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Abstract. Refinement types have recently been applied to program ver-
ification, where program verification problems are reduced to type check-
ing or inference problems. For fully automated verification of programs
with recursive data structures, however, previous refinement type sys-
tems have not been satisfactory: they were not expressive enough to state
complex properties of data, such as the length and monotonicity of a list,
or required explicit declarations of precise types by users. To address the
problem above, we introduce parameterized recursive refinement types
(PRRT), which are recursive datatypes parameterized by integer param-
eters and refinement predicates; those parameters can be used to express
various properties of data structures such as the length/sortedness of a
list and the depth/size of a tree. We propose an automated type infer-
ence algorithm for PRRT, by a reduction to the satisfiability problem for
CHCs (Constrained Horn Clauses). We have implemented a prototype
verification tool and evaluated the effectiveness of the proposed method
through experiments.

1 Introduction

There has been a lot of progress on automated/semi-automated verification tech-
niques for functional programs, such as those based on higher-order model check-
ing [6,13,15] and refinement types [23,14,21,20,16,17,19,2,24]. Fully automated
verification of functional programs using recursive data structures, however, still
remains a challenge. In the present paper, we follow the approach using refine-
ment types, and introduce parameterized recursive refinement types and a type
inference procedure for them.

Refinement types can be used to express various properties of recursive data
types. For example, if we are interested in the length of an integer list, we can
prepare a type of the form ilistL[n], which describes a list of length n, and
assign the following types to constructors:

Nil : ilistL[0]

Cons : ∀n.int× ilistL[n]→ ilistL[n+ 1]

The type of Cons indicates that Cons takes a pair consisting of an integer and
a list of length n as an argument, and returns a list of length n + 1. If we
are interested in the sortedness of a list (in the ascending order) instead, we
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may prepare a type of the form ilistS[b, x], which describes a list consisting
of elements no less than x, where the additional Boolean parameter b denotes
whether the list is null (thus, if b is true, the value of x should be ignored). The
following types can then be assigned to the constructors. (Actually, the second
parameter 0 of the type of Nil does not matter and may be any other value.)

Nil : ilistS[true, 0]

Cons : ∀b, x, y. x : int× {ilistS[b, y] | ¬b⇒ x ≤ y} → ilistS[false, x]

Once an appropriate refinement type is assigned to each occurrence of a con-
structor, a standard procedure for automated/semi-automated refinement type
inference (e.g., based on a reduction to the CHC solving problem [17,14,24,2])
is applicable.

A main problem in applying the refinement type approach above to the fully-
automated verification is that each constructor has more than one refinement
type, and it is unclear which type should be used for each occurrence of the
constructor (unless a programmer explicitly declares it). For example, for a sort-
ing function sort, an input list is a plain, unsorted list, while the output list
should be sorted; hence the latter should have type ilistS[b, x] for some b, x.
In the context of fully automated verification, we cannot expect a programmer
to declare the types like ilistL[n] and ilistS[b, x] above. Thus, an automated
verification tool should choose appropriate refinements of recursive data types
from infinitely many candidates.

To address the problem above, we parameterize recursive types with integers
and predicates, and assign generic types to data type constructors. For example,
for integer lists, we prepare a parameterized type ilist〈n; eNil, (ϕCons, eCons)〉,
where n is an integer denoting the number of integer parameters, ϕCons is a
predicate on integers, and eNil and eCons are functions on integer tuples, and we
assign the following types to constructors:

Nil : ∀k, PCons, fNil, fCons.ilist〈k; fNil, (PCons, fCons)〉[fNil()]
Cons : ∀k, PCons, fNil, fCons.∀ỹ.

{x : int× ilist〈k; fNil, (PCons, fCons)〉[ỹ] | PCons(x, ỹ)}
→ ilist〈k; fNil, (PCons, fCons)〉[fCons(x, ỹ)]

Here, (i) PCons is a predicate variable, (ii) fNil and fCons are functions of types
unit → intk and intk+1 → intk respectively, and (iii) ỹ is a sequence of k
integer variables (where k is the first parameter of ilist). By changing the part
〈k; fNil, (PCons, fCons)〉, we can express various list properties. For example, list
type constructors ilistL and ilistS can be defined as follows:

ilistL := ilist〈1;λ().0, (λ(x, y).true, λ(x, y).y + 1)〉
ilistS := ilist〈2;λ().(0, 0), (λ(x, y1, y2).y1 > 0⇒ x ≤ y2, λ(x, y1, y2).(1, x))〉.

In fact, by instantiating the parameters k, PCons, fNil and fCons to 1, λ(x, y).true,
λ().0, and λ(x, y).y + 1 respectively, we obtain the following types for Nil and
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Cons:

Nil : ilistL[0]

Cons : ∀y.{x : int× ilistL[y] | true} → ilistL[y + 1],

which corresponds to the types of Nil and Cons given for ilistL. Similarly, by
instantiating the parameters k, PCons, fNil and fCons to 2, λ(x, y1, y2).y1 > 0 ⇒
x ≤ y2, λ().(0, 0), and λ(x, y1, y2).(1, x) respectively, we obtain the types of Nil
and Cons given for ilistS.

The remaining question is how to automatically assign an appropriate in-
stantiation of parameterized recursive types to each occurrence of a constructor.
To this end, we first pick the values of k, fNil, fCons (in the case of lists; we will
deal with more general recursive data types in the following sections) in a cer-
tain heuristic manner, and prepare a predicate variable for PCons. We can then
reduce the problem of refinement type inference to the CHC satisfiability prob-
lem [1] in a standard manner [17,2], and use an automated CHC solver [4,7,2].
If the refinement type inference fails, that may be due to the lack of sufficient
parameters; thus, we increase the value of k and accordingly update the guess for
fNil and fCons so that the resulting refinement types are strictly more expressive.
This refinement loop may not terminate due to the incompleteness of the type
system discussed later in Section 3, but we can guarantee a weak form of relative
completeness, that if a program is typable, then the type inference procedure
terminates eventually under the hypothetical completeness assumption of the
underlying CHC solver, as discussed later in Section 4.

We have implemented the procedure sketched above, and succeeded in fully
automatic verification of several small but challenging programs using lists and
trees. Our contributions are summarized as follows.

– The design of parameterized recursive refinement types (PRRT): the idea of
parameterizing recursive types with some indices goes back at least to Xi and
Pfenning’s work [23], and that of parameterization of types with refinement
predicates has also been proposed by Vazou et al. [20]. We believe, however,
that the specific combination of the parameterizations, specifically designed
with fully automated verification in mind, is new.

– An inference procedure for PRRTs, its implementation and experiments.

The rest of this paper is structured as follows. Section 2 introduces the target
language of our verification method based on parameterized recursive refinement
types. Section 3 proposes a new refinement type system, and Section 4 explains a
type inference procedure, which serves as a program verification procedure. Sec-
tion 5 reports an implementation and experimental results. Section 6 discusses
related work, and Section 7 concludes the paper.
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2 Target Language

We consider a first-order1 call-by-value functional language as the target of our
refinement type inference.

