Higher-Order Model Checking: From Theory to Practice

Naoki Kobayashi Tohoku University

In collaborations with: Luke Ong (University of Oxford) Ryosuke Sato, Naoshi Tabuchi, Takeshi Tsukada, Hiroshi Unno (Tohoku University)

What's This Talk About?

 NOT a general survey (see the paper in the proceedings for this)

BUT an overview of our recent work, to get practical applications (e.g. software model checker for ML) from theoretical results [Knapik et al.02;Ong06;...]

on higher-order model checking

Outline

What is higher-order model checking?

- higher-order recursion schemes
- model checking problems
- ♦ Applications
 - program verification:
 "software model checker for ML"
 - data compression
- Algorithms for higher-order model checking
- Future directions

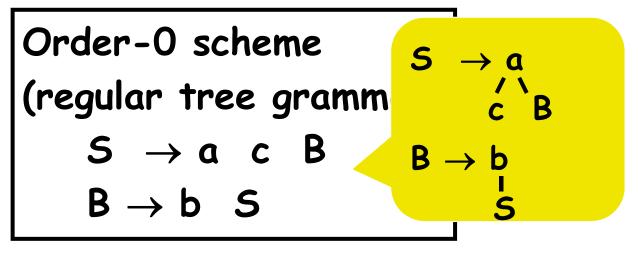
Outline

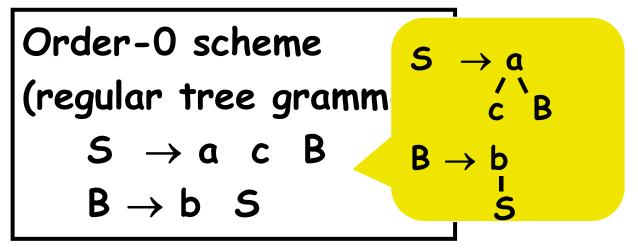
What is higher-order model checking?

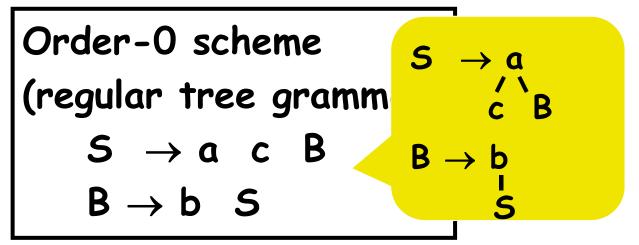
- higher-order recursion schemes
- model checking problems
- Applications
 - program verification:
 "software model checker for ML"
 - data compression
- Algorithms for higher-order model checking
- Future directions

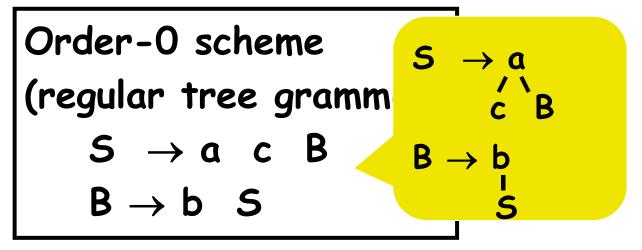
•Grammar for generating an infinite tree

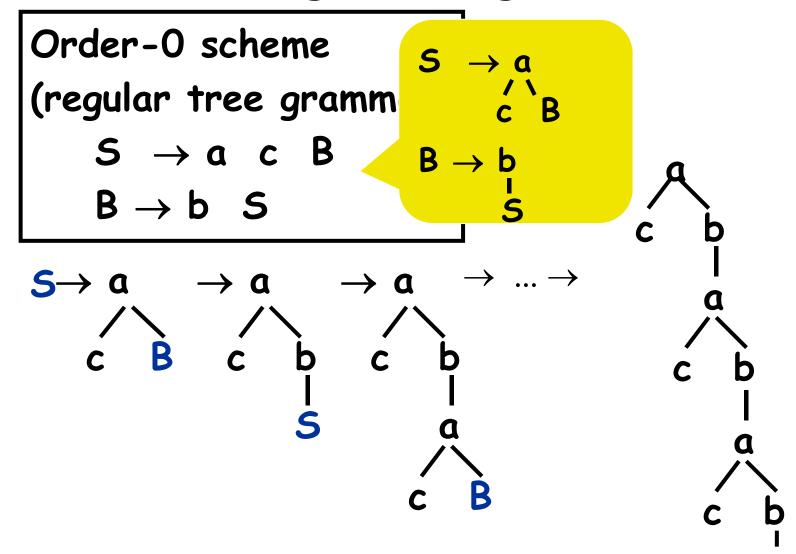
Order-0 scheme (regular tree grammar) $S \rightarrow a \ c \ B$ $B \rightarrow b \ S$











♦ Grammar for generating an infinite tree

Order-1 scheme $S \rightarrow A c$ $A \rightarrow \lambda x. a \times (A (b x))$ $S: o, A: o \rightarrow o$

S

•Grammar for generating an infinite tree

Order-1 scheme $S \rightarrow A c$ $A \rightarrow \lambda x. a \times (A (b x))$ $S: o, A: o \rightarrow o$

 $S \rightarrow A c$

♦ Grammar for generating an infinite tree

Order-1 scheme $S \rightarrow A c$ $A \rightarrow \lambda x. a \times (A (b x))$ $S: o, A: o \rightarrow o$

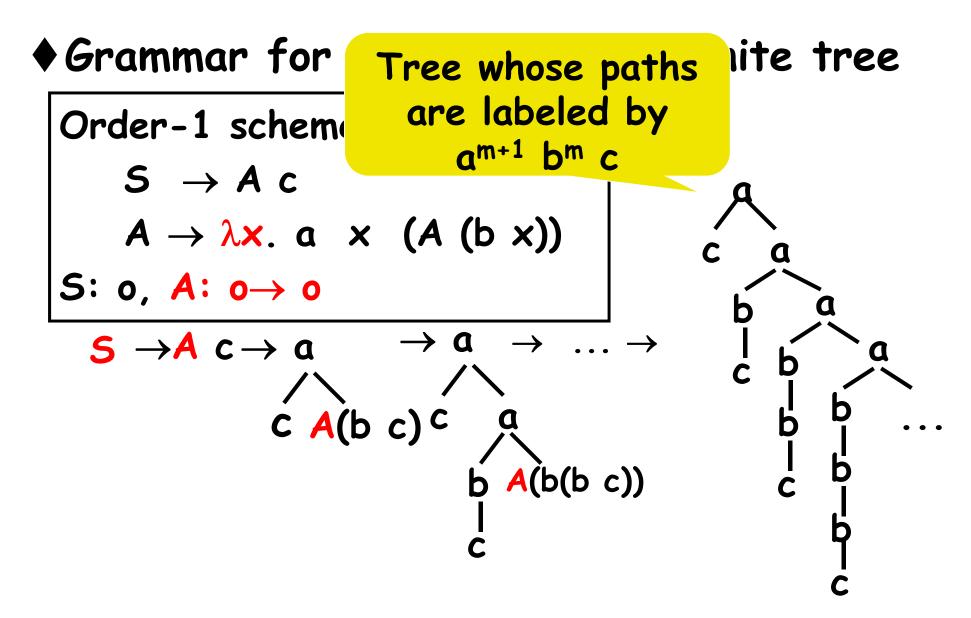
$$A \ c \rightarrow a$$

$$(\land)$$

$$C \ A(b \ c)$$

•Grammar for generating an infinite tree

Order-1 scheme $S \rightarrow A c$ $A \rightarrow \lambda x. a \times (A (b x))$ S: o, A: o > o $\mathbf{S} \rightarrow \mathbf{A} \mathbf{c} \rightarrow \mathbf{a} \rightarrow \mathbf{a}$ a C A(b c) c a b A(b(b c))



•Grammar for generating an infinite tree

Order-1 scheme $S \rightarrow A c$ $A \rightarrow \lambda x. a \times (A (b x))$ S: o, A: $o \rightarrow o$

> Higher-order recursion schemes ≈ Call-by-name simply-typed λ-calculus + recursion, tree constructors

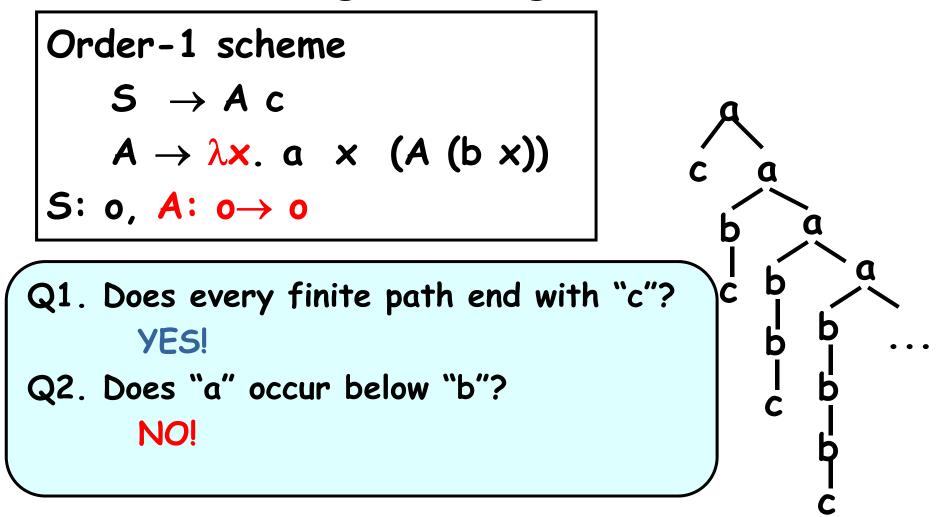
Model Checking Recursion Schemes

Given

- G: higher-order recursion scheme
- A: alternating parity tree automaton (APT) (a formula of modal μ-calculus or MSO), does A accept Tree(G)?

e.g.

- Does every finite path end with "c"?
- Does "a" occur below "b"?



Model Checking Recursion Schemes

Given

- G: higher-order recursion scheme
- A: alternating parity tree automaton (APT) (a formula of modal μ-calculus or MSO), does A accept Tree(G)?

e.g.

- Does every finite path end with "c"?
- Does "a" occur below "b"?

n-EXPTIME-complete [Ong, LICSO6] n 2^{p(x)} (for order-n recursion scheme)

(Non-exhaustive) History

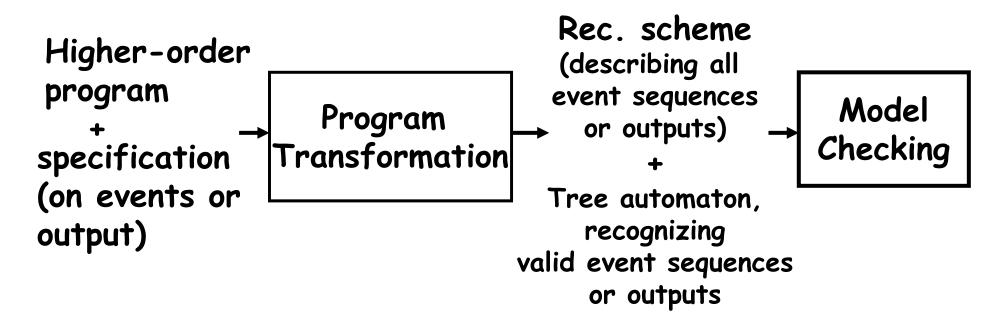
- ♦ 70s: (1st-order) Recursive program schemes [Nivat;Coucelle-Nivat;...]
- ♦ 70-80s: Studies of high-level grammars [Damm; Engelfriet;..]
- 2002: Model checking of higher-order recursion schemes [Knapik-Niwinski-Urzyczyn02FoSSaCS] Decidability for "safe" recursion schemes
- ♦ 2006: Decidability for arbitrary recursion schemes [Ong06LICS]
- 2009: Model checker for higher-order recursion schemes [K09PPDP] Applications to program verification [K09POPL]

Outline

What is higher-order model checking?

