Higher-Order Model Checking: Principles and Applications to Program Verification and Security

Part I: Types and Recursion Schemes for Higher-Order Program Verification Part II: Higher-Order Program Verification and Language-Based Security

> Naoki Kobayashi Tohoku University

Why (Automated) Program Verification?

- ♦ Increasing Use of Software in Critical Systems
 - ATM, online banking, online shopping
 - Airplanes, automobiles
 - Nuclear power plant
 - ⇒ Reliability is becoming the primary concern
- ♦ Increase of Size/Complexity of Software
 - ⇒ Manual debugging is infeasible

Program Verification Techniques

- ♦ Model checking (c.f. 2007 Turing award)
 - Applicable to first-order procedures (pushdown model checking), but not to higher-order programs
- ♦ Type-based program analysis
 - Applicable to higher-order programs
 - Sound but imprecise
- ♦ Dependent types/theorem proving
 - Requires human intervention

Sound and precise verification techniques for higher-order programs (e.g. ML/Java programs)?

This Talk

- ♦ New program verification technique for higher-order languages (e.g. ML)
 - Sound, complete, and automatic for
 - · A large class of higher-order programs
 - · A large class of verification problems
 - Built on recent/new advances in
 - Type theories
 - Automata/formal language theories (esp. higher-order recursion schemes)
 - Model checking
- ♦ Applications to language-based security (part II)

Relevance to Security? (for ASIAN audience)

- ♦ Program verification is relevant to software security
 - Prevent security holes
 - Verification techniques have been used for:
 - · information flow analysis
 - access control
 - protocol verification
- ♦ Higher-order program verification brings new advantages
 - precise for higher-order programs
 - applicable to infinite-state systems

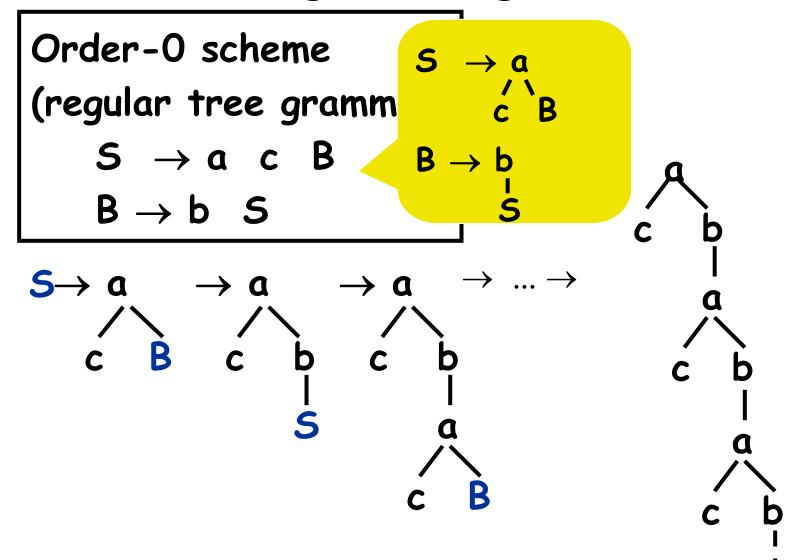
Outline

- ♦ Part I: Types and Recursion Schemes for Higher-Order Program Verification
 - Higher-order recursion schemes
 - From program verification to model checking recursion schemes
 - From model checking to type checking
 - Type checking (=model checking) algorithm
 - TRecS: Type-based RECursion Scheme model checker
 - Future perspectives
- ♦ Part II: Higher-order program verification for language-based security

technical summary

Higher-Order Recursion Scheme

♦ Grammar for generating an infinite tree



Higher-Order Recursion Scheme

♦ Grammar for nite tree Tree whose paths are labeled by Order-1 scheme $S \rightarrow A c$ $A \rightarrow \lambda x$. a x (A (b x))S: $o, A: o \rightarrow o$ $S \rightarrow A c \rightarrow a$ ć A(b c) c A(b(b c))

Model Checking Recursion Schemes

Given

G: higher-order recursion scheme

A: alternating parity tree automaton (APT) (a formula of modal μ -calculus or MSO), does A accept Tree(G)?

e.g.

- Does every finite path end with "c"?
- Does "a" occur eventually whenever "b" occurs?

n-EXPTIME-complete [Ong, LICS06] (for order-n recursion scheme)

Why Recursion Schemes?