2.1 Syntax

We assume a finite set of data constructors, ranged over by L. The set of expres-
sions, ranged over by e, is defined by:

e (expressions) ::= s | f(s̃) | fail | if s then e1 else e2

| let x = e1 in e2

| match s with {L1(x̃1)→ e1, . . . , Lk(x̃k)→ ek}
s (simple expressions) ::= x | n | s1 + s2 | L(s1, . . . , sk)

D (programs) ::= {f1(x̃1) = e1, . . . , fk(x̃k) = ek}

The syntax of expressions above is fairly standard. A simple expression denotes
an integer or a recursive data structure; we represent Booleans as integers, where
non-zero integers are considered true and 0 is considered false. We write ·̃ for
a sequence; for example, s̃ denotes a sequence of simple expressions s1, . . . , sk.
For a technical convenience, the arguments of a function call f(s̃) are restricted
to simple expressions; this is not a fundamental restriction, f e can be expressed
by let x = e in f x. The expression fail is a special command to indicate an
error; the purpose of our refinement type system introduced later is to guarantee
that fail does not occur during the execution of any well-typed program. As
demonstrated in the examples below, the expression fail is often used to express
the specification of a program. The conditional expression if s then e1 else e2
evaluates e2 if the value of s is 0 and evaluates e1 otherwise. The match expression
match s with {L1(x̃1)→ e1, . . . , Lk(x̃k)→ ek} evaluates [ṽi/x̃i]ei if the value of
s is Li(ṽi). For the sake of simplicity, we have only + as an operator on integers,
but other standard primitives (−, ×, <, =, ...) can be incorporated with no
difficulty, and used in examples.

A program D is a set of (mutually recursive) function definitions. We assume
that the set {f1, . . . , fk} of function names contains main, the name of the “main”
function.

2.2 Typing

We introduce a simple (monomorphic) type system, and require that programs
and expressions are well-typed in the type system.

1 The restriction to first-order programs is just for the sake of simplicity; our refine-
ment type system can be easily extended for higher-order functions in a standard
manner.
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We assume a finite set D of (names of) recursive data types, ranged over by
d. The set of (simple) types, ranged over by κ, is defined by:

κ (simple types) ::= b | (b1, . . . , bk)→ b

b (base types) ::= int | d

Here, a type of the form (b1, . . . , bk) → d is called a constructor type. When
k = 1, we just write b → d for (b) → d. To distinguish simple types from
refinement types introduced later, we sometimes call simple types sorts.

A constructor environment, written C, is a map from the set of data con-
structor to the set of constructor types. A (simple) type environment, written
K, is a map from a finite set of variables to types. The type judgment relations
C;K `ST e : κ and C `ST D : K are defined by the typing rules in Figure 1.

Henceforth, we consider only expressions e and programsD such that C;K `ST
e : κ and C `ST D : K for some C,K. As usual, programs well-typed in the simple
type system do not get stuck; however, they may be reduced to the error state
fail.

In the rest of this paper, we further impose the following restriction on con-
structor types: for each constructor type C(L) = (b1, . . . , bk)→ d, we require that
{b1, . . . , bk} ⊆ {int, d}. Thus, we forbid a constructor type like (int, d1) → d2
with d1 6= d2. We permute argument types and normalize each constructor type
to the form (intk, d`)→ d. Again, the restriction is just for the sake of simplicity
of the discussions in later sections. We write Cd for the restriction of C on type
d, {L : κ ∈ C | κ is of the form (̃b)→ d}. Note that C can be decomposed to the
disjoint union of maps Cd1 ] · · · ] Cdk . For the integer list type ilist discussed
in Section 1, Cilist = {Nil 7→ ( )→ ilist, Cons 7→ (int, ilist)→ ilist}.

2.3 Operational Semantics

We define a small-step semantics of the language. The sets of evaluation contexts
and values, respectively ranged over by E and v, are defined by:

E ::= [ ] | E + s | n+ E | L(ṽ, E, s̃) | f(ṽ, E, s̃) | if E then e1 else e2

| let x = E in e | match E with {L1(x̃1)→ e1, . . . , Lk(x̃k)→ ek}
v ::= n | L(v1, . . . , vk)

The reduction relation e −→D e′ on (closed) expressions is defined by the
rules in Figure 2. The expression [ṽ/x̃]e (which is an abbreviated form of
[v1/x1, . . . , vk/xk]e) denotes the expression obtained from e by substituting ṽ
for x̃. We write −→∗D for the reflexive and transitive closure of −→D. We some-
times omit the subscript D and just write −→ and −→∗ for −→D and −→∗D
respectively.

For a program D such that C `ST D : K and K(main) = (b1, . . . , bk) →
int, we say D is safe if there exist no v1 : b1, . . . , vk : bk and E such that
main(v1, . . . , vk) −→∗D E[fail]. In the rest of this paper, we shall develop a
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K(x) = κ

C;K `ST x : κ
(ST-Var)

C;K `ST n : int
(ST-Int)

C;K `ST s1 : int C;K `ST s2 : int

C;K `ST s1 + s2 : int
(ST-Plus)

C(L) = (b1, . . . , bk)→ d C;K `ST si : bi for each i ∈ {1, . . . , k}
C;K `ST L(s1, . . . , sk) : d

(ST-DC)

K(f) = (b1, . . . , bk)→ b C;K `ST si : bi for each i ∈ {1, . . . , k}
C;K `ST f(s1, . . . , sk) : b

(ST-App)

C;K `ST fail : int
(ST-Fail)

C;K `ST s : int C;K `ST e1 : b C;K `ST e2 : b

C;K `ST if s then e1 else e2 : b
(ST-If)

C;K `ST e1 : b1 C;K, x : b1 `ST e2 : b

C;K `ST let x = e1 in e2 : b
(ST-Let)

C;K `ST s : d C(Li) = (̃bi)→ d C;K, x̃i : b̃i `ST ei : b for each i ∈ {1, . . . , k}
C;K `ST match s with {L1(x̃1)→ e1, . . . , Lk(x̃k)→ ek} : b

(ST-Match)

K = (f1 : (̃b1)→ b′1, . . . , fk : (̃bk)→ b′k)

C;K, x̃i : b̃i `ST ei : b′i for each i ∈ {1, . . . , k}
C `ST {f1 (x̃1) = e1, . . . , fk (x̃k) = ek} : K

(ST-Prog)

Fig. 1. Simple Type System
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E[n1 + n2] −→D E[n] (if n is the sum of n1 and n2) (E-Plus)

E[f(ṽ)] −→D E[[ṽ/x̃]e] (if f(x̃) = e ∈ D) (E-Call)

E[if n then e1 else e2] −→D E[e1] (if n 6= 0) (E-IfT)

E[if 0 then e1 else e2] −→D E[e2] (E-IfF)

E[match Li(ṽ) with {L1(x̃1)→ e1, . . . , Lk(x̃k)→ ek}] −→D E[[ṽ/x̃i]ei] (E-Match)

Fig. 2. Reduction Rules

refinement type system that guarantees the safety of any well-typed program,
and an automated procedure for proving the well-typedness, hence the safety of
a given program. Note that the safety of a program does not imply the termina-
tion of the program; termination verification, for which various techniques [9,8]
are available, is outside the scope of this paper.

Example 1. The program D1 defined below declares function range, which takes
an integer n and returns the list [n, n − 1, . . . , 1], and checks that the length of
range(n) equals its argument n.

D1 = {range(n) = if n then let r = range(n− 1) in Cons(n, r)

else Nil(),

len(l) = match l with {Nil()→ 0, Cons(n, l′)→ 1 + len(l′)},
main(n) = let r = range(n) in let l = len(r) in

if n 6= l then fail else 0}

The evaluation of main(n) terminates without failure if n ≥ 0, and falls into an
infinite loop if n < 0. ut

Example 2. The following program D2 focuses on function isort, which sorts a
list in the ascending order by the insertion sort algorithm, and checks that its
return value is sorted.

