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Abstract. This paper presents a novel program verification method
based on Mu-Arithmetic, a first-order logic with integer arithmetic and
predicate-level least/greatest fixpoints. We first show that linear-time
temporal property verification of first-order recursive programs can be
reduced to the validity checking of a Mu-Arithmetic formula. We also
propose a method for checking the validity of Mu-Arithmetic formu-
las. The method generalizes a reduction from termination verification
to safety property verification and reduces validity of a Mu-Arithmetic
formula to satisfiability of CHC, which can then be solved by using off-
the-shelf CHC solvers. We have implemented an automated prover for
Mu-Arithmetic based on the proposed method. By combining the auto-
mated prover with a known reduction and the reduction from first-order
recursive programs above, we obtain: (i) for while-programs, an auto-
mated verification method for arbitrary properties expressible in the
modal µ-calculus, and (ii) for first-order recursive programs, an auto-
mated verification method for arbitrary linear-time properties express-
ible using Büchi automata. We have applied our Mu-Arithmetic prover
to formulas obtained from various verification problems and obtained
promising experimental results.

1 Introduction

Several researchers have recently advocated the use of fixpoint logics in program
verification. The idea at least goes back to the early work of Blass [10], who
showed that the weakest preconditions of while-loops can be expressed by using
a fixpoint logic. Bjorner et al. [5, 8, 9, 22] advocated a reduction from program
verification problems to the satisfiability of Constrained Horn Clauses (CHC),
which is essentially the validity checking for a restricted fragment of first-order
fixpoint logic. Burn et al. [12] have recently extended the approach to a higher-
order extension of Constrained Horn Clauses. Kobayashi et al. [26,40] have shown
that temporal verification problems for higher-order functional programs can be
reduced to validity checking problems in a higher-order fixpoint logic. Nanjo et
al. [32] also proposed an approach to temporal verification based on a fixpoint
logic. One of the main advantages common to those approaches is that a fixpoint
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logic prover can be used as a common, language-independent backend tool for
a variety of verification problems (not only safety properties but also arbitrary
regular temporal properties, including liveness). Fixpoint logic provers have not,
however, been available yet with the full generality.

Based on the observation above, in the present paper, we propose a method
for automatically checking the validity of first-order fixpoint logic formulas. The
first-order fixpoint logic (with integer arithmetic) we consider has been studied
before albeit in different contexts and with different syntax [11, 30]. Following
Bradfield [11], we call the logic Mu-Arithmetic. For while-programs (with un-
bounded integers), the formulas generated by the aforementioned translations
of Kobayashi et al. [26,40] are actually Mu-Arithmetic formulas. The core logic
used by Nanjo et al. [32] is also Mu-Arithmetic. Thus, by combining those pre-
vious studies with our procedures for proving Mu-Arithmetic formulas, we can
obtain an automated tool for temporal program verification.

Our method, called Mu2CHC, reduces the validity of a Mu-Arithmetic for-
mula to the satisfiability of CHC (in a sound but incomplete manner). The re-
duction has been inspired by reductions from termination verification to safety
property verification [21, 34]. More precisely, we generalize the termination ver-
ification method of Fedyukovich et al. [21] to underapproximate a least fixpoint
formula by a greatest fixpoint formula. Given a formula ϕ consisting of both
least and greatest fixpoints, we convert it to a stronger formula ϕ′ (in the sense
ϕ′ ⇒ ϕ) that consists of only greatest fixpoint formulas. We then transform it
to a set C of CHCs, so that C is satisfiable if and only if ϕ′ is valid. This provides
a sound method for proving the validity of the original Mu-Arithmetic formula.
The main advantages of this approach are: (i) the reduction is fairly simple and
easy to implement, and (ii) we can use off-the-shelf CHC solvers [13, 27, 37],
avoiding replicated work for, e.g., invariant inference.

We have implemented the proposed approach, and confirmed its effective-
ness. The benchmark problems used for experiments contain those beyond the
capabilities of the existing related tools (such as CHC solvers and program ver-
ification tools).

Another main contribution of the present paper is a sound and complete re-
duction from linear-time properties (expressible using Büchi automata) of first-
order recursive programs to the validity of Mu-Arithmetic formulas. This can be
considered a generalization of reductions from safety properties of first-order re-
cursive programs to CHC satisfiability (see [6], Section 3.2). Kobayashi et al. [26]
have shown a reduction from linear-time properties of higher-order programs to
the validity of higher-order fixpoint logic formulas, but for first-order recursive
programs, their translation yields a formula of a second-order fixpoint logic, not
a first-order one. We also show a reduction from the modal µ-calculus model
checking of while-programs to the validity of Mu-Arithmetic formulas. Such a
reduction can in principle be obtained from the general reduction of Watanabe
et al. [40], but our reduction is more direct.

The rest of the paper is organized as follows. Section 2 defines Mu-Arithmetic,
the first-order fixpoint logic with integer arithmetic. Section 3 discusses appli-
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cations of the fixpoint logic to program verification; in particular, we show that
linear-time properties of first-order recursive programs can be reduced to the
validity of Mu-Arithmetic formulas. We propose our method Mu2CHC in Sec-
tion 4. Section 5 reports on the implementation and experimental evaluation of
our methods. We discuss related work in Section 6 and conclude the paper in
Section 7.

2 First-Order Fixpoint Logic with Integer Arithmetic

This section introduces the first-order fixpoint logic with integer arithmetic.
Following Bradfield [11], we call the logic Mu-Arithmetic (though the syntax is
different). We define the syntax and semantics of fixpoint logic in the form of
hierarchical equation systems, following [36].

2.1 Syntax

The set of formulas, ranged over by ϕ is given by:

ϕ ::= a1 ≥ a2 | P (a1, . . . , ak) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃x.ϕ | ∀x.ϕ
a ::= x | n | a1 op a2

Here, P ranges over a set of predicate names. We have only ≥ as a primitive
predicate; in examples, we shall use other integer predicates like = (which can
be expressed in terms of ≥ and other logical operators).

A hierarchical equation system (HES) Φ is a pair (E ,H). Here, E is a set
of equations of the form {P1(x̃1) = ϕ1, · · · , Pm(x̃m) = ϕn}, where x̃ stands
for a sequence of variables, and H is a sequence (Pk, αk); · · · ; (P1, α1), where
Pk, . . . ,P1 are mutually disjoint sets of predicate names such that Pk ∪ · · · ∪
P1 = {P1, . . . , Pm}, and αi ∈ {µ, ν}. We write PΦ, P≤i, and P≥i for

⋃
j Pj ,⋃

j≤i Pj , and
⋃
j≥i Pj , respectively. We often write P for PΦ if Φ is clear from

the context. We also write EPi , or just Ei to denote the subset of equations
{P (x̃) = ϕ ∈ E | P ∈ Pi}. We sometimes write

{Pk,1(x̃k,1) =αk ϕk,1, . . . , Pk,`k(x̃k,`k) =αk ϕk,`k}; · · · ;
{P1,1(x̃1,1) =α1

ϕ1,1, . . . , P1,`1(x̃1,`1) =α1
ϕ1,`1}

for (E ,H) where E = {Pi,j(x̃i,j) =αi ϕi,j | i ∈ {1, . . . , k}, j ∈ {1, . . . , `i}} and
H = ({Pk,1, . . . , Pk,`k}, αk); · · · ; ({P1,1, . . . , P1,`1}, α1). When P (x̃) = ϕ ∈ E , we
write arE(P ) for the length |x̃| of the sequence x̃; we often omit the subscript
when E is clear from context.

Bound (integer) variables in a formula are defined as usual. Integer variables
{x̃} are bound in an equation P (x̃) = ϕ. We assume that a given HES is closed:
free predicate variables in each formula are defined in the HES.

Intuitively, ({Pi,1, . . . , Pi,`i}, αi) where αi = µ (αi = ν, resp.) means that
Pi,1, . . . , Pi,`i are the least (greatest, resp.) predicates that satisfy the corre-
sponding equations. In H = ({Pk,1, . . . , Pk,`k}, αk); · · · ; ({P1,1, . . . , P1,`1}, α1),
the predicates in {Pk,1, . . . , Pk,`k} ({P1,1, . . . , P1,`1}, resp.) are bound in the out-
ermost (innermost, resp.) position.
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Example 1. Consider the HES5 Φ = (E ,H) with H = ({P2}, ν); ({P1}, µ) and

E = {P2(x) = P2(x+ 1) ∧ P1(x, 0), P1(x, y) = (y = x ∨ P1(x, y + 1))}.

Since P1(x, y) can be expanded to:

P1(x, y) ≡ y = x ∨ P1(x, y + 1) ≡ y = x ∨ y + 1 = x ∨ P1(x, y + 2) ≡ · · · ,

P1(x, y) is equivalent to x ≥ y. Thus, P2(x) is equivalent to:

P2(x+ 1) ∧ x ≥ 0 ≡ P2(x+ 2) ∧ x+ 1 ≥ 0 ∧ x ≥ 0 ≡ · · · .

Therefore, P2(x) is equivalent to x ≥ 0. ut

Remark 1. We do not have the negation operator as a primitive, but it can be
expressed by using de Morgan duality [29]. The quantifiers ∀,∃ could also be
removed: A formula ∃x.ϕ with the free variables ỹ can be expressed by P (0, ỹ)
where P is defined by P (x, ỹ) =µ ϕ∨P (x+1, ỹ)∨P (x−1, ỹ); similarly for ∀x.ϕ.

2.2 Semantics

We now define the formal semantics of HES. Let Z and B = {tt, ff} be the sets
of integers and Booleans, respectively. We consider the partial order ff v tt

on B, and write t (u, resp.) for the least upper (greatest lower, resp.) bound
with respect to v. Given Φ and P ⊆ PΦ, we write ΓP for the set of maps ρ such
that dom(ρ) = P and ρ(P ) ∈ Zar(P ) → B for P ∈ dom(ρ). (ΓP ,vΓP ) forms a
complete lattice, where ΓP is the pointwise ordering on the elements of ΓP .

Given a map ρ such that dom(ρ) = P ∪ X , where X is a finite subset of
integer variables, and ρ(P ) ∈ Zar(P ) → B for P ∈ P and ρ(x) ∈ Z for x ∈ X ,
the semantics JϕKρ ∈ B of a formula ϕ is defined by:

Ja1 ≥ a2Kρ =

{
tt if Ja1Kρ ≥ Ja2Kρ
ff otherwise

JP (a1, . . . , am)Kρ = ρ(P )(Ja1Kρ, . . . , JamKρ)

Jϕ1 ∨ ϕ2Kρ = Jϕ1Kρ t Jϕ1Kρ Jϕ1 ∧ ϕ2Kρ = Jϕ1Kρ u Jϕ1Kρ
J∃x.ϕKρ =

⊔
z∈ZJϕKρ{x 7→z} J∀x.ϕKρ =

d
z∈ZJϕKρ{x7→z}

JxKρ = ρ(x) JnKρ = n Ja1 op a2Kρ = Ja1KρJopKJa2Kρ.

Here, JopK denotes the binary function on integers represented by op.
Given an HES Φ, Pi and ρ ∈ ΓPΦ , the semantics JEiKρ ∈ ΓPi is defined by:

JEiKρ = {P 7→ λz̃ ∈ Zar(P ).JϕP Kρ{x̃ 7→z̃} | P (x̃) = ϕP ∈ Ei}.

We are now ready to define the semantics of HES. By abuse of notation,
we write Γi, Γ≥i, and Γ≤i for ΓPi , ΓP≥i , and ΓP≤i respectively. The semantics

5 We remark that, for those who are familiar with fixpoint logics, P2(x) can be written
as νP2.λx.P2(x + 1) ∧ (µP1.λy.y = x ∨ P1(y + 1)) 0 in the ordinary syntax of Mu-
Arithmetic [11] or HFL [39].



Temporal Verification of Programs via First-Order Fixpoint Logic 5

JΦKi ∈ Γ≥i+1 → Γi and JΦK≤i ∈ Γ≥i+1 → Γ≤i are defined by induction on i, as
follows.

JΦK0 = JΦK≤0 = λρ ∈ Γ≥1.∅
JΦKi = λρ ∈ Γ≥i+1.FPΓi

αi(λρ
′ ∈ Γi.JEiKρ∪ρ′∪JΦK≤i−1(ρ∪ρ′)) (for i > 0)

JΦK≤i = λρ ∈ Γ≥i+1.JΦKi(ρ) ∪ JΦK≤i−1(ρ ∪ JΦKi(ρ)) (for i > 0)

Here, FPΓ
µ ,FPΓ

ν ∈ (Γ → Γ) → Γ (the superscript Γ is often omitted) are the
least and greatest fixpoint operators defined by:

FPΓ
µ(F ) =

d
Γ{f ∈ Γ | f wΓ F (f)} FPΓ

ν (F ) =
⊔
Γ{f ∈ Γ | f vΓ F (f)}.

Note that the semantics JΦKi of the predicates in Pi is parameterized by the
semantics of predicates of higher levels (as indicated by λρ ∈ Γ≥i+1. · · ·). To
evaluate JEiK in the definition of JΦKi, we need an environment on all the pred-
icate variables; ρ, ρ′, and JΦK≤i−1(ρ ∪ ρ′) respectively provide the environment
on the predicates of higher levels, the current level i, and lower levels. We write
JΦK for JΦK≤k(∅) (where k is the highest level) and write Φ |= ϕ if JϕKJΦK = tt.

Example 2. Recall Example 1, with P1 = {P1} and P2 = {P2}.

JΦK1 = λρ ∈ Γ≥2.FPµ(λρ′ ∈ Γ1.{P1 7→ λ(x, y).y = x ∨ ρ′(P1)(x, y + 1)})
= λρ ∈ Γ≥2.{P1 7→ λ(x, y).x ≥ y}.

