Substructural Type Systems for Program Analysis

Naoki Kobayashi Tohoku University

What's This Talk About?

A review of substructural type systems for program analysis

- Applications
- Common principles
 - Type Systems
 - Type Inference Algorithms

Future directions

Outline

Background and Motivations

- What is type-based program analysis?
- What are substructural type systems?
- What are they for?
- Affine/Linear Type Systems
- Ordered Linear Type Systems
- Emerging and Future Research Topics

Type-Based Program Analysis?

Program analysis formalized in the form of type inference

- Types as abstract properties of a program
- Type judgment as a relation between a program and its abstract properties
- Type inference algorithm as an algorithm for inferring abstract properties of a program

Examples:

- type-based exception analysis
- region inference [Tofte and Talpin POPL94]
- type-based flow analysis [Palsberg POPL95]
- type-based information flow analysis [Volpano et al. 96]
- type-based deadlock analysis [Kobayashi LICS 97]

Substructural Type Systems?

Type systems with restricted structural rules (c.f. substructural logics)

Weakening: $\Gamma \mid - M:\tau$

Contraction: Γ , x: τ ', x: τ ' |- M: τ

 Γ , **X**: τ ' |– **M**: τ

Γ, **Χ**:τ' |− **Μ**:τ

Exchange: Γ , x: τ_1 , y: $\tau_2 \mid - M$: τ

 Γ , y: τ_2 , x: $\tau_1 \models M$: τ

Substructural Type Systems

	weakening Γ - Μ:τ	contraction Γ, x :τ', x :τ' - M :τ	exchange Γ, x :τ ₁ , y :τ ₂ - Μ:τ	
	Γ, x :τ' - M :τ	 Γ, Χ: τ' – Μ :τ	 Γ, y :τ ₂ , x :τ ₁ – M :τ	
Affine	\checkmark	*	\checkmark	
Linear	*	*	\checkmark	
Ordered linear	*	*	*	

Substructural Type Systems

	W	С	E	Restriction on resource usage
Affine	\checkmark	×	\checkmark	Can be used at most once
Linear	×	×	\checkmark	Must be used exactly once
Ordered linear	×	×	×	Must be used exactly once, in the specified order

Outline

Background and Motivations

- What is type-based program analysis?
- What are substructural type systems?
- What are they for?
- Affine/Linear Type Systems
- Ordered Linear Type Systems
- Future Directions

Why Affine Types? (why "at most once" condition?)

Memory management [Baker, "Linear LISP"]

- Memory space for an affine value can be deallocated after the value is used.

Optimization

- Inlining (for lazy languages) [Turner et al. FPCA95]
 let x = M in N ⇒ [M/x]N (if x is affine)
- One-shot call/cc
- "tail-call optimization" for message-passing programs

Security

- Nonce should not be used twice [Abadi, "secrecy by typng"]
- Linear declassification (e.g. password check) [Kaneko&Kobayashi, ESOP 2008]

Why Linear Types? (why "exactly once" condition?)

Finalization of resource

- A memory cell should be eventually deallocated.
- A file should be eventually closed.

Synchronization/communication protocols

- An acquired lock should be eventually released.
- A server should send a reply to each request exactly once.

Why Ordered Types?

Checking resource access protocols [Igarashi&Kobayashi, POPL2002]

- An array should be initialized before being read.
- A memory cell must not be read after deallocation
- A file must not be read/written after being closed.

Preventing deadlock [Kobayashi 97-]

Streaming XML processing [Suenaga et al. 04]

- Tree data in streams can be accessed only in a restricted order.