D2 = {gen(n) = if n then Cons(∗, gen(n− 1)) else Nil(),

insert(x, l) = match l with {
Nil()→ Cons(x, Nil()),
Cons(y, l′)→ if x < y then Cons(x, l) else Cons(y, insert(x, l′))

},
isort(l) = match l with {

Nil()→ Nil(), Cons(n, l′)→ insert(n, isort(l′))
},
is sorted rec(x, l) = match l with {

Nil()→ 1,
Cons(y, l′)→ if x ≤ y then is sorted rec(y, l′) else 0

},



8 Ryoya Mukai, Naoki Kobayashi, and Ryosuke Sato

is sorted(l) = match l with {
Nil()→ 1, Cons(n, l′)→ is sorted rec(n, l′)

},
main(n) = let s = is sorted(isort(gen(n))) in

if s then 0 else fail

}

The term ∗ indicates a non-deterministic integer value, omitted in the formal
syntax for the sake of simplicity. The function insert constitutes a part of the
insertion sort, which takes x and a sorted list l and returns a sorted list that
consists of x and the elements of l. The function is sorted returns 1 if the given
list is sorted in the ascending order, and 0 otherwise. ut

Example 3. The type itree for binary trees with integer values is defined with
Citree = {Leaf 7→ ( ) → itree, Node 7→ (int, itree, itree) → itree}. The
following program D3 generates a random tree with a given size, and verifies
that the generated tree has the given size as expected.

D3 = {gen tree(n) =
if n then

let m = ∗ in let ` = gen tree(m) in
let r = gen tree(n− 1−m) in Node(∗, l, r)

else Nil(),

size(t) = match t with {
Leaf()→ 0,
Node( , `, r)→ 1 + size(`) + size(r)

},
main(n) = let s = size(gen tree(n)) in

if s 6= n then fail else 0

}.

If n 6= 0,2 gen tree(n) picks a number m, and returns a tree of size n, consisting
of the left child of size m and the right child of size n − 1 −m. Function size

calculates the tree size (the number of nodes except leaves). ut

3 A Parameterized Refinement Type System

This section introduces a refinement type system that guarantees the safety of
well-typed programs.

2 Actually, gen tree(n) will not terminate if n < 0, but that does not concern us here
since we are interested in only the safety property.
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3.1 Refinement Types

The syntax of parameterized recursive refinement types, ranged over by τ , is
defined by:

τ (types) ::= {β | ϕ} | {(β1, . . . , βk) | ϕ′} → {β | ϕ}
β (type patterns) ::= δ[y1, . . . , yn]

δ (raw types) ::= int | d〈n; (P1, F1), . . . , (Pk, Fk)〉
P (predicates) ::= λ(ỹ).ϕ

Here, ϕ denotes a formula over integer arithmetic, and F denotes a function
on integer tuples; we do not fix the precise syntax of ϕ and F , but assume
that standard arithmetic and logical operators are available. In δ[y1, . . . , yn], (i)
n = 1 if the raw type δ is int, and (ii) n = m if δ = d〈m; (P1, F1), . . . , (Pk, Fk)〉.
Intuitively, {int[x] | ϕ} is the type of an integer x that satisfies ϕ. The type
{(β1, . . . , βk) | ϕ′} → {β | ϕ} describes a function or a constructor that takes
arguments of types β1, . . . , βk that satisfy ϕ′, and returns a value of type {β | ϕ}.
For example, {(int[x]) | x > 0} → {int[y] | y > x} describes a function that
takes a positive integer x as an argument and returns an integer greater than
x. As this example indicates, the variables occurring in the part (β1, . . . , βk) are
bound in {(β1, . . . , βk) | ϕ′} → {β | ϕ}, and may occur in ϕ′ and ϕ. As usual,
we allow implicit renaming of bound variables. We often write δ![s1, . . . , sn] for
{δ[y1, . . . , yn] | y1 = s1 ∧ · · · ∧ yn = sn}; we sometimes omit the superscript !
when there is no danger of confusion.

Refinement types for datatypes are more involved. For each (simple) datatype
d with Cd = {L1 : (int`1 , dm1) → d, . . . , Lk : (int`k , dmk) → d}, we consider
refinement types of the form:

{d〈n; (P1, F1), . . . , (Pk, Fk)〉[y1, . . . , yn] | ϕ}.

Here, n denotes the number of integer parameters y1, . . . , yn, and (Pi, Fi) is a
pair of a predicate and a function corresponding to the constructor Li. The
above type denotes a data structure constructed from L1, . . . , Lk, by assigning
the following type to Li.

{(int[x1], . . . , int[x`i ], δ[ỹ1], . . . , δ[ỹmi
]) | Pi(x̃, ỹ1, . . . , ỹmi

)}
→ δ![Fi(x̃, ỹ1, . . . , ỹmi

)]

Here, δ denotes d〈n; (P1, F1), . . . , (Pk, Fk)〉, x̃ = x1, . . . , x`i , and ỹi =
yi,1, . . . , yi,n. Thus, the arity of the predicate Pi and the function Fi is `i +min,
and Fi returns an n-tuple of integers. Recall that the part δ![Fi(x̃, ỹ1, . . . , ỹmi

)]
should be considered an abbreviated form of {δ[z1, . . . , zn] | (z1, . . . , zn) =
Fi(x̃, ỹ1, . . . , ỹmi)}. Note that Pi and Fi take only integers as their arguments;
thus information about recursive data structures is abstracted to integers by the
type system.

For example, ilistL in Section 1 is expressed as

ilist〈1; (λ().true, λ().0), (λ(x, y).true, λ(x, y).y + 1)〉,
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and the constructors Nil and Cons are given the following types:

Nil : ( )→ ilistL![0]

Cons : (int[x], ilistL[y])→ ilistL![y + 1].

Note that the argument type of Cons is

{(int[x], ilistL[y]) | (λ(x, y).true)(x, y)} ≡ {(int[x], ilistL[y]) | true},

which has been abbreviated to (int[x], ilistL[y]).
As another example, recall ilistS in Section 1. It is expressed as:

ilist〈2;(λ( ).true, λ( ).(0, 0)),

(λ(x, y1, y2).(y1 > 0⇒ x ≤ y2), λ(x, y1, y2).(1, x))〉,

and the constructors are given the following types:

Nil : ( )→ ilistS![0, 0]

Cons : {(int[x], ilistS[y1, y2]) | y1 > 0⇒ x ≤ y2} → ilistS![1, x].

Remark 1. If we are interested in proving that a sorting function takes an integer
list as an argument and returns a sorted list that is a permutation of the argu-
ment, we need to parameterize the list type also with information about the ele-
ments of a list. One way to do so would be to introduce the type ilistP[y1, y2, y3]
of a list of length y1 that contains y3 occurrences of the element y2, and the type
ilistSP[y1, y2, y3, y4] of a sorted list (of type ilistS[y1, y2]) containing y4 oc-
currences of the element y3. Then the type of a sorting function can be expressed
as: {ilistP[y1, y2, y3] | true} → {ilistSP[y1, z, y2, y3] | true}. ut

3.2 Typing

We define the type judgment relations C;Γ ;ϕ ` e : τ and C ` D : Γ for expres-
sions and programs by the typing rules in Figure 3. Here, C is a constructor type
environment as before, and Γ maps each variable (including a function name)
to its type. The type bindings on integer types and datatypes are restricted to
the form x : {β | true}, so we just write x : β. The conditions on variables of
integer types and datatypes are instead accumulated in the part ϕ of the type
environment. Type bindings on integer types are further restricted to x : int[x];
hence we sometimes just write x : int. In a type judgment C;Γ ;ϕ ` e : τ , we
implicitly require that all the types are well-formed; for example, ϕ and τ may
contain only integer variables occurring in Γ (including those in the part β) as
free variables. The definition of well-formedness is deferred to Appendix A.