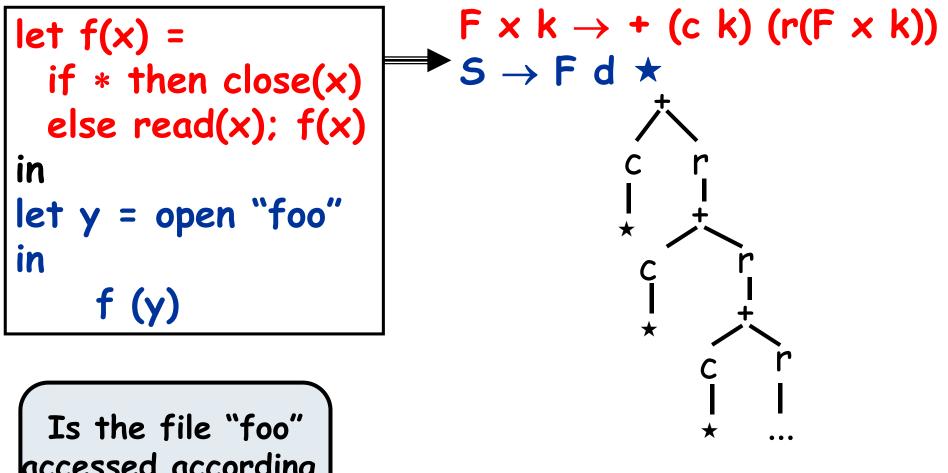
- higher-order recursion schemes
- model checking problems
- Applications
 - program verification:
 "software model checker for ML"
 - data compression
- Algorithms for higher-order model checking
- Future directions

From Program Verification to Model Checking Recursion Schemes [K. POPL 2009]

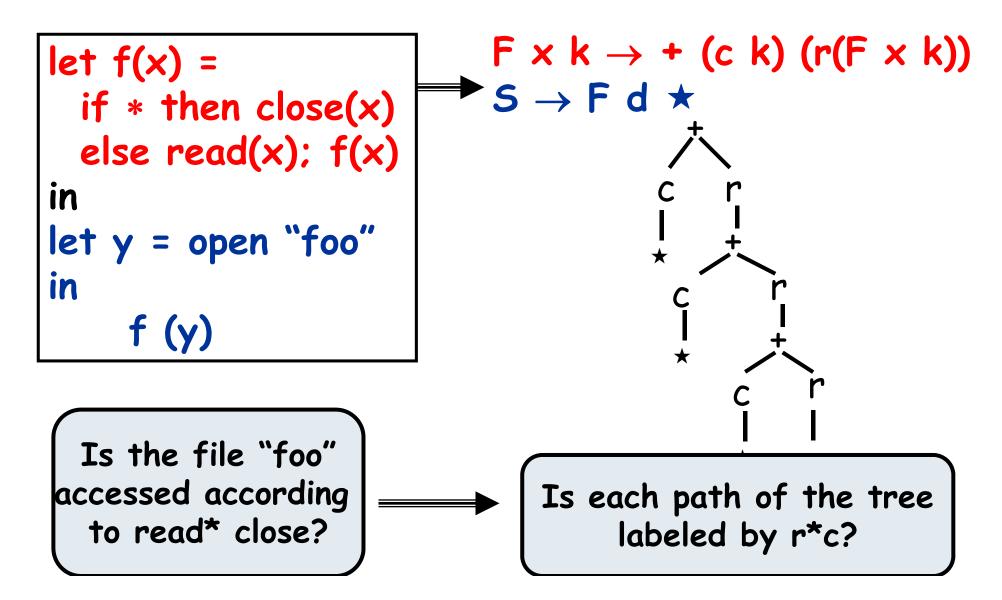


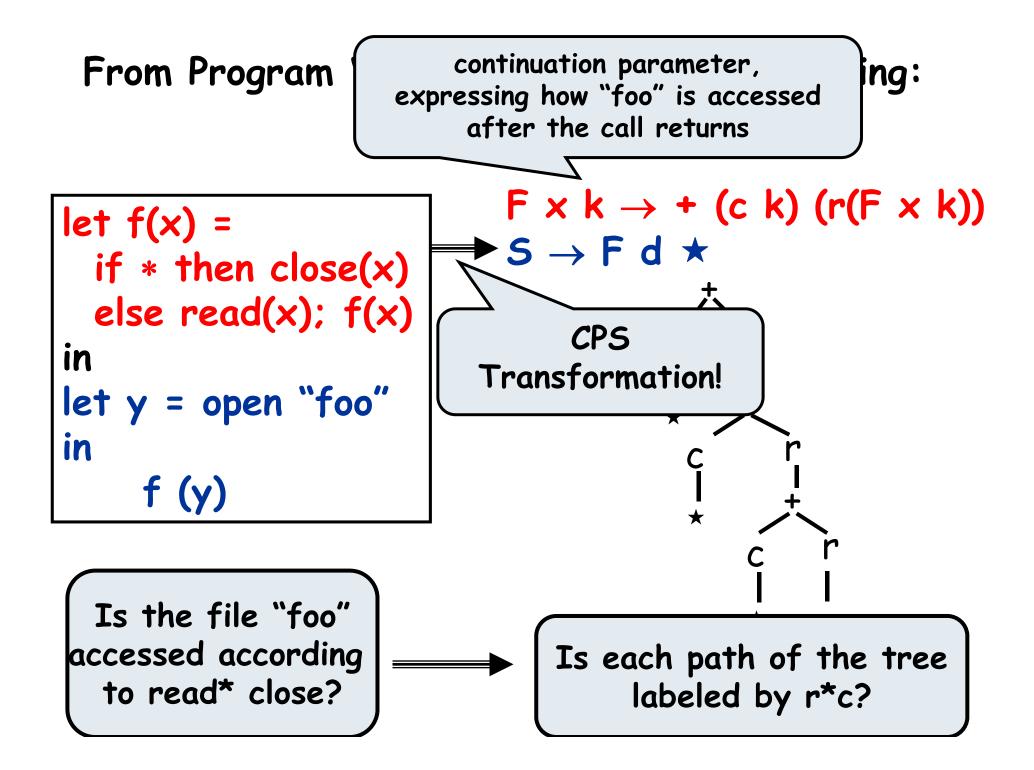
let f(x) =
 if * then close(x)
 else read(x); f(x)
in
let y = open "foo"
in
 f (y)

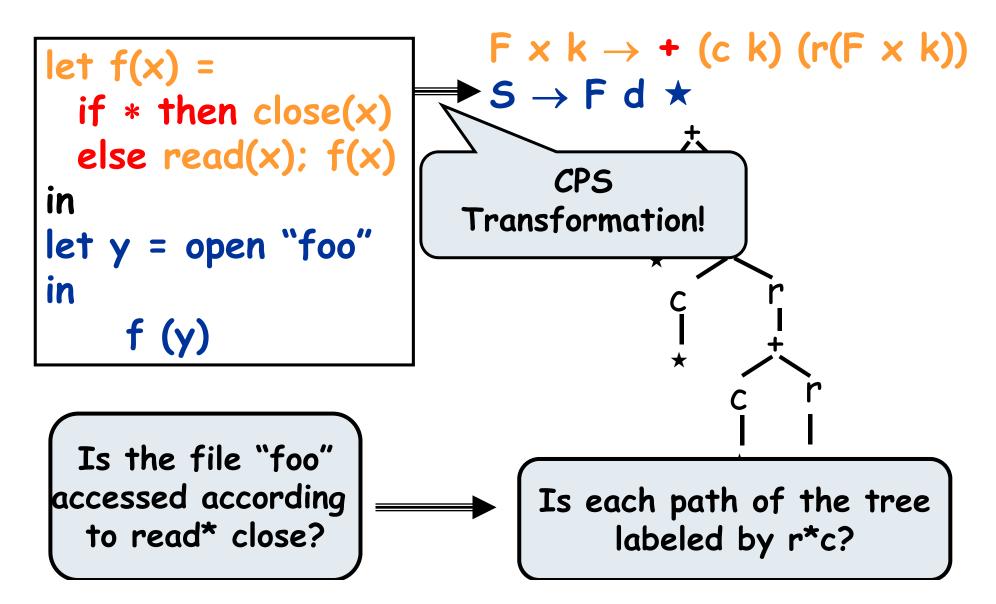
Is the file "foo" accessed according to read* close?

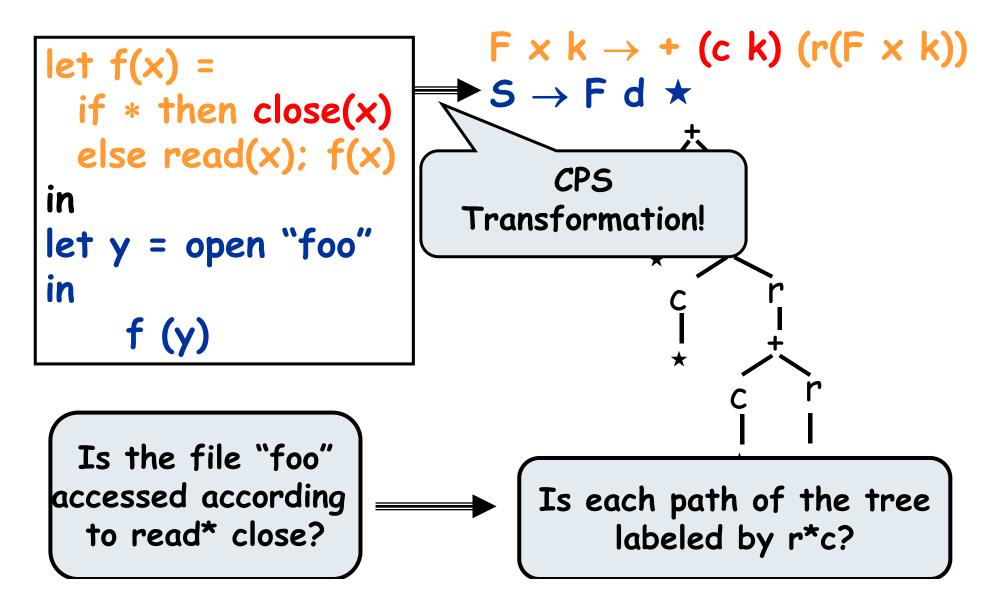


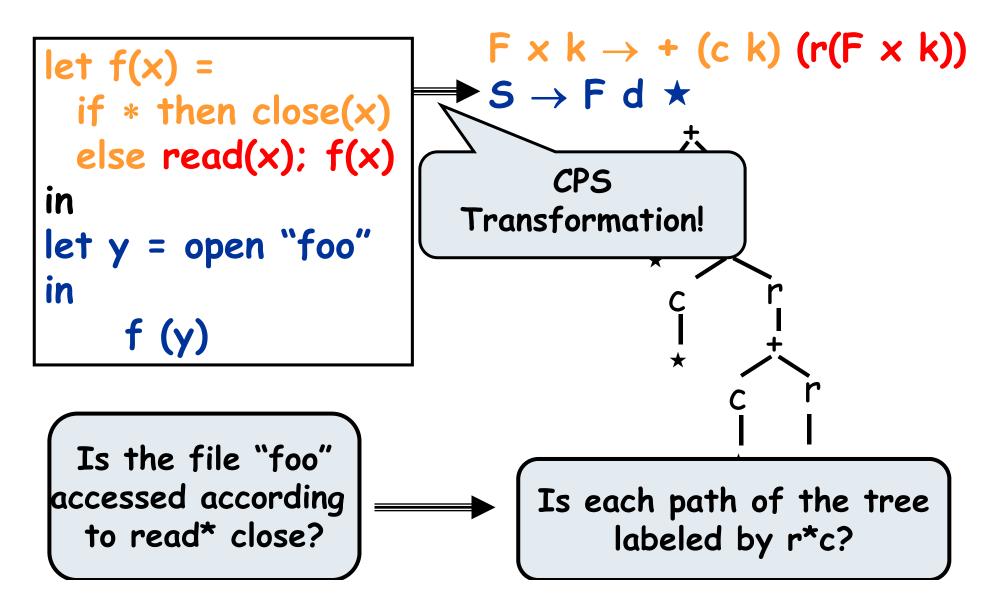
accessed according to read* close?