Outline

- Background and Motivations
 Affine/Linear Type Systems
 - λ -calculus with affine/linear resources
 - Type systems
 - Type inference algorithms
- Ordered Linear Type Systems
 Future Directions

λ -calculus with resource

M (term) ::= $x \mid c \mid \lambda x.M \mid M_1M_2$

- | if M_1 then M_2 else M_3 | let x = M_1 in M_2
- new() resource creation
- use(M) resource access

Semantics

 ♦ Run-time state: (H, M) H ∈ Resource → {0, 1}
 ♦ Reduction (H, E[new()]) → (H{r:1}, E[r]) (r is fresh) (H{r:1}, E[use r]) → (H{r:0}, E[()]) (H{r:0}, E[use r]) → Error

E.g. ({}, let y = new() in (use y; use y)) \rightarrow ({r:1}, let y = r in (use y; use y)) \rightarrow ({r:1}, use r; use r) \rightarrow ({r:0}, use r) \rightarrow Error

Functions as Resources

fun $x \Rightarrow M \equiv (\lambda x.M, new())$ app $(M_1, M_2) \equiv let x=M1$ in let y=M2 in use(snd(x)); (fst x)(y)

 $\begin{array}{l} M \ (term) ::= x \mid c \mid \lambda x.M \mid M_1M_2 \\ \quad | \ if \ M_1 \ then \ M_2 \ else \ M_3 \mid let \ x = M_1 \ in \ M_2 \\ \quad | \ new(\) \quad resource \ creation \\ \quad | \ use \ M \quad resource \ access \end{array}$

Expected Properties

 ♦ Affine type system: If M is well-typed, then: ({}, M) →* Error (No resource can be used twice)

Linear type system:
If M is well-typed, then:
(i) ({}, M) →* Error
(ii) ({}, M) →* (H, c) implies
H(r)=0 for every r ∈ dom(H)
(Every resource is used)

Types

 τ (types) ::= b base types **R(u)** resource types $(\tau \rightarrow \tau, \mathbf{u})$ function types au imes aupair types u (uses) ::= 0 cannot be used exactly once (linear type only) ≤1 at most once (affine type only) any number of times ω

Type Judgment (examples) \checkmark x: R(1) |- use(x): unit \mathbf{x} : R(1) |- use(x); use(x): unit \checkmark x: R(ω) |- use(x); use(x): unit x : R(1) | - () : unit✓ x: R(≤1) |- (): unit \checkmark x: R(1) |- λ y.use(x): (unit \rightarrow unit, 1) \times x: R(1) $\mid - \lambda y.use(x)$: (unit \rightarrow unit, ω)

Typing (structural rules)

$$\begin{array}{c} \Gamma, \mathbf{x}:\tau_1, \mathbf{y}:\tau_2, \Delta \models \mathsf{M}:\sigma \\ \hline \Gamma, \mathbf{y}:\tau_2, \mathbf{x}:\tau_1, \Delta \models \mathsf{M}:\sigma \end{array} (exchange) \end{array}$$

$$\frac{\Gamma \vdash M:\sigma \quad nonlinear(\tau)}{\Gamma, \times:\tau \vdash M:\sigma}$$
 (weakening)

 $\begin{array}{l|c} x:R(1) \models use(x):unit & x:R(1) \models use(x):unit \\ \hline x:R(1),y:R(\leq 1) \models use(x):unit & x:R(1), y:R(1) \models use(x):unit \\ \end{array}$

Typing: subsumption

Typing for resources

$$\Gamma \vdash \mathsf{use} \; \mathsf{M}: \mathsf{unit}$$

Typing for resources

$$\Gamma \vdash \mathsf{use} \; \mathsf{M}: \mathsf{unit}$$

$$\Gamma \vdash M:\tau \quad \Delta, x:\tau \vdash N:\sigma$$
$$\Gamma \vdash \Delta \vdash let x=M \text{ in } N:\sigma$$

Example: $r:R(1) \vdash use(r):unit$ $r:R(1), x:unit \vdash use(r):unit$ $r:R(1)+R(1) \vdash let x=use(r) in use(r) : unit$

R(u) + R(u') = R(u+u') where:

+	0	1	ω
0	0	1	ω
1	1	ω	ω
ω	ω	ω	ω

$$\Gamma \vdash M:\tau \quad \Delta, x:\tau \vdash N:\sigma$$
$$\Gamma \vdash \Delta \vdash let x=M \text{ in } N:\sigma$$

Example: $r:R(1) \vdash use(r):unit$ $r:R(1), x:unit \vdash use(r):unit$ $r:R(\omega) \vdash let x=use(r) in use(r) : unit$

