
Productivity Verification for Functional Programs by
Reduction to Termination Verification

Ren Fukaishi

The University of Tokyo

Tokyo, Japan

Naoki Kobayashi

The University of Tokyo

Tokyo, Japan

Ryosuke Sato

The University of Tokyo

Tokyo, Japan

Abstract
A program generating a co-inductive data structure is called

productive if the program eventually generates all the ele-

ments of the data structure. We propose a new method for

verifying the productivity, which transforms a co-inductive

data structure into a function that takes a path as an argu-

ment and returns the corresponding element. For example,

an infinite binary tree is converted to a function that takes a

sequence consisting of 0 (left) and 1 (right), and returns the

element in the specified position, and a stream is converted

into a function that takes a sequence of the form 0
𝑛
(or, sim-

ply a natural number 𝑛) and returns the 𝑛-th element of the

stream. A stream-generating program is then productive just

if the function terminates for every 𝑛. The transformation

allows us to reduce the productivity verification problem to

the termination problem for call-by-name higher-order func-

tional programs without co-inductive data structures. We

formalize the transformation and prove its correctness. We

have implemented an automated productivity checker based

on the proposed method, by extending an automated valid-

ity checker for a higher-order fixpoint logic called HFL(Z),

which can be used as a termination checker.

CCS Concepts: • Theory of computation → Program
verification.

Keywords: Co-inductive types, Automated Program Verifi-

cation, Higher-Order Functional Programs

1 Introduction
Functional programs often manipulate infinite data struc-

tures such as streams and infinite trees with co-inductive

types. For example, functional reactive programming

(FRP) [9] essentially requires streams so that one can define

time-dependent values. A main concern about co-inductive

data structures is productivity, which states that each ele-

ment can be retrieved in finite time.

We propose an automated method for proving the pro-

ductivity of co-inductive data structures. There are many

size-based verification methods such as guarded recur-

sion [4, 5, 8, 13, 22, 23] and sized types [15]. These methods

are practically insufficient for proving the productivity of

branching data structures such as trees. Let us consider a

recursive definition of a binary tree, called “RightTree”, as

follows:

𝑡 = Node(Right(𝑡), 1, 𝑡) .

Here, “Node” is the constructor for (infinite) binary trees,

which takes as an argument a triple consisting of the left

child, the label of the node, and the right child. “Right” is

the destructor that retrieves the right child node. RightTree

is productive in the sense that every element of the tree is

eventually calculated by unfolding the recursive definition.

For example, the label of the left child is generated by the

following reduction sequence.

Node(Right(𝑡), 1, 𝑡)
−→ Node(Right(Node(Right(𝑡), 1, 𝑡)), 1, 𝑡)
−→ Node(𝑡, 1, 𝑡)
−→ Node(Node(Right(𝑡), 1, 𝑡), 1, 𝑡)

To our knowledge, however, existing size-based methods

mentioned above do not allow such a definition. These meth-

ods require that a fixpoint definition of a co-inductive data

structure be guarded by at least one constructor, or that

the number of constructors should exceed the number of

destructors. Such requirement is not satisfied by the defini-

tion of RightTree: the first occurrence of 𝑡 is guarded by the

destructor "Right" and the constructor “Node” just once.

We propose a newmethod for productivity verification, by

a reduction to termination verification. To this end, we apply

a program transformation to convert a co-inductive data

structure into a function that takes a path and returns the

corresponding element, so that a source program generating

a co-inductive data structure is productive just if the target

program is terminating for all the possible paths. For example,

let us consider the following (productive) definition.

𝑡 = Node(𝑡, 1, 𝑡).

It generates an infinite binary tree consisting of 1’s shown in

Figure 1 (where [], [0], and [1] show the paths of the nodes).

The definition can be converted to a function definition like

the one shown in Figure 2. Here, we have used OCaml-like

syntax and applied some simplification for the sake of sim-

plicity; the actual code obtained by our transformation is

slightly more complex, and should be evaluated in the call-

by-name semantics. The function node corresponds to the
constructor Node, and the definition of tree corresponds

to the definition 𝑡 = Node(𝑡, 1, 𝑡). Note that the function

tree is obviously terminating for all the inputs ls. Figure 3
shows the function definition obtained from RightTree. Here,

the function node is as given before, right corresponds to

R. Fukaishi et al.

1

1 1

[]

[0] [1]

Figure 1. The tree defined by 𝑡 = Node(𝑡, 1, 𝑡).

let node (l, x, r) ls =

match ls with
| [] -> x

| 0 :: ls ' -> l ls '

| 1 :: ls ' -> r ls '

| _ -> 0

let rec tree ls = node (tree , 1, tree) ls

Figure 2. The function definition obtained from the tree

definition in Figure 1.

let right t ls = t (1::ls)

let rec righttree ls =

node(right(righttree),1,righttree) ls

Figure 3. The function definition obtained from RightTree

the destructor Right, and the definition of righttree corre-

sponds to the definition 𝑡 = Node(Right(𝑡), 0, 𝑡) of RightTree.
In this case, the termination of righttree is less obvious,

but it can be automatically checked by an extention of the

tool called MuHFL [18], an automated validity checker for a

higher-order fixpoint logic.

We next discuss the case where a term is non-productive.

Let us consider LeftTree defined as below, where “Left” is

the destructor which retrieves the left child.

𝑡 = Node(Left(𝑡), 1, 𝑡).

It is similar to RightTree, but it is not productive. Indeed,

the reduction of 𝑡 falls into the following infinite loop, never

generating the label of the left child.

𝑡 −→ Node(Left(𝑡), 1, 𝑡)
−→ Node(Left(Node(Left(𝑡), 1, 𝑡)), 1, 𝑡)
−→ Node(Left(𝑡), 1, 𝑡)
−→ . . .

The corresponding function lefttree is shown in Figure 4,

where left corresponds to the destructor Left. The func-

tion lefttree is non-terminating for the input [0]. This
non-termination can also be automatically checked by (the

extension of) MuHFL.

let left t ls = t (0::ls)

let rec lefttree ls =

node(left(lefttree),1,lefttree) ls

Figure 4. The function definition obtained from LefttTree

We formalize the reduction sketched above from produc-

tivity verification to termination verification for general co-

inductive data structures (subsuming streams and binary

trees), and prove the soundness and completeness of the

reduction. The resulting termination verification problem is

undecidable in general, but the proposed method is expected

to work well in practice, thanks to the recent advance of au-

tomated termination verification techniques for higher-order

functional programs [18, 21]. To show the effectiveness of

our approach, we have implemented a fully-automated pro-

ductivity verification tool. Since the existing higher-order

program termination verification tools [18, 21] deal with

only integers and functions, we have extended MuHFL [18]

to support integer lists (which are needed to express paths)

and used it as the backend termination verification tool.

The rest of this paper is structured as follows. Section 2

introduces the source and target languages of the transfor-

mation. Section 3 formalizes our transformation, and proves

its correctness. Section 4 reports an implementation and

experimental results. Section 5 discusses related work, and

Section 6 concludes the paper. A preliminary summary of

this paper appeared in Proceedings of PEPM 2024.

2 Source and Target Language
This section introduces the source and target languages for

our reduction from productivity verification to termination

verification.

2.1 Source Language
This section introduces the source language, which is a call-

by-name lambda calculus equipped with co-inductive data

types, and defines the notion of productivity. We adopt the

call-by-name strategy, as co-inductive data can more natu-

rally be expressed than in a call-by-value language.

2.1.1 Syntax and Operational Semantics. The syntax of
types and terms of the source language is given in Figure 5.

The types denoted by the meta-variable 𝜎 (which we call

base types) describe non-functional data, including integers,

pairs, sums, and co-inductive data structures. The type 𝜈𝑋 .𝜎

denotes the (equi-)recursive type 𝑋 such that 𝑋 = 𝜎 . For

example, 𝜈𝑋 .int ×𝑋 describes an infinite stream consisting

of integers, like (1, (2, (3, . . .))). Streams and infinite binary

trees can be represented as follows.

Stream𝜎 := 𝜈𝑋 .𝜎 × 𝑋

Tree 𝜎 := 𝜈𝑋 .𝑋 × 𝜎 × 𝑋 .

Productivity Verification for Functional Programs by Reduction to Termination Verification

𝜎 ::= 𝑋 | int | 𝜎1 × 𝜎2 | 𝜎1 + 𝜎2 | 𝜈𝑋 .𝜎 (𝜎 ≠ 𝑋)
𝜏 ::= 𝜎 | 𝜏1 → 𝜏2

𝑀 ::= 𝑛 | 𝑥 | 𝜆𝑥.𝑀 | 𝑀0𝑀1 | (𝑀0, 𝑀1) | 𝜋𝑖 (𝑀) | in𝑖 (𝑀)
| case 𝑀 of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1)
| fix 𝑥 .𝑀 | Z

𝑉 ::= 𝑛 | (𝑀0, 𝑀1) | in𝑖 (𝑀) | Z | 𝜆𝑥 .𝑀

Figure 5. Syntax of the source language

We can also handle nested recursive types, like the type of

streams of streams:

Stream (Stream𝜎) = 𝜈𝑋 .(𝜈𝑌 .𝜎 × 𝑌) × 𝑋 .

The meta-variable 𝜏 ranges over types including function

types. Note that due to the classification between 𝜎 and 𝜏 , we

do not allow function types to occur in co-inductive types.

For example, the type (𝜈𝑋 .int × 𝑋) → (𝜈𝑋 .int × 𝑋) is
allowed but not 𝜈𝑋 .(int → int) ×𝑋 . Treating co-inductive

data containing functions as elements is left for future work.

The syntax of terms, denoted by 𝑀 , is fairly standard,

except for the special term Z explained below. The meta-

variables 𝑛 and 𝑥 respectively range over the sets of integers

and variables. We have also 𝜆-abstractions (𝜆𝑥.𝑀) and appli-

cations (𝑀0𝑀1), pair constructors (𝑀0, 𝑀1) and destructors

𝜋𝑖 (𝑀) (𝑖 ∈ {0, 1}), sum constructors in𝑖 (𝑀) (𝑖 ∈ {0, 1}) and
pattern matching case 𝑀 of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1).
The term fix 𝑥 .𝑀 is a primitive for recursion, which evalu-

ates to [fix 𝑥 .𝑀/𝑥]𝑀 (where [𝑀1/𝑥]𝑀0 denotes the term

obtained by substituting𝑀1 for all the free occurrences of 𝑥

in𝑀0). This fixpoint operator can be used for constructing

co-inductive data structures, as given in Example 2.1 below.

The term Z is a special value of any type 𝜎 , which is used

only for defining the productivity. It is not supposed to occur

in user programs.

Example 2.1. A stream consisting of infinite 1’s is defined

by:

𝑜𝑛𝑒𝑠 : 𝜈𝑋 .int × 𝑋

𝑜𝑛𝑒𝑠 := fix 𝑥 .(1, 𝑥)
Since we adopt equi-recursive types, streams are represented

by infinite tuples (𝑎0, (𝑎1, (. . .))).

The typing rules of the source language are given in Fig-

ure 6, which are fairly standard. As the last two rules show,

types are treated equi-recursively. For example, 𝜈𝑋 .int × 𝑋

and int × 𝜈𝑋 .int × 𝑋 are equivalent to each other.

The call-by-name reduction relation𝑀 −→ 𝑀 ′
for terms

is defined in Figure 7, which is also fairly standard. Note that

the special term Z has no reduction rule. Thus, the evaluation

of a term 𝜋0 (Z), for example, gets stuck. This does not cause a

problem since Z is used only in the definition of productivity,

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏 Γ ⊢ 𝑛 : int Γ ⊢ 𝑍 : 𝜎

Γ, 𝑥 : 𝜏1 ⊢ 𝑀 : 𝜏2

Γ ⊢ 𝜆𝑥.𝑀 : 𝜏1 → 𝜏2

Γ ⊢ 𝑀1 : 𝜏2 → 𝜏 Γ ⊢ 𝑀2 : 𝜏2

Γ ⊢ 𝑀1𝑀2 : 𝜏

Γ ⊢ 𝑀0 : 𝜎0 Γ ⊢ 𝑀1 : 𝜎0

Γ ⊢ (𝑀0, 𝑀1) : 𝜎0 × 𝜎1

Γ ⊢ 𝑀 : 𝜎0 × 𝜎1

Γ ⊢ 𝜋𝑖 (𝑀) : 𝜎𝑖

Γ ⊢ 𝑀 : 𝜎0 + 𝜎1 Γ, 𝑥 : 𝜎0 ⊢ 𝑀0 : 𝜏 Γ, 𝑥 : 𝜎1 ⊢ 𝑀1 : 𝜏

Γ ⊢ case 𝑀 of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1) : 𝜏

Γ ⊢ 𝑀 : 𝜎𝑖

Γ ⊢ in𝑖 (𝑀) : 𝜎0 + 𝜎1

Γ, 𝑥 : 𝜏 ⊢ 𝑀 : 𝜏

Γ ⊢ fix 𝑥 .𝑀 : 𝜏

Γ ⊢ 𝑀 : 𝜈𝑋 .𝜏

Γ ⊢ 𝑀 : [𝜈𝑋 .𝜏/𝑋]𝜏
Γ ⊢ 𝑀 : [𝜈𝑋 .𝜏/𝑋]𝜏

Γ ⊢ 𝑀 : 𝜈𝑋 .𝜏

Figure 6. Typing rules of the source language.

(𝜆𝑥.𝑀1)𝑀2 −→ [𝑀2/𝑥]𝑀1

(R-Beta)

𝜋𝑖 (𝑀0, 𝑀1) −→ 𝑀𝑖

(R-Proj)

case in𝑖 (𝑀) of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1)
−→ [𝑀/𝑥]𝑀𝑖

(R-Case)

fix 𝑥 .𝑀 −→ [fix 𝑥 .𝑀/𝑥]𝑀
(R-Fix)

𝑀0 −→ 𝑀 ′
0

𝑀0𝑀1 −→ 𝑀 ′
0
𝑀1

(R-CApp)

𝑀 −→ 𝑀 ′

𝜋𝑖 (𝑀) −→ 𝜋𝑖 (𝑀 ′)
(R-CProj)

𝑀 −→ 𝑀 ′

case 𝑀 of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1)
−→ case 𝑀 ′ of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1)

(R-CCase)

Figure 7. Operational semantics of the source language.

and such a term never occurs during the actual evaluation

of a term (on the assumption that Z never occurs in a term

provided by a user).

R. Fukaishi et al.

2.1.2 Productivity. There are some variations in the def-

inition of productivity. For example, Endrullis [10] calls a

stream 𝑀 productive if 𝑀 converges to a unique infinite

term. We do not adopt such a definition because infinite

terms and convergence are hard to treat in our approach.

Instead, we define a term 𝑀 of type 𝜎 is productive if 𝛾𝑀

is terminating for any projection 𝛾 that extracts an element

of the data structure produced by𝑀 . We first define the set

Path(𝜎) consisting of paths to elements of data of type 𝜎 .

The set Path(𝜎) ⊆ {𝜋0, 𝜋1, in−10 , in−1
1
}∗ is defined as the least

set that satisfies:

Path(𝜎) ⊇ {𝜖}
Path(𝜎0 × 𝜎1) ⊇ {𝜋𝑖 · 𝛾 | 𝑖 ∈ {0, 1}, 𝛾 ∈ Path(𝜎𝑖)}
Path(𝜎0 + 𝜎1) ⊇ {in−1𝑖 · 𝛾 | 𝑖 ∈ {0, 1}, 𝛾 ∈ Path(𝜎𝑖)}
Path(𝜈𝑋 .𝜎) ⊇ Path([𝜈𝑋 .𝜎/𝑋]𝜎).

For 𝛾 ∈ {𝜋0, 𝜋1, in−10 , in−1
1
}∗ we define 𝛾 𝑀 , which extracts

from𝑀 the element at the path 𝛾 , by:

𝜖 𝑀 = 𝑀

(𝜋𝑖 · 𝛾)𝑀 = 𝛾 (𝜋𝑖 (𝑀))
(in−1

0
· 𝛾)𝑀 = case 𝑀 of (in0 (𝑥) ⇒ 𝛾 𝑥 | in1 (𝑥) ⇒ Z)

(in−1
1

· 𝛾)𝑀 = case 𝑀 of (in0 (𝑥) ⇒ Z | in1 (𝑥) ⇒ 𝛾 𝑥).
We can now define the productivity of a term. We call a term

Z-free if the term does not contain any occurrence of Z.

Definition 2.2 (Productivity). A Z-free term𝑀 of type 𝜎 is

productive if𝛾 𝑀 is terminating (i.e., has no infinite reduction

sequence) for every 𝛾 ∈ Path(𝜎).

Note that, in our definition of the productivity, a term𝑀 of

a sum type is productive if both terms below are terminating.

case 𝑀 of (in0 (𝑥) ⇒ 𝑥 | in1 (𝑥) ⇒ Z)
case 𝑀 of (in0 (𝑥) ⇒ Z | in1 (𝑥) ⇒ 𝑥)

For example, if𝑀 −→∗ in0 (𝑀 ′) holds, we get
case 𝑀 of (in0 (𝑥) ⇒ 𝑥 | in1 (𝑥) ⇒ Z) −→∗ 𝑀 ′

case 𝑀 of (in0 (𝑥) ⇒ Z | in1 (𝑥) ⇒ 𝑥) −→∗
Z.

The termination of the first one ensures that the element𝑀 ′

can be evaluated in finite time, and that of the second one

trivially holds since Z is a value.

Example 2.3. For integer streams 𝜎 = 𝜈𝑋 .int × 𝑋 ,

Path(𝜎) = {𝜖, 𝜋0, 𝜋1, 𝜋1𝜋0, . . . }
The productivity of a stream𝑀 asserts that i-th element

𝜋0 (𝜋1 (· · · 𝜋1︸ ︷︷ ︸
𝑖 times

(𝑀) · · ·))

can be evaluated in finite time for every 𝑖 ∈ N. Thus, our def-
inition of productivity coincides with the standard definition

of the productivity of streams.

𝜎 ::= int | intlist
𝜏 ::= 𝜎 | 𝜏1 → 𝜏2

𝑁 ::= 𝑥 | 𝑛 | [] | 𝑛 :: 𝑁 | 𝜆𝑥 .𝑁 | Λ𝑥 .𝑁 | 𝑁1𝑁2

| if0 𝑁 then 𝑁0 else 𝑁1

| case 𝑁 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

| fix 𝑥 .𝑁
𝑉 ::= 𝑛 | [] | 𝑛 :: 𝑉 | 𝜆𝑥.𝑁 | Λ𝑥 .𝑁

pat ::= [] | 𝑛 :: 𝑥 | _
𝐿 ::= [] | 𝑛 :: 𝑁

Figure 8. Syntax of the target language.

The following lemma guarantees the well-typedness of

𝛾 𝑀 .

Lemma 2.4. If ⊢ 𝑀 : 𝜎 and 𝛾 ∈ Path(𝜎), then ⊢ 𝛾 𝑀 : 𝜎 ′ for
some 𝜎 ′.

Remark 2.1. Note that although our definition of productiv-
ity uses “termination”, the termination of a source program
means only weak head normalization; for example, the term
in0 (fix 𝑥 .𝑥) is terminating. Also, the definition involves the
quantification over all the paths. Thus the productivity as de-
fined above cannot be directly checked by ordinary automated
termination checkers.

2.2 Target Language
The target language is a call-by-name lambda calculus with-

out co-inductive data types but equipped with integer lists.

The syntax of types and terms of the target language is

given in Figure 8. The target language only has int, the type
intlist of integer lists, and function types as types, and

does not have product or sum types. Integer lists are used for

representing paths in the previous section, and product and

sum terms are translated into a function that takes a path

and returns the corresponding element.

The syntax of terms, denoted by 𝑁 , is standard, except

for the extra lambda abstraction Λ𝑥 .𝑁 explained below. The

terms [] and 𝑁1 :: 𝑁2 are the list constructors. The term

if0 𝑁 then 𝑁0 else 𝑁1 is reduced to 𝑁0 if 𝑁 = 0 and

reduced to 𝑁1 otherwise. The if-expression is used to em-

ulate pattern matching in the source language. The term

case 𝑁 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘) represents

pattern matching on a list 𝑁 and pat is a meta-variable for

patterns. Pattern matching can be used only for paths repre-

sented by lists. For example, a pair (𝑀0, 𝑀1) is translated into
a function that takes a list and returns the elements in𝑀0 if

the list starts from 0 and the elements in𝑀1 if it starts from 1.

This conditional branch is realized by pattern matching. The

target language has the fixpoint operator fix 𝑥 .𝑁 as in the

source language. Co-inductive data structures constructed

by fixpoints are translated into recursive functions in the

Productivity Verification for Functional Programs by Reduction to Termination Verification

E[(𝜆𝑥 .𝑁1)𝑁2] −→ E[[𝑁2/𝑥]𝑁1]

E[(Λ𝑥 .𝑁1)𝑁2] −→ E[[𝑁2/𝑥]𝑁1]

E[if0 0 then 𝑁0 else 𝑁1] −→ E[𝑁0]

𝑛 ≠ 0

E[if0 𝑛 then 𝑁0 else 𝑁1] −→ E[𝑁1]

E[fix 𝑥 .𝑁] −→ E[[fix 𝑥 .𝑁 /𝑥]𝑁]

¬∃𝜌 𝑗 .𝐿 ⊢ pat 𝑗 ⇒ 𝜌 𝑗 for each 𝑗 < 𝑖 𝐿 ⊢ pat𝑖 ⇒ 𝜌

E[case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)] −→ E[𝜌𝑁𝑖]

[] ⊢ [] ⇒ [·]

𝐿 ⊢ _ ⇒ [·]

𝑛 :: 𝐿′ ⊢ 𝑛 :: 𝑥 ⇒ [𝐿′/𝑥]

E ::= ⟨ ⟩ | E 𝑁 | if0 E then 𝑁0 else 𝑁1

| case E of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

Figure 9. Operational semantics of the target language.

target language. In the target language, we have another

lambda abstraction Λ𝑥 .𝑁 , which can only be used for path

abstractions, i.e., the argument 𝑥 is a path introduced by

the translation. The semantics and the typing rules of the

target language are given in Figures 9 and 10 respectively.

