
Higher-Order Multi-Parameter Tree Transducers
and Recursion Schemes for Program Verification

Naoki Kobayashi
Tohoku University

koba@ecei.tohoku.ac.jp

Naoshi Tabuchi
Tohoku University

tabee@kb.ecei.tohoku.ac.jp

Hiroshi Unno
Tohoku University

uhiro@kb.ecei.tohoku.ac.jp

1

Abstract
We introduce higher-order, multi-parameter, tree transducers
(HMTTs, for short), which are kinds of higher-order tree trans-
ducers that take input trees and output a (possibly infinite) tree.
We study the problem of checking whether the tree generated by
a given HMTT conforms to a given output specification, provided
that the input trees conform to input specifications (where both in-
put/output specifications are regular tree languages). HMTTs sub-
sume higher-order recursion schemes and ordinary tree transduc-
ers, so that their verification has a number of potential applications
to verification of functional programs using recursive data struc-
tures, including resource usage verification, string analysis, and ex-
act type-checking of XML-processing programs.

We propose a sound but incomplete verification algorithm for
the HMTT verification problem: the algorithm reduces the verifica-
tion problem to a model-checking problem for higher-order recur-
sion schemes extended with finite data domains, and then uses (an
extension of) Kobayashi’s algorithm for model-checking recursion
schemes. While the algorithm is incomplete (indeed, as we show in
the paper, the verification problem is undecidable in general), it is
sound and complete for a subclass of HMTTs called linear HMTTs.
We have applied our HMTT verification algorithm to various pro-
gram verification problems and obtained promising results.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
Kobayashi [20] has recently proposed a verification method for
higher-order functional programs based on Ong’s decidability re-
sult on model-checking recursion schemes [32]. A higher-order re-
cursion scheme (recursion scheme, for short) is a grammar for gen-
erating a (possibly infinite) tree. It is an extension of regular tree
grammars, where non-terminal symbols can take trees and higher-
order functions on trees as parameters. For example, the follow-
ing grammar G0 is an order-1 recursion scheme, where the non-
terminal F takes a tree as an argument.

S → F c F x → a x (F (bx))

1 c© ACM, 2010. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in Proceedings of POPL’10.

a

c a

b

c

a

b

. . .

a

.

Figure 1. The tree generated by G0.

Here, each non-terminal has exactly one rewrite rule. By infinitary
rewriting of the start symbol S:

S −→ F c −→ a c (F (b c)) −→ · · · ,

we obtain the infinite tree shown in Figure 1. Ong [32] has shown
that modal mu-calculus model-checking of recursion schemes
(“Given a recursion scheme G and a modal mu-calculus formula ϕ,
does the tree generated by G satisfy ϕ?”) is n-EXPTIME-complete
(where n is the order of the recursion scheme G). The idea of
Kobayashi’s verification method [20] is to translate a functional
program into a recursion scheme that generates a tree whose paths
represent all the possible event sequences of the program, so that
temporal properties of the functional program can be verified by
model-checking the recursion scheme. For example, consider the
following program that accesses a file (where * denotes a random
boolean value):

let x = open_in "foo" in
let rec f() = if * then close(x) else read(x); f()
in f()

It can be translated into the following recursion scheme G1:

S → F e F k → br (c k) (r (F k))

Here, r, c, br and e denote a read operation, a close opera-
tion, a non-deterministic branch, and program termination respec-
tively. The recursion scheme generates the tree shown in Figure 2,
which represents all the possible event (i.e. read, write, branch,
and termination) sequences of the program. Kobayashi [20] ap-
plied the verification method to resource usage verification [14]
(the problem of checking whether a program accesses resources
such as files in a valid manner), and showed that it is sound and
complete for the simply-typed λ-calculus extended with recur-
sion, resource creation/access primitives, and booleans. The com-
pleteness follows intuitively because recursion schemes are es-
sentially terms of the simply-typed λ-calculus with recursion and
tree constructors, so that they are already almost as expressive
as the source language (of the simply-typed λ-calculus with re-
sources), and no information is lost by the translation. Although the

br

c

e

r

br

c

e

r

. . .

Figure 2. The tree generated by G1.

model-checking of recursion schemes has extremely high worst-
case time complexity (n-EXPTIME-complete for the full modal
mu-calculus), Kobayashi [18] constructed a model-checker for re-
cursion schemes, and showed that it works well for realistic inputs.
Thus, the verification method based on recursion schemes seems to
be one of the promising methods for higher-order program verifi-
cation.

The main limitation of recursion schemes from a program-
ming language point of view is that there are tree constructors but
not destructors. Because of this limitation, one cannot naturally
model programs operating over infinite data domains such as inte-
gers, lists, and trees.2 For example, consider the following function
merge:

let rec merge x y =
case x of [] => copy y

| a::x’ => merge_a x’ y
| b::y’ => merge_b x’ y

and merge_a x y =
case y of [] => a::(copy x)

| a::y’ => a::a::(merge x y’)
| b::y’ => a::(merge_b y’ x)

and merge_b x y =
case y of [] => b::(copy x)

| a::y’ => b::(merge_a y’ x)
| b::y’ => b::b::(merge x y’)

and copy x =
case x of [] => []

| a::x’ => a::(copy x’)
| b::y’ => b::(copy y’)

The function merge merges two lists consisting of a and b. It
recursively destructs x and y, which cannot be expressed by a
recursion scheme. Functions operating over recursive data struc-
tures are ubiquitous in functional programming, so that not be-
ing able to handle them is a great limitation for the approach of
model-checking functional programs by modeling them as recur-
sion schemes.

To relax the limitation above, we introduce an extension of re-
cursion schemes called higher-order, multi-parameter tree trans-
ducers (HMTTs, for short). As in other (top-down) tree transduc-
ers [7, 8], we classify trees into input and output trees: only con-
structors can be applied to output trees, and only destructors can be
applied to input trees. Unlike in ordinary tree transducers, however,
each function symbol (non-terminal) can take multiple input trees
as arguments (as in the function merge above). Furthermore, as
in recursion schemes (and high-level tree transducers [8]), higher-
order functions can be used. The function merge above is expressed
as the following HMTT T2:

Merge x y ->

2 It is possible to encode trees as functions instead of using primitive tree
constructors. The tree operations realized in this way is however limited, as
recursion schemes must be simply-typed.

case(x,Copy y, x’.Merge_a x’ y, x’.Merge_b x’ y).
Merge_a x y ->
case(y,

a(Copy x),
y’.a(a(Merge x y’)),
y’.a(Merge_b y’ x)).

...

Here, strings are expressed as linear trees (consisting of only termi-
nal symbols of arity 1 or 0). case(e, ex1.e1, . . . , exn.en) matches a
tree e with a pattern ai et, and reduces to [et/exi]ei. HMTTs sub-
sume both higher-order recursion schemes and various kinds of
tree transducers (such as macro tree transducers and high-level tree
transducers [7, 8]).

For HMTTs, we consider the following verification problem
(T ,M1, . . . ,Mk,M): “Given an HMTT T that takes k (possibly
infinite) input trees, and Büchi tree automata with a trivial accep-
tance condition (where all the states are final) M1, . . . ,Mk,M,
does T always output a (possibly infinite) tree accepted by M,
given trees accepted by M1, . . . ,Mk as inputs?” For example, let
M be a tree automaton that accepts linear trees labeled by elements
of a∗b∗e + aω + a∗bω (where a, b and e are terminal symbols
of arity 1, 1, and 0 respectively). Then, the verification problem
(T ,M,M,M) is the problem of deciding whether T produces a
linear tree labeled by an element of a∗b∗e+aω +a∗bω (thus, a tree
like b(a(e)) is excluded), given two input trees labeled by elements
of a∗b∗e + aω + a∗bω.

In the present paper, we give a sound but incomplete algo-
rithm for the HMTT verification problem. The algorithm consists
of two phases. First, we transform the HMTT verification prob-
lem into a model-checking problem for recursion schemes extended
with constructors and destructors for finite data domains (such as
booleans). We then solve the model-checking problem for the re-
cursion scheme by using an extension of Kobayashi’s model check-
ing algorithm for recursion schemes [18]. The idea of the first phase
is to approximate an input tree by an automaton state. For example,
recall the HMTT T2 (corresponding to the merge function). The
automaton M has two states q0 and q1, with transition δ(q0, a) =
q0, δ(q0, b) = q1, δ(q0, e) = ε, δ(q1, b) = q1, δ(q1, e) = ε. Thus,
the output of T2 applied to linear trees in L(M) is approximated by
the following recursion scheme with finite data domains {q0, q1}:

S -> Merge q0 q0.
Merge x y ->
case(x,

br3 (Copy y) (Merge_a q0 y) (Merge_b q1 y),
br (Copy y) (Merge_b q1 y)).

Merge_a x y ->
case(y,

br3 (a(Copy x)) (a(a(Merge x q0)))
(a(Merge_b q1 x))

br (a(Copy x)) (a(Merge_b q1 x))).
...

Here, the non-terminal Merge now takes elements of
{q0, q1} as arguments instead of trees, and the case state-
ment case(e, e0, e1) reduces to e0 if the value of e0 is
q0, and reduces to e1 otherwise. The three branches of
br3 (Copy y) (Merge_a q0 y) (Merge_b q1 y) for
the case x = q0 simulates the cases where the input tree x is of
the form e, a t1, and b t2 respectively. The tree generated by the
recursion scheme (with finite data domains) constructed in this
manner contains all the possible outputs of the HMTT (for valid
inputs). Thus, if the recursion scheme generates only valid trees,
so does the HMTT.

As mentioned above, our verification algorithm is sound but
incomplete: it does not accept an invalid HMTT, but may reject

a valid HMTT. As we show in the paper, the HMTT verification
problem is undecidable in general, so that we cannot hope to find
a complete algorithm. We show, however, that the proposed algo-
rithm is complete for a subclass of HMTTs called linear HMTTs
(with certain additional assumptions). Intuitively, an HMTT is lin-
ear if it traverses each input tree at most once. (For example, the
merge function above is linear since it traverses x and y just once.)
Note that, even for the decidable class of linear HMTTs, our veri-
fication problem subsumes the model checking problem for recur-
sion schemes (where properties are restricted to those described
by Büchi tree automata with a trivial acceptance condition). Lin-
ear HMTTs also subsume (deterministic and total) high-level tree
transducers [8] in the sense that any high-level tree transducer can
be transformed into a linear HMTT by using a standard program
transformation technique (see [23]).