JΦK≤1 = λρ ∈ Γ≥2.JΦK1(ρ) ∪ JΦK≤0(ρ ∪ JΦK1(ρ)) = JΦK1.
JΦK2 = λρ ∈ Γ≥3.

FPν(λρ′ ∈ Γ2.{P2 7→ λx.ρ′(P2)(x+ 1) ∧ JΦK≤1(ρ ∪ ρ′)(P1)(x, 0)})
= λρ ∈ {∅}.FPν(λρ′ ∈ Γ2.{P2 7→ λx.ρ′(P2)(x+ 1) ∧ x ≥ 0})
= λρ ∈ {∅}.{P2 7→ λx.x ≥ 0}.

JΦK≤2 = λρ ∈ {∅}.{P2 7→ λx.x ≥ 0, P1 7→ λ(x, y).x ≥ y}.

Thus, we have JΦK = {P2 7→ λx.x ≥ 0, P1 7→ λ(x, y).x ≥ y}, hence Φ |= P2(0).
ut

Example 3. To understand the importance of the order of equations, let us con-
sider Φ1 = (E ,H1) and Φ2 = (E ,H2), where:

E = {X = X ∧ Y, Y = X ∨ Y }
H1 = ({X}, ν); ({Y }, µ) H2 = ({Y }, µ); ({X}, ν).

Note that Φ2 is obtained from Φ1 by just swapping the order of X and Y .
Yet, their semantics are completely different: JΦ1K = {X 7→ tt, Y 7→ tt} but
JΦ2K = {X 7→ ff, Y 7→ ff}. To see this, for Φ1, we have:

JΦ1K1 = λρ ∈ Γ≥2.FPµ(λρ′ ∈ Γ1.JY = X ∨ Y Kρ∪ρ′) = λρ ∈ Γ≥2.{Y 7→ ρ(X)}
JΦ1K2 = λρ ∈ {∅}.FPν(λρ′ ∈ Γ2.JX = X ∧ Y Kρ′∪{Y 7→ρ(X)})

= λρ ∈ {∅}.{X 7→ tt}.
In contrast, for Φ2, we have:

JΦ2K1 = λρ ∈ Γ≥2.FPν(λρ′ ∈ Γ1.JX = X ∧ Y Kρ∪ρ′) = λρ ∈ Γ≥2.{X 7→ ρ(Y )}
JΦ2K2 = λρ ∈ {∅}.FPµ(λρ′ ∈ Γ2.JY = X ∨ Y Kρ′∪{X 7→ρ(Y )})

= λρ ∈ {∅}.{Y 7→ ff}. ut
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2.3 Relationship with Other Logics

We comment on the relationship between our logic and other logics used in
the context of program verification. As indicated already, our fixpoint logic
in the form of HES is essentially equi-expressive as Bradfield’s original Mu-
Arithmetic [11]. Any formula of HES can be translated to a formula of the origi-
nal Mu-Arithmetic in the same way as the translation from HES for higher-order
fixpoint logic to HFL formulas [25].

Our Mu-Arithmetic can be considered a restriction of HFLZ [26] (which is
an extension of HFL [39] with integers), obtained by (i) restricting predicates to
those on integers, and (ii) removing modal operators.

HES can also be considered an extension of Constrained Horn Clauses
(CHC) [6], obtained by allowing fixpoint alternations. In fact, the satisfiability
problem of CHC (i.e., whether there is a substitution for the predicate variables
P1, . . . , Pn that makes all the clauses valid):

P1(x̃1)⇐ ϕ1 · · · Pn(x̃n)⇐ ϕn ff⇐ P1(x̃1)

(where we allow disjunctions in ϕ1, . . . , ϕn, and assume that P1, . . . , Pn are mu-
tually distinct) is equivalent to the validity of ∀x̃1.P 1(x̃1), where P i is defined
by HES: ({P 1(x̃1) = ϕ1, . . . , Pn(x̃n) = ϕn}, ({P 1, . . . , Pn}, ν)). Here, ϕi is the
de Morgan dual of ϕi, and P i intuitively represents the negation of Pi.

Conversely, the validity checking problem for any HES without µ or ∃ can be
transformed to the satisfiability problem for CHC, by just reversing the above
transformation. In fact, let Φ be an HES of the form

({P1(x̃1) = ∀ỹ1.ϕ1, . . . , Pn(x̃n) = ∀ỹn.ϕn}, ({P1, . . . , Pn}, ν)),

where ϕ1, . . . , ϕn are quantifier-free formulas. Then, Φ |= ∀x̃.Pi(x̃) if and only if
the followings are satisfiable:

P 1(x̃1)⇐ ∃ỹ1.ϕ1 · · · Pn(x̃n)⇐ ∃ỹn.ϕn ff⇐ ∃x̃.P i(x̃).

Since P i(x̃i)⇐ ∃ỹi.ϕi is equivalent to ∀ỹi.(P i(x̃i)⇐ ϕi) (assuming that x̃i∩ỹi =
∅), one can transform the conditions above to CHC.

3 From Temporal Property Verification to First-Order
Fixpoint Logic

This section discusses applications of the fixpoint logic to temporal verification
of programs. As we mentioned in Section 1, Watanabe et al. [40] have shown
that temporal verification of higher-order recursive programs can be reduced in
a sound and complete manner to validity checking of higher-order fixpoint logic
formulas. For while-programs (i.e., imperative programs without recursion), their
translations actually produce formulas within our fixpoint logic. Thus, by com-
bining their translations with the procedures for our fixpoint logic given in Sec-
tion 4, we obtain an automated temporal verification method for while-programs,
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which can deal with arbitrary temporal properties that can be expressed in modal
µ-calculus. The reduction of Watanabe et al. [40] is, however, indirect: one has
to first transform a while-program to a tree-generating grammar HORSZ that
generates a computation tree of the program, and a temporal property to a tree
automaton. We thus present a direct reduction from modal µ-calculus model
checking of imperative programs to validity checking of Mu-Arithmetic formulas
in Section 3.1 below.

For linear-time temporal properties, we can also deal with first-order pro-
grams with arbitrary recursion (not just while-loops). More precisely, given a
first-order (possibly non-deterministic) recursive program D (that contains spe-
cial primitives called events) and a Büchi automaton A, one can construct an
HES ΦD,A, such that ΦD,A |= mainqI ,tt() (where qI is the initial state of A)
holds, if and only if some (infinite) event sequence generated by D is accepted
by A. We formalize the reduction in Section 3.2, which is one of the main con-
tributions of the present paper.

3.1 Modal µ-Calculus Model Checking of Imperative Programs

We model an imperative program (without recursion) as a tuple P =
(PC,Vars,Code), where PC is a finite set consisting of non-negative integers
(which intuitively represent program counters), Vars is a finite set of variables,
and Code is a map from PC to the set IVars of instructions, consisting of:

– x := a; goto i: update the value of x ∈ Vars to that of a, and then go to
i ∈ PC.

– x := ∗; goto i: update the value of x ∈ Vars to an arbitrary integer in a
non-deterministic manner, and then go to i ∈ PC.

– if a1 ≥ a2 then goto i else goto j: go to i ∈ PC if a1 ≥ a2 and j ∈ PC
otherwise.

– if ∗ then goto i else goto j: non-deterministically go to i or j.

Here, a ranges over the set of arithmetic expressions, like the meta-variable a in
Section 2.

A program P = (PC,Vars,Code), with Vars = {x1, . . . , xn} can be viewed
as a Kripke structure KP = (AP, S, s0,−→, L), where:

– AP is a set of constraints on Vars (such as x1 ≥ 0),
– the set S of states is PC× (Vars→ Z),
– the initial state s0 ∈ S is (0, {x1 7→ 0, . . . , xn 7→ 0}),
– the labeling function L ∈ S → AP is given by: L(i, σ) = {p ∈ AP ||= σ(p)}.

Here, σ(p) is the closed formula obtained by replacing each variable xi in p
with σ(xi), and |= σ(p) means that the resulting formula evaluates to true,
and

– the transition relation −→ is defined by the following rules.

Code(i) = (xj := a; goto k)

(i, σ) −→ (k, σ{xj 7→ val(σ(a))})
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Code(i) = (xj := ∗; goto k)

(i, σ) −→ (k, σ{xj 7→ m})

Code(i) = if a1 ≥ a2 then goto j else goto k val(σ(a1)) ≥ val(σ(a2))

(i, σ) −→ (j, σ)

Code(i) = if a1 ≥ a2 then goto j else goto k val(σ(a1)) < val(σ(a2))

(i, σ) −→ (k, σ)

Code(i) = if ∗ then goto j1 else goto j2 k ∈ {1, 2}
(i, σ) −→ (jk, σ)

We represent modal µ-calculus formulas in the form of hierarchical equation sys-
tems, following [36]. We call them hierarchical modal equation systems (HMES),
to distinguish them from the HES for Mu-Arithmetic introduced in Section 2.

The set of (fixpoint-free) modal formulas, ranged over by ψ, is defined by:

ψ ::= p | X | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | �ψ | �ψ
a ::= n | x | a1 op a2.

A hierarchical modal equation system (HMES) Ξ is a pair (E,H), where E
is a set of equations for the form:

{X1 = ψ1, · · · , Xm = ψn},

where H is a sequence (Pk, αk); · · · ; (P1, α1), where Pk, . . . ,P1 are mutually
disjoint sets of variables such that Pk∪· · ·∪P1 = {X1, . . . , Xm}, and αi ∈ {µ, ν}.
We write P≥i and P≤i for

⋃
j≥i Pj and

⋃
j≤i Pj respectively.

The semantics of HMES is defined in a way analogous to that of HES in
Section 2. First, given a function ρ which maps each fixpoint variable to a set of
states, we define JψKρ by

Ja1 ≥ a2Kρ = {(i, σ) | val(σ(a1)) ≥ val(σ(a2))}
JXKρ = ρ(X) Jψ1 ∨ ψ2Kρ = Jψ1Kρ ∪ Jψ2Kρ Jψ1 ∧ ψ2Kρ = Jψ1Kρ ∩ Jψ2Kρ
J�ψKρ = {(i, σ) | (i, σ) −→ (j, σ′) for some (j, σ′) ∈ JψKρ}
J�ψKρ = {(i, σ) | (j, σ′) ∈ JψKρ for every (j, σ′) such that (i, σ) −→ (j, σ′)}

We write Ei for the subset of equations: {Xj = ψj | Xj ∈ Pi}. The semantics
JEiKρ is defined by:

JEiKρ = {X 7→ JψKρ | X = ψ ∈ Ei}.

The semantics JΞK of HMES Ξ is JΞK≤k, where

JΞK0 = JΞK≤0 = λρ ∈ Θ≥1.∅
JΞKi = λρ ∈ Θ≥i+1.FPΘi

αi (λρ
′ ∈ Θi.JEiKρ∪ρ′∪JΞK≤i−1(ρ∪ρ′)) (for i > 0)

JΞK≤i = λρ ∈ Θ≥i+1.JΞKi(ρ) ∪ JΞK≤i−1(ρ ∪ JΞKi(ρ)) (for i > 0).
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Here, Θi = Pi → 22
PC×(Vars→Z)

and Θ≥i = P≥i → 22
PC×(Vars→Z)

.
Given a program P with variables {x1, . . . , xn} and an HMES Ξ with X ∈

PΞ , we say that a program P satisfies (Ξ,X), written P |= (Ξ,X), if the initial
state (0, {x1 7→ 0, . . . , xn 7→ 0}) belongs to JΞK(X). The goal of verification is to
check whether P |= (Ξ,X) holds.

We now reduce the problem of checking whether P |= (Ξ,X) to the valid-
ity checking problem for Mu-Arithmetic. For the convenience of presenting the
reduction, we assume without loss of generality that the righthand side of each
equation in HMES is restricted to the following syntax.

ψ ::= a1 ≥ a2 | X | X1 ∨X2 | X1 ∧X2 | �X | �X.

Let Vars = {x1, . . . , xn} and x̃ be the sequence x1, . . . , xn. For each equation
X = ψ and i ∈ PC, we define the equation JX = ψKi of Mu-Arithmetic by:

JX = (a1 ≥ a2)Ki = (X(i)(x̃) = a1 ≥ a2) JX = X1Ki = (X(i)(x̃) = X
(i)
1 )

JX = X1 ∨X2Ki = (X(i)(x̃) = X
(i)
1 (x̃) ∨X(i)

2 (x̃))

JX = X1 ∧X2Ki = (X(i)(x̃) = X
(i)
1 (x̃) ∧X(i)

2 (x̃))

JX = �X1Ki =



X(i)(x̃) = X
(k)
1 (x1, . . . , xj−1, a, xj+1, . . . , xn)

if Code(i) = xj := a; goto k

X(i)(x̃) = ∃m.X(k)
1 (x1, . . . , xj−1,m, xj+1, . . . , xn)

if Code(i) = xj := ∗; goto k

X(i)(x̃) = (a1 ≥ a2 ∧X(j)
1 (x̃)) ∨ (a2 ≥ a1 + 1 ∧X(k)

1 (x̃))
if Code(i) = if a1 ≥ a2 then goto j else goto k

X(i)(x̃) = X
(j)
1 (x̃) ∨X(k)

1 (x̃)
if Code(i) = if ∗ then goto j else goto k

JX = �X1Ki =



X(i)(x̃) = X
(k)
1 (x1, . . . , xj−1, a, xj+1, . . . , xn)

if Code(i) = xj := a; goto k

X(i)(x̃) = ∀m.X(k)
1 (x1, . . . , xj−1,m, xj+1, . . . , xn)

if Code(i) = xj := ∗; goto k

X(i)(x̃) = (a1 ≥ a2 ∧X(j)
1 (x̃)) ∨ (a2 ≥ a1 + 1 ∧X(k)

1 (x̃))
if Code(i) = if a1 ≥ a2 then goto j else goto k

X(i)(x̃) = X
(j)
1 (x̃) ∧X(k)

1 (x̃)
if Code(i) = if ∗ then goto j else goto k.

