one of the players is unable to move. The player ∃ wins a play
if at some point, it chooses the empty type environment (so that ∀ cannot pick a binding), or if the
play is infinite, and the largest priority occurring infinitely often is even. The recursion scheme is
well-typed if the player ∃ has a strategy that wins every play, whatever choice is made by the player
∀.

The standard typing for recursion (using UNSOUND-REC above) can be considered a degener-
ate case of our definition (using parity games), where all the priorities are 0. In fact, Kobayashi’s
type system [17] is obtained as a special case of our type system TA where the priorities are re-
stricted to 0.

Example 3.3. Recall the recursion scheme G0 in Example 2.1 and the automaton A1 in Example 2.3.
Let θ be (q0, 2)∧(q1, 2) → q0. Then, valid judgements include (recall Example 3.2 for the derivation
of the second judgement):

F : (θ, 2) � F c : q0
F : (θ, 2) � λx.a x (F (bx)) : θ

A memoryless winning strategy W for the parity game is given by:

W(S, q0, 2) = F : (θ, 2)
W(F, θ, 2) = F : (θ, 2)

Example 3.4. Recall the recursion scheme G1 in Example 2.2 and the automaton A1 in Example 2.3.
Let θ1 = (q1, 1) → q1 and θ2 = (q1, 2) → q0. Then, the following type judgments hold:

F : ((θ1, 2) ∧ (θ2, 2) → q0, 2) � R1(S) : q0
ΓF � R1(F ) : (θ1, 2) ∧ (θ2, 2) → q0
∅ � R1(D) : (θ1, 1) → θ1
∅ � R1(D) : (θ1, 2) ∧ (θ2, 2) → θ2
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where ΓF is:

D : ((θ1, 1) → θ1, 2),D : ((θ1, 2) ∧ (θ2, 2) → θ2, 2), F : ((θ1, 2) ∧ (θ2, 2) → q0, 2).

A memoryless winning strategy W for the parity game is given by:

W(S, q0, 2) = F : ((θ1, 2) ∧ (θ2, 2) → q0, 2)
W(F, (θ1, 2) ∧ (θ2, 2) → q0, 2) = ΓF

W(D, (θ1, 1) → θ1, 2) = ∅
W(D, (θ1, 2) ∧ (θ2, 2) → θ2, 2) = ∅

4. CORRECTNESS OF THE TYPE SYSTEM

This section shows that the type system is sound and complete: a higher-order recursion scheme
G is well-typed if, and only if, the tree generated by G is accepted by the alternating parity tree
automaton.

4.1. Soundness. Suppose that we are given a recursion scheme G = (Σ,N ,R, S) with dom(N ) =
{F1, . . . , Fn} and S = F1, and an alternating parity tree automaton A such that �A G. The goal is
to show that there exists an accepting run-tree of A over [[G]].

We first note the following type preservation property, which can be proved in a standard man-
ner.

Lemma 4.1 (Type preservation by β-reduction). If Γ �A (λx.t0)t1 : θ, then there exists Γ′ such
that Γ′ �A [t1/x]t0 : θ and Γ′ ⊆ Γ.

Proof. See Appendix A. �

Now we shall define a rewrite system for generating an accepting run-tree of A over the value
tree of G. The rewrite relation is a binary relation on (finite, unranked) RLab-labelled trees, where
an element of RLab is either of the form 〈α, q〉 or 〈α, �,Λ,Γ � t : q〉 where Γ � t : q holds. Here
� is a natural number, Λ is a partial map from natural numbers to priorities, and α is an element
of {1, . . . , A}∗, where A is the largest arity of the terminal symbols of G. The label � counts the
number of rewriting steps along each path, and Λ(�) denotes the largest priority in the path between
the current node and the node where a non-terminal labelled by � has been introduced. By the
assumption �A G, there exists a (memoryless) winning strategy W for the parity game associated
with �A G. W can be considered as a (partial) map from tuples of the form (F, θ,m) to type
environments. We write Γ(F,θ,m) for W(F, θ,m) below.

In a type judgment Γ � F t̃ : q, we often annotate the head symbol F with its type, as Γ �
F θ t̃ : q. It means that Γ � F t̃ : q is derived from the typing F : (θ,Ω(θ)) � F : θ for the occurrence
of F as the head symbol, followed by applications of T-APP.

The initial tree of the rewrite system is 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉. Here,
each non-terminal symbol is annotated with a natural number, to indicate when the symbol was
introduced. The rewrite relation T  T ′ on RLab-labelled trees is defined by induction over the
following rules:

(i) If Γ � F �′,θ
i t̃ : q holds and Γ(Fi,θ,Λ(�′)) is defined, then

〈α, �,Λ,Γ � F �′
i t̃ : q〉  〈α, � + 1,Λ{� �→ Ω(q)},Γ′ � [t̃/x̃]ρ(t′) : q〉

writing ρ(−) := [F �
1/F1, . . . , F

�
n/Fn](−) and R(Fi) = λx̃.t′.
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Here, Γ′ is determined as follows: Take the derivation of Γ � F �′,θ
i t̃ : q, and replace the

T-VAR instance F : (θ,Ω(θ)) � F : θ by ρ(Γ(Fi,θ,Λ(�′))) � ρ(R(Fi)) : θ, yielding (a derivation
for) Γ1 ∪ ρ(Γ(Fi,θ,Λ(�′))) � ρ(R(Fi))t̃ : q for Γ1 such that Γ1 ∪ {F : (θ,Ω(θ))} = Γ. By the
type preservation property (Lemma 4.1), there exists Γ′ such that Γ′ ⊆ Γ1 ∪ ρ(Γ(Fi,θ,Λ(�′)))

and Γ′ � [t̃/x̃]ρ(t′) : q. Thus, we choose one such Γ′ above.
The renaming of Fi to F �

i is required to state Lemma 4.4.
(ii) If {(i, qi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a), and Γ � at1 · · · tn : q is derived from

Γi,j � ti : qi,j , then

〈α, �,Λ,Γ � at1 · · · tn : q〉 
〈α, q〉(〈α1, � + 1,Λ ⇑ Ω(q1,1),Γ1,1 � t1 : q1,1〉, . . . , 〈α1, �+ 1,Λ ⇑ Ω(q1,k1),Γ1,k1 � t1 : q1,k1〉

. . . 〈αn, � + 1,Λ ⇑ Ω(qn,1),Γn,1 � tn : qn,1〉, . . . , 〈αn, � + 1,Λ ⇑ Ω(qn,kn),Γn,kn � tn : qn,kn〉)
Here, Λ ⇑m is defined by:

(Λ ⇑m)(�) = max(Λ(�),m).

(iii) If T  T ′ then C[T ]  C[T ′] for every tree context C . Here, (RLab-labelled) tree contexts
are defined by:

C ::= [ ] | 〈α, q〉T1 · · · Ti−1 C Ti+1, · · · Tk,
where T1, . . . , Tk are RLab-labelled trees, and C[T ] denotes the tree obtained by replacing
[ ] in C with T .

Example 4.1. Recall the recursion scheme G0 in Example 2.1 and the automaton A1 in Example 2.3.
By using the winning strategy W in Example 3.3, we obtain the following rewrite sequence:

〈ε, 1,Λ0, S
0 : (q0, 2) � S0 : q0〉

 〈ε, 2,Λ1, F
1 : (θ, 2) � F 1 c : q0〉

 〈ε, 3,Λ2, F
2 : (θ, 2) � a c (F 2(b c)) : q0〉

 〈ε, q0〉〈1, 4,Λ2, ∅ � c : q0〉〈2, 4,Λ2, F
2 : (θ, 2) � F 2(b c) : q0〉

∗ 〈ε, q0〉〈1, q0〉〈2, 5,Λ3, F
4 : (θ, 2) � a (b c) (F 4(b (b c))) : q0〉

∗ 〈ε, q0〉〈1, q0〉(〈2, q0〉(〈21, q0〉〈211, q1〉)〈2, 6,Λ3, F
4 : (θ, 2) � F 4(b (b c)) : q0〉

 · · ·
Here, Λ0 = {0 �→ 2}, Λ1 = Λ0{1 �→ 2}, Λ2 = Λ1{2 �→ 2}, Λ3 = Λ2{4 �→ 2}, and θ =
(q0, 2)∧(q1, 2) → q0. The rewrite sequence generates the accepting run-tree in Figure 2 in Section 2.
�

To show the soundness of the type system (Theorem 4.9 below), we shall prove that there
exists a (possibly infinite) rewrite sequence of 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉 that
generates an accepting run-tree of A over [[G]]. The proof consists of the following three main
lemmas:

(I) Rewrite sequences from 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉 never get stuck
(Lemma 4.2).

(II) Any maximal5 fair rewrite sequence

〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉  T1  T2  · · ·
generates a run-tree of A over [[G]] (Lemma 4.6).

(III) Any infinite path of the run-tree mentioned in (II) satisfies parity conditions; the maximal fair
rewrite sequence of (II), therefore, generates an accepting run-tree (Lemma 4.7).

5A rewrite sequence is maximal if it is either infinite or finite and the last tree is irreducible.
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We first prove the first key property (I), stated more formally as follows:

Lemma 4.2. If 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉 ∗ C[〈α, �,Λ,Γ � t : q〉],
then 〈α, �,Λ,Γ � t : q〉  T holds for some T .

We prepare a few lemmas to prove the above lemma. The following lemma states that typing
is preserved by the rewrite relation  .

Lemma 4.3. If 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉 ∗ C[〈α, �,Λ,Γ � t : q〉], then Γ �
t : q holds.

Proof. This follows by straightforward induction on the length of the rewrite sequence. The induc-
tion step follows immediately from the definition of  . �

Thanks to Lemma 4.3, the only possibility for a rewrite sequence to get stuck is that Γ(F,θ,Λ(�′))
is undefined in clause (i) of the definition of  . To deny that possibility, we shall match a rewrite
sequence with a play of the parity game associated with the type system.

By the priority of a (RLab-labelled) tree context C[ ]q (wherein the hole [ ] is assumed to have
the state q), written Ω(C[ ]q), we mean the largest priority occurring in the path from the root of
C[ ]q to its hole [ ]q . Formally, it is defined by:

Ω([ ]q) = Ω(q)
Ω(〈α, q′〉T1 · · · Ti−1C[ ]q Ti+1, · · · Tk) = max(Ω(q′),Ω(C[ ]q))

The following lemma confirms that variables in the type environment are used correctly, ac-
cording to the intuition on type environments explained in Section 3.

Lemma 4.4. Suppose 〈α0, �0,Λ0,Γ0 � s0 : q0〉 ∗ C[〈α, �,Λ,Γ � F θ t̃ : q〉], and F is not intro-
duced by renaming (i.e. via ρ(−)) in any of the intermediate rewriting steps. Then, F :(θ,Ω(C[ ]q)) ∈
Γ0.