There are many potential applications of our HMTT verifica-
tion method. As HMTTs subsume recursion schemes and high-
level tree transducers, immediate applications include (i) the re-
source usage verification considered by Kobayashi [20], and (ii)
exact type-checking of XML-processing programs [25, 27, 28, 34].
For (i), while Kobayashi [18, 20] considered closed programs, we
can now deal with programs that take recursive data structures as
arguments. For (ii), unlike previous approaches to using macro or
high-level tree transducers, we can verify programs that take multi-
ple XML documents as inputs. Furthermore, thanks to the efficient
model-checking algorithm for recursion schemes, our HMTT ver-
ification algorithm is reasonably fast even for higher-order cases;
on the other hand, previous approaches based on transducers do
not seem to scale well for higher-order cases [34]. Other applica-
tions include: (iii) string analysis [3, 29], and (iv) verification of
programs that use other recursive data types (e.g. the list-ness of
the output of the function “flatten” converting nested lists into flat
lists). For (iii), the goal is to check that a program always generates
a valid string as output. Web applications often generate HTML
files, and it is important to check that there is no cross-site script-
ing vulnerabilities and also that the output conforms to the HTML
format [29]. Previous approaches [3, 29] use a kind of control flow
analysis to approximate the output string as a regular or context-
free language, and then compare it with the output specification.
By using HMTT, we can more precisely approximate the output
string (and indeed, no approximation is required in certain cases).

The rest of this paper is structured as follows. Section 2 intro-
duces HMTTs and defines their verification problems. Section 3 in-
troduces higher-order recursion schemes extended with finite data
domains. Section 4 gives a transformation of HMTT verification
problems into model-checking problems for recursion schemes
with finite data domains. Section 5 extends Kobayashi’s type-based
method for model-checking recursion schemes [18, 20], to deal
with finite data domains. Section 6 discusses the complexity of our
HMTT verification algorithm. Section 7 discusses applications of
our verification method, and Section 8 reports preliminary experi-
ments. Section 9 discusses related work, and Section 10 concludes
the paper. A longer version of this paper [23], containing proofs
and more details on the experiments, is available from http:
//www.kb.ecei.tohoku.ac.jp/~koba/papers/hmtt.pdf.

2. Higher-Order, Multi-Parameter Tree
Transducer

This section defines higher-order, multi-parameter tree transducers
(HMTTs) and their verification problems. From a programming
language point of view, an HMTT is a term of the simply-typed λ-
calculus extended with recursion and tree constructors/destructors.
Trees are classified into input trees, which can only be destructed,
and output trees, which can only be constructed.

DEFINITION 2.1 (sorts). The set of sorts is given by:

κ ::= i | o | κ1 → κ2

The sort i describes input trees, while o describes output trees. The
sort κ1 → κ2 describes a function that takes an element of sort κ1

and returns an element of sort κ2

DEFINITION 2.2. A higher-order, multi-parameter tree transducer
(HMTT for short) T is a quadruple (Σ,N ,R, S), where:

• Σ is a ranked alphabet. i.e. a map from a finite set
{a1, . . . , aN} of symbols called terminals to non-negative integers.

• N is a map from a finite set of symbols called non-terminals
to sorts.

• R is a set of rewriting rules of the form F x1 · · · xn → t,
where F ∈ dom(N) is a non-terminal and t is a term. Here, the
set of terms is defined by:

t ::= a | x | F | t1 t2 | case(x, ey1.t1, . . . , eyN .tN),

where eyi abbreviates a sequence of variables, whose length must
coincide with the arity of ai.

• S is a non-terminal called the start symbol. N (S) must be of
the form i → · · · → i → o.
Furthermore, each rule F x1 · · · xn → t must be well-sorted, i.e.
� F x1 · · · xm → t must be derivable by using the following sort
assignment rules:

K � F : N (F)

K � a : o → · · · → o| {z }
Σ(a)

→ o

K, x : κ � x : κ

K � t1 : κ1 → κ2 K � t2 : κ1

K � t1t2 : κ2

K � x : i
K, eyi : ei � ti : o

K � case(x, ey1.t1, . . . , eyN .tN) : o

N (F) = κ1 → · · · → κm → o
x1 : κ1, . . . , xm : κm � t : o

� F x1 · · · xm → t

Note that in the sort assignment rule for case-expressions, x must
be of sort i; thus, pattern matching on trees are only allowed on
input trees (of sort i).

REMARK 2.1. Each terminal symbol is used as a constructor for
input trees (of sort i) as well as for output trees (of sort o). In the
sort assignment rule above, however, only the sort o → · · · → o →
o is assigned, as input trees cannot be constructed by an HMTT. In
an environment ρ introduced below, a terminal of arity k has sort
i → · · · → i| {z }

k

→ i. �

A Σ-labeled ranked tree, written T , is a mapping from
{1, . . . , A}∗ (where A is the largest arity of symbols in Σ) to
dom(Σ), such that (i) dom(T) is closed under the prefix operation,
and (ii) if T (x) = a, then {i | xi ∈ dom(T)} = {1, . . . , Σ(a)}.

The set of evaluation contexts is defined by:

E ::= [] | a t1 · · · tj−1 E tj+1 · · · tΣ(a)

Let ρ be a mapping from a finite set of variables (of sort i) to a set
of pairs consisting of a Σ-labeled ranked tree and a non-negative
integer. (The second element of such a pair, called uses, will later be
used for defining the linearity condition.) Let T = (Σ,N ,R, S).
The reduction relation (t, ρ) −→T (t′, ρ′) is defined by:

F x1 · · · xm → t ∈ R
(E[F t1 · · · tm], ρ) −→T (E[[t1/x1, . . . , tm/xm]t], ρ)

ρ(x) = (ai
eT , j) ρ′ = ρ{x �→ (ai

eT , j + 1), ey′ �→ (eT ,e0)}
(ey′ are fresh)

(E[case(x, ey1.t1, . . . , eyN .tN)], ρ) −→T (E[[ey′/eyi]ti], ρ
′)

Here, [et/ex]t′ denotes the term obtained from t′ by simultaneously
replacing ex with et. In the rule above, eT denotes a sequence of
(possibly infinite) trees, and ai

eT denotes a tree whose root is
labeled by ai and children are eT .

Suppose that t is a term of type i → · · · → i| {z }
k

→ o. We write

[[T , t, I1, . . . , Ik]] for the tree obtained by infinitary rewriting of
(t x1 · · · xk, {x1 �→ (I1, 0), . . . , xk �→ (Ik, 0)}). More precisely,
it is defined as follows. Given a term t, we write t⊥ for the finite
tree inductively defined by (i) (as1 · · · sn)⊥ = a(s1

⊥) · · · (sn
⊥)

(where n ≥ 0), and (ii) t⊥ = ⊥ if t is of the from Fs1 · · · sn or
case(x, ey.t1, . . . , ey.tn). For example, (a c (F (b c)))⊥ = a c⊥.
We define [[T , t, I1, . . . , Ik]] as the (possibly infinite) (Σ ∪ {⊥ �→
0})-labeled tree

F
{t′⊥ | (t x1 · · · xk, {x1 �→ (I1, 0), . . . , xk �→

(Ik, 0)}) −→∗
T (t′, ρ′)}, where

F
i Ti is defined by (

F
i Ti)(π) =F

i(Ti(π)) for every π ∈ {1, . . . , A}∗ (where A is the largest
arity), with ⊥ 	 a = a for every a ∈ dom(Σ).

EXAMPLE 2.1. Consider the HMTT T = (Σ,N ,R, Rev) where:

Σ = {a1 �→ 1, a2 �→ 1, a3 �→ 0}
N = {Rev �→ i → o, RevSub �→ i → o → o}
R = {Rev x → RevSub x a3,

RevSub x y →
case(x, x′.RevSub x′ (a1 y), x′.RevSub x′ (a2 y), y)}

T computes the reverse of (the tree representation of) a string over
{a1, a2}. If u1, . . . , un ∈ {a1, a2}, then
[[T , Rev, u1(u2 · · · (un−1(una3)) · · ·))]] is:

un(un−1(· · · (u2(u1a3)) · · ·)).
Here, the terminal symbol a3 is used to denote the end of a string.
For example, (Rev x, {x �→ (a1(a2a3), 0)}) is reduced as follows:

(Rev x, ρ = {x �→ (a1(a2a3), 0)})
−→T (RevSub x a3, ρ)
−→T (case(x,

x′.RevSub x′ (a1a3), x
′.RevSub x′ (a2a3), a3)), ρ)

−→T (RevSub x′′ (a1a3),{x �→ (a1(a2a3),1),x
′′ �→ (a2a3,0)})

−→∗
T (a2(a1a3), ρ

′) �

EXAMPLE 2.2. Recall the merge function in Section 1. It is ex-
pressed as the following HMTT T = (Σ,N ,R,Merge).

Σ = {a �→ 1, b �→ 1, e �→ 0}
R = {Merge x y →

case(x, x′.Mergea x′ y, x′.Mergeb x′ y,Copy y)
Mergea x y → case(y,

y′.a(a(Merge x y′)), y′.a(Mergeb y′ x),a(Copy x)),
Mergeb x y → case(y,

y′.b(Mergea y′ x), y′.b(b(Merge x y′)), b(Copy x)),
Copy x → case(x, x′.a(Copy x′), x′.b(Copy x′), e), } �

We introduce an important subclass of HMTTs.

DEFINITION 2.3 (linear HMTT). An HMTT T = (Σ,N ,R, S)
is linear if, for all Σ-labeled ranked trees I1, . . . , Ik (where k
is the arity of S) and for all ρ and t, (S x1 · · · xk, {x1 �→
(I1, 0), . . . , xk �→ (Ik, 0)}) −→∗

T (t, ρ) and ρ(y) = (I, j) im-
ply j ≤ 1, for every y ∈ dom(ρ).