- **♦** Expressive:
 - Subsumes many other MSO-decidable tree classes (regular, algebraic, Caucal hierarchy, HPDS, ...)
- High-level (c.f. higher-order PDS):
 - Recursion schemes

 \approx

Simply-typed λ -calculus

- + recursion
- + tree constructors (but not destructors)
- (+ finite data domains such as booleans)

Suitable models for higher-order programs

Outline

- ♦ Higher-order recursion schemes
- ♦ From program verification to model checking recursion schemes
- From model checking to type checking
- ♦ Type checking (=model checking) algorithm for recursion schemes
- ♦ TRec5: Type-based RECursion Scheme model checker
- ♦ Ongoing and future work

From Program Verification to Model Checking Recursion Schemes [K. POPL 2009]

Higher-order program

Program

Program

Transformation

Rec. scheme (describing all event sequences and outputs)

Tree automaton, recognizing valid event sequences

From Program Verification to Model Checking: Example

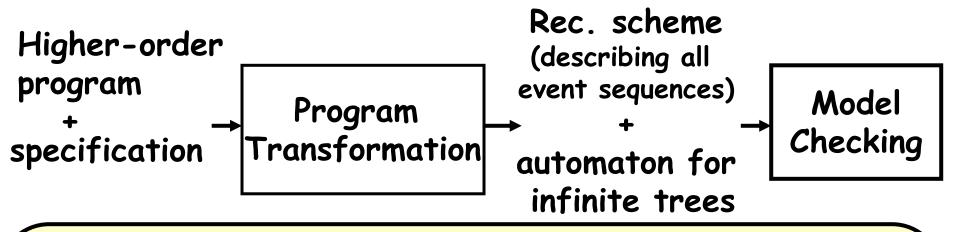
```
F \times k \rightarrow + (c k) (r(F \times k))
let f(x) =
  if * then close(x)
  else read(x); f(x)
in
let y = open "foo"
in
     f (y)
  Is the file "foo"
accessed according
                                 Is each path of the tree
  to read* close?
                                      labeled by r*c?
```

From Program Verification to Model Checking: Example

```
F \times k \rightarrow + (c k) (r(F \times k))
let f(x) =
                              S \rightarrow F d \star
  if * then close(x)
  else read(x); f(x)
                                   CPS
in
                             Transformation!
let y = open "foo"
in
     f (y)
  Is the file "foo"
accessed according
                                  Is each path of the tree
  to read* close?
                                        labeled by r*c?
```

From Program Verification to Model Checking Recursion Schemes

[K. POPL 2009]

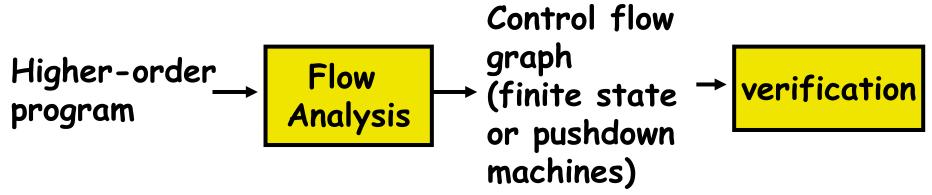


Sound, complete, and automatic for:

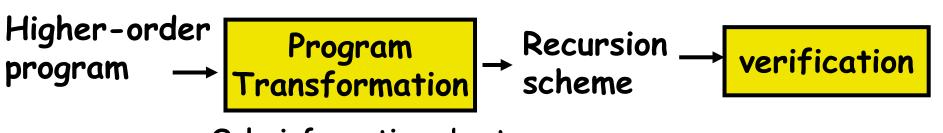
- A large class of higher-order programs:
 simply-typed λ-calculus + recursion
 finite base types
- A large class of verification problems:
 resource usage verification [Igarashi&K. POPL2002],
 reachability, flow analysis, ...

Comparison with Traditional Approach (Control Flow Analysis)

♦ Control flow analysis



♦ Our approach



Only information about infinite data domains is approximated!