R(u) + R(u') = R(u+u') where:

+	0	1	ω
0	0	1	ω
1	1	ω	ω
ω	ω	ω	ω

$$\sum_{\Gamma} \Gamma \vdash M: \tau \quad \Gamma, X: \tau \vdash N: \sigma$$
$$\Gamma \vdash let X=M \text{ in } N: \sigma$$

Example: r:R(1) |- use(r):unit r:R(1), x:unit |- use(r):unit

 $r:R(\omega) \vdash let x=use(r) in use(r) : unit$

R(u) + R(u') = R(u+u') where:

+	0	1	ω
0	0	1	ω
1	1	ω	ω
ω	ω	ω	ω

Outline

- Background and Motivations
- Affine/Linear Type Systems
 - λ -calculus with affine/linear resources
 - Type systems
 - Type inference algorithms
 - polynomial-time algorithm for affine types
 - NP-completeness of linear type system
 - tractable linear type systems
- Ordered Linear Type Systems
- Future Directions

Type Inference For Linear/Affine Type Systems Prepare variables to denote unknown uses

Extract subtype constraints

 $\tau_1 \leq \sigma_1, \ldots, \tau_n \leq \sigma_n$

Reduce subtype constraints to constraints on use variables

 $\eta_1 \leq u_1, \ldots, \eta_n \leq u_n$

Solve subuse constraints

```
let rec f(n, x) =
    if n=0 then use(x)
    else f(n-1, x)
in
let r = newA()
in f(3, r)
```

let rec f(n, x: R(n)) =
 if n=0 then use(x)
 else f(n-1, x)
in
let r = newA()
in f(3, r)

let rec f(n, x: $R(\eta)$) = if n=0 then use(x) $R(\eta) \le R(\le 1)$ else f(n-1, x) in let r = newA() in f(3, r)

 $R(\omega) \le R(\le 1) \le R(0)$

 $\begin{array}{l} \text{let rec } f(n, \ x: \ R(\eta) \) = \\ & \text{if } n=0 \ \text{then } use(x) & R(\eta) \leq R(\leq 1) \\ & \text{else } f(n-1, \ x) & R(\eta) \leq R(\eta) \\ & \text{in } \\ & \text{let } r = newA() \\ & \text{in } f(3, \ r) \end{array}$

 $R(\omega) \le R(\le 1) \le R(0)$

let rec f(n, x: $R(\eta)$) =
 if n=0 then use(x)
 else f(n-1, x)
in
let r = newA()
in f(3, r)

 $\begin{aligned} \mathsf{R}(\eta) &\leq \mathsf{R}(\leq 1) \\ \mathsf{R}(\eta) &\leq \mathsf{R}(\eta) \\ \mathsf{R}(\leq 1) &\leq \mathsf{R}(\eta) \end{aligned}$

 $R(\omega) \le R(\le 1) \le R(0)$

let rec f(n, x: R(n)) =
 if n=0 then use(x)
 else f(n-1, x)
in
let r = newA()
in f(3, r)

 $R(\eta) \leq R(\leq 1)$ $R(\eta) \leq R(\eta)$ $R(\leq 1) \leq R(\eta)$ $\eta \leq \leq 1, \eta \leq \eta, \leq 1 \leq \eta$ $(\omega \leq \leq 1 \leq 0)$ n = ≤1

Constraint solving for uses: Affine case

 $\eta_1 \leq f_1(\eta_1, \ldots, \eta_n) \mid_{\eta_1, \ldots, \eta_n}$: use variables $\leq 1 \leq g_1(\eta_1, \ldots, \eta_n)$ $\leq 1 \leq g_{k}(\eta_{1}, \ldots, \eta_{n})$

 $\eta_n \leq f_n(\eta_1, \ldots, \eta_n)$ $f_1, \ldots, f_n, g_1, \ldots, g_k:$ monotonic functions (constructed from +, \times , lub, 0, \leq 1)

Constraint solving for uses: Affine case

 $\eta_1 \leq f_1(\eta_1, \ldots, \eta_n)$ $\leq 1 \leq g_1(\eta_1, ..., \eta_n)$ $\leq 1 \leq g_{k}(\eta_{1}, \ldots, \eta_{n})$