Proof. The proof proceeds by induction on the length r of the reduction sequence

〈α0, �0,Λ0,Γ0 � s0 : q0〉 ∗ C[〈α, �,Λ,Γ � F θ t̃ : q〉].
For the base case of r = 0, we have q = q0, Γ0 = Γ and the context C[ ]q is [ ]q. By the

definition of the annotation F θ, Γ � F θ t̃ : q must have been derived from F : (θ,Ω(θ)) � F : θ,
which implies that F : (θ,Ω(θ)) ∈ Γ.

We show the inductive case by case analysis on the first reduction step.
• Suppose the first reduction step is of the form

〈α0, �0,Λ0,Γ0 � F �′
k t̃0 : q0〉  〈α, �0 + 1,Λ′,Γ′ � [t̃/x̃]ρ(t′) : q0〉

where s0 = F �′
k t̃0 with ρ(−) := [F �0

1 /F1, . . . , F
�0
n /Fn](−) and R(Fk) = λx̃.t′. Here, by the

assumption that F is not introduced by the intermediate reduction steps, F 
∈ {F �0
1 , . . . , F

�0
n }. By

the induction hypothesis, F : (θ,Ω(C[ ]q)) ∈ Γ′ \ {F �0
1 , . . . , F

�0
n } holds. (Here, we write Γ \ S

for the type environment obtained from Γ by removing all the bindings on variables in S.) By the
definition of  , we have Γ′ \ {F �0

1 , . . . , F
�0
n } ⊆ Γ0. Thus, the required result follows.

• Suppose the first reduction step is of the form

〈α0, �0,Λ0,Γ0 � at1 · · · tn : q0〉 
〈α0, q0〉(〈α01, �0 + 1,Λ1,1,Γ1,1 � t1 : q1,1〉, . . . , 〈α01, �0 + 1, ,Λ1,k1Γ1,k1 � t1 : q1,k1〉

. . . 〈α0n, �0 + 1,Λn,1,Γn,1 � tn : qn,1〉, . . . , 〈α0n, �0 + 1,Λn,kn ,Γn,kn � tn : qn,kn〉)
where s0 = at1 · · · tn and Λi,j = Λ0 ⇑Ω(qi,j). Then, we have T1,1, . . . , Tn,kn such that:
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(i) C[〈α, �,Λ,Γ � F θ t̃ : q〉] = 〈α0, q0〉T1,1 · · · Tn,kn ; and
(ii) there exist i, j(1 ≤ i ≤ n, 1 ≤ j ≤ kn) such that Ti,j = C ′[〈α, �,Λ,Γ � F θ t̃ : q〉] and

〈α0i, �0 + 1,Λi,j ,Γi,j � ti : qi,j〉 ∗ C ′[〈α, �,Λ,Γ � F θ t̃ : q〉].
Note that Ω(C[ ]q) = max(Ω(q0),Ω(C

′[ ]q)) = max(Ω(q0),Ω(qi,j),Ω(C
′[ ]q)). By the induc-

tion hypothesis, we have F : (θ,Ω(C ′[ ]q)) ∈ Γi,j . Since Γ0 � at1 · · · tn : q0 is derived from
Γi,j � ti : qi,j , it must be the case that Γ0 =

⋃
i,j(Γi,j ⇑ max(Ω(qi,j),Ω(q0))). Thus, we

have F : (θ,max(Ω(qi,j),Ω(q0),Ω(C
′[ ]q)) ∈ Γ0. The required result follows from Ω(C[ ]q) =

max(Ω(qi,j),Ω(q0),Ω(C
′[ ]q)).

�

The following lemma confirms that the Λ-component keeps the largest priority in the path
between the current node and the node a non-terminal has been introduced.

Lemma 4.5. If 〈α0, �0,Λ0,Γ0 � F t̃ : q0〉 + C[〈α, �,Λ,Γ � s : q〉], then Λ(�0) = Ω(C[ ]q).

Proof. This follows by straightforward induction on the length of the reduction sequence. For the
base case, by the definition of  , C = [ ] and Λ(�0) = Ω(q), so that the result follows immedi-
ately. For the induction step, suppose 〈α0, �0,Λ0,Γ0 � F t̃ : q0〉 + C ′[〈α′, �′,Λ′,Γ′ � s′ : q′〉] 
C[〈α, �,Λ,Γ � s : q〉]. If the last step comes from (i) (with (iii)), C = C ′ and q = q′ with
Λ = Λ′{� �→ Ω(q)}. By the induction hypothesis, we have Λ(�0) = Λ′(�0) = Ω(C ′[ ]q) = Ω(C[ ]q)
as required. If the last step comes from (ii), C = C ′[〈α′, q′〉 · · · [ ] · · · ] with Λ = Λ′ ⇑ Ω(q). By the
induction hypothesis, we have Λ(�0) = max(Λ′(�0),Ω(q)) = max(Ω(C ′[ ]q′),Ω(q)) = Ω(C[ ]q)
as required. �

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. Suppose 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉 ∗ C[〈α, �,Λ,Γ � t : q〉].
By Lemma 4.3, we have Γ � t : q. If t is of the form at1 · · · tn, then the result follows immedi-
ately from Γ � t : q and clause (ii) for  . If t is of the form F �′,θ

i s̃, then it suffices to show that
Γ(Fi,θ,Λ(�′)) is well defined. By the assumption 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉 ∗
C[〈α, �,Λ,Γ � t : q〉], we have the following rewrite sequence (obtained by possible permutations
of the rewrite sequence above):

〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉
 ∗ C1[〈α1, �1,Λ1,Γ1 � F �0,θ1

i1
t̃1 : q1〉]

 ∗ C1[C2[〈α2, �2,Λ2,Γ2 � F �1,θ2
i2

t̃2 : q2〉]]
 ∗ C1[C2[C3[〈α3, �3,Λ3,Γ3 � F �2,θ3

i3
t̃3 : q3〉]]]

 ∗ C1[C2[C3[· · ·Cn[〈αn, �n,Λn,Γn � F �n−1,θn
in

t̃n : qn〉] · · · ]]]
= C[〈α, �,Λ,Γ � F �′,θ

i s̃ : q〉]
where C1[C2[C3[· · ·Cn · · · ]]] = C and �0 = 1. For each k ≥ 0, the reduction

〈αk, �k,Λk,Γk � F �k−1,θk
ik

t̃k : qk〉 ∗ Ck+1[〈αk+1, �k+1,Λk+1,Γk+1 � F �k,θk+1

ik+1
t̃k+1 : qk+1〉]

must be of the form

〈αk, �k,Λk,Γk � F �k−1,θk
ik

t̃k : qk〉
 〈αk, �k + 1,Λk{�k �→ Ω(qk)},Γ′

k � [t̃k/x̃]ρ(t
′) : qk〉

∗ Ck+1[〈αk+1, �k+1,Λk+1,Γk+1 � F �k,θk+1

ik+1
t̃k+1 : qk+1〉]
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where ρ := [F �k
1 /F1, . . . , F

�k
n /Fn] and R(Fik) = λx̃.t′, with Γ′

k ⊆ Γk ∪ ρ(Γ(Fik
,θk,Λk(�

′
k−1))

). By

Lemma 4.4, F �k
ik+1

: (θk+1,Ω(Ck+1[ ]qk+1
)) ∈ Γ′

k, which implies Fik+1
: (θk+1,Ω(Ck+1[ ]qk+1

)) ∈
Γ(Fik

,θk,Λk(�k−1)). By Lemma 4.5, Λk(�k−1) = Ω(Ck[ ]qk).
Now from the preceding infinite  -rewrite sequence, we can extract a sequence

(S, qI ,Ω(qI)) Γ(S,qI ,Ω(qI)) (Fi1 , θ1,Ω(C1[ ]q1)) Γ(Fi1
,θ1,Ω(C1[ ]q1 ))

(Fi2 , θ2,Ω(C2[ ]q2))

Γ(Fi2
,θ2,Ω(C2[ ]q2 ))

(Fi3 , θ3,Ω(C3[ ]q3)) Γ(Fi3
,θ3,Ω(C3[ ]q3))

· · · (Fin , θn,Ω(Cn[ ]qn)),

which is a (partial) play for the parity game that conforms to the winning strategy W . Thus,
W(Fin , θn,Ω(Cn[ ]qn))(= ΓFi,θ,Λ(�′)) must be well defined (since the player would lose otherwise).
This completes the proof of the lemma. �

We now turn to prove the second key lemma (II), formally stated as Lemma 4.6 below. We
write T � for the (unranked) tree obtained by replacing each label of the form 〈α, �,Λ,Γ � t : q〉
with 〈α, q〉.
Lemma 4.6. Let T0 be 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉. If T0  T1  T2  · · · is
a maximal fair rewrite sequence, then T :=

⋃
i∈ω Ti

� is a run-tree of A over the value tree of [[G]].

Proof. We first note that {Ti�}i∈ω is a monotonically increasing sequence (with respect to the sub-
set relation) and that each Ti

� is a (dom([[G]]) × Q)-labelled (unranked) tree, so that T is also
a (dom([[G]]) × Q)-labelled tree. We check the two conditions for T being a run-tree. First, as
T0

� = 〈ε, qI〉, T (ε) = 〈ε, qI〉 holds. To check the second property, suppose T (β) = 〈α, q〉. By
the definition of T , there exists i such that Ti(β) = 〈α, q〉 or Ti(β) = 〈α, �,Λ,Γ � t : q〉. If
Ti(β) = 〈α, q〉, then the node β must have been generated by using clause (ii) of  . Thus, the set
{(j, q′) | ∃j.Ti�(βj) = 〈αi′, q′〉} satisfies δA(q, a). Since Ti� ⊆ T , the set {(j, q′) | ∃j.T (βj) =
〈αi′, q′〉} also satisfies δA(q, a) as required.

If Ti(β) = 〈α, �,Λ,Γ � t : q〉, then by Lemma 4.2 and the assumptions that the rewrite se-
quence is fair and that [[G]] does not contain ⊥, there exists j(> i) such that Tj(β) = 〈α, q〉. Thus,
the required condition follows from the first case above. �

The last key property is stated as follows.

Lemma 4.7. Let T0 be 〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉. If T0  T1  T2  · · · is a
maximal fair rewrite sequence, then for every infinite path π of T :=

⋃
i∈ω Ti

�, the largest priority
that occurs infinitely often in π is even.

To prove the above lemma, we need the following property.