The type judgment C;Γ ;ϕ ` e : τ intuitively means that if each free variable
in e has type Γ (x) and satisfies the condition described by ϕ, then e is safely
executed (without reaching fail), and either e diverges or evaluates to a value
of type τ . In Figure 3, |= ϕ means that the formula ϕ is a valid formula of integer
arithmetic.
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Γ (x) = β |= ϕ⇒ ϕ′

C;Γ ;ϕ ` x : {β | ϕ′}
(T-Var)

C; ST(Γ ) `ST s : int

C;Γ ;ϕ ` s : {int[x] | x = s}
(T-Int)

Γ (f) = {(β1, . . . , βk) | ϕ′} → {β | ϕr}
C;Γ ;ϕ ` si : {βi | ϕi} for each i ∈ {1, . . . , k}

|= ϕ ∧ (
∧k
i=1 ϕi)⇒ ϕ′

|= ϕ ∧ (
∧k
i=1 ϕi) ∧ ϕr ⇒ ϕ′r

C;Γ ;ϕ ` f(s1, . . . , sk) : {β | ϕ′r}
(T-App)

|= ¬ϕ
C;Γ ;ϕ ` fail : int

(T-Fail)

C;Γ ;ϕ ` s : int C;Γ ;ϕ ∧ s 6= 0 ` e1 : τ C;Γ ;ϕ ∧ s = 0 ` e2 : τ

C;Γ ;ϕ ` if s then e1 else e2 : τ
(T-If)

C;Γ ;ϕ ` e1 : {β | ϕ1} C;Γ, x : β;ϕ ∧ ϕ1 ` e2 : τ

C;Γ ;ϕ ` let x = e1 in e2 : τ
(T-Let)

Cd = {L1 : (int`1 , dm1)→ d, . . . , Lk : (int`k , dmk )→ d}
δ = d〈n; (P1, F1), . . . , (Pk, Fk)〉

C;Γ ;ϕ ` sj : {int[xj ] | ϕj} for each j ∈ {1, . . . , `i}
C;Γ ;ϕ ` s`i+j : {δ[ỹj ] | ϕ`i+j} for each j ∈ {1, . . . ,mi}
|= ϕ ∧ (

∧`i+mi
j=1 ϕj)⇒ Pi(x1, . . . , x`i , ỹ1, . . . , ỹmi)

|= ϕ ∧ (
∧`i+mi
j=1 ϕj) ∧ (ỹ) = Fi(x1, . . . , x`i , ỹ1, . . . , ỹmi)⇒ ϕ′

C;Γ ;ϕ ` Li(s1, . . . , s`i+mi) : {δ[ỹ] | ϕ′}
(T-DC)

Cd = {L1 : (int`1 , dm1)→ d, . . . , Lk : (int`k , dmk )→ d}
δ = d〈n; (P1, F1), . . . , (Pk, Fk)〉
C;Γ ;ϕ ` s : {δ[ỹ] | ϕ0}

Γ ′i = Γ, x1 : int[x1], . . . , x`i : int[x`i ], x`i+1 : δ[ỹ1], . . . , x`i+mi : δ[ỹmi ]
ϕ′i = ϕ ∧ Pi(x1, . . . , x`i , ỹ1, . . . , ỹmi) ∧ [Fi(x1, . . . , x`i , ỹ1, . . . , ỹmi)/ỹ]ϕ0

C;Γ ′i ;ϕ′i ` ei : τ for each i ∈ {1, . . . , k}
C;Γ ;ϕ ` match s with {L1(x̃1)→ e1, . . . , Lk(x̃k)→ ek} : τ

(T-Match)

C;Γ ;ϕ ` e : {β | ϕ1} |= ϕ ∧ ϕ1 ⇒ ϕ2

C;Γ ;ϕ ` e : {β | ϕ2}
(T-Sub)

Γ = (f1 : {(β̃1) | ϕ1} → {β′1 | ϕ′1}, . . . , fk : {(β̃k) | ϕk} → {β′k | ϕ′k})
C;Γ, x̃i : β̃i;ϕi ` ei : {β′i | ϕ′i} for each i ∈ {1, . . . , k}

C ` {f1(x̃1) = e1, . . . , fk(x̃k) = ek} : Γ
(T-Prog)

Fig. 3. Refinement Type System



12 Ryoya Mukai, Naoki Kobayashi, and Ryosuke Sato

We explain some key rules. The typing rules for expressions are fairly stan-
dard, except T-DC and T-Sub for datatypes. In T-App, we require that the
β-part of the argument types matches between the function and actual argu-
ments. The condition |= ϕ ∧ (

∧k
i=1 ϕi) ⇒ ϕ′ requires that the condition ϕ′

required by the function is met by the actual arguments. In rule T-Fail, the
condition |= ¬ϕ ensures that there exists no environment that makes ϕ hold,
so that fail is unreachable. In T-If, the branching condition is accumulated in
the conditions for the then- and else-branches. In T-Let, the condition ϕ1 on
the value of e1 is accumulated in the condition for e2.

In rule T-DC, the third and fourth conditions require that the arguments of
the constructor Li has an appropriate type, and the fifth condition requires that
they also satisfy the precondition Pi. The last premise ensures the post condition
(represented by the function Fi) of the data constructor implies the condition
ϕ′ on the constructed data. Note that the “δ-part” may be locally chosen in
the rule (thus, the constructor Li is polymorphic on 〈n; (P1, F1), . . . , (Pk, Fk)〉,
and that part may be instantiated for each occurrence of the constructor), but
that the same δ must be used among Li(s1, . . . , s`i+mi) and the components
s`i+1, . . . , s`i+mi .

In rule T-Match, the type environment Γ ′i for the subexpression ei is ob-
tained from Γ by adding type bindings for the variables x̃i (see the fourth line
of the premises). The condition ϕ′i (defined on the fifth line) is obtained by
strengthening the condition ϕ with information that s matches Li(x̃i). Note
that as in rule T-DC, the “δ-part” is shared among s and decomposed elements
(bound to) x`i+1, . . . , x`i+mi

. The rule T-Sub is for subsumption. We allow only
the refinement condition to be weakened; for datatypes, the β-part (of the form
d〈n; (P1, F1), . . . , (Pk, Fk)〉[ỹ]) is fixed.

Example 4. Let us recall the program D1 defined in Example 1. It is typed as
C ` D1 : Γ0, where Γ0 consists of:

range : int[n]→ ilistL![n],

len : ilistL[n]→ int![n],

main : int[n]→ {int[x] | true}.

Below we focus on the definition of the function range, and show how to derive
C;Γ1; true ` if n then e2 else Nil() : ilistL![n] (which is required for deriving
C ` D1 : Γ0), where

Γ1 = (Γ0, n : int)

e2 = (let r = range(n− 1) in Cons(n, r))

ilistL = ilist〈1; (λ().true, λ().0), (λ(x, y).true, λ(x, y).y + 1)〉.
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First, the type of range(n− 1) in the body is derived as follows.

Γ1(range) = {int[m] | true} → {ilistL[y] | y = m}
C;Γ1;n 6= 0 ` n− 1 : {int[m] | m = n− 1}

|= m = n− 1⇒ true

|= m = n− 1 ∧ y = m⇒ y = n− 1

C;Γ1;n 6= 0 ` range(n− 1) : {ilistL[y] | y = n− 1}.
(T-App)

Second, the expression Cons(n, r) is typed as:

C;Γ2;ϕ2 ` n : {int[x1] | true}
C;Γ2;ϕ2 ` r : {ilistL[y1] | y1 = n− 1}

|= ϕ2 ⇒ (λ(x, y).true)(x1, y1)
|= ϕ2 ∧ y1 = n− 1 ∧ z = (λ(x, y).y + 1)(x1, y1)⇒ z = n

C;Γ2;ϕ2 ` Cons(n, r) : {ilistL[z] | z = n},
(T-DC)

where Γ2 = (Γ1, r : ilistL[q]) and ϕ2 = (n 6= 0 ∧ q = n− 1). Finally, using the
judgments above, we obtain:

C;Γ1;n 6= 0 ` range(n− 1) : ilistL![n− 1]
C;Γ2;ϕ2 ` Cons(n, r) : ilistL![n]

C;Γ1;n 6= 0 ` e2 : ilistL![n]

|= n = 0⇒ (λ().true)()
|= n = 0 ∧ y = (λ().0)()⇒ y = n

C;Γ1;n = 0 ` Nil() : ilistL![n]

C;Γ1; true ` if n then e2 else Nil() : ilistL![n].

ut

Our type system can also deal with properties on trees, as demonstrated in
the following example.