 $\eta_1, ..., \eta_n$: use variables $\eta_n \leq f_n(\eta_1, \ldots, \eta_n) \begin{cases} f_1, \ldots, f_n, g_1, \ldots, g_k: \\ monotonic functions \end{cases}$ (constructed from +, \times , lub, 0, \leq 1)

1. Use a fixedpoint computation algorithm to get the greatest solution $\vec{\eta} = \vec{c}$ for $\vec{\eta} \le \vec{f}(\vec{\eta})$ (n.b. $\vec{0} \ge \vec{f}(\vec{0}) \ge \vec{f}(\vec{f}(\vec{0})) \ge \dots$)

Constraint solving for uses: Affine case

 $\eta_1 \leq \mathbf{f}_1(\eta_1, \ldots, \eta_n)$ $\leq 1 \leq g_1(\eta_1, ..., \eta_n)$ $\leq 1 \leq g_{k}(\eta_{1}, \ldots, \eta_{n})$

 $\eta_1, ..., \eta_n$: use variables $\eta_n \leq f_n(\eta_1, \ldots, \eta_n)$ $f_1, \ldots, f_n, g_1, \ldots, g_k$: monotonic functions (constructed from +, \times , lub, 0, \leq 1)

1. Use a fixedpoint computation algorithm to get the greatest solution $\vec{\eta} = \vec{c}$ for $\vec{\eta} \le \vec{f}(\vec{\eta})$ (n.b. $\vec{0} \ge \vec{f}(\vec{0}) \ge \vec{f}(\vec{f}(\vec{0})) \ge ...$) 2. Check $\leq 1 \leq \mathbf{g}(\mathbf{c})$ Linear in the size of the constraints [Rehof&Mogensen, 1999]

Constraint solving for uses: Linear case

$$\begin{split} \eta_{1} &\leq f_{1}(\eta_{1}, \ldots, \eta_{n}) \\ & \ddots \\ \eta_{n} &\leq f_{n}(\eta_{1}, \ldots, \eta_{n}) \\ & 1 &\leq g_{1}(\eta_{1}, \ldots, \eta_{n}) \\ & \ddots \\ & 1 &\leq g_{k}(\eta_{1}, \ldots, \eta_{n}) \end{split}$$

The same algorithm does NOT apply!

Linear type system is NP-complete! • 1-in-3SAT problem can be encoded. $\oplus(X,Y, \neg Z) \land \oplus(\neg X, \neg Y, Z)$ $\oplus(A, B, C)$:

iff

⊕(A, B, C):Exactly one ofA, B, C is true

 $\begin{array}{l} f_X \colon R(\eta_X) \to \text{unit}, \quad f_{\neg_X} \colon R(\eta_{\neg_X}) \to \text{unit}, \\ f_y \colon R(\eta_y) \to \text{unit}, \quad f_{\neg_y} \colon R(\eta_{\neg_y}) \to \text{unit}, \\ f_z \colon R(\eta_z) \to \text{unit}, \quad f_{\neg_z} \colon R(\eta_{\neg_z}) \to \text{unit} \end{array}$

Linear type system is NP-complete! ↓ 1-in-3SAT problem can be encoded. ⊕(X,Y, ¬Z) ∧ ⊕(¬X, ¬Y, Z) iff ⊕(A, B, C): Exactly one of A, B, C is true

let $f_X(r) = f_X(r)$ in let $f_{\neg X}(r) = f_{\neg X}(r)$ in let $f_y(r) = f_y(r)$ in let $f_{\neg y}(r) = f_{\neg y}(r)$ in let $f_Z(r) = f_Z(r)$ in let $f_{\neg Z}(r) = f_{\neg Z}(r)$ in let r = newL() in $(f_X(r) ; f_{\neg X}(r))$; let r = newL() in $(f_y(r) ; f_{\neg y}(r))$; let r = newL() in $(f_Z(r) ; f_{\neg Z}(r))$; let r = newL() in $(f_X(r) ; f_y(r); f_{\neg Z}(r))$; let r = newL() in $(f_{\neg X}(r) ; f_{\neg y}(r); f_{\neg Z}(r))$;

Tractable Linear Type System

Tractable Linear Type System

Tractable Linear Type System

Rehof&Mogensen's algorithm is applicable!