In the definition of the semantics, 𝐿 ⊢ pat ⇒ 𝜌 means that

the list value 𝐿 matches the pattern pat, and the resulting

substitution is 𝜌 . Here, [·] denotes the identity substitution.

3 Transformation
In this section, we define the transformation and prove the

correctness of the transformation.

3.1 Definition of the Transformation
As mentioned in the introduction, we transform each co-

inductive data into a function that maps paths to nodes in

the corresponding tree structure to elements of the nodes.

By the transformation, the productivity of co-inductive data

is reduced to the termination of the corresponding function.

We first explain the idea of the transformation through the

example of the stream (1, (2, (3, . . .))) of type 𝜈𝑋 .int × 𝑋 .

As Example 2.3, the set Path(𝜈𝑋 .int × 𝑋) of the paths is

{𝜖, 𝜋0, 𝜋1, 𝜋1𝜋0, . . . }. Each path corresponds to the element

Δ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

Δ ⊢ 𝑛 : int

Δ, 𝑥 : 𝜏1 ⊢ 𝑁 : 𝜏2

Δ ⊢ 𝜆𝑥.𝑁 : 𝜏1 → 𝜏2

Δ ⊢ 𝑁1 : 𝜏2 → 𝜏 Δ ⊢ 𝑁2 : 𝜏2

Δ ⊢ 𝑁1𝑁2 : 𝜏

Δ ⊢ 𝑁 : int Δ ⊢ 𝑁0 : 𝜏 Δ ⊢ 𝑁1 : 𝜏

Δ ⊢ if0 𝑁 then 𝑁0 else 𝑁1 : 𝜏

Δ ⊢ 𝑁 : intlist Δ,Δ𝑖 ⊢ 𝑁𝑖 : 𝜏 (𝑖 ∈ {1, . . . , 𝑘})

Δ𝑖 =

{
𝑥 : intlist (pat𝑖 = 𝑛 :: 𝑥)
· (otherwise)

Δ ⊢ case 𝑁 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘) : 𝜏

Δ ⊢ [] : intlist

Δ ⊢ 𝑁1 : int Δ ⊢ 𝑁2 : intlist

Δ ⊢ 𝑁1 :: 𝑁2 : intlist

Δ, 𝑥 : 𝜏 ⊢ 𝑁 : 𝜏

Δ ⊢ fix 𝑥 .𝑁 : 𝜏

Δ, 𝑥 : intlist ⊢ 𝑁 : 𝜏

Δ ⊢ Λ𝑥 .𝑁 : intlist → 𝜏

Figure 10. Typing rules of the Target Language.

in the stream as in Figure 11a, and a path 𝛾 in the source

language is transformed into a integer list 𝛾† as follows:

𝜖† = []
(𝜋𝑖 · 𝛾)† = 𝑖 :: 𝛾†

(in−1𝑖 · 𝛾)† = 0 :: 𝛾†

As a consequence, the stream (1, (2, (3, . . .))) is transformed

into the function as shown in Figure 11b. Here, the labels

of nodes corresponding to the constructors of product and

sum types are transformed into some integer. For example,

for the top constructor (_, _) at the path 𝜖 , the transformed

function returns 0.

The transformation of types and type environments is as

follows:

𝜎† = intlist → int (𝜏1 → 𝜏2)† = 𝜏
†
1
→ 𝜏

†
2

(𝑥1 : 𝜏1, . . . , 𝑥𝑘 : 𝜏𝑘)† = 𝑥1 : 𝜏
†
1
, . . . , 𝑥𝑘 : 𝜏

†
𝑘

R. Fukaishi et al.

(_, _)
0

1
(_, _)
0

2
(_, _)
0

3

𝜖

𝜋1

𝜋1𝜋1

𝜋0

𝜋1𝜋0

𝜋1𝜋1𝜋0

(a) Original stream.

[] ↦→ 0

[0] ↦→ 1

[1] ↦→ 0

[1; 0] ↦→ 2

[1; 1] ↦→ 0

[1; 1; 0] ↦→ 3

...

(b) Transformed function.

Figure 11. A stream (left) and the corresponding function

(right).

(_, _)
0

𝑛 𝑚

[] ↦→ 0

[0] ↦→ 𝑛 [1] ↦→𝑚

(a) Transformation of pair.

in𝑖
𝑖

𝑛

[] ↦→ 𝑖

[0] ↦→ 𝑛

(b) Transformation of injection.

Figure 12. Transformation of constructors.

Base types are transformed into function types from lists

to integers. Note that all the base types including product and

sum types are transformed into the type intlist → int
because the nodes corresponding to product and sum types

are transformed into some integer as in the example above.

We now define our transformation in a type-directed style.

Figure 13 shows the definition of the transformation. The

transformation judgment is of the form Γ ⊢ 𝑀 : 𝜏 { 𝑁 ,

which means that, under the type environment Γ, the term
𝑀 of type 𝜏 in the source language is translated to 𝑁 . For

example, an integer 𝑛 has type int under the empty type

environment, and is translated into a function as given below:

⊢ 𝑛 : int { Λ𝑢.case 𝑢 of [] ⇒ 𝑛 | _ ⇒ 0.

We explain some of the key rules below. In the rule

Tr-Num, an integer 𝑛 is transformed into the function that

returns 𝑛 if the argument is [] and returns 0 otherwise. In

the rule Tr-Pair, the function obtained by the translation

returns the dummy value 0 for the empty path []. Figure 12a
illustrates the transformation of pairs. A pair (𝑚,𝑛) is trans-
formed into the function that returns 0 if the argument is

[],𝑚 if the argument is [0], 𝑛 if the argument is [1], and 0

otherwise. In the rule Tr-Inj, the function obtained by the

translation of in𝑖 (𝑀) returns 𝑖 . This value is used to emulate

pattern matching in the target language. Figure 12b illus-

trates the transformation of injections. An injection in𝑖 (𝑛) is
transformed into a function that returns 𝑖 if the argument is

[],𝑛 if it is [0], and 0 otherwise. The ruleTr-Proj transforms

a projection 𝜋𝑖 (𝑀) into the function that calls the function

corresponds to𝑀 and pass an argument 𝑖 :: 𝑢 if the argument

is 𝑢. The rule Tr-Case transforms a pattern matching into

an conditional branch in the target language. The term 𝑁 []
is supposed to reduce to an integer that represents whether

𝑀 is in0 or in1. We can thus emulate pattern matching by

the conditional branch. For a closed term 𝑀 of type 𝜏 , we

often write 𝑓𝑀 for the output of the transformation, i.e., for

the term 𝑁 such that ⊢ 𝑀 : 𝜏 { 𝑁 .

Below we give some examples of the transformation and

the reductions of the transformed terms.

Example 3.1. Let 𝑀 = case in0 (𝑛) of (in0 (𝑥) ⇒ 𝑥 |
in1 (𝑥) ⇒ 0). The term𝑀 and its subterms are transformed

as follows:

𝑓𝑀 = if0 𝑓in0 (𝑛) [] then Λ𝑢.𝑓in0 (𝑛) (0 :: 𝑢) else 𝑓0

𝑓in0 (𝑛) = Λ𝑢.case 𝑢 of ([] ⇒ 0 | 0 :: 𝑢′ ⇒ 𝑓𝑛 𝑢
′ | _ ⇒ 0)

𝑓𝑛 = Λ𝑢.case 𝑢 of [] ⇒ 𝑛 | _ ⇒ 0

𝑓0 = Λ𝑢.case 𝑢 of [] ⇒ 0 | _ ⇒ 0.

The root element 𝑓𝑀 [] can be reduced as below:

𝑓𝑀 [] = (if0 𝑓in0 (𝑛) [] then Λ𝑢.𝑓in0 (𝑛) (0 :: 𝑢) else 𝑓0) []
−→ if0 0 then Λ𝑢.𝑓in0 (𝑛) (0 :: 𝑢) else 𝑓0 []
−→ (Λ𝑢.𝑓in0 (𝑛) (0 :: 𝑢)) []
−→ 𝑓in0 (𝑛) (0 :: [])
= (Λ𝑢.case 𝑢 of ([] ⇒ 𝑖 | 0 :: 𝑢′ ⇒ 𝑓𝑛 𝑢

′ | _ ⇒ 0)) (0 :: [])
−→ case 0 :: [] of ([] ⇒ 𝑖 | 0 :: 𝑢′ ⇒ 𝑓𝑛 𝑢

′ | _ ⇒ 0)
−→ 𝑓𝑛 []
−→∗ 𝑛.

This reduction sequence corresponds to the following reduc-

tion of the original term

case in0 (𝑛) of (in0 (𝑥) ⇒ 𝑥 | in1 (𝑥) ⇒ 0) −→ 𝑛.

Example 3.2. Let 𝑀 = 𝜋0 (𝑚,𝑛). The term 𝑀 and its sub-

terms are transformed as follows:

𝑓𝑀 = Λ𝑢.𝑓(𝑚,𝑛) (0 :: 𝑢)
𝑓(𝑚,𝑛) = Λ𝑢.case 𝑢 of (0 :: 𝑢′ ⇒ 𝑓𝑚 𝑢′

| 1 :: 𝑢′ ⇒ 𝑓𝑛 𝑢
′ | _ ⇒ 0)

𝑓𝑚 = Λ𝑢.case 𝑢 of ([] ⇒𝑚 | _ ⇒ 0)
𝑓𝑛 = Λ𝑢.case 𝑢 of ([] ⇒ 𝑛 | _ ⇒ 0)

We next apply nil to 𝑓𝑀 . The term 𝑓𝑀 [] is reduced as below:

𝑓 [] = (Λ𝑢.𝑓(𝑚,𝑛) (0 :: 𝑢)) []
−→ 𝑓(𝑚,𝑛) (0 :: [])
−→ 𝑓𝑚 []

Productivity Verification for Functional Programs by Reduction to Termination Verification

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏 { 𝑥

(Tr-Var)

Γ ⊢ 𝑛 : int { Λ𝑢.case 𝑢 of [] ⇒ 𝑛 | _ ⇒ 0

(Tr-Num)

Γ ⊢ Z : 𝜎 { Λ𝑢.0
(Tr-Z)

Γ, 𝑥 : 𝜏1 ⊢ 𝑀 : 𝜏2 { 𝑁

Γ ⊢ 𝜆𝑥.𝑀 : 𝜏1 → 𝜏2 { 𝜆𝑥 .𝑁
(Tr-Abs)

Γ ⊢ 𝑀1 : 𝜏2 → 𝜏 { 𝑁1 Γ ⊢ 𝑀2 : 𝜏2 { 𝑁2

Γ ⊢ 𝑀1𝑀2 : 𝜏 { 𝑁1𝑁2

(Tr-App)

Γ ⊢ 𝑀0 : 𝜎0 { 𝑁0 Γ ⊢ 𝑀1 : 𝜎1 { 𝑁1

Γ ⊢ (𝑀0, 𝑀1) : 𝜎0 × 𝜎1 { Λ𝑢.case 𝑢 of 0 :: 𝑢′ ⇒ 𝑁0 𝑢
′ | 1 :: 𝑢′ ⇒ 𝑁1 𝑢

′ | _ ⇒ 0

(Tr-Pair)

Γ, 𝑥 : 𝜏 ⊢ 𝑀 : 𝜏 { 𝑁

Γ ⊢ fix 𝑥 .𝑀 : 𝜏 { fix 𝑥 .𝑁
(Tr-Fix)

Γ ⊢ 𝑀 : 𝜎0 × 𝜎1 { 𝑁

Γ ⊢ 𝜋𝑖 (𝑀) : 𝜎𝑖 { Λ𝑢.𝑁 (𝑖 :: 𝑢)
(Tr-Proj)

Γ ⊢ 𝑀 : 𝜎𝑖 { 𝑁

Γ ⊢ in𝑖 (𝑀) : 𝜎0 + 𝜎1 { Λ𝑢.case 𝑢 of [] ⇒ 𝑖 | 0 :: 𝑢′ ⇒ 𝑁 𝑢′ | _ ⇒ 0

(Tr-Inj)

Γ ⊢ 𝑀 : 𝜎0 + 𝜎1 { 𝑁 Γ, 𝑥 : 𝜎0 ⊢ 𝑀0 : 𝜏 { 𝑁0 Γ, 𝑥 : 𝜎1 ⊢ 𝑀1 : 𝜏 { 𝑁1

Γ ⊢ case 𝑀 of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1) : 𝜏
{ if0 𝑁 [] then [Λ𝑢.𝑁 (0 :: 𝑢)/𝑥]𝑁0 else [Λ𝑢.𝑁 (0 :: 𝑢)/𝑥]𝑁1

(Tr-Case)

Γ ⊢ 𝑀 : 𝜈𝑋 .𝜏 { 𝑁

Γ ⊢ 𝑀 : [𝜈𝑋 .𝜏/𝑋]𝜏 { 𝑁
(Tr-Unfold)

Γ ⊢ 𝑀 : [𝜈𝑋 .𝜏/𝑋]𝜏 { 𝑁

Γ ⊢ 𝑀 : 𝜈𝑋 .𝜏 { 𝑁
(Tr-Fold)

Figure 13. Transformation Rules.

This reduction sequence corresponds to a reduction

𝜋0 (𝑚,𝑛) −→𝑚

in the source language.

Example 3.3. The stream of 1’s in Example 2.1 is translated

to the following function.

𝑓ones =fix 𝑥 .Λ𝑢.case 𝑢 of

(0 :: 𝑢 ⇒ 𝑓1 𝑢 | 1 :: 𝑢 ⇒ 𝑥 𝑢 | _ ⇒ 0)

where

𝑓1 = Λ𝑢.case 𝑢 of [] ⇒ 1 | _ ⇒ 0.

As expected, the function 𝑓ones returns 1 if the input path is

of the form [1; · · · ; 1; 0].

Example 3.4. The RightTree discussed in the introduction

is represented by:

𝑀 = fix 𝑥 .(𝜋1 (𝜋1 (𝑥)), (0, 𝑥)).

It is translated to:

𝑓𝑀 = fix 𝑥 .𝑓(𝜋1 (𝜋1 (𝑥)),(0,𝑥))

𝑓(𝜋1 (𝜋1 (𝑥)),(0,𝑥)) = Λ𝑢.case 𝑢 of (0 :: 𝑢′ ⇒ 𝑓𝜋1 (𝜋1 (𝑥)) 𝑢
′

| 1 :: 𝑢′ ⇒ 𝑓(0,𝑥) 𝑢
′ | _ ⇒ 0)

𝑓𝜋1 (𝜋1 (𝑥)) = Λ𝑢.𝑓𝜋1 (𝑥) (1 :: 𝑢)
𝑓𝜋1 (𝑥) = Λ𝑢.𝑥 (1 :: 𝑢)
𝑓(0,𝑥) = Λ𝑢.case 𝑢 of (0 :: 𝑢′ ⇒ 𝑓0 𝑢

′

| 1 :: 𝑢′ ⇒ 𝑥 𝑢′ | _ ⇒ 0)
𝑓0 = Λ𝑢.case 𝑢 of [] ⇒ 0 | _ ⇒ 0

The element of the left child of the root node corresponds to

𝑓𝑀 [0; 1; 0], which can be calculated as:

𝑓𝑀 [0; 1; 0]
−→ [𝑓𝑀/𝑥] 𝑓(𝜋1 (𝜋1 (𝑥)),(0,𝑥)) [0; 1; 0]
−→ 𝑓𝜋1 (𝜋1 (𝑀)) [1; 0]
−→ 𝑓𝜋1 (𝑀) [1; 1; 0]
−→ 𝑓𝑀 [1; 1; 1; 0]
−→ [𝑓𝑀/𝑥] 𝑓(𝜋1 (𝜋1 (𝑥)),(0,𝑥)) [1; 1; 1; 0]
−→ 𝑓(0,𝑀) [1; 1; 0]
−→ 𝑓𝑀 [1; 0]
−→ [𝑓𝑀/𝑥] 𝑓(𝜋1 (𝜋1 (𝑥)),(0,𝑥)) [1; 0]
−→ 𝑓(0,𝑀) [0]
−→ 𝑓0 []

R. Fukaishi et al.

−→ 0.

Here, we used the fact that the translation and substitution

commute, as stated in the lemma given below. Similarly, the

elements under the left child can be calculated. Thus, the

function 𝑓𝑀 is terminating for any list argument 𝑝 . □

Lemma 3.5 (Substitution). If Γ, 𝑥 : 𝜏1 ⊢ 𝑀0 : 𝜏 { 𝑁0 and
Γ ⊢ 𝑀1 : 𝜏1 { 𝑁1, then Γ ⊢ [𝑀1/𝑥]𝑀0 : 𝜏 { [𝑁1/𝑥]𝑁0.

The following lemma guarantees the well-typedness of

the transformed term.

Lemma 3.6. If Γ ⊢ 𝑀 : 𝜎 { 𝑁 , then Γ† ⊢ 𝑁 : 𝜎†

The lemma follows by straightforward induction on the

derivation of Γ ⊢ 𝑀 : 𝜎 { 𝑁 .

3.2 Correctness of the Transformation
In this section, we show the correctness of the translation,

i.e., soundness and completeness. Detailed proofs are found

in Appendix A.

The soundness theorem below states that a source pro-

gram is productive if the translated program is terminating

for any list argument.

Theorem 3.7 (Soundness). Suppose ⊢ 𝑀 : 𝜎 { 𝑁 . If 𝑁 𝑝 is
terminating for every value 𝑝 of intlist, then𝑀 is productive.

The completeness theorem below states the converse: a

source program is non-productive if the translated program

is non-terminating for some list argument.

Theorem 3.8 (Completeness). Suppose ⊢ 𝑀 : 𝜎 { 𝑁 . If
𝑀 is productive, then 𝑁 𝑝 is terminating for every value 𝑝 of
intlist.

As a consequence of the soundness and the completeness,

we can use a termination/non-termination checker to prove

the productivity/non-productivity.

In order to show the theorems above, we first introduce

another semantics of the target language. Since our trans-

lation introduces new abstractions for paths, a redex in the

original program does not directly correspond to one in the

translated program. Thus, we introduce the extended reduc-

tion −→𝑒 to emulate reductions, in which reductions may

occur under path abstractions Λ𝑢. We define −→𝑒 as the

same reduction as −→ except that the following extended

evaluation context E𝑒 is used instead of E.

E𝑒 ::= ⟨ ⟩ | E𝑒 𝑁 | if0 E𝑒 then 𝑁0 else 𝑁1

| case E𝑒 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘) | Λ𝑥 .E𝑒 .

The following lemma guarantees that the new semantics

is equivalent to the original semantics with respect to the

termination property of terms of base types.

Lemma 3.9. Let 𝑁 be a term of a base type. Then the follow-
ings are equivalent.

1. 𝑁 is terminating with respect to −→, i.e., there exists no
infinite reduction sequence 𝑁 −→ 𝑁1 −→ 𝑁2 −→ · · ·.

2. 𝑁 is terminating with respect to −→𝑒 , i.e., there ex-
ists no infinite reduction sequence 𝑁 −→𝑒 𝑁1 −→𝑒

𝑁2 −→𝑒 · · ·.
3. 𝑁 is may-terminating with respect to −→𝑒 , i.e., there

exists a reduction sequence 𝑁 −→∗
𝑒 𝑉 −̸→𝑒 .

Hereafter, we use mainly −→𝑒 instead of −→ for trans-

lated programs, and do not distinguish between termination

and may-termination for terms of base types.

3.2.1 Soundness. The soundness theorem is a corollary

of the following two lemmas:

Lemma 3.10. If 𝑓𝑀 [] is terminating, then𝑀 is terminating.

Lemma 3.11. Let 𝛾 be a sequence in {𝜋0, 𝜋1, in−10 , in−1
1
}∗ and

𝑀 be a closed term of type 𝜎 . If 𝛾 ∈ Path(𝜎) and 𝑓𝑀 𝑝 is
terminating for every list value 𝑝 , then 𝑓𝛾𝑀 𝑞 is terminating
for every list value 𝑞.

Using the lemmas above, Theorem 3.7 is obtained as fol-

lows.

Proof of Theorem 3.7. Suppose ⊢ 𝑀 : 𝜎 { 𝑁 and 𝑁 𝑝 is

terminating for every value 𝑝 of type intlist. We need

to show that 𝛾𝑀 is terminating for every 𝛾 ∈ Path(𝜎). By
the assumption and Lemma 3.11, it follows that 𝑓𝛾𝑀 [] is
terminating. By Lemma 3.10, 𝛾𝑀 is also terminating. □

It remains to show the above lemmas. Lemma 3.11 fol-

lows by a straightforward induction on the length of 𝛾 : see

Appendix A.

In the rest of this subsection, we give a proof sketch of

the first lemma, which is shown by contraposition. Suppose

𝑀 is non-terminating, i.e., there exists an infinite reduction

sequence:

𝑀 −→ 𝑀1 −→ 𝑀2 −→ · · · .
We show that 𝑓𝑀 [] also has an infinite reduction sequence.

To that end, we first define a strong reduction relation ⪰ in

Figure 14. Here, 𝜂-reduction is allowed by C-Eta.

By using the strong reduction, we can state that 𝑓𝑀 simu-

lates𝑀 in the following sense.

Lemma 3.12. If ⊢ 𝑀 : 𝜏 { 𝑁 and 𝑀 −→ 𝑀 ′, then there
exists 𝑁 ′ such that ⊢ 𝑀 ′

: 𝜏 { 𝑁 ′and 𝑁 −→+
𝑒 ⪰∗ 𝑁 ′.

Proof. The proof proceeds by induction on the derivation of

𝑀 −→ 𝑀 ′
, with case analysis on the last rule used. □

Additionally, we can exchange−→𝑒 and ⪰ as the following

lemma.

Lemma 3.13. If 𝑁 ⪰−→𝑒 𝑁
′, then 𝑁 −→+

𝑒 ⪰∗ 𝑁 ′.

Proof. The proof proceeds by case analysis on the evaluation

context 𝐶 of the strong reduction. □

We can now prove Lemma 3.10.