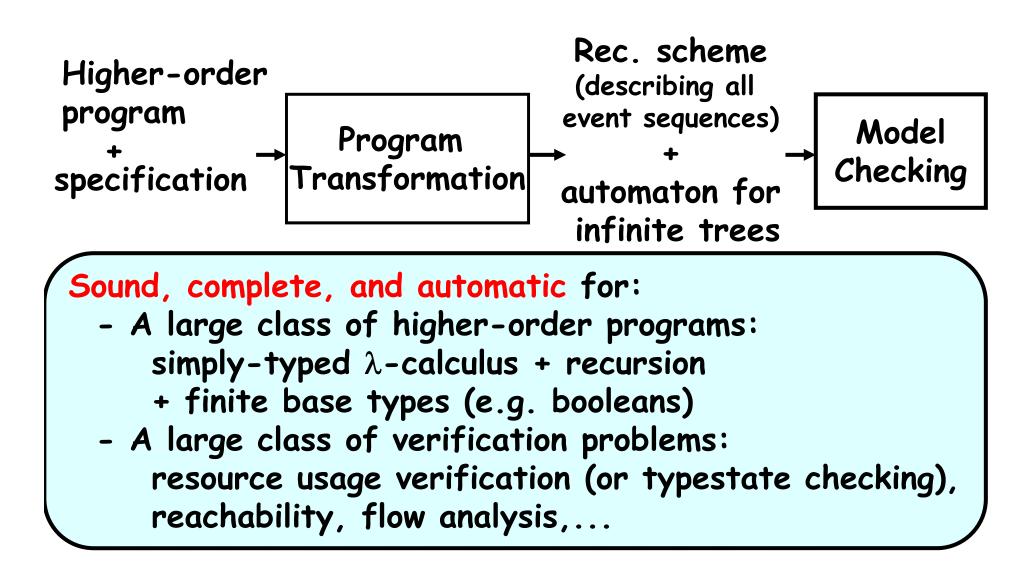




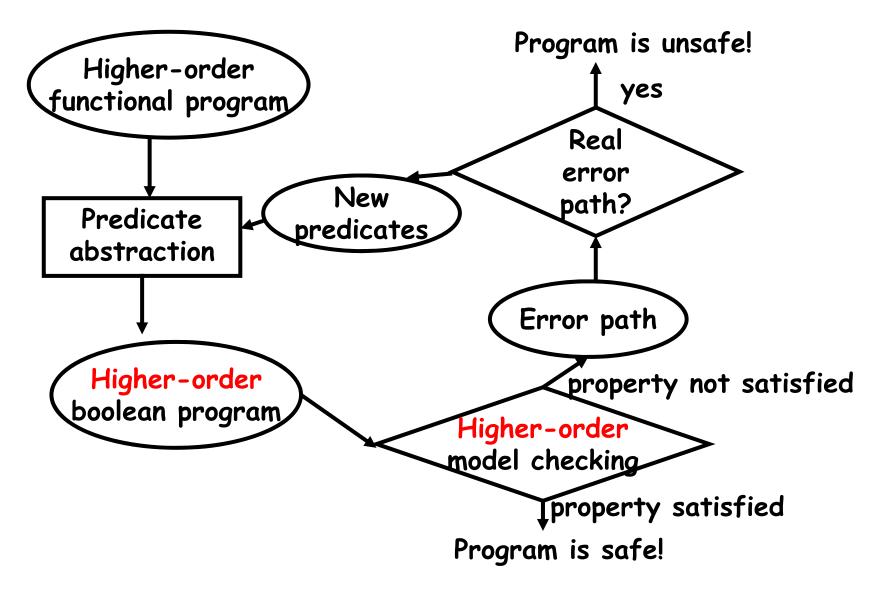




From Program Verification to Model Checking Recursion Schemes



Combination with Predicate Abstraction and CEGAR [K&Sato&Unno,PLDI11]



Comparison with Traditional Approach (Software Model Checking)

Program Classes	Verification Methods	infinite state model checking
Programs with while-loops	Finite state model checking	
Programs with 1 st -order recursion	Pushdown model checking	
Higher-order functional programs	Higher-order model checking	

Applications to Program Verification: Summary

 Sound, complete, and automatic for simply-typed programs with recursion and finite base types (e.g. booleans)

Sound (but incomplete) and automatic for simply-typed programs with recursion and infinite base types (e.g. integers, lists, ...) by combination with predicate abstraction and CEGAR

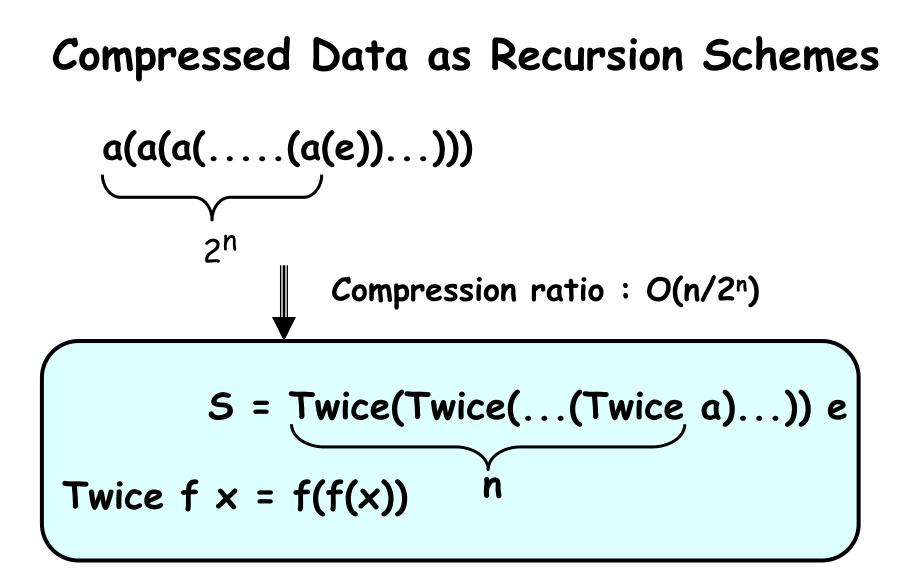
Outline

What is higher-order model checking?

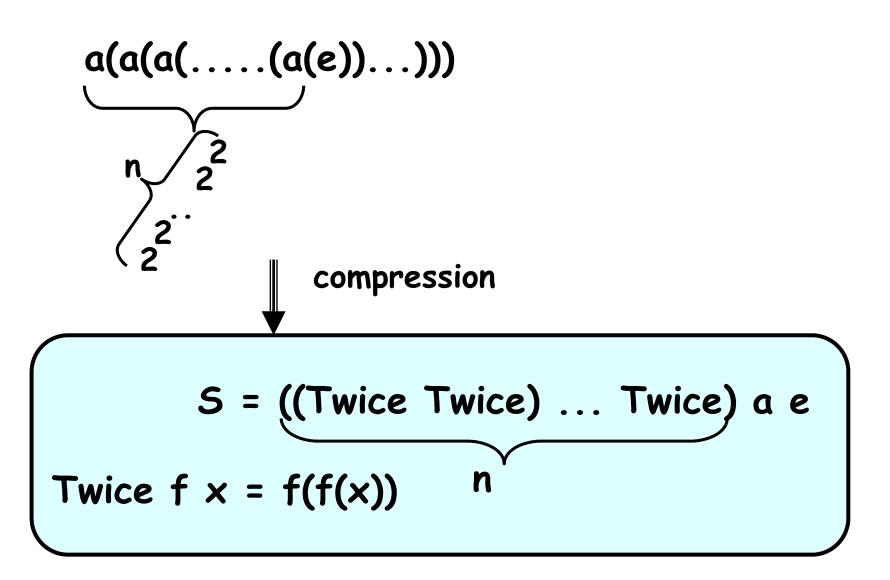
- higher-order recursion schemes
- model checking problems
- ♦ Applications
 - program verification:
 "software model checker for ML"
 - data compression
- Algorithms for higher-order model checking
- Future directions

Applications to Data Compression

- Compressed data as higher-order grammars (c.f. Kolmogorov complexity)
 - Hyper-exponential compression ratio
- Data processing without decompression using higher-order model checking



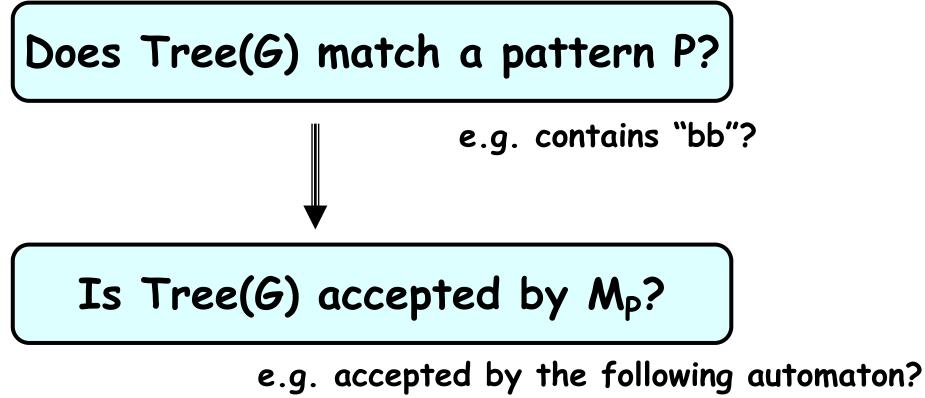
Compressed Data as Recursion Schemes

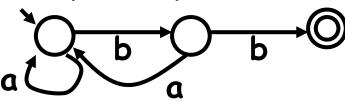


Applications to Data Compression

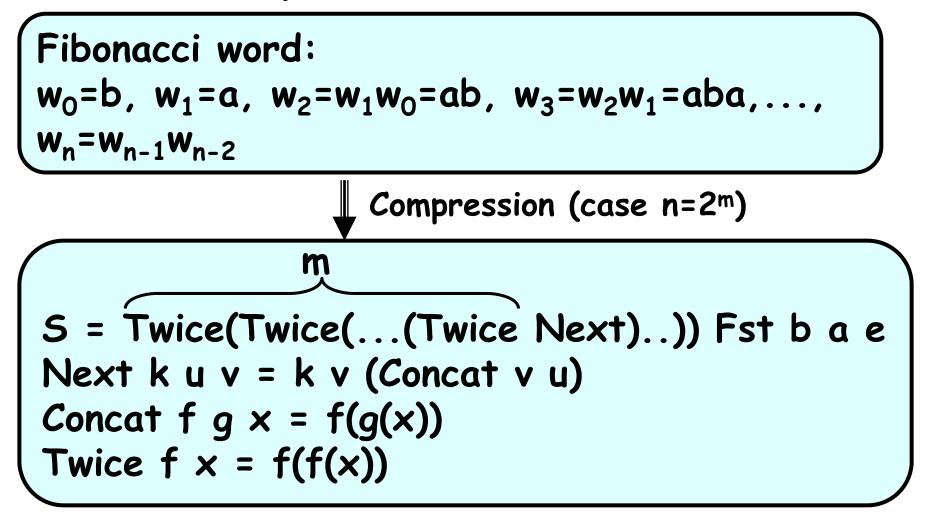
- Compressed data as higher-order grammars
 - Hyper-exponential compression ratio
- Data processing without decompression using higher-order model checking
 - pattern match queries
 - associated data processing to compute:
 - matching positions
 - \cdot the number of matches
 - ... (whatever expressed by transducers)