Lemma 4.8. For any infinite rewrite sequence:

〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉
= 〈α1, 1,Λ1,Γ1 � t1 : q1〉]
 C1[〈α2, 2,Λ2,Γ2 � t2 : q2〉]
 C1[C2[〈α3, 3,Λ3,Γ3 � t3 : q3〉]]
 C1[C2[C3[〈α4, 4,Λ4,Γ4 � t4 : q4〉]]]  · · · ,

there exists an infinite sequence of indices i0(= 0), i1, i2, . . . such that tij = F
ij−1

kij
s̃ij for each

j ≥ 1. (In other words, there must be an infinite sequence of non-terminals: S0, F i0
ki1
, , F i1

ki2
, · · ·

such that F ij
kij+1

has been obtained by unfolding F ij−1

kij
at the ij-th rewriting step.)

Proof. See Appendix B. �
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Proof of Lemma 4.7. By Lemma 4.8, for any infinite path π of T , there must exist an infiniterewrite
sequence:

〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉
 ∗ C1[〈α1, �1,Λ1,Γ1 � F 1

i1
t̃1 : q1〉]

 ∗ C1[C2[〈α2, �2,Λ2,Γ2 � F �1
i2
t̃2 : q2〉]]

 ∗ C1[C2[C3[〈α3, �3,Λ3,Γ3 � F �2
i3
t̃3 : q3〉]]]

 ∗ · · ·
such that the holes of C1, C1[C2], C1[C2[C3]], . . . occur in the path. By using the same argument in
the proof of Lemma 4.2, we can extract an infinite sequence

(S, qI ,Ω(qI)) Γ(S,qI ,Ω(qI)) (Fi1 , θ1,Ω(C1[ ]q1)) Γ(Fi1
,θ1,Ω(C1[ ]q1 ))

(Fi2 , θ2,Ω(C2[ ]q2)) Γ(Fi2
,θ2,Ω(C2[ ]q2))

(Fi3 , θ3,Ω(C3[ ]q3)) Γ(Fi3
,θ3,Ω(C3[ ]q3))

· · · ,
which is a winning play. It follows that the largest priority that occurs infinitely often in
Ω(C1[ ]q1),Ω(C2[ ]q2),Ω(C3[ ]q3), . . . is even. Therefore, the largest priority that occurs in the infi-
nite path π of t must also be even. �

We are now ready to prove the soundness of the type system.

Theorem 4.9 (Soundness). Let A be an alternating parity tree automaton, and G be a recursion
scheme. If �A G, then the tree generated by G is accepted by A.

Proof. Suppose �A G. By Lemma 4.2, we can construct a maximal, fair rewrite sequence

〈ε, 1, {0 �→ Ω(qI)}, S0 : (qI ,Ω(qI)) � S0 : qI〉  T1  T2  · · · .
By Lemmas 4.6 and 4.7, T :=

⋃
i∈ω Ti

� is an accepting run-tree of A over [[G]]. Thus, [[G]] is
accepted by A. �

4.2. Completeness. Let A be an alternating parity tree automaton. Assume an accepting run-tree
of A over the value tree of a recursion scheme G. The goal is to show �A G. To this end, we first
define a rewrite relation � , similar to  , so that a fair rewrite sequence based on � generates the
accepting run-tree. From the rewrite sequence, we extract a winning strategy for �A G.

We define the rewrite relation � on (finite, unranked) RLab′-labelled trees as follows, where
an element of RLab′ is either of the form 〈α, q〉 or 〈β, �, t, q〉. Here � is a natural number, β is a
sequence of pairs of natural numbers, and α is an element of {1, . . . , A}∗, where A is the largest
arity of the terminal symbols of G. We use β and � to uniquely identify each leaf introduced by
reductions. The initial tree is 〈ε, 0, S, qI〉. The rewrite relation � is defined by induction over the
following rules:

(i) If R(F ) = λx̃.t′, then:

〈β, �, F t̃, q〉 � 〈β, �+ 1, [t̃/x̃]t′, q〉
(ii) If fst(β) = α and the children of the node 〈α, q〉 of the run-tree are

〈α1, q1,1〉, . . . , 〈α1, q1,k1〉, . . . , 〈αn, qn,1〉, . . . , 〈αn, qn,kn〉
then:

〈β, �, at1 · · · tn, q〉 �
〈fst(β), q〉(〈β(1, 1), � + 1, t1, q1,1〉, . . . , 〈β(1, k1), �+ 1, t1, q1,k1〉,
. . . 〈β(n, 1), � + 1, tn, qn,1〉, . . . , 〈β(n, kn), �+ 1, tn, qn,kn〉)

Here fst((m1, n1)(m2, n2)(m3, n3) · · · ) = m1m2m3 · · ·.
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(iii) If t � t′, then C[t] � C[t′] for any RLab′-labelled tree context C . Here, RLab′-labelled
tree contexts are defined by:

C ::= [ ] | 〈α, q〉T1 · · · Ti−1 C Ti+1, · · · Tk,
where T1, . . . , Tk are RLab′-labelled trees.

Example 4.2. Recall the recursion scheme G0 in Example 2.1 and the automaton A1 in Example 2.3.
Using the accepting run-tree in Figure 2 in Section 2, we obtain the following rewrite sequence:

〈ε, 0, S, q0〉
� 〈ε, 1, F c, q0〉
� 〈ε, 2, a c (F (b c)) : q0〉
� 〈ε, q0〉 〈(1, 1), 3, c, q0〉 〈(2, 2), 3, F (b c), q0〉
�

∗ 〈ε, q0〉 〈1, q0〉 〈(2, 2), 4, a (b c) (F (b (b c))), q0〉
� 〈ε, q0〉 〈1, q0〉 (〈2, q0〉 〈(2, 2)(1, 1), 5, (b c), q0〉 〈(2, 2)(2, 2), 5, (F (b (b c))), q0〉)
� 〈ε, q0〉 〈1, q0〉 (〈2, q0〉 (〈21, q0〉〈(2, 2)(1, 1)(1, 1), 6, c, q1〉) 〈(2, 2)(2, 2), 5, (F (b (b c))), q0〉)
� 〈ε, q0〉 〈1, q0〉 (〈2, q0〉 (〈21, q0〉〈211, q1〉) 〈(2, 2)(2, 2), 5, (F (b (b c))), q0〉)
� · · ·

It generates the accepting run-tree in Figure 2. �

We write T � for the (unranked) tree obtained by replacing each label of the form 〈β, �, t, q〉
with 〈fst(β), q〉. By the definition of the rewrite relation, there is a fair, possibly infinite rewrite
sequence

〈ε, 0, S, qI〉(= T0) � T1 � T2 � · · ·
such that

⊔
Ti

� coincides with the accepting run-tree of A over the value tree of G. We pick one
such infinite rewrite sequence, and extract type information from it, as shown below.

We consider below only the reductions occurring in the sequence T0 � T1 � T2 � · · ·
(fixed above) and assume that each subterm is implicitly labelled, so that different occurrences of
the same term are distinguished. For example, when we write 〈β, �, t0t1, q〉 �

∗ C[〈β′, �′, t1t2, q′〉],
we assume that Ti = C0[〈β, �, t0t1, q〉] and Tj = C0[C[〈β′, �′, t1t2, q′〉]] for some i and j (where
i ≤ j), and t1 in t1t2 originates from t1 in the argument position of t0t1 (i.e. the former t1 is a
residual of the latter t1 w.r.t. the rewrite sequence). As before, we write Ω(C[ ]q) for the largest
priority in the path from the root of the RLab′-tree context C to the hole [ ]q which is assumed to
have state q.

Type θ(t0,β,�) of a prefix t0. A term t0 is called a prefix of t if t is of the form t0t1 · · · tk. For each
leaf 〈β, �, t, q〉 of Ti and a prefix t0 of t, we define the type θ(t0,β,�) by induction on the sort κ of t0
as follows, so that θ(t0,β,�) ::a κ holds.

(i) If the sort of t0 is o, then θ(t0,β,�) := q (note that the leaf is 〈β, �, t0, q〉).
(ii) If the sort of t0 is κ1 → · · · → κn → o, then the leaf is of the form 〈β, �, t0t1 · · · tn, q〉. Let Si

be the set of pairs (θ(ti,β′,�′),Ω(C[ ]q′)) such that 〈β, �, t0t1 · · · tn, q〉 �
∗ C[〈β′, �′, tit̃′, q′〉].

Note that since the sort of κi is less than that of t0, by the induction hypothesis, we can
determine θ(ti,β′,�′). Note also that although the set of trees C[〈β′, �′, tit̃′, q′〉] such that

〈β, �, t0t1 · · · tn, q〉 �
∗ C[〈β′, �′, tit̃′, q′〉]

may be infinite, Si is finite. Thus we can define

θ(t0,β,�) :=
∧
S1 → · · · →

∧
Sn → q.
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Type environment Γ(t0,β,�) of a prefix t0. Next, we determine a type environment Γ(t0,β,�) for each
prefix term t0 of the leaf 〈β, �, t0t1 · · · tn, q〉 so that Γ(t0,β,�) � t0 : θ(t0,β,�) holds, by induction on
the structure of the term.
- If t0 = a (∈ Σ), then Γ(t0,β,�) := ∅.
- If t0 = F (∈ N ), then Γ(F,β,�) := F : (θ(F,β,�),Ω(θ(F,β,�))).
- If t0 = t0,1t0,2, then let S be the set of triples

(β′, �′,Ω(C[ ]q′))

such that 〈β, �, t0t1 · · · tn, q〉 �
∗ C[〈β′, �′, t0,2t̃′, q′〉]. Let S′ be a subset of S such that for every

(β′′, �′′,m) ∈ S, there exists exactly one (β′, �′,m) ∈ S′ such that θ(t0,2,β′,�′) = θ(t0,2,β′′,�′′). We
then define Γ(t0,β,�) as

Γ(t0,1,β,�) ∪ (
⋃

{Γ(t0,2,β′,�′) ⇑ m | (β′, �′,m) ∈ S′}).

Remark 4.1. The typing rule T-APP requires that there is exactly one type environment for each
(θi,mi). Accordingly, by construction S′ contains exactly one element for each type (with priority)
(θ,m) of t0,2.

Example 4.3. Recall the rewrite sequence in Example 4.2. Then we have:

θ(S,ε,0) = q0
θ(F,ε,1) = (θ(c,(1,1),3), 2) ∧ (θ(c,(2,2)(1,1)(1,1),6) , 2) → θ(F c,ε,1) = (q0, 2) ∧ (q1, 2) → q0
Γ(S,ε,0) = S : θ(S,ε,0) = S : q0
Γ(F c,ε,1) = Γ(F,ε,1) ∪ Γ(c,(1,1),3) ⇑ 2 ∪ Γ(c,(2,2)(1,1)(1,1),6) ⇑ 2 = F : (q0, 2) ∧ (q1, 2) → q0.