Given Ξ = (E,H) with H = (P1, α1); · · · ; (P`, α`), and P =
(PC,Vars,Code), we define HES ΦΞ,P as (EΞ,P,HΞ,P), where:

EΞ,P = {JX = ψKi | (X = ψ) ∈ E, i ∈ PC},

and

HΞ,P = ({X(i) | X ∈ P1, i ∈ PC}, α1); · · · ; ({X(i) | X ∈ P`, i ∈ PC}, α`).

By the translation, it is not difficult to observe that (j, {x1 7→ m1, . . . , xn 7→
mn}) ∈ JΞK(Xi) if and only if JΦΞ,PK(X(j)

i )(m1, . . . ,mn) = tt. Thus, P |=
(Ξ,X1) if and only if HΞ,P |= X

(0)
1 (0, . . . , 0).
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Example 4. Consider the program P0 = ({0, 1}, {x, y},Code0), where:

Code0 = {0 7→ (x := x− 1; goto 1), 1 7→ (y := y + 1; goto 0)}.

The modal µ-calculus formula νX.(x + y ≥ 0 ∧ � � X) expresses the property
“there exists an execution sequence in which x + y ≥ 0 holds after any even
number of steps.” This is a property that cannot be expressed in CTL*. The
corresponding HMES Ξ0 is (E0,H0) where

E0 = {X = x+ y ≥ 0 ∧ �Y, Y = �X} H0 = ({X,Y }, ν).

By the translation above, we obtain ΦΞ0,P0
= (E0,H0) where H0 =

({X(0), X(1), Y (0), Y (1)}, ν) and E0 consists of:

X(0)(x, y) = x+ y ≥ 0 ∧ Y (1)(x− 1, y) X(1)(x, y) = x+ y ≥ 0 ∧ Y (0)(x, y + 1)
Y (0)(x, y) = X(1)(x− 1, y) Y (1)(x, y) = X(0)(x, y + 1)

ut

Example 5. Consider the program P1 = ({0, 1, 2}, {x},Code1), where Code1

consists of:

0 7→ (x := ∗; goto 1),
1 7→ (if 0 ≥ x then goto 0 else goto 2),
2 7→ (x := x− 1; goto 1).

Let us consider the µ-calculus formula

νX.µY.�Y ∨ (0 ≥ x ∧ (µZ. � Z ∨ (x ≥ 1 ∧X))),

which corresponds to the following infinite CTL formula:

AF(0 ≥ x ∧ EF(x ≥ 1 ∧ AF(0 ≥ x ∧ EF(x ≥ 1 ∧ · · · )))).

It is expressed as Ξ1 = (E1,H1) where:

E1 = {X = Y, Y = Y1 ∨ Y2, Y1 = �Y, Y2 = Y21 ∨ Z, Y21 = 0 ≥ x,
Z = Z1 ∨ Z2, Z1 = �Z,Z2 = Z21 ∧X,Z21 = x ≥ 1}

H1 = ({X}, ν); ({Y, Y1, Y2, Y21, Z, Z1, Z2, Z21}, µ).



Temporal Verification of Programs via First-Order Fixpoint Logic 11

Our translation yields ΦΞ1,P1
= (E1,H1) where

E1 = {X(i)(x) = Y (i)(x) | i ∈ {0, 1, 2}}
∪{Y (i)(x) = Y

(i)
1 (x) ∨ Y (i)

2 (x) | i ∈ {0, 1, 2}}
∪{Y (0)

1 (x) = ∀x.Y (1)(x), Y
(2)
1 (x) = Y (1)(x− 1),

Y
(1)
1 (x) = (0 ≥ x ∧ Y (0)(x)) ∨ (x ≥ 1 ∧ Y (2)(x))}

∪{Y (i)
2 (x) = Y

(i)
21 (x) ∨ Z(i)(x) | i ∈ {0, 1, 2}}

∪{Y (i)
21 (x) = 0 ≥ x | i ∈ {0, 1, 2}}

∪{Z(i)(x) = Z
(i)
1 (x) ∨ Z(i)

2 (x) | i ∈ {0, 1, 2}}
∪{Z(0)

1 (x) = ∃x.Z(1)(x), Z
(2)
1 (x) = Z(1)(x− 1),

Z
(1)
1 (x) = (0 ≥ x ∧ Z(0)(x)) ∨ (x ≥ 1 ∧ Z(2)(x))}

∪{Z(i)
2 (x) = Z

(i)
21 (x) ∧X(i)(x) | i ∈ {0, 1, 2}}

∪{Z(i)
21 (x) = x ≥ 1 | i ∈ {0, 1, 2}}

H1 = ({X(i) | i ∈ {0, 1, 2}}, ν);

({Y (i), Y
(i)
1 , Y

(i)
2 , Y

(i)
21 , Z

(i), Z
(i)
1 , Z

(i)
2 , Z

(i)
21 | i ∈ {0, 1, 2}}, µ)

ut

The following example has been taken from [15] (Figure 6, Bench 8), and
modified to adjust the program syntax.

Example 6. Consider the program P2 = (PC2, {x},Code2), where PC2 =
{0, 1, 2, 3, 4, 5, 6} and Code2 consists of:

0 7→ x := 1; goto 1,
1 7→ if ∗ then goto 1 else goto 4,
2 7→ if ∗ then goto 5 else goto 6,
3 7→ x := x; goto 3,
4 7→ x := 0; goto 2,
5 7→ x := 1; goto 3,
6 7→ x := 0; goto 3.

Consider the CTL* property AG(AFG(x = 0)∨AFG(x = 1)), which is expressed in
the modal µ-calculus as:

νX.(�X ∧ ((µY.νZ.�Y ∨ (x = 0 ∧�Z)) ∨ (µU.νV.�U ∨ (x = 1 ∧�V ))).

The corresponding HMES is Ξ2 = (E2,H2) where:

E2 = { X = X1 ∧X2, X1 = �X,X2 = Y ∨ U,
Y = Z,Z = Z1 ∨ Z2, Z1 = �Y,Z2 = Z21 ∧ Z22, Z21 = (x = 0), Z22 = �Z,
U = V, V = V1 ∨ V2, V1 = �U, V2 = V21 ∧ V22, V21 = (x = 1), V22 = �V }

H2 = ({X,X1, X2}, ν); ({Y,U}, µ); ({Z,Z1, Z2, Z21, Z22, V, V1, V2, V21, V22}, ν).

Our translation yields ΦΞ2,P2 shown in Figure 1. ut
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ΦΞ2,P2 = (E2,H2)

E2 = {X(i)(x) = X
(i)
1 (x) ∧X(i)

2 (x) | i ∈ PC2}
∪{X(0)

1 (x) = X(1)(1), X
(1)
1 (x) = X(1)(x) ∧X(4)(x), X

(2)
1 (x) = X(5)(x) ∧X(6)(x),

X
(3)
1 (x) = X(3)(x), X

(4)
1 (x) = X(2)(0), X

(5)
1 (x) = X(3)(1), X

(6)
1 (x) = X(3)(0)}

∪{X(i)
2 (x) = Y (i)(x) ∨ U (i)(x) | i ∈ PC2}

∪{Y (i)(x) = Z(i)(x) | i ∈ PC2}
∪{Z(i)(x) = Z

(i)
1 (x) ∨ Z(i)

2 (x) | i ∈ PC2}
∪{Z(0)

1 (x) = Y (1)(1), Z
(1)
1 (x) = Y (1)(x) ∧ Y (4)(x), Z

(2)
1 (x) = Y (5)(x) ∧ Y (6)(x),

Z
(3)
1 (x) = Y (3)(x), Z

(4)
1 (x) = Y (2)(0), Z

(5)
1 (x) = Y (3)(1), Z

(6)
1 (x) = Y (3)(0)}

∪{Z(i)
2 (x) = Z

(i)
21 (x) ∧ Z(i)

22 (x) | i ∈ PC2}
∪{Z(i)

21 (x) = x = 0 | i ∈ PC2}
∪{Z(0)

22 (x) = Z(1)(1), Z
(1)
22 (x) = Z(1)(x) ∧ Z(4)(x), Z

(2)
22 (x) = Z(5)(x) ∧ Z(6)(x),

Z
(3)
22 (x) = Z(3)(x), Z

(4)
22 (x) = Z(2)(0), Z

(5)
22 (x) = Z(3)(1), Z

(6)
22 (x) = Z(3)(0)}

∪{U (i)(x) = V (i)(x) | i ∈ PC2}
∪{V (i)(x) = V

(i)
1 (x) ∨ V (i)

2 (x) | i ∈ PC2}
∪{V (0)

1 (x) = U (1)(1), V
(1)
1 (x) = U (1)(x) ∧ U (4)(x), V

(2)
1 (x) = U (5)(x) ∧ U (6)(x),

V
(3)
1 (x) = U (3)(x), V

(4)
1 (x) = U (2)(0), V

(5)
1 (x) = U (3)(1), V

(6)
1 (x) = U (3)(0)}

∪{V (i)
2 (x) = V

(i)
21 (x) ∧ V (i)

22 (x) | i ∈ PC2}
∪{V (i)

21 (x) = x = 1 | i ∈ PC2}
∪{V (0)

22 (x) = V (1)(1), V
(1)
22 (x) = V (1)(x) ∧ V (4)(x), V

(2)
22 (x) = V (5)(x) ∧ V (6)(x),

V
(3)
22 (x) = V (3)(x), V

(4)
22 (x) = V (2)(0), V

(5)
22 (x) = V (3)(1), V

(6)
22 (x) = V (3)(0)}

H2 = ({X(i), X
(i)
1 , X

(i)
2 | i ∈ PC2}, ν);

({Y (i), U (i) | i ∈ PC2}, µ);

({Z(i), Z
(i)
1 , Z

(i)
2 , Z

(i)
21 , Z

(i)
22 , V

(i), V
(i)
1 , V

(i)
2 , V

(i)
21 , V

(i)
22 | i ∈ PC2}, ν).

Fig. 1. ΦΞ2,P2 in Example 6
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n ∈ Z
E[∗] ε−→D E[n]

a 6∈ Z val(a) = n

E[a]
ε−→D E[n]

E[A; e]
A−→D E[e]

(f(x1, . . . , xk) = e) ∈ D
E[f(n1, . . . , nk)]

ε−→D E[[n1/x1, . . . , nk/xk]e]

E[let x = n in e]
ε−→D E[[n/x]e]

n ≥ 0

E[if n ≥ 0 then e1 else e2]
ε−→D E[e1]

n < 0

E[if n ≥ 0 then e1 else e2]
ε−→D E[e2]

Fig. 2. Operational Semantics. E ranges over the set of evaluation contexts, defined
by E ::= [ ] | let x = E in e.

3.2 Linear-Time Property Verification of Recursive Programs

Target Language and Verification Problem We first define a language of
first-order recursive programs with non-determinism. The syntax of programs
is given by:

D(programs) ::= {f1(x1, . . . , xk1) = e1, . . . , f`(x1, . . . , xk`) = e`}
e(expressions) ::= a | ∗ | A; e | f(v1, . . . , vk) | let x = e1 in e2

| if v ≥ 0 then e1 else e2
a ::= v | a1 op a2 v ::= n | x

The expression ∗ evaluates to an integer in a non-deterministic manner. The
expression A; e raises an event A and evaluates e. Here, we assume a finite set
of events; they are referred to by temporal property specifications (expressed by
Büchi automata below). The other expressions are standard and should be self-
explanatory. In a function definition fi(x1, . . . , xki) = ei, variables x1, . . . xki and
functions f1, . . . , f` are bound in ei and we assume a given program is closed.

In a program D = {f1(x1, . . . , xk1) = e1, . . . , f`(x1, . . . , xk`) = e`}, we as-
sume that {f1, . . . , f`} contains the special function name main of the “main”
function with arity 0, that main() never terminates, and every infinite reduction
sequence generates an infinite sequence of events.6

Operational Semantics. The transition relation e
ξ−→D e′ (where ξ is either A or

ε) is defined in Figure 2. Here, val(a) denotes the value of an integer arithmetic

expression a. We write e
w

=⇒D e′ if w = ξ1 · · · ξ` and ei−1
ξi−→D ei for each

i ∈ {1, . . . , `}, with e = e0 and e′ = ei. Here, we treat ε as the empty word.
We write L(D) for the set of infinite sequences A1A2A3 · · · such that

main()
A1=⇒D e1

A2=⇒D e2
A3=⇒D · · · .

6 The assumption on non-termination is guaranteed by renaming main to main′, and
adding the function definitions main() = let x = main′() in loop() and loop() =
Acall ; loop; the last assumption is guaranteed by restricting the righthand side of
each function definition to an expression of the form Acall ; e.
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Example 7. Consider the program D0 consisting of the following function defi-
nitions.

main() = let x = ∗ in f(x)

f(x) = let r = g x in (A; f(r)) g(x) = B; if x ≥ 0 then g (x− 1) else 5

It has, for example, the following reduction sequence:

main()
ε

=⇒ f(0)
ε−→ let r = g(0) in (A; f(r))

B−→ let r = g(−1) in (A; f(r))
ε

=⇒ A; f(5)
A−→ f(5)

ε−→ · · ·

The set L(D0) of infinite event sequences generated by D0 is {Bn(AB6)ω | n ≥ 1}.