Comparison with Traditional Approach (Software Model Checking)

Program Classes	Verification Methods
Programs with while-loops	Finite state model checking
Programs with 1st-order recursion	Pushdown model checking
Higher-order functional programs	Recursion scheme model checking

infinite state model checking

Outline

- ♦ Higher-order recursion schemes
- ♦ From program verification to model checking recursion schemes
- From model checking to type checking
 - Goal and motivation
 - Type system equivalent to model checking
- ♦ Type checking (=model checking) algorithm
- ♦ TRec5: Type-based RECursion Scheme model checker
- **♦** Future perspectives

Goal

Construct a type system TS(A) s.t.

Tree(G) is accepted by tree automaton A if and only if

G is typable in TS(A)

Model Checking as
Type Checking
(c.f. [Naik & Palsberg, ESOP2005])

Why Type-Theoretic Characterization?

- ♦ Simpler decidability proof of model checking recursion schemes
 - Previous proofs [Ong, 2006][Hague et. al, 2008] made heavy use of game semantics
- ◆ More efficient model checking algorithm
 - Known algorithms [Ong, 2006][Hague et. al, 2008] always require n-EXPTIME

Outline

- ♦ Higher-order recursion schemes
- ♦ From program verification to model checking recursion schemes
- From model checking to type checking
 - Goal and motivation
 - Type system
- ♦ Type checking (=model checking) algorithm
- ♦ TRec5: Type-based RECursion Scheme model checker
- **♦** Future perspectives

Model Checking Problem (Simple Case, for safety properties)

Given

G: higher-order recursion scheme

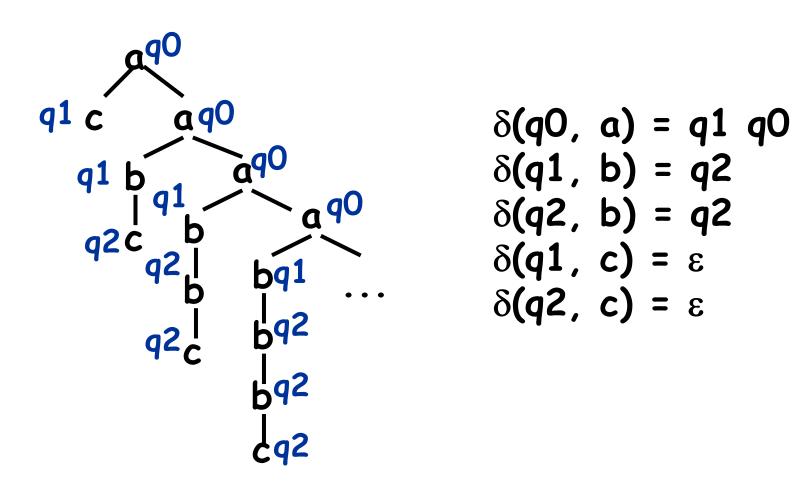
A: trivial automaton

(Büchi tree automaton where all the states are accepting states)

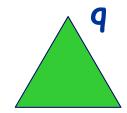
does A accept Tree(G)?

See [K.&Ong, LICS09] for the general case

(Trivial) tree automaton for infinite trees

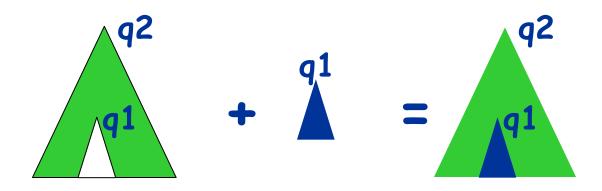


- ♦ Automaton state as the type of trees
 - q: trees accepted from state q

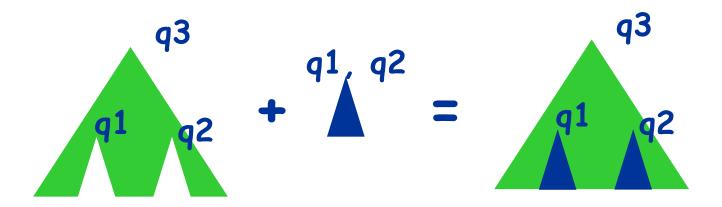


- q1 \q2: trees accepted from both q1 and q2

- ♦ Automaton state as the type of trees
 - $q1 \rightarrow q2$: functions that take a tree of type q1 and return a tree of q2