Example 5. Recall the program D3 given in Example 3. It is typed as C ` D3 :
Γ0, where Γ0 is:

Γ0 = {gen tree : int[n]→ itreeZ![n],

size : itreeZ[n]→ int![n],

main : int[n]→ {int[x] | true}}.

Here, itreeZ = itree〈1; (λ().true, λ().0), (λ(x, y1, y2).true, λ(x, y1, y2).y1 +
y2 + 1)〉. Intuitively, itreeZ[n] is the type of trees with n nodes. The expression
Node(∗, `, r) in the definition of the function gen tree is typed by:

C;Γ1;ϕ1 ` ∗ : {int[x1] | true}
C;Γ1;ϕ1 ` ` : {itreeZ[y1] | y1 = m}

C;Γ1;ϕ1 ` r : {itreeZ[y2] | y2 = n− 1−m}
|= ϕ1 ⇒ (λ(x, y1, y2).true)(x1, y1, y2)

|= ϕ1 ∧ y1 = m ∧ y2 = n− 1−m ∧ z = y1 + y2 + 1⇒ z = n

C;Γ1;ϕ1 ` Node(∗, `, r) : {itreeZ[z] | z = n},
(T-DC)
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where

Γ1 = (Γ0, n : int,m : int, ` : itreeZ[m], r : itreeZ[n− 1−m])

ϕ1 = (n 6= 0).

The last premise (|= ϕ1 ∧ y1 = m ∧ y2 = n− 1−m ∧ z = y1 + y2 + 1⇒ z = n)
uses the function λ(x, y1, y2).y1 + y2 + 1 in itreeZ to obtain an accumulated
value for the tree size.

The match expression in function size is typed by:

C;Γ2;ϕ′1 ` 0 : int![0]

C;Γ2;ϕ′1 ` 0 : int![n]
(T-Sub)

...

C;Γ ′2;ϕ′2 ` e3 : int![1 + y1 + y2]

C;Γ ′2;ϕ′2 ` e3 : int![n]
(T-Sub)

C;Γ2; true ` e2 : int![n],
(T-Match)

where

Γ2 = (Γ0, t : itreeZ[n])

Γ ′2 = (Γ2, : int, ` : itreeZ[y1], r : itreeZ[y2])

e2 = (match t with {Leaf()→ 0, Node( , `, r)→ e3})
e3 = 1 + size(`) + size(r)

ϕ′1 = (n = 0)

ϕ′2 = (n = 1 + y1 + y2).

ut

Remark 2. It is sometimes too restrictive to fix the β-part in rule T-Sub. For
example, the function isort of the program D2 (defined in Example 2) is equiv-
alent to the function isort′ defined below, which is obtained by substituting
Nil() in the match body of D2 with l.

isort′(l) = match l with {
Nil()→ l, Cons(n, l′)→ insert(n, isort′(l′))

}.

However, since l is returned directly, the argument and return types of isort′

share the same β-part. Therefore, our type system cannot express that isort′

converts an unsorted list to a sorted one. To relax the restriction, we need a
more sophisticated version of the subtyping rule T-Sub, which would cause too
much burden for the type inference procedure discussed in the next section. It is
left for future work to overcome the problem above without incurring too much
overhead for type inference. ut

The following proposition states the soundness of the type system (recall the
definition of safety in Section 2.3).



Parameterized Recursive Refinement Types 15

Proposition 1 (soundness). Suppose C ` D : Γ , with Γ (main) =
{(β1, . . . , βk) | true} → {β | true}. Then, the program D is safe.

The proposition follows from the soundness of a standard refinement type sys-
tem without parameterization 〈n; (P1, F1), . . . , (Pk, Fk)〉, as follows. Because
only constructors are polymorphic on the part 〈n; (P1, F1), . . . , (Pk, Fk)〉, if a
program D is well-typed, then by annotating each occurrence of construc-
tor Li with the parameter 〈n; (P1, F1), . . . , (Pk, Fk)〉, and treating the anno-

tated constructor L
(〈n;(P1,F1),...,(Pk,Fk)〉)
i as a new constructor, and the δ-part

d〈n; (P1, F1), . . . , (Pk, Fk)〉 as the name of a new datatype, we can obtain a pro-
gramD′ that is well-typed without the parameterization. The safety ofD′ follows
from the soundness of a standard refinement type system (without parameteri-
zation); hence D is also safe.

Note that the completeness does not hold: there exists a program that is
safe but not typable in our refinement type system. Beside the issue discussed in
Remark 2, the sources of incompleteness include the restriction of the parameters
of data types to integers. For example, consider the property of the append
function: “a function takes two lists and returns the list obtained by appending
two lists.” In theory, it is possible to encode all the information of a list by using
Gödel encoding, but that is not possible in practice, where we have to restrict
the underlying integer arithmetic, e.g., to linear integer arithmetic.

4 Inferring Parameterized Refinement Types

This section describes a type inference procedure, which takes a program (with-
out type annotations) and a constructor type environment as input, and checks
whether the program is well-typed. The overall flow of the type inference proce-
dure is shown in Fig. 4.

In Step 1, we first determine the raw type of each expression, with the values

of the part [n; (̃P, F )] kept unknown. For example, given the program D2 in
Example 2, we infer:

gen : int→ ilist[ρ1], isort : ilist[ρ1]→ ilist[ρ2],

where ρ1 and ρ2 are variables representing the part [n; (̃P, F )]. (Note that the
same variable ρ1 is assigned to the return type of gen and the argument type of
isort, since the return value of gen is passed to isort.) This is performed by
using an ordinary unification-based type inference algorithm.

In Step 2, the part n and F̃ of each raw type variable ρi is chosen, while
the predicates P̃ are kept unknown. In Step 3, we prepare predicate variables
for the unknown predicates in raw types and refinement predicates, and reduce
the typability problem to the satisfiability problem for constrained Horn clauses
(CHCs) [1]. We then invoke an off-the-shelf CHC solver [4,7,2] to check whether
the obtained CHCs are satisfiable. If so, we can conclude that the program is
well-typed (and outputs inferred types); otherwise, we go back to Step 2 and
refine the F -part of raw types, with an increased value of n.

In the rest of this section, we explain more details of Steps 2 and 3.
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Step 1: Inference
of (Shapes of)

Raw Types δ̃

Step 2: Instantiation of δ̃
with F̃

Step 3: Reduction to
the CHC Problem

Satisfiable?

Verified.

Increase n.

No

Yes

Fig. 4. The flow of type inference

4.1 Step 2: Instantiation of Raw Types with F̃

In Step 2, we determine the components n and F̃ of δ.

For the sake of simplicity, the number of integer parameters n is shared by
all types, and the functions F̃ do not depend on δ but on d. On the other
hand, the predicate variables P̃ are specific to δ. Thus, we explicitly write δ =
d〈n; (Pδ,1, Fd,1), . . . , (Pδ,k, Fd,k)〉 here.

We choose n and Fd,j as follows, to ensure that the precision of type inference
is monotonically improved at each iteration. Suppose Cd = {L1 : (int`1 , dm1)→
d, . . . , Lk : (int`k , dmk) → d}. Let us write n(i) and F

(i)
d,j for the values of n

and Fd,j at the i-th iteration of the refinement loop in Fig. 4. At the (i + 1)-
th iteration, we pick n′ > 0 and a tuple of functions (F ′1, . . . , F

′
k) with F ′j ∈

int`j+mjn
′ → intn

′
(that has not been chosen before) and set n(i+1) and F

(i+1)
d,j

as follows.

n(i+1) := n(i) + n′

F
(i+1)
d,j := λ(x̃, ỹ1, . . . , ỹmj ).(F (i)(x̃, ỹ′1, . . . , ỹ

′
mj

), F ′j(x̃, ỹ
′′
1 , . . . , ỹ

′′
mj

)).