Verification Problem We are interested in the verification of linear-time prop-
erties, expressible by using Büchi automata. Let us recall the definition of Büchi
automata.

Definition 1 (Büchi automata). A (non-deterministic) Büchi automaton A
is a quintuple (Σ,Q,∆, q0, F ), where (i) Σ is a set of input symbols, (ii) Q is
a set of states, (iii) ∆ ∈ Q × Σ → 2Q is the transition function, (iv) q0 ∈ Q
is the initial state, and (v) F ⊆ Q is the set of final states. An ω-word w =
A1A2 · · · ∈ Σω is accepted by A if there exists an infinite sequence of states
q′0q
′
1q
′
2 · · · ∈ Qω, such that (i) q′0 = q0, (ii) q′j ∈ ∆(q′j−1, Aj) for each j ≥ 1,

and (iii) ∀j ∈ J.q′j ∈ F holds for an infinite subset J of natural numbers (in
other words, final states are visited infinitely often). We write L(A) for the set
of ω-words accepted by A.

Example 8. Let A0 = ({A, B}, {qA, qB}, ∆, qA, {qA}) where ∆(qA, A) =
∆(qB , A) = {qA} and ∆(qA, B) = ∆(qB , B) = {qB}. The automaton is depicted
as follows.

qA

A
��

B

33 qB
Ass

B
��

A0 accepts an infinite word w ∈ {A, B}ω just if w contains infinitely many A’s.

We are interested in the following verification problem: Given a program D
and a Büchi automaton A, does L(D)∩L(A) 6= ∅ hold? In a typical verification
context, L(A) denotes the set of invalid infinite sequences of events, and the

question L(D) ∩ L(A)
?

6= ∅ asks whether D may generate an invalid infinite
sequence. The goal of the rest of this section is to characterize the condition
L(D) ∩ L(A) 6= ∅ by a fixpoint formula ϕD,A.
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Overview of the Reduction Through an Example Consider the program
D0 and automaton A0 in Examples 7 and 8. Suppose we wish to verify that
L(D0) ∩ L(A0) 6= ∅.

For each function f ∈ {main, f, g}, we construct the following predicates:
– fq,b,q′(x, r) for each q, q′ ∈ {qA, qB}, b ∈ B. Intuitively, fq,b,q′(x, r) means

that f(x) may generate an event sequence that changes the state of the automa-
ton from q to q′, and returns r. The Boolean value b represents whether a final
state is visited by the automaton during the state changes from q to q′ (exclud-

ing the state q). For example, since g(−1)
B−→D0

5, gq,ff,qB (−1, 5) should hold
for q ∈ {qA, qB}.

– fq,b(x) for each q ∈ {qA, qB}, b ∈ B. Intuitively, fq,b(x) means that f(x)
may generate an event sequence that can be accepted by the automaton from
the state q. The Boolean value b is determined by the calling context of f ; it
represents whether a final state has been visited since the parent recursive call of
f . For example, fq,b(n) should hold for any integer n, q ∈ {qA, qB}, and b ∈ B,
as f(n) generates an event sequence that contains infinitely many A’s, which
is accepted by A0. On the other hand, gq,b(n) does not hold, as g(n) cannot
generate an infinite sequence.
The predicates above can be systematically constructed from function defini-
tions. For our running example, let us first construct gq,b,q′ . Since g(x) generates
only events B and returns r if either (i) x ≥ 0 and g(x − 1) returns r, or (ii)
x < 0 and r = 5. Thus, gq,b,q′ should satisfy:

gqA,ff,qB (x, r) = (x ≥ 0 ∧ gqB ,ff,qB (x− 1, r)) ∨ (x < 0 ∧ r = 5)

gqB ,ff,qB (x, r) = (x ≥ 0 ∧ gqB ,ff,qB (x− 1, r)) ∨ (x < 0 ∧ r = 5)

gq,b,q′(x, r) = ff (if q′ = qA or b = tt).

Notice that the above equations are recursive. Since we are concerned about
termination, gq,b,q′ is defined as the least solution of the equations above.

Using gq,b,q′ above, the equation for fqA,tt is given as follows.

fqA,tt(x) = ∃r.(gqA,ff,qB (x, r) ∧ fqA,tt(r)).

This is because f(x) generates an infinite event sequence accepted from qA by A0

if g(x) terminates and returns some r, and then f(r) generates an event sequence
accepted from qA. This time, fqA,tt should be defined as the greatest solution
for the above equation, since the automaton visits a final state (as indicated by
the subscript tt for the predicate fqA, ) each time f is expanded. In general, fq,b
is defined as the greatest solution if b = tt, and as the least solution if b = ff.

Based on the discussion above, ΦD0,A0 is given as:

{mainqA,tt() =ν ∃x.fqA,ff(x),
fqA,tt(x) =ν ∃r.(gqA,ff,qB (x, r) ∧ fqA,tt(r))};
{fqA,ff(x) =µ ∃r.(gqA,ff,qB (x, r) ∧ fqA,tt(r)),
gqA,ff,qB (x, r) =µ (x ≥ 0 ∧ gqB ,ff,qB (x− 1, r)) ∨ (x < 0 ∧ r = 5),
gqB ,ff,qB (x, r) =µ (x ≥ 0 ∧ gqB ,ff,qB (x− 1, r)) ∨ (x < 0 ∧ r = 5)}.
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General Construction of ΦD,A We now formalize the general construction
of the HES ΦD,A. Below we fix a Büchi automaton A = (Σ,Q,∆, q0, F ).

As explained in the overview, for each function definition f(x̃) = ef , we
construct predicates fq,b,q′(x̃, r) and fq,b(x̃). To obtain equations for those pred-
icates, we convert each subexpression e of ef to formulas [e]q,b,q′,r and [e]q,b,
where q, q′ ∈ Q, b ∈ B and r is an integer variable. Intuitively, the formula
[e]q,b,q′,r means that there is a terminating execution sequence of e which gen-
erates a finite sequence of events that changes the state of A from q to q′, and
returns the integer r. The Boolean parameter b expresses whether an accepting
state is visited during the automaton’s transitions from q to q′ (excluding the
start state q). [e]q,b means that there is an infinite execution sequence of e that
generates an infinite sequence of events accepted from q. The Boolean parame-
ter b records information on whether an accepting state has been visited since
the parent recursive call; the Boolean parameter is used to choose the Boolean
parameter b′ of fq,b′ .

The formula [e]q,b,q′,r is defined by induction on the structure of e, as follows.

[a]q,b,q′,r =

{
a = r if q = q′ and b = ff

ff otherwise
[∗]q,b,q′,r =

{
tt if q = q′ and b = ff

ff otherwise
[A; e]q,b,q′,r =

∨
{[e]q′′,b′,q′,r | q′′ ∈ ∆(q, A), b′ ∈ B, b′ ∨ (q′′ ∈ F ) = b}

[f(a1, . . . , ak)]q,b,q′,r = fq,b,q′(a1, . . . , ak, r)
[let x = e1 in e2]q,b,q′,r =∨

{∃x.([e1]q,b1,q′′,x ∧ [e2]q′′,b2,q′,r) | q′′ ∈ Q, b1, b2 ∈ B, b = b1 ∨ b2}
[if a ≥ 0 then e1 else e2]q,b,q′,r = (a ≥ 0 ∧ [e1]q,b,q′,r) ∨ (a < 0 ∧ [e2]q,b,q′,r)

We explain a few cases. Since a immediately evaluates to an integer, [a]q,b,q′,r is
true just if a = r, q = q′, and b = ff. In the translation of A; e, q′′ is the state
of A after the event A has occurred. The case for a function call f(a1, . . . , ak)
is based on the intuition on the predicate fq,b,q′ explained in Section 3.2. The
translation for e ≡ let x = e1 in e2 is based on the intuition that e evaluates
to r just if e1 evaluates to some integer x, and then e2 evaluates to r; q′′ is the
intermediate state of A when e1 has been evaluated.

The formula [e]q,b is also inductively defined as follows.

[a]q,b = ff [∗]q,b = ff [A; e]q,b =
∨
{[e]q′,b∨(q′∈F ) | q′ ∈ ∆(q, A)}

[f(a1, . . . , ak)]q,b = fq,b(a1, . . . , ak)
[let x = e1 in e2]q,b = [e1]q,b ∨ (

∨
{∃x.[e1]q,b′,q′,x ∧ [e2]q′,b∨b′ | q′ ∈ Q, b′ ∈ B})

[if a ≥ 0 then e1 else e2]q,b = (a ≥ 0 ∧ [e1]q,b) ∨ (a < 0 ∧ [e2]q,b)

When e = a or ∗, [e]q,b = ff since e does not generate an infinite event sequence.
In the translation of A; e, we update the state and accumulate (by b∨ (q′ ∈ F ))
information on whether an accepting state has been visited. For a function call
f(a1, . . . , ak), the Boolean parameter b is used to annotate f , so that fq,b is
defined as the greatest fixpoint if b = tt (which means that an accepting state
has been visited since the last recursive call), and otherwise defined as the least
fixpoint. The translation for e ≡ let x = e1 in e2 is based on the intuition that
e diverges either if e1 diverges, or if e1 evaluates to an integer x and e2 diverges.
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Using [e]q,b,q′,r and [e]q,b, we define ED,b,PD,fin, ED,fin and PD,b (b ∈ B) by:

ED,b = {fq,b(x̃) = [e]q,ff | (f(x̃) = e) ∈ D, q ∈ Q}
PD,b = {fq,b | (f(x̃) = e) ∈ D, q ∈ Q}
ED,fin = {fq,b,q′(x̃, r) = [e]q,b,q′,r | (f(x̃) = e) ∈ D, q, q′ ∈ Q, b ∈ B}
PD,fin = {fq,b,q′ | (f(x̃) = e) ∈ D, q, q′ ∈ Q, b ∈ B}.

Finally, we define ΦD,A = (ED,HD) by:

ED = ED,tt ∪ ED,ff ∪ ED,fin HD = (PD,tt, ν); (PD,ff ∪ PD,fin, µ).

As indicated above, the alternation depth (between ν and µ) of ΦD,A is 2.
The following theorem states the correctness of the construction of ΦD,A.

A proof is given in Appendix A.

Theorem 1. Let D be a program and A be a Büchi automaton. Then L(D) ∩
L(A) 6= ∅ if and only if ΦD |= mainq0,tt().

Example 9. We have already given an example of the construction of ΦD,A in
Section 3.2. We give another simple example here, which may help the reader
understand the role of the Boolean parameter b in fq,b. Recall the automaton A0

in Example 8, and consider the program D1 that consists of the single function
definition main() = A; main(). Then, ΦD1,A0 is:

{mainqA,tt() =ν mainqA,tt()}; {mainqA,ff() =µ mainqA,tt()}.

(We omit the equations for mainqB ,b.) Thus, ΦD1,A0 |= mainqA,tt(). Indeed, D1

generates Aω, which is accepted by A0. The reason why mainqA, in the bodies of
the equations is annotated with tt is that an event A occurs (so, the automaton
visits the accepting state qA) before main is called in the body of the function
definition.

In contrast, the program D2 consisting of main() = B; main() is trans-
lated to: {mainqA,tt() =ν mainqB ,ff()}; {mainqB ,ff() =µ mainqB ,ff()}. Thus,
ΦD2,A0

6|= mainqA,tt(). Indeed, D2 only generates Bω, which is not accepted by
A0. Note that mainqB , in the bodies of the equations is annotated with ff

because each call of main() is only preceded by an event B; so, the automaton
does not visit qA. �

4 Proving Fixpoint Formulas by Reduction to CHC
Solving

In this section, we describe our Mu2CHC approach to validity checking of fix-
point formulas. The method is based on a reduction to CHC solving [5]. As
mentioned in Section 1, a main advantage of the approach is that we can reuse
off-the-shelf CHC solvers such as Spacer [27] and HoIce [13].

Suppose that we wish to prove Φ |= main(). Without loss of generality, we
can assume that the predicate main is bound by ν in Φ (otherwise, just introduce
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a fresh predicate main′, and prove {main′() =ν main()};Φ |= main()). We can
also assume that Φ contains no existential quantifiers, as existential quantifiers
can be encoded by using µ; recall Remark 1. Below we present a method to
transform Φ to another HES Φ′ so that Φ′ |= main() implies Φ |= main(), and Φ′

contains neither µ nor existential quantifiers. By the observation in Section 2.3,
Φ′ |= main() can be reduced to CHC solving. Using a CHC solver as a backend,
we obtain a sound procedure for proving Φ |= main(). To disprove Φ |= main(),
it suffices to prove the dual problem Φ |= main() (where main is the predicate
symbol that denotes the negation of main in Φ); thus, by running the sound
procedure for proving Φ |= main() and Φ |= main() in parallel, we obtain a
sound (but incomplete) decision procedure.

Inspired by methods for proving termination by reduction to safety proper-
ties [34], we approximate µ-formulas (which can be considered generalization of
the termination property) by ν-formulas (which can be considered generalization
of safety properties). In particular, we pick the recent termination verification
method of Fedyukovich et al. [21] and generalize it for our context.