Note that the linearity is a semantic condition. It is possible to
construct a sound (but incomplete) type system for guaranteeing the
linearity of HMTTs, but the semantic condition is sufficient (and
actually more convenient) for our purpose. For order-1 case, the
linearity condition is almost the same as the syntactic condition of
linearity (or, 1-bounded copying) introduced by Maneth et al. [27].
For higher-order cases, one can define a linear type system for
(conservatively) guaranteeing the linearity condition.

REMARK 2.2. The reader may think that the linearity condition is
too restrictive. Actually, however, the class of tree transformations
expressed by linear HMTTs is at least as large as those expressed by
variations of deterministic macro/high-level tree transducers stud-
ied in the literature. That follows from the following facts. First,
to our knowledge, all the variations of macro tree transducers (in-
cluding pebble tree transducers [28] and stay macro tree transduc-
ers [27]) studied in the literature can be expressed by compositions
of macro tree transducers (see [6] for the case of pebble tree trans-
ducers). Secondly, by the result of Engelfriet [8], any composition
of deterministic, total macro tree transducers can be expressed by a
single deterministic high-level tree transducer. Third, as discussed
in Appendix A, any deterministic high-level tree transducer can
be translated to a linear HMTT by using the tupling transforma-
tion [13].

We use a variant of tree automaton called a trivial automaton [2,
20] for describing properties on (possibly infinite) input and output
trees of HMTT.

DEFINITION 2.4 (trivial automaton). A Büchi automaton with a
trivial acceptance condition (a trivial automaton, for short) M is a
quadruple:

(Σ, Q, Δ, q0)

where Σ is a ranked alphabet, Q is a set of states, Δ, called a
transition function, is a finite subset of Q × dom(Σ) × Q∗ such
that if (q, a, q1 · · · qk) ∈ Δ, then k = arity(a). A dom(Σ)-
labeled tree T is accepted by M if there is a Q-labeled tree R
such that (i) dom(T) = dom(R); (ii) For every x ∈ dom(R),
(R(x), T (x),R(x1) · · ·R(xm)) ∈ Δ where m = arity(T (x)).
R is called a run tree of M over T . A trivial automaton is deter-
ministic if the set {s | (q, a, s) ∈ Δ} is empty or a singleton set for
every q ∈ Q and a ∈ dom(Σ).

(Assuming that ⊥ does not occur in the alphabet of M) we
write M⊥ for the trivial automaton obtained from M by adding
the special symbol ⊥ (of arity 0) to the alphabet, and replacing the
transition relation Δ with Δ ∪ {(q,⊥, ε)|q ∈ Q}.

EXAMPLE 2.3. Consider a trivial automaton M =
(Σ, {q0, q1}, Δ, q0) where

Σ = {a1 �→ 2, a2 �→ 1, a3 �→ 0}
Δ = {(q0, a1, q0q0), (q0, a2, q1q1),

(q0, a2, q1), (q1, a2, q1), (q0, a3, ε), (q1, a3, ε)}
M accepts Σ-ranked trees whose paths are labeled by elements of
a∗
1a

∗
2a3 + a∗

1a
ω
2 + aω

1 . �
We now define the HMTT verification problem, which is the

main subject of the rest of this paper.

DEFINITION 2.5 (HMTT verification problem). Let T be an
HMTT with N (S) = k. We write |= (T ,M1, . . . ,Mk,M) if

[[T , S, I1, . . . , Ik]] ∈ L(M⊥) holds for every I1 ∈
L(M1), . . . , Ik ∈ L(Mk). An HMTT verification problem
(T ,M1, . . . ,Mk,M) is the problem of deciding whether
|= (T ,M1, . . . ,Mk,M) holds.

The problem of model-checking higher-order recursion
schemes [32] (where properties are restricted to those described by
trivial automata) is a special case of the HMTT verification prob-
lem (where k = 0).

REMARK 2.3. Note that the above definition allows ⊥ to occur
in [[T , S, I1, . . . , Ik]]. Given finite trees as input, an HMTT may
produce ⊥ when it does not terminate. Thus, the above problem
is slightly different from the problem of exact type checking of
tree transducers studied in the literature. They usually check that,
given an input tree in L(M1), a transducer does terminate and
produces a tree in L(M), while our definition allows the case
where the program does not terminate. This difference is analogous
to partial vs total correctness in program verification. We consider
only partial correctness, leaving the termination verification as a
separate problem.

3. Recursion Schemes with Finite Data Domains
In this section, we introduce an extension of higher-order recursion
schemes with finite data domains (RSFD, for short), and define a
model-checking problem for RSFD, into which the HMTT verifi-
cation problem in the previous section will be transformed.

DEFINITION 3.1 (sorts for RSFD). The set of (RSFD) sorts is
given by:

κ ::= d | o | κ1 → κ2

DEFINITION 3.2. A higher-order recursion scheme with finite data
domain (RSFD for short) G is a quintuple (Σ,N , D,R, S), where:

• Σ is a ranked alphabet.
• N is a map from a finite set of symbols called non-terminals

to sorts.
• D is a finite set {d1, . . . , dl}.
• R is a set of rewriting rules of the form F x1 · · · xn → t,

where F ∈ dom(N) is a non-terminal and t is a term. Here, the
set of terms is defined by:

t ::= a | di | x | F | t1t2 | case(t, t1, . . . , tl)

The sort assignment rules for terms are the same as those of HMTT,
except the following rules.

K � d : d

K � t : d K � ti : o (for each i)

K � case(t, t1, . . . , tl) : o

• S is a non-terminal called the start symbol, with N (S) = o.

The rewriting relation t −→G t′ is defined by:

F x1 · · · xm → t ∈ R
E[F t1 · · · tm] −→G E[[t1/x1, . . . , tm/xm]t]

E[case(di, t1, . . . , tl)] −→G E[ti]

Here, E denotes an evaluation context, whose syntax is given by:

E ::= [] | a t1 · · · tj−1 E tj+1 · · · tΣ(a)

The value tree of G, written by [[G]], is the (Σ ∪ {⊥ �→ 1})-
labelled ranked tree obtained by infinitary rewriting of S, i.e.F
{t′⊥ | S −→∗

G t′}.

EXAMPLE 3.1. Consider the following RSFD G = ({a �→ 1, b �→
1},N , {d1, d2},R, S), where:

N = {S : o, F : d → o}
R = {S → F d1,

F x → case(x,a(F d2), b(F d1))}
The value tree [[G]] is the infinite tree a(b(a(b(· · ·)))).

DEFINITION 3.3 (RSFD model checking problem). Let G be an
RSFD and M be a trivial automaton. The RSFD model check-
ing problem (G,M) is the problem of deciding whether [[G]] ∈
L(M⊥) holds. We write |= (G,M) if [[G]] ∈ L(M⊥) holds.

The RSFD model checking problem is decidable: as sketched in
[20], any recursion scheme with finite data domains can be encoded
into an ordinary recursion scheme, and the model checking prob-
lem for ordinary recursion schemes is decidable. Instead, it is also
possible to encode an element di of a finite base type {d1, . . . , dk}
into a function of sort o → · · · → o| {z }

k

→ o: λx1. · · · .λxk.xi. Then,

case(x, t1, . . . , tk) can be encoded into x t1 · · · tk. In Section 5,
we given an alternative, direct proof of the decidability, which re-
duces the RSFD model checking problem into a type checking
problem.

REMARK 3.1. Unlike the original definition of the model checking
problem for recursion schemes [32], we here allow [[G]] to generate
a tree containing ⊥ for a technical convenience. The problem of
checking [[G]] ∈ L(M) is also decidable.

4. From HMTT Verification to RSFD
Model-Checking

This section reduces the HMTT verification problem to the model-
checking problem for RSFD. The reduction is sound but incom-
plete in general: For any HMTT verification problem P1, if the cor-
responding model checking problem P2 for RSFD has a positive
answer, then so does P1, but not vice versa. For linear HMTTs,
however, the reduction is sound and complete.

As mentioned in Section 1, the idea of the transformation is to
use the state of a trivial automaton as an abstraction of an input
tree (of sort i). Let (T ,M1, . . . ,Mk,M) be an HMTT verifica-
tion problem. One can construct a trivial automaton M1,...,k =
(ΣI , QI , ΔI , q1) such that L(M1,...,k, qi) = L(Mi). Here,
L(M1,...,k, qi) is the set of trees accepted by (ΣI , QI , ΔI , qi).
Let QI be {q1, . . . , ql}. We also assume that for every q ∈ QI ,
L(M1,...,k, q) �= ∅, i.e. there is no garbage state (from which no
tree can be accepted).

For an HMTT verification problem (T ,M1, . . . ,Mk,M)
where T = (Σ,N ,R, S) and M = (Σ, Q,Δ, q0), we write
(T ,M1, . . . ,Mk,M)# for the pair (G,M′), where:

G = (Σ ∪ {br �→ 2},N# ∪ {S′ �→ o}, QI ,R′, S′)
R′ = {S′ → S q1 · · · qk}

∪{F ex → t# | F ex → t ∈ R}
M′ = (Σ ∪ {br �→ 2}, Q, Δ′, q0)
Δ′ = Δ ∪ {(q, br, qq) | q ∈ Q}.

Here, N# just replaces each occurrence of sort i in N with d. The
translation t# of a term t is defined by:

a# = a x# = x F# = F (t1 t2)
= t1

t2
#

case(x, ey1.t1, . . . , eyN .tN)# = case(x, u′
1, . . . , u

′
l)

where u′
i = br ([eq1,1/ey1]t1

#) · · · ([eq1,ki,1/ey1]t1
#)

· · · ([eqN,1/eyN]tN
#) · · · ([eqN,ki,N /eyN]tN

#)
Δ(qi, aj) = {eqj,1, . . . , eqj,ki,j }

(Here Δ(q, a) denotes {eq | (q, a, eq) ∈ Δ})

br

br

br

...

br

br

...
a2

a1

a3

a1

a3

br

br

br

...
a2

a2

a3

a2

a3

a3

Figure 3. The tree generated by G of Example 4.1

In the definition above, br t1 · · · tn is an abbreviated form of:

br t1 (br t2 (br · · · (br tn−1 tn) · · ·))
Note that case analysis on an input tree x is replaced by case
analysis on the corresponding automaton state x. For each case
qi ∈ Q of x, the case expression reduces to a term of the form
br t1 · · · tm, where t1, . . . , tm are reducts for all the possible trees
abstracted by qi.