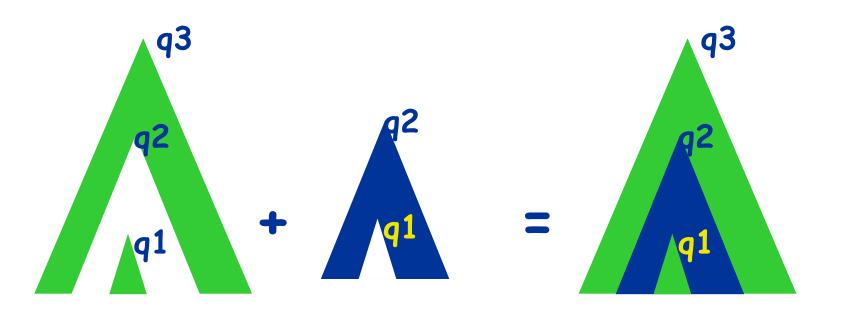


- ♦ Automaton state as the type of trees
 - $q1 \land q2 \rightarrow q3$: functions that take a tree of type $q1 \land q2$ and return a tree of type q3



 \bigstar Automaton state as the type of trees $(q1 \rightarrow q2) \rightarrow q3$:

functions that take a function of type q1 \rightarrow q2 and return a tree of type q3

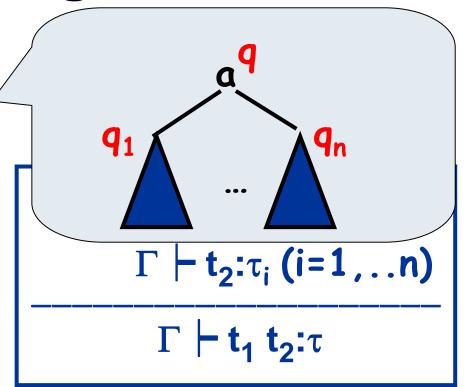


Typing

$$\delta(\mathbf{q}, \mathbf{a}) = \mathbf{q}_1...\mathbf{q}_n$$

$$\vdash a:q_1 \rightarrow ... \rightarrow q_n \rightarrow q$$

$$\frac{\Gamma, \mathbf{x}:\tau_{1}, \dots, \mathbf{x}:\tau_{n} \vdash \mathbf{t}:\tau}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{t}: \tau_{1} \wedge \dots \wedge \tau_{n} \to \tau}$$



$$\Gamma \vdash t_k : \tau \text{ (for every } F_k : \tau \in \Gamma)$$

$$\vdash \{F_1 \rightarrow t_1, \dots, F_n \rightarrow t_n\} : \Gamma$$

Soundness and Completeness [K., POPL2009]

```
Let
  G: Rec. scheme with initial non-terminal S
  A: Trivial automaton with initial state q_0
 TS(A): Intersection type system
         derived from A
Then,
 Tree(G) is accepted by A
   if and only if
  S has type q_0 in TS(A)
```

Outline

- ♦ Higher-order recursion schemes
- ♦ From program verification to model checking recursion schemes
- ♦ From model checking to type checking
- ♦ Type checking (=model checking) algorithm
 - Naive algorithm
 - Practical algorithm
- ♦ TRec5: Type-based RECursion Scheme model checker
- **♦** Future perspectives

Typing

$$\delta(q, a) = q_1...q_n$$

$$\vdash a : q_1 \rightarrow ... \rightarrow q_n \rightarrow q$$

$$\frac{\Gamma, \mathbf{x}:\tau_{1}, \dots, \mathbf{x}:\tau_{n} \vdash \mathbf{t}:\tau}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{t}: \tau_{1} \wedge \dots \wedge \tau_{n} \rightarrow \tau}$$

$$\Gamma, \mathbf{x}:\tau \vdash \mathbf{x}:\tau$$

$$\Gamma \vdash t_{1}: \tau_{1} \wedge ... \wedge \tau_{n} \to \tau$$

$$\Gamma \vdash t_{2}:\tau_{i} (i=1,...n)$$

$$\Gamma \vdash t_{1} t_{2}:\tau$$

$$\Gamma \vdash t_k : \tau \text{ (for every } F_k : \tau \in \Gamma)$$

$$\vdash \{F_1 \rightarrow t_1, \dots, F_n \rightarrow t_n\} : \Gamma$$

Naïve Type Checking Algorithm

 $\begin{bmatrix} S & has type q_0 \end{bmatrix}$

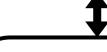
Recursion Scheme:

 $\{F_1 \rightarrow t_1, \ldots, F_m \rightarrow t_m \}$

```
(i) \Gamma \mid - \mathsf{t_k} \colon \tau for each \mathsf{F_k} \colon \tau \in \Gamma (ii) \mathsf{S} \colon \mathsf{q_0} \in \Gamma
```

for some Γ

Filter out invalid type bindings



 $S:q_0 \in gfp(H) = \bigcap_k H^k(\Gamma_{max})$ where

$$H(\Gamma) = \{ F_k : \tau \in \Gamma \mid \Gamma \mid -t_k : \tau \}$$

$$\Gamma_{max} = \{F : \tau \mid \tau :: sort(F) \}$$

All the possible type bindings

E.g. for F: $o \rightarrow o$, $\{F:T \rightarrow q0, F:q0 \rightarrow q0, F:q1 \rightarrow q0, F:q0 \rightarrow q0, ...\}$

Naïve Algorithm Does NOT Work

$$\int$$
 has type q_0

```
S:q_0 \in gfp(H) = \bigcap_k H^k(\Gamma_{max})
where H(\Gamma) = \{ F: \tau \in \Gamma \mid \Gamma \mid -G(F): \tau \}
\Gamma_{max} = \{ F: \tau \mid \tau :: sort(F) \} This is huge!
```

sort	# of types (Q= $\{q_0, q_1, q_2, q_3\}$)
0	4 (q_0,q_1,q_2,q_3)
$o \rightarrow o$	$2^4 \times 4 = 64 (\land S \rightarrow q, \text{ with } S \in 2^Q, q \in Q)$
$(o\rightarrow o)\rightarrow o$	2 ⁶⁴ × 4 = 2 ⁶⁶
$((o\rightarrow o)\rightarrow o)\rightarrow o$	2 ⁶⁶ 100000000000000000000000000000000000

Outline

- ♦ Higher-order recursion schemes
- ♦ From program verification to model checking recursion schemes
- ♦ From model checking to type checking
- ♦ Type checking (=model checking) algorithm for recursion schemes
 - Naive algorithm
 - Practical algorithm
- ♦ TRecs: Type-based RECursion Scheme model checker
- **♦** Future perspectives

More Efficeint Algorithm?

S has type q_0

Challenges:

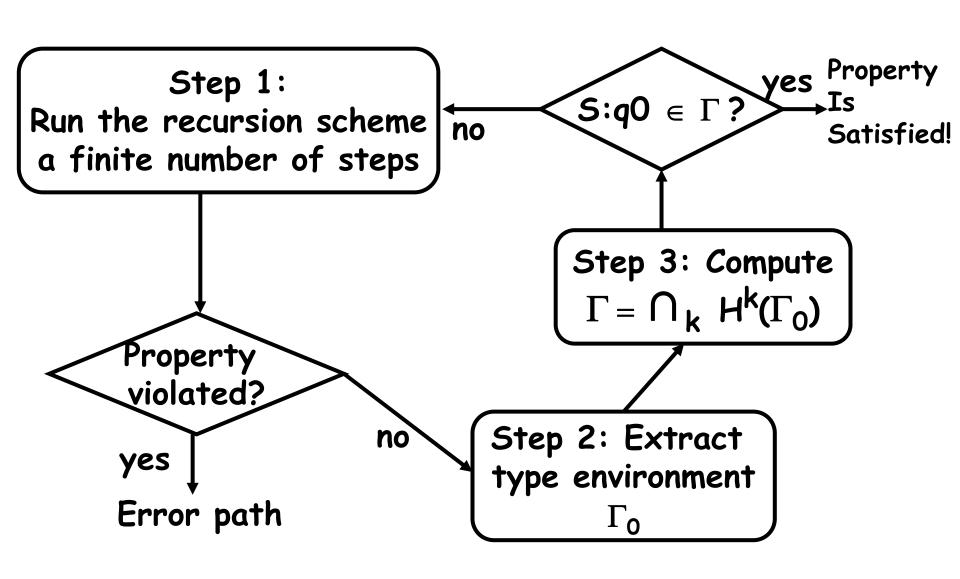
(i) How can we find an appropriate Γ_0 ?

