
Higher-Order Model Checking:
From Theory to Practice

Naoki Kobayashi
Tohoku University

In collaborations with:
Luke Ong (University of Oxford)
Ryosuke Sato, Naoshi Tabuchi, Takeshi Tsukada,
Hiroshi Unno (Tohoku University)

What’s This Talk About?
NOT a general survey
(see the paper in the proceedings for this)

BUT an overview of our recent work,
to get

practical applications
(e.g. software model checker for ML)

from
theoretical results [Knapik et al.02;Ong06;...]

on higher-order model checking

Outline
What is higher-order model checking?
– higher-order recursion schemes
– model checking problems
Applications
– program verification:

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
Future directions

Outline
What is higher-order model checking?
– higher-order recursion schemes
– model checking problems
Applications
– program verification:

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
Future directions

Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme
(regular tree grammar)

S → a c B
B → b S

Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme
(regular tree grammar)

S → a c B
B → b S

S → a
c B

B → b
S

Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme
(regular tree grammar)

S → a c B
B → b S

→ a

c B

S

S → a
c B

B → b
S

Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme
(regular tree grammar)

S → a c B
B → b S

→ a

c B c b

→ a

S

S

S → a
c B

B → b
S

Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme
(regular tree grammar)

S → a c B
B → b S

→ a

c B c b

→ a

S

c b

→ a

a

c B

S

S → a
c B

B → b
S

Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme
(regular tree grammar)

S → a c B
B → b S

→ a

c B c b

→ a

S

c b

→ a

a

c B

→ ... →
c b

a

c b

a

c b

a

S

S → a
c B

B → b
S

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A → λx. a x (A (b x))

S: o, A: o→ o
S

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A → λx. a x (A (b x))

S: o, A: o→ o
→A cS

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A → λx. a x (A (b x))

S: o, A: o→ o
→A c

c A(b c)

→ aS

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A → λx. a x (A (b x))

S: o, A: o→ o
→A c

c A(b c)

→ a

c a

→ a

b A(b(b c))

c

S

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A → λx. a x (A (b x))

S: o, A: o→