Here, x̃ and ỹj are sequences of variables of length `k and n(i+1) respectively,

and ỹj = ỹ′j , ỹ
′′
j with |ỹ′j | = n(i) and |ỹ′′i | = n′. For example, if n(i) = 1 and



Parameterized Recursive Refinement Types 17

F
(i)
j (x, y1, y2) = x+y1 +y2 with n′ = 1 and F ′j(x, y1, y2) = 1+max(y1, y2), then

F
(i+1)
j (x, y11, y12, y21, y22) = (x+ y11 + y21, 1 + max(y12, y22)).

Since the choice of n(i) and F
(i)
d,j above ensures that the information carried

by types monotonically increases, we can guarantee that our type inference pro-
cedure is relatively complete with respect to the (hypothetical3) completeness of
the CHC solver used in Step 3, in the following sense. Let us assume that the
language for describing functions of type

⋃ω
j=1 int

li+mij → intj is recursively
enumerable; for example, we can restrict functions to those expressible in linear
integer arithmetic. Then we can enumerate all the tuples of functions and use
the i-th tuple as (F ′1, . . . , F

′
k) above. Suppose that a program D is typable by us-

ing, as Fd,j , functions belonging to the language assumed above. Then, assuming
that the CHC solver used in Step 3 below is complete, our procedure eventually
terminates and outputs “Verified”. (In other words, our procedure eventually
terminates output “Verified”, or gets stuck in Step 3 due to the incomplete-
ness of the CHC solver.) This is because the functions required for typing D is

eventually chosen and added to F
(i)
d,j .

For the sake of efficiency, the actual implementation imposes a further re-
striction on the function F ′j added at each iteration, at the sacrifice of relative
completeness; see Section 5.1.

Remark 3. While we currently employ the same n for all data types, it can be
effective to selectively add a parameter to an individual raw type, based on the
unsatisfiable core returned from the solver in Step 3.

4.2 Step 3: Reduction to CHC Solving

In this step, we prepare predicate variables for the P -part of raw types and
unknown refinement predicates ϕ, and construct a template of a type derivation
tree. We then extract constraints on the predicate variables based on the typing
rules. The extracted constraints consists of constrained Horn clauses (CHCs), of
the following form:

∀x̃.(H ⇐ B1 ∧ · · · ∧Bk),

where Bi and H are atomic constraints of the form p(s1, . . . , s`) or integer con-
straints (s1 ≤ s2, s1 = s2,. . . ). The program is well-typed (with the choice of n

and F̃ in the previous step), just if the CHCs are satisfiable, i.e., if there exists an
assignment of predicates to predicate variables that make all the clauses valid.
The latter problem (of CHC satisfiability) is undecidable in general, but there
are various efficient solvers that work well for many inputs [4,7,2].

Since the reduction from refinement type inference to the CHC satisfiabil-
ity problem is fairly standard (see, e.g., [17,2]), we sketch the reduction only
informally, through an example.

3 Since the CHC satisfiability problem is undecidable in general, there is no complete
CHC solver.
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Example 6. Let us recall the programD1 in Example 1, and focus on the function
range. When n = 1, we need to derive C;Γ1; p1(h) ` if h then e2 else Nil() : τ0
(which is required in T-Prog for proving C ` D1 : Γ0), where

– Γ0 = (range : {int[h] | p1(h)} → {ilistL[i] | p2(h, i)}, . . .),
– Γ1 = (Γ0, h : int),
– e2 = (let r = range(h− 1) in Cons(h, r)),
– τ0 = {ilist1[i] | p2(h, i)}, and
– ilist1 := ilist〈1; (p3, λ().0), (p4, λ(x, y).y + 1)〉.

The derivation for the judgment is of the form:

...
C;Γ1; p1(h) ∧ h 6= 0 ` range(h− 1) : τ3
C;Γ1, r : τ3;ϕ2 ` Cons(h, r) : τ0

C;Γ1; p1(h) ∧ h 6= 0 ` e2 : τ0

|= p1(h) ∧ h = 0⇒ p3()
|= p1(h) ∧ h = 0 ∧ i = 0⇒ p2(h, i)

C;Γ1; p1(h) ∧ h = 0 ` Nil() : τ0

C;Γ1; p1(h) ` if h then e2 else Nil() : τ0.

where ϕ2 = (p1(h) ∧ h 6= 0 ∧ p5(h, j)) and τ3 = {ilistL[j] | p5(h, j)}. From the
side conditions of the subderivation on the righthand side, the following CHCs
are obtained:

p3()⇐ p1(h) ∧ h = 0,

p2(h, i)⇐ p1(h) ∧ h = 0 ∧ i = 0.

CHCs are also obtained from the other subderivation in a similar manner. ut

5 Implementation and Experiments

This section reports an implementation and experimental results.

5.1 Implementation

We have implemented a prototype program verifier for a subset of OCaml, which
supports first-order functions, integers, and recursive data structures, based on
the type inference procedure described above. As the backend CHC solvers,
we employed multiple solvers: Z3 [12] ver. 4.8.12, HoIce [2] ver. 1.9.0, and
Eldarica [4] ver. 2.0.7; that is because these solvers have pros and cons, and their
running times vary depending on problem instances, as we report in Section 5.2.

As for the function F ′ in Section 4.1, the current implementation supports
only the following functions fi,� ∈ int`k+mk → int with i ∈ {1, 2, 3} and
� ∈ {+,max,min} (where n′ in Section 4.1 is set to 1).

f1,�(x1, . . . , x`k , y1, . . . , ymk
) =

{
1 + (y1 � · · · � ymk

) if mk > 0
0 otherwise

f2,�(x1, . . . , x`k , y1, . . . , ymk
) = x1 � · · · � x`k � y1 � · · · � ymk

f3,�(x1, . . . , x`k , y1, . . . , ymk
) = x1 � · · · � x`k ,
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and chooses f1,+, f2,+, f3,+, f1,max, f2,max, f3,max, f1,min, f2,min, f3,min in this or-
der, at each iteration. (Here, max and min are operations over integers extended
with −∞ and ∞.) In the case of lists, f1,+, f2,+, f3,+, f2,max, and f2,min can
be used for computing the length, the sum of elements, the head element, the
maximal element, and the minimal element of a list, respectively; since f1,max

and f1,min coincide with f1,+ for lists, it will be excluded out. Since the set of
functions added as F ′ is finite, the current implementation obviously does not
satisfy the relative completeness discussed in Section 4.1. Supporting more func-
tions is not difficult in theory, but because the current implementation seemed
to have already hit a certain limitation of the state-of-the-art CHC solvers (as
reported in the next subsection), we plan to add more functions only after more
efficient CHC solvers become available.

5.2 Experiments and Results

To evaluate the effectiveness of our approach, we have tested our prototype tool
for several list/tree-processing programs. The experiments were conducted on a
machine with Ubuntu 20.04.1 on Windows Subsystem for Linux 2, AMD Ryzen
7 3700X 8-Core Processor, and 16GB RAM.