Pattern Matching without Decompression by Higher-Order Model Checking





Example: a Fibonacci word

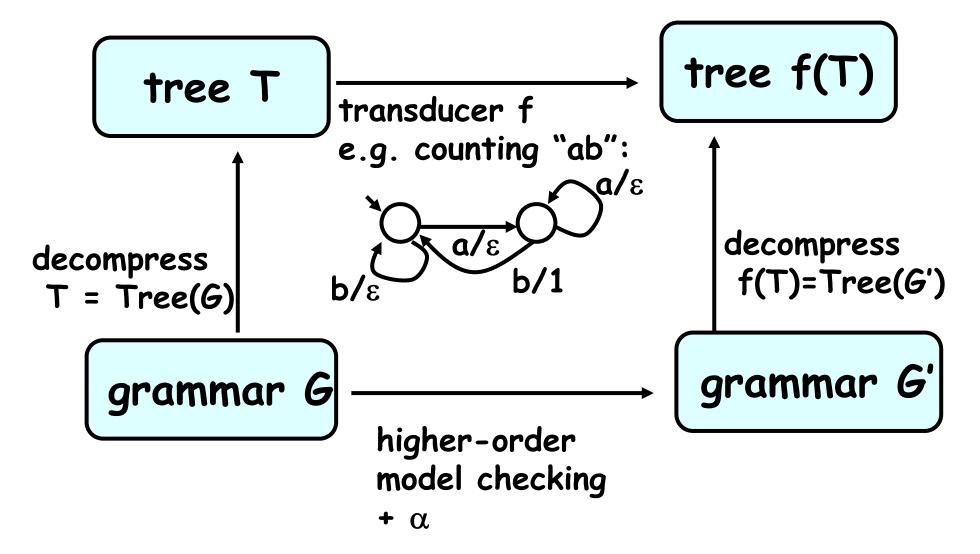


Query: Does w₁₀₂₄ contain "bb"? (Note: |w₁₀₂₄| > 10²⁰⁰)

Applications to Data Compression

- Compressed data as higher-order grammars
 - Hyper-exponential compression ratio
- Data processing without decompression using higher-order model checking
 - pattern match queries
 - associated data processing to compute:
 - matching positions
 - \cdot the number of matches
 - ... (whatever expressed by transducers)

Data Transformation without Decompression



Applications to Data Compression: Summary

- Compressed data as higher-order grammars
 - Hyper-exponential compression ratio
- Data processing without decompression using higher-order model checking
 - pattern match queries; and
 - associated data processing expressed by transducers

Outline

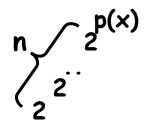
What is higher-order model checking?

♦ Applications

- program verification:
 "software model checker for ML"
- data compression
- Algorithms for higher-order model checking
 - from model checking to typing
 - practical algorithms
- Future directions

Difficulty of higher-order model checking

- Extremely high worst-case complexity
 - n-EXPTIME complete [Ong, LICS06]



- Earlier algorithms [Ong06;Aehlig06;Hague et al.08] almost always suffer from n-EXPTIME bottleneck.

Our approach: from model checking to typing

Construct a type system TS(A) s.t. Tree(G) is accepted by tree automaton A if and only if G is typable in TS(A)

> Model Checking as Type Checking (c.f. [Naik & Palsberg, ESOP2005])

Model Checking Problem

- G: higher-order recursion scheme (without safety restriction)
- A: alternating parity tree automaton (APT) (a formula of modal μ-calculus or MSO), does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06] (for order-n recursion scheme)

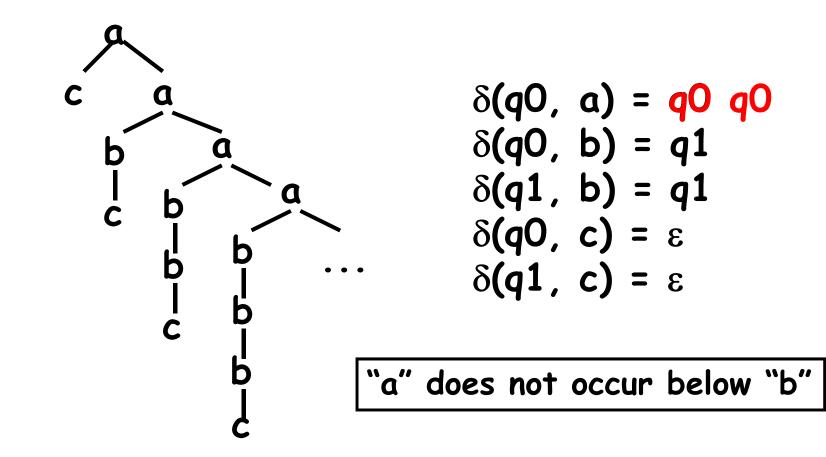
Model Checking Problem: Restricted version

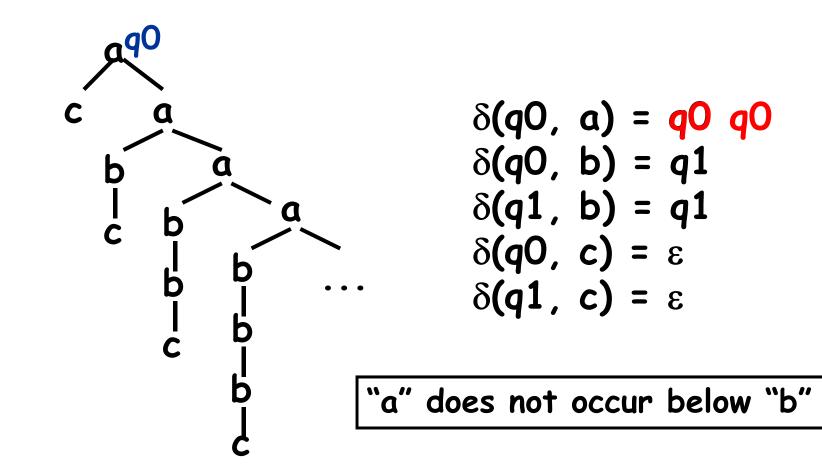
Given

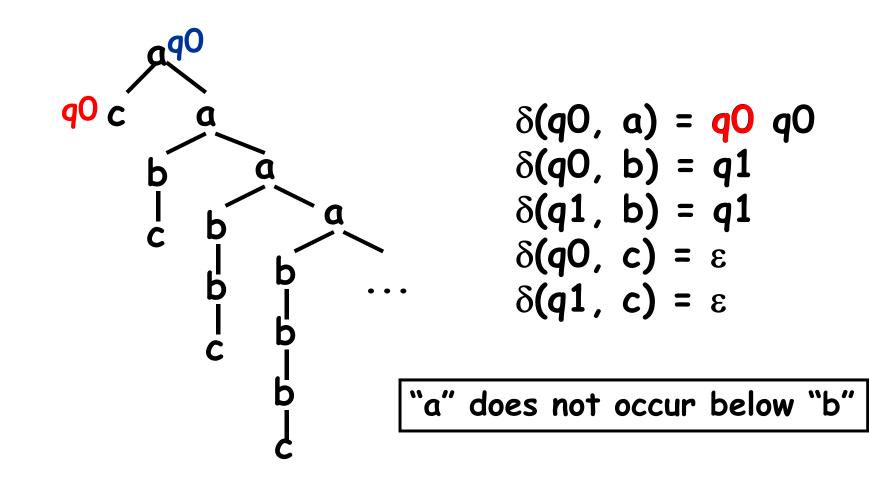
G: higher-order recursion scheme (without safety restriction)

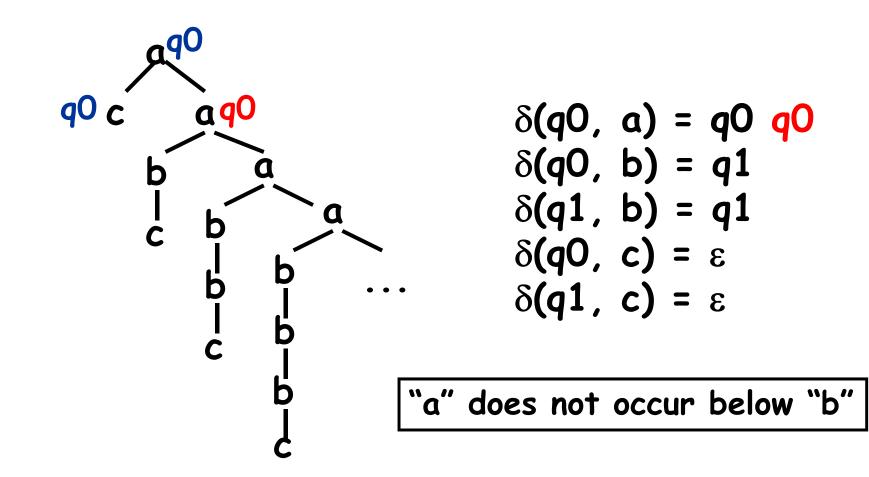
A: trivial automaton [Aehlig CSL06] (Büchi tree automaton where all the states are accepting states) does A accept Tree(G)?