�

The rest of the proof proceeds by showing the following properties.
(I) The extracted types for non-terminals are correct, in the sense that there exists a type envi-

ronment Γ such that Γ � R(F ) : θ(F,β,�) and Γ ⊆ Γ(t,β,�) for some t, β, �, for each θ(F,β,�).
(II) The strategy to choose Γ above in the position (F, θ(F,β,�),m) is a (memoryless) winning

strategy for the parity game associated with the type system.
The following is the key lemma for showing (I).

Lemma 4.10. If 〈ε, 0, S, qI〉 �
∗ C[〈β, �, t0t1 · · · tn, q〉] where t0 = [s1/x1, . . . , sk/xk]u then there

exist Γ0, J1, . . . , Jk , and θi,j,mi,j (1 ≤ i ≤ k, j ∈ Ji) that satisfy:

Γ0, x1 :
∧

j∈J1 (θ1,j ,m1,j), . . . , xk :
∧

j∈Jk (θk,j,mk,j) � u : θ(t0,β,�)
{(θi,j ,mi,j) | j ∈ Ji}⊆{(θ(si,β′,�′),Ω(C

′[ ]q′)) | 〈β, �, t0t1 · · · tn, q〉 �
∗ C ′[〈β′, �′, si t̃′, q′〉]}

Γ0 ⊆ Γ(t0,β,�)

Proof. The proof proceeds by induction on the structure of u.
- Case where u is a (∈ Σ) or F (∈ N ):

The required conditions hold for Γ0 = Γ(t0,β,�) and Ji = ∅ (1 ≤ i ≤ k).
- Case where u is xi:

In this case, t0 = si. The required conditions hold for: Γ0 = ∅, Ji = {1} and Ji′ = ∅ for i′ 
= i,
with θi,1 = θ(t0,β,�),mi,1 = Ω(q).
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- Case where u is u0u1:
In this case, t0 = t0,0t0,1 where t0,0 = [s̃/x̃]u0 and t0,1 = [s̃/x̃]u1. By the definition of Γ(t0,β,�),
we have:
Γ(t0,β,�) = Γ(t0,0,β,�) ∪ (

⋃
h∈H Γ(t0,1,βh,�h) ⇑ mh)

〈β, �, t0t1 · · · tn, q〉 �
∗ Ch[〈βh, �h, t0,1t̃h, qh〉], mh = Ω(Ch[ ]qh) (for each h ∈ H)

θ(t0,0,β,�) =
∧

h∈H(θ(t0,1,βh,�h),mh) → θ(t0,β,�)

By the induction hypothesis, we have:

Γ0,0, x1 :
∧

j∈J0,1 (θ0,1,j ,m0,1,j), . . . , xk :
∧

j∈J0,k (θ0,k,j,m0,k,j) � u0 : θ(t0,0,β,�)
{(θ0,i,j,m0,i,j) | j ∈ J0,i}⊆

{(θ(si,β′,�′),Ω(C
′[ ]q′)) | 〈β, �, ([s̃/x̃]u0)t0,1t1 · · · tn, q〉 �

∗ C ′[〈β′, �′, sit̃′, q′〉]}
Γ0,0 ⊆ Γ(t0,0,β,�)

and, for each h ∈ H ,
Γ0,h, x1 :

∧
j∈Jh,1 (θh,1,1,mh,1,1), . . . , xk :

∧
j∈Jh,k (θh,k,1,mh,k,1) � u1 : θ(t0,1,βh,�h)

{(θh,i,j,mh,i,j) | j ∈ Jh,i}⊆
{(θ(si,β′,�′),Ω(C

′[ ]q′)) | 〈βh, �h, ([s̃/x̃]u1)t̃h, qh〉 �
∗ C ′[〈β′, �′, sit̃′, q′〉]}

Γ0,h ⊆ Γ(t0,1,βh,�h).

Let m′
h,i,j := max(mh,i,j,mh) (for h ∈ H, i ∈ {1, . . . , k}, j ∈ Jh,i) and m′

0,i,j be m0,i,j . Let Γ0

be Γ0,0 ∪ (
⋃

h∈H Γ0,h ⇑mh). By applying T-APP, we get:

Γ0, x1 :
∧

h∈{0}∪H,j∈Jh,1 (θh,1,j,m
′
h,1,j), . . . , xk :

∧
h∈{0}∪H,j∈Jh,k (θh,k,j,m

′
h,k,j) � u : θ(t0,β,�).

Furthermore, we have:
Γ0 ⊆ Γ(t0,0,β,�) ∪ (

⋃
h∈H Γ(t0,1,βh,�h) ⇑ mh)

= Γ(t0,β,�)

and {(θh,i,j,m′
h,i,1) | h ∈ {0} ∪ H, j ∈ Jh,i} consists of pairs (θ(si,β′,�′),Ω(C

′[ ]q′)) satisfying
〈β, �, t0t1 · · · tn, q〉 �

∗ C ′[〈β′, �′, sit̃′, q′〉] as required.
�

The first property (I) follows as an easy corollary of Lemma 4.10 above.

Lemma 4.11. If 〈ε, 0, S, qI〉 �
∗ C[〈β, �, F s̃, q〉] � C[〈β, �+ 1, [s̃/x̃]t, q〉], then there exists Γ

such that Γ � λx̃.t : θ(F,β,�) and Γ ⊆ Γ([s̃/x̃]t,β,�+1).

Proof. By Lemma 4.10, there exists Γ such that:

Γ, x1 :
∧

j∈J1 (θ1,j,m1,j), . . . , xk :
∧

j∈Jk (θk,j,mk,j) � t : q
{(θi,j ,mi,j) | j ∈ Ji} ⊆ {(θ(si,β′,�′),Ω(C

′[ ]q′)) | 〈β, �, [s̃/x̃]t, q〉 �
∗ C ′[〈β′, �′, sit̃′, q′〉]}

Γ ⊆ Γ([s̃/x̃]t,β,�+1)

By the second condition and the construction of θ(F,β,�), it must be the case that

θ(F,β,�) =
∧

j∈J ′
1
(θ1,j,m1,j) → · · · →

∧
j∈J ′

k
(θk,j,mk,j) → q

J1 ⊆ J ′
1, . . . , Jk ⊆ J ′

k

for some J ′
1, . . . , J

′
k Thus, Γ � λx̃.t : θ(F,β,�) is obtained by applying T-ABS. �

To show the second property (II), we need to match each priority occurring in a type environ-
ment with the largest priority occurring in a (partial) path in the accepting run-tree. That is carried
out by the following lemma.
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Lemma 4.12. If 〈ε, 0, S, qI〉 �∗ C[〈β, �, t, q〉] and F :(θ,m) ∈ Γ(t,β,�), then there existC ′, β′, �′, t̃′, q′

such that 〈β, �, t, q〉 �
∗ C ′[〈β′, �′, F t̃′, q′〉] and m = Ω(C ′[ ]q′) with θ = θ(F,β′,�′).

Proof. We show the following, slightly strengthened property by induction on the structure of t0.
If 〈ε, 0, S, qI 〉 �∗ C[〈β, �, tũ, q〉] and F :(θ,m) ∈ Γ(t,β,�), then there existC ′, β′, �′, t̃′, q′

such that 〈β, �, tũ, q〉 �∗ C ′[〈β′, �′, F t̃′, q′〉] andm = Ω(C ′[ ]q′) with θ = θ(F,β′,�′).
- Case t is a terminal a or a non-terminal F ′ 
= F : This cannot happen by the construction of
Γ(t,β,�).

- Case t = F : The required properties holds for C ′ = [ ] β′ = β, �′ = �, and q′ = q.
- Case t = t0t1: By the definition of Γ(t,β,�), we have:

Γ(t,β,�) = Γ(t0,β,�) ∪ Γ(t1,β1,�1) ⇑ m1 ∪ · · · ∪ Γ(t1,βk,lk) ⇑ mk

where 〈β, �, t0t1ũ, q〉 �
∗ Ci[〈βi, �i, t1s̃i, qi〉] and mi = Ω(Ci[ ]qi). If F : (θ,m) ∈ Γ(t0,β,�), then

the result follows immediately from the induction hypothesis. Otherwise, we have F : (θ,m) ∈
Γ(t1,βi,�i) ⇑ mi for some i. By the definition of · ⇑ m, we have F : (θ,m′) ∈ Γ(t1,βi,�i) for some
m′ such that m = max(m′,mi). By 〈β, �, t0t1ũ, q〉 �

∗ Ci[〈βi, �i, t1s̃i, qi〉] and the induction
hypothesis, we have:

〈βi, �i, t1s̃i, qi〉 �
∗ C ′

i[〈β′i, �′i, F t̃′, q′〉]
with m′ = Ω(C ′

i[ ]q′) and θ = θ(F,β′
i,�

′
i)

. Thus, the required properties hold for C = Ci[C
′
i],

β′ = β′i, and �′ = �′i.
�

We are now ready to prove the completeness.

Theorem 4.13 (Completeness). Let A be an alternating parity tree automaton, and G be a recursion
scheme. If the tree generated by G is accepted by A, then �A G.

Proof. From an accepting run-tree of A over the value tree of G, we can construct an infinite rewrite
sequence

〈ε, 0, S, qI〉 � T1 � T2 � · · ·
that converges to the run-tree. We shall construct a winning strategy W for the parity game
(V∀, V∃, v0, E,Ω) associated with �A G : qI below. We annotate each state Γ of V∀ occurring
in W with a label of the form [β, �, t] to indicate the corresponding node in the rewrite sequence
〈ε, 0, S, qI〉 � T1 � T2 � · · ·. Note that by the construction of W below, Γ[β,�,t] ⊆ Γ(t,β,�)

holds. The winning strategy W is defined as follows. Consider a play π (F, θ,m) ∈ (V∃V∀)∗V∃ that
conforms to W . Let Γ[β,�,t] be (S : (qI ,Ω(qI)))

[ε,0,S] if π = ε; otherwise, let it be the last state of π
(in V∀). It must be the case that F : (θ,m) ∈ Γ[β,�,t] ⊆ Γ(t,β,�). By Lemma 4.12, there must exist
C, β′, �′ such that

〈β, �, t, qt〉 �
∗ C[〈β′, �′, F s̃, q′〉] � C[〈β′, �′ + 1, [s̃/x̃]tF , q

′〉]
with Ω(C[ ]q′) = m and θ = θ(F,β′,�′) where R(F ) = λx̃.tF .