Table 1. The experimental results

Program #Lines n Time [s] CHC solver #clauses #pvars

list-sum 17 2 2.25 HoIce 25 12
list-max 20 2 2.33 Z3 26 12
list-sorted 19 3 3.08 Z3 46 22
range-basic 12 1 1.52 HoIce 16 8
range-len (Ex. 1) 15 1 1.81 HoIce 25 12
range-concat-len 21 1 2.61 HoIce 58 22
isort-len 28 1 2.39 HoIce 66 27
isort-is-sorted (Ex. 2) 30 3 4.32 Z3 79 33
msort-len 45 — — — 145 49
msort-is-sorted 52 — — — 161 54
tree-size (Ex. 3) 15 1 1.95 HoIce 32 14
tree-depth 21 1 2.07 HoIce 34 15
bst-size 20 1 2.65 HoIce 64 28
bst-sorted 51 — — — 148 74

Table 1 summarizes the experimental results. The benchmark set consists of
the following programs.

– “list-sum” takes an integer m as an input, randomly generates a list so that
the sum of elements is m, and then checks that the sum of elements is indeed
m. Similarly, “list-max” generates a list so that the maximum element is
m, and checks that the maximum element is indeed m, and “list-sorted”
randomly generates a sorted list and checks that the list is indeed sorted.
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– “range-X” generates a list [m;m − 1; · · · ; 1] using the function range in
Example 1, and checks its properties, where the property is “n = 0 if the
generated list is null, and m > 0 otherwise” for X=basic, “the length is m”
for X=len. The program “range-concat-len” calls gen(m) twice, concatenates
the two lists, and check that the length of the resulting list is 2m.

– “isort-X” takes an integer m as an input, generates a list of length m, sorts
it with isort in Example 2, and checks properties of the resulting list, where
the property is “the length of the list is m” for X=len, and “the list is sorted”
for X=sorted.

– “msort-X” is a variation of “isort-X”, where isort is replaced with a function
for the merge sort.

– “tree-size” (“tree-depth”, resp.) takes an integer m as an input, generates a
tree of size (depth, resp.) m, and checks that the size (depth, resp.) of the
tree is indeed m (for X=size).

– “bst-X” generates a binary search tree of a given size, and checks that the
tree has the expected size (for X=size) or that the tree is a valid binary
search tree (for X=sorted).

Appendix B shows some of the concrete programs used in the experiments.

In the table, the column “#Lines” shows the number of lines of the program
(excluding empty and comment lines), and the column “n” shows the final value
of n in Figure 4, when the verification succeeded; the cell filled with “—” in-
dicates a timeout (due to the backend CHC solver), where the time limit was
set to 300 seconds. The columns “Time” and “CHC solver” show the running
time and the backend CHC solver. Actually, we have run our tool for each of
the three CHC solvers: Z3 [12] ver. 4.8.12, HoIce [2] ver. 1.9.0, and Eldarica [4]
ver. 2.0.7, and the table shows only the best result. The result for other solvers
are reported in Appendix B. The columns “#clauses” and “#pvars” show the
numbers of output clauses and predicate variables, respectively (which do not
depend on the value of n).

The results show that our tool works reasonably well: we are not aware of
fully automated tools that can verify most of those programs. Our tool failed,
however, to verify “msort-len”, “msort-is-sorted”, and “bst-sorted”. To analyze
the reason, we have manually prepared an optimal choice of functions F̃ for
those problems, and run the CHC solvers for the resulting CHC problems. None
of the CHC solvers could solve the problems in time. This indicates that the
main bottleneck in the current tool is not the choice of functions F̃ discussed
in Sections 4.1 and 5.1, but rather the backend CHC solver. We expect that
“msort-len”, “msort-is-sorted”, and “bst-sorted” can be automatically verified
by our method if a more efficient CHC solver becomes available. It would be,
however, important also to improve the heuristics for choosing n and F̃ , as briefly
discussed in Remark 3.
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6 Related Work

As already mentioned in Section 1, the idea of parameterizing recursive types
with indices to represent various properties goes back at least to Xi and Pfen-
ning’s work on dependent ML [22,23]. In their system, however, explicit declara-
tions of refinement types are required for data constructors and recursive func-
tions. Kawaguchi et al. [5] introduced recursive refinement types, which allows a
restricted form of parameterization of datatypes with predicates, and Vazou et
al. [20] have introduced abstract refinement types, which are refinement types
parameterized with predicates. Like Xi and Pfenning’s system (and unlike ours),
those systems also require explicit declarations of abstract refinement types for
datatype constructors and/or functions, although refinement parameters in the
code part can be omitted and automatically inferred (cf. [20], Section 3.4). The
type system of Vazou et al. [20] supports polymorphism on predicates, unlike
our type system.

The reduction from (ordinary) refinement types to the CHC satisfiability
problem has been well studied [18,3,2]; we used that technique in Step 3 of
our type inference procedure. The problem of inferring parameterized recursive
refinement types appears to be related with that of inferring implicit parameters
in refinement type systems [19,16]. In fact, Tondwalkar et al. [16] reduced the
inference problem to the problem of solving existential CHCs, an extension of
the CHC problem, and our problem of inferring P and F can also be reduced to
that problem. We, however decided not to take that approach, because efficient
solvers for existential CHCs are not available.4 We instead designed a heuristic
procedure to construct F , and reduced the rest of the inference problem to the
satisfiability problem for ordinary CHCs.

There have been other (non-type-based) approaches to verification of
programs manipulating recursive data structures. The series of work on
TVLA [11,10] targets programs with destructive updates, and infers the shape
of data structures by using a 3-valued logic. Besides the difference in the target
programs, to our knowledge, their analysis fixes predicates used for abstraction
a priori (e.g., in [10], “instrumentation predicates” are specified by a user of
the tool), whereas our tool fixes only the set of functions Fj ’s for mapping data
structures to integers, and leaves it to the underlying CHC solver to find appro-
priate predicates. Thanks to the type-based approach, our approach can also be
naturally extended to deal with higher-order programs.

7 Conclusion

We have introduced parameterized recursive refinement types (PRRT) that can
express various properties of recursive data structures in a uniform manner,
and proposed a type inference procedure for PRRT, to enable fully automatic

4 The work of Tondwalkar et al. [16] does not suffer from this problem, since the exis-
tential CHCs obtained in their work is acyclic, while the existential CHCs generated
from our inference problem would be cyclic.
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verification of functional programs that use recursive data structures. We have
implemented a prototype automated verification tool, and confirmed that the
tool can automatically verify small but non-trivial programs. Future work in-
cludes an extension of the verification tool for a full-scale functional language,
and a further refinement of the type inference procedure to improve the efficiency
of the tool.
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Appendix

A Well-formedness Conditions

Figure 5 shows the well-formedness condition on types, type environments, and
type judgments mentioned in Section 3.2.

B Details of Experiments

Table 2 presents the experimental results for each backend CHC solver. The
columns “n” and “Time” for each solver have the same meaning as Section 5.2.

Table 2. The results of verification with three solvers

Z3 HoIce Eldarica
Program n Time [s] n Time [s] n Time [s]

list-sum 2 2.34 2 2.25 2 4.26
list-max 2 2.33 2 2.39 2 6.79
list-sorted 3 3.08 — — 3 23.07
range-basic 1 1.60 1 1.52 1 1.80
range-len — — 1 1.81 1 2.92
range-concat-len — — 1 2.61 — —
isort-len — — 1 2.39 — —
isort-is-sorted 3 4.32 — — — —
msort-len — — — — — —
msort-is-sorted — — — — — —
tree-size — — 1 1.95 1 8.73
tree-depth — — 1 2.07 — —
bst-size — — 1 2.65 — —
bst-sorted — — — — — —

As examples of the benchmark programs, Listings 1.1 and 1.2 respectively
show the programs named “list-sum” and “bst-size” in Section 5.2.
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Well-formedness of β (judgment C;S `wf β):

x 6∈ S
C;S `wf int[x]

n ≥ 0 y1, . . . , yn are distict from each other {y1, . . . , yn} ∩ S = ∅
Cd = {L1 : (int`1 , dm1)→ d, . . . , Lk : (int`k , dmk )→ d}

Pi is a closed predicate of arity `i +min

Fi is a closed function from int`i+min to intn (for each i ∈ {1, . . . , k})
C;S `wf d〈n; (P1, F1), . . . , (Pk, Fk)〉[y1, . . . , yn]

Well-formedness of τ (judgment C;S `wf τ):

FV(ϕ) ⊆ S ∪ {ỹ} C;S `wf δ[ỹ]

C;S `wf {δ[ỹ] | ϕ}

FV(ϕ) ⊆ S ∪ {ỹ1, . . . , ỹk} C;S ∪ {ỹ1, . . . , ỹk} `wf {β′ | ϕ′}
C;S ∪ {ỹ1, . . . , ỹi−1} `wf δi[ỹi] for each i ∈ {1, . . . , k}
C;S `wf {(δ1[ỹ1], . . . , δk[ỹk]) | ϕ} → {β′ | ϕ′}

Definition of IV(Γ ):

IV(Γ ) = (
⋃

x:δ[ỹ]∈Γ

{ỹ}) ∪ (
⋃

x:int[ ]∈Γ

{x}).