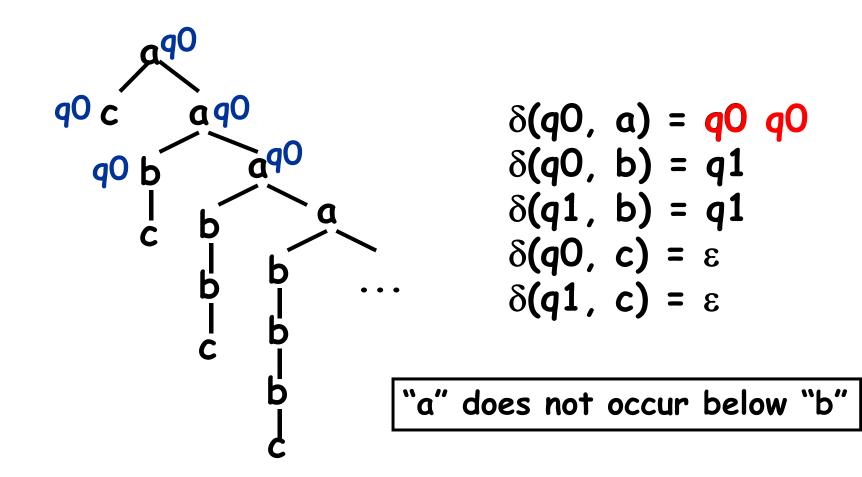
See [K.&Ong, LICS09] for the general case (full modal μ -calculus model checking)

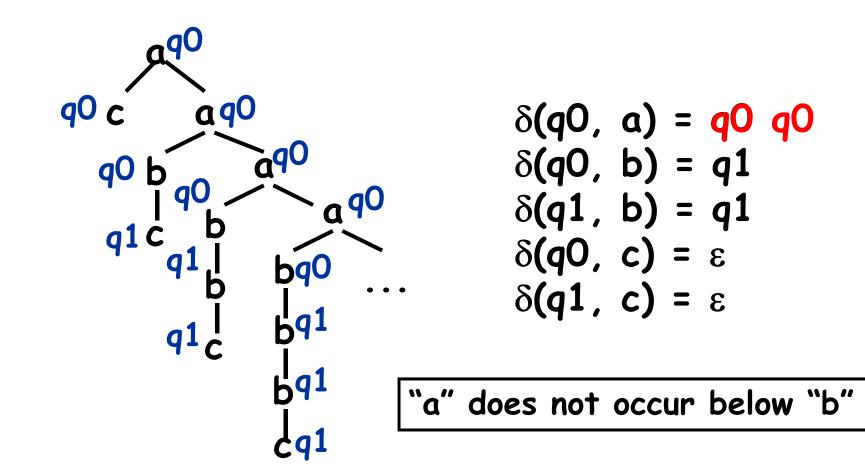






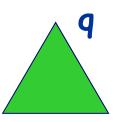




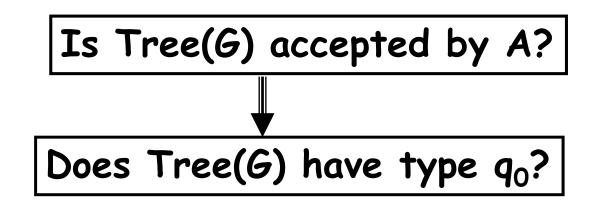


Automaton state as the type of trees

- q: trees accepted from state q

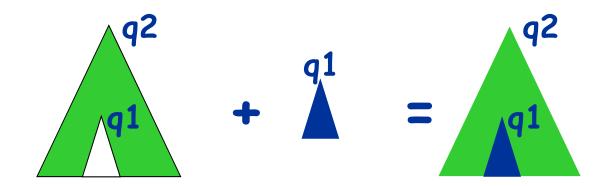


- q1 \land q2: trees accepted from both q1 and q2



Automaton state as the type of trees

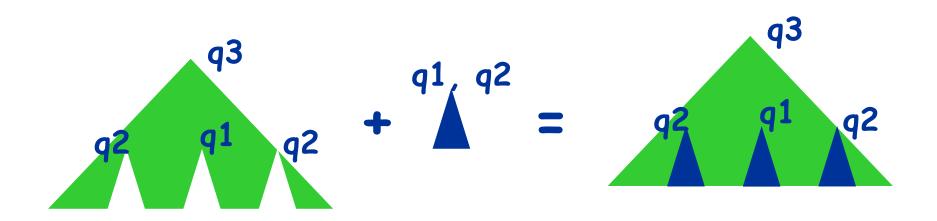
- q1 \rightarrow q2: functions that take a tree of type q1 and return a tree of q2



Automaton state as the type of trees

- $q1 \land q2 \rightarrow q3$:

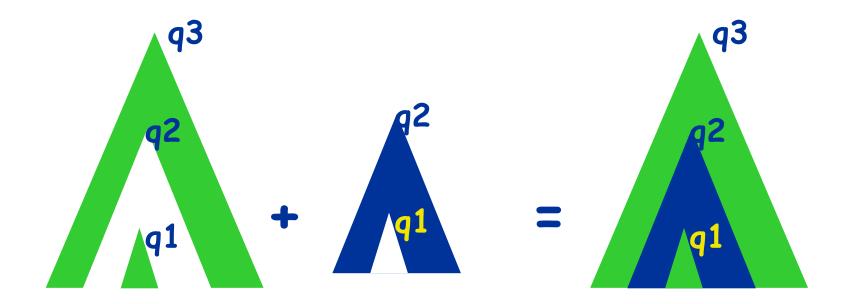
functions that take a tree of type $q1 \ q2$ and return a tree of type q3



Automaton state as the type of trees

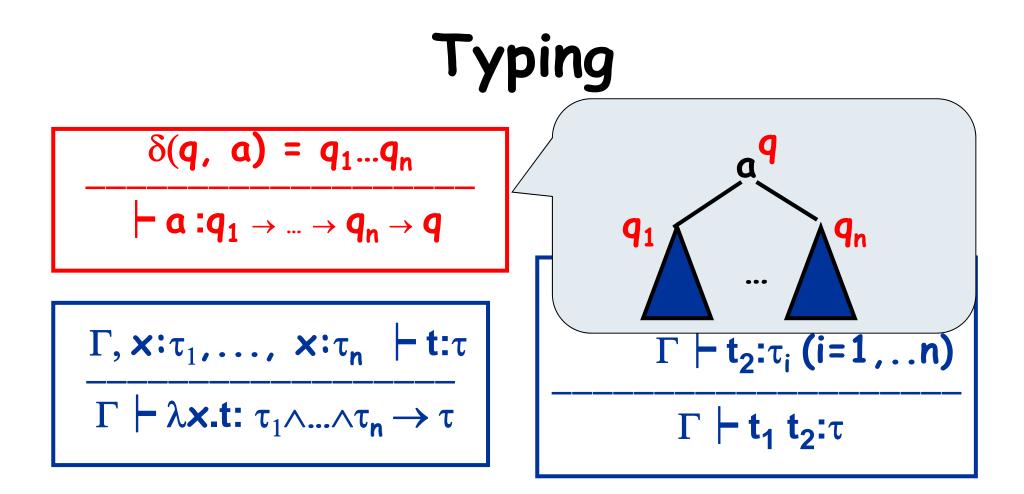
$$(q1 \rightarrow q2) \rightarrow q3$$
:

functions that take a function of type q1 \rightarrow q2 and return a tree of type q3



$$\begin{split} & \overbrace{\Gamma, x:\tau_{1}, \dots, x:\tau_{n} \leftarrow t:\tau}^{\delta(q, a) = q_{1} \dots q_{n}} \\ & \overbrace{\Gamma, x:\tau_{1}, \dots, x:\tau_{n} \leftarrow t:\tau}^{\Gamma, x:\tau_{1}, \dots, x:\tau_{n} \leftarrow t:\tau} \\ & \overbrace{\Gamma \leftarrow \lambda x.t: \tau_{1} \wedge \dots \wedge \tau_{n} \rightarrow \tau}^{\Gamma, x:\tau_{1}, \dots, x:\tau_{n} \leftarrow t:\tau} \\ \end{split}$$

$$\begin{array}{c|c} \Gamma \vdash \textbf{t}_{k} : \tau \text{ (for every } \textbf{F}_{k} : \tau \in \Gamma \text{)} \\ \hline \vdash \{\textbf{F}_{1} \rightarrow \textbf{t}_{1}, \dots, \textbf{F}_{n} \rightarrow \textbf{t}_{n}\} : \Gamma \end{array}$$



$$\begin{array}{c|c} \Gamma \vdash \textbf{t}_{k} : \tau \text{ (for every } \textbf{F}_{k} : \tau \in \Gamma \text{)} \\ \hline \vdash \{\textbf{F}_{1} \rightarrow \textbf{t}_{1}, \dots, \textbf{F}_{n} \rightarrow \textbf{t}_{n}\} : \Gamma \end{array}$$

$$\begin{array}{c} \Gamma \vdash \textbf{t}_{k} : \tau \text{ (for every } \textbf{F}_{k} : \tau \in \Gamma \text{)} \\ \hline \vdash \{\textbf{F}_{1} \rightarrow \textbf{t}_{1}, \dots, \textbf{F}_{n} \rightarrow \textbf{t}_{n}\} : \Gamma \end{array}$$

Soundness and Completeness [K., POPL2009]

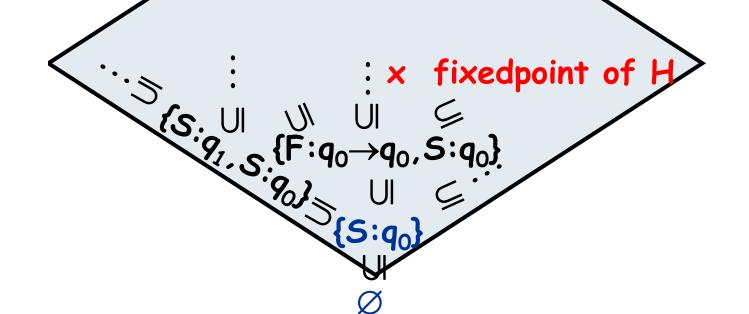
```
Tree(G) is accepted by A
if and only if
S has type q_0 in TS(A),
i.e. \exists \Gamma.(S:q_0 \in \Gamma \land \models \{F_1 \rightarrow t_1, \ldots, F_n \rightarrow t_n\}: \Gamma)
if and only if
\exists \Gamma.(S: q_0 \in \Gamma \land \forall (F_k:\tau) \in \Gamma. \Gamma \models t_k: \tau)
```

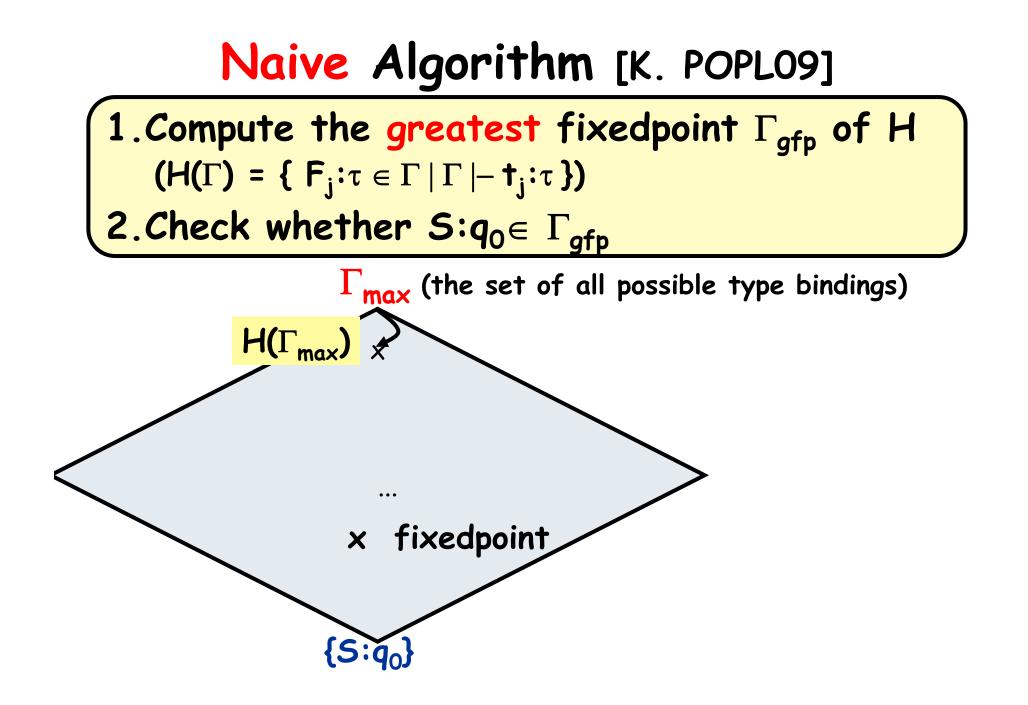
 $G = \{F_1 \rightarrow t_1, ..., F_m \rightarrow t_m\}$ (with $S=F_1$) A: Trivial automaton with initial state q_0 TS(A): Intersection type system for A