Productivity Verification for Functional Programs by Reduction to Termination Verification

𝑥 is not free in 𝑁

C[Λ𝑥 .𝑁 𝑥] ⪰ C[𝑁]
(C-Eta)

𝑁 −→𝑒 𝑁
′

C[𝑁] ⪰ C[𝑁 ′]
(C-Beta)

C ::= ⟨ ⟩ | 𝐶 𝑁 | 𝑁 𝐶 | 𝑛 :: 𝐶 | 𝜆𝑥 .C | Λ𝑥 .C
| if0 𝐶 then 𝑁0 else 𝑁1

| if0 𝑁 then C else 𝑁1 | if0 𝑁 then 𝑁0 else C
| case 𝐶 of (pat

1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

| case 𝑁 of (pat
1
⇒ 𝑁1 | · · · | pat𝑖−1 ⇒ 𝑁𝑖−1 | · · ·

| pat𝑖 ⇒ C | pat𝑖+1 ⇒ 𝑁𝑖+1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

Figure 14. Strong reduction relation ⪰

Proof of Lemma 3.10. Suppose there is an infinite reduction

sequence:

𝑀 −→ 𝑀1 −→ 𝑀2 −→ · · ·

By Lemma 3.12, we get

𝑓𝑀 −→+
𝑒 ⪰∗ 𝑓𝑀1

−→+
𝑒 ⪰∗ 𝑓𝑀2

−→+
𝑒 ⪰∗ · · ·

By using Lemma 3.13 repeatedly, we can construct an infinite

reduction sequence starting from 𝑓𝑀 , so we obtain an infinite

reduction sequence starting from 𝑓𝑀 []. □

3.2.2 Completeness. Below we assume that𝑀 is a closed

term of a base type. To prove the completeness theorem,

we have to show 𝑓𝑀 𝑝 is terminating for every list value

𝑝 assuming 𝑀 is productive. We first show some auxiliary

lemmas.

Lemma 3.14. If𝑀 −→ 𝑀 ′, then 𝛾𝑀 −→ 𝛾𝑀 ′.

Proof. By straightforward induction on 𝛾 . □

Lemma 3.15. Let 𝑁0, 𝑁1 be closed terms of type int and 𝑉
be a value. If 𝑁0 ⪰ 𝑁1 and 𝑁1 −→∗

𝑒 𝑉 , then 𝑁0 −→∗
𝑒 𝑉 holds.

Lemma 3.16. Let 𝑀 be a closed term of base type and 𝑝 be
an integer list. If 𝑀 −→ 𝑀 ′, then 𝑓𝑀 𝑝 is terminating if and
only if 𝑓𝑀 ′ 𝑝 is terminating.

Proof of Lemma 3.16. By Lemmas 3.12 and 3.13, we have

𝑓𝑀 𝑝 −→+
𝑒 ⪰∗ 𝑓𝑀 ′ 𝑝.

To show the "if" direction, suppose 𝑓𝑀 ′ 𝑝 −→∗
𝑒 𝑉 . Since 𝑓𝑀 𝑝

is closed term of type int, we get 𝑓𝑀 𝑝 −→∗
𝑒 𝑉 by using

Lemma 3.15 repeatedly.

To show the "only-if" direction, we prove the contraposi-

tion. Suppose 𝑓𝑀 ′ 𝑝 is non-terminating. By Lemmas 3.12 and

3.13, we can construct an infinite reduction sequence from

𝑓𝑀 𝑝 . □

Lemma 3.17. Let 𝑀 be a closed term of base type. If 𝑀 is
terminating, then 𝑓𝑀 [] is terminating.

Proof. Suppose𝑀 −→∗ 𝑉 . By Lemma 3.16, it is sufficient to

show 𝑓𝑉 [] is terminating, which follows by straightforward

by case analysis on 𝑉 . □

The following is another key lemma for the completeness

theorem.

Lemma 3.18. Let 𝑝 be an integer list and𝑀 be a term of type
𝜎 . Suppose𝑀 is productive. Then, 𝑓𝑀 𝑝 is terminating if 𝑓𝛾𝑀 []
is terminating for any 𝛾 ∈ Path(𝜎).

Proof. By induction on the structure of 𝑝 . The case 𝑝 = []
is trivial. Suppose 𝑝 = 𝑖 :: 𝑝′ for some 𝑖 and 𝑝′. We perform

case analysis on 𝑖 and 𝜎 . We only show the important cases

here. Other cases are straightforward or similar to the cases

below.

Case 𝑖 = 0 and 𝜎 = 𝜎0 × 𝜎1: Since 𝑀 is productive,

𝑀 −→∗ (𝑀0, 𝑀1) for some 𝑀0 and 𝑀1. By Lemma 3.16, it

suffices to show 𝑓(𝑀0,𝑀1) 𝑝 is terminating. By the assump-

tion, 𝑓𝛾 (𝑀0,𝑀1) [] is terminating for any 𝛾 ∈ Path(𝜎). Hence,
by Lemmas 3.14 and 3.16, 𝑓𝛾 ′𝑀0

[] is terminating for any

𝛾 ′ ∈ Path(𝜎0). Therefore, by I.H., 𝑓𝑀0
𝑝′ is terminating. Here,

𝑓(𝑀0,𝑀1)

= Λ𝑢.case 𝑢 of 0 :: 𝑢′ ⇒ 𝑓𝑀0
𝑢′ | 1 :: 𝑢′ ⇒ 𝑓𝑀1

𝑢′ | _ ⇒ 0

and 𝑓(𝑀0,𝑀1) 𝑝 −→∗ 𝑓𝑀0
𝑝′. Since 𝑓𝑀0

𝑝′ is terminating,

𝑓(𝑀0,𝑀1)𝑝 is also terminating.

Case 𝑖 = 0 and 𝜎 = 𝜎0 + 𝜎1: Since 𝑀 is productive,

𝑀 −→∗ in𝑗 (𝑀0) for some 𝑗 and𝑀0. We now show 𝑓in𝑗 (𝑀0) 𝑝
is terminating. By the assumption, 𝑓(in−1

𝑗
·𝛾 ′)𝑀 is terminat-

ing for any 𝛾 ′ ∈ Path(𝜎 𝑗). Since (in−1𝑗 · 𝛾 ′)𝑀 −→∗ 𝛾 ′𝑀0,

by Lemma 3.16, 𝑓𝛾 ′𝑀0
[] is also terminating. Hence, by I.H.,

𝑓𝑀0
𝑝′ is terminating. Here,

𝑓in𝑗 (𝑀0) = Λ𝑢.case 𝑢 of [] ⇒ 𝑗 | 0 :: 𝑢′ ⇒ 𝑓𝑀0
𝑢′ | _ ⇒ 0

and 𝑓in𝑗 (𝑀0) 𝑝 −→∗ 𝑓𝑀0
𝑝′. Since 𝑓𝑀0

𝑝′ is terminating,

𝑓in𝑗 (𝑀0) 𝑝 is also terminating. □

The completeness theorem follows from Lemmas 3.17 and

3.18, as follows.

Proof of Theorem 3.8. Suppose ⊢ 𝑀 : 𝜎 { 𝑓𝑀 and 𝑀 is pro-

ductive. By the definition of productivity, 𝛾𝑀 is terminating

for any 𝛾 ∈ Path(𝜎). Thus, by Lemma 3.17, 𝑓𝛾𝑀 [] is also
terminating for any 𝛾 ∈ Path(𝜎). By Lemma 3.18, it follows

that 𝑓𝑀 𝑝 is terminating for every integer list 𝑝 . □

4 Implementation and Experiments
We have implemented a prototype tool for automated verifi-

cation of productivity of functional programs, and conducted

experiments. Below we report on the implementation and

experimental results in Sections 4.1 and 4.2 respectively.

R. Fukaishi et al.

4.1 Implementation
The tool takes a program written in the source language

defined in Section 2.1 as an input, converts it to the cor-

responding program of the target language based on the

type-based translation defined in Section 3, and then passes

the resulting program to a backend termination checker for

higher-order functional programs. The backend termination

checker should be able to automatically prove the termi-

nation (or non-termination) of higher-order functional pro-

grams with integers and integer lists. Since we could not find

such a tool (that can deal with both higher-order functions

and integer lists), we have extendedMuHFL [18], which can

automatically prove the termination (or non-termination)

of higher-order functional programs with only integers as

base types, to handle higher-order functions on integer lists.

Below we discuss this extension briefly.

Actually,MuHFL [18] is an automated validity checker for

formulas of HFL(Z), a higher-order fixpoint logic extended
with integer arithmetic. It is known [19, 25] that arbitrary

regular temporal properties (i.e., properties expressible in

the modal 𝜇-calculus, including the termination and non-

termination properties) of higher-order functional programs

can be reduced to the validity checking problem (i.e., the

problem of checking whether a given HFL(Z) formula is

valid). SinceMuHFL supported only integer data, we have

extended MuHFL to directly
1
support integer lists, which is

crucial since the termination property of our target programs

heavily relies on the usage of integer lists.

Below we explain how MuHFL proves or disproves (a

formula corresponding to) the termination of functional pro-

grams, and howwe have extended it to deal with integer lists;

the familiarity with the higher-order fixpoint logic HFL(Z)
is not required. The idea used in MuHFL for proving the

termination goes back to that of Fedyukovich et al. [12]. To

show the termination of a function 𝑓 that takes integer argu-

ments 𝑥1, . . . , 𝑥𝑘 , the tool picks some constants 𝑐, 𝑑 > 0 and

tries to prove a sufficient condition: “𝑓 terminates within

𝑐 (|𝑥1 | + · · · + |𝑥𝑘 |) +𝑑 nested recursive calls”. Since the latter

is a safety property, it can be solved by a backend safety

property checker (in the case of MuHFL, a validity checker

ReTHFL [17] for a subclass of HFL(Z)). If the property does

not hold,MuHFL increases the values of 𝑐 and𝑑 and retries to

prove that 𝑓 terminates within the given number of recursive

calls. As this procedure will diverge when 𝑓 actually does

not terminate, in parallel to the procedure above, MuHFL

also tries to disprove the termination of the given program

by proving that the negation of the given formula is valid.

(Note that the set of formulas treated by MuHFL is closed

under negations; thus the same verification method can be

used for proving termination and non-termination [18].)

1
It would be possible to encode an integer list as a function, but MuHFL

would not work well for such encoding.

To deal with integer lists, we have replaced the bound

𝑐 (|𝑥1 | + · · · + |𝑥𝑘 |) + 𝑑 on nested recursive calls with 𝑐 (|𝑥1 | +
· · · + |𝑥𝑘 | + length(𝑦1) + · · · + length(𝑦𝑚)) + 𝑑 , where 𝑦𝑖 ’s

are integer list arguments, and length(𝑦𝑖) denotes the length
of the list 𝑦𝑖 . We have also extended the backend solver

ReTHFL to deal with integer lists. ReTHFL uses a refinement

type system to reduce the validity checking problem for the

subclass of HFL(Z) (corresponding to safety properties) to

the problem of CHC (Constrained Horn Clauses) solving.

The extended version of ReTHFL now generates CHC on

integer lists, which is solved by Eldarica [14].
2

4.2 Experiments
We prepared a collection of programs which generate co-

inductive data structures and ran our tools on them. We

measured the total execution time of the translation and the

termination checking. The experiments were conducted on

a machine with Intel Core CPU i5-12500 with 32 GB of RAM.

We set the timeout to 300 seconds.

The code of the test cases is given in Table 1. The column

“Code” shows the definitions of co-inductive data structures.

The column “Prod?” shows whether the test case is produc-

tive or not. Stream T𝑘 (where 𝑘 = 1, 2, 4, . . .) is an example

from [11] and productive if and only if 𝑘 is even. The other

test cases are our original. “Head” and “Tail” are head and

tail operations of the streams. “nth” takes the 𝑛-th element

of a stream. The operator :: is the constructor of streams. The

operator (+) is the pointwise addition for streams of inte-

gers and trees of integers. “Node” is a constructor of infinite

binary trees. “Right” and “Left” are destructors of infinite

binary trees and return right and left children respectively.

“Node3” is a constructor of infinite ternary trees, and “Mid”

and “Left” are destructors of them. The test case “righttree”

is the example in the introduction. The test case “lefttree”

is similar to “righttree” but a non-productive stream. The

test case “tritree” is productive by the same reason as “right-

tree”. The test case “fibstream” is the stream of the Fibonacci

numbers.

The experimental results are shown in Table 2. The col-

umn “Result” shows the result of our productivity checker.

The column “Time” shows the execution time of our tool

in seconds. The column “Sized type” shows whether each

co-inductive data structure is typable in the sized type sys-

tem [15] or not. We remark that the typability in sized type

system and guarded recursion are equivalent for all the test

cases.

Our tool successfully verified all the test cases except for

T1 and T38. The timeouts for T1 and T38 are due to the

current limitation of the backend solverMuHFL. For T38, the

timeout occurs because large constants for 𝑐 and 𝑑 explained

above are required. For T1, the HFL(Z) formula expressing

2
We have also tried other CHC solvers like Spacer [20] and HoIce [7], but

they did not work well for CHCs with integer lists.

Productivity Verification for Functional Programs by Reduction to Termination Verification

Table 1. Code of the test cases

Test case Code Prod?

goodstream s = 1 :: s Yes

badstream s = Head(s) :: Tail(s) No

goodtree t = Node(t, 1, t) Yes

lefttree t = Node(Left(t), 1, t) No

righttree t = Node(Right(t), 1, t) Yes

tritree t3 = Node3(0, t3, Left(t3), Mid(t3)) Yes

twostream s = goodstream (+) goodstream Yes

twotree t = goodtree (+) goodtree Yes

fibstream fib = 0 :: 1 :: (fib (+) (tail fib)) Yes

T1 T1 = 0 :: nth(1, T1) :: T1 No

T2 T2 = 0 :: nth(2, T2) :: T2 Yes

T4 T4 = 0 :: nth(4, T4) :: T4 Yes

T36 T36 = 0 :: nth(36, T36) :: T36 Yes

T38 T38 = 0 :: nth(38, T38) :: T38 Yes

the non-productivity involves existential quantifiers on lists,

for which the current implementation of MuHFL is slow (see

also the discussion below).

For any of the test cases, the translation was done within

0.01 seconds. Thus, the total execution time was dominated

by that of the termination checker. Our tool could also ver-

ify the productivity of trees that cannot be verified by the

previous type-based methods such as the sized type system.

For example, “righttree” and “tritree” are untypable in the

sized type system. As observed in the table, our tool is gener-

ally slower for non-productive instances than for valid cases.

This is because our extendedMuHFL solver looks for a coun-

terexample path in the increasing order of the path length.

and repeatedly calls the backend 𝜈HFL(Z) solver for each
fixed length. This procedure leads to low performance when

actual counterexample paths are long. The tool is also slow

for programs that handle the operations on co-inductive data

structures, such as the addition of streams. This problemmay

be mitigated by improving the backend CHC solver.

5 Related Work
Verification of productivity has been actively studied in the

context of proof assistants, as it is critical for the consis-

tency of the logic. A syntactic method for productivity is

implemented in Coq. It is required in Coq that definitions

of co-inductive data are syntactically guarded by construc-

tors. Sized types and guarded recursion have been used for

type-based verification of productivity. Sized types were in-

troduced by Hughes et al. [15], and implemented in Agda by

integrating sized types and dependent types [1]. Guarded re-

cursion was introduced by Nakano [23]. He showed that the

stream type can be expressed as 𝜇𝑌 .𝐴 × •𝑌 , and that a con-

stant stream and the merge operator can be expressed in his

type system. He also suggested more complicated programs

over streams can be expressed by allowing annotations with

Table 2. Experimental results

Test case Result Time(s) Sized type

goodstream Productive 0.92 Typable

badstream Non-productive 9.31 Untypable

goodtree Productive 0.90 Typable

lefttree Non-productive 15.23 Unytpable

righttree Productive 3.48 Untypable

tritree Productive 9.78 Untypable

twostream Productive 6.92 Typable

twotree Productive 11.58 Typable

fibstream Productive 15.32 Typable

T1 Unknown timeout Untypable

T2 Productive 2.42 Untypable

T4 Productive 6.23 Untypable

T36 Productive 256.90 Untypable

T38 Unknown timeout Untypable

arithmetic expressions, but automatic verification was out

of scope. Atkey and McBride’s clock quantifiers [4] allow

acausal definitions of co-inductive data structures. Clouston

et al. [8] allow productive and acausal definitions by intro-

ducing box operators instead of clock quantifiers. Veltri el

al. [24] studied the relation between sized types and guarded

recursion. To our knowledge, none of those systems can

automatically prove the productivity of RightTree.

Endrullis et al. [10, 11] studied the productivity in the con-

text of term rewriting systems (TRS), and showed a reduction

from productivity to context-sensitive termination of a TRS.

Their reduction is different from ours; Endrullis et al. [10, 11]

augments the TRS with rules to retrieve each element in a

non-deterministic manner, so that productivity is reduced

to context-sensitive termination of the resulting TRS. Also,

they do not treat higher-order functions (though, in principle,

higher-order functions can be encoded using TRSs). Aguirre

et al. [2] studied productivity in a probabilistic setting. Their

approach can verify whether a stream definition produces

infinite elements with probability 1. However, their language

is not Turing complete. Ancona et al. [3] also studied run-

time verification of productivity for streams. Their approach

can verify the productivity of more stream instances than

type-based verification, but it is still incomplete.

Other properties of co-inductive data structure are safety

and liveness. Jaber and Riba [16] extended a guarded lambda

calculus with refinement types, so that one can represent

safety and liveness. Bahr et al. extended guarded recursion to

treat liveness in FRP setting [6]. We expect that our approach

can also be applied to those problems (of verifying safety/live-

ness of programs involving co-inductive data structures); we

leave it for future work.

R. Fukaishi et al.

6 Conclusion
We have proposed a method for reducing productivity veri-

fication to termination verification for functional programs

without co-inductive types, and proved its correctness. We

have also implemented a prototype productivity checker

based on our method. To that end, we have also extended a

termination verification tool for higher-order programs to

support lists. We have confirmed the effectiveness of our tool

for several instances including those that cannot be handled

by existing size-based methods.

Future work includes a further optimization of our pro-

ductivity checker and an application of our method to real

programming languages like Haskell. We also plan to ex-

tend our verification method to deal with other temporal

properties on co-inductive data [16].

Acknowledgments
We would like to thank Ken Sakayori and anonymous refer-

ees for useful comments. This work was supported by JSPS

KAKENHI Grant Number JP20H05703.

References
[1] Andreas Abel. 2010. MiniAgda: Integrating Sized and Dependent

Types. In Partiality and Recursion in Interactive Theorem Provers,
PAR@ITP 2010, Edinburgh, UK, July 15, 2010 (EPiC Series, Vol. 5), Eka-
terina Komendantskaya, Ana Bove, and Milad Niqui (Eds.). EasyChair,

18–33. https://doi.org/10.29007/322q
[2] Alejandro Aguirre, Gilles Barthe, Justin Hsu, and Alexandra Silva.

2018. Almost Sure Productivity. In 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic (LIPIcs, Vol. 107), Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 113:1–113:15. https:
//doi.org/10.4230/LIPIcs.ICALP.2018.113

[3] Davide Ancona, Pietro Barbieri, and Elena Zucca. 2021. Enhanced

Regular Corecursion for Data Streams. In Proceedings of the 22nd Italian
Conference on Theoretical Computer Science, Bologna, Italy, September
13-15, 2021 (CEUR Workshop Proceedings, Vol. 3072), Claudio Sacerdoti

Coen and Ivano Salvo (Eds.). CEUR-WS.org, 266–280. https://ceur-
ws.org/Vol-3072/paper22.pdf

[4] Robert Atkey and Conor McBride. 2013. Productive coprogramming

with guarded recursion. In ACM SIGPLAN International Conference
on Functional Programming, ICFP’13, Boston, MA, USA - September 25
- 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.). ACM, 197–208.

https://doi.org/10.1145/2500365.2500597
[5] Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgel-

berg. 2017. The clocks are ticking: No more delays!. In 32nd An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–12.

https://doi.org/10.1109/LICS.2017.8005097
[6] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg.

2021. Diamonds are not forever: liveness in reactive programming

with guarded recursion. Proc. ACM Program. Lang. 5, POPL (2021),

1–28. https://doi.org/10.1145/3434283
[7] Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke

Sato. 2020. ICE-Based Refinement Type Discovery for Higher-Order

Functional Programs. J. Autom. Reason. 64, 7 (2020), 1393–1418. https:
//doi.org/10.1007/s10817-020-09571-y

[8] Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars

Birkedal. 2016. The Guarded Lambda-Calculus: Programming and Rea-

soning with Guarded Recursion for Coinductive Types. Log. Methods
Comput. Sci. 12, 3 (2016). https://doi.org/10.2168/LMCS-12(3:7)2016

[9] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.

In Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97), Amsterdam, The Netherlands, June
9-11, 1997, Simon L. Peyton Jones, Mads Tofte, and A. Michael Berman

(Eds.). ACM, 263–273. https://doi.org/10.1145/258948.258973
[10] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara,

and Jan Willem Klop. 2010. Productivity of stream definitions. Theor.
Comput. Sci. 411, 4-5 (2010), 765–782. https://doi.org/10.1016/j.tcs.
2009.10.014

[11] Jörg Endrullis and Dimitri Hendriks. 2011. Lazy productivity via

termination. Theor. Comput. Sci. 412, 28 (2011), 3203–3225. https:
//doi.org/10.1016/j.tcs.2011.03.024

[12] Grigory Fedyukovich, Yueling Zhang, and Aarti Gupta. 2018. Syntax-

Guided Termination Analysis. In Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I
(LNCS, Vol. 10981). Springer, 124–143. https://doi.org/10.1007/978-3-
319-96145-3_7

[13] Adrien Guatto. 2018. A Generalized Modality for Recursion. In Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich
Grädel (Eds.). ACM, 482–491. https://doi.org/10.1145/3209108.3209148

[14] Hossein Hojjat and Philipp Rümmer. 2018. The ELDARICA Horn

Solver. In 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, Nikolaj S. Bjørner
and Arie Gurfinkel (Eds.). IEEE, 1–7. https://doi.org/10.23919/FMCAD.
2018.8603013

[15] John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correct-

ness of Reactive Systems Using Sized Types. In Conference Record
of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Papers Presented at the Sympo-
sium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, Hans-
Juergen Boehm and Guy L. Steele Jr. (Eds.). ACM Press, 410–423.

https://doi.org/10.1145/237721.240882
[16] Guilhem Jaber and Colin Riba. 2021. Temporal Refinements for

Guarded Recursive Types. In Programming Languages and Systems -
30th European Symposium on Programming, ESOP 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings (Lecture Notes in Computer Science, Vol. 12648), Nobuko
Yoshida (Ed.). Springer, 548–578. https://doi.org/10.1007/978-3-030-
72019-3_20

[17] Hiroyuki Katsura, Naoki Iwayama, Naoki Kobayashi, and Takeshi

Tsukada. 2020. A New Refinement Type System for Automated 𝜈HFL𝑍

Validity Checking. In Programming Languages and Systems - 18th Asian
Symposium, APLAS 2020, Fukuoka, Japan, November 30 - December
2, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12470),
Bruno C. d. S. Oliveira (Ed.). Springer, 86–104. https://doi.org/10.1007/
978-3-030-64437-6_5

[18] Naoki Kobayashi, Kento Tanahashi, Ryosuke Sato, and Takeshi

Tsukada. 2023. HFL(Z) Validity Checking for Automated Program

Verification. Proc. ACM Program. Lang. 7, POPL (2023), 154–184.

https://doi.org/10.1145/3571199
[19] Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. 2018.