EXAMPLE 4.1. Recall Example 2.1. Let M1 and M be trivial
automata (Σ, Q, Δ1, q1) and (Σ, Q, Δ, q1) where:

Σ = {a1 �→ 1, a2 �→ 1, a3 �→ 0}
Q = {q1, q2}
Δ1 = {(q1,a1,q1), (q1,a2,q2), (q2,a2,q2), (q1,a3,ε), (q2,a3,ε)}
Δ = {(q1,a2,q1), (q1,a1,q2), (q2,a1,q2), (q1,a3,ε), (q2,a3,ε)}

Then, (T ,M1,M2)
= (G,M′) where

G = (Σ ∪ {br},N , {q1, q2},R, S′)
R = {S′ → S q1, S x → RevSub x a3,

RevSub x y → case(x, t1, t2)}
t1 = br (RevSub q1 (a1 y)) (br (RevSub q2 (a2 y)) y)
t2 = br (RevSub q2 (a2 y)) y
M′ = (Σ ∪ {br �→ 2}, {q1, q2}, Δ, q1)
Δ = Δ ∪ {(q1, br, q1q1), (q2, br, q2q2)}

Note that input trees have been replaced by states of M1, and case
analyses on an input tree have been replaced by case analyses on
the corresponding state of M1. The value tree of G is illustrated in
Figure 3. �

We now discuss the correctness of the transformation. The fol-
lowing theorem guarantees that (the first element of) the output of
the transformation is indeed a recursion scheme.

THEOREM 4.1 (well-formedness of the recursion scheme).
Let (T ,M1, . . . ,Mk,M) be an HMTT verification problem.
If (T ,M1, . . . ,Mk,M)# = (G,M′), then G is a recursion
scheme.

Proof It suffices to show that each rule of G is well-sorted. We
define a translation of sorts of HMTT into those of RSFD by:

i# = d o# = o (κ1 → κ2)
= κ1

→ κ2
#

The translation (·)# is pointwise extended to sort environments.
We can show by induction on the derivation that K � t : κ implies
K# � t# : κ#. Thus, any well-sorted rule of T is transformed into
a well-sorted rule of G. �

The following theorem guarantees the soundness of our trans-
formation.

THEOREM 4.2 (soundness). Let (T ,M1, . . . ,Mk,M) be an
HMTT verification problem. If |= (T ,M1, . . . ,Mk,M)#, then
|= (T ,M1, . . . ,Mk,M).

Proof Sketch Let (G,M′) be (T ,M1, . . . ,Mk,M)#. We first
note that by the definitions of [[G]] and [[T , S, I1, . . . , Ik]], we have:
(I) [[G]] ∈ L(M′⊥) if, and only if, u⊥ ∈ L(M′⊥) for every u such
that S′ −→∗

G u, and (II) [[T , S, I1, . . . , Ik]] ∈ L(M⊥) if, and only
if, t⊥ ∈ L(M⊥) for every t such that ∃ρ.((S x1 · · · xk, ρ0) −→∗

T
(t, ρ)), where ρ0 = {x1 �→ (I1, 0), . . . , xk �→ (Ik, 0)}.

We define the relation u � u′ on RSFD terms of sort o induc-
tively by: (i) bru1 · · ·un � u′

i if ui � u′
i, (ii) au1 · · ·un �

au′
1 · · ·u′

n if ui � u′
i for each i ∈ {1, . . . , n}, (iii)F eu � F eu,

and (iv) case(u, u1, . . . , ul) � case(u, u1, . . . , ul). Intuitively,
an RSFD term u represents a set of terms (where br denotes a
union), and u � u′ means that u′ is an element of the set rep-
resented by u.

Suppose that |= (G,M′) and (S x1 · · · xk, ρ0) −→∗
T (t, ρ)

with Ii ∈ L(Mi) for each i ∈ {1, . . . , k}. It suffices to show that
t⊥ ∈ L(M⊥). One can prove that (S x1 · · · xk, ρ0) −→∗

T (t, ρ)

implies S′ −→∗
G u � u′ and t⊥ = u′⊥ for some u and u′

(which intuitively means that G is a correct abstraction of T). By
the assumption |= (G,M′), we have u⊥ ∈ L(M′⊥). By the
construction of M′, we have u′⊥ ∈ L(M⊥) (note that u′⊥ does
not contain br), which implies t⊥ ∈ L(M⊥) as required. See [23]
for more details. �

As shown by the following example, the converse of the above
theorem does not hold in general.

EXAMPLE 4.2. Consider an HMTT T = (Σ,N ,R, S) where:

Σ = {a1 �→ 0, a2 �→ 0, a3 �→ 2}
N = {S �→ i → o}
R = {S x → case(x, a3 a1 (C x), a2, · · ·),

C x → case(x, a1, a2, · · ·)}
We have omitted the case for a3 since it does not mat-
ter. Let M1 be the trivial automaton (Σ, {q0}, Δ1, q0) where
Δ1 = {(q0, a1, ε), (q0, a2, ε)}. Note that L(M1) accepts
{a1, a2}. Let M be another trivial automaton (Σ, {q0, q1}, Δ, q0),
where Δ = {(q0, a2, ε), (q0, a3, q1q1), (q1, a1, ε)}, which ac-
cepts {a3 a1 a1, a2}. Obviously, |= (T ,M1,M) holds. However,
(T ,M1, . . . ,Mk,M)# is (G,M′) where:

G = (Σ,N , {q0},R, S′)
R = {S′ → S q0, S x → case(x, br (a3 a1 (C q0))a2),

C x → case(x,br a1 a2)}
M′ = (Σ, {q0, q1}, Δ′, q0)
Δ′ = {(q0, br, q0q0), (q1, br, q1q1)} ∪ Δ

[[G]] = br (a3 a1 (br a1 a2))a2 is not accepted by M′.
The reason why the transformation above does not preserve the

validity is that both of the input trees a1 and a2 are abstracted to
q0, and independent choices between a1 and a2 are made in the two
case analyses on x of the recursion scheme (once in the rule for S,
and the other time in the rule for C). �

If we restrict ourselves to linear HMTTs and make certain
additional assumptions, then our transformation is complete.

THEOREM 4.3 (completeness for linear HMTT).
Let (T ,M1, . . . ,Mk,M) be an HMTT verification problem. Sup-
pose also that one of the following conditions holds.

1. M = (Σ, Q, Δ, q0) is deterministic.
2. If (T ,M1, . . . ,Mk,M)# = (G,M′), the symbols br only

occur at the top-level of [[G]], i.e. in every path of [[G]] from the
root, br does not occur after other terminal symbols occur.

If T is linear and |= (T ,M1, . . . ,Mk,M),
then |= (T ,M1, . . . ,Mk,M)#.

Proof Sketch Suppose that |= (T ,M1, . . . ,Mk,M) and
S′ −→∗

G u. It suffices to show u⊥ ∈ L(M′⊥) (recall the first
paragraph of the proof sketch of Theorem 4.2).

By the assumption that T is linear, one can prove that S′ −→∗
G

u � u′ implies (S x1 · · · xk, {x1 �→ (I1, 0), . . . , xk �→
(Ik, 0)}) −→∗

T (t, ρ) and u′⊥ = t⊥ for some t, ρ, and I1, . . . , Ik

such that Ii ∈ L(Mi) for every i ∈ {1, . . . , k}. (This intuitively
means that G is an abstraction of T that is precise enough to cap-
ture only the reductions possible in T .) For such t, we have t⊥ ∈
L(M⊥) by the assumption |= (T ,M1, . . . ,Mk,M). By the con-
struction of M′ and the fact u′⊥ = t⊥, we have u′⊥ ∈ L(M′⊥).

Thus, we have u′⊥ ∈ L(M′⊥) for every u′ such that u � u′.
We therefore have u⊥ ∈ L(M′⊥) if one of the two conditions in
the statement of the theorem holds.

See [23] for more details. �

REMARK 4.1. If neither of the two conditions in Theorem 4.3
holds, the last step of the above proof does not go through. In that
case, the completeness does not hold indeed. Consider the HMTT
T = (Σ,N ,R, S) where:

Σ = {a1 �→ 1, a2 �→ 0, a3 �→ 0}
N = {S �→ i → o}
R = {S x → case(x, x′.a1(S x′), a2, a3)}

It just generates a copy of a given input tree. Let us consider
(non-deterministic) automata M1 = (Σ, {q1, q2}, Δ1, q1) and
M = (Σ, {q1, q2}, Δ, q1) where

Δ1 = {(q1, a1, q2), (q2, a2, ε), (q2, a3, ε)}
Δ = {(q1, a1, q2), (q1, a1, q3), (q2, a2, ε), (q3, a3, ε)}.

Since both automata accept {a1 a2, a1 a3}, |= (T ,M1,M) holds.
Our transformation algorithm generates the recursion scheme G =
(Σ ∪ {br �→ 2},N , {q1, q2},R, S′) and the automaton M′ =
(Σ ∪ {br �→ 2}, Q,Δ ∪ {(q1, br, q1, q1), (q2, br, q2, q2)}, q1)
where R consists of:

S′ → S q1 S x → case(x, a1(S q2), br a2 a3)

It generates a finite tree a1(br a2 a3). The tree is NOT accepted by
M′: note that no state can be assigned to the subtree br a2 a3.

The second condition of Theorem 4.3 can often be guaranteed
by applying the CPS transformation, which ensures that an output
tree is returned only after all the non-deterministic branches have
been made. For example, the HMTT can be transformed into the
following equivalent HMTT (where only the rewriting rules are
shown).

S x → S1 x I I x → x C k x y → k(x(y))
S1 x k → case(x, x′.S1 x′ (C k a1), k a2, k a3)

It generates the tree br (a1 a2) (a1 a3), which is accepted by M′.

The HMTT verification problem is undecidable in general, since
we can encode Post correspondence problem.

THEOREM 4.4. The HMTT verification problem is undecidable.