"Run" the recursion scheme (finitely many steps), and extract type information

(ii) How can we guarantee completeness?

Iteratively repeat (i) and type checking

Hybrid Type Checking Algorithm



Soundness and Completeness of the Hybrid Algorithm

Given:

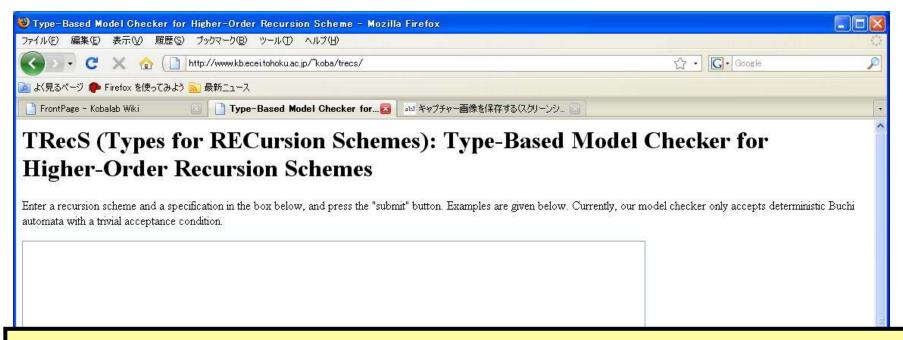
- Recursion scheme G
- Deterministic trivial automaton A, the algorithm eventually terminates, and:
- (i) outputs an error path if Tree(G) is not accepted by A
- (ii) outputs a type environment if Tree(G) is accepted by A

Outline

- ♦ Higher-order recursion schemes
- ♦ From program verification to model checking recursion schemes
- ♦ From model checking to type checking
- ♦ Type checking (=model checking) algorithm for recursion schemes
- ♦ TRec5: Type-based RECursion Scheme model checker
- **♦** Future perspectives

TRecS

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/



- ♦ The first model checker for recursion schemes (or, for higher-order functions)
- ♦ Based on the hybrid model checking algorithm, with certain additional optimizations

qu a -> qu qu. / """ The first state is interpreted as the initial state. "

Experiments

	order	rules	states	result	Time (msec)
Twofiles	4	Taker	from the	compiler	of
FileWrong	4	Objective Caml, consisting of about 60 lines of O'Caml code			
TwofilesE	4	7			
FileOcamlC	4	23	4	Yes	5
Lock	4	11	3	Yes	5
Order5	5	9	4	Yes	2

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

(A simplified version of) FileOcamlC

```
let readloop fp =
 if * then () else readloop fp; read fp
let read_sect() =
  let fp = open "foo" in
 {\text{readc=fun } \times - \text{ readloop fp}};
  closec = fun \times -> close fp
let loop s =
  if * then s.closec() else s.readc();loop s
let main() =
  let s = read_sect() in loop s
```

Outline

- ♦ Higher-order recursion schemes
- ♦ From program verification to model checking recursion schemes
- ♦ From model checking to type checking
- ♦ Type checking (=model checking) algorithm for recursion schemes
- ♦ TRec5: Type-based RECursion Scheme model checker
- **♦** Discussion
 - Advantages of our approach
 - Remaining challenges

- (1) Sound, complete and automatic for a large class of higher-order programs
 - no false alarms!
 - no annotations

- (1) Sound, complete and automatic for a large class of higher-order programs
 - no false alarms!
 - no annotations
- (2) Subsumes finite-state/pushdown model checking
 - Order-0 rec. schemes ≈ finite state systems
 - Order-1 rec. schemes ≈ pushdown systems

- (3) Take the best of model checking and types
 - Types as certificates of successful verification
 ⇒ applications to PCC (proof-carrying code)
 - Counter-example when verification fails
 - ⇒ error diagnosis, CEGAR (counter-example-guided abstraction refinement)

(4) Encourages structured programming

Previous techniques:

- Imprecise for higher-order functions and recursions, hence discourage using them

```
Main:
fp1 := open "r" "foo";
fp2 := open "w" "bar";
Loop:
c1 := read fp1;
if c1=eof then go to E;
write(c1, fp2);
goto Loop;
close fp1;
close fp2;
```