By Lemma 4.11, there exists Γ′ such that Γ′ � λx̃.tF : θ(F,β′,�′) and Γ′ ⊆ Γ([s̃/x̃]tF ,β′,�′+1). We

pick one such Γ′, and define W(π (F, θ,m)) as Γ′[β′,�′+1,[s̃/x̃]tF ].
To check that W is indeed winning, consider an infinite play:

(F0, q0,m0) Γ
[β0,�0,t0]
0 (F1, θ1,m1) Γ

[β1,�1,t1]
1 (F2, θ2,m2) · · ·
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that conforms to W where (F0, q0,m0) = (S, qI ,Ω(qI)). Then the rewrite sequence 〈ε, 0, S, qI〉 �

T1 � T2 � · · · must be of the form:
〈ε, 0, S, qI〉 � 〈β0, �0,R(S), q0〉
�

∗ C1[〈β1, �1 − 1, F1s̃1, q1〉] � C1[〈β1, �1, t1, q1〉]
�

∗ C1[C2[〈β2, �2 − 1, F2s̃2, q2〉]] � C1[C2[〈β2, �2, t2, q2〉]]
�

∗ · · ·
where Ω(Ci[ ]qi) = mi(i ≥ 1). Since the rewrite sequence converges to the accepting run-tree of A
over the value tree of G, the largest priority that occurs infinitely often in m0,m1,m2, . . . must be
even. Thus, W is winning, hence �A G. �

5. TYPE INFERENCE ALGORITHM

Thanks to the development of the previous sections, the model checking of higher-order re-
cursion schemes is reduced to a type inference problem. The reduction allows us to analyze the
parametrized complexity of model checking higher-order recursion schemes. The main result is
that, assuming that the alternating parity tree automaton and the largest arity and order of non-
terminals are fixed, the time complexity of the type inference problem (hence also the recursion
scheme model checking problem) is polynomial in the size of the recursion scheme.

The type inference algorithm consists of the following two phases:
- Step 1: Construct the parity game (V∀, V∃, v0, E,Ω′) associated with the type system.
- Step 2: Decide whether there is a winning strategy for the parity game.

We assume below that recursion schemes are normalized, so that each rule of the recursion
scheme is of the form F �→ λx̃.c (F1 x̃1) · · · (FJ x̃J), where c is a terminal, a non-terminal,
or a variable, and J may be 0. To get such a normalized recursion scheme, it suffices to replace
each rule of the form F �→ λx̃.c t1 · · · ti · · · tJ (where ti is not of the form Fi x̃i) with F �→
λx̃.c t1 · · · (H x̃′) · · · tJ and add the new rule: H �→ λx̃′.λỹ.ti ỹ, where H is a fresh non-
terminal, {x̃′} is the subset of variables {x̃} that occur in ti, and ỹ is a sequence of variables added
to ensure that ti ỹ has sort o. Let |G0| and A0 be the size and the largest arity of the original
recursion scheme. Since at most |G0| replacements are required to normalize the recursion scheme,
the size and the largest arity of the normalized recursion scheme is O(|G0|A0) and 2A0 respectively
(the increase of the arity by A0 is due to the extra parameters ỹ above). Thus, the complexity result
obtained below is not affected by the normalization.

Below we write A for the largest arity of non-terminal or terminal symbols, N(≥ 1) for the
order of the recursion scheme, P for the number of rewrite rules, |Q| for the number of states of the
automaton, andM for the number of priorities, i.e., |codom(Ω)|. In the discussion of the complexity
below, we fix N and discuss the asymptotic complexity with respect to P , A, |Q|, and M . For a
sort κ of order n, an upper-bound of the number of types of sort κ, written Kn, is given by:

K0 = |Q| Kn+1 = |Q|2AMKn .

We note that Kn = expn(O(A|Q|M)) for n ≥ 1,6 where expn(x) is defined by:

exp0(x) = x expi+1(x) = 2expi(x).

6We write f(x) = g(O(h(x))) when f(x) is bounded above by g(h0(x)) for some function h0(x) such that h0(x) =
O(h(x)).
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For n = 1, Kn = |Q|2AM |Q| = 2log |Q|+AM |Q| = 2O(A|Q|M). For n > 1, we have:

Kn = |Q|2AMexpn−1(O(AM |Q|)) = 2log |Q|+expn−1(log (AM)+O(AM |Q|)) = 2expn−1(O(AM |Q|))
= expn(O(AM |Q|))

.
For step 1, we first compute the set

SF := {(Γ, θ) | Γ � R(F ) : θ, θ ::a N (F ), and ∀(G : (θ′,m)) ∈ Γ.θ′ ::a N (G)}
for each non-terminal F .

Assume that R(F ) is of the form λx̃.c(F ′
1x̃1) · · · (F ′

J x̃J). We first compute:

SF,0 := {(Γ0, θ0) | Γ0 � c : θ0, and θ0 ::a κc}
where κc is the sort of c. Since Γ0 is a singleton set {c : (θ0,Ω(θ0))} (if c is a non-terminal or a
variable) or empty (if c is a terminal), |SF,0| is at most KN . Next, for each (Γ0, τ1 → · · · → τJ →
q) ∈ SF,0 with τj =

∧
k∈Ij(θj,k,mj,k), we compute

SF,j,k := {Γj,k | Γj,k � F ′
j x̃j : θj,k}.

for each j ∈ {1, . . . , J}, k ∈ Ij . Since the number of candidates for the type of F ′
j is at most

KN and the types for the variables x̃j are uniquely determined from the type of F ′
j , |SF,j,k| is at

most KN for each j, k. Note also that since the order of the sort of θj,k is at most N − 1, |Ij | is
bounded by MKN−1. By choosing one element Γj,k from each of the sets SF,j,k, we can derive a
judgment Γ0 ∪ (

⋃
j,k Γj,k ⇑mj,k) � c(F ′

1x̃1) · · · (F ′
J x̃J) : q. SF is the set of all pairs (Γ, θ) such

that Γ � λx̃.c(F ′
1x̃1) · · · (F ′

J x̃J) : θ is obtained by applying T-ABS to Γ0 ∪ (
⋃

j,k Γj,k ⇑mj,k) �
c(F ′

1x̃1) · · · (F ′
J x̃J) : θ

′
0. Thus, the size |SF | of SF is bounded by:

KN (the number of choices of an element from SF,0)
×Πj∈{1,...,J},k∈Ij |SF,j,k| (the number of choices of elements from SF,j,k)
×KN (the number of choices for θ)
≤ K

2+AMKN−1

N

The size of each type environment in SF is at most 1 + |I1| + · · · + |IJ | ≤ 1 + AMKN−1.
Thus, the number of edges of the parity game (hence also |V∀ ∪ V∃| to be considered) is bounded
by:

PM |SF | (a bound for |{((F, θ,m),Γ) | Γ �A R(F ) : θ}|)
+PM |SF |(1 +AMKN−1) (a bound for |{(Γ, (F, θ,m)) | F : (θ,m) ∈ Γ}|)
= PM(2 +AMKN−1)K

2+AMKN−1

N

Here, we have:

K2+AMK0
1 = (2log |Q|+AM |Q|)(2+AM |Q|) = 2O((AM |Q|)2)

K
2+AMKN−1

N = (2expN−1(O(AM |Q|)))2+AMexpN−1(O(AM |Q|))

= 2expN−1(O(AM |Q|))×AMexpN−1(O(AM |Q|))

= 2expN−1(O(AM |Q|))
= expN (O(AM |Q|)) (for N ≥ 2)

Therefore, the size of the arena for the parity game is P × 2O((AM |Q|)2) for N = 1, and P ×
expN (O(AM |Q|)) for N = 2. The time complexity for constructing the arena is also in the same
order.

In Step 2, we can use Schewe’s algorithm [34] for solving parity games in time O(|V∀ ∪
V∃||E|cM ) for c ≈ 1

3 .
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Thus, the time complexity for the whole algorithm is

O(P 1+cMexpN (O(AM |Q|)))
for N ≥ 2, and O(P 1+cM2O(p(AM |Q|))) for N = 1 where p(x) is a polynomial on x.

If N , A, |Q|, and M are fixed, then the algorithm runs in time O(P 1+cM ). Since P is bounded
by the size of the recursion scheme, the time complexity is polynomial in the size of the recursion
scheme, under the assumption that the other parameters (N , A, M , and |Q|) are fixed.

For a restricted class of APT called disjuctive APT [20], the time complexity is (N − 1)-
EXPTIME complete instead of N -EXPTIME compelte. Appendix C and [20] give proofs of the
upper-bound and the lower-bound respectively.

6. RELATED WORK

6.1. Model checking recursion schemes. As summarized in Section 1, studies of model checking
recursion schemes were initiated by Knapik et al. [14, 15], who showed the decidability of the MSO
theory for safe recursion schemes. Their verification algorithm is based on a reduction of the model-
checking of an order-n recursion scheme to that of a recursion scheme of order n − 1. They [15]
also showed the equi-expressivity of safe recursion schemes and higher-order pushdown automata.
Cachat and Walukiewicz [4, 5] showed n-EXPTIME completeness of the modal μ-calculus model
checking problem over the configuration graph of higher-order pushdown automata. For the full
higher-order recursion schemes (without the safety restriction), there are three other proofs of the
decidability of the modal μ-calculus model checking. One is Ong’s original proof [27], and the other
two are due to Hague et al. [10] and Salvati and Walukiewicz [32] respectively. Ong [27] reduces
the model checking problem to parity games over variable profiles, while Hague et al. [10] reduce
it to a parity game over the configuration graph of a collapsible pushdown automaton. Both proofs
use game semantics, and are probably rather hard to understand (at least for readers unfamiliar with
game semantics). Salvati and Walukiewicz [32] reduce the model checking problem to a parity
game over configurations of Krivine machines, and further reduce the latter to a parity game on a
finite game. The notion of residuals [32] used in the second step is similar to our intersection types.

For a restricted class of properties called trivial automata (but for the full recursion schemes),
Aehlig [1] gave a simpler proof. His approach is based on a novel finite semantics for simply-typed
lambda term-trees: the meaning of an infinite tree is the set of states starting from which the given
automaton has an infinite run. Kobayashi [17] recently showed a simple type-based proof based
on a similar idea. Lester et al. [23] developed a type system for the class of alternating weak tree
automata, as a degenerate case of our type system in the present article. Kobayashi and Ong [20]
studied the complexity of model checking recursion schemes for various fragments of the modal
μ-calculus. They use the type-based technique to show upper-bounds of the complexity.

Our type-based approach is a generalization of Kobayashi’s type system [17]; when priorities
are restricted to 0, our type system coincides with his system. Our type system is also inspired by
Ong’s variable profiles [27]. In fact, variable bindings (in type environments) in our type system are
similar to Ong’s variable profiles: both are assertions for variables about the state being simulated
and the largest priority encountered for a relevant part of the computation, and both are defined by
recursion over the sort in question. Nevertheless, the details of their constructions are dissimilar,
and they give rise to radically different correctness arguments.