Proof Let A be {a1, ..., an} and consider a Post correspondence
problem

(u1, v1), ..., (um, vm) ∈ A∗ ×A∗

Without loss of generality, we may assume that m = n, since if
m < n, we can add dummy pairs (ε, ε) as (uk, vk) for m < k ≤
n. The Post correspondence problem is the problem of deciding
whether there exists a sequence i1 · · · i� such that

ui1ui2 · · ·ui� = vi1vi2 · · · vi� .

We shall construct an HMTT that takes a candidate of such a
sequence, and checks whether the candidate satisfies the condition
above. Let T be an HMTT (Σ,N ,R, S) where:

Σ = {a1 �→ 1, . . . , an �→ 1, e �→ 0, yes �→ 0, no �→ 0}
N = {S �→ i → o}

∪{Subu,v �→ i → i → o |
u, v are suffixes of ui and vj for some i and j}

∪{IsNullu �→ i → o | u is a suffix of ui for some i}
R = {S x → Subε,ε x x}

∪{Subε,s x y →
case(x, x′.Subu1,s x′ y, . . . , x′.Subun,s x′ y,IsNulls y)
| s ∈ {a1, . . . , an}∗}

∪{Subs,ε x y →
case(y, y′.Subs,v1 x y′, . . . , x.Subs,vn x y′, IsNulls x)
| s ∈ {a1, . . . , an}+}

∪{Subau′,av′, x y → Subu′,v′, x y | a ∈ A, u′, v′ ∈ A∗}
∪{Subau′,bv′, x y → no | a, b ∈ A, u′, v′ ∈ A∗, a �= b}
∪{IsNullε x → case(x, x′.no, · · · , x′.no, yes)}
∪{IsNulls x → no | s ∈ A+}

Here, we assume that yes and no do not occur in input trees, and
omit cases for yes and no in case expressions.

The above HMTT takes as input (the tree representation of)
a sequence ai1ai2 · · · ai� ∈ A+, and checks whether the strings
ui1ui2 · · ·ui� and vi1vi2 · · · vi� are the same, by comparing their
elements one by one. In Subu,v, x y, x and y are bound to suffixes
of ai1ai2 · · · ai� , and it is checked whether uui�+1−|x| · · ·ui� and
vvi�+1−|y| · · · vi� are the same. Thus, the HMTT outputs yes if the
sequence is a solution for the Post correspondence problem and no
otherwise. Let M1 and M2 be trivial automata:

M1 = (Σ, {q0, q1}, Δ1, q0)
Δ1 = {(q0, ai, q1), (q1, ai, q1) | ai ∈ A} ∪ {(q1, e, ε)}
M2 = (Σ, {q0}, Δ2, q0)
Δ2 = {(q0, no, ε)}

Then, |= (T ,M1,M2) if and only if the Post correspondence
problem {(u1, v1), . . . , (un, vn)} has no solution. Since Post cor-
respondence problem is undecidable, the HMTT verification prob-
lem is also undecidable. �

5. Type System for Model-Checking Recursion
Schemes with Finite Data Domains

This section gives a type system for recursion schemes with finite
data domains (which is parameterized by a trivial automaton M),
such that an RSFD G is well-typed in the type system if, and only
if, |= (G,M) holds. Thus, the RSFD model checking problem
is reduced to a type checking problem, which can be solved by
extending Kobayashi’s type inference algorithms [18, 20].

Let M be a trivial automaton (Σ, Q, Δ, q0), and D be a finite
set {d1, . . . , dk}. The set of types is given by:

τ ::= di | qj |
Vn

i=1 τi → τ

Intuitively, di ∈ D is a singleton type, describing the value di.
The type qj ∈ Q describes trees accepted from qj (i.e. elements of
L(M, qj)). The type

Vn
i=1 τn → τ describes functions that take

an element having types τ1, . . . , τn and return an element of type
τ .

A type judgment for terms (where a non-terminal is treated as
a variable) is of the form Γ �M t : τ , where Γ, called a type
environment, is a finite set of bindings of the form x : τ . Γ may
contain more than one bindings for each variable.

The typing rules are given by:

Γ, x : τ �M x : τ

Γ �M di : di

(q, a, q1 · · · qn) ∈ Δ

Γ �M a : q1 → · · · → qn → q

Γ �M t0 :
Vn

i=1 τi → τ
Γ �M t1 : τi (for each i = 1, . . . , n)

Γ �M t0t1 : τ

Γ �M t : di Γ �M ti : q
(for some i)

Γ �M case(t, t1, . . . , tk) : q

Γ, x : τ1, . . . , x : τn �M t : τ x not occur in Γ

Γ �M λx.t :
Vn

i=1 τi → τ

Let G be a recursion scheme with finite domains
(Σ,N , D,R, S). We write �M G : Γ if Γ � R(F) : τ
holds for every F : τ ∈ Γ. A recursion scheme G is well-typed,
written �M G, just if there exists Γ such that (i) �M G : Γ,
(ii)S : q0 ∈ Γ, and (iii) for each F : τ ∈ Γ, τ :: N (F) holds (i.e.
the sorts declared in N are respected). Here, the relation τ :: κ,
which means that τ is a type of sort κ, is defined by: (i) q :: o, (ii)
q :: d, and (iii)

Vk
i=1 τi → τ :: κ′ → κ if τ :: κ and τi :: κ′ for each

i ∈ {1, . . . , k}.
The following theorem is an extension of the result of

Kobayashi [20]. The proof is almost the same as that of the sound-
ness and completeness of the type system for recursion schemes
(without finite data domains) [20], hence is omitted.

THEOREM 5.1. Let M be a trivial automaton, and G be a recur-
sion scheme with finite domains, If [[G]] is well-defined, then �M G
if and only if |= (G,M).

COROLLARY 5.2. The RSFD model-checking problem is decid-
able.

6. Complexity of the Verification Algorithm
We briefly discuss the complexity of our HMTT verification algo-
rithm, which consists of two phases: transformation into a recur-
sion scheme (with finite data domains) and model checking of the
recursion scheme.

Let (T ,M1, . . . ,Mk,M) be an HMTT verification prob-
lem. We may assume that Mi = (Σ, Q0, Δ0, qi) for each i
(i.e. M1, . . . ,Mk differ only in their initial states). Let |T |
be the size of the rewriting rules of T . We also assume that
the rewriting rules of T are normalized, so that each body
of a rewriting rule contains at most one case-expression. Let
(T ,M1, . . . ,Mk,M)# be (G,M′). The size |G| of the rewrit-
ing rules of G is O(|Q0|AΣ+1|T |) where AΣ is the largest arity
of terminal symbols: note that only the sizes of case expressions
may increase, and for each body of a case expression, at most
|{(q, eq) | (q, a, eq) ∈ Δ}| (which are bounded by |Q|A+1) copies
are created.

As for the time complexity of model-checking G, we can ap-
ply the same argument as [20, 22] to obtain an upper-bound
O(|G|expn((A(|Q0| + |Q′|))1+ε)) for arbitrary ε > 0 for n ≥ 2,
where n is the order of the recursion scheme G and |Q′| is the num-
ber of states of M′, and A is the largest arity of symbols in G. Here,
expn(x) is defined by: exp0(x) = x and expn+1(x) = 2expn(x).

Thus, the time complexity of our HMTT verification algorithm
is O(|T |expn((A(|Q0| + |Q|))1+ε)) for n ≥ 2, where |Q| is
the number of states of M. If the largest arity and the number of

automaton states are fixed, it is linear in the size of HMTT. (Note,
however, that the constant factor is huge.)

Theorem 4.3 implies that if the HMTT is linear and the automa-
ton M is deterministic, then the HMTT verification problem is de-
cidable. For this decidable fragment, the verification problem itself
is (n− 1)-EXPTIME complete for n ≥ 2 (in the combined size of
a recursion scheme and an automaton), as described below. First,
from a deterministic trivial automaton M, one can construct a dis-
junctive alternating parity tree automaton (disjunctive APT) [21]
that accepts the complement of L(M) and the size of the disjunc-
tive APT is linear in that of M. Thus, the model checking problem
for the class of deterministic trivial automaton can be reduced to
that for the class of disjunctive APT [21], which gives the upper-
bound of (n − 1)-EXPTIME. Secondly, it follows from the result
of [21] (more precisely, from the (n − 1)-EXPTIME hardness of
the reachability problem) that the problem of model-checking re-
cursion schemes for the class of deterministic trivial automata is
(n − 1)-EXPTIME hard. For n = 1, by a similar argument, if we
assume that the largest arity of terminals and non-terminals is fixed,
the HMTT verification problem is polynomial-time.3

7. Applications
This section discusses applications of our HMTT verification
framework.

7.1 Resource Usage Verification

As mentioned in Section 1, the goal of resource usage verifica-
tion [14] is to check whether a given program accesses each re-
source in a valid manner. In our previous work [20], we considered
resource usage verification of a closed program. Our HMTT verifi-
cation framework allows us to perform resource usage verification
of an open program, which is a function that takes some parameters
as input.

For example, consider the following program:

let rec accfile cmds = match cmds with
[] -> close(fp)

| r::cmds’ -> read(fp); accfile cmds’ fp
| w::cmds’ -> write(fp); accfile cmds’ fp

It takes a list of “commands” consisting of r and w, and accesses
the resource x according to the list of commands, and then closes
it.

We can covert the above program into the following HMTT T
(only the rewriting rules are shown):

AccFile cmds = case cmds of e => close
| r(cmds’) => read(AccFile cmds’)
| w(cmds’) => write(AccFile cmds’).

For the sake of readability, throughout this section, we use ordinary
pattern matching constructs, which can be easily translated into
case expressions of HMTT. We also write = instead of ->. To
verify that if the list of commands only consists of r, then the file
pointer fp is only read and then closed, it suffices to consider the
HMTT verification problem (T ,M1,M), where M1 accepts the
language consisting of linear trees labeled by elements of r∗(e) +
rω and M accepts the language consisting of linear trees labeled
by elements of read∗(close) + readω .