Let us first consider a special case, where an HES consists of a single equation:
P (x̃) =µ ϕ. Recall that the semantics of P is the least fixpoint of F = λf ∈
Zk → B.λṽ ∈ Zk.JϕK{P 7→f,x̃→ṽ}, where k = ar(P ). Thus, the semantics of P
can be under-approximated by F y(λṽ.ff) for any y ≥ 0, and a greater value of
y gives a better approximation. With this in mind, we prepare a new predicate
P ′ and construct a new equation:

P ′(y, x̃) =ν y > 0 ∧ ϕ′,
where ϕ′ is the formula obtained from ϕ by replacing each formula of the
form P (t̃) with P ′(y− 1, t̃). The predicate λx̃.P ′(y, x̃) corresponds to F y(λṽ.ff)
above (in fact, one can prove that the semantics of λx̃.P ′(y, x̃) is equivalent to
F y(λṽ.ff) by induction on y), and thus P ′(y, x̃) ⇒ P (x̃) for any y ∈ Z. To
prove a formula of the form C[P (ã)] (here, C is a formula with a hole, and
we write C[ϕ] for the formula obtained by filling the hole with ϕ), it suffices
to prove C[∀y.(y ≥ a′1 ∧ · · · ∧ y ≥ a′k ⇒ P ′(y, ã))], where a′1, . . . , a

′
k are arbi-

trary arithmetic expressions constructed by using variables available in the hole
of C. Note that ∀y.(y ≥ a′1 ∧ · · · ∧ y ≥ a′k ⇒ P ′(y, ã)), which is equivalent to
P ′(max(a′1, . . . , a

′
k), ã), implies P (x), and that (the semantics of) C is monotonic

with respect to the hole position, since there is no connective for negation. Thus,
we have reduced the validity checking problem for a least fixpoint formula with
that of a greatest fixpoint formula in a sound (but incomplete) manner.

Remark 2. In ∀y.(y ≥ a′1 ∧ · · · ∧ y ≥ a′k ⇒ P ′(y, ã)), the bounds a′1, . . . , a
′
k can

be chosen heuristically. A nice point about using multiple bounds is that we
can monotonically increase the precision of approximation, by adding new ele-
ments to the set {a′1, . . . , a′k}. This advantage is analogous to that of disjunctive
well-founded relations over well-founded relations in the context of termination
verification [34].

Example 10. Consider:

P (x) =µ x = 0 ∨ P (x− 1)
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and suppose that we wish to prove ∀z.z < 0 ∨ P (z). We define a new predicate
P ′ by:

P ′(y, x) =ν y > 0 ∧ (x = 0 ∨ P ′(y − 1, x− 1)),

and change the goal to ∀z.z < 0∨ (∀y.y ≥ z + 1⇒ P ′(y, z)). One can reduce its
validity to the satisfiability of the following CHC:

P ′(y, x)⇐ y ≤ 0 ∨ (x 6= 0 ∧ P ′(y − 1, x− 1))
ff⇐ z ≥ 0 ∧ y ≥ z + 1 ∧ P ′(y, z).

It is satisfiable with P ′(y, x) ≡ y ≤ 0 ∨ x < 0 ∨ y < x + 1; hence we know the
original formula ∀z.z < 0 ∨ P (z) is valid. ut

In the general case, we replace each layer of µ-equations with ν-equations
one by one. Assume that a given HES Φ is

Φ1; {P1(x̃1) =µ ϕ1, . . . , Pk(x̃k) =µ ϕk};
{Pk+1(x̃k+1) =ν ϕk+1, . . . , Pk+`(x̃k+`) =ν ϕk+`}.

As in the special case, we approximate the least fixpoint FPµ(F ) for the values
of P1, . . . , Pk with a finite approximation F y(⊥). To this end, we replace Φ with
the following HES Φ′:

Φ′1; {P ′1(y, x̃1) =µ y > 0 ∧ ϕ′1, . . . , P ′k(y, x̃k) =µ y > 0 ∧ ϕ′k};
{P ′k+1(y, x̃k+1) =ν ϕ

′
k+1, . . . , P

′
k+`(y, x̃k+`) =ν ϕ

′
k+`}.

Here,
– ϕ′i (1 ≤ i ≤ k + `) is the formula obtained from ϕi by replacing each

subformula of the form Pj(ã) with P ′j(y− 1, ã) if 1 ≤ j ≤ k, and with P ′j(y, ã) if
k+1 ≤ j ≤ k+`). Intuitively, P ′i (y, ) 1 ≤ i ≤ k is the y-th approximation F y(⊥)
of the least fixpoint of F ; hence y is decremented each time Pi is recursively
called. For P ′i (y, x̃i) for k+ 1 ≤ i ≤ k+ ` approximates Pi(x̃i) by approximating
Pj(x̃j) with P ′j(y, x̃j) for 1 ≤ j ≤ k (recall that the semantics of Pk+1, . . . , Pk+`
are parameterized by those of P1, . . . , Pk).

– Φ′1 is the HES obtained from Φ1 by replacing each formula of the form
Pi(ã) (1 ≤ i ≤ k+ `) with ∀y.y ≥ a′1 ∧ · · · ∧ y ≥ a′m ⇒ P ′i (y, ã), where a′1, . . . , a

′
m

are expressions consisting of the variables available at the position of Pi(ã).
By the construction above, P ′i (y, x̃i)⇒ Pi(x̃i) holds for every y, x̃1 ∈ Z; hence

Φ′ is an under-approximation of Φ. By repeatedly applying the transformation
above to Φ, we get an HES Φ′ such that Φ′ contains neither µ nor ∃, and JΦ′K v
JΦK.

Example 11. Recall the HES Φ1 in Section 3.2 (with some simplification):

{mainqA,tt() =ν ∃x.fqA,tt(x), fqA,tt(x) =ν ∃r.(gqA,ff,qB (x, r) ∧ fqA,tt(r))};
{gqA,ff,qB (x, r) =µ (x ≥ 0 ∧ gqB ,ff,qB (x− 1, r)) ∨ (x < 0 ∧ r = 5),
gqB ,ff,qB (x, r) =µ (x ≥ 0 ∧ gqB ,ff,qB (x− 1, r)) ∨ (x < 0 ∧ r = 5)}.
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By encoding ∃ with µ, we obtain:

{mainqA,tt() =ν P (0), fqA,tt(x) =ν Q(0, x)};
{P (x) =µ fqA,tt(x) ∨ P (x+ 1) ∨ P (x− 1),
Q(r, x) =µ (gqA,ff,qB (x, r) ∧ fqA,tt(r)) ∨Q(r + 1, x) ∨Q(r − 1, x),
gqA,ff,qB (x, r) =µ (x ≥ 0 ∧ gqB ,ff,qB (x− 1, r)) ∨ (x < 0 ∧ r = 5),
gqB ,ff,qB (x, r) =µ (x ≥ 0 ∧ gqB ,ff,qB (x− 1, r)) ∨ (x < 0 ∧ r = 5)}.

By the transformation above, we obtain Φ′1:

{mainqA,tt() =ν ∀y.(y ≥ 1⇒ P ′(y, 0)),
fqA,tt(x) =ν ∀y.(y ≥ x+ 6⇒ Q′(y, 0, x)),
P ′(y, x) =ν y > 0 ∧ (fqA,tt(x) ∨ P ′(y − 1, x+ 1) ∨ P ′(y − 1, x− 1)),
Q′(y, r, x) =ν y > 0 ∧ ((gqA,ff,qB (y − 1, x, r) ∧ fqA,tt(y − 1, r))

∨Q′(y − 1, r + 1, x) ∨Q′(y − 1, r − 1, x)),
g′qA,ff,qB (y, x, r) =ν y > 0

∧((x ≥ 0 ∧ g′qB ,ff,qB (y − 1, x− 1, r)) ∨ (x < 0 ∧ r = 5)),
g′qB ,ff,qB (y, x, r) =ν y > 0

∧((x ≥ 0 ∧ g′qB ,ff,qB (y − 1, x− 1, r)) ∨ (x < 0 ∧ r = 5))}.

Since Φ′1 |= mainqA,tt(), we know Φ1 |= mainqA,tt(). ut

Remark 3. As explained above, the idea of our translation is to approximate
the least fixpoint FPµ(F ) with F k(⊥). This is too conservative, when (i) the
least fixpoint is not reached in the ω-step (i.e., when FPµ(F ) 6= Fω(⊥)), or (ii)
the bound k is too large to express it and for the underlying CHC solver to
reason about (e.g. when k is expressed by the Ackermann function). One way
to overcome this problem is to represent a bound as a tuple of integers. For
example, P (x̃) =µ ϕ can be approximated by P ′(y1, y2, x̃), which is defined by:

P ′(y1, y2, x̃) =ν y1 > 0 ∧ y2 > 0 ∧ ϕ′,

where ϕ′ is the formula obtained from ϕ′ by replacing each subformula of the
form P (ã) with

P ′(y1, y2 − 1, ã) ∨ ∀y′2.(y′2 ≥ max(a′1, . . . , a
′
k)⇒ P ′(y1 − 1, y′2, ã)).

Note that when the value of y1 is decreased, the value of y2 can be reset. This
corresponds to the use of a lexicographic ranking function in termination verifi-
cation. ut

Figure 3 shows pseudo code of our overall procedure. The procedure
CheckValidity takes as input an HES Φ and an entry predicate main and
returns whether Φ |= main() holds. If Φ is ν-only (i.e., it contains neither ∃ nor
µ), then the procedure converts the problem to the corresponding CHC satisfia-
bility problem, and calls a backend CHC solver. Similarly, if Φ is µ-only (i.e., it
contains neither ∀ nor ν), then the procedure makes the de Morgan dual of the
problem by MakeDual, converts it to CHC, and calls a CHC solver; in this case,
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CheckValidity(Φ, main){ /* Φ: HES, main: Entry formula */

if Φ is a ν-only HES then return CHCsolver(toCHC(MakeDual(Φ,main)))
else if Φ is a µ-only HES then return not(CHCsolver(toCHC(Φ,main)))
else return (CheckSub(Φ, main) || not(CheckSub(MakeDual(Φ,main))));

}
CheckSub(Φ, main){
(Φ′,main′) := ElimMu(Φ,main)
while(true) {

if CHCsolver(toCHC(Φ′,main′)) then return true

else (Φ′,main′) := IncreaseBounds(Φ′,main′); }
}

Fig. 3. Mu2CHC Procedure

the final result is the negation of the output of the CHC solver. The remaining
is the case where Φ has alternations between µ and ν. In this case, the proce-
dure runs the subprocedure CheckSub for proving the original problem and its
dual in parallel. As described above, CheckSub approximates a given HES Φ to a
ν-only HES Φ′ and then converts Φ′ to CHC. Due to the under-approximation,
the result is valid only if the CHC solver returns true (which means the formula
is valid); if the CHC solver returns false or time-outs, the procedure increases
bounds (a′1, . . . , a

′
k used for eliminating µ) and repeats the loop.

5 Implementation and Evaluation

We have implemented a validity checking tool Mu2CHC for the fixpoint logic in
OCaml, based on the method in Section 4. We use Spacer [27] and HoIce [13] as
the backend CHC solvers of Mu2CHC. In addition, we have also implemented
a translator from CTL verification problems for C programs to Mu-Arithmetic
formulas, which supports only a very small subset of C, just large enough to cover
the benchmark programs of [17]. We have not yet implemented the translations
described in Sections 3.1 and 3.2 (implementing them for a full-scale language
is not difficult but tedious); thus, the outputs of those translations used in the
experiments below have been obtained by hand.

As the set of bounds {a′1, . . . , a′k} used for approximating µ-formulas by ν-
formulas (recall Remark 2), Mu2CHC uses {c1x1+...+cnxn+B | ci ∈ {−A,A}}
where A,B are positive integers, and x1, . . . , xn are the variables in scope. Those
bounds are equivalent to the single bound A(|x1|+ ...+ |xn|)+B. Mu2CHC first
sets A = 1, B = 10, and doubles them each time the IncreaseBounds procedure
in Figure 3 is called. In the implementation, an existentially-quantified formula
∃x.ϕ is directly approximated by the formula ∀x.x ≥ a′1 ∧ · · · ∧ x ≥ a′k ⇒ P (x),
where P (x) =ν x ≥ 0∧(ϕ∨ [−x/x]ϕ∨P (x−1)) (rather than encoding it using µ
as in Remark 1 and then approximating µ by ν). Note that ∀x.x ≥ a′1∧· · ·∧x ≥
a′k ⇒ P (x) is equivalent to ∃x.x ≤ max(a′1, . . . , a

′
k) ∧ ϕ.
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We have tested Mu2CHC against our own benchmark set, and the standard
benchmark set for CTL verification [17]. The tool was run on an Intel Core i5
2.7 GHz dual-core processor with main memory of 8 GB.

The first table in Table 1 shows the results on our own benchmark set. The
columns Exp. and Act. show expected and actual results, respectively, where X,
7, and ? denote “valid”, “invalid”, and “unknown”, respectively. All the problems
except ex4 contain nested ν and µ. The problems 1–6 encode some properties of
integer arithmetic in the fixpoint logic. The problems 7–22 encode linear-time
properties of recursive programs, based on the translation in Section 3 (with
some hand-optimizations). In particular, 7 and 8 are ΦD0,A0

in Section 3.2 and
a variation of it. The problems 9-14 are from [23, 28, 31]. For those problems,
the formulas encode the property “there is an (infinite) error trace that violates
an expected linear-time property.” Those formulas are invalid, since the original
programs have actually no error trace. The rest of the problems (23–28) encode
temporal property of while-programs, based on the translation in Section 3.1.
Among them, the problems 23 and 24 verify the properties νX.(x+y ≥ 0∧��X)
and νX.µY.�Y ∨ (0 ≥ x∧ (µZ.�Z ∨ (x ≥ 1∧X))) respectively, which we believe
cannot be expressed in CTL*. The problem ex6 has been taken from a test case7

of T2 [15], and verifies the CTL* property AG(AFG(x = 0) ∨ AFG(x = 1)). See
Appendix B for more details on the benchmark set. Our tool could successfully
check the validity of Mu-Arithmetic formulas, except the problem 22. It requires
a reasoning about the divisibility predicate, which is not well handled by the
underlying CHC solvers.