Well-formedness of type environment (judgment C `wf Γ ):

C `wf ∅

C `wf Γ C; ∅ `wf {(β̃) | ϕ} → {β′ | ϕ′} f does not occur in Γ

C `wf Γ, f : {(β̃) | ϕ} → {β′ | ϕ′}

C `wf Γ C; IV(Γ ) `wf δ[ỹ] ỹ = x if δ = int

C `wf Γ, x : δ[ỹ]

Well-formedness of type judgment

C `wf Γ FV(ϕ) ⊆ IV(Γ ) C; IV(Γ ) `wf τ
`wf C;Γ ;ϕ ` e : τ

Fig. 5. Well-formedness conditions
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Listing 1.1. Program list-sum

type list = Nil | Cons of int * list

let rec gen n =

if n = 0 then Nil

else

let x = Random.int (n + 1) in

Cons(x, gen (n - x))

let rec sum xs =

match xs with

| Nil -> 0

| Cons(x, xs) -> x + sum xs

let rec main n =

if n >= 0 then

let s = sum (gen n) in

assert (s = n)

else

0

Listing 1.2. Program bst-size

type bst = Leaf | Node of int * bst * bst

let rec insert t x =

match t with

| Leaf -> Node(x, Leaf , Leaf)

| Node(y, l, r) ->

if x < y then Node(y, insert l x, r)

else Node(y, l, insert r x)

let rec gen n =

if n = 0 then Leaf

else insert (gen (n - 1)) (Random.int 10000)

let rec size t =

match t with

| Leaf -> 0

| Node(_, l, r) -> 1 + size l + size r

let rec main n =

if n >= 0 then

let g = size (gen n) in

assert (g = n)

else

0



Parameterized Recursive Refinement Types 25

References

1. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Fields of Logic and Computation II - Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday. LNCS, vol. 9300, pp. 24–51.
Springer (2015)

2. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. J. Autom. Reason. 64(7), 1393–
1418 (2020), https://doi.org/10.1007/s10817-020-09571-y

3. Hashimoto, K., Unno, H.: Refinement type inference via horn constraint opti-
mization. In: Blazy, S., Jensen, T.P. (eds.) Static Analysis - 22nd International
Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings.
Lecture Notes in Computer Science, vol. 9291, pp. 199–216. Springer (2015).
https://doi.org/10.1007/978-3-662-48288-9 12

4. Hojjat, H., Rmmer, P.: The ELDARICA horn solver. In: 2018 Formal Methods in
Computer Aided Design (FMCAD). pp. 1–7 (2018)

5. Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verifi-
cation. In: Hind, M., Diwan, A. (eds.) Proceedings of the 2009 ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI 2009, Dublin, Ireland, June 15-21, 2009. pp. 304–315. ACM (2009).
https://doi.org/10.1145/1542476.1542510

6. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: PLDI 2011. pp. 222–233. ACM Press (2011)

7. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016), https://doi.org/10.
1007/s10703-016-0249-4

8. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination
verification for higher-order functional programs. In: Proceedings of ESOP 2014.
LNCS, vol. 8410, pp. 392–411. Springer (2014)

9. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for pro-
gram termination. In: Hankin, C., Schmidt, D. (eds.) Conference Record of POPL
2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, London, UK, January 17-19, 2001. pp. 81–92. ACM (2001).
https://doi.org/10.1145/360204.360210

10. Lev-Ami, T., Sagiv, S.: TVLA: A system for implementing static analyses. In:
Palsberg, J. (ed.) Static Analysis, 7th International Symposium, SAS 2000, Santa
Barbara, CA, USA, June 29 - July 1, 2000, Proceedings. Lecture Notes in Computer
Science, vol. 1824, pp. 280–301. Springer (2000). https://doi.org/10.1007/978-3-
540-45099-3 15

11. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, S.: Predicate abstraction and
canonical abstraction for singly-linked lists. In: Cousot, R. (ed.) Verification, Model
Checking, and Abstract Interpretation, 6th International Conference, VMCAI
2005, Paris, France, January 17-19, 2005, Proceedings. Lecture Notes in Computer
Science, vol. 3385, pp. 181–198. Springer (2005). https://doi.org/10.1007/978-3-
540-30579-8 13

12. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Con-
ference, TACAS 2008, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings. LNCS, vol. 4963, pp. 337–340. Springer (2008).
https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1145/1542476.1542510
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1145/360204.360210
https://doi.org/10.1007/978-3-540-45099-3_15
https://doi.org/10.1007/978-3-540-45099-3_15
https://doi.org/10.1007/978-3-540-30579-8_13
https://doi.org/10.1007/978-3-540-30579-8_13
https://doi.org/10.1007/978-3-540-78800-3_24


26 Ryoya Mukai, Naoki Kobayashi, and Ryosuke Sato

13. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL. pp. 587–598. ACM Press (2011)

14. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI 2008. pp. 159–169
(2008)

15. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker
for higher-order programs. In: Proceedings of PEPM 2013. pp. 53–62. ACM Press
(2013)

16. Tondwalkar, A., Kolosick, M., Jhala, R.: Refinements of futures past: Higher-
order specification with implicit refinement types. In: Møller, A., Sridharan, M.
(eds.) 35th European Conference on Object-Oriented Programming, ECOOP
2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference). LIPIcs, vol. 194,
pp. 18:1–18:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18

17. Unno, H., Kobayashi, N.: On-demand refinement of dependent types. In: Proceed-
ings of FLOPS 2008. LNCS, vol. 4989, pp. 81–96. Springer (2008)

18. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Pro-
ceedings of the 11th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, September 7-9, 2009, Coimbra, Portugal.
pp. 277–288. ACM (2009)

19. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verifica-
tion of higher-order functional programs. In: The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2013. pp.
75–86. ACM (2013)

20. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) Programming Languages and Systems - 22nd European Sympo-
sium on Programming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 209–228. Springer
(2013). https://doi.org/10.1007/978-3-642-37036-6 13

21. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refinement types
for haskell. In: Proceedings of the 19th ACM SIGPLAN international conference on
Functional programming, Gothenburg, Sweden, September 1-3, 2014. pp. 269–282.
ACM (2014)

22. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: Davidson, J.W., Cooper, K.D., Berman, A.M. (eds.) Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design and Implementa-
tion (PLDI), Montreal, Canada, June 17-19, 1998. pp. 249–257. ACM (1998).
https://doi.org/10.1145/277650.277732

23. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of POPL. pp. 214–227 (1999)

24. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: Proceedings of
ICFP 2015. pp. 400–411. ACM (2015). https://doi.org/10.1145/2784731.2784766

https://doi.org/10.4230/LIPIcs.ECOOP.2021.18
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/2784731.2784766

	Parameterized Recursive Refinement Types for Automated Program Verification