Higher-Order Program Verification via HFL Model Checking. In Pro-
gramming Languages and Systems - 27th European Symposium on Pro-
gramming, ESOP 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801),
Amal Ahmed (Ed.). Springer, 711–738. https://doi.org/10.1007/978-3-

https://doi.org/10.29007/322q
https://doi.org/10.4230/LIPIcs.ICALP.2018.113
https://doi.org/10.4230/LIPIcs.ICALP.2018.113
https://ceur-ws.org/Vol-3072/paper22.pdf
https://ceur-ws.org/Vol-3072/paper22.pdf
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1145/3434283
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.2168/LMCS-12(3:7)2016
https://doi.org/10.1145/258948.258973
https://doi.org/10.1016/j.tcs.2009.10.014
https://doi.org/10.1016/j.tcs.2009.10.014
https://doi.org/10.1016/j.tcs.2011.03.024
https://doi.org/10.1016/j.tcs.2011.03.024
https://doi.org/10.1007/978-3-319-96145-3_7
https://doi.org/10.1007/978-3-319-96145-3_7
https://doi.org/10.1145/3209108.3209148
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1145/237721.240882
https://doi.org/10.1007/978-3-030-72019-3_20
https://doi.org/10.1007/978-3-030-72019-3_20
https://doi.org/10.1007/978-3-030-64437-6_5
https://doi.org/10.1007/978-3-030-64437-6_5
https://doi.org/10.1145/3571199
https://doi.org/10.1007/978-3-319-89884-1_25
https://doi.org/10.1007/978-3-319-89884-1_25

Productivity Verification for Functional Programs by Reduction to Termination Verification

319-89884-1_25
[20] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-

based model checking for recursive programs. Formal Methods Syst.
Des. 48, 3 (2016), 175–205. https://doi.org/10.1007/s10703-016-0249-4

[21] Takuya Kuwahara, Tachio Terauchi, Hiroshi Unno, and Naoki

Kobayashi. 2014. Automatic Termination Verification for Higher-

Order Functional Programs. In Programming Languages and Systems -
23rd European Symposium on Programming, ESOP 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture
Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.). Springer, 392–

411. https://doi.org/10.1007/978-3-642-54833-8_21
[22] Rasmus Ejlers Møgelberg. 2014. A type theory for productive co-

programming via guarded recursion. In Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014, Thomas A. Henzinger and Dale Miller (Eds.). ACM, 71:1–71:10.

https://doi.org/10.1145/2603088.2603132
[23] Hiroshi Nakano. 2000. A Modality for Recursion. In 15th Annual IEEE

Symposium on Logic in Computer Science, Santa Barbara, California,
USA, June 26-29, 2000. IEEE Computer Society, 255–266. https://doi.
org/10.1109/LICS.2000.855774

[24] Niccolò Veltri and Niels van der Weide. 2019. Guarded Recursion

in Agda via Sized Types. In 4th International Conference on Formal
Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019,
Dortmund, Germany (LIPIcs, Vol. 131), Herman Geuvers (Ed.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 32:1–32:19. https://doi.
org/10.4230/LIPIcs.FSCD.2019.32

[25] Keiichi Watanabe, Takeshi Tsukada, Hiroki Oshikawa, and Naoki

Kobayashi. 2019. Reduction from branching-time property verification

of higher-order programs to HFL validity checking. In Proceedings of
the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM@POPL 2019, Cascais, Portugal, January 14-15, 2019,
Manuel V. Hermenegildo and Atsushi Igarashi (Eds.). ACM, 22–34.

https://doi.org/10.1145/3294032.3294077

https://doi.org/10.1007/978-3-319-89884-1_25
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/978-3-642-54833-8_21
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
https://doi.org/10.1145/3294032.3294077

R. Fukaishi et al.

A Proofs for Section 3
This section provides detailed proofs omitted in Section 3.

A.1 Basic Properties
The following lemmas hold regarding reduction and substi-

tution.

Lemma A.1. 𝑁 −→𝑒 𝑁
′, then [𝑃/𝑥]𝑁 −→𝑒 [𝑃/𝑥]𝑁 ′.

Proof. This follows by induction on the structure of the eval-

uation context of 𝑁 −→𝑒 𝑁
′
. □

Lemma A.2. 𝑁 ⪰ 𝑁 ′, then [𝑃/𝑥]𝑁 ⪰∗ [𝑃/𝑥]𝑁 ′.

Proof. This follows by induction on the structure of the con-

text of 𝑁 ⪰ 𝑁 ′
. □

Lemma A.3. 𝑃 ⪰ 𝑃 ′, then [𝑃/𝑥]𝑁 ⪰∗ [𝑃 ′/𝑥]𝑁 .

Proof. By induction on the structure of 𝑁 . □

Our translation rules holds inversion lemma.

Lemma A.4 (Inversion). Suppose Γ ⊢ 𝑀 : 𝜏 { 𝑁 the follow-
ing statements hold.

1. If 𝑀 = 𝜆𝑥.𝑀0, then Γ, 𝑥 : = 𝜏1 ⊢ 𝑀 : 𝜏2 { 𝑁0 with
𝑁 = 𝜆𝑥.𝑁0.

2. If 𝑀 = 𝑀0𝑀1, then Γ ⊢ 𝑀0 : 𝜏1 → 𝜏2 { 𝑁0 and
Γ ⊢ 𝑀1 : 𝜏1 { 𝑁1 with 𝑁 = 𝑁0 𝑁1 for some 𝜏1, 𝜏2.

3. If 𝑀 = (𝑀0, 𝑀1), then Γ ⊢ 𝑀0 : 𝜎0 { 𝑁0 and Γ ⊢
𝑀1𝜎1 { 𝑁1 with 𝑁 = Λ𝑢.case 𝑢 of 0 :: 𝑢′ ⇒ 𝑁0 𝑢

′ |
1 :: 𝑢′ ⇒ 𝑁1 𝑢

′ | _ ⇒ 0 for some 𝜎1, 𝜎2.
4. If 𝑀 = 𝜋𝑖 (𝑀 ′), then Γ ⊢ 𝑀 ′

: 𝜎 { 𝑁 ′ with 𝑁 =

Λ𝑢.𝑁 ′ (𝑖 :: 𝑢) for some 𝜎 .
5. If 𝑀 = in𝑖 (𝑀 ′), then Γ ⊢ 𝑀 ′

: 𝜎 { 𝑁 ′ with 𝑁 =

Λ𝑢.case 𝑢 of [] ⇒ 𝑖 | 0 :: 𝑢′ ⇒ 𝑁 ′′ 𝑢′ | _ ⇒ 0 for
some 𝜎 .

6. If 𝑀 = case 𝑀 ′ of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1),
then Γ ⊢ 𝑀 ′

: 𝜎0 + 𝜎1 { 𝑁 ′ Γ, 𝑥 : :𝜎0 ⊢ 𝑀0 :

𝜏 ′ { 𝑁0, and Γ, 𝑥 : 𝜎1 ⊢ 𝑀1 : 𝜏 ′ { 𝑁1 with
𝑁 = if0 𝑁 ′ [] then [𝜆𝑢.𝑁 ′ (0 :: 𝑢)/𝑥]𝑁0 else
[𝜆𝑢.𝑁 ′ (0 :: 𝑢)/𝑥]𝑁1 for some 𝜏 ′.

Proof. The proof proceeds by induction on derivation of

Γ ⊢ 𝑀 : 𝜏 { 𝑁 , with case analysis on the last rule used. If

the rule is Tr-Fold or Tr-Unfold, the required condition

holds directly from the induction hypothesis. Otherwise,

the rule is uniquely determined from the definition of the

translation, and the required condition holds by the form of

the rule. □

A.2 Proof of Lemma 3.5
Proof of Lemma 3.5. This follows by induction on the deriva-

tion of Γ, 𝑥 : 𝜏1 ⊢ 𝑀0 : 𝜏 { 𝑁0.

• Case Tr-Var: If 𝑀0 = 𝑥 , we get [𝑀1/𝑥]𝑀0 = 𝑀1 and

the required condition holds by assumption. If𝑀0 = 𝑦,

we get [𝑀1/𝑥]𝑀0 = 𝑀0 and the required condition

holds by assumption.

• Case Tr-Num, Tr-Z: In this case, we get [𝑀1/𝑥]𝑀0 =

𝑀0 and the required condition holds by assumption.

• Case Tr-Abs: In this case, we get 𝑀0 = 𝜆𝑦.𝑀 ′
0
and

𝑁0 = 𝜆𝑦.𝑁 ′
0
where Γ, 𝑥 : 𝜏1 ⊢ 𝑀 ′

0
: 𝜏 { 𝑁 ′

0
. By the in-

duction hypothesis, we get Γ ⊢ [𝑀1/𝑥]𝑀 ′
0
: 𝜏 {

[𝑁1/𝑥]𝑁 ′
0
. By Tr-Abs, we get Γ ⊢ [𝑀1/𝑥]𝜆𝑦.𝑀 ′

0
:

𝜏 { [𝑁1/𝑥]𝜆𝑦.𝑁 ′
0
.

• Case Tr-App: In this case, we get 𝑀0 = 𝑀 ′
0
𝑀 ′′

0
and

𝑁0 = 𝑁 ′
0
𝑁 ′′
0

where Γ, 𝑥 : 𝜏1 ⊢ 𝑀 ′
0
: 𝜏 { 𝑁 ′

0
and

Γ, 𝑥 : 𝜏1 ⊢ 𝑀 ′′
0

: 𝜏 { 𝑁 ′′
0
. By the induction hypoth-

esis, we get Γ ⊢ [𝑀1/𝑥]𝑀 ′
0
: 𝜏 { [𝑁1/𝑥]𝑁 ′

0
and

Γ ⊢ [𝑀1/𝑥]𝑀 ′′
0
: 𝜏 { [𝑁1/𝑥]𝑁 ′′

0
. By Tr-App we get

Γ ⊢ [𝑀1/𝑥]𝑀 ′
0
𝑀 ′′

0
: 𝜏 { [𝑁1/𝑥]𝑁 ′

0
𝑁 ′′
0
.

• Case Tr-Fix: In this case, we get𝑀0 = fix 𝑦.𝑀 ′
0
and

𝑁0 = fix 𝑦.𝑁 ′
0
where Γ, 𝑥 : 𝜏1 ⊢ 𝑀 ′

0
: 𝜏 { 𝑁 ′

0
. By the

induction hypothesis, we get Γ ⊢ [𝑀1/𝑥]𝑀 ′
0
: 𝜏 {

[𝑁1/𝑥]𝑁 ′
0
. By Tr-Fix, we get Γ ⊢ [𝑀1/𝑥]fix 𝑦.𝑀 ′

0
:

𝜏 { [𝑁1/𝑥]fix 𝑦.𝑁 ′
0
.

• Case Tr-Pair: In this case, we get 𝑀0 = (𝑀 ′
0
, 𝑀 ′′

0
)

and 𝑁0 = Λ𝑢.case 𝑢 of 0 :: 𝑢′ ⇒ 𝑁0 𝑢
′ | 1 :: 𝑢′ ⇒

𝑁1 𝑢
′ | _ ⇒ 0 where Γ, 𝑥 : 𝜎0 ⊢ 𝑀 ′

0
: 𝜏 { 𝑁 ′

0
and

Γ, 𝑥 :𝜎1 ⊢ 𝑀 ′′
0
: 𝜏 { 𝑁 ′′

0
. By the induction hypothesis,

we get Γ ⊢ [𝑀1/𝑥]𝑀 ′
0
: 𝜎0 { [𝑁1/𝑥]𝑁 ′

0
and Γ ⊢

[𝑀1/𝑥]𝑀 ′′
0

: 𝜎1 { [𝑁1/𝑥]𝑁 ′′
0
. By Tr-Pair we get

Γ ⊢ [𝑀1/𝑥] (𝑀 ′
0
, 𝑀 ′′

0
) : 𝜎0 × 𝜎1 { Λ𝑢.case 𝑢 of 0 ::

𝑢′ ⇒ [𝑁1/𝑥]𝑁 ′
0
𝑢′ | 1 :: 𝑢′ ⇒ [𝑁1/𝑥]𝑁 ′′

0
𝑢′ | _ ⇒ 0.

• Case Tr-Proj: In this case, we get 𝑀0 = 𝜋𝑖 (𝑀 ′
0
)

and 𝑁0 = Λ𝑢.𝑁 ′
0
(𝑖 :: 𝑢) where Γ, 𝑥 : 𝜏1 ⊢ 𝑀 ′

0
:

𝜎0 × 𝜎1 { 𝑁 ′
0
. By the induction hypothesis, we get

Γ ⊢ [𝑀1/𝑥]𝑀 ′
0
: 𝜎0 × 𝜎1 { [𝑁1/𝑥]𝑁 ′

0
. By Tr-Proj,

we get Γ ⊢ [𝑀1/𝑥]𝜋𝑖 (𝑀 ′
0
) : 𝜏 { Λ𝑢.[𝑁1/𝑥]𝑁 ′

0
(𝑖 :: 𝑢).

• Case Tr-Inj: In this case, we get 𝑀0 = in𝑖 (𝑀 ′
0
) and

𝑁0 = Λ𝑢.case 𝑢 of [] ⇒ 𝑖 | 0 :: 𝑢′ ⇒ 𝑁 ′
0
𝑢′ | _ ⇒ 0

where Γ, 𝑥 : 𝜏1 ⊢ 𝑀 ′
0
: 𝜎𝑖 { 𝑁 ′

0
. By the induction

hypothesis, we get Γ ⊢ [𝑀1/𝑥]𝑀 ′
0
: 𝜎𝑖 { [𝑁1/𝑥]𝑁 ′

0
.

By Tr-Inj, we get Γ ⊢ [𝑀1/𝑥]𝑀0 : 𝜏 { [𝑁1/𝑥]𝑁0.

• Case Tr-Case: In this case, we get 𝑀0 =

case 𝑀 of (in0 (𝑥) ⇒ 𝑀 ′
0

| in1 (𝑥) ⇒
𝑀 ′′

0
) and 𝑁0 = if0 𝑁 [] then [𝜆𝑢.𝑁 (0 ::

𝑢)/𝑦]𝑁 ′
0
else [𝜆𝑢.𝑁 (0 :: 𝑢)/𝑦]𝑁 ′′

0
where Γ, 𝑥 : 𝜏1 ⊢

𝑀 : 𝜎0 + 𝜎1 { 𝑁 , Γ, 𝑥 : 𝜏1 ⊢ 𝑀 ′
0

: 𝜎0 { 𝑁 ′
0
,

and Γ, 𝑥 : 𝜏1 ⊢ 𝑀 ′′
0

: 𝜎1 { 𝑁 ′′
0
. By the induc-

tion hypothesis, we get Γ ⊢ [𝑀1/𝑥]𝑀 : 𝜎0 + 𝜎1 {
[𝑁1/𝑥]𝑁 , Γ ⊢ [𝑀1/𝑥]𝑀 ′

0
: 𝜎0 { [𝑁1/𝑥]𝑁 ′

0
, and

Γ ⊢ [𝑀1/𝑥]𝑀 ′′
0

: 𝜎1 { [𝑁1/𝑥]𝑁 ′′
0
. By Tr-Case, we

get Γ ⊢ [𝑀1/𝑥]𝑀0 : 𝜏 { [𝑁1/𝑥]𝑁0.

• Case Tr-Fold, Tr-Unfold: In this case, the required

condition holds directly from the induction hypothe-

sis.

□

Note that the translation is deterministic even though its

derivation is not unique due to the rules of fold and unfold

of the fixpoint 𝜈 .

Productivity Verification for Functional Programs by Reduction to Termination Verification

A.3 Proof of Lemma 3.9
We first show the equivalence of the conditions 1 and 2 of

Lemma 3.9.

Lemma A.5. Let 𝑁 be a term of base type. Then 𝑁 is termi-
nating with respect to −→𝑒 if and only if it is terminating with
respect to −→ .

Proof. The “only if” direction is trivial as −→ ⊆−→𝑒 . To

show the “if” direction, suppose 𝑁 −→ 𝑛𝑉 . We prove that

any term 𝑁 ′
that satisfies 𝑁 −→𝑒 𝑁 ′

is terminating with

respect to −→𝑒 by induction on 𝑛. If 𝑁 −→ 𝑁 ′
, then 𝑁 ′

is

terminating by the induction hypothesis, since −→ is de-

terministic. Otherwise, the reduction 𝑁 −→ 𝑁 ′
must occur

under Λ𝑥 , so 𝑁 and 𝑁 ′
must be of the form:

𝑁 = E′ [Λ𝑥 .𝑃]
𝑁 ′ = E′ [Λ𝑥 .𝑃 ′]

where 𝑃 −→𝑒 𝑃
′
and E′

is a normal evaluation context. Since

𝑁 is a term of base type and Λ𝑥 .𝑃 has a function type, the

hole of E′
must occur in an application ⟨ ⟩𝑄 . Thus, E′

is

of the form E[⟨ ⟩𝑄], and we have 𝑁 = E[(Λ𝑥 .𝑃)𝑄] and
𝑁 ′ = E[(Λ𝑥 .𝑃 ′)𝑄]. We can also get

𝑁 −→ 𝑁 ′′ = E[[𝑄/𝑥]𝑃] −→ 𝑛−1𝑉

Hence, 𝑁 ′′
is terminating with respect to −→𝑒 by the induc-

tion hypothesis. If there is an infinite reduction sequence in

the form:

𝑁 ′ −→𝑒 E[(Λ𝑥 .𝑃1)𝑄]
−→𝑒 E[(Λ𝑥 .𝑃2)𝑄]
−→𝑒 · · · .

By Lemma A.1 we get follows infinite reduction sequence:

𝑁 ′′ −→𝑒 E[[𝑄/𝑥]𝑃 ′]
−→𝑒 E[[𝑄/𝑥]𝑃1]
−→𝑒 · · · .

But it contradicts the fact that 𝑁 ′′
is terminating. Thus, any

reduction sequence starts from 𝑁 ′
is in the form

𝑁 ′ −→∗
𝑒 E[(Λ𝑥 .𝑃𝑘)𝑄]

−→𝑒 E[[𝑄/𝑥]𝑃𝑘]
−→𝑒 · · · .

Thus, it suffices to show E[[𝑄/𝑥]𝑃𝑘] is terminating, which

follows immediately from

𝑁 ′′ −→∗
𝑒 E[[𝑄/𝑥]𝑃𝑘]

and the fact that 𝑁 ′′
is terminating. □

To show the equivalence between the conditions 1 and 3

of Lemma 3.9, we prepare a few lemmas.

Definition A.6. We call 𝑁 is normal-terminating if 𝑁 is

terminating with respect to −→ .

Lemma A.7. Let 𝑁 be a term of base type. If 𝑁 −→𝑒 𝑁1 and
𝑁 −→ 𝑁2 and 𝑁1 ≠ 𝑁2, then 𝑁, 𝑁1, and 𝑁2 must be of the
form

𝑁 = E[(Λ𝑥 .𝑃)𝑄]
𝑁1 = E[(Λ𝑥 .𝑃 ′)𝑄]
𝑁2 = E[[𝑄/𝑥]𝑃]

with 𝑃 −→𝑒 𝑃
′.

Proof. Since 𝑁 −→ 𝑁1 does not hold, the context of 𝑁 −→𝑒

𝑁1 is of the form:

E[(Λ𝑥 .E𝑒 [])𝑄]

Then, 𝑁, 𝑁1, 𝑁2 must be of the form

𝑁 = E[(Λ𝑥 .𝑃)𝑄]
𝑁1 = E[(Λ𝑥 .𝑃 ′)𝑄]
𝑁2 = E[[𝑄/𝑥]𝑃]

with 𝑃 −→𝑒 𝑃
′
. □

Lemma A.8. Let 𝑁 be a term of base type. If 𝑁 −→𝑒 𝑁1 and
𝑁 −→ 𝑁2, then either 𝑁1 = 𝑁2 or there exists 𝑁3 such that
𝑁1 −→ 𝑁3 and 𝑁2 −→𝑒 𝑁3.

Proof. If 𝑁1 ≠ 𝑁2, by Lemma A.7, 𝑁, 𝑁1, and 𝑁2 must be of

the form.

𝑁 = E[(Λ𝑥 .𝑃)𝑄]
𝑁1 = E[(Λ𝑥 .𝑃 ′)𝑄]
𝑁2 = E[[𝑄/𝑥]𝑃]

with 𝑃 −→𝑒 𝑃
′
. By Lemma A.1, the required condition holds

for 𝑁3 = [𝑄/𝑥]𝑃 ′
. □

We can now show the equivalence between the conditions

1 and 3.

Lemma A.9. Let 𝑁 be a term of base type. If 𝑁 is
may-terminating with respect to −→𝑒 , then 𝑁 is normal-
terminating.