The table below in Table 1 shows the result for the “industrial” benchmark
set from [17]; the result for the “small” benchmark set is provided in Appendix B.
For comparison, we take the results from [17] verbatim (note that the execution
time is measured by using a different processor).8 As the table shows, our tool
could successfully solve all the problems and outperforms [17] in most cases
(note however the difference in the experimental environments). This may be a
bit surprising, as our tool is not customized for CTL verification.

6 Related Work

As already mentioned, our work has been motivated by recent proposals of re-
ductions from program verification to validity/satisfiability checking in fixpoint

7 https://github.com/hkhlaaf/T2/blob/master/test/ctlstar test.t2.
8 There are some discrepancies on the verification results among [17], [3] and ours.

We are not sure about this, but it is most likely because the benchmark set has
accidentally been modified when it was passed around. We have taken the industrial
set from that of E-HSF [3] provided by Andrey Rybalchenko. Note, however, that
we found some discrepancies between the C programs and their encodings in the
E-HSF; that explains the difference between the outputs of our tool and those of
E-HSF [3]. The “small” set was provided by Eric Koskinen. For 26–28, the results
are “invalid” for both ϕ and ¬ϕ (as in [3]); this is not a contradiction, as the checked
properties are of the form “for all the initial states, ϕ (or ¬ϕ) holds.”



Temporal Verification of Programs via First-Order Fixpoint Logic 23

Table 1. Experimental Results. The upper table shows the results for our own bench-
mark set, and the lower table shows the results for the Industrial Set from [17].

Benchmark Name Exp. Act. Time[s]

1. simple-nest X X 0.21

2. simple-nest-inv X X 0.19

3. lines1 X X 1.72

4. lines2-invalid 7 7 0.27

5. lines3 X X 1.95

6. lines4 X X 1.66

7. ex3 X X 9.36

8. ex3-forall X X 22.87

9. hofmann1 7 7 0.17

10. hofmann2 7 7 0.48

11. koskinen1 fo 7 7 0.27

12. koskinen2 7 7 1.50

13. koskinen3 7 7 0.46

14. intro 7 7 1.96

Benchmark Name Exp. Act. Time[s]

15. infinite1 X X 1.58

16. infinite1b X X 2.97

17. infinite1c-invalid 7 7 1.64

18. infinite2 X X 0.36

19. infinite3 X X 0.13

20. intfun1-invalid 7 7 0.06

21. intfun2-invalid 7 7 0.06

22. intfun3-invalid 7 ? -

23. ex4 X X 0.09

24. ex5 X X 0.13

25. ex6 7 7 1.58

26. ctl1 X X 0.79

27. ctl2 X X 5.50

28. ctl2b-invalid 7 7 1.72

Problem ID
and Property
ϕ

|= ϕ |= ¬ϕ

Exp.
[17] Mu2CHC

Exp.
[17] Mu2CHC

Act. Time[s] Act. Time[s] Act. Time[s] Act. Time[s]

1. AG(p⇒ AFq) X X 4.6 X 0.40 7 7 12.5 7 0.41
2. AG(p⇒ AFq) 7 7 9.1 7 0.10 X X 3.5 X 0.32
3. AG(p⇒ EFq) X X 9.5 X 0.23 7 7 18.1 7 1.57
4. AG(p⇒ EFq) 7 7 1.5 7 0.65 X X 105.7 X 0.82
5. AG(p⇒ AFq) X X 2.1 X 0.49 7 7 6.5 7 3.91
6. AG(p⇒ AFq) 7 7 1.8 7 0.15 X X 1.2 X 2.91
7. AG(p⇒ EFq) X X 3.7 X 4.91 7 7 8.7 7 6.33
8. AG(p⇒ EFq) 7 7 1.5 7 5.55 X X 5.6 X 4.25
9. AG(p⇒ AFq) X X 38.9 X 0.65 7 7 1930.9 7 3.27
10. AG(p⇒ AFq) 7 7 148.0 7 28.20 X X 1680.7 X 29.53
11. AG(p⇒ EFq) X X 90.0 X 0.42 7 ? - 7 2.69
12. AG(p⇒ EFq) X 7 107.8 X 0.52 7 ? - 7 2.92
13. AFq ∨ AFp 7 X 34.3 7 0.16 X 7 62.3 7 14.62
14. AFq ∨ AFp 7 7 18.8 7 0.20 X X 7.6 X 1.91
15. EFq ∧ EFp X X 1261.0 X 21.87 7 7 0.9 7 0.14
16. EFq ∧ EFp 7 ? - 7 1.80 X X 0.6 X 0.16
17. AGAFp X X 596.7 X 0.58 7 7 1471.7 7 2.39
18. AGAFp 7 7 65.1 7 0.07 X X 351.1 X 0.23
19. AGEFp 7 ? - 7 0.46 X 7 85.5 X 0.38
20. AGEFp 7 ? - 7 0.89 X X 255.8 X 0.52
21. AGAFp 7 ? - 7 1.22 X 7 45.3 X 0.29
22. AGAFp 7 7 38.1 7 0.13 X X 35.2 X 0.32
23. AGEFp 7 ? - 7 0.11 X ? - X 0.11
24. AGEFp 7 7 42.7 7 0.11 X X 30.2 X 1.62
25. p⇒ AFq X X 70.2 X 17.17 7 7 0.4 7 0.13
26. p⇒ AFq 7 7 32.4 7 0.84 7 X 4.5 7 0.09
27. p⇒ EFq 7 X 18.5 7 0.94 7 7 0.5 7 0.09
28. p⇒ EFq 7 7 1.3 7 0.07 7 X 0.3 7 0.11
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logics [3, 5, 7–9, 22, 26, 32, 40]. The idea of using CHC in program analysis or
verification can actually be further traced back to earlier studies on constraint
logic programming [19,24,33].

The combination of our method for proving Mu-Arithmetic formulas with
the translation given in Section 3.1 yields an automated verification method for
the full modal µ-calculus model checking of while-programs with infinite data. In
contrast, the previous temporal verification methods have been restricted to less
expressive temporal logics such as CTL [3,17,18,38], CTL∗ [14], and linear-time
logics such as LTL [16, 20, 31]. As already mentioned, the translation given in
Section 3.1 can be considered a special case of the translation of Watanabe et
al. [40] for higher-order programs. For imperative programs, however, our trans-
lation in Section 3.1 is more direct. Our translation for infinite-data programs
may also be viewed as a generalization of Andersen’s translation from modal
µ-calculus model checking of finite-state systems to Boolean graphs [2].

The reduction from linear-time properties of first-order recursive programs to
the validity checking problem in a first-order fixpoint logic is new, to our knowl-
edge. Kobayashi et al. [26] proposed a translation from linear-time properties of
higher-order programs to the validity checking in a higher-order fixpoint logic
(called HFL), but their translation yields second-order fixpoint logic formulas for
first-order recursive programs.9 Combined with our Mu-Arithmetic prover, the
translation yields a new automated method for proving linear-time properties of
first-order recursive programs. Our translation may be considered a generaliza-
tion of the technique for LTL model checking of recursive state machines [1], to
deal with infinite-data programs.

Our approach of Mu2CHC described in Section 4 has been inspired by termi-
nation verification methods [21, 34] and generalizes the method of Fedyukovich
et al. [21]. A related technique has been proposed by Biere et al. [4] for finite-
state model checking. The Mu2CHC approach also much relies on the recent
advance of CHC solving techniques [5, 13, 27, 37]. An alternative approach to
approximate µ-formulas by ν-formulas would be to generalize the termination
verification method based on transition invariants [35], as sketched in [40].

As discussed in Section 2.3, the validity checking problem for Mu-Arithmetic
may be seen as a generalization of the satisfiability problem for CHC [8, 9].
A few extensions of CHC have been previously studied [3, 7]. To encode CTL
verification problems, Beyene et al. [3] extended CHC with a special predicate
dwf such that dwf (r) if and only if r is disjunctively well-founded. This fragment
is close to Mu-Arithmetic, in that, as an alternative to the method in Section 4,
we can replace a µ-equation P (x̃) =µ ϕ with P (x̃) =ν ϕ

′, where ϕ′ is the formula
obtained from ϕ by replacing each subformula of the form P (ã) with r(ã, x̃)∧P (ã)
for a well-founded relation r. Allowing universal quantifiers in bodies of CHC [7]
corresponds to allowing existential quantifiers in our HES (recall that we took

9 They assume that source programs are in a CPS (continuation passing style) form,
and then translate an order-n program to an order-n HFL formula. Since a first-
order recursive program is converted to an order-2 CPS program, the order of the
formula obtained by their translation is 2.
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de Morgan dual in the conversions between a fragment of Mu-Arithmetic and
CHC in Section 2.3). In contrast, there is no counterpart of the extension with
existential quantifiers (in head positions of CHC) [3] in our fixpoint logic, which
indicates that such an extension is unnecessary for the µ-calculus model checking
of while programs.

7 Conclusion

We have proposed a method for proving validity of first-order fixpoint logic with
integer arithmetic. Combined with the reduction in Section 3.1, the proposed
methods yield an automated, unifying verification method for temporal prop-
erties of while-programs, supporting all the properties expressive in the modal
µ-calculus. We have also presented a reduction from linear-time properties of
first-order recursive programs to validity of fixpoint formulas, which also yields
an automated method for temporal properties of first-order recursive programs,
supporting all the properties expressive by Büchi automata. Future work in-
cludes further refinement of our verification method (e.g., on the point discussed
in Remark 3), and an extension of our tool lo support data types other than
integers. Extending our methods in Sections 3 and 4 to support algebraic data
types is not difficult, but the CHC solving phase may become a bottleneck, as
the current CHC solvers are not very good at dealing with algebraic data types.

We also plan to extend the methods to deal with higher-order fixpoint logic
with integer arithmetic, so that temporal properties of higher-order functional
programs can be automatically verified based on the work of Kobayashi et al. [26,
40].
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Appendix

A Correctness of the Translation

This section proves the correctness of the translation in Section 3. Theorem 1
can be split into the following two theorems.

Theorem 2 (completeness). Let D be a program and A be a Büchi automa-
ton. If L(D) ∩ L(A) 6= ∅, then ΦD |= mainq0,tt().

Theorem 3 (soundness). Let D be a program and A be a Büchi automaton.
If ΦD |= mainq0,tt(), then L(D) ∩ L(A) 6= ∅.

We later use the characterizations of least/greatest fixpoints by ordinals. Let
F ∈ D → D be a monotonic function on complete lattice D. For each ordinal γ,
we define F γ by:

F γ(x) =


x if γ = 0

F (F γ
′
(x)) if γ = γ′ + 1⊔

γ′<γ F
γ′(x) if γ is a limit ordinal.

The following is a standard fact (one can choose as γ an ordinal greater than
the cardinality of D).

Fact 4 Let D be a complete lattice and F ∈ D → D a monotonic function.
Then, there exists an ordinal γ such that FPµ(F ) = F γ(⊥D) and FPν(F ) =
F γ(>D).

We define the size of an expression e, written #(e), by

#(v) = #(∗) = 1 #(a1 op a2) = #(a1) + #(a2)
#(A; e) = 1 + #(e) #(f(v1, . . . , vk)) = 2 + k
#(let x = e1 in e2) = #(if v ≥ 0 then e1 else e2) = #(e1) + #(e2) + 1

Below we first characterize the verification problem by product construc-
tion semantics in Section A.1. We then prove completeness and soundness in
Sections A.2 and A.3 respectively.

A.1 Characterization of the Verification Problem by Product
Construction Semantics

We introduce another operational semantics, which is convenient for characteriz-
ing the verification problem. Let D be a program and A be a Büchi automaton.

We define the transition relation (e, q)
b−→D (e′, q′) by the following rules.

n ∈ Z

(E[∗], q) ff−→D (E[n], q)
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a 6∈ Z val(a) = n

(E[a], q)
ff−→D (E[n], q)

(f(x1, . . . , xk) = e) ∈ D

(E[f(n1, . . . , nk)], q)
ff−→D (E[[n1/x1, . . . , nk/xk]e], q)

(E[let x = n in e], q)
ff−→D (E[[n/x]e], q)

n ≥ 0

(E[if n ≥ 0 then e1 else e2], q)
ff−→D (E[e1], q)

n < 0

(E[if n ≥ 0 then e1 else e2], q)
ff−→D (E[e2], q)

q′ ∈ ∆(q, A) b = (q′ ∈ F )

(E[A; e], q)
b−→D (E[e], q′)

We often omit the subscript D. The relation (e, q)
b−→D (e′, q′) represents a

transition of the product of the program D and the automaton A, where the
automaton may change its state from q to q′ according to the event that may be
generated by the transition of the program from e to e′, and b represents whether

the automaton has changed its state to a final state. We write (e, q)
b

=⇒D (e′, q′)

if (e, q)
b1−→D · · ·

bn−→D (e′, q′) and b = b1∨· · ·∨bn for some n ≥ 0 and b1, . . . , bn.

The following lemma follows immediately from the definitions.

Lemma 1. L(D) ∩ L(A) 6= ∅ if and only if there exists an infinite transition
sequence

(main(), q0)
b1−→D (e1, q

′
1)

b2−→D (e2, q
′
2)

b3−→D · · ·

where bi = tt for infinitely many i’s.