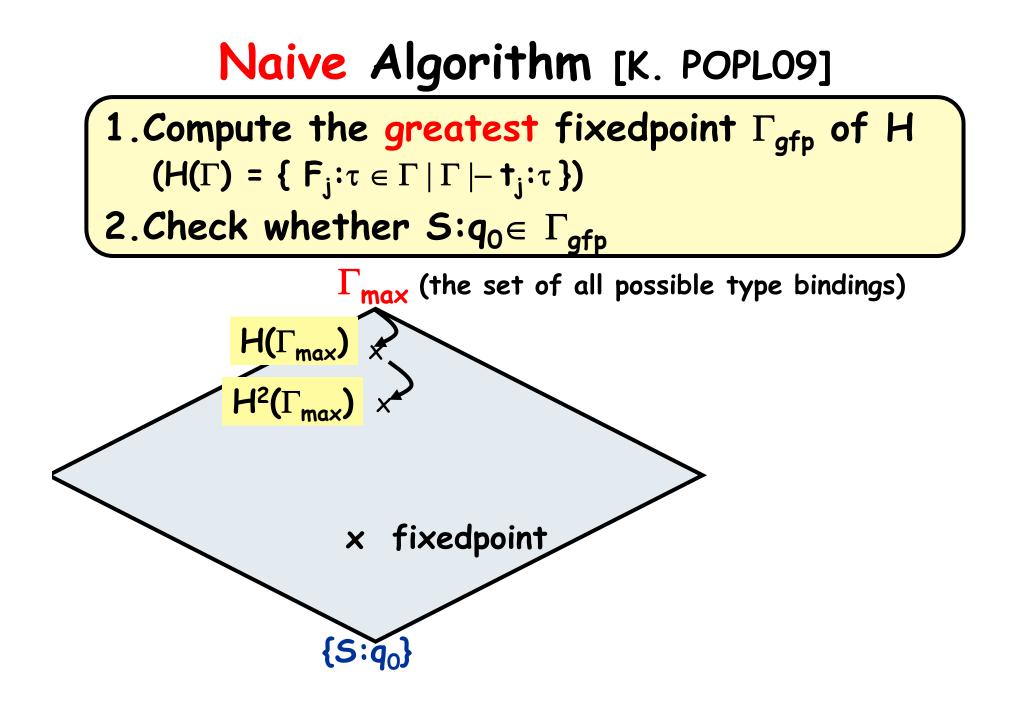
Soundness and Completeness [K., POPL2009]

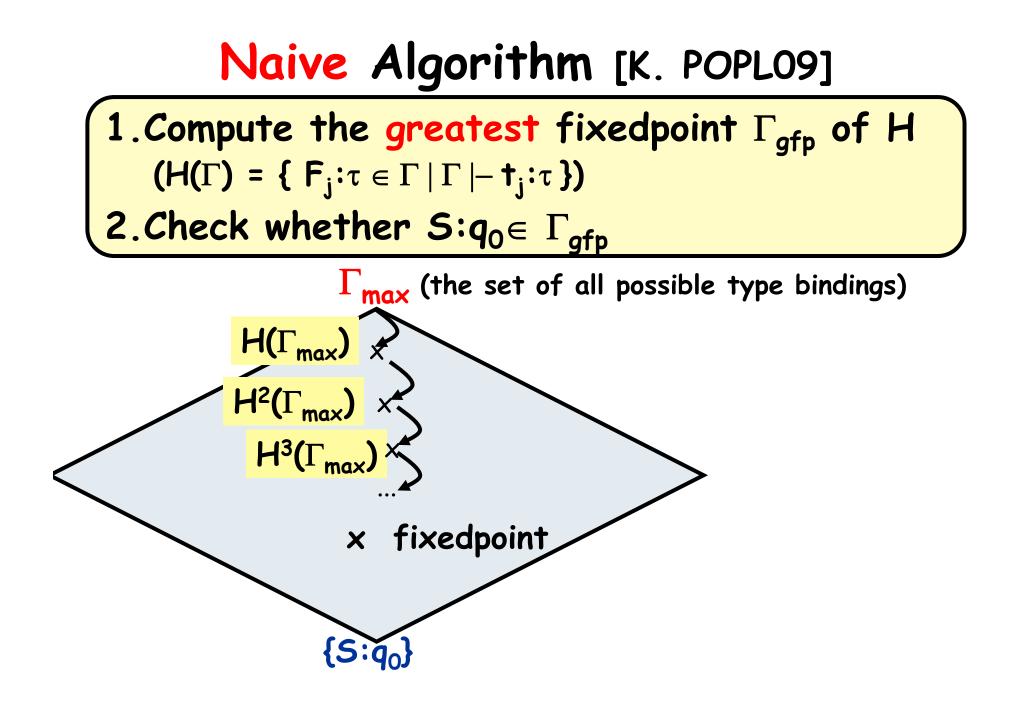
Tree(G) is accepted by A if and only if S has type q_0 in TS(A), i.e. $\exists \Gamma . (S:q_0 \in \Gamma \land \models \{F_1 \rightarrow t_1, \ldots, F_n \rightarrow t_n\} : \Gamma)$ if and only if $\exists \Gamma. (S: q_0 \in \Gamma \land \forall (\mathbf{F}_k: \tau) \in \Gamma. \Gamma | - \mathbf{t}_k: \tau)$ if and only if $\exists \Gamma.(S: q_{0} \in \Gamma \land \Gamma = H(\Gamma))$ for $H(\Gamma) = \{ F_k : \tau \in \Gamma \mid \Gamma \mid -t_k : \tau \}$ Function to filter out invalid type bindings

Type checking (=model checking) problem









Example

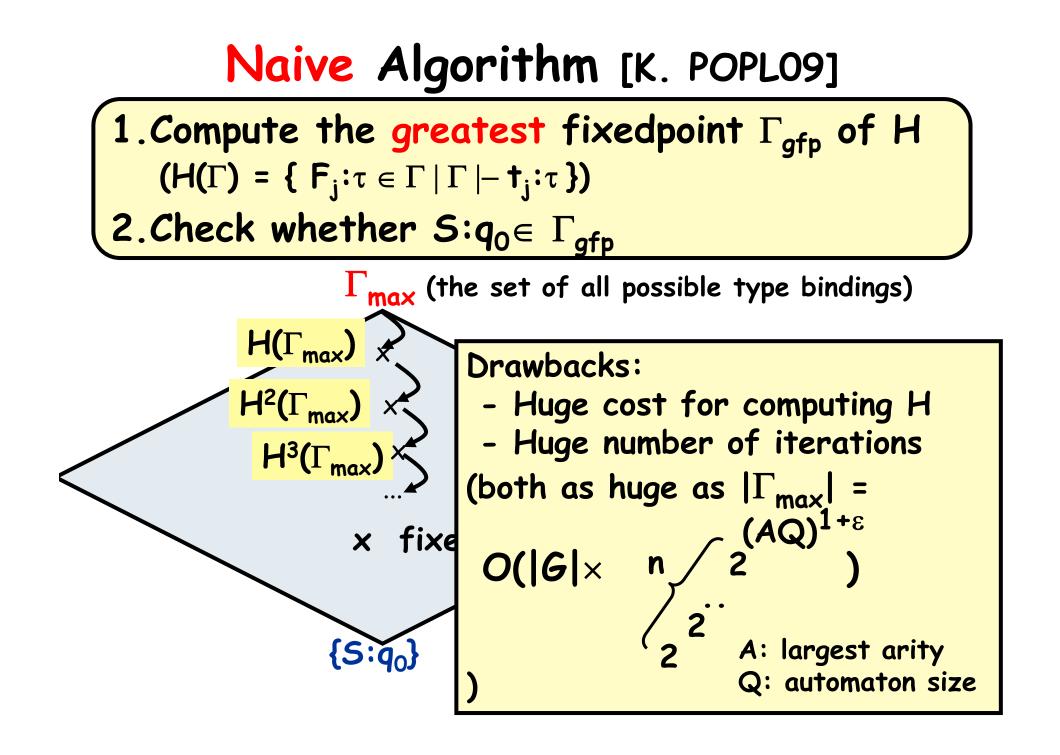
Recursion scheme:

 $S \rightarrow F c$ $F \rightarrow \lambda x.a x (F (b x))$ (S:o, F: o \rightarrow o)

♦ Automaton:

 $δ(q_0, a) = q_0 q_0$ $δ(q_0, b) = q_1$ $δ(q_0, c) = δ(q_1, c) = ε$

$$\begin{split} &\Gamma_{\text{max}} = \{ \texttt{S}: q_0, \ \texttt{S}: q_1, \ \texttt{F}: \ \texttt{T} \to q_0, \ \texttt{F}: \ q_0 \to q_0, \ \texttt{F}: \ q_1 \to q_0, \ \texttt{F}: \ q_0 \land q_1 \to q_0, \\ & \texttt{F}: \ \texttt{T} \to q_1, \ \texttt{F}: \ q_0 \to q_1, \ \texttt{F}: \ q_1 \to q_1, \ \texttt{F}: \ q_0 \land q_1 \to q_1 \} \\ & \mathsf{H}(\Gamma_{\text{max}}) = \{ \ \texttt{S}: \tau \in \Gamma_{\text{max}} \mid \Gamma_{\text{max}} \mid -\texttt{F} \ \texttt{c}: \tau \} \\ & \cup \{ \ \texttt{F}: \tau \in \Gamma_{\text{max}} \mid \Gamma_{\text{max}} \mid -\texttt{A} \texttt{X}. \ \texttt{a} \ \texttt{X} \ (\texttt{F}(\texttt{b} \ \texttt{X})) : \tau \} \\ & = \{\texttt{S}: q_0, \ \texttt{S}: q_1, \ \ \texttt{F}: \ q_0 \to q_0, \ \ \texttt{F}: \ q_0 \land q_1 \to q_0 \} \\ & \mathsf{H}^2(\Gamma_{\text{max}}) = \{\texttt{S}: q_0, \ \ \texttt{F}: \ q_0 \land q_1 \to q_0 \} \\ & \mathsf{H}^3(\Gamma_{\text{max}}) = \{\texttt{S}: q_0, \ \ \texttt{F}: \ q_0 \land q_1 \to q_0 \} = \mathsf{H}^2(\Gamma_{\text{max}}) \end{split}$$



How large is Γ_{max} ?