V.S.

```
let copyfile fp1 fp2 =
  try write(read fp2, fp1);
     copyfile fp1 fp2
  with
     Eof -> close(fp1);close(fp2)
let main =
  let fp1 = open "r" file in
  let fp2 = open "w" file in
  copyfile fp1 fp2
```

(4) Encourages structured programming

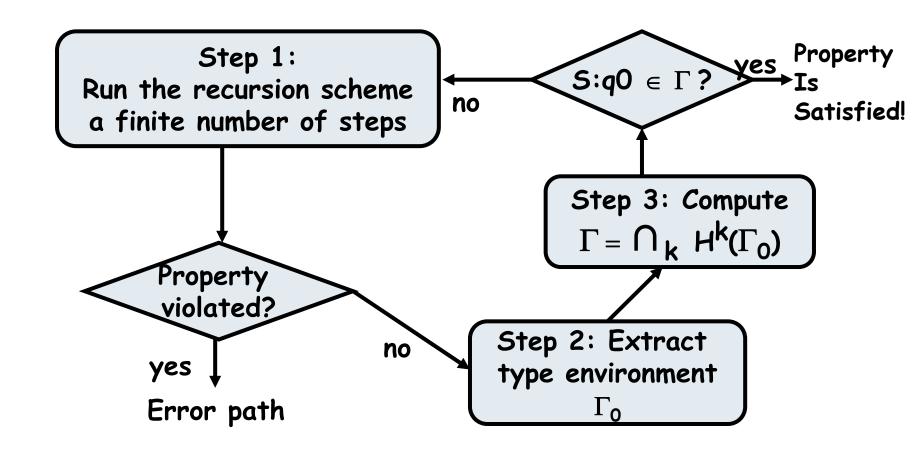
Our technique:

- No loss of precision for higher-order functions and recursions
- Performance penalty? -- Not necessarily!
 - n-EXPTIME in the specification size, but polynomial time in the program size
 - Compact representation of large state space
 - e.g. recursion schemes generating $a^{m}(c)$

S
$$\rightarrow$$
F₁ c, F₁ x \rightarrow F₂(F₂ x),..., F_n x \rightarrow a(a x) vs

$$S \rightarrow a G_1, G_1 \rightarrow a G_2, \ldots, G_m \rightarrow c (m=2^n)$$

(5) A good combination with testing: Verification through testing



Outline

- ♦ Higher-order recursion schemes
- ♦ From program verification to model checking recursion schemes
- ♦ From model checking to type checking
- ♦ Type checking (=model checking) algorithm for recursion schemes
- ♦ TRec5: Type-based RECursion Scheme model checker
- **♦** Discussion
 - Advantages of our approach
 - Remaining challenges

Challenges

- (1) More efficient recursion scheme model checker
 - More results on language-theoretic properties of recursion schemes (e.g. pumping lemmas)
 - BDD-like representation for higher-order functions

Challenges

- (2) A software model checker (on top of a recursion scheme model checker)
 - predicate abstraction and CEGAR for infinite base types (e.g. integers)
 - automaton abstraction for algebraic data types [K. et al. POPL2010]
 - imperative features and concurrency

Challenges

- (3) Extend the model checking problem: Tree(G) $\models \varphi$
 - Beyond "simply-typed" recursion schemes [Tsukada&K., FOSSACS 2010]
 - polymorphism
 - · recursive types
 - Beyond regular properties (MSO)

 Is there a more expressive, decidable logic?

Conclusion (for Part I)

- ♦ New program verification technique based on model checking recursion schemes
 - Many attractive features
 - · Sound and complete for higher-order programs
 - Take the best of model-checking and type-based techniques
 - Many interesting and challenging topics

References

- ♦ K., Types and higher-order recursion schemes for verification of higher-order programs, POPLO9

 From program verification to model-checking, and from model-checking to typing
- ♦ K.&Ong, Complexity of model checking recursion schemes for fragments of the modal mu-calculus, ICALPO9 Complexity of model checking
- ♦ K.&Ong, A type system equivalent to modal mu-calculus model-checking of recursion schemes, LICS09
 - From model-checking to type checking
- ♦ K., Model-checking higher-order functions, PPDP09

 Type checking (= model-checking) algorithm
- ♦ K., Tabuchi & Unno, Higher-order multi-parameter tree transducers and recursion schemes for program verification, POPL10 Extension to transducers and its applications