In addition to the advantages discussed in Section 1, a general advantage of the type-based
approach is that, when the verification succeeds, it is easy to understand why the recursion scheme
satisfies the property, by looking at the type of each non-terminal (and the winning strategy).
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Broadbent et al. [3] considered an extension of the model checking of recursion schemes called
logical reflection, whose goal is, given a recursion scheme G and a property ψ, to construct another
recursion scheme that generates the same tree as [[G]] except that each node is labelled by whether
the node satisfies ψ. Carayol and Serre [6] considered a further extension called effective MSO
selection. The proofs of the decidability of those extended problems take a detour to collapsible
higher-order pushdown automata. It is left as future work to see whether our type-based approach
can be extended to solve those problems directly without using collapsible higher-order pushdown
automata.

6.2. Implementations and applications of model checking of higher-order recursion schemes.
Since the development of type systems for model checking recursion schemes [17, 19], significant
progress has been made on implementations of model checkers for higher-order recursion schemes
and their applications to higher-order program verification. Kobayashi [16] implemented the first
model checker for higher-order recursion schemes, for the class of deterministic trivial automata.
Lester et al. [23] extended Kobayashi’s algorithm to deal with weak alternating tree automata and
implemented a model checker for that class. Kobayashi [18] and Neatherway et al. [26] imple-
mented radically different algorithms by combining ideas from types and game semantics. Vari-
ous program verification tools have been implemented on top of those model checkers. Unno et
al. [22, 38] implemented a verification tool for tree-processing higher-order functional programs.
Ong and Ramsay [28, 26] implemented a verification tool for higher-order functional programs
with pattern matching. Kobayashi et al. [21, 33] also implemented a software model checker for a
small subset of ML. So far those model checkers and program verification tools are mainly for safety
properties (except [23]) and there are no implementations of full modal μ-calculus model checkers.
Many of the algorithms mentioned above can, however, be easily (at least in theory) extended based
on the type system in the present article, so that only engineering problems are left to implement a
full modal μ-calculus model checker.

6.3. Other related type systems. Naik and Palsberg [25, 24] constructed an intersection type sys-
tem that is equivalent to model checking of an imperative language and an interrupt calculus. They
consider only the reachability problem, and do not treat higher-order languages. Kobayashi [17]
showed that the model checking of temporal properties of higher-order programs can be (rather
straightforwardly) reduced to that of higher-order recursion schemes. Thus, combined with Kobayashi’s
reduction, our type system can be regarded as an extension of Naik and Palsberg’s scenario to the
full modal μ-calculus and higher-order programs.

Type systems for tree-manipulating programs have been studied in the context of programming
languages for XML processing [11]. There are substantial differences between those type systems
and our type system. On one hand, programming languages for XML processing are concerned
about finite trees, while our type system deals with infinite trees; that is why we need the notion
of priorities and parity games for typing recursion. On the other hand, programming languages for
XML have pattern match constructs on trees and one of the main issues in designing type systems
for XML processing is how to type patterns, while recursion schemes do not have such constructs.

Intersection types have been recently applied to study problems similar to model checking of
recursion schemes [31, 35]. Among others, Terui [35] used intersection types to study complexity of
deciding whether a given simply-typed λ-term normalizes to a member of a fixed regular language.
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7. CONCLUSION

We have presented a novel type system that is equivalent to the modal μ-calculus model check-
ing of higher-order recursion schemes. Compared to existing approaches [27, 10], our type-based
method gives a simpler algorithm, and its correctness proof seems easier to understand. Further-
more, our approach yields a polynomial-time algorithm, assuming that the automaton and the largest
order and arity of non-terminals of the recursion scheme are fixed. From a type-theoretic point of
view, our type system introduces a novel approach to typing recursion, via parity games.

Implementation of a full modal μ-calculus model checker is left for future work. It is also
interesting future work to see whether the type-based method can be used to solve other problems
on higher-order recursion schemes, such as logical reflection [3] and pumping lemmas [29, 13].
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APPENDIX

APPENDIX A. TYPE PRESERVATION BY β-REDUCTION (LEMMA 4.1)

Lemma A.1. If Γ �A t : θ, then (Γ ⇑ Ω(θ)) = Γ.

Proof. The proof proceeds by induction on the derivation of Γ �A t : θ, with case analysis on the
last rule used.
- Case T-VAR: In this case, we have t = x and Γ = x : (θ,Ω(θ)). Thus, Γ ⇑ Ω(θ) = Γ follows

immediately.
- Case T-CONST: Trivial, as Γ = ∅.
- Case T-APP: In this case, we have t = t0t1, with:

Γ0 � t0 :
∧

i∈I(θi,mi) → θ Γi � t1 : θi for each i ∈ I Γ = Γ0 ∪
⋃

i∈I(Γi ⇑mi)

By the induction hypothesis, Γ0 ⇑ Ω(θ) = Γ0. By the well-formedness of
∧

i∈I(θi,mi) → θ,
it must be the case that mi ≥ Ω(θ). Thus, (Γi ⇑mi) ⇑ Ω(θ) = Γi ⇑ mi. We have therefore
Γ ⇑ Ω(θ) = Γ as required.

- Case T-ABS:
In this case, we have t = λx.t0, with:

θ =
∧

i∈J(θi,mi) → θ0 I ⊆ J Γ, x :
∧

i∈I (θi,mi) � t0 : θ0
By the induction hypothesis, we have (Γ, x :

∧
i∈I (θi,mi))⇑Ω(θ0) = Γ, x :

∧
i∈I (θi,mi). Since

Ω(θ0) = Ω(θ) and x 
∈ dom(Γ), we have Γ ⇑ Ω(θ) = Γ as required.
�

Lemma A.2 (Substitution). If Γ0, x :
∧

i∈I (θi,mi) � t0 : θ and Γi � t : θi for each i ∈ I , then
Γ0 ∪

⋃
i∈I(Γi ⇑mi) � [t/x]t0 : θ holds.

Proof. The proof proceeds by induction on derivation of Γ0, x :
∧

i∈I (θi,mi) � t0 : θ, with case
analysis on the last rule used.
- Cases for T-CONST:

The result follows immediately, as x does not occur in t0 and {(θi,mi) | i ∈ I} is empty.
- Case for T-VAR:

The case where t0 
= x is trivial. If t0 = x, we have:

[t/x]t0 = t Γ0 = ∅ I = {1} θ = θ1 m1 = Ω(θ)

By applying Lemma A.1 to Γ1 � t : θ, we obtain Γ1 ⇑m1 = Γ1. Thus, we have Γ0∪ (Γ1 ⇑m1) �
[t/x]t0 : θ as required.

- Case for T-APP:
In this case, we have t0 = t1t2, with:
Γ0,0, x :

∧
i∈I,m∈S0,i

(θi,m) � t1 :
∧

j∈J (θ
′
j, nj) → θ

Γ0,j, x :
∧

i∈I,m∈Sj,i
(θi,m) � t2 : θ′j for each j ∈ J

Γ0 = Γ0,0 ∪
⋃

j∈J(Γ0,j ⇑ nj) S0,i ∪
⋃

j∈J{max (m,nj) | m ∈ Sj,i} = {mi} for each i ∈ I .

By the induction hypothesis, we have:

Γ0,0 ∪
⋃

i∈I,m∈S0,i
(Γi ⇑m) � [t/x]t1 :

∧
j∈J (θ

′
j , nj) → θ

Γ0,j ∪
⋃

i∈I,m∈Sj,i
(Γi ⇑m) � [t/x]t2 : θ

′
j.
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By using T-APP, we obtain:

Γ0,0 ∪
⋃

i∈I,m∈S0,i
(Γi ⇑m) ∪ (

⋃
j∈J (Γ0,j ∪

⋃
i∈I,m∈Sj,i

(Γi ⇑m)) ⇑ nj) � [t/x]t0 : θ

Here, we have:
Γ0,0 ∪

⋃
i∈I,m∈S0,i

(Γi ⇑m) ∪ (
⋃

j∈J (Γ0,j ∪
⋃

i∈I,m∈Sj,i
(Γi ⇑m)) ⇑ nj)

= Γ0,0 ∪
⋃

j∈J(Γ0,j ⇑ nj) ∪
⋃

i∈I,m∈S0,i
(Γi ⇑m) ∪

⋃
j∈J,i∈I,m∈Sj,i

(Γi ⇑max (m,nj))

(by (Γ1 ∪ Γ2) ⇑m = (Γ1 ⇑m) ∪ (Γ2 ⇑m) and (Γ ⇑m1) ⇑m2 = Γ ⇑max (m1,m2))
= Γ0 ∪

⋃
i∈I(

⋃
m∈S0,i

(Γi ⇑m) ∪
⋃

j∈J,m∈Sj,i
Γi ⇑max (m,nj))

(by Γ0 = Γ0,0 ∪
⋃

j∈J(Γ0,j ⇑ nj))
= Γ0 ∪

⋃
i∈I(Γi ⇑mi) (by S0,i ∪

⋃
j∈J{max (m,nj) | m ∈ Sj,i} = {mi})

Thus, we have Γ0 ∪
⋃

i∈I(Γi ⇑mi) � [t/x]t0 : θ as required.
- Case for T-ABS:

In this case, t0 = λy.t1. We can assume without loss of generality that y 
= x and y does not
occur in t. Thus, we have:

θ =
∧

j∈J(θ
′
j , nj) → θ′ J ′ ⊆ J Γ0, y :

∧
j∈J ′(θ′j, nj), x :

∧
i∈I (θi,mi) � t1 : θ′

By the induction hypothesis, we have:

Γ0 ∪
⋃
i∈I

(Γi ⇑mi), y :
∧
j∈J ′

(θ′j , nj) � [t0/x]t1 : θ′.

The required result is obtained by using T-ABS.
�

We are now ready to show that typing is preserved by β-reduction.

Proof of Lemma 4.1. By the assumption, we have:

Γ0, x :
∧

i∈I (θi,mi) � t0 : θ Γi � t1 : θi for each i ∈ J I ⊆ J
Γ = Γ0 ∪ (

⋃
i∈J Γi ⇑m)

By Lemma A.2, we have:
Γ0 ∪

⋃
i∈I

(Γi ⇑mi) � [t1/x]t0 : θ.