 Γ_{max} : the set of all possible type bindings for non-terminals

sort	<pre># of types for each sort (Q={q₀,q₁,q₂,q₃})</pre>
o (trees)	4 (q_0, q_1, q_2, q_3)
$\circ \rightarrow \circ$	$2^4 \times 4 = 64$ ($\wedge S \rightarrow q$, with $S \in 2^Q$, $q \in Q$)
(o→o) → o	$2^{64} \times 4 = 2^{66}$
$((o \rightarrow o) \rightarrow o) \rightarrow o$	2 ⁶⁶ 100000000000000000000000000000000000

$$|\Gamma_{\max}| = O(|G| \times \binom{n}{2^{2}}^{2^{(A|Q|)^{1+\varepsilon}}})$$

Outline

What is higher-order model checking?

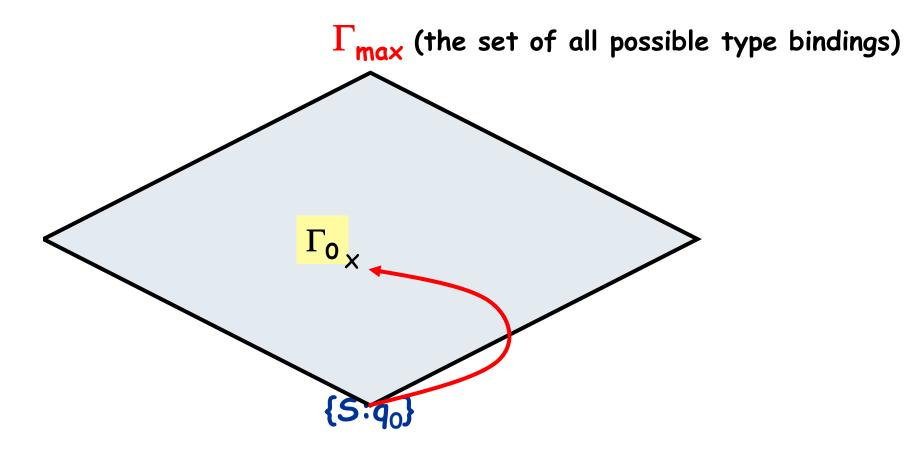
Applications

- program verification:
 "software model checker for ML"
- data compression
- Algorithms for higher-order model checking
 - from model checking to typing
 - practical algorithms
- Future directions

Practical Algorithms [K. PPDP09] [K.FossaCs11]

1.Guess a type environment Γ_{0}

- 2.Compute greatest fixedpoint Γ smaller than Γ_0
- 3. Check whether $S:q_0 \in \Gamma$
- 4. Repeat 1-3 until the property is proved or refuted.

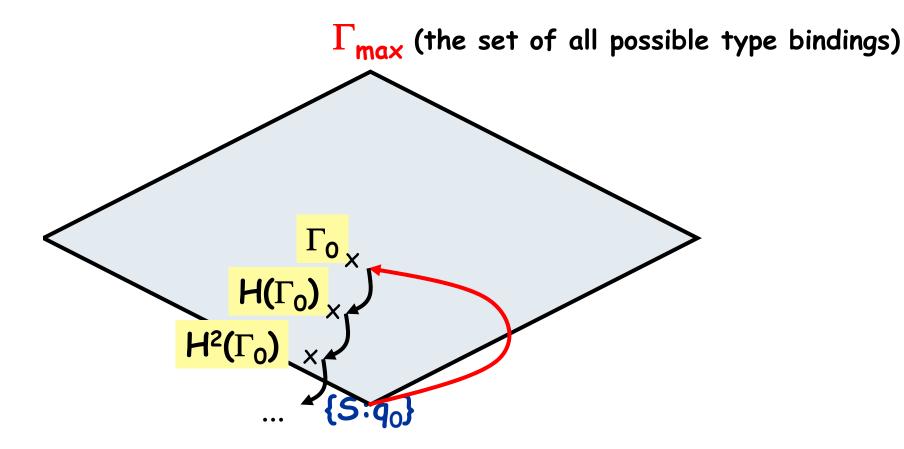


Practical Algorithms [K. PPDP09] [K.Fossacs11]

2.Compute greatest fixedpoint Γ smaller than Γ_0

3. Check whether $S:q_0 \in \Gamma$

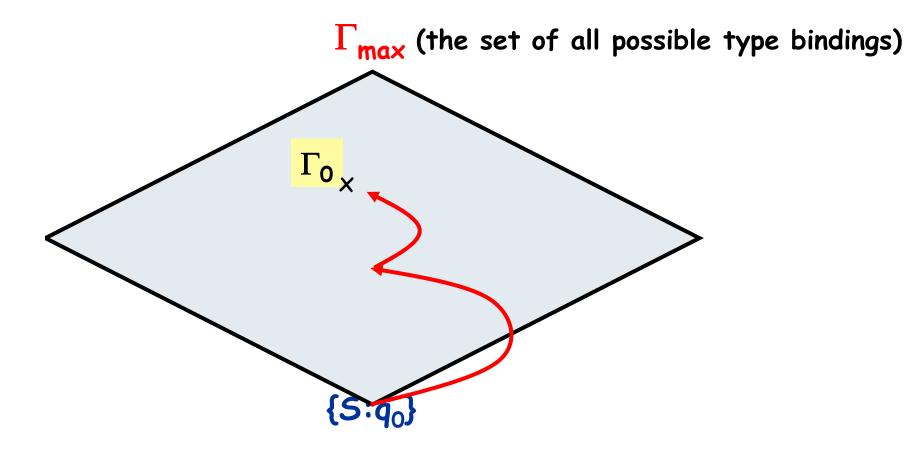
4. Repeat 1-3 until the property is proved or refuted.



Practical Algorithms [K. PPDP09] [K.FossaCs11]

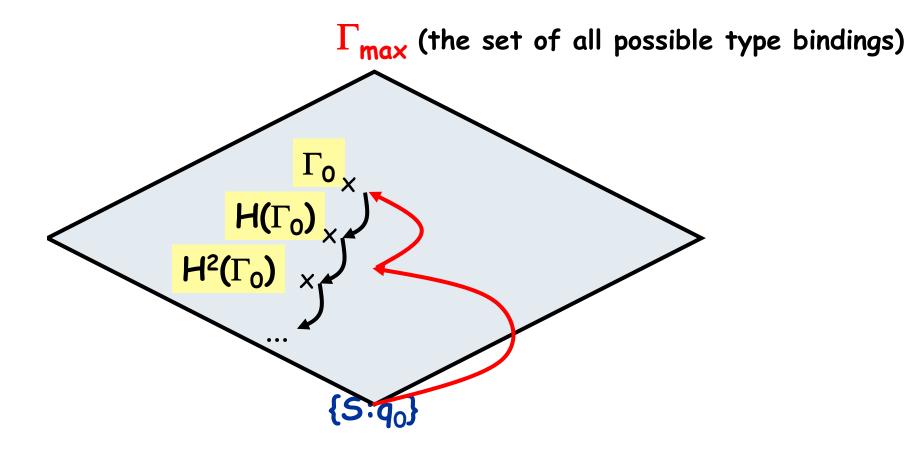
1.Guess a type environment Γ_{0}

- 2.Compute greatest fixedpoint Γ smaller than Γ_0
- 3. Check whether $S:q_0 \in \Gamma$
- 4. Repeat 1-3 until the property is proved or refuted.

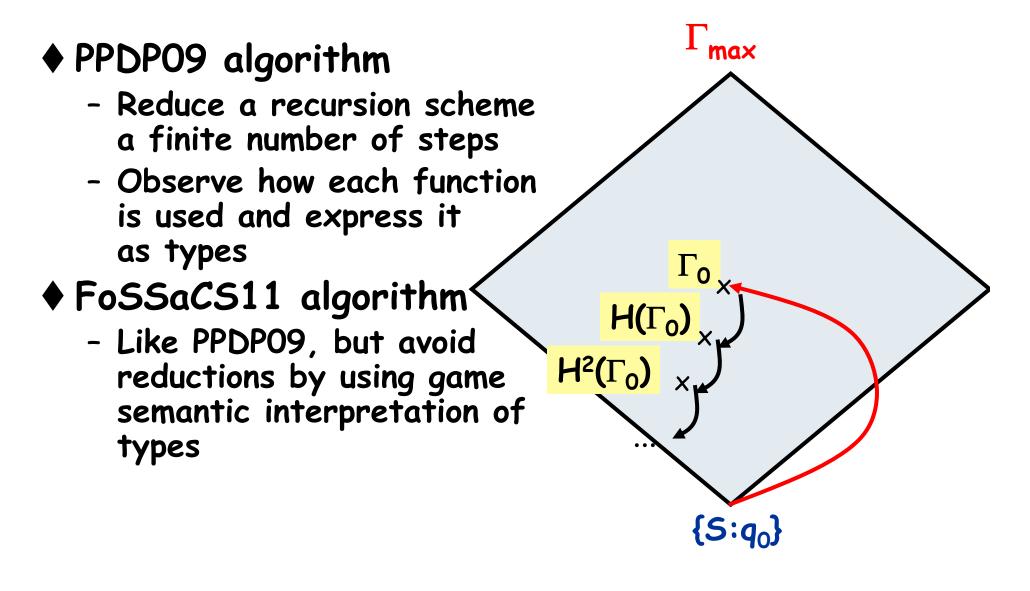


Practical Algorithms [K. PPDP09] [K.FossaCs11]

- 1. Guess a type environment Γ_0
- **2.**Compute greatest fixedpoint Γ smaller than Γ_0
- 3. Check whether $S:q_0 \in \Gamma$
- 4. Repeat 1-3 until the property is proved or refuted.



How to guess Γ_0 ?