Affine/Linear Types: Lessons Extend resource types with uses Extend also function types with uses Carefully restrict structural rules Carefully design the domain of uses (to enable efficient type inference)

Outline

- Background and Motivations
- Affine/Linear Type Systems
- Ordered Linear Type Systems
 - λ -calculus with order-constrained resources
 - Type system
 - Type inference
- Emerging and Future Research Topics

 λ -calculus with ordered resource [Igarashi&Kobayashi, POPL02] M (term) ::= $x \mid c \mid \lambda x.M \mid M_1M_2$ if M_1 then M_2 else M_3 let $x = M_1$ in M_2 $| new^{\Phi}()$ creation of resource used according to Φ use_a(M) resource access Φ : A set of valid access sequences

Example

Should be closed after some read operations

let fp = new^{r*c}() in
 read(fp); close(fp)

Let fp = new^{r*c}() in
 close(fp) ; read(fp)

let fp = new^{r*c}() in
 if b then read(fp) else close(fp)

(read, write, close as abbreviations for use, use, use,)

Semantics

Reduction

 $\begin{array}{ll} (\mathsf{H}, \ \mathsf{E}[\mathsf{new}^{\Phi}()]) \rightarrow (\mathsf{H}\{\mathsf{r} \colon \Phi\}, \ \mathsf{E}[\mathsf{r}]) & (\mathsf{r} \ \mathrm{is} \ \mathsf{fresh}) \\ (\mathsf{H}\{\mathsf{r} \colon \Phi\}, \ \mathsf{E}[\mathsf{use}_{\mathtt{a}} \ \mathsf{r}]) \rightarrow (\mathsf{H}\{\mathsf{r} \colon \{\mathsf{w} \ \mid \ \mathsf{aw} \in \Phi\}, \ \mathsf{E}[()]) \\ (\mathsf{H}\{\mathsf{r} \colon \Phi\}, \ \mathsf{E}[\mathsf{use}_{\mathtt{a}} \ \mathsf{r}]) \rightarrow & \mathsf{Error} \\ & (\mathsf{if} \ \{\mathsf{w} \ \mid \ \mathsf{aw} \in \Phi\} = \{ \ \}) \end{array}$

E.g. ({}, let $y=new^{n^*C}()$ in $(use_C y; use_R y))$ $\rightarrow (\{x: R^*C\}, let y=x in (use_C y; use_R y))$ $\rightarrow (\{x: R^*C\}, use_C x; use_R x)$ $\rightarrow (\{x: \{\epsilon\}\}, use_R x)$ $\rightarrow Error$

Expected Properties ♦ If M is well-typed, then: (i) ({}, M) $\not\rightarrow^*$ Error (no invalid access) (ii) ({}, M) \rightarrow^* (H, c) implies $\varepsilon \in H(r)$ for every $r \in dom(H)$ (finalization)

 τ (types) ::= b base types **R(u)** resource types $\tau_1 \rightarrow \tau_2$ function types $\tau \times \tau$::= **0** cannot be used u (usages) accessed once by use **a** u_1 and then u_2 $u_1; u_2$ $u_1 \& u_2$ u_1 or u_2 usage variable ρ recursion μρ. **U**

Examples: usages* μρ.(c & (r; ρ)): read-only file

\$\$ μρ.(0 & (push;ρ; pop)) : stack

u (usages) ::=	= O	cannot be used
	a	accessed once by use _a
	u ₁ ; u ₂	u ₁ and then u ₂
	u ₁ &u ₂	$u_1 \text{ or } u_2$
	ρ	usage variable
	μρ. u	recursion

$$\Gamma \models M:\tau \quad \Delta, x:\tau \models N:\sigma \quad rfree(\tau)$$

$$\Gamma; \Delta \models let x=M \text{ in } N:\sigma$$

(rfree(τ) if τ does not contain resource types)