Proof. Suppose 𝑁 −→𝑛
𝑒 𝑉 . This follows by induction on

𝑛. If 𝑛 = 0, the condition trivially holds. We suppuse

𝑁 −→𝑒 𝑁 ′ −→𝑛−1
𝑒 𝑉 and 𝑁 −→ 𝑁1. By induction hypoth-

esis, 𝑁 ′
is normal-terminating. If 𝑁 −→ 𝑁 ′

, 𝑁 is normal-

terminating by assumption. Otherwise, suppose 𝑁 is not

normal-terminating. Then, we get an inifinite reduction se-

quence from 𝑁 . By Lemma A.8, we can construct infinite

reduction sequence from 𝑁 ′
. However, it contradicts the fact

that 𝑁 ′
is normal-terminating. Thus, the required condition

holds. □

Proof of Lemma 3.9. By Lemmas A.5 and Lemma A.9. □

Below we will call termination with respect to −→𝑒 and

that of −→ simply "termination".

R. Fukaishi et al.

A.4 Proof of Lemma 3.11
Proof of Lemma 3.11. This follows by induction on the

length of 𝛾 . The case 𝛾 = 𝜖 is trivial. If𝑀 is non-terminating,

𝑓𝑀 is also non-terminating by Lemmas 3.12 and 3.13. It con-

tradicts the assumption. We suppose 𝑀 −→∗ 𝑉 for some

value 𝑉 . We perform case analysis on 𝜎 . Since𝑀 is a closed

term, 𝜎 is not type variable. If 𝜎 = int, 𝛾 ∈ Path(𝜎) if and
only if 𝛾 = 𝜖 . Thus, the required condition trivially holds.

If 𝜎 = 𝜈𝑋 .𝜎 ′
for some 𝜎 ′

, we unfold the fixpoint. Since 𝜎 ′

is not type variable, the unfolded type is not fixpoint type.

Thus, it suffices to show the case 𝜎 is product or sum type.

• Case 𝜎 = 𝜎0 ×𝜎1: We first consider the case 𝛾 = 𝜋0 ·𝛾 ′.
For any 𝑝 , we get

𝑓𝜋0 (𝑀) 𝑝 = (Λ𝑢.𝑓𝑀 (0 :: 𝑢)) 𝑝 −→𝑒 𝑓𝑀 (0 :: 𝑝).

Since 𝑓𝑀 (0 :: 𝑝) is terminating by assumption,

𝑓𝜋0 (𝑀) 𝑝 is also terminating. By induction hypoth-

esis, we get 𝑓𝛾𝑀 𝑞 = 𝑓𝛾 ′ (𝜋0 (𝑀)) 𝑞 is also terminat-

ing. The case 𝛾 = 𝜋1 · 𝛾 ′ similarly holds. Otherwise,

𝛾 ∉ Path(𝜎).
• Case 𝜎 = 𝜎0+𝜎1: We first consider the case𝛾 = in−1

0
·𝛾 ′.

Since 𝑉 is value, 𝑉 = in𝑖 (𝑀 ′) for some 𝑖 and 𝑀 ′
. If

𝑖 = 0, we get 𝑓𝑉 [] −→∗
𝑒 0. By Lemma 3.16, we get

𝑓𝑀 [] −→∗
𝑒 0 and

𝑓case 𝑀 of (in0 (𝑥)⇒𝛾 𝑥 |in1 (𝑥)⇒Z) 𝑝

= (if0 𝑓𝑀 [] then Λ𝑢.𝑓𝑀 (0 :: 𝑢) else Λ𝑢.0) 𝑝
−→∗

𝑒 (if0 0 then Λ𝑢.𝑓𝑀 (0 :: 𝑢) else Λ𝑢.0) 𝑝
−→𝑒 (Λ𝑢.𝑓𝑀 (0 :: 𝑢)) 𝑝
−→𝑒 𝑓𝑀 (0 :: 𝑝)

for any 𝑝 . Since 𝑓𝑀 (0 :: 𝑝) is terminating by assump-

tion, 𝑓case 𝑀 of (in0 (𝑥)⇒𝛾 𝑥 |in1 (𝑥)⇒Z) 𝑝 is also terminat-

ing. By induction hypothesis,

𝑓𝛾𝑀 𝑞 = 𝑓𝛾 ′ (case 𝑀 of (in0 (𝑥)⇒𝛾 𝑥 |in1 (𝑥)⇒Z)) 𝑞

is terminating. If 𝑖 = 1, we get 𝑓𝑉 [] −→∗
𝑒 1. By

Lemma 3.16, we get 𝑓𝑀 [] −→∗
𝑒 1 and

𝑓case 𝑀 of (in0 (𝑥)⇒𝛾 𝑥 |in1 (𝑥)⇒Z) 𝑝

= (if0 𝑓𝑀 [] then Λ𝑢.𝑓𝑀 (0 :: 𝑢) else Λ𝑢.0) 𝑝
−→∗

𝑒 (if0 1 then Λ𝑢.𝑓𝑀 (0 :: 𝑢) else Λ𝑢.0) 𝑝
−→𝑒 (Λ𝑢.0) 𝑝
−→𝑒 0

for any 𝑝 . By induction hypothesis,

𝑓𝛾𝑀 𝑞 = 𝑓𝛾 ′ (case 𝑀 of (in0 (𝑥)⇒𝛾 𝑥 |in1 (𝑥)⇒Z)) 𝑞

is terminating. The case 𝛾 = in−1
1

· 𝛾 ′ similarly holds.

Otherwise, 𝛾 ∉ Path(𝜎).
□

A.5 Proof of Lemma 3.12
Proof of Lemma 3.12. The proof proceeds by induction on

the derivation of𝑀 −→𝑒 𝑀
′
, with case analysis on the last

rule used.

• Case R-Beta: In this case, 𝑀 = (𝜆𝑥 .𝑀0)𝑀1 and

𝑀 ′ = [𝑀1/𝑥]𝑀0. By Lemma A.4, we have 𝑥 : 𝜏1 ⊢
𝑀0 : 𝜏 { 𝑁0 and ⊢ 𝑀1 : 𝜏1 { 𝑁1 with 𝑁 =

(𝜆𝑥.𝑁0)𝑁1. By Lemma 3.5, we have ⊢ [𝑀1/𝑥]𝑀0 :

𝜏 { [𝑁1/𝑥]𝑁0. Thus, the required condition holds

for 𝑁 ′ = [𝑁1/𝑥]𝑁0.

• Case R-Proj: In this case, 𝑀 = 𝜋𝑖 (𝑀0, 𝑀1) and 𝑀 ′ =
𝑀𝑖 . By LemmaA.4, we have ⊢ 𝑀0 : 𝜎0 { 𝑁0 and ⊢ 𝑀1 :

𝜎1 { 𝑁1 with 𝜏 = 𝜎𝑖 and 𝑁 = Λ𝑢.(Λ𝑣 .case 𝑣 of 0 ::

𝑢′ ⇒ 𝑁0 𝑢
′ | 1 :: 𝑢′ ⇒ 𝑁1 𝑢

′ | _ ⇒ 0) (𝑖 :: 𝑢). For
𝑖 ∈ {0, 1}, we have:
𝑁

= Λ𝑢.(Λ𝑣 .case 𝑣 of 0 :: 𝑢′ ⇒ 𝑁0 𝑢
′

| 1 :: 𝑢′ ⇒ 𝑁1 𝑢
′ | _ ⇒ 0) (𝑖 :: 𝑣)

−→𝑒 Λ𝑢.case 𝑖 :: 𝑢 of 0 :: 𝑢′ ⇒ 𝑁0 𝑢
′ | 1 :: 𝑢′ ⇒ 𝑁1 𝑢

′ | _ ⇒ 0

⪰ Λ𝑢.𝑁𝑖 𝑢

⪰ 𝑁𝑖𝑢.

Thus, the required condition holds for 𝑁 ′ = 𝑁𝑖 .

• Case R-Case: In this case, 𝑀 =

case in𝑖 (𝑀2) of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1)
and 𝑀 ′ = [𝑀2/𝑥]𝑀𝑖 . By Lemma A.4, we have

⊢ 𝑀2 : 𝜎𝑖 { 𝑁2 and 𝑥 : 𝜎 𝑗 ⊢ 𝑀 𝑗 : 𝜏 { 𝑁 𝑗 for

𝑗 ∈ {0, 1}, with 𝑁 = if0 𝑁3 [] then 𝑁 ′
0
else 𝑁 ′

1

where 𝑁3 = Λ𝑢.case 𝑢 of [] ⇒ 𝑖 | 0 :: 𝑢′ ⇒
𝑁2 𝑢

′ | _ ⇒ 0, 𝑁 ′
0

= [Λ𝑢.𝑁3 (0 :: 𝑢)/𝑥]𝑁0, and

𝑁 ′
1

= [Λ𝑢.𝑁3 (0 :: 𝑢)/𝑥]𝑁1. By Lemma A.3, for

𝑖 ∈ {0, 1}, 𝑁 can be reduced as follows.

𝑁 = if0 𝑁3 [] then 𝑁 ′
0
else 𝑁 ′

1

−→𝑒 if0 𝑖 then 𝑁 ′
0
else 𝑁 ′

1

−→𝑒 [Λ𝑢.𝑁3 (0 :: 𝑢)/𝑥]𝑁𝑖

⪰∗ [Λ𝑢.case 0 :: 𝑢 of [] ⇒ 𝑖 | 0 :: 𝑢′ ⇒ 𝑁2 𝑢
′ | _ ⇒ 0/𝑥]𝑁𝑖

⪰∗ [Λ𝑢.𝑁2 𝑢/𝑥]𝑁𝑖

⪰∗ [𝑁2/𝑥]𝑁𝑖 .

By Lemma 3.5, we also have ⊢ [𝑀2/𝑥]𝑀𝑖 : 𝜏 {
[𝑁2/𝑥]𝑁𝑖 . Thus, 𝑁

′ = [𝑁2/𝑥]𝑁𝑖 satisfies the required

condition.

• Case R-Fix: In this case, 𝑀 = fix 𝑥 .𝑀0 and

𝑀 ′ = [fix 𝑥 .𝑀0/𝑥]𝑀0. By Lemma A.4, we have

𝑥 : 𝜏 ⊢ 𝑀0 : 𝜏 { 𝑁0 with 𝑁 = fix 𝑥 .𝑁0. By

Lemma 3.5, we also have ⊢ [fix 𝑥 .𝑀0/𝑥]𝑀0 : 𝜏 {
[fix 𝑥 .𝑁0/𝑥]𝑁0. Thus, the required condition holds

for 𝑁 ′ = [fix 𝑥 .𝑁0/𝑥]𝑁0.

• Case R-CApp: In this case,𝑀 = 𝑀0𝑀1 and𝑀
′ = 𝑀 ′

0
𝑀1.

By Lemma A.4, we have ⊢ 𝑀0 : 𝜏2 → 𝜏 { 𝑁0 and

⊢ 𝑀1 : 𝜏2 { 𝑁1 with 𝑁 = 𝑁0𝑁1. By the induction

Productivity Verification for Functional Programs by Reduction to Termination Verification

hypothesis, we also have ⊢ 𝑀 ′
0
: 𝜏 { 𝑁 ′

0
and 𝑁0 −→+

𝑒

⪰∗ 𝑁 ′
0
. Thus, the required condition holds for 𝑁 ′ =

𝑁 ′
0
𝑁1.

• Case R-CProj: In this case, 𝑀 = 𝜋𝑖 (𝑀0) and 𝑀 ′ =

𝜋𝑖 (𝑀 ′
0
). By Lemma A.4, we have ⊢ 𝑀0 : 𝜏 { 𝑁0 with

𝑁 = Λ𝑢.𝑁0 (𝑖 :: 𝑢). By the induction hypothesis, we

also have ⊢ 𝑀0 : 𝜏 { 𝑁0 and 𝑁0 −→+
𝑒 ⪰∗ 𝑁 ′

0
. Thus,

the required condition holds for 𝑁 ′ = Λ𝑢.𝑁 ′
0
(𝑖 :: 𝑢).

• Case R-CCase: In this case, 𝑀 =

case 𝑀2 of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1)
and𝑀 ′ = case 𝑀 ′

2
of (in0 (𝑥) ⇒ 𝑀0 | in1 (𝑥) ⇒ 𝑀1).

By the assumption ⊢ 𝑀 : 𝜏 { 𝑁 , we have

⊢ 𝑀2 : 𝜏 { 𝑁2 with

𝑁 = if0 𝑁2 [] then 𝑁 ′
0
else 𝑁 ′

1
,

𝑁 ′
0
= [𝜆𝑢.𝑁2 (0 :: 𝑢)/𝑥]𝑁0,

𝑁 ′
1
= [𝜆𝑢.𝑁2 (0 :: 𝑢)/𝑥]𝑁1.

By the induction hypothesis, we also have ⊢ 𝑀2 : 𝜏 {
𝑁2 and 𝑁2 −→+

𝑒 ⪰∗ 𝑁 ′
2
. 𝑁 can be reduced as follows.

𝑁 = if0 𝑁2 [] then 𝑁 ′
0
else 𝑁 ′

1

−→+
𝑒 ⪰∗ if0 𝑁 ′

2
[] then 𝑁 ′

0
else 𝑁 ′

1

⪰∗ if0 𝑁 ′
2
[] then [𝜆𝑢.𝑁 ′

2
(0 :: 𝑢)/𝑥]𝑁0 else

[𝜆𝑢.𝑁 ′
2
(0 :: 𝑢)/𝑥]𝑁1

Thus, the required condition holds for𝑁 ′ = if0 𝑁 ′
2
[]

then [𝜆𝑢.𝑁 ′
2
(0 :: 𝑢)/𝑥]𝑁0 else [𝜆𝑢.𝑁 ′

2
(0 :: 𝑢)/𝑥]𝑁1.

□

A.6 Proof of Lemma 3.13
Proof of Lemma 3.13. Suppose 𝑁 ⪰ 𝑁 ′′ −→𝑒 𝑁

′
. The proof

proceeds by case analysis on the context of𝐶 of the 𝑁 ⪰ 𝑁 ′′
.

If 𝐶 is an evaluation context E𝑒 , then we get 𝑁 = E𝑒 [𝑀0] ⪰
E𝑒 [𝑀1] = 𝑁 ′′ −→𝑒 𝑁

′
, and the required condition holds for

each derivation rule of ⪰ as follows:

• Case C-Eta In this case, we get𝑀0 = Λ𝑥 .𝑀1 𝑥 . 𝑁 can

be reduced as follows.

𝑁 = E𝑒 [Λ𝑥 .𝑀1 𝑥] −→𝑒 Λ𝑥 .𝑁
′ 𝑥 ⪰ 𝑁 ′

• CaseC-Beta In this case, we get E𝑒 [𝑀0] −→𝑒 E𝑒 [𝑀1]
by definition. Thus, 𝑁 −→𝑒 𝑁

′′ −→𝑒 𝑁
′
holds.

We now prove the other cases.

• Case 𝑁 = 𝜆𝑥.𝑃 ⪰ 𝜆𝑥 .𝑃 ′ = 𝑁 ′′
where 𝑃 ⪰ 𝑃 ′

: In this

case, 𝑁 ′′
cannot be reduced to some 𝑁 ′

. Thus, the

required condition holds.

• Case 𝑁 = (𝜆𝑥 .𝑃)𝑄 ⪰ (𝜆𝑥 .𝑃)𝑄 ′
where 𝑄 ⪰ 𝑄 ′

: In

this case, we get 𝑁 ′ = [𝑄 ′/𝑥]𝑃 . By Lemma A.2 𝑁 can

be reduced as follows.

𝑁 = (𝜆𝑥 .𝑃)𝑄 −→𝑒 [𝑄/𝑥]𝑃 ⪰∗ [𝑄 ′/𝑥]𝑃 = 𝑁 ′

Thus, the required condition holds.

• Case 𝑁 = fix 𝑥 .𝑃 ⪰ fix 𝑥 .𝑃 ′ = 𝑁 ′′
where 𝑃 ⪰ 𝑃 ′

: In

this case, we get 𝑁 ′ = [fix 𝑥 .𝑃 ′/𝑥]𝑃 ′
. By Lemma A.2

and A.3 𝑁 can be reduced as follows.

𝑁 = fix 𝑥 .𝑃 −→𝑒 [fix 𝑥 .𝑃/𝑥]𝑃
⪰ [fix 𝑥 .𝑃/𝑥]𝑃 ′

⪰∗ [fix 𝑥 .𝑃 ′/𝑥]𝑃 ′ = 𝑁 ′

Thus, the required condition holds.

• Case 𝑁 = if0 𝑁0 then 𝑁1 else 𝑁2 and 𝑁 ′′ =

if0 𝑁0 then 𝑁 ′
1
else 𝑁2 where 𝑁1 ⪰ 𝑁 ′

1
: If 𝑁0 = 0,

we get 𝑁 ′ = 𝑁1 and 𝑁 −→𝑒 𝑁1 ⪰ 𝑁1 = 𝑁 ′′
by as-

sumption. If 𝑁0 = 𝑛 where 𝑛 ≠ 0, we get 𝑁 ′ = 𝑁2

and 𝑁 −→𝑒 𝑁2 = 𝑁 ′
. Otherwise, we can suppose

𝑁 ′ = if0 𝑁 ′
0
then 𝑁 ′

1
else 𝑁2 where 𝑁0 −→𝑒 𝑁 ′

0
.

We get 𝑁 −→𝑒 if0 𝑁0 then 𝑁 ′
1
else 𝑁2 ⪰ 𝑁 ′

.

• Case 𝑁 = if0 𝑁0 then 𝑁1 else 𝑁2 and 𝑁 ′′ =

if0 𝑁0 then 𝑁1 else 𝑁 ′
2
where 𝑁2 ⪰ 𝑁 ′

2
: The re-

quired condition holds as well as the case above.

• Case 𝑁 = case 𝑁0 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒

𝑁𝑘) and𝑁 ′′ = case 𝑁0 of (pat
1
⇒ 𝑁1 | · · · | pat𝑖 ⇒

𝑁 ′
𝑖 | · · · | pat𝑘 ⇒ 𝑁𝑘) where 𝑁𝑖 ⪰ 𝑁 ′

𝑖 : We first

consider the case where𝑁0 is a value. If𝑁0 ⊢ pat𝑖𝜌 , we
get 𝑁 ′ = 𝜌𝑁 ′

𝑖 and 𝑁 −→𝑒 𝜌𝑁𝑖 ⪰∗ 𝜌𝑁 ′
𝑖 by Lemma A.2.

If 𝑁0 ⊢ pat 𝑗𝜌
′
where 𝑖 ≠ 𝑗 , we get 𝑁 ′ = 𝜌 ′𝑁 𝑗 and

𝑁 −→𝑒 𝑁
′
. We next consider the case where 𝑁0 is not

a value. We can suppose 𝑁 ′ = case 𝑁 ′
0
of (pat

1
⇒

𝑁1 | · · · | pat𝑖 ⇒ 𝑁 ′
𝑖 | · · · | pat𝑘 ⇒ 𝑁𝑘) where

𝑁0 −→𝑒 𝑁 ′
0
. We get 𝑁 −→𝑒 case 𝑁 ′

0
of (pat

1
⇒

𝑁1 | · · · | pat𝑖 ⇒ 𝑁 ′
𝑖 | · · · | pat𝑘 ⇒ 𝑁𝑘) ⪰ 𝑁 ′

.

□

A.7 Proof of Lemma 3.15
To show Lemma 3.15, we introduce a new strong reduction

relation ⪰ (𝑛)
𝑝 , which is a “parallel reduction” version of ⪰,

and show that ⪰ (𝑛)
𝑝 commutes with −→𝑒 (Lemma A.17 given

later).

Definition A.10. We will denote the number of occurrence

of 𝑥 in 𝑁 by Oc(𝑥, 𝑁).
Definition A.11. We define weighted strong parallel reduc-

tion ⪰ (𝑛)
𝑝 as follows:

𝑁 ⪰ (0)
𝑝 𝑁 (SP-Id)

𝑁 −→𝑒 𝑁
′

𝑁 ⪰ (1)
𝑝 𝑁 ′

(SP-Beta)

𝑥 is not free in 𝑁 𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

Λ𝑥 .𝑁 𝑥 ⪰ (𝑛+1)
𝑝 𝑁 ′

(SP-Eta)

𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

𝑚 :: 𝑁 ⪰ (𝑛)
𝑝 𝑚 :: 𝑁 ′

(SP-Cons)

R. Fukaishi et al.

𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

𝜆𝑥.𝑁 ⪰ (𝑛)
𝑝 𝜆𝑥 .𝑁 ′

(SP-Abs)

𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

Λ𝑥 .𝑁 ⪰ (𝑛)
𝑝 Λ𝑥 .𝑁 ′

(SP-Abs2)

𝑁0 ⪰ (𝑛)
𝑝 𝑁 ′

0
𝑁1 ⪰ (𝑚)

𝑝 𝑁 ′
1

𝑁0 𝑁1 ⪰ (𝑛+𝑚)
𝑝 𝑁 ′

0
𝑁 ′
1

(SP-App)

𝑁0 ⪰ (𝑛)
𝑝 𝑁 ′

0
𝑁1 ⪰ (𝑚)

𝑝 𝑁 ′
1

𝑁2 ⪰ (ℓ)
𝑝 𝑁 ′

2

if0 𝑁0 then 𝑁1 else 𝑁2 ⪰ (𝑛+𝑚+ℓ)
𝑝 if0 𝑁 ′

0
then 𝑁 ′

1
else 𝑁 ′

2

(SP-If0)

𝑁𝑖 ⪰ (𝑛𝑖)
𝑝 𝑁𝑖 (for 𝑖 ∈ {0, . . . , 𝑘})

case 𝑁0 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

⪰ (∑𝑘
0
𝑛𝑖)

𝑝 case 𝑁 ′
0
of (pat

1
⇒ 𝑁 ′

1
| · · · | pat𝑘 ⇒ 𝑁 ′

𝑘
)

(SP-Case)

𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

fix 𝑥 .𝑁 ⪰ (𝑛)
𝑝 fix 𝑥 .𝑁 ′

(SP-Fix)

𝑁1 ⪰ (𝑚)
𝑝 𝑁 ′

1
𝑁2 ⪰ (𝑛)

𝑝 𝑁 ′
2

(𝜆𝑥 .𝑁1) 𝑁2 ⪰
(𝑚+𝑛×Oc (𝑥,𝑁 ′

1
)+1)

𝑝 [𝑁 ′
2
/𝑥]𝑁 ′

1

(SP-Beta1)

𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

fix 𝑥 .𝑁 ⪰ (𝑛×(Oc (𝑥,𝑁 ′)+1)+1)
𝑝 [fix 𝑥 .𝑁 ′/𝑥]𝑁 ′

(SP-Beta2)

𝑁1 ⪰ (𝑛)
𝑝 𝑁 ′

1

if0 0 then 𝑁1 else 𝑁2 ⪰ (𝑛+1)
𝑝 𝑁 ′

1

(SP-Beta3)

𝑁2 ⪰ (𝑛)
𝑝 𝑁 ′

2
𝑚 ≠ 0

if0𝑚 then 𝑁1 else 𝑁2 ⪰ (𝑛+1)
𝑝 𝑁 ′

2

(SP-Beta4)

𝑁𝑖 ⪰ (𝑛𝑖)
𝑝 𝑁 ′

𝑖 𝐿 ⊢ pat𝑖 ⇒ [·]

case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘) ⪰ (𝑛𝑖+1)

𝑝 𝑁 ′
𝑖

(SP-Beta5)

𝐿1 ⪰ (𝑚)
𝑝 𝐿′

1
𝑁𝑖 ⪰ (𝑛𝑖)

𝑝 𝑁 ′
𝑖 𝐿 ⊢ pat𝑖 ⇒ [𝐿1/𝑥]

case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

⪰ (𝑛𝑖+𝑚×Oc (𝑥,𝑁 ′
𝑖)+1)

𝑝 [𝐿′
1
/𝑥]𝑁 ′

𝑖

(SP-Beta6)

If the weight 𝑛 on ⪰ (𝑛)
𝑝 does not matter, we omit 𝑛 and write

⪰𝑝 instead.