Thus, the required result holds for Γ′ = Γ0 ∪
⋃

i∈I(Γi ⇑mi). �

APPENDIX B. PROOF OF LEMMA 4.8

This section provides a proof of Lemma 4.8, which states that every infinite sequence of rewrit-
ing along a path must contain an infinite chain of unfoldings. In Lemma 4.8, only the components �i
and ti of each label 〈αi, �i,Λi,Γi � ti : qi〉 are actually important. Thus, we redefine the rewriting
relation  by:

〈�, F �′ t̃〉  〈�+ 1, [t̃/x̃][F �
1/F1, . . . , F

�
n/Fn](t

′)〉 if R(F ) = λx̃.t′

〈�, a t1, . . . , tn〉  〈�+ 1, ti〉

Lemma 4.8 is restated (or strengthened, since we no longer have conditions on typing) as follows.
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Lemma B.1. For every infinite rewriting sequence:

〈1, S0〉 = 〈1, t1〉  〈2, t2〉  〈3, t3〉  〈4, t3〉  · · ·

there exists an infinite sequence of indices i0(= 0), i1, i2, . . . such that tij = F
ij−1

kij
s̃ij for each

j ≥ 1.

The proof requires a subtle argument. Let us consider the tree U labelled by indices, whose root
is lablled by 0, and j is a child of i if and only if tj is of the form F i

kj
s̃j . The existence of an infinite

sequence of indices above means that the tree has an infinite path. By the strong normalization of
the simply-typed λ-calculus, it follows that the height of the tree U is unbounded. (If the height
were bounded, then the rewriting sequence would be simulated by a simply-typed λ-term obtained
by unfolding non-terminal symbols a finite number of terms, but that is impossible as the rewriting
sequence is infinite.) That does not, however, immediately imply that U has an infinite path; it may
be the case that U has infinite width but each path is finite.

We use a type-based argument to show Lemma B.1. We first prepare a type system for char-
acterizing (non-deterministic) recursion schemes that have an infinite reduction sequence in Sec-
tion B.1, and then use it to prove the required property in Section B.2.

B.1. A Type System for Recursion Schemes Generating Infinite Trees. A non-deterministic re-
cursion scheme is a quadruple (Σ,N ,R, S), which is the same as a deterministic recursion scheme
(Definition 2.1), except that the set of non-terminals may be infinite, and that R maps each non-
terminal to a (possibly empty) set of terms of the form λx̃.t such that N ; Σ � λx̃.t : N (F ). As in
the case for deterministic recursion schemes, we require that t is an applicative term of sort o. We
sometimes write F → λx̃.t if λx̃.t ∈ R(F ).

We define the reduction relation
•
 by

F t̃
•
 [t̃/x̃]t′ if λx̃.t′ ∈ R(F )

a t1, . . . , tn
•
 ti

It is the same as  defined at the beginning of this section, except that labels have been dropped.
The syntax of types is given by:

δ ::= i |
∧

{δ1, . . . , δn} → δ

We often write
∧

i∈I δi → δ for
∧
{δi | i ∈ I} → δ. Intuitively, i describes terms of sort o that

have an infinite reduction sequence. As in the intersection types used in Section 3, we restrict types
by the relation δ ::a κ, defined inductively by:

i ::a o

δ ::a κ2 δi ::a κ1 for every i ∈ {1, . . . , n}
(
∧
{δ1, . . . , δn} → δ) ::a (κ1 → κ2)

The typing rules for recursion schemes are given by:

Δ, x : δ � x : δ
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Σ(a) = k S1 ∪ · · · ∪ Sk = {i}
Δ � a :

∧
S1 → · · · →

∧
Sk → i

Δ � t1 :
∧

i∈I δi → δ Δ � t2 : δi (for each i ∈ I)
Δ � t1t2 : δ

Δ, x :
∧

i∈I δi � t : δ
Δ � λx.t :

∧
i∈I δi → δ

∀F : δ ∈ Δ.(δ ::a N (F ) ∧ ∃t ∈ RG(F ).Δ � t : δ)
� G : Δ

� G : Δ Δ � t : δ
� (G, t) : δ

Note that a terminal symbol of arity 0 cannot have type i; if k = 0 in the rule for constants, the
assumption S1 ∪ · · · ∪ Sk = {i} cannot hold.

We show the following theorem.

Theorem B.2. Let S be the start symbol of a non-deterministic recursion scheme G. Then, �
(G, S) : T inf if, and only if, S has an infinite reduction sequence (by

•
 ).

The “only if” part of the above theorem follows from Lemmas B.3 and B.4 below.

Lemma B.3. If � (G, t) : i, then there exists t′ such that t
•
 t′.

Proof. The proof is by contradiction. Suppose that � (G, t) : i but t is irreducible. By � (G, t) : i,
there must exist Δ such that G : Δ and Δ � t : i. Since N ; ∅ � t : o, t must be either a terminal
symbol a of arity 0, or of the form F s̃ with R(F ) = ∅. Both cases, however, contradict with the
assumption � (G, t) : i. If t = a, then a cannot have type i. If t = F s̃, then by the condition
Δ � t : i, there must exist δ such that F : δ ∈ Δ, but it is impossible as R(F ) = ∅ and � G : Δ. �

Lemma B.4. If � (G, t) : i and t
•
 t′, then there exists t′′ such that t

•
 t′′ and � (G, t′′) : i.

Proof. We use the following substitution lemma, proved by straightforward induction on the struc-
ture of t:

If Δ, x : δ1, . . . , x : δk � t : δ and Δ � s : δi for each i ∈ {1, . . . , k}, then
Δ � [s/x]t : δ holds.

The proof of the present lemma proceeds by case analysis on the rule used for deriving t
•
 t′.

If t
•
 t′ has been derived from the first rule, t = F s1 . . . sk and t′ = [s1/x1, . . . , sk/xk]u with

λx1. · · · λxk.u ∈ R(F ). By the assumption � (G, t) : i, we have:

� G : Δ
F :

∧
j∈S1

δ1,j → · · · →
∧

j∈Sk
δk,j → i ∈ Δ

Δ � si : δi,j for each i ∈ {1, . . . , k}, j ∈ Si

By the first two conditions, there must exist a term λx1. · · · λxk.u′ ∈ R(F ) such that

Δ � λx1. · · · λxk.u′ :
∧
j∈S1

δ1,j → · · · →
∧
j∈Sk

δk,j → i,
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which implies Δ, x1 :
∧

j∈S1
δ1,j , . . . , xk :

∧
j∈Sk

δk,j � u′ : i. By the substitution lemma, we obtain
Δ � [s1/x1, . . . , sk/xk]u

′ : i. Thus, the required result holds for t′′ = [s1/x1, . . . , sk/xk]u
′.

If t
•
 t′ has been derived from the second rule, t = a t1 · · · tn and t′ = tj for some j ∈

{1, . . . , n}. By the assumption � (G, t) : i, there exists Δ such that � G : Δ and Δ � a t1 · · · tn : i.
By the latter condition and the typing rules, there must exist k such that Δ � tk : i. The required
condition therefore holds for t′′ = tk. �

To show the “if” direction of Theorem B.2, we extract a derivation of � (G, t) from an infinite
reduction sequence. The idea of the extraction is similar to (but simpler than) the technique we used
in the completeness theorem (Theorem 4.13), and also similar to the type inference algorithm in
[16]. Suppose that we are given an infinite reduction sequence:

S(= t1)
•
 t2

•
 t3

•
 · · ·

For each prefix s of ti (i.e., ti = s ũ for some ũ), we shall define the type δs,i by induction on the
sort of s:
- If s has sort o, we let δs,i := i.
- If s has sort κ1 → κ2, ti must be of the form s u′ ũ, where u′ has sort κ1 and s u′ has sort κ2 Let
S be the set of indices j such that u′ is a prefix of tj . Define δs,i :=

∧
j∈S δu′,j → δs u′,i.

We also define the type environment Δs,i by induction on the structure of s:
• If s = a, then Δs,i := ∅.
• If s = F , then Δs,i := F : δs,i.
• If s = s1s2, then Δs,i := Δs1,i ∪

⋃
j∈S Δs2,j , where S is the set of indices j such that s2 is

a prefix of tj .
We show the following lemma.

Lemma B.5. Suppose we have an infinite sequence:

S(= t1)
•
 t2

•
 t3

•
 · · ·

Then, � (G, ti) : i holds for every i.

Proof. We first show that for every prefix s of ti, Δs,i � s : δs,i is derivable by using only judgments
of the form Δs,i � u : δu,j , by induction on the structure of s. The base cases follow immediately
from the definition of Δs,i. Suppose s = s1s2. By the induction hypothesis, we have

Δs1,i � s1 :
∧

j∈S δs2,j → δs,i Δs2,j � s2 : δs2,j (for each j ∈ S),

and their derivations satisfy the required property. By weakening on type environments (which is
admissible by the typing rules) and the rule for application, we have Δs,i � s1s2 : δs,i as required.

Let Δ =
⋃

i∈ω Δti,i. We show that for every F : δ ∈ Δ, there exists u ∈ R(F ) such that Δ �
u : δ. This completes the proof, as � G : Δ and Δ � ti : i for every ti. Suppose F : δ ∈ Δ. By the
definition of Δ, we have δ = δF,i =

∧
j∈S1

δs1,j → · · · →
∧

j∈Sk
δsk,j → i, and ti = F s1 · · · sk

for some i. Let F → λx1. · · · λxk.u′ be the rule used for the reduction step ti −→ ti+1. Then
we have ti+1 = [s1/x1, . . . , sk/xk]u

′ and Δti+1,i+1 � [s1/x1, . . . , sk/xk]u
′ : i, and in the type

derivation for the latter, all the judgments for sj must be of the form Δti+1,i+1 � sj : δsj ,� where
� ∈ Sj . Thus, by replacing those judgments with Δti+1,i+1, xj : δsj ,� � xj : δsj ,� and by weakening
type environments, we obtain a derivation for Δti+1,i+1, x1 :

∧
j∈S1

δs1,j, . . . , xk :
∧

j∈Sk
δsk,j � u′ :

i. By using the rule for abstraction, we get Δti+1,i+1 � λx1. · · ·λxk.u′ : δ. Thus, the required
condition holds for u = λx1. · · · λxk.u′. �
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Theorem B.2 is an immediate corollary of the lemmas above.

Proof of Theorem B.2. The “only if” direction follows immediately from Lemmas B.3 and B.4. The
“if” direction follows from Lemma B.5. �

For the proof of Lemma B.1 in the next subsection, we introduce some notations. We write ΔG
for

⋃
{Δ |� G : Δ}, which is actually the largest Δ such that � G : Δ. By abuse of notations, we

often write Δ(F ) for the set {δ | F :δ ∈ Δ}, and write F1 :S1, . . . , Fk :Sk for the type environment
{Fi : δ | i ∈ {1, . . . , k}, δ ∈ Si}. By Theorem B.2, G has an infinite reduction sequence if, and only
if, i ∈ ΔG(S).