3 This result is similar to, but should not be confused with the result of
[27], which shows that the exact type checking of linear MTT is polynomial
time under a similar assumption about arities and the assumption that the
specification is given by a deterministic bottom-up tree automaton. The
class of languages of finite trees accepted by deterministic trivial automata
is strictly less expressive than the class of those accepted by deterministic
bottom-up tree automata. Thus, our result is weaker in this sense. On the
other hand, we allow multiple input trees as arguments of non-terminals.

7.2 Verification of XML-Processing Programs

Another application domain of our HMTT verification algorithm is
exact type checking of XML-processing programs [25, 27, 28, 34].

We assume below that XML documents (which are unranked
trees) are represented as binary trees in the standard manner: the
left and right children of a node in the binary tree representation
stand for the leftmost child and the leftmost sibling respectively.

An obvious advantage of our approach over previous work
based on macro/high-level tree transducers is that we can handle
programs that take multiple XML documents. Let Σ = {addr �→
2, doc �→ 1, e, pc �→ 0} and M = (Σ, {q0, q1, q2}, Δ, q0) where

Δ = {(q0, doc, q1), (q1, addr, q2q1), (q2, pc, ε), (q1, e, ε)}.
M accepts (the binary tree representation of) trees of the form
doc(addr(pc)∗), i.e. documents containing a sequence of address
data addr(pc) (the terminal e represents the end of a sequence).
Consider the following HMTT:

MergeAddr x y = case x of
doc x1 => doc(MergeAddr x1 y)

| addr x1 x2 => addr (M x1) (MergeAddr x2 y)
| e => M y | pc => pc.

M x = case x of doc x1 => M x1
| addr x1 x2 => addr (M x1) (M x2)
| e => e | pc => pc.

It takes two documents of the form doc(addr(pc)∗) as input, and
merges them into one document. One can verify that, given two
valid documents (of type doc(addr(pc)∗)), T produces another
valid document, by checking that |= (T ,M,M,M) holds.

For another example, consider the following HMTT T , which
removes all the b nodes occurring as descendants of a nodes.

RemoveB x = F x G.
F x g = case x of doc y => doc (F y g)

| a x y => a (g x) (F y g)
| b x y => b (F x g) (F y g)
| pc => pc | e => e.

G x = case x of doc y => doc (G y)
| b x y => (G y)
| a x y => a (G x) (G y)
| pc => pc | e => e.

The non-terminal F represents a higher-order function, which takes
a tree x and a function g, and applies g to the child of each a node.
Let M1 be an automaton that accepts binary tree representation of
trees of the form doc(t∗) (where doc does not occur in t), and M
be an automaton that accepts only trees in which b does not occur
below a (in the corresponding unranked representation). Then, it
can be verified that |= (T ,M1,M) holds.

7.3 String Analysis

Our HMTT verification algorithm is also applicable to string anal-
ysis, whose goal is to statically check that, given valid strings as
input, a program generates a valid string. String analyses have
been extensively studied in the context of Web applications, to
guarantee the well-formedness of output HTMLs [29] or detect
security vulnerabilities such as SQL-injection or cross-site script-
ing [12, 15, 38]. They are also applicable to other application do-
mains such as static resolution of dynamically specified resource
names [24, 33].

A (regular) string analysis problem can be encoded to an HMTT
verification problem by representing strings as linear trees. For
example, the function replace that takes three strings sa, sb and
x and returns the string obtained by replacing each occurrence of
a and b in x with sa and sb respectively, can be represented as the
following HMTT:

Replace sa sb x = Conv sa (C1 sb x).
C1 sb x u = Conv sb (Repl x u).
Repl x u v = case x of

a(y) => u(Repl y u v)
| b(y) => v(Repl y u v)
| e => e.

Conv x k = case x of a(y) => Conv y (C2 k a)
| b(y) => Conv y (C2 k b)
| e => k I.

C2 k y z = k(Concat y z).
Concat x y z = x(y z).
I x = x.

Here, Conv and Concat are generic functions to express a string-
processing program as an HMTT. Conv converts an input string to
a function of type o → o, which is used as an internal representa-
tion of strings. For example, a string ab (represented as a(b e)) is
converted to a function λx.a(bx). By using the internal representa-
tion, string concatenation is expressed as Concat as defined above.
Let A and B be regular word languages. Then one can verify that
T : A → B → a∗b∗e → A∗B∗e (i.e. given elements of A and B,
and an element of of a∗b∗e, T produces an element of A∗B∗e).

The function Replace sa sb is equivalent to the word homo-
morphism h(a) = sa, h(b) = sb.

We can also encode an arbitrary non-deterministic finite state
transducer (FST) by linear HMTT. Homomorphisms and FSTs sub-
sume a large class of practical sanitization; For example, let Σ =
{a �→ 1, b �→ 1,
 �→ 1, e �→ 0} and suppose
 stands for a “dan-
gerous” meta-character (such as tag-markers < and > of XHTML).
Then, replace s� x, replacement of
 by s�, represents the saniti-
zation of
. One can verify the image (replace a b s�)(A∗) does
not contain an occurrence of
 as long as s� does not. Sanitization
of sequences (such as the <script> tag of XHTML) can also be
verified by encoding FSTs.

Interestingly, we can allow arbitrary use of string homomor-
phisms in a string-processing program (even inside recursion), by
choosing an appropriate internal representation of strings. Con-
sider strings over {a, b}∗. Then, we can use a function of type
str = (o → o) → (o → o) → o → o as the internal rep-
resentation of a string. Intuitively, the first two parameters of type
o → o represent the homomorphism images of a and b respec-
tively, while the last parameter is the suffix of a string. (Thus, it is
similar to the Church encoding of natural numbers.)

We can define primitive functions on strings as follows.

A xa xb z = xa z.
B xa xb z = xb z.
Empty xa xb z = z.
Concat s1 s2 xa xb z = s1 xa xb (s2 xa xb z).
I2Str x = case x of e => Empty

| a(y) => Concat A (I2Str y)
| b(y) => Concat B (I2Str y).

Str2O s = s a b e.
Hom sa sb s xa xb z= s (sa xa xb) (sb xa xb) z.

A, B, and Empty are internal representations of a, b, and an empty
string respectively. The non-terminal Concat represents the con-
catenation of (internal representations of) two strings. I2Str and
Str2O convert an input string to the internal representation, and the
internal representation to an output string, respectively. The non-
terminal Hom represents a generic homomorphic function, such that
Hom sa sb is a string homomorphism that replaces a and b with sa

and sb respectively. Consider the following HMTT:

HomRep n s = F n (Hom (Concat B B) A) (I2Str s).
F n h s = case n of zero => (Str2O s)

| succ(m) => F m h (h s).

It takes a natural number n and a string s as an argument, and ap-
plies the homomorphism {a �→ bb, b �→ a} n times. We can verify,
for example, that if n is even and s is an element of a∗(b∗(e)), then
so is the output.

7.4 Verification of Programs Manipulating Other Algebraic
Data Structures

Our verification framework is also applicable to functional pro-
grams manipulating other algebraic data structures.

The following HMTT takes two natural numbers as input and
returns the multiplication.

Mult x y = case x of zero => zero
| succ(z) => Add y (Mult z y).

Add x y = case x of zero => y
| succ(z) => succ(Add z y).

By using our algorithm, we can verify that, given an even number
and an odd number, the HMTT returns an even number.

The following HMTT takes nested lists (of elements a and b) as
inputs, and returns a flat list.

Flatten x = F x nil.
F x z = case x of nil => z

| cons x1 x2 => F x1 (F x2 z)
| a => cons a z
| b => cons b z.

We can verify that, given an arbitrary nested list, the HMTT returns
a flat list.

8. Preliminary Experiments
To evaluate the effectiveness of our verification framework, we
have extended the implementation of TRECS [18, 19], a model
checker for recursion schemes, to handle recursion schemes with
finite data domains.

The transformation from HMTT to recursion schemes with fi-
nite data domains has not been implemented yet, so that we have
manually translated HMTTs in the experiments below. For the ex-
periments on XML processing programs, automata have been au-
tomatically generated from DTD-like definitions.

Table 1 shows the result of preliminary experiments. The exper-
iments were conducted on a machine with Intel(R) Xeon(R) CPU
3GHz and 2GB memory. The columns “O”, “R”, “S” show the
order, the number of rules, and the size of HMTTs respectively.
Here, the order of an HMTT is the largest order of the sorts of non-
terminals. The order of a sort is defined by:

order (i) = order(o) = 0
order (κ1 → κ2) = max(order (κ1) + 1, order(κ2))

The size of an HMTT is measured by the number of symbols oc-
curring in the righthand side of the rewriting rules. The column “L”
shows whether the HMTT is linear (L) or not (NL). The column
“Q” shows the sum of the numbers of the states of automata for
the input specification (M1,...,k) and the output specification (M).
All the automata used for the experiments are deterministic. The
column “Y/N” shows whether the HMTT was verified (Y) or re-
jected (N) (note that because of the incompleteness for non-linear
HMTTs, a valid HMTT verification problem may be rejected). The
column “T” shows the running time of TRECS (thus, excluding the
time for transformation from HMTT to RSFD, which is currently
manual), measured in milli-seconds.

The programs in the first group (from Rev to Flatten) have
been taken from the examples already shown in the paper; the name
of each program indicates the start symbol of the corresponding
example in the paper. All of them have been correctly verified in

a few milliseconds, except that it took 29 milliseconds for HomRep
(the last example in Section 7.3).