Lemma A.12. If 𝑃 ⪰ (𝑚)
𝑝 𝑃 ′, then

[𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁))
𝑝 [𝑃 ′/𝑥]𝑁

Proof. The proof follows by induction on structure of 𝑁 .

• Case 𝑁 = 𝑥 : In this case, we get [𝑃/𝑥]𝑁 = 𝑃 and

Oc(𝑥, 𝑁) = 1. By assumption, [𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁))
𝑝

[𝑃 ′/𝑥]𝑁 holds.

• Case 𝑁 = 𝑦: In this case, we get [𝑃/𝑥]𝑁 = 𝑦 and

Oc(𝑥, 𝑁) = 0. By SP-Id, [𝑃/𝑥]𝑁 ⪰ (0)
𝑝 [𝑃 ′/𝑥]𝑁 holds.

• Case 𝑁 = 𝑛: In this case, we get [𝑃/𝑥]𝑁 = 𝑛 and

Oc(𝑥, 𝑁) = 0. By SP-Id, [𝑃/𝑥]𝑁 ⪰ (0)
𝑝 [𝑃 ′/𝑥]𝑁 holds.

• Case 𝑁 = []: In this case, we get [𝑃/𝑥]𝑁 = [] and
Oc(𝑥, 𝑁) = 0. By SP-Id, [𝑃/𝑥]𝑁 ⪰ (0)

𝑝 [𝑃 ′/𝑥]𝑁 holds.

• Case 𝑁 = 𝑛 :: 𝐿: In this case, we get [𝑃/𝑥]𝑁 = 𝑛 ::

[𝑃/𝑥]𝐿 and Oc(𝑥, 𝑁) = Oc(𝑥, 𝐿). By the induction hy-

pothesis, [𝑃/𝑥]𝐿 ⪰ (𝑚×Oc (𝑥,𝑁0))
𝑝 [𝑃 ′/𝑥]𝐿. By SP-Cons,

[𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁))
𝑝 [𝑃 ′/𝑥]𝑁 holds.

• Case 𝑁 = 𝜆𝑦.𝑁0: In this case, we get [𝑃/𝑥]𝑁 =

𝜆𝑦.[𝑃/𝑥]𝑁0 and Oc(𝑥, 𝑁) = Oc(𝑥, 𝑁0). By the induc-

tion hypothesis, [𝑃/𝑥]𝑁0 ⪰ (𝑚×Oc (𝑥,𝑁0))
𝑝 [𝑃 ′/𝑥]𝑁0 By

SP-Abs, [𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁))
𝑝 [𝑃 ′/𝑥]𝑁 holds.

• Case 𝑁 = Λ𝑦.𝑁0: The required condition holds as

𝑁 = 𝜆𝑦.𝑁0.

• Case 𝑁 = 𝑁0 𝑁1: In this case, we get Oc(𝑥, 𝑁) =

Oc(𝑥, 𝑁0) + Oc(𝑥, 𝑁1). By the induction hypothesis,

[𝑃/𝑥]𝑁0 ⪰ (𝑚×Oc (𝑥,𝑁0))
𝑝 [𝑃 ′/𝑥]𝑁0

[𝑃/𝑥]𝑁1 ⪰ (𝑚×Oc (𝑥,𝑁1))
𝑝 [𝑃 ′/𝑥]𝑁1

holds. By SP-App,

([𝑃/𝑥]𝑁0) ([𝑃/𝑥]𝑁1)

⪰ (𝑚×Oc (𝑥,𝑁))
𝑝 ([𝑃 ′/𝑥]𝑁0) ([𝑃 ′/𝑥]𝑁1)

holds.

• Case 𝑁 = if0 𝑁0 then 𝑁1 else 𝑁2: In this case, we

get Oc(𝑥, 𝑁) = Oc(𝑥, 𝑁0) + Oc(𝑥, 𝑁1) + Oc(𝑥, 𝑁2). By
the induction hypothesis,

[𝑃/𝑥]𝑁0 ⪰ (𝑚×Oc (𝑥,𝑁0))
𝑝 [𝑃 ′/𝑥]𝑁0

[𝑃/𝑥]𝑁1 ⪰ (𝑚×Oc (𝑥,𝑁1))
𝑝 [𝑃 ′/𝑥]𝑁1

[𝑃/𝑥]𝑁2 ⪰ (𝑚×Oc (𝑥,𝑁2))
𝑝 [𝑃 ′/𝑥]𝑁2

holds. By SP-If0,

if0 [𝑃/𝑥]𝑁0 then [𝑃/𝑥]𝑁1 else [𝑃/𝑥]𝑁2

⪰ (𝑚×Oc (𝑥,𝑁))
𝑝 if0 [𝑃 ′/𝑥]𝑁0 then [𝑃 ′/𝑥]𝑁1 else [𝑃 ′/𝑥]𝑁2

holds.

• Case𝑁 = case 𝑁0 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘):

In this case, we get Oc(𝑥, 𝑁) = ∑𝑘
𝑖=0 Oc(𝑥, 𝑁𝑖). By the

induction hypothesis,

[𝑃/𝑥]𝑁𝑖 ⪰ (𝑚×Oc (𝑥,𝑁𝑖))
𝑝 [𝑃 ′/𝑥]𝑁𝑖

Productivity Verification for Functional Programs by Reduction to Termination Verification

for 𝑖 ∈ {0, . . . , 𝑘} holds. By SP-Case,

case [𝑃/𝑥]𝑁0 of (pat
1
⇒ [𝑃/𝑥]𝑁1 | · · · | pat𝑘 ⇒ [𝑃/𝑥]𝑁𝑘)

⪰ (𝑚×Oc (𝑥,𝑁))
𝑝 case [𝑃 ′/𝑥]𝑁0 of

(pat
1
⇒ [𝑃 ′/𝑥]𝑁1 | · · · | pat𝑘 ⇒ [𝑃 ′/𝑥]𝑁𝑘)

• Case 𝑁 = fix 𝑦.𝑁 ′
: In this case, we get [𝑃/𝑥]𝑁 =

fix 𝑦.[𝑃/𝑥]𝑁 ′
and Oc(𝑥, 𝑁) = Oc(𝑥, 𝑁 ′). By the in-

duction hypothesis, [𝑃/𝑥]𝑁 ′ ⪰ (𝑚×Oc (𝑥,𝑁 ′))
𝑝 [𝑃 ′/𝑥]𝑁 ′

By SP-Fix, [𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁))
𝑝 [𝑃 ′/𝑥]𝑁 holds.

□

Lemma A.13. If 𝑁 −→𝑒 𝑁
′ and 𝑃 ⪰ (𝑚)

𝑝 𝑃 ′ then

[𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁 ′)+1)
𝑝 [𝑃 ′/𝑥]𝑁 ′

Proof. The proof follows by induction on the structure of the

evaluation context E𝑒 of 𝑁 −→𝑒 𝑁 ′
. If E𝑒 = ⟨ ⟩, the proof

proceeds by case analysis of the reduction.

• Case 𝑁 = (𝜆𝑦.𝑁1) 𝑁2, 𝑁
′ = [𝑁2/𝑦]𝑁1: By 𝛼-

conversion, we can assume the variable 𝑦 does not

appear in 𝑃 . By Lemma A.12, we get

[𝑃/𝑥]𝑁1 ⪰ (𝑚×Oc (𝑥,𝑁1))
𝑝 [𝑃 ′/𝑥]𝑁1

[𝑃/𝑥]𝑁2 ⪰ (𝑚×Oc (𝑥,𝑁2))
𝑝 [𝑃 ′/𝑥]𝑁2

Since Oc(𝑥, 𝑁 ′) = Oc(𝑥, 𝑁1) + Oc(𝑦, 𝑁1) × Oc(𝑥, 𝑁2),
we get

[𝑃/𝑥]𝑁 =

(𝜆𝑦.[𝑃/𝑥]𝑁1) [𝑃/𝑥]𝑁2 ⪰ (𝑚×Oc (𝑥,𝑁 ′)+1)
𝑝 [𝑃 ′/𝑥] [𝑁2/𝑦]𝑁1

by SP-Beta1.

• Case 𝑁 = fix 𝑦.𝑁1, 𝑁
′ = [fix 𝑦.𝑁1/𝑦]𝑁1: By

Lemma A.12, we get

[𝑃/𝑥]𝑁1 ⪰ (𝑚×Oc (𝑥,𝑁1))
𝑝 [𝑃 ′/𝑥]𝑁1

Since Oc(𝑥, 𝑁 ′) = Oc(𝑥, 𝑁1) × (Oc(𝑦, 𝑁1) + 1),

𝑚 × Oc(𝑥, 𝑁1) × (Oc(𝑦, 𝑁1) + 1) + 1 =𝑚 × Oc(𝑥, 𝑁 ′) + 1

holds. Thus, we get

[𝑃/𝑥]𝑁 = fix 𝑦.[𝑃/𝑥]𝑁1 ⪰ (𝑚×Oc (𝑥,𝑁 ′)+1)
𝑝

[𝑃 ′/𝑥] [fix 𝑦.𝑁1/𝑦]𝑁1

by SP-Beta2.

• Case 𝑁 = if0 0 then 𝑁1 else 𝑁2, 𝑁
′ = 𝑁1: By

Lemma A.12, we get

[𝑃/𝑥]𝑁1 ⪰ (𝑚×Oc (𝑥,𝑁1))
𝑝 [𝑃 ′/𝑥]𝑁1

By applying SP-Beta3, we get

[𝑃/𝑥]𝑁 = if0 0 then [𝑃/𝑥]𝑁1 else [𝑃/𝑥]𝑁2

⪰ (𝑚×Oc (𝑥,𝑁1)+1)
𝑝 [𝑃 ′/𝑥]𝑁1.

• Case 𝑁 = if0 𝑙 then 𝑁1 else 𝑁2, 𝑁
′ = 𝑁2 where

𝑙 ≠ 0: By Lemma A.12, we get

[𝑃/𝑥]𝑁2 ⪰ (𝑚×Oc (𝑥,𝑁2))
𝑝 [𝑃 ′/𝑥]𝑁2

By applying SP-Beta4, we get

[𝑃/𝑥]𝑁 =

if0 𝑙 then [𝑃/𝑥]𝑁1 else [𝑃/𝑥]𝑁2 ⪰ (𝑚×Oc (𝑥,𝑁2)+1)
𝑝 [𝑃 ′/𝑥]𝑁2.

• Case𝑁 = case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘), 𝐿 ⊢

pat𝑖 ⇒ [·], 𝑁 ′ = 𝑁𝑖 : By Lemma A.12, we get

[𝑃/𝑥]𝑁𝑖 ⪰ (𝑚×Oc (𝑥,𝑁𝑖))
𝑝 [𝑃 ′/𝑥]𝑁𝑖

By applying SP-Beta5, we get

[𝑃/𝑥]𝑁
= case [𝑃/𝑥]𝐿 of (pat

1
⇒ [𝑃/𝑥]𝑁1 | · · · | pat𝑘 ⇒ [𝑃/𝑥]𝑁𝑘)

⪰ (𝑚×Oc (𝑥,𝑁𝑖)+1)
𝑝 [𝑃 ′/𝑥]𝑁𝑖 .

• Case𝑁 = case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘), 𝐿 ⊢

pat𝑖 ⇒ [𝐿1/𝑦], 𝑁 ′ = [𝐿1/𝑦]𝑁𝑖 : By Lemma A.12, we

get

[𝑃/𝑥]𝐿1 ⪰ (𝑚×Oc (𝑥,𝐿𝑖))
𝑝 [𝑃 ′/𝑥]𝐿1

[𝑃/𝑥]𝑁𝑖 ⪰ (𝑚×Oc (𝑥,𝑁𝑖))
𝑝 [𝑃 ′/𝑥]𝑁𝑖

Since Oc(𝑥, 𝑁 ′) = Oc(𝑥, 𝑁𝑖) + Oc(𝑦, 𝑁𝑖) × Oc(𝑥, 𝐿1) ,
we get

[𝑃/𝑥]𝑁
= case [𝑃/𝑥]𝐿 of (pat

1
⇒ [𝑃/𝑥]𝑁1 | · · · | pat𝑘 ⇒ [𝑃/𝑥]𝑁𝑘)

⪰ (𝑚×Oc (𝑥,𝑁 ′)+1)
𝑝 [𝑃 ′/𝑥] [𝐿1/𝑦]𝑁𝑖

by SP-Beta6.

Otherwise the proof proceeds by case analysis on E𝑒 .

• Case E𝑒 = E′
𝑒 𝑁0: In this case, we can suppose that

𝑁 = E′
𝑒 [𝑄]𝑁0 −→𝑒 E′

𝑒 [𝑄 ′]𝑁0 = 𝑁 ′

where 𝑄 −→𝑒 𝑄
′
. By induction hypothesis, we get

[𝑃/𝑥]E′
𝑒 [𝑄] ⪰

(𝑚×Oc (𝑥,E′
𝑒 [𝑄 ′])+1)

𝑝 [𝑃 ′/𝑥]E′
𝑒 [𝑄 ′]

By Lemma A.12, we get

[𝑃/𝑥]𝑁0 ⪰ (𝑚×Oc (𝑥,𝑁0))
𝑝 [𝑃 ′/𝑥]𝑁0

Since Oc(𝑥, 𝑁 ′) = Oc(𝑥, E′
𝑒 [𝑄 ′]) + Oc(𝑥, 𝑁0), we get

[𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁 ′)+1)
𝑝 [𝑃 ′/𝑥]𝑁 ′

by SP-App.

• Case E𝑒 = if0 E′
𝑒 then 𝑁1 else 𝑁2: In this case, we

can suppose that

𝑁 = if0 E′
𝑒 [𝑄] then 𝑁1 else 𝑁2

−→𝑒 if0 E′
𝑒 [𝑄 ′] then 𝑁1 else 𝑁2 = 𝑁 ′

where 𝑄 −→𝑒 𝑄 ′
. By the induction hypothesis, we

get

[𝑃/𝑥]E′
𝑒 [𝑄] ⪰

(𝑚×Oc (𝑥,E′
𝑒 [𝑄 ′])+1)

𝑝 [𝑃 ′/𝑥]E′
𝑒 [𝑄 ′] .

R. Fukaishi et al.

By Lemma A.12, we get

[𝑃/𝑥]𝑁1 ⪰ (𝑚×Oc (𝑥,𝑁1))
𝑝 [𝑃 ′/𝑥]𝑁1

[𝑃/𝑥]𝑁2 ⪰ (𝑚×Oc (𝑥,𝑁2))
𝑝 [𝑃 ′/𝑥]𝑁2

Since Oc(𝑥, 𝑁 ′) = Oc(𝑥, E′
𝑒 [𝑄 ′]) + Oc(𝑥, 𝑁1) +

Oc(𝑥, 𝑁2), we get

[𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁 ′)+1)
𝑝 [𝑃 ′/𝑥]𝑁 ′

by SP-If0.

• Case E𝑒 = case E′
𝑒 of (pat

1
⇒ 𝑁1 | · · · | pat𝑘 ⇒

𝑁𝑘): In this case, we can suppose that

𝑁 = case E′
𝑒 [𝑄] of (pat

1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

−→𝑒 case E′
𝑒 [𝑄 ′] of (pat

1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘) = 𝑁 ′

where 𝑄 −→𝑒 𝑄 ′
. By the induction hypothesis, we

get

[𝑃/𝑥]E′
𝑒 [𝑄] ⪰

(𝑚×Oc (𝑥,E′
𝑒 [𝑄 ′])+1)

𝑝 [𝑃 ′/𝑥]E′
𝑒 [𝑄 ′]

By Lemma A.12, we get

[𝑃/𝑥]𝑁𝑖 ⪰ (𝑚×Oc (𝑥,𝑁𝑖))
𝑝 [𝑃 ′/𝑥]𝑁𝑖 (𝑖 ∈ {1, . . . , 𝑘})

Since Oc(𝑥, 𝑁 ′) = Oc(𝑥, E′
𝑒 [𝑄 ′]) +∑𝑘

𝑖=1 Oc(𝑥, 𝑁𝑖), we
get

[𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁 ′)+1)
𝑝 [𝑃 ′/𝑥]𝑁 ′

by SP-Case.

• Case E𝑒 = Λ𝑦.E𝑒 In this case, we can suppose that

𝑁 = Λ𝑦.E′
𝑒 [𝑄] −→𝑒 Λ𝑦.E′

𝑒 [𝑄 ′] = 𝑁 ′

where 𝑄 −→𝑒 𝑄
′
. By induction hypothesis, we get

[𝑃/𝑥]E′
𝑒 [𝑄] ⪰

(𝑚×Oc (𝑥,E′
𝑒 [𝑄 ′])+1)

𝑝 [𝑃 ′/𝑥]E′
𝑒 [𝑄 ′] .

Since Oc(𝑥, 𝑁 ′) = Oc(𝑥, E′
𝑒 [𝑄 ′]), we get

[𝑃/𝑥]𝑁 ⪰ (𝑚×Oc (𝑥,𝑁 ′)+1)
𝑝 [𝑃 ′/𝑥]𝑁 ′

by SP-Abs2.

□

Lemma A.14. If 𝑁 ⪰ (𝑛)
𝑝 𝑁 ′ and 𝑃 ⪰ (𝑚)

𝑝 𝑃 ′, then

[𝑃/𝑥]𝑁 ⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′))
𝑝 [𝑃 ′/𝑥]𝑁 ′

holds.

Proof. The proof follows by induction on the derivation of

𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

.

• Case SP-Id This follows by Lemma A.12.

• Case SP-Beta This follows by Lemma A.13.

• Case SP-Eta In this case, we can suppose that

𝑁 = Λ𝑦.𝑁0𝑦 ⪰ (𝑘+1)
𝑝 𝑁 ′

0
= 𝑁 ′

where 𝑁0 ⪰ (𝑘)
𝑝 𝑁 ′

0
. By induction hypothesis, we get

[𝑃/𝑥]𝑁0 ⪰
(𝑘+𝑚×Oc (𝑥,𝑁 ′

0
))

𝑝 [𝑃 ′/𝑥]𝑁 ′
0
.

Since 𝑛 = 𝑘 + 1 holds, we get

[𝑃/𝑥]Λ𝑦.𝑁0 𝑦 ⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′
0
))

𝑝 [𝑃 ′/𝑥]𝑁 ′
0
.

by applying SP-Eta.

• Case SP-Cons In this case, we can suppose that

𝑁 = 𝑙 :: 𝐿 ⪰ (𝑛)
𝑝 𝑙 :: 𝐿′ = 𝑁 ′

where 𝐿 ⪰ (𝑛)
𝑝 𝐿′. By induction hypothesis, we get

[𝑃/𝑥]𝐿 ⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′
0
))

𝑝 [𝑃 ′/𝑥]𝐿′

Then, we get

[𝑃/𝑥]𝑁 = 𝑙 :: [𝑃/𝑥]𝐿 ⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′))
𝑝 𝑙 :: 𝐿′ = [𝑃 ′/𝑥]𝑁 ′

• Case SP-Abs In this case, we can suppose that

𝑁 = 𝜆𝑦.𝑁0 ⪰ (𝑛)
𝑝 𝜆𝑦.𝑁 ′

0
= 𝑁 ′

where 𝑁0 ⪰ (𝑛)
𝑝 𝑁 ′

0
. By induction hypothesis, we get

[𝑃/𝑥]𝑁0 ⪰
(𝑛+𝑚×Oc (𝑥,𝑁 ′

0
))

𝑝 [𝑃 ′/𝑥]𝑁 ′
0

Then, we get

[𝑃/𝑥]𝑁 = 𝜆𝑦.[𝑃/𝑥]𝑁0 ⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′))
𝑝 𝜆𝑦.[𝑃 ′/𝑥]𝑁 ′

0
= [𝑃 ′/𝑥]𝑁 ′

by applying SP-Abs.

• Case SP-Abs2 This similarly holds as the case SP-Abs.