B.2. Proof of Lemma B.1. Below, we fix a deterministic recursion scheme G = (N ,Σ,R, S(=
F1)), where

N = {F1 : κ1, . . . , Fm : κm}
R = {F1 �→ t1, . . . , Fm �→ tm}

Suppose that there is an infinite reduction sequence:

〈1, S0〉 = 〈1, t1〉  〈2, t2〉  〈3, t3〉  〈4, t3〉  · · ·
We write j ≺ i if tj = F i

kj
s̃j for some Fkj and s̃j , i.e., if a non-terminal introduced at the i-th step

is unfolded at the j-th step. We need to show that there is an infinite decreasing sequence:

· · · ≺ i2 ≺ i1 ≺ i0 = 0.

The proof is by contradiction. Suppose that the relation ≺ is well-founded. We construct the
following non-deterministic recursion scheme G′ = (N ′,Σ′,R′, S0):

N ′ = {F i : κ | F : κ ∈ N , i ∈ ω}
Σ′ = Σ

R′ = {F i → [F j
1 /F1, . . . , F

j
n/Fn]t | R(F ) = t ∧ j ≺ i}

By the construction of G′, there must be an infinite reduction sequence:

S0(= t1)
•
 t2

•
 t3

•
 t4

•
 · · ·

We show that cannot be the case: every reduction sequence of S0 in G′ must terminate. To this end,
we define another recursion scheme G′′ = (N ′′,Σ′′,R′′, S(N)) by:

N ′′ = {F (i) : κ | F : κ ∈ N , i ∈ {0, . . . , N}}
Σ′′ = Σ ∪ {e �→ 0}
R′′ = {F (i) → [F

(i−1)
1 /F1, . . . , F

(i−1)
n /Fn]t | R(F ) = t ∧ i ∈ {1, . . . , N}}

∪{F (0) → λx̃.e | k ∈ {1, . . . , n}}
Here,N = Σk∈{1,...,n}|{δ | δ::aN (Fk)}|, i.e., the maximal size of type environments for F1, . . . , Fk

in the type system of Section B.1. Since the reduction of S(N) can be simulated by the simply-typed
λ-term:

[λx̃.e/F1, . . . , λx̃.e/Fn] [R(F1)/F1, . . . ,R(Fn)/Fn] · · · [R(F1)/F1, . . . ,R(Fn)/Fn]︸ ︷︷ ︸
N

S,

it follows from the strong normalization of the simply-typed λ-calculus that G′′ cannot have an
infinite reduction sequence:

S(N) •
 t′2

•
 t′3

•
 t′4

•
 · · · .

By Theorem B.2, we have i 
∈ ΔG′′(S(N)).
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Now, let us define a function F on type environments by:

F(Δ) = {F : δ | δ ::a N (F ) ∧Δ � R(F ) : δ}.
Then, by the monotonicity of F , we have a monotonically-increasing sequence:

∅ ⊆ F(∅) ⊆ F2(∅) ⊆ · · · ⊆ FN (∅)
Since the size of F i(∅) is at most N , we have FN+1(∅) = FN (∅). By the construction of G′′, we
have FN (∅) = {Fi : δ | δ ∈ ΔG′′(F

(N)
i )}.

Now, we shall show that ΔG′(F j
i ) ⊆ FN (∅)(Fi)(= ΔG′′(F

(N)
i )) for every j ∈ ω and i ∈

{1, . . . , k}. That would finish the proof, since it implies i 
∈ ΔG′(S0), and by Theorem B.2, G′
cannot have an infinite reduction sequence.

The proof proceeds by well-founded induction on j (with respect to the well-founded relation
≺).

Let S be the set {j′ | j′ ≺ j}. Recall that the rules for F j are:

{F j → [F j′
1 /F1, . . . , F

j′
n /Fn]R(F ) | j′ ∈ S}.

We have:
ΔG′(F j

i )

=
⋃

j′∈S{δ | δ ::a N (Fi) ∧ F j′
1 : ΔG′(F j′

1 ), . . . , F j′
k : ΔG′(F j′

k ) � [F j′
1 /F1, . . . , F

j′
n /Fn]R(Fi) : δ}

=
⋃

j′∈S{δ | δ ::a N (Fi) ∧ F1 : ΔG′(F j′
1 ), . . . , Fk : ΔG′(F j′

k ) � R(Fi) : δ}
(by renaming non-terminals)

⊆
⋃

j′∈S{δ | δ ::a N (Fi) ∧ FN (∅) � R(Fi) : δ} (by induction hypothesis)
= {δ | δ ::a N (Fi) ∧ FN (∅) � R(Fi) : δ}
= FN+1(∅)(Fi) (by the definition of F)
= FN (∅)(Fi) (by FN (∅) = FN+1(∅))

as required. This completes the proof.

APPENDIX C. (N − 1)-EXPTIME UPPER BOUND OF DISJUNCTIVE APT MODEL CHECKING

In [20], we considered a subclass of alternating parity tree automata called disjunctive APT, and
showed that disjunctive APT model checking of order-N recursion schemes is (N − 1)-EXPTIME
complete. As the proof of the upper-bound relies on the development of the present article, we only
sketched the proof in [20] (as Theorem 4.2), and promised to provide a more elaborate proof here.

A disjunctive APT is an alternating tree automaton whose transition function δ is disjunctive,
i.e., the co-domain of δ is a subset of the positive Boolean formulas without conjunctions, given by:

ψ ::= t | f | (i, q) | ψ ∨ ψ
We claim:

Theorem C.1 ([20], Theorem 4.2). Let G be an order-N recursion scheme (N ≥ 1) and A a
disjunctive APT. It is decidable in (N − 1)-EXPTIME whether A accepts the value tree [[G]].

The proof is easily obtained by modifying the proof of the completeness theorem (Theo-
rem 4.13) and the complexity argument in Section 5.

Given a disjunctive APT A = (Σ, Q, δ, qI ,Ω), we define the relations θ ::daκ and τ ::dκ between
types and sorts by:
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q ∈ Q |S1 ∪ · · · ∪ Sk| ≤ 1 Si ⊆ Q× codom(Ω) for each i ∈ {1, . . . , k}
(
∧
S1 → · · · →

∧
Sk → q) ::da (o → · · · → o︸ ︷︷ ︸

k

→ o)

ord(κ1 → · · · → κ� → o) ≥ 2 q ∈ Q τi ::
d κi for each i ∈ {1, . . . , �}

(τ1 → · · · → τ� → q) ::da (κ1 → · · · → κ� → o)

θi ::
d
a κ for each i ∈ I∧

i∈I θi ::
d κ

The relation θ ::da κ is a restriction of θ ::a κ (i.e., ::da is a strict subset of ::a), where in order-1
types, each argument type is empty or singleton, and only one argument type can have an element.
Thus, we have ((q0, 1) → � → q1) ::

d
a (o → o → o), but neither ((q0, 1) ∧ (q1, 2) → � →

q1) ::
d
a (o → o → o) nor ((q0, 1) → (q1, 2) → q1) ::

d
a (o → o → o).

We write Γ ::d N if θ ::da N (F ) holds for every F : θ ∈ Γ. The following is the key lemma,
which allows us to restrict the search space for a winning strategy for the type system.

Lemma C.2. Let A be a disjunctive APT, and G = (Σ,N ,R, S) be a recursion scheme. If the tree
generated by G is accepted by A, then there is a winning strategy W for the parity game associated
with �A G such that codom(W) ⊆ {Γ | Γ ::d N}.

Proof. By the definition of disjunctive APT, if [[G]] is accepted by a disjunctive APT A, then there
is an accepting run-tree that is unary (i.e., there is at most one child for each node of the accepting
run-tree). For such a unary accepting run-tree, we fix a fair rewriting sequence

〈ε, 0, S, qI〉 � T1 � T2 � · · ·
and obtain a winning strategy W by using the construction in Theorem 4.13. We show that W
satisfies the required property. As W returns a subset of Γ(t,β,�) ::

d N , it suffices to show that
Tj = C[〈β, �, ts̃, q〉] implies Γ(t,β,�) ::

d N . To this end, we show that if Tj = C[〈β, �, ts̃, q〉] and t
has sort κ, then θ(t,β,�) ::da κ holds, by induction on κ. Since the other cases are trivial, we discuss
only the case where κ = o → · · · → o︸ ︷︷ ︸

n

→ o. In this case, t s̃ = t s1 · · · sn and si has sort o for

each i ∈ {1, . . . , n}. Since the accepting run-tree is unary, there is at most one i, β′, �′ such that
〈β, �, ts̃, q〉 � C ′[〈β′, �′, si, q′〉]. Thus, θ(t,β,�) is either

� → · · · → �︸ ︷︷ ︸
i−1

→ (q′,Ω(C ′[ ]′q)) → � → · · · → �︸ ︷︷ ︸
n−i

→ q

(if there is such i, β′, �′), or � → · · · → �︸ ︷︷ ︸
n

→ q (if there is no such i, β′, �′). In both cases, we have

θ(t,β,�) ::
d
a κ as required.

Now, by the definition of Γ(t,β,�), Tj = C[〈β, �, ts̃, q〉] implies Γ(t,β,�) ::
d N . This completes

the proof. �

We are now ready to prove Theorem C.1.
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Proof of Theorem C.1. Thanks to Lemma C.2, we can restrict type environments Θ to those that
satisfy Θ::dN in the type inference algorithm of Section 5. Thus, in the discussion of the complexity,
the upper-bound Kj of the number of types of a given order-j sort can be replaced by K ′

j , where:

K ′
0 = K0 = |Q|

K ′
1 = |{θ | θ ::da (o → · · · → o︸ ︷︷ ︸

A

→ o)}|

= |{� → · · · → �︸ ︷︷ ︸
A

→ q|q ∈ Q}|

+|{� → · · · → � → (q,m) → � → · · · → �|q ∈ Q,m ∈ codom(Ω)}|
= |Q|+AM |Q|

K ′
j+1 = |Q|2AMK ′

j (for j ≥ 1)

K ′
N is bounded by expN−1(O(A2M2|Q|)) for N ≥ 1. For N ≥ 2, the rest of the discussion re-

mains the same, and the time complexity of the whole algorithm is O(P 1+cMexpN−1(p(AM |Q|)))
for a polynomial p(x) and c ≈ 1

3 . For N = 1, |I1| + · · · + |IJ | ≤ 1 holds in the construction of
SF , so that the size of SF is bounded by K1 × (K1)

1 ×K1 = (K1)
3. The size of the arena for the

parity game is therefore polynomial in P,A, |Q|, and M . Thus, if M is fixed, the complexity of the
whole algorithm is also polynomial in P,A, and |Q|. �
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