Example: y: R(r) - read(y):unit y: R(c), x: unit - close(y):unit y: R(r;c) - let x= read(y) in close(y) : unit

Type Inference: Example

let rec f(n, x) =
 if n=0 then close(x)
 else (read(x);f(n-1, x))
in
let r = new^{r*c}()
in f(3, r)

Type Inference: Example

let rec f(n, x: R(ρ)) =
 if n=0 then close(x)
 else (read(x);f(n-1, x))
in
let r: R(η) = new^{r*c}()
in f(3, r)

Type Inference: Example $R(\rho) \leq R(c)$ $R(ρ) \le R(r); R(ρ)$ let rec f(n, x: $R(\rho)$) = $R(\eta) \leq R(\rho)$ if n=0 then close(x) $sem(\eta) \subseteq r^*c$ else (read(x);f(n-1, x))^L in $\rho \leq c \& (r; \rho)$ let r: $R(\eta) = new^{r*c}$ $\eta \leq \rho$ sem(η) <u></u> ⊂ r*c in f(3, r)sem(μr.c & (r; ρ)) ⊆ r*c

Outline

- Background and Motivations
- Affine/Linear Type Systems
- Ordered Linear Type Systems
- Emerging and Future Directions
 - Fractional Types
 - Ordered Linear Datatypes
 - Better Ordered Type Systems
 - Integration with Other Verification Methods

Fractional Types

Type of resource that can be used 0.5 times

fun f(x: R(≤ 0.5), y: R(≤ 0.5)) = if x=y then use(x) else ()

What are they for?

- More expressive power
- Efficient type inference (via linear programming)
 for
- Race analysis [Boyland, SAS03] [Terauchi, CONCUR06, etc.]
- Protocol verification [Kikuchi & Kobayashi, APLAS2007]

Ordered Pair Types

 $\tau \otimes \sigma$: Type of a pair of values of types τ and σ with no order constraint τ σ Type of pair (v,w) where v is used according to τ and then w is used according to σ τ < σ Type of pair (v,w) where w is used according to σ and then v is used according to τ

Ordered List/Tree Types

 $\mu \alpha$. (unit + $\tau \triangleright \alpha$): A list accessed from the head μ α. (unit + τ (α): A list accessed from the tail $\mu \alpha$. (unit + ($\alpha \triangleleft \tau$) $\triangleright \alpha$): A tree accessed in the depth-first, left-to-right order

Application: Stream processing of XML [Suenaga et al. 2004]

Better Ordered Type Systems?

Naive rule is unsound

$$\Gamma \models M:\tau \quad \Delta, x:\tau \models N:\sigma \quad \overline{\text{rfree}(\tau)}$$

$$\Gamma; \Delta \models e x=M \text{ in } N:\sigma$$

$\frac{y:R(r) \vdash y:R(r) \quad y:R(c), \quad x:R(r) \vdash close(y); read(x): unit}{y: R(r;c) \vdash let \quad x=y \text{ in } close(y); read(x): unit}$

Better Ordered Type Systems?

Naive rule is unsound

$$\Gamma \models M:\tau \quad A, x:\tau \models N:\sigma$$
$$\Gamma; A \models e x=M \text{ in } N:\sigma$$

Existing solutions

- Restrict types ("rfree" condition) ([Suenaga et al. 2004] for XML processing)
- Introduce temporal operators ([Igarashi&Kobayashi 2002], for resource usage analysis)
- Introduce "levels" to express causal dependencies ([Kobayashi 97, for deadlock analysis)

Integration with Other Verification Methods?

Need for value-dependent information

let
 x = if y>0 then newL() else null
in
 if y>0 then use(x) else ()

Substructural Type Systems: Summary

Useful for checking resource usage

Must be carefully designed to ensure:

- Type soundness
- Efficient type inference
 - Often reduced to:
 - Fixedpoint computation for monotonic functions
 - Language inclusion problem (e.g. CFL vs RL)
 - Model checking problem

Emerging and Future Topics

Fractional types

- utilization of linear programming

Ordered linear datatypes

- More applications?

Better ordered type systems

Integration with other verification methods