Recursion scheme:

 $S \rightarrow F c$ $F \rightarrow \lambda x.a \times (F (b x))$ ♦ Automaton: $δ(q_0, a) = q_0 q_0$ $δ(q_0, b) = q_1$ $δ(q_0, c) = δ(q_1, c) = ε$ $\begin{array}{c} (1, \ & a^{q_0} & \rightarrow a^{q_0} \\ q_0 & f(b, c) & q_0 & q_0 & q_0 \\ q_0 & f(b, c) & q_0 & f(b(b, c))^{q_0} \\ q_0 & f(b(b, c))^{q_0} \\ q_1 & d_1 \\ c \end{array}$ $s^{q_0} \rightarrow F c^{q_0} \rightarrow a^{q_0}$

Recursion scheme:

 $S \rightarrow F c$ $F \rightarrow \lambda x.a \times (F (b x))$ ♦ Automaton: $\delta(q_0, a) = q_0 q_0 \quad \delta(q_0, b) = q_1$ $\delta(\mathbf{q}_0, \mathbf{c}) = \delta(\mathbf{q}_1, \mathbf{c}) = \varepsilon$ $\begin{array}{c} 1 & \ddots \\ a^{q_0} & \rightarrow a^{\gamma} \\ q_0 & q_0 & q_0 \\ q_0 & q_0 & q_0 \\ q_0 & q_0 & q_0 \\ q_0 & f(b(b c))^{q_0} \\ q_1 & q_1 \\ c \end{array}$ $S^{q_0} \rightarrow F c^{q_0} \rightarrow a^{q_0}$

Г₀: **S: q**0

Recursion scheme:

 $S \rightarrow Fc$ $F \rightarrow \lambda x.a \times (F (b x))$

Automaton:

 $δ(q_0, a) = q_0 q_0$ $δ(q_0, b) = q_1$ $δ(q_0, c) = δ(q_1, c) = ε$ $a^{q_0} \rightarrow a^{\gamma}$ $q_0 \leftarrow F(b c)^{q_0} \qquad q_0 \leftarrow q_0 q$ $S^{q_0} \rightarrow F \stackrel{q_0}{c} \rightarrow a^{q_0}$

$$\Gamma_0:$$
S: q_0
F: ? $\rightarrow q_0$

Recursion scheme:

 $S \rightarrow Fc$ $F \rightarrow \lambda x.a \times (F (b x))$

Automaton:

 $\delta(q_0, a) = q_0 q_0 \qquad \delta(q_0, b) = q_1$ $\delta(q_0, c) = \delta(q_1, c) = \varepsilon$ $S^{q_0} \rightarrow F \xrightarrow{q_0} a^{q_0} \rightarrow a^{q_0}$ $q_0 \land F(b c) \qquad q_0 \land q_0$ $q_0 \land F(b c) \qquad q_0 \land q_0$ $q_0 \land F(b(b c))^{q_0}$ $q_1 \downarrow$

 $\Gamma_0:$ **S**: q_0 **F**: $q_0 \land q_1$ $\rightarrow q_0$

Recursion scheme:

 $S \rightarrow Fc$ $F \rightarrow \lambda x.a \times (F (b x))$

♦ Automaton:

 $\delta(q_0, a) = q_0 q_0 \qquad \delta(q_0, b) = q_1$ $\delta(q_0, c) = \delta(q_1, c) = \varepsilon$ $S^{q_0} \rightarrow F \stackrel{q_0}{c} \stackrel{q_0}{\rightarrow} a^{q_0} \rightarrow a^{q_0} \stackrel{q_0}{\rightarrow} a^{q_0} \stackrel{q_0}{\leftarrow} F(b c) \stackrel{q_0}{c} \stackrel{q_0}{\leftarrow} f(b c) \stackrel{q_0}{\leftarrow} F(b (b c))^{q_0}$ $F: q_0 \land q_1 \stackrel{q_0}{\rightarrow} q_0$ $F: q_0 \rightarrow q_0$ $F: q_0 \rightarrow q_0$

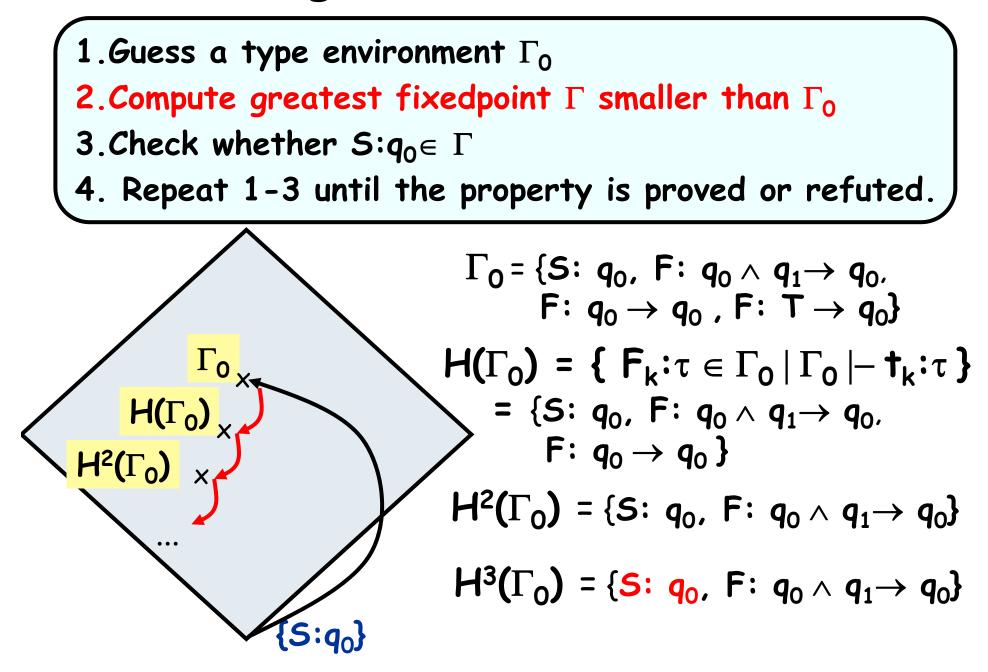
Recursion scheme:

 $S \rightarrow Fc$ $F \rightarrow \lambda x.a \times (F (b x))$

♦ Automaton:

 $\delta(q_0, a) = q_0 q_0 \qquad \delta(q_0, b) = q_1$ $\delta(q_0, c) = \delta(q_1, c) = \varepsilon$ $S^{q_0} \rightarrow F \stackrel{q_0}{c} \rightarrow a^{q_0} \rightarrow a^{q_0}$ $q_0 \stackrel{q_0}{c} \stackrel{q_0}{F(b c)} \stackrel{q_0}{c} \stackrel$

Practical Algorithms [K. PPDP09] [K.FossaCs11]



TRecS [K. PPDP09]

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

🥹 Type-Based Model Checker for Higher-Order Recursion Scheme - Mozilla Firefox		
ファイル(E) 編集(E) 表示(V) 履歴(S) ブックマーク(B) ツール(T) ヘルブ(H)		1.2
C X 🟠 (http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/	☆ • Google	P
应 よく見るページ 🎓 Firefox を使ってみよう <u>気</u> 最新ニュース		
📄 FrontPage - Kobalab Wiki 💿 📄 Type-Based Model Checker for 🔯 💷 キャプチャー画像を保存する(スクリーンシ 😒		
TRecS (Types for RECursion Schemes): Type-Based M Higher-Order Recursion Schemes Enter a recursion scheme and a specification in the box below, and press the "submit" button. Examples are given below. Curre automata with a trivial acceptance condition.		tic Buchi
The first model checker for r schemes	ecursion	
Based on the PPDP09 algorithe with certain additional optimiz		
qu a -> qu qu. / *** The THEST State IS Interpreted as the Initial State. **/		

Experiments

	order	rules	states	result	Time (msec)	
Twofiles	4	Taken from the compiler of Objective Caml, consisting of				
FileWrong	4	about 60 lines of O'Caml code				
TwofilesE	4	127		Yes	2	
FileOcamlC	4	23	4	Yes	5	
Lock	4	11	3	Yes	10	
Order5	5	9	4	Yes	2	
mc91	4	49	1	Yes	50	
xhtml	2	64	50	Yes	884	

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

(A simplified version of) FileOcamlC

```
let readloop fp =
 if * then () else readloop fp; read fp
let read_sect() =
 let fp = open "foo" in
 {readc=fun x -> readloop fp;
  closec = fun \times -> close fp
let loop s =
 if * then s.closec() else s.readc();loop s
let main() =
 let s = read_sect() in loop s
```

Algorithms for Higher-Order Model Checking: Summary

- Model checking can be reduced to type checking, which in turn becomes a fixedpoint problem
- ♦ Greatest fixedpoint is too costly to compute
- Practical algorithms guess a type environment and use it as a start point of fixedpoint computation
- FoSSaCS11 algorithm (for trivial automata model checking) is linear time in the size of grammar if other parameters (the size of types and automaton) are fixed

Outline

What is higher-order model checking?

♦ Applications

- program verification:
 "software model checker for ML"
- data compression
- Algorithms for higher-order model checking
 - from model checking to typing
 - practical algorithms
- Discussions on FAQ and Future Directions

FAQ

Does HO model checking scale? (It shouldn't, because of n-EXPTIME completeness)

FAQ

Does HO model checking scale? (It shouldn't, because of n-EXPTIME completeness)

Answer:

Don't know yet.

But there is a good hope it does!

Does higher-order model checking scale?

Good News

- + Fixed-parameter PTIME in the grammar size (linear time for safety properties)
- + Use PPDP09 or FoSSaCS11 algorithm
- + Worst-case behavior shows an advantage of HO functions, rather than a disadvantage of HO model checking

Bad News - n-EXPTIME complete

- Huge constant factor

Recursion schemes generating $a^{2^m}c$

Order-1:
S
$$\rightarrow$$
F₁ c, F₁ x \rightarrow F₂(F₂ x),..., F_m x \rightarrow a(a x)

Order-0:
S
$$\rightarrow$$
a G_1 , $G_1 \rightarrow$ a G_2 ,..., $G_k \rightarrow$ c (k=2^m)

Exponential time algorithm for order-1 ≈ Polynomial time algorithm for order-0

Recursion schemes generating $a^{2^m}c$

Order-1:
S
$$\rightarrow$$
F₁ c, F₁ x \rightarrow F₂(F₂ x),..., F_m x \rightarrow a(a x)

Order-0:
S
$$\rightarrow$$
a G_1 , $G_1 \rightarrow$ a G_2 ,..., $G_k \rightarrow$ c (k=2^m)

n-EXPTIME algorithm for order-n ≈ Polynomial time algorithm for order-0

Recursion schemes generating $a^{2^m}c$

Order-1:

$$S \rightarrow F_1 c, F_1 x \rightarrow F_2(F_2 x), \dots, F_m x \rightarrow a(a x)$$

Order-0:
S
$$\rightarrow$$
a G_1 , $G_1 \rightarrow$ a G_2 ,..., $G_k \rightarrow$ c (k=2^m)

(fixed-parameter) Polynomial time algorithm for order-n [K11FoSSaCS] >> Polynomial time algorithm for order-0

FAQ

Does higher-order model checking scale? (It shouldn't, because of n-EXPTIME completeness)

Answer:

Don't know yet.

But there is a good hope it does!

Advantages of HO model checking for program verification

- (1) Sound, complete and automatic for a large class of higher-order programs
 - no false alarms!
 - no annotations

Advantages of HO model checking for program verification

- (1) Sound, complete and automatic for a large class of higher-order programs
 - no false alarms!
 - no annotations

(2) Subsumes finite-state/pushdown model checking

- Order-0 rec. schemes \approx finite state systems
- Order-1 rec. schemes \approx pushdown systems

Advantages of HO model checking for program verification

(3) Take the best of model checking and types

- Types as certificates of successful verification
 applications to PCC (proof-carrying code)
- Counterexample when verification fails
 - ⇒ error diagnosis, CEGAR (counterexample-guided abstraction refinement)

Advantages of HO model checking for program verification (4) Encourages structured programming

Previous techniques:

- Imprecise for higher-order functions and recursion, hence discourage using them

Our technique:

- No loss of precision for higher-order functions and recursion
- Performance penalty? -- Not necessarily!

If higher-order functions are properly used, there may be performance gain!

Remaining Challenges

- Refinement of HO model checkers
 - More efficiency
 - Support of full modal $\mu\text{-calculus}$
- Software model checkers for full-scale programming languages
 - Refinement of predicate abstraction and CEGAR
 - Dealing with advanced types, references, etc.
- Extension of the decidability result?
 - Extension of models (recursion schemes)
 - Extension of properties
- Other applications
 (e.g. data compression)

Conclusion

- HO model checking problems can often be solved efficiently, despite the high worst-case complexity (More justifications are needed, though.)
- Important and interesting applications:
 - automated program verification
 - data compression
- Only the first step from theory to practice; more efforts are required both in theoretical and practical communities