A.2 Completeness

Suppose that L(D) ∩ L(A) 6= ∅. By Lemma 1, there exists an infinite transition
sequence

π = (main(), q0)
b1−→ (e1, q1)

b2−→ (e2, q2)
b3−→ · · ·

where bi = tt for infinitely many i’s.
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We define ρπ by:

ρπ(fq,b,q′)(ñ, r) =



tt if (ej , qj) = (E[f(ñ)], q) and (ek, qk) = (E[r], q′) for some
j < k, with b = bj+1∨ · · ·∨ bk and ei is of the form E[e′i]

for every i such that j ≤ i ≤ k, where e′j = f(ñ)
bj+1−→D

· · · bk−→D e′k = r. · · · (*1)
ff otherwise

ρπ(fq,b)(ñ) =

tt if ej = (E[f(ñ)]) for some j, and the function call f(ñ)
never returns in π. · · · (*2)

ff otherwise

Since ρπ(mainq0,tt)() = tt, Theorem 2 follows immediately from the follow-
ing lemma.

Lemma 2. ρπ v JΦDK.

To prove Lemma 2, we prepare a few lemmas.
The following lemma (together with Lemma 8 proved later) ensures that the

formula [e]q,b,q′,r follows the intuition explained in Section 3.2.

Lemma 3. If (e, q)
b

=⇒D (r, q′) and ρ(fq1,b′,q2)(ñ, r′) = tt for every subreduc-

tion10 sequence of the form (E[f(ñ)], q1)
b′

=⇒D (E[r′], q2), then J[e]q,b,q′,rKρ = tt.

Proof. The proof proceeds by induction on the length of the reduction sequence

(e, q)
b

=⇒D (r, q′), with case analysis on e.

– Case e ≡ n ∈ Z: In this case, n = r, q = q′ and b = ff. Thus, [e]q,b,q′,r =
(n = r); hence the result follows immediately.

– Case e ≡ a with a 6∈ Z: In this case, val(a) = r , q = q′ and b = ff. Thus,
J[e]q,b,q′,rKρ = Ja = rKρ = tt.

– Case e ≡ ∗: In this case, q = q′ and b = ff. Thus, [e]q,b,q′,r = tt.
– Case e ≡ f(ñ): by the assumption, ρ(fq,b,q′)(ñ, r) = tt.
– Case e ≡ if n ≥ 0 then e1 else e2: We discuss only the case where n ≥ 0;

the other case is similar. We have (e, q)
ff−→D (e1, q)

b
=⇒D (r, q′). By the

induction hypothesis, J[e1]q,b,q′,rKρ = tt. Thus, J[e]q,b,q′,rKρ = J(n ≥ 0) ∧
[e1]q,b,q′,r ∨ · · ·Kρ = tt.

– Case e ≡ A; e′: In this case, (e, q)
q′′∈F−→ D (e′, q′′)

b′
=⇒D (r, q′), with b = (q′′ ∈

F ) ∨ b′ and q′′ ∈ ∆(q, A). By the induction hypothesis, J[e′]q′′,b′,q′,rKρ = tt.
The result follows, since [A; e′]q,b′,q′,r = [e′]q′′,b′,q′,r ∨ · · ·.

– Case e ≡ let x = n in e′: In this case, (e, q)
ff−→D ([n/x]e′, q)

b
=⇒D (r, q′),

The result follows immediately from the induction hypothesis.
– Case e ≡ let x = e1 in e2, with e1 6∈ Z: We have:

(e, q)
b1−→D (let x = r1 in e2, q

′′)
b2=⇒D (r, q′),

10 Including (e, q)
b

=⇒D (r, q′) itself.
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with b = b1 ∨ b2 with (e1, q)
b1=⇒D (r1, q

′′). By the induction hypothesis,

J[let x = r1 in e2]q′′,b2,q′,rKρ = J∃x.(x = r1 ∧ [e2]q′′,b2,q′,r)Kρ = tt,

and J[e1]q,b1,q′′,r1Kρ = tt. The result follows, since [e]q,b,q′,r =
∃x.([e1]q,b1,q′′,x∧[e2]q′′,b2,q′,r), which is entailed by ∃x.(x = r1∧[e2]q′′,b2,q′,r)∧
[e1]q,b1,q′′,r1 . ut

The next few lemmas state properties of the formula [e]q,b.

Lemma 4. If J[e]q,bKρ = tt, then J[E[e]]q,bKρ = tt.

Proof. Straightforward induction on E. ut

Lemma 5. Let b ∈ B. Suppose: (i) (e, q)
b′

=⇒D (E[f(ñ)], q′), (ii)

ρ(fq′,b∨b′)(ñ) = tt, and (iii) if (e, q)
b′

=⇒D (E[f(ñ)], q′) contains a reduc-

tion of the form (E′[g(m̃)], q1)
ff−→D (E′[e′], q1), the reduction is extended to

(E′[g(m̃)], q1)
ff

=⇒D (E′[r], q1) inside (e, q)
b′

=⇒D (E[f(ñ)], q′) (i.e., every func-

tion call in (e, q)
b′

=⇒D (E[f(ñ)], q′) returns inside it), and ρ(gq1,b1,q2)(m̃, r) =
tt. Then, J[e]q,bKρ = tt.

Proof. The proof proceeds by double induction on the length of the reduction

sequence (e, q)
b′

=⇒D (E[f(ñ)], q′) and the size of e. In the base case (where
the length is 0), e = E[f(ñ)]. By the assumption (ii) and Lemma 4, we have
J[e]q,bKρ = tt as required. For the induction step, we perform case analysis on e.

– Case e ≡ a or e ≡ ∗: This contradicts the assumption (e, q)
b′

=⇒D

(E[f(ñ)], q′).
– Case e ≡ g(m̃): This contradicts the assumption (iii) (that every function

call returns).
– Case e ≡ if n ≥ 0 then e1 else e2: We discuss only the case where n ≥ 0;

the other case is similar. We have (e, q)
ff−→D (e1, q)

b
=⇒D (E[f(ñ)], q′). By

the induction hypothesis, J[e1]q,bKρ = tt. Thus, J[e]q,bKρ = J(n ≥ 0)∧ [e1]q,b∨
· · ·Kρ = tt.

– Case e ≡ A; e′: In this case, (e, q)
q′′∈F−→ D (e′, q′′)

b′′
=⇒D (E[f(ñ)], q′), with

b′ = (q′′ ∈ F ) ∨ b′′ and q′′ ∈ ∆(q, A). By the induction hypothesis,
J[e′]q′′,b∨(q′′∈F )′Kρ = tt. The result follows, since [A; e′]q,b = [e′]q′′,b∨(q′′∈F ) ∨
· · ·.

– Case e ≡ let x = n in e′: In this case, (e, q)
ff−→D ([n/x]e′, q)

b′
=⇒D

(E[f(ñ)], q′). The result follows immediately from the induction hypothe-
sis.

– Case e ≡ let x = e1 in e2, with e1 6∈ Z: If e1 evaluates to an integer in the

reduction sequence (e, q)
b′

=⇒D (E[f(ñ)], q′), i.e., if

(e, q)
b1−→D (let x = r1 in e2, q

′′)
b2=⇒D (E[f(ñ)], q′),
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then, by the induction hypothesis,

J[let x = r1 in e2]q′′,b∨b1Kρ = J∃x.(x = r1 ∧ [e2]q′′,b∨b1)Kρ = tt.

By Lemma 3, we also have J[e1]q,b1,q′′,r1Kρ = tt. The result follows, since
[e]q,b = · · · ∨ ∃x.([e1]q,b1,q′′,x ∧ [e2]q′′,b∨b1), which is entailed by (x = r1 ∧
[e1]q,b1,q′′,x ∧ [e2]q′′,b∨b1).
If e1 does not evaluate to an integer in the reduction sequence, E = let x =
E1 in e2. By the induction hypothesis, J[e1]q,bKρ = tt. By Lemma 4, we have
J[e]q,bKρ = tt as required. ut

The following is an (co)induction principle about nexted fixpoints, which is
used for proving Lemma 2.

Lemma 6 (mixed induction). Let D1, D2 be complete lattices. Assume that
F2 : D2 ×D1 → D2, F1 : D2 ×D1 → D1 are monotonic functions, and that

x2 = FPν(λz2.F2(FPµ(z2, λz1.F1(z2, z1)))) x1 = FPµ(λz1.F1(x2, z1)).

If y1 ∈ D1 and y2 ∈ D2 satisfy:

y2 v F2(y2, y1) y1 v FPµ(λz1.F1(y2, z1)),

then y1 v x1 and y2 v x2.

Proof. By the assumption, we have:

y2 v F2(y2, y1) v F2(y2,FPµ(λz1.F1(y2, z1))),

i.e., y2 is a fixpoint of λz2.F2(FPµ(z2, λz1.F1(z2, z1))). We have thus y2 v x2.
Using the assumption and y2 v x2, we have

y1 v FPµ(λz1.F1(y2, z1)) v FPµ(λz1.F1(x2, z1)) = x1,

as required. ut

We are now ready to prove Lemma 2.

Proof (Lemma 2). Let ρ1 and ρ2 be the restrictions of ρπ to PD,fin ∪PD,ff and
PD,tt respectively. By Lemma 6 and the definition of JΦDK, it suffices to show:

ρ2 v JED,ttKρπ (1)

ρ1 v JΦDK1(ρ2)(= FPµ(λρ ∈ ΓPD,fin∪PD,ff .JED,ttKρ2∪ρ)) (2)

To show (2), we define the ranks of (fq,b,q′ , ñ, r) and (fq,b, ñ) by:

– rankπ(fq,b,q′ , ñ, r) is the least value of k − j for j and k that satisfy the
condition (*1) (in the definition of ρπ).

– rankπ(fq,b, ñ) is the least value of k− j, where j satisfies the condition (*2)
(in the definition of ρπ) and k is the least value greater than j such that
bk = tt.
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We show

(i) ρπ(fq,b,q′)(ñ, r) = tt implies (JΦDK1(ρ2))(fq,b,q′)(ñ, r) = tt.
(ii) ρπ(fq,ff)(ñ) = tt implies (JΦDK1(ρ2))(fq,b)(ñ) = tt.

by induction on rankπ(fq,b,q′ , ñ, r) and rankπ(fq,b, ñ) respectively; that will com-
plete the proof of (2). The former is also used for proving the latter.

We first show (i) by induction on rankπ(fq,b,q′ , ñ, r). By the definition of ρπ
and rankπ, there exist j and k such that k − j = rankπ(fq,b,q′ , ñ, r), and

(ej , qj) = (E[f(ñ)], q)
ff−→D (E[[ñ/x̃]ef ], q)

b
=⇒D (E[r], q′) = (ek, qk).

By the induction hypothesis, (JΦDK1(ρ2)))(gq1,b′,q2)(m̃, r′) = tt for every sub-

reduction sequence (E1[g(m̃)], q1)
b′

=⇒D (E1[r′], q2) of (E[[ñ/x̃]ef ], q)
b

=⇒D

(E[r], q′). Thus, by Lemma 3,

(JΦDK1(ρ2))(fq,b,q′)(ñ, r) = J[[ñ/x̃]ef ]q,b,q′,rKρ2∪(JΦDK1(ρ2)) = tt,

where f(x̃) = ef ∈ D, as required.
Next, we show (ii) by induction on rankπ(fq,b, ñ). By the assump-

tion ρπ(fq,b)(ñ) = tt, π contains an infinite sequence (E[f(ñ)], q)
b′1−→D

(E[[ñ/x̃]e], q)
b′2−→D · · ·, where f(ñ) never returns, and b′rankπ(fq,b,ñ) = tt

and b′i = ff for every i < rankπ(fq,b, ñ). Since f(ñ) does not return,

(E[[ñ/x̃]e], q)
b′2−→D · · ·must be of the form: (E[[ñ/x̃]e], q)

b′′
=⇒D (E[E′[g(m̃)]], q′)

where g directly comes from e (in other words, g(m̃) is a direct call from f(ñ))
and g(m̃) does not return either. By the construction of ρπ, ρ2(gq′,tt)(m̃) = tt.
Also, if b′′ = ff, then by the induction hypothesis, (JΦDK1(ρ2))(gq′,ff)(m̃) = tt.

Thus, ([ñ/x̃]e, q)
b′′

=⇒D (E′[g(m̃)], q′) with ρ = ρ2 ∪ (JΦDK1(ρ2)) satisfies the
assumptions of Lemma 5. Therefore, we have

(JΦDK1(ρ2))(fq,b)(ñ) = J[ñ/x̃]eKρ2 ∪ (JΦDK1(ρ2)) = tt,

as required.
It remains to show (1). What we need to show is:

(iii) ρπ(fq,tt)(ñ) = tt implies J[ñ/x̃]eKρ2∪(JΦDK1(ρ2)) = tt,

for every (f(x̃) = e) ∈ D. By the assumption ρπ(fq,tt)(ñ) = tt, π contains an
infinite reduction sequence

(E[f(ñ)], q)
ff−→D (E[[ñ/x̃]e], q)

b1=⇒D (E[E′[g(ñ)]], q′)
b2=⇒D · · · ,

where g(ñ) is a direct call from f(ñ), and g(ñ) never returns. The reduction

sequence ([ñ/x̃]e, q)
b1=⇒D (E′[g(ñ)], q′) with ρ = ρ2 ∪ (JΦDK1(ρ2)) satisfies the

assumptions of Lemma 5. Thus, we have J[ñ/x̃]eKρ2∪(JΦDK1(ρ2)) = tt, as required.
ut
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Theorem 2 follows immediately from Lemma 2.

Proof (Proof of Theorem 2). Suppose L(D) ∩ L(A) 6= ∅. By Lemma 1, there
exists an infinite transition sequence

π = (main(), q0)
b1−→ (e1, q1)

b2−→ (e2, q2)
b3−→ · · ·

where bi = tt for infinitely many i’s. By the definition of ρπ, ρπ(mainq0,tt)() =
tt. By Lemma 2, we have JΦDK(mainq0,tt)() = tt, i.e., ΦD |= mainq0,tt(). ut

A.3 Soundness

We prove soundness (Theorem 3) in this section. Below, we write Θ for λσ2 ∈
ΓPD,tt .λσ1 ∈ ΓPD,fin∪PD,ff .JEfin ∪ ED,ffKσ1∪σ2

. We first prepare a few lemmas.