REMARK 8.1. Note that Mult is non-linear, but it is verified cor-
rectly. If the property of Mult were “Given an even number x and
a number y, Mult x y returns an even number”, then our verifier
would report a false alarm. To avoid the false alarm, we need to
either swap the arguments x and y, or transform Mult into a linear
HMTT. �

The programs in the second group have been taken from
Tozawa’s experiments [34] (which are the only experimental re-
sults on exact type checking of high-level tree transducers in the
literature, to our knowledge) and rewritten in HMTTs. The pro-
gram app fo takes a document of the following DTD:

type Input = doc[Preface, (Div|P|Note)*]
type Preface = preface[Header, P*]
type Header = header[]
type P = p[]
type Div = div[(Div|P|Note)*]
type Note = note[P*]

Then, it inserts an appendix node to the end of the document,
and moves preface and note nodes in the original document to
the appendix. The program appx fo works almost the same as
appendix except that it transforms the document into an XHTML
document. The program gapid takes a document of the DTD of
appendix extended with a nodes, as well as another tree as ar-
guments. It checks whether the children of each node are empty,
and if so, replaces the empty children with a hole. The program
then inserts a given tree to the holes. The programs xml rep1
and xml rep2 are the same, and differ only in their output spec-
ifications. They take a document of the same type as gapid and
a tree with a hole, and then replace each div node of the docu-
ment with a tree obtained from the input tree with a hole by insert-
ing the child of div node to the hole. The output specification of
xml rep2 is not satisfied, so the model checker (correctly) rejected
it with a counterexample. All the programs in the second group
have been correctly verified (or rejected) in less than 100 millisec-
onds. Tozawa [34] reported that it took from 600 milliseconds to
2.2 seconds for his system to check programs of the same function-
ality.4

The programs in the third group are those manipulating
XHTML documents. We have used two subsets of XHTML speci-
fication (indicated by XhtmlS and XhtmlM in the table), and the full
XHTML specification (indicated by XhtmlF in the table). The sub-
set XhtmlS consists of the tags <div>, <p>, <a>, ,

and <h1> to <h6>, which are most commonly used. XhtmlM addi-
tionally has the tags <table> ,,,<dl>,<dt>, <dd>,
and <form>. We have tested five operations: * id just outputs a
copy of a given input document, * div removes all the nodes la-
beled by div (hence the output is an invalid document), and * m
removes all the meta nodes in the header. The program * div’ re-
moves only the tags div, instead of removing all the nodes under
div, and * a removes the tags a.

For the subsets of XHTML (XhtmlS and XhtmlM), all the ex-
amples have been verified or rejected correctly in less than a sec-
ond. For the full XHTML, it took more than 10 seconds even for
the identity function. This indicates that there is a problem in the
scalability of our verification technique to large input/output speci-
fications. For MTTs, Frisch and Hosoya [10] report that they could
verify MTTs on the full XHTML in about a second.

4 This is according to Tozawa’s slides presented at the conference;the pa-
per [34] does not report experimental results.

Programs O R S L Q Y/N T
Rev 1 2 14 L 4 Y 1
Merge 1 5 47 L 3 Y 1
AccFile 1 2 9 L 4 Y 1
MergeAddr 1 3 26 L 6 Y 1
RemoveB 2 4 36 L 7 Y 1
Replace 2 8 45 L 4 Y 1
HomRep 4 10 53 L 4 Y 29
Mult 1 3 18 NL 4 Y 1
Flatten 1 3 17 L 4 Y 1
app fo 1 6 171 NL 21 Y 5
appx fo 1 5 174 NL 19 Y 6
gapid 3 10 94 L 30 Y 87
xml rep1 3 8 84 L 23 Y 3
xml rep2 3 8 84 L 23 N 1
XhtmlS id 1 1 113 L 24 Y 11
XhtmlS div 1 1 110 L 24 N 2
XhtmlS m 1 1 110 L 24 Y 18
XhtmlS div’ 1 2 161 L 24 N 2
XhtmlS a 1 2 161 L 24 Y 17
XhtmlM id 1 1 168 L 64 Y 395
XhtmlM div 1 1 165 L 64 N 4
XhtmlM m 1 1 165 L 64 Y 138
XhtmlM div’ 1 2 232 L 64 N 5
XhtmlM a 1 2 232 L 64 Y 291
XhtmlF id 1 1 398 L 100 Y 13,889

Table 1. Experimental Results

9. Related Work
From the viewpoint of program verification, there are at least three
threads of related work: model checking of higher-order recursion
schemes, exact type-checking for macro/high-level tree transduc-
ers, and string analysis.

Model checking of recursion schemes have been extensively
studied [1, 2, 11, 16, 17, 32]. Higher-order grammars (where non-
terminals can generate “functions” rather than words or trees) re-
lated to higher-order recursion schemes have been introduced in
early 70’s [35, 37], and actively studied in 80’s. [4]. Knapik et
al. [17] studied the model checking problem for recursion schemes
in the present form, and showed that the modal mu-calculus model
checking of safe recursion schemes is decidable. Ong [32] extended
the decidability result to arbitrary recursion schemes (without the
safety condition). Kobayashi [20] showed that the resource usage
verification of functional programs [14] (which subsumes other
standard verification problems such as reachability and control flow
analysis) can be reduced to model-checking problems for recur-
sion schemes. Kobayashi [18] then constructed a model-checker
for recursion schemes, demonstrating that the program verification
method based on recursion schemes may be feasible in practice,
despite the extremely high worst-case time complexity. The present
work is built on these results, and extend them to deal with higher-
order, multi-parameter tree transducers (while recursion schemes
are just tree generators, instead of tree transformers). The exten-
sion significantly widens application domains of the verification
framework, as discussed in the present paper.

In the context of exact type-checking of XML processing pro-
grams, a lot of variations of macro/high-level tree transducers have
been studied [25, 27, 28, 34]. A nice feature of those tree trans-
ducers is that the class of regular tree languages is closed un-
der the inverse of transducers, and that the inverse image is in-
deed computable. Thus, given a transducer verification problem

T (L1)
?

⊆ L2 (where L1 and L2 are regular languages), one can

reduce it to the inclusion problem L1

?

⊆ T −1(L2) between the
regular languages T −1(L2) and L1. This inverse inference ap-
proach is applicable to composition of transducers, and also to the
higher-order case (called high-level transducers [8, 34]). On the
other hand, our approach can be considered a forward inference ap-
proach. Given an input language and an HMTT, our transformation
essentially approximates (or precisely models, in the case of lin-
ear HMTTs) the output language by using a recursion scheme. We
then check that the language represented by the recursion scheme
conforms to the output specification.5 Maneth et al. [27] take a for-
ward inference approach for exact type checking of linear macro
tree transducers, and uses a context-free tree grammar to approxi-
mate the output language. Our approach may be considered a gen-
eralization of that approach to higher-order, multi-parameter trans-
ducers. Advantages of our approach using HMTTs are: (i) HMTTs
can take multiple input trees, and there is no such restriction that
the first argument must be an input tree, and (ii) our verification
method seems more efficient than the previous approach based on
the inverse inference for higher-order transducers [34]. For (ii), the
inverse inference approach suffers from extremely high time com-
plexity for the higher-order transducers [34] or compositions of
multiple transducers. On the other hand, limitations of our verifi-
cation method are: (i) we have to impose the linearity restriction
to ensure completeness, and (ii) the method is not directly appli-
cable to composition of HMTTs (unless specification of interme-
diate trees are given). As discussed in Remark 2.2, however, linear
HMTTs are already at least as expressive as compositions of (deter-
ministic) macro/high-level tree transducers studied in the literature.
Furthermore, for (ii), one can sometimes use fusion (or deforesta-
tion) transformation [36] to compose multiple HMTTs into a single
HMTT, and then apply our verification method.

As already mentioned, our method can also be applied to
string analysis, by representing strings as linear trees. Previous ap-
proaches to string analysis [3, 29] extract a context-free grammar
from a flow graph or SSA form of a program, and then matches it
with an output specification. In such approaches, information about
the output string is approximated at join points of the flow graph,
especially at function calls. Our approach instead models a pro-
gram as an HMTT, which naturally models higher-order functions
and is more expressive than context free grammars (indeed, order-1
recursion schemes are already as expressive as context-free gram-
mars). Thus, our verification technique would be more precise for
analyzing higher-order programs. Another interesting advantage of
our approach is that string homomorphisms can be expressed and
freely used inside recursion (recall Section 7.3). On the other hand,
the previous approaches [3, 29] return very conservative approxi-
mations when string homomorphisms are used in a loop.

Refinement types [5, 9] have been used for verification of pro-
grams manipulating algebraic data structures (the application do-
main discussed in Section 7.4). To our knowledge, most of the pre-
vious studies on refinement types rely on explicit type annotations
(except perhaps the first work on refinement types [9], which uses
a naive fixedpoint algorithm for type inference and does not seem
to scale for higher-order functions). A limitation of our approach
is that data structures must be strictly classified into sorts i and o.

5 Interestingly, many of the previous papers on inverse type inference
(e.g. [26]) argue that forward type inference does not work because the
image of the transformation is not a regular language. For the purpose of
checking types, however, it is actually unnecessary to compute the image L
as a regular language; it is sufficient that L ⊆ R is decidable for any regular
language R. Combined with the tupling transformation discussed in [23],
we can exactly express the image of a high-level tree transducer as a recur-
sion scheme, and since the model checking problem for recursion schemes
is decidable, the forward inference approach actually works for high-level
transducers (which subsume most of the other transducers in the literature)!

One way to overcome the limitation is to use predicate abstraction
for intermediate data structures, as suggested in [20]. Another way
would be to introduce an explicit coercion operation from trees of
sort o to sort i, and force a programmer to annotate each coer-
cion with a refinement type specification. Then, refinement type
checking of such a program can be reduced to multiple HMTT ver-
ification problems. For example, let us consider a type checking
problem of the following insertion sort:

let rec insert x y = ...
let rec isort x =
case x of

nil => nil
| cons x1 x2 => insert x1 (coercea

∗b∗c∗
o→i (isort x2))

Here, suppose that we want to verify that isort takes a sequence
consisting of a, b, c and returns a sequence of the form a∗b∗c∗.
The coercion converts the result of isort x2 to an input tree.
Thanks to the annotation, we should be able to split the above
verification problem into the verification problems of the following
two HMTTs (Isort1 and Isort2):

Isort1 x z = case x of nil => nil
| cons x1 x2 => Insert x1 z.

Isort2 x z = case x of cons x1 x2 => Isort1 x2 z.

Isort1 is obtained from the original isort function by replacing the
part (coercea

∗b∗c∗
o→i (isortx2)) with z. Isort2 corresponds to the

part isort x2. Then, it suffices to check that Isort1 and Isort2
both conform to the specification (a + b + c)∗ → a∗b∗c∗ →
a∗b∗c∗. The formalization of this idea is left for future work.