• Case SP-App In this case, we can suppose that

𝑁 = 𝑁0 𝑁1 ⪰ (𝑛0+𝑛1)
𝑝 𝑁 ′

0
𝑁1 = 𝑁 ′

where 𝑁0 ⪰ (𝑛0)
𝑝 𝑁 ′

0
, 𝑁1 ⪰ (𝑛1)

𝑝 𝑁 ′
1
. By induction hy-

pothesis, we get

[𝑃/𝑥]𝑁0 ⪰
(𝑛0+𝑚×Oc (𝑥,𝑁 ′

0
))

𝑝 [𝑃 ′/𝑥]𝑁 ′
0

[𝑃/𝑥]𝑁1 ⪰
(𝑛1+𝑚×Oc (𝑥,𝑁 ′

1
))

𝑝 [𝑃 ′/𝑥]𝑁 ′
1

Since 𝑛 = 𝑛0 + 𝑛1,Oc(𝑥, 𝑁 ′) = Oc(𝑥, 𝑁 ′
0
) + Oc(𝑥, 𝑁 ′

1
),

we get

[𝑃/𝑥]𝑁 = ([𝑃/𝑥]𝑁0) ([𝑃/𝑥]𝑁1) ⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′))
𝑝

([𝑃 ′/𝑥]𝑁 ′
0
) ([𝑃 ′/𝑥]𝑁 ′

1
) = [𝑃 ′/𝑥]𝑁 ′

by applying SP-App.

• Case SP-If0 In this case, we can suppose that

𝑁 = if0 𝑁0 then 𝑁1 else 𝑁2

⪰ (∑2

0
𝑛𝑖)

𝑝 if0 𝑁 ′
0
then 𝑁 ′

1
else 𝑁 ′

2

where𝑁𝑖 ⪰ (𝑛𝑖)
𝑝 𝑁 ′

𝑖 (𝑖 ∈ {0, 1, 2}). By induction hypoth-
esis, we get

[𝑃/𝑥]𝑁𝑖 ⪰
(𝑛𝑖+𝑚×Oc (𝑥,𝑁 ′

𝑖))
𝑝 [𝑃 ′/𝑥]𝑁 ′

𝑖

Productivity Verification for Functional Programs by Reduction to Termination Verification

for 𝑖 ∈ {0, 1, 2}. Since 𝑛 =
∑

2

0
𝑛𝑖 ,Oc(𝑥, 𝑁 ′) =∑

2

0
Oc(𝑥, 𝑁 ′

𝑖), we get

[𝑃/𝑥]𝑁
= if0 [𝑃/𝑥]𝑁0 then [𝑃/𝑥]𝑁1 else [𝑃/𝑥]𝑁2

⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′))
𝑝 if0 [𝑃 ′/𝑥]𝑁 ′

0
then [𝑃 ′/𝑥]𝑁 ′

1
else [𝑃 ′/𝑥]𝑁 ′

2

= [𝑃 ′/𝑥]𝑁 ′

by SP-If0.

• Case SP-Case In this case, we can suppose that

𝑁 = case 𝑁0 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

⪰ (∑𝑘
0
𝑛𝑖)

𝑝 case 𝑁 ′
0
of (pat

1
⇒ 𝑁 ′

1
| · · · | pat𝑘 ⇒ 𝑁 ′

𝑘
)

where 𝑁𝑖 ⪰ (𝑛𝑖)
𝑝 𝑁 ′

𝑖 (𝑖 ∈ {0, . . . , 𝑘}). By induction hy-

pothesis, we get

[𝑃/𝑥]𝑁𝑖 ⪰
(𝑛𝑖+𝑚×Oc (𝑥,𝑁 ′

𝑖))
𝑝 [𝑃 ′/𝑥]𝑁 ′

𝑖

for 𝑖 ∈ {0, . . . , 𝑘}. Since

𝑛 =

𝑘∑︁
0

𝑛𝑖 ,Oc(𝑥, 𝑁 ′) =
𝑘∑︁
0

Oc(𝑥, 𝑁 ′
𝑖),

we get

[𝑃/𝑥]𝑁
= case [𝑃/𝑥]𝑁0 of

(pat
1
⇒ [𝑃/𝑥]𝑁1 | · · · | pat𝑘 ⇒ [𝑃/𝑥]𝑁𝑘)

⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′))
𝑝 case [𝑃 ′/𝑥]𝑁 ′

0
of

(pat
1
⇒ [𝑃 ′/𝑥]𝑁 ′

1
| · · · | pat𝑘 ⇒ [𝑃 ′/𝑥]𝑁 ′

𝑘
)

= [𝑃 ′/𝑥]𝑁 ′

by SP-Case.

• Case SP-Fix In this case, we can suppose that

𝑁 = fix 𝑦.𝑁0 ⪰ (𝑛)
𝑝 fix 𝑦.𝑁 ′

0
= 𝑁 ′

where 𝑁0 ⪰ (𝑛)
𝑝 𝑁 ′

0
. By induction hypothesis, we get

[𝑃/𝑥]𝑁0 ⪰
(𝑛+𝑚×Oc (𝑥,𝑁 ′

0
))

𝑝 [𝑃 ′/𝑥]𝑁 ′
0

By 𝛼-conversion, we can assume the variable 𝑦 does

not appear in 𝑃 ′
and

Oc(𝑦, [𝑃 ′/𝑥]𝑁 ′
0
) = Oc(𝑦, 𝑁 ′

0
)

holds. Then, we get

[𝑃/𝑥]𝑁 = fix 𝑦.[𝑃/𝑥]𝑁0 ⪰ (𝑛+𝑚×Oc (𝑥,𝑁 ′))
𝑝

fix 𝑦.[𝑃 ′/𝑥]𝑁 ′
0
= [𝑃 ′/𝑥]𝑁 ′

by applying SP-Fix.

• Case SP-Beta1 In this case, we can suppose

𝑁 = (𝜆𝑦.𝑁1) 𝑁2

⪰ (𝑛1+𝑛2×Oc (𝑦,𝑁 ′
1
)+1)

𝑝 [𝑁 ′
2
/𝑥]𝑁 ′

1
= 𝑁 ′

where 𝑁𝑖 ⪰ (𝑛𝑖)
𝑝 𝑁 ′

𝑖 for (𝑖 ∈ {1, 2}). By induction hy-

pothesis, we get

[𝑃/𝑥]𝑁1 ⪰
(𝑛′

1
)

𝑝 [𝑃 ′/𝑥]𝑁 ′
1

[𝑃/𝑥]𝑁2 ⪰
(𝑛′

2
)

𝑝 [𝑃 ′/𝑥]𝑁 ′
2

where 𝑛′
1
= 𝑛1+𝑚×Oc(𝑥, 𝑁 ′

1
), 𝑛′

2
= 𝑛2+𝑚×Oc(𝑥, 𝑁 ′

2
).

By 𝛼-conversion, we can assume the variable 𝑦 does

not appear in 𝑃 ′
and

Oc(𝑦, [𝑃 ′/𝑥]𝑁 ′
1
)

= Oc(𝑦, 𝑁 ′
1
) + Oc(𝑥, 𝑁 ′

𝑖) × Oc(𝑦, 𝑃 ′)
= Oc(𝑦, 𝑁 ′

1
)

holds. By applying SP-Beta1, we get

[𝑃/𝑥]𝑁
= (𝜆𝑦.[𝑃/𝑥]𝑁1) [𝑃/𝑥]𝑁2

⪰ (𝑛′
1
+𝑛′

2
×Oc (𝑦,𝑁 ′

1
)+1)

𝑝 [𝑃 ′/𝑥] [𝑁 ′
2
/𝑦]𝑁 ′

1
.

Since

𝑛 = 𝑛1 + Oc(𝑦, 𝑁 ′
1
) × 𝑛2 + 1

Oc(𝑥, 𝑁 ′) = Oc(𝑥, 𝑁 ′
1
) + Oc(𝑥, 𝑁 ′

2
) × Oc(𝑦, 𝑁 ′

1
)

holds, we get

𝑛′
1
+ 𝑛′

2
× Oc(𝑦, 𝑁 ′

1
) + 1

= 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′
1
) +𝑚 × Oc(𝑥, 𝑁 ′

2
) × Oc(𝑦, 𝑁 ′

1
)

= 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′).

Thus, the required condition holds.

• Case SP-Beta2 In this case, we can assume

𝑁 = fix 𝑦.𝑁1

⪰ (𝑛1×(Oc (𝑦,𝑁 ′
1
)+1)+1)

𝑝 [𝑁 ′
2
/𝑦]𝑁 ′

1
= 𝑁 ′

where 𝑁𝑖 ⪰ (𝑛𝑖)
𝑝 𝑁 ′

𝑖 for (𝑖 ∈ {1, 2}). By induction hy-

pothesis, we get

[𝑃/𝑥]𝑁1 ⪰
(𝑛′

1
)

𝑝 [𝑃 ′/𝑥]𝑁 ′
1

where 𝑛′
1
= 𝑛1 +𝑚 × Oc(𝑥, 𝑁 ′

1
). By 𝛼-conversion, we

can assume the variable 𝑦 does not appear in 𝑃 ′
and

Oc(𝑦, [𝑃 ′/𝑥]𝑁 ′
1
)

= Oc(𝑦, 𝑁 ′
1
) + Oc(𝑥, 𝑁 ′

𝑖) × Oc(𝑦, 𝑃 ′)
= Oc(𝑦, 𝑁 ′

1
)

holds. By applying SP-Beta2, we get

[𝑃/𝑥]𝑁 = fix 𝑦.[𝑃/𝑥]𝑁1 ⪰
(𝑛′

1
×(Oc (𝑦,𝑁 ′

1
)+1)+1)

𝑝

[𝑃 ′/𝑥] [fix 𝑦.𝑁 ′
1
/𝑦]𝑁 ′

1
.

Since

𝑛 = 𝑛1 × (Oc(𝑦, 𝑁 ′
1
) + 1) + 1

Oc(𝑥, 𝑁 ′) = Oc(𝑥, 𝑁 ′
1
) × (Oc(𝑦, 𝑁 ′

1
) + 1)

R. Fukaishi et al.

holds, we get

𝑛′
1
× (Oc(𝑦, 𝑁 ′

1
) + 1) + 1

= 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′
1
) × (Oc(𝑦, 𝑁 ′

1
) + 1)

= 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′).
Thus, the required condition holds.

• Case SP-Beta3 In this case, we can assume

𝑁 = if0 0 then 𝑁1 else 𝑁2

⪰ (𝑛1+1)
𝑝 𝑁 ′

1
= 𝑁 ′

where 𝑁1 ⪰ (𝑛1)
𝑝 𝑁 ′

1
. By induction hypothesis, we get

[𝑃/𝑥]𝑁1 ⪰
(𝑛′

1
)

𝑝 [𝑃 ′/𝑥]𝑁 ′
1

where 𝑛′
1
= 𝑛1 +𝑚×Oc(𝑥, 𝑁 ′

1
). By applying SP-Beta3,

we get

[𝑃/𝑥]𝑁 =

if0 0 then [𝑃/𝑥]𝑁1 else [𝑃/𝑥]𝑁2 ⪰
(𝑛′

1
+1)

𝑝 [𝑃 ′/𝑥]𝑁 ′
1
.

Since

𝑛 = 𝑛1 + 1

Oc(𝑥, 𝑁 ′) = Oc(𝑥, 𝑁 ′
1
)

𝑛 = 𝑛1 + 1holds, we get

𝑛′
1
+ 1 = 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′

1
)

= 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′).
Thus, the required condition holds.

• Case SP-Beta4 This similarly holds as the case

SP-Beta3.

• Case SP-Beta5 In this case, we can assume

𝑁 = case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

⪰ (𝑛𝑖+1)
𝑝 𝑁 ′

𝑖 = 𝑁 ′

where 𝐿 ⊢ pat𝑖 ⇒ [·], 𝑁𝑖 ⪰ (𝑛𝑖)
𝑝 𝑁 ′

𝑖 . By induction

hypothesis, we get

[𝑃/𝑥]𝑁𝑖 ⪰
(𝑛′

𝑖)
𝑝 [𝑃 ′/𝑥]𝑁 ′

𝑖

where 𝑛′𝑖 = 𝑛𝑖 +𝑚 ×Oc(𝑥, 𝑁 ′
𝑖). By applying SP-Beta5,

we get

[𝑃/𝑥]𝑁
= case [𝑃/𝑥]𝐿 of (pat

1
⇒ [𝑃/𝑥]𝑁1 | · · · | pat𝑘 ⇒ [𝑃/𝑥]𝑁𝑘)

⪰ (𝑛′
𝑖+1)

𝑝 [𝑃 ′/𝑥]𝑁 ′
𝑖 .

Since

𝑛 = 𝑛𝑖 + 1

Oc(𝑥, 𝑁 ′) = Oc(𝑥, 𝑁 ′
𝑖)

holds, we get

𝑛′𝑖 + 1 = 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′
𝑖)

= 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′).

Thus, the required condition holds.

• Case SP-Beta6 In this case, we can suppose

𝑁 = case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

⪰ (𝑛𝑖+𝑙×Oc (𝑦,𝑁𝑖)+1)
𝑝 [𝐿′

1
/𝑦]𝑁 ′

𝑖 = 𝑁 ′

where 𝐿 ⊢ pat𝑖 ⇒ [𝐿1/𝑦], 𝑁𝑖 ⪰ (𝑛𝑖)
𝑝 𝑁 ′

𝑖 .𝐿1 ⪰ (𝑙)
𝑝 𝐿′

1
. By

induction hypothesis, we get

[𝑃/𝑥]𝑁𝑖 ⪰
(𝑛′

𝑖)
𝑝 [𝑃 ′/𝑥]𝑁 ′

𝑖

[𝑃/𝑥]𝐿1 ⪰ (𝑙 ′)
𝑝 [𝑃 ′/𝑥]𝐿′

1

where 𝑛′𝑖 = 𝑛𝑖 +𝑚 × Oc(𝑥, 𝑁 ′
𝑖), 𝑙 ′ = 𝑙 +𝑚 × Oc(𝑥, 𝐿′).

By applying SP-Beta6, we get

[𝑃/𝑥]𝑁
= case [𝑃/𝑥]𝐿 of (pat

1
⇒ [𝑃/𝑥]𝑁1 | · · · | pat𝑘 ⇒ [𝑃/𝑥]𝑁𝑘)

⪰ (𝑛′
𝑖+𝑙 ′×Oc (𝑦,[𝑃 ′/𝑥]𝑁 ′

𝑖)+1)
𝑝 [[𝑃 ′/𝑥]𝐿′

1
/𝑦] [𝑃 ′/𝑥]𝑁 ′

𝑖

= [𝑃 ′/𝑥] [𝐿′/𝑦]𝑁 ′
𝑖 .

By 𝛼-conversion, we can assume the variable 𝑦 does

not appear in 𝑃 and

Oc(𝑦, [𝑃 ′/𝑥]𝑁 ′
𝑖)

= Oc(𝑦, 𝑁 ′
𝑖) + Oc(𝑥, 𝑁 ′

𝑖) × Oc(𝑦, 𝑃 ′)
= Oc(𝑦, 𝑁 ′

𝑖)

holds. Since

𝑛 = 𝑛𝑖 + 𝑙 × Oc(𝑦, 𝑁𝑖) + 1

Oc(𝑥, [𝐿′/𝑦]𝑁 ′
𝑖) = Oc(𝑥, 𝑁 ′

𝑖) + Oc(𝑦, 𝑁𝑖) × Oc(𝑥, 𝐿′)

holds, we get

𝑛′𝑖 + 𝑙 ′ × Oc(𝑦, [𝑃 ′/𝑥]𝑁 ′
𝑖) + 1

= 𝑛 +𝑚 × (Oc(𝑥, 𝑁 ′
𝑖) + Oc(𝑦, 𝑁𝑖) × Oc(𝑥, 𝐿′))

= 𝑛 +𝑚 × Oc(𝑥, [𝐿′/𝑦]𝑁 ′
𝑖)

= 𝑛 +𝑚 × Oc(𝑥, 𝑁 ′) .

Thus, the required condition holds.

□

Lemma A.15. Let 𝑉 be a value or a variable of a base type
for some type environment. If 𝑁 ⪰ (𝑛)

𝑝 𝑉 , then the following
statements hold.

1. 𝑁 −→∗
𝑒 𝑛 :: 𝐿 holds for some 𝐿 such that 𝐿 ⪰𝑝 𝐿′ (if

𝑉 = 𝑛 :: 𝐿′)
2. 𝑁 −→∗

𝑒 𝑉 (otherwise)

Proof. The proof proceeds by induction on the derivation of

𝑁 ⪰ (𝑛)
𝑝 𝑉 .

• Case SP-Id: trivial.

• Case SP-Beta: trivial.

• Case SP-Cons: trivial.

Productivity Verification for Functional Programs by Reduction to Termination Verification

• Case SP-Beta1: In this case, we can suppose that

𝑁 = (𝜆𝑥.𝑁1) 𝑁2

𝑉 = [𝑁 ′
2
/𝑥]𝑁 ′

1

where 𝑁1 ⪰𝑝 𝑁 ′
1
, 𝑁2 ⪰𝑝 𝑁 ′

2
. Since 𝑉 is a value or a

variable, one of the following holds.

– Case 𝑉 = 𝑁 ′
1
, 𝑥 ∉ 𝐹𝑉 (𝑁 ′

1
) In this case, we get

𝑁 = (𝜆𝑥.𝑊)𝑁2 where 𝑊 ⪰𝑝 𝑉 . By induction

hypothesis,𝑊 −→∗
𝑒 𝑉 or𝑊 −→∗

𝑒 𝑛 :: 𝐿′ where
𝑛 :: 𝐿 ⪰𝑝 𝑛 :: 𝐿′ = 𝑉 holds. Since 𝑁 −→𝑒 𝑊 , the

required condition holds.

– Case 𝑉 = 𝑁 ′
2
, 𝑁 ′

1
= 𝑥 In this case, we get 𝑁 =

(𝜆𝑥 .𝑊1)𝑊2 where𝑊1 ⪰𝑝 𝑥,𝑊2 ⪰𝑝 𝑉 . By induc-

tion hypothesis,𝑊1 −→∗
𝑒 𝑥 holds. Also, we get

𝑊2 −→∗
𝑒 𝑉 or𝑊2 −→∗

𝑒 𝑛 :: 𝐿′ where 𝑛 :: 𝐿 ⪰𝑝 𝑛 ::

𝐿′ = 𝑉 . By Lemma A.1, we get [𝑊2/𝑥]𝑊1 −→∗
𝑒

[𝑊2/𝑥]𝑥 = 𝑊2. Since 𝑁 −→𝑒 [𝑊2/𝑥]𝑊1, the re-

quired condition holds.

– Case 𝑉 = 𝑛 :: [𝑁 ′
2
/𝑥]𝐿′, 𝑁 ′

1
= 𝑛 :: 𝐿′ In this case,

we get 𝑁 = (𝜆𝑥 .𝑊1)𝑊2 where𝑊1 ⪰𝑝 𝑛 :: 𝐿′. By
induction hypothesis,𝑊1 −→∗

𝑒 𝑛 :: 𝐿 (𝐿 ⪰𝑝 𝐿′)
holds. By Lemma A.1, we get [𝑊2/𝑥]𝑊1 −→∗

𝑒 𝑛 ::

[𝑊2/𝑥]𝐿. By Lemma A.14, [𝑊2/𝑥]𝐿 ⪰𝑝 [𝑁 ′
2
/𝑥]𝐿′

holds. By SP-Cons 𝑛 :: [𝑊2/𝑥]𝐿 ⪰𝑝 𝑛 :: [𝑁 ′
2
/𝑥]𝐿′

holds. Since 𝑁 −→𝑒 𝑛 :: [𝑊2/𝑥]𝑊1 −→∗
𝑒 𝑛 ::

[𝑊2/𝑥]𝐿, the required condition holds.

• Case SP-Beta2: In this case, we can suppose that

𝑁 = fix 𝑥 .𝑁1

𝑉 = [fix 𝑥 .𝑁 ′
1
/𝑥]𝑁 ′

1

where 𝑁1 ⪰𝑝 𝑁 ′
1
. Since 𝑉 is value or variable, 𝑉 =

𝑁 ′
1
, 𝑥 ∉ 𝐹𝑉 (𝑁 ′

1
) or 𝑉 = 𝑛 :: [fix 𝑥 .𝑁 ′

1
/𝑥]𝐿′, 𝑁 ′

1
= 𝑛 ::

𝐿′ holds. In both case, the required condition holds as

well as Case SP-Beta1.

• Case SP-Beta3: In this case, we can suppose that

𝑁 = if0 0 then 𝑁1 else 𝑁2

𝑉 = 𝑁 ′
1

where 𝑁1 ⪰𝑝 𝑁 ′
1
. Since 𝑁 −→𝑒 𝑁1, the required con-

dition follows by the induction hypothesis.

• Case SP-Beta4: In this case, we can suppose that

𝑁 = if0𝑚 then 𝑁1 else 𝑁2

𝑉 = 𝑁 ′
2

where 𝑚 ≠ 0, 𝑁2 ⪰𝑝 𝑁 ′
2
. Since 𝑁 −→𝑒 𝑁2, the re-

quired condition follows by the induction hypothesis.

• Case SP-Beta5: In this case, we can suppose that

𝑁 = case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

𝑉 = 𝑁 ′
𝑖

where 𝐿 ⊢ 𝑁𝑖 ⇒ [·], 𝑁𝑖 ⪰𝑝 𝑁 ′
𝑖 . Since 𝑁 −→𝑒 𝑁𝑖 , the

required condition follows by the induction hypothe-

sis.

• Case SP-Beta6: In this case, we can suppose that

𝑁 = case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

𝑉 = [𝐿′
1
/𝑥]𝑁 ′

𝑖

where 𝐿 ⊢ 𝑁𝑖 ⇒ [𝐿1/𝑥], 𝑁𝑖 ⪰𝑝 𝑁 ′
𝑖 , 𝐿1 ⪰𝑝 𝐿′

1
. Since

𝑉 is value or variable, 𝑁 ′
𝑖 = 𝑉 , 𝑥 ∉ 𝐹𝑉 (𝑉) or 𝑁 ′

𝑖 =

𝑥, 𝐿′
1
= 𝑉 or 𝑉 = 𝑛 :: [𝐿′

1
/𝑥]𝐿′, 𝑁 ′

𝑖 = 𝑛 :: 𝐿′ holds.
In all cases, the required condition follows as well as

Case SP-Beta1

Since 𝑉 is a value or a variable, 𝑁 ⪰𝑝 𝑉 cannot hold in the

other rules. □

Lemma A.16. Let 𝑉 be value or variable of function type
for some type environment. If 𝑁 ⪰𝑝 𝑉 , then the following
statements hold for any term 𝐶 .