Lemma 7. If (Θ(σ2))γ(ρ)(f)(ñ)) = tt and ρ(f)(ñ) = ff, then there exists a
successor ordinal γ′ such that (Θ(σ2))γ

′
(ρ)(f)(ñ)) = tt and γ′ ≤ γ.

Proof. Since ρ(f)(ñ) = ff, γ must be a successor ordinal or a limit ordinal. If γ
is a limit ordinal,

(Θ(σ2))γ(ρ)(f)(ñ)) =
⊔
γ′<γ

(Θ(σ2))γ
′
(ρ)(f)(ñ)).

Therefore, there exists γ′ such that (Θ(σ2))γ
′
(ρ)(f)(ñ)) = tt. ut

Let σ0, σ1, and σ2 be the restrictions of JΦDK to PD,fin, PD,ff and PD,tt
respectively. We write ργ for σ2 ∪ (Θ(σ2))γ(σ0).

Lemma 8. If J[e]q,b,q′,rKργ = tt, then (e, q)
b−→D (r, q′).

Proof. For an ordinal ξ, let ρ′ξ be (Θ(σ2))ξ(∅). Since [e]q,b,q′,r contains only
predicates of the form fq,b,q′ , it suffices to sow:

If J[e]q,b,q′,rKρ′ξ = tt, then (e, q)
b−→D (r, q′).

for any ξ. We prove it by double induction on ξ and the size of e.

– Case e = a: By the assumption J[e]q,b,q′,rKρ′ξ = tt, we have b = ff, q = q′,

and Ja = rKρ′ξ = tt. Thus, the result follows immediately.

– Case e = ∗: By the assumption J[e]q,b,q′,rKρ′ξ = tt, we have b = ff and

q = q′. The result follows immediately, as (∗, q) ff−→D (r, q).
– Case e = f(ñ): By Lemma 7, we may assume that ξ is a successor ordinal.

By J[e]q,b,q′,rKρ′ξ = tt, we have J[[ñ/x̃]/ef ]q,b,q′,rKρ′ξ−1
= tt. Thus, the result

follows from the induction hypothesis.
– Case e = let x = e1 in e2: By the assumption J[e]q,b,q′,rKρ′ξ = tt, there exists

r1, b1, b2, q
′′ such that J[e1]q,b1,q′′,r1Kρ′ξ = tt and J[[r1/x]e2]q′′,b2,q′,rKρ′ξ = tt

with b = b1 ∨ b2. By the induction hypothesis, we have (e1, q)
b1=⇒D (r′, q′′)

and ([r/x]e2, q
′′)

b2=⇒D (r, q′). Thus, we have (e, q)
b

=⇒D (r, q′) as required.
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– Case e = if n ≥ 0 then e1 else e2: We discuss only the case n ≥ 0, since
the other case is similar. Since [e]q,b,q′,r = ((n ≥ 0) ∧ [e1]q,b,q′,r) ∨ ((n <
0) ∧ [e1]q,b,q′,r), by the assumptions J[e]q,b,q′,rKρ′ξ = tt and n ≥ 0, we have

J[e1]q,b,q′,rKρ′ξ = tt. By the induction hypothesis, we have (e1, q)
b

=⇒D (r, q′),

from which the result follows immediately.
– Case e = A; e′: By the assumption J[e]q,b,q′,rKρ′ξ = tt, there exists b′ and

q′′ ∈ ∆(q,A) such that J[e′]q′′,b′,q′,rKρ′ξ = tt and b = (q′′ ∈ F ) ∨ b′. By the

induction hypothesis, we have (e′, q′′)
b′

=⇒D (r, q′), from which the result
follows immediately. ut

Lemma 9. If J[e]q,bKργ = tt, then either (i) e = E[f(ñ)] and ργ(fq,b)(ñ) =

tt, or (ii) there exists e′ such that (e, q)
b′

=⇒D (e′, q′) and #(e′) < #(e) and
J[e′]q′,b∨b′Kργ = tt.

Proof. Since J[e]q,bKργ = tt, e is not a value. So, e must be of the form e = E[I].
We show the required property by induction on E. For the base case (where
E = [ ]), we perform case analysis on I:

– Case I is a or ∗: This contradicts the assumption J[e]q,bKργ = tt.
– Case I = f(ñ): (i) holds.
– Case I = let x = n in e1: In this case, we have: [e]q,b = ∃x.x = n ∧ [e1]q,b,

which is logically equivalent to [n/x][e1]q,b = [[n/x]e1]q,b. Thus, the required
result holds for e′ = [n/x]e1 and q′ = q.

– Case I = if n ≥ 0 then e1 else e2: We discuss only the case n ≥ 0; the
other case n < 0 is similar. If n ≥ 0, we have

J[e]q,bKργ = J((n ≥ 0) ∧ [e1]q,b) ∨ ((n < 0) ∧ [e2]q,b)Kργ = J[e1]q,bKργ .

Thus, the required result holds for e′ = e1 and q′ = q.
– Case I = A; e1: In this case, we have: [e]q,b = ∃q′ ∈ ∆(q, A).[e1]q′,b∨b′ .

By the assumption J[e]q,bKργ = tt, there exists q′ ∈ ∆(q, A) such that
J[e1]q′,b∨b′Kργ = tt. Thus, the required result holds for e′ = e1.

For the induction step, suppose E ≡ let x = E1 in e2. Since we have

[e]q,b = [E1[I]]q,b ∨ ∃x, b′, q′′.([E1[I]]q,b′,q′′,x ∧ [e2]q′′,b∨b′),

we have either J[E1[I]]q,bKργ = tt, or there exists r, b′, q′′ such that
J[E1[I]]q,b′,q′′,rKργ = tt and J[[r/x]e2]q′′,b∨b′Kργ . In the former case, the result
holds for e′ = E1[I]. In the latter case, by Lemma 8 and J[E1[I]]q,b′,q′′,rKργ = tt,

we have (E1[I], q)
b′

=⇒D (r, q′′). Thus, the required result holds for e′ = [r/x]e2.
ut

Lemma 10. If J[e]q,bKργ = tt, then (e, q)
b′

=⇒D (E[g(m̃)], q′) and
J[g(m̃)]q,b∨b′KJΦK = tt for some E, g, q, and m̃.

Proof. This follows by straightforward induction on #(e), using Lemma 9.
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Lemma 11. If J[f(ñ)]q,ttKJΦK = tt, then (f(ñ), q)
b

=⇒D (E[g(m̃)], q′) and
J[g(m̃)]q,bKJΦK = tt for some E, g, q, and m̃.

Proof. By the assumption J[f(ñ)]q,ttKJΦK = tt, we have (f(ñ), q)
ff−→D

([ñ/x̃]e, q) with J[[ñ/x̃]e]q,ffKJΦK. By Lemma 10 (note that ργ = JΦK for some
ordinal γ), we have the required result. ut

Lemma 12. If J[f(ñ)]q,ffKργ = tt, then (f(ñ), q)
b

=⇒D (E[g(m̃)], q′) and
J[g(m̃)]q′,bKργ′ = tt, for some γ′ < γ.

Proof. By the assumption J[f(ñ)]q,ffKργ = tt, (Θ(σ2))γ(σ0)(fq,ff)(ñ) =
tt. By Lemma 7, we have a successor ordinal γ′′ ≤ γ such that

(Θ(σ2))γ
′′
(σ0)(fq,ff)(ñ) = tt. Thus, we have (f(ñ), q)

ff−→D ([ñ/x̃]e, q) with
J[[ñ/x̃]e]q,ffKργ′′−1

. By Lemma 10, we have the required result for γ′ = γ′′ − 1.
ut

As a corollary, we have:

Lemma 13. If J[f(ñ)]q,bKJΦK = tt, then (f(ñ), q)
tt

=⇒D (E[g(m̃)], q′) and
J[g(m̃)]q,b′KJΦK = tt for some E, g, q, b′, and m̃.

Proof. By Lemmas 11 and 12, we have either (i) (f(ñ), q)
tt

=⇒D (E[g(m̃)], q′) and

J[g(m̃)]q,ttKJΦK = tt, or (ii) (f(ñ), q)
ff

=⇒D (E[g(m̃)], q′) and J[g(m̃)]q,ffKργ = tt

for some γ. In the latter case, by induction on γ and Lemma 12, we have the
required result. ut

Proof (Theorem 3). An immediate corollary of Lemma 13. ut

B Additional Information about Benchmarks and
Experiments

We provide additional information on our own benchmark set 1.

– The problems 1–6 are validity checking problems for the following fixpoint
logic formulas, which do not necessarily come from program verification prob-
lems.

1 : ∀n.p1(n)⇒ n ≥ 0
where {p1(x) =ν p2(x) ∧ p1(x+ 1)}; {p2(y) =µ y = 0 ∨ p2(y − 1)}.

2 : ∀n.n ≥ 0⇒ p1(n) for p1 above
3 : ∀a, b.∃x ≥ 0.∀x′.x > x′ ⇒ 2x′ + a > x′ + b,

where ∃x and ∀x′ are encoded based on Remark 1.
4− 6 : variations of 3

– Problem 7 is ΦD0,A0
in Section 3.2, and 8 is its variation, obtained by re-

placing ∃x.fqA,ff(x) with ∀x.fqA,ff(x) in the body of mainqA,tt.
– Problems 9 and 10 are from [23].
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– Problems 11-13 are are from [28]; they correspond to the first three examples
in Figure 10 of [28], except that the original version of koskinen1-fo is a
higher-order program, and we have applied inlining to obtain an equivalent
first-order program.

– Problem 14 is from [31].
– Problem 15 encodes the property that, for all m,n, event A occurs infinitely

often in the following program:

let rec f n m =

if n < m then

A; f (n + 1) m

else

f n (m + 1)

in f n m

– Problems 16–19 are variations of Problem 15.
– Problem 20 is obtained from the property that, for every n, event A occurs

infinitely often in the following program:

let rec f x = if x = 0 then 3 else f (x - 3) in

let rec g x =

if x >= 0 then

A; let a = f x in g (x + a)

else loop()

in g(n)

Problems 21 and 22 are variations of 20.
– Problems 23–25 are from Examples 4–6 in Appendix 3.1.
– Problems 26–28 encode CTL properties of labeled transition systems. The

transition systems for 27 and 28 are quite tricky. The formula checked in 27
is ∀n.E(n) where

{E(n) =µ V2(n)};
{V2(n) =ν V3(n+ 1), V3(n) =ν V1(n+ 1),
V1(n) =ν (n ≤ 0 ∧ V4(n+ 1)) ∨ E(n− 3),
V4(n) =ν (n = 0 ∧ V3(n− 6)) ∨ V2(n+ 1)},

and the formula for 28 is a variation of it, obtained by replacing the constant
6 with 5.

The results for the “small” benchmark set from [17] is shown in Table 2.
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Table 2. Benchmark on all the small problems from [17].

Property
|= ϕ |= ¬ϕ

Exp.
PLDI’13 Mu2CHC

Exp.
PLDI’13 Mu2CHC

Act. Time[s] Act. Time[s] Act. Time[s] Act. Time[s]

1. AFp X X 1.2 X 0.14 7 7 0.8 7 0.16
2. AFp 7 7 0.8 7 0.08 X X 0.9 X 0.09
3. AGp X X 0.3 X 0.08 7 7 0.5 7 0.08
4. AGp 7 7 0.5 7 0.08 X X 0.6 X 0.08
5. EFp X X - X 0.09 7 7 0.8 7 0.09
6. EFp 7 7 1.7 7 0.08 X X 2.0 X 0.08
7. EGp X X 0.9 X 0.09 7 7 0.5 7 0.09
8. EGp 7 7 0.9 7 0.09 X X 0.4 X 0.06
9. AGAFp X X 10.8 X 0.16 7 7 1.9 7 0.18
10. AGAFp 7 7 1.9 7 0.09 X X 3.6 X 0.10
11. AGEFp X X 29.0 X 2.32 7 7 3.9 7 3.44
12. AGEGp X X 1.2 X 0.08 7 7 6.3 7 0.09
13. AFEGp X X 55.8 X 0.76 7 7 10.9 7 1.03
14. AFEFp X X 3.7 X 0.68 7 7 33.7 7 0.18
15. AFAGp X X 1.3 X 0.60 7 7 2.7 7 0.82
16. AFAGp 7 7 11.0 7 0.71 X X 5.8 X 0.18
17. EFEGp X X 44.3 X 0.64 7 7 3.6 7 0.96
18. EFEGp 7 7 54.7 7 0.30 X X 10.2 X 1.53
19. EFAGp X X 0.6 X 1.47 7 7 23.8 7 0.13
20. EFAFp X ? - X 0.33 7 7 7.5 7 0.18
21. EGEFp 7 7 10.4 7 0.29 X X 40.3 X 0.29
22. EGAGp X X 0.8 X 0.06 7 7 0.9 7 0.06
23. EGAFp X X 12.5 X 0.39 7 7 13.8 7 0.12
24. EG(q ⇒ EFp) X 7 33.9 X 0.57 7 7 2.0 7 1.04
25. EG(q ⇒ AFp) 7 7 150.2 7 0.08 X 7 13.8 X 0.15
26. AG(q ⇒ EGp) X X 2.2 X 0.09 7 7 6.3 7 0.09
27. AG(q ⇒ EFp) X X 29.5 X 1.46 7 7 3.9 7 4.44