Intersection type systems equivalent to model-checking have
been studied by Naik and Palsberg [30, 31]. They considered an
intersection type system for an imperative language and did not
treat higher-order programs.

10. Conclusion
We have introduced a new class of tree transducers called higher-
order multi-parameter tree transducers, and proposed a verifica-
tion algorithm for them. Compared with our previous verification
framework based on recursion schemes [20], our new approach sig-
nificantly increases application domains. The result of preliminary
experiments is promising, although there is still a problem in scala-
bility (especially with respect to the size of specifications). It is left
for future work to investigate whether it is a fundamental limitation
of our verification framework, or it is just a limitation of the current
implementation of the underlying model checker TRECS.

References
[1] K. Aehlig. A finite semantics of simply-typed lambda terms for infinite

runs of automata. Logical Methods in Computer Science, 3(3), 2007.

[2] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. The monadic second
order theory of trees given by arbitrary level-two recursion schemes is
decidable. In TLCA 2005, volume 3461 of Lecture Notes in Computer
Science, pages 39–54. Springer-Verlag, 2005.

[3] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analy-
sis of string expressions. In Static Analysis, 10th International Sympo-
sium, SAS 2003, volume 2694 of Lecture Notes in Computer Science,
pages 1–18. Springer-Verlag, 2003.

[4] W. Dam. The io- and oi-hierarchies. Theoretical Computer Science,
20:95–207, 1982.

[5] R. Davies. Practical refinement-type checking. PhD thesis, Pittsburgh,
PA, USA, 2005.

[6] J. Engelfriet and S. Maneth. A comparison of pebble tree transducers
with macro tree transducers. Acta Inf., 39(9):613–698, 2003.

[7] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst.
Sci., 31(1):71–146, 1985.

[8] J. Engelfriet and H. Vogler. High level tree transducers and iterated
pushdown tree transducers. Acta Inf., 26(1/2):131–192, 1988.

[9] T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings
of ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 268–277. ACM Press, 1991.

[10] A. Frisch and H. Hosoya. Towards practical typechecking for macro
tree transducers. In Database Programming Languages, 11th Inter-
national Symposium (DBPL 2007), volume 4797 of Lecture Notes in
Computer Science, pages 246–260. Springer-Verlag, 2007.

[11] M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In Proceedings of 23rd
Annual IEEE Symposium on Logic in Computer Science, pages 452–
461. IEEE Computer Society, 2008.

[12] W. G. J. Halfond and A. Orso. Amnesia: analysis and monitoring
for neutralizing sql-injection attacks. In ASE ’05: Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering, pages 174–183, New York, NY, USA, 2005. ACM.

[13] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation
eliminates multiple data traversals. In Proceedings of International
Conference on Functional Programming, pages 164–175, 1997.

[14] A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Trans-
actions on Programming Languages and Systems, 27(2):264–313,
2005.

[15] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for static
detection of web application vulnerabilities. In PLAS ’06: Proceedings
of the 2006 workshop on Programming languages and analysis for
security, pages 27–36, New York, NY, USA, 2006. ACM.

[16] T. Knapik, D. Niwinski, and P. Urzyczyn. Deciding monadic theories
of hyperalgebraic trees. In TLCA 2001, volume 2044 of Lecture Notes
in Computer Science, pages 253–267. Springer-Verlag, 2001.

[17] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown
trees are easy. In FoSSaCS 2002, volume 2303 of Lecture Notes in
Computer Science, pages 205–222. Springer-Verlag, 2002.

[18] N. Kobayashi. Model-checking higher-order functions. In Proceed-
ings of PPDP 2009. ACM Press, 2009.

[19] N. Kobayashi. TRECS. http://www.kb.ecei.tohoku.ac.jp/
~koba/trecs/, 2009.

[20] N. Kobayashi. Types and higher-order recursion schemes for ver-
ification of higher-order programs. In Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages,
pages 416–428, 2009.

[21] N. Kobayashi and C.-H. L. Ong. Complexity of model checking recur-
sion schemes for fragments of the modal mu-calculus. In Proceedings
of ICALP 2009, volume 5556 of Lecture Notes in Computer Science.
Springer-Verlag, 2009.

[22] N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal
mu-calculus model checking of higher-order recursion schemes. In
Proceedings of LICS 2009, pages 179–188. IEEE Computer Society
Press, 2009.

[23] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-
parameter tree transducers and recursion schemes for program veri-
fication. A longer version, available from http://www.kb.ecei.
tohoku.ac.jp/~koba/papers/hmtt.pdf, 2009.

[24] M. Koganeyama, N. Tabuchi, and T. Tateishi. Reducing unneces-
sary conservativeness in access rights analysis with string analysis. In
APSEC ’07: Proceedings of the 14th Asia-Pacific Software Engineer-
ing Conference, pages 438–445, Washington, DC, USA, 2007. IEEE
Computer Society.

[25] S. Maneth, A. Berlea, T. Perst, and H. Seidl. Xml type checking with
macro tree transducers. In Proceedings of the Twenty-fourth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS 2005), pages 283–294, 2005.

[26] S. Maneth and K. Nakano. Xml type checking for macro tree trans-
ducers with holes. In Programming Language Technologies for XML
(PLAN-X), 2008.

[27] S. Maneth, T. Perst, and H. Seidl. Exact xml type checking in polyno-
mial time. In ICDT 2007, volume 4353 of Lecture Notes in Computer
Science, pages 254–268. Springer-Verlag, 2007.

[28] T. Milo, D. Suciu, and V. Vianu. Typechecking for xml transformers.
J. Comput. Syst. Sci., 66(1):66–97, 2003.

[29] Y. Minamide. Static approximation of dynamically generated web
pages. In Proceedings of the 14th international conference on World
Wide Web (WWW 2005), pages 432–441. ACM Press, 2005.

[30] M. Naik. A type system equivalent to a model checker. Master Thesis,
Purdue University.

[31] M. Naik and J. Palsberg. A type system equivalent to a model checker.
In ESOP 2005, volume 3444 of Lecture Notes in Computer Science,
pages 374–388. Springer-Verlag, 2005.

[32] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. In LICS 2006, pages 81–90. IEEE Computer
Society Press, 2006.

[33] J. Sawin and A. Rountev. Improving static resolution of dynamic class
loading in java using dynamically gathered environment information.
Automated Software Engg., 16(2):357–381, 2009.

[34] A. Tozawa. Xml type checking using high-level tree transducer. In
Functional and Logic Programming, 8th International Symposium
(FLOPS 2006), volume 3945 of Lecture Notes in Computer Science,
pages 81–96. Springer-Verlag, 2006.

[35] R. Turner. An infinite hierarchy of term languages - an approach to
mathematical complexity. In Proceedings of ICALP, pages 593–608,
1972.

[36] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231–248, 1990.

[37] M. Wand. An algebraic formulation of the chomsky hierarchy. In
Category Theory Applied to Computation and Control, volume 25 of
Lecture Notes in Computer Science, pages 209–213. Springer-Verlag,
1974.

[38] G. Wassermann and Z. Su. Static detection of cross-site scripting
vulnerabilities. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 171–180, New York, NY,
USA, 2008. ACM.

Acknowledgments

We would like thank Akihiko Tozawa and Yasuhiko Minamde for
discussions and information about their work. We would also like
to thank Luke Ong and anonymous reviewers for useful comments.

A. High-Level Tree Transducers and Linear
HMTTs

This section shows that high-level tree transducers [8] (which sub-
sume macro tree transducers) can be transformed into a linear
HMTT. In essence, a (deterministic) high-level tree transducer is
a higher-order function on trees (of sort o) defined by induction on
input trees (of sort i).

Let us fix the input alphabet ΣI = {a1 �→ k1, . . . , an �→ kn}.
A high-level tree transducer (N , ΣI , ΣO,R, F1) is a restriction of
HMTT, where the rewriting rules are only of the form:

F1 x ey1 → case(x, ex1.t1,1, . . . , exn.t1,n)
· · ·
Fm x eym → case(x, ex1.tm,1, . . . , exn.tm,n)

Here, x has sort i and it may not occur in
t1,1, . . . , t1,n, . . . , tm,1, . . . , tm,n. The sort of each non-terminal
must be of the form i → κ1 → · · · → κl → o, where i does
not occur in κ1, . . . , κl. F1 has sort i → o (so, ey1 is the empty
sequence). Furthermore, input trees are restricted to finite ones. In
the original definition of higher-level tree transducers, there is a
further restriction that κ1 → · · · → κl → o must be “derived
types” [8]; We do not impose that restriction.

By using the tupling transformation [13], we can transform the
above HTT into the following linear HMTT:

S x → G x Proj
Proj y1 · · · ym → y1

G x k → case(x, ex1.H1 ex1 k, . . . , exn.Hn exn k)
Hi exi k → G xi,1 (λy1,1, . . . , y1,m.

G xi,2 (λy2,1, . . . , y2,m. · · ·
G xi,ki (λyki,1, . . . , yki,m.
k [y1,1/F1 x1,1, . . . , yki,m/Fm xki,m]t1,i

· · · [y1,1/F1 x1,1, . . . , yki,m/Fm xki,m]tm,i) · · ·))
(i = 1, . . . , n)

Here, we have λ-abstractions for clarity; they can be removed by
lambda-lifting. The term [y1,1/F1 x1,1, . . . , yki,m/Fm xki,m]t1,i

denotes the term obtained by replacing Fj x1,j in t1,i with y1,j .
(Note that by the restriction on the sorts of Fj , x1,j may occur
only as the first argument of Fj .) In the above rules, G x k com-
putes a sequence of values of F1 x, . . . , Fm x and applies k to
them (so, G x k is intuitively the same as k (F1 x) · · · (Fm x)).
To compute G x k, it first performs a case analysis on x. If
x is ai eti, Hi is called. Hi eti k first computes the values of
F1, . . . , Fm for t1,1, . . . , ti,ki . It then computes F1 x, . . . , Fm x
(i.e., t1,i, . . . , tm,i), and passes it to k.

The HMTT obtained by the above transformation is linear, and
outputs the same tree as the original HTT, given a finite tree as in-
put. (That is not always the case if an input tree is infinite, since the
evaluation order has been changed by the tupling transformation.)