1. 𝑁 𝐶 −→∗
𝑒 (𝜆𝑥 .𝑃 ′) 𝐶 (if 𝑉 = 𝜆𝑥.𝑃)

for some term 𝑃 ′ such that 𝑃 ′ ⪰𝑝 𝑃 .
2. 𝑁 𝐶 −→∗

𝑒 𝑥 𝐶 (if 𝑉 = 𝑥)

Proof. The proof proceeds by induction on the derivation of

𝑁 ⪰𝑝 𝑉 .

• Case SP-Id: trivial.

• Case SP-Beta: trivial.

• Case SP-Eta: In this case, we get 𝑁 = (Λ𝑥 .𝑁0 𝑥)
where 𝑁0 ⪰𝑝 𝑉 . Since 𝑁 𝐶 −→𝑒 𝑁0𝐶 , the required

condition follows by the induction hypothesis.

• Case SP-Beta1: In this case, 𝑁 and 𝑉 is of the form

𝑁 = (𝜆𝑥.𝑁1) 𝑁2

𝑉 = [𝑁 ′
2
/𝑥]𝑁 ′

1

where 𝑁1 ⪰𝑝 𝑁 ′
1
, 𝑁2 ⪰𝑝 𝑁 ′

2
. One of the following

holds:

– Case 𝑉 = 𝑁 ′
1
, 𝑥 ∉ 𝐹𝑉 (𝑁 ′

1
): In this case, we get

𝑁 𝐶 = (𝜆𝑦.𝑊1)𝑊2𝐶 −→𝑒 𝑊1𝐶

where𝑊1 ⪰𝑝 𝑉 ,𝑊2 ⪰𝑝 𝑁 ′
2
. Thus, the required con-

dition follows by induction hypothesis of𝑊1 ⪰𝑝

𝑉 .

– Case 𝑉 = 𝑁 ′
2
, 𝑁 ′

1
= 𝑥 : In this case, we get

𝑁 𝐶 = (𝜆𝑦.𝑊1)𝑊2𝐶 −→𝑒 [𝑊2/𝑦]𝑊1𝐶.

where𝑊1 ⪰𝑝 𝑦,𝑊2 ⪰𝑝 𝑉 . By induction hypothe-

sis, we get

𝑊1𝐶 −→∗
𝑒 𝑦𝐶.

By Lemma A.1, we get

[𝑊2/𝑦]𝑊1𝐶 −→∗
𝑒 [𝑊2/𝑦]𝑦 =𝑊2𝐶.

Thus, the required condition holds by induction

hypothesis of𝑊2 ⪰𝑝 𝑉 .

– Case 𝑉 = 𝜆𝑦.[𝑁 ′
2
/𝑥]𝑄 ′, 𝑁 ′

1
= 𝜆𝑦.𝑄 ′

: In this case,

we get

𝑁 𝐶 = (𝜆𝑥 .𝑁1) 𝑁 2𝐶

−→𝑒 ([𝑁2/𝑥]𝑁1)𝐶.

R. Fukaishi et al.

By the induction hypothesis, we get

𝑁1𝐶 −→∗
𝑒 (𝜆𝑦.𝑄)𝐶

for some 𝑄 such that 𝑄 ⪰𝑝 𝑄 ′
. By Lemma A.1,

([𝑁2/𝑥]𝑁1)𝐶 −→∗
𝑒 (𝜆𝑦.[𝑁2/𝑥]𝑄)𝐶

holds. By Lemma A.14, we get [𝑁2/𝑥]𝑄 ⪰𝑝

[𝑁 ′
2
/𝑥]𝑄 ′

. Thus, the required condition holds.

• Case SP-Beta2 In this case, 𝑁 and 𝑉 is of the form

𝑁 = fix 𝑦.𝑁1

𝑉 = [fix 𝑦.𝑁 ′
1
/𝑦]𝑁 ′

1

where 𝑁1 ⪰𝑝 𝑁 ′
1
. Since 𝑉 is value or variable, 𝑉 =

𝑁 ′
1
, 𝑥 ∉ 𝐹𝑉 (𝑁 ′

1
) or 𝑉 = 𝜆𝑥.[fix 𝑦.𝑁 ′

1
/𝑦]𝑄 ′, 𝑁 ′

1
=

𝜆𝑥.𝑄 ′
holds. In both case, the required condition holds

as well as Case SP-Beta1.

• Case SP-Beta3 In this case, 𝑁 and 𝑉 is of the form

𝑁 = if0 0 then 𝑁1 else 𝑁2

𝑉 = 𝑁 ′
1

where 𝑁1 ⪰𝑝 𝑁 ′
1
. Since 𝑁 𝐶 −→𝑒 𝑁1𝐶 , the required

condition holds by induction hypothesis of 𝑁1 ⪰𝑝 𝑁 ′
1
.

• Case SP-Beta4 In this case, 𝑁 and 𝑉 is of the form

𝑁 = if0𝑚 then 𝑁1 else 𝑁2

𝑉 = 𝑁 ′
2

where 𝑁2 ⪰𝑝 𝑁 ′
2
. Since 𝑁 𝐶 −→𝑒 𝑁2𝐶 , the required

condition holds by induction hypothesis of 𝑁2 ⪰𝑝 𝑁 ′
2
.

• Case SP-Beta5 In this case, 𝑁 and 𝑉 is of the form

𝑁 = case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

𝑉 = 𝑁 ′
𝑖

where 𝑉 ′ ⊢ 𝑁𝑖 ⇒ [·], 𝑁𝑖 ⪰𝑝 𝑁 ′
𝑖 . Since 𝑁 𝐶 −→𝑒 𝑁𝑖 𝐶 ,

the required condition holds by induction hypothesis

of 𝑁𝑖 ⪰𝑝 𝑁 ′
𝑖 .

• Case SP-Beta6 In this case, 𝑁 and 𝑉 is of the form

𝑁 = case 𝐿 of (pat
1
⇒ 𝑁1 | · · · | pat𝑘 ⇒ 𝑁𝑘)

𝑉 = [𝐿′
1
/𝑥]𝑁 ′

𝑖

where 𝐿 ⊢ 𝑁𝑖 ⇒ [𝐿1/𝑥], 𝑁𝑖 ⪰𝑝 𝑁 ′
𝑖 , 𝐿1 ⪰𝑝 𝐿′

1
. Since

𝑉 is value or variable, 𝑁 ′
𝑖 = 𝑉 , 𝑥 ∉ 𝐹𝑉 (𝑉) or 𝑁 ′

𝑖 =

𝑥, 𝐿′
1
= 𝑉 or𝑉 = 𝜆𝑦.[𝐿′

1
/𝑥]𝑄 ′, 𝑁 ′

1
= 𝜆𝑦.𝑄 ′

holds. In all

cases, the required condition follows as well as Case

SP-Beta1.

□

Lemma A.17. Suppose ⊢ 𝑁 : 𝜎 and 𝑁 ⪰ (𝑛)
𝑝 𝑁 ′ −→𝑒 𝑁 ′

1
,

then 𝑁 −→∗
𝑒 𝑁1 ⪰ (𝑚)

𝑝 𝑁 ′
1
for some 𝑁1 and𝑚.

Proof. The proof proceeds by induction on lexicographic

order on 𝑛 and the depth of derivation of 𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

, with

case analysis on the last rule used for deriving 𝑁 ⪰ (𝑛)
𝑝 𝑁 ′

.

• Case SP-Id: In this case, we have 𝑁 = 𝑁 ′
. Thus, the

required condition holds for 𝑁1 = 𝑁 ′
1
and𝑚 = 0.

• Case SP-Beta: In this case, we have 𝑁 −→𝑒 𝑁
′
1
. Thus,

the required condition holds for 𝑁1 = 𝑁 ′
1
and𝑚 = 0.

• Case SP-Eta: In this case, we have 𝑁 = Λ𝑢.𝑁0 𝑢 and

𝑁0 ⪰ (𝑛−1)
𝑝 𝑁 ′

. Since 𝑁 ′ −→𝑒 𝑁 ′
1
, By applying the

induction hypothesis to

𝑁0 ⪰ (𝑛−1)
𝑝 𝑁 ′ −→𝑒 𝑁

′
1
,

we obtain 𝑁0 −→∗
𝑒 𝑁2 ⪰ (𝑚′)

𝑝 𝑁 ′
1
for some 𝑁2 and

𝑚′
. Let 𝑁1 = Λ𝑥 .𝑁2 𝑥 . Then we have 𝑁 −→∗

𝑒 𝑁1 and

𝑁1 ⪰ (𝑚′+1)
𝑝 𝑁 ′

1
as required.

• Cases SP-Cons and SP-Abs: These cases cannot hap-

pen as 𝑁 ′
is irreducible with respect to −→𝑒 .

• Case SP-Abs2: In this case, we have:

𝑁 = Λ𝑥 .𝑁0

𝑁 ′ = Λ𝑥 .𝑁 ′
0

𝑁 ′
1
= Λ𝑥 .𝑁 ′′

0

where 𝑁0 ⪰ (𝑛)
𝑝 𝑁 ′

0
−→𝑒 𝑁

′′
0
. By the induction hypoth-

esis, we have 𝑁0 −→𝑒 𝑃
∗ ⪰ (𝑚)

𝑝 𝑁 ′′
0
for some 𝑃 and𝑚.

Thus, the required condition holds for 𝑁1 = Λ𝑥 .𝑃 .
• Case SP-App: In this case, we have:

𝑁 = 𝑃 𝑄 ⪰ (𝑝+𝑞)
𝑝 𝑃 ′𝑄 ′ = 𝑁 ′

with 𝑃 ⪰ (𝑝)
𝑝 𝑃 ′

and 𝑄 ⪰ (𝑞)
𝑝 𝑄 ′

. We perform case

analysis on 𝑁 ′
1
.

– Case 𝑁 ′
1
= 𝑃 ′

1
𝑄 ′

where 𝑃 ′ −→𝑒 𝑃
′
1
In this case, we

have 𝑃 −→∗
𝑒 𝑃1 ⪰𝑝 𝑃 ′

1
for some 𝑃1 by the induction

hypothesis. Thus, the required condition holds for

𝑁1 = 𝑃1𝑄
′

– Case 𝑃 ′ = 𝜆𝑥.𝑅′
and 𝑁 ′

1
= [𝑄 ′/𝑥]𝑅′

In this case,

by Lemma A.16, we have 𝑁 −→∗
𝑒 (𝜆𝑥 .𝑅)𝑄 and

𝑅 ⪰𝑝 𝑅′
for some 𝑅. Let 𝑁1 = (𝜆𝑥 .𝑅)𝑄 . Then we

have 𝑁 −→∗
𝑒 𝑁1 ⪰𝑝 [𝑄 ′/𝑥]𝑅′ = 𝑁 ′

1
as required.

• Case SP-If0: In this case, we have:

𝑁 = if0 𝑃 then 𝑄1 else 𝑄2

𝑁 ′ = if0 𝑃 ′ then 𝑄 ′
1
else 𝑄 ′

2

where 𝑃 ⪰ (𝑝)
𝑝 𝑃 ′

and 𝑄𝑖 ⪰ (𝑞𝑖)
𝑝 𝑄 ′

𝑖 . We perform case

analysis on 𝑁 ′
1
.

– Case 𝑁 ′
1

= if0 𝑃 ′
1

then 𝑄 ′
1

else 𝑄 ′
2
where

𝑃 ′ −→𝑒 𝑃
′
1
. In this case, we have 𝑃 −→∗

𝑒 𝑃1 ⪰𝑝 𝑃 ′
1

for some 𝑃1 by the induction hypothesis. Thus, the

required condition holds for

𝑁1 = if0 𝑃1 then 𝑄1 else 𝑄2.

– Case 𝑃 ′ = 𝑘 with 𝑁 ′
1
= 𝑄𝑖 . In this case, we have

𝑃 −→∗
𝑒 𝑘 by Lemma A.15. Let

𝑁1 = if0 𝑘 then 𝑄 ′
1
else 𝑄 ′

2
.

Then 𝑁1 ⪰𝑝 𝑁 ′
1
is obtained from SP-Beta3 or

SP-Beta4. Thus, the required condition holds.

Productivity Verification for Functional Programs by Reduction to Termination Verification

• Case SP-Case: In this case, we have:

𝑁 = case 𝑃 of (pat
1
⇒ 𝑄1 | · · · | pat𝑘 ⇒ 𝑄𝑘)

𝑁 ′ = case 𝑃 ′ of (pat
1
⇒ 𝑄 ′

1
| · · · | pat𝑘 ⇒ 𝑄 ′

𝑘
)

where 𝑃 ⪰ (𝑝)
𝑝 𝑃 ′

and 𝑄𝑖 ⪰ (𝑞𝑖)
𝑝 𝑄 ′

𝑖 . We perform case

analysis on 𝑁 ′ −→𝑒 𝑁
′
1
.

– Case where 𝑁 ′ −→𝑒 𝑁 ′
1

is obtained by

reducing 𝑃 ′
. In this case, we have: 𝑁 ′

1
=

case 𝑃 ′
1

of (pat
1
⇒ 𝑄 ′

1
| · · · | pat𝑘 ⇒ 𝑄 ′

𝑘
)

where 𝑃 ′ −→𝑒 𝑃 ′
1
. By the induction hypothe-

sis, we have 𝑃 −→∗
𝑒 𝑃1 ⪰𝑝 𝑃 ′

1
for some 𝑃1

Thus, the required condition holds for 𝑁1 =

case 𝑃1 of (pat
1
⇒ 𝑄 ′

1
| · · · | pat𝑘 ⇒ 𝑄 ′

𝑘
)

– Case where 𝑁 ′ −→𝑒 𝑁 ′
1
is obtained by reducing

the case expression. In this case, we have 𝑃 ′ =

𝐿′ ⊢ pat𝑖 ⇒ 𝜌 ′ and 𝑁 ′
1
= 𝜌 ′𝑄 ′

𝑖 . By Lemma A.15,

we have 𝑃 −→∗
𝑒 𝐿 ⪰𝑝 𝐿′ with 𝐿 ⊢ pat𝑖 ⇒ 𝜌

and 𝜌 ⪰𝑝 𝜌 ′; here the relation ⪰𝑝 has been point-

wise extended to the relation on substitutions. By

Lemma A.14, we have 𝜌𝑄𝑖 ⪰𝑝 𝜌 ′𝑄 ′
𝑖 . Thus, the

required conditions hold for 𝑁1 = 𝜌𝑄𝑖 .

• Case SP-Fix: In this case, we have:

𝑁 = fix 𝑥 .𝑁0

𝑁 ′ = fix 𝑥 .𝑁 ′
0

𝑁 ′
1
= [fix 𝑥 .𝑁 ′

0
/𝑥]𝑁 ′

0

where 𝑁0 ⪰𝑝 𝑁 ′
0
. By Lemma A.14, we have

[fix 𝑥 .𝑁0/𝑥]𝑁0 ⪰𝑝 [fix 𝑥 .𝑁 ′
0
/𝑥]𝑁 ′

0
. Thus, the re-

quired conditions hold for 𝑁1 = [fix 𝑥 .𝑁0/𝑥]𝑁0.

• Case SP-Beta1 In this case, we have:

𝑁 = (𝜆𝑥 .𝑃1) 𝑃2 ⪰
(𝑝1+𝑝2×Oc (𝑥,𝑃 ′

1
)+1)

𝑝 [𝑃 ′
2
/𝑥]𝑃 ′

1
= 𝑁 ′

where

𝑃1 ⪰ (𝑝1)
𝑝 𝑃 ′

1

𝑃2 ⪰ (𝑝2)
𝑝 𝑃 ′

2
.

By Lemma A.14, we get

[𝑃2/𝑥]𝑃1 ⪰
(𝑝1+𝑝2×Oc (𝑥,𝑃 ′

1
))

𝑝 [𝑃 ′
2
/𝑥]𝑃 ′

1
(= 𝑁 ′).

By applying the induction hypothesis to

[𝑃2/𝑥]𝑃1 ⪰
(𝑝1+𝑝2×Oc (𝑥,𝑃 ′

1
))

𝑝 𝑁 ′ −→𝑒 𝑁
′
1
,

we obtain

[𝑃2/𝑥]𝑃1 −→∗
𝑒 𝑁1 ⪰𝑝 𝑁 ′

1

for some 𝑁1. Thus, we have 𝑁 −→∗
𝑒 𝑁1 ⪰𝑝 𝑁 ′

1
as

required.

• Case SP-Beta2: In this case, we have:

𝑁 = fix 𝑥 .𝑃1

⪰ (𝑝1×(Oc (𝑥,𝑃 ′
1
)+1)+1)

𝑝 [fix 𝑥 .𝑃 ′
1
/𝑥]𝑃 ′

1

= 𝑁 ′

where

𝑃1 ⪰ (𝑝1)
𝑝 𝑃 ′

1
.

By Lemma A.14, we have

[fix 𝑥 .𝑃1/𝑥]𝑃1 ⪰
(𝑝1×(Oc (𝑥,𝑃 ′

1
)+1))

𝑝 𝑁 ′ .

By applying the induction hypothesis to

[fix 𝑥 .𝑃1/𝑥]𝑃1 ⪰
(𝑝1×(Oc (𝑥,𝑃 ′

1
)+1))

𝑝 𝑁 ′ −→𝑒 𝑁1,

we obtain

[fix 𝑥 .𝑃1/𝑥]𝑃1 −→∗
𝑒 𝑁1 ⪰𝑝 𝑁 ′

1

for some 𝑁1. We have thus 𝑁 −→∗
𝑒 𝑁1 ⪰𝑝 𝑁 ′

1
as

required.

• Case SP-Beta3 or SP-Beta4 In this case, we have:

𝑁 = if0𝑚 then 𝑃1 else 𝑃2

⪰ (𝑝𝑖+1)
𝑝 𝑃 ′

𝑖

where

𝑃𝑖 ⪰ (𝑝𝑖)
𝑝 𝑃 ′

𝑖 .

By applying the induction hypothesis to 𝑃𝑖 ⪰ (𝑝𝑖)
𝑝 𝑃 ′

𝑖 =

𝑁 −→𝑒 𝑁
′
1
, we obtain

𝑃𝑖 −→∗
𝑒 𝑃

′′
𝑖 ⪰𝑝 𝑁 ′

1

for some 𝑃 ′′
𝑖 . Thus, the required conditions hold for

𝑁1 = 𝑃 ′′
𝑖 .

• Case SP-Beta5 In this case, we have:

𝑁 = case 𝐿 of (pat
1
⇒ 𝑃1 | · · · | pat𝑘 ⇒ 𝑃𝑘)

⪰ (𝑝𝑖+1)
𝑝 𝑃 ′

𝑖

= 𝑁 ′

where

𝑃𝑖 ⪰ (𝑝𝑖)
𝑝 𝑃 ′

𝑖 .

By applying the induction hypothesis to 𝑃𝑖 ⪰ (𝑝𝑖)
𝑝 𝑃 ′

𝑖 =

𝑁 ′ −→𝑒 𝑁1, we obtain

𝑃𝑖 −→∗
𝑒 𝑃

′′
𝑖 ⪰𝑝 𝑁 ′

1

for some 𝑃 ′′
𝑖 . Thus, the required conditions hold for

𝑁1 = 𝑃 ′′
𝑖 .

• Case SP-Beta6 In this case, we have:

𝑁 = case 𝐿 of (pat
1
⇒ 𝑃1 | · · · | pat𝑘 ⇒ 𝑃𝑘)

⪰ (𝑝𝑖+𝑙×Oc (𝑦,𝑃 ′
𝑖)+1)

𝑝 [𝐿′
1
/𝑦]𝑃 ′

𝑖

= 𝑁 ′

where 𝐿 ⊢ pat𝑖 ⇒ [𝐿1/𝑦] with 𝐿1 ⪰ (𝑙)
𝑝 𝐿′

1
and 𝑃𝑖 ⪰ (𝑝𝑖)

𝑝

𝑃 ′
𝑖 . By Lemma A.14, we have

[𝐿1/𝑦]𝑃𝑖 ⪰
(𝑝𝑖+𝑙×Oc (𝑦,𝑃 ′

𝑖))
𝑝 [𝐿′

1
/𝑦]𝑃 ′

𝑖 .

By applying the induction hypothesis to

[𝐿1/𝑦]𝑃𝑖 ⪰
(𝑝𝑖+𝑙×Oc (𝑦,𝑃 ′

𝑖))
𝑝 [𝐿′

1
/𝑦]𝑃 ′

𝑖 = 𝑁 ′ −→𝑒 𝑁
′
1
,

R. Fukaishi et al.

we obtain

[𝐿1/𝑦]𝑃𝑖 −→∗
𝑒 𝑄

′ ⪰𝑝 𝑁 ′
1

for some 𝑄 ′
. Thus, the required condition holds for

𝑁1 = 𝑄 ′
.

□

We are now ready to show Lemma 3.15.

Proof of Lemma 3.15. Suppose 𝑁0 is a closed term of type

int and 𝑁0 ⪰ 𝑁1 −→∗
𝑒 𝑉 . By Lemma A.17, we have 𝑁0 −→∗

𝑒

𝑁 ⪰𝑝 𝑉 for some 𝑁 . By Lemma A.15, we have 𝑁 −→∗
𝑒 𝑉 .

Thus, we have 𝑁0 −→∗
𝑒 𝑉 as required. □

	Abstract
	1 Introduction
	2 Source and Target Language
	2.1 Source Language
	2.2 Target Language

	3 Transformation
	3.1 Definition of the Transformation
	3.2 Correctness of the Transformation

	4 Implementation and Experiments
	4.1 Implementation
	4.2 Experiments

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Proofs for Section 3
	A.1 Basic Properties
	A.2 Proof of Lemma 3.5
	A.3 Proof of Lemma 3.9
	A.4 Proof of Lemma 3.11
	A.5 Proof of Lemma 3.12
	A.6 Proof of Lemma 3.13
	A.7 Proof of Lemma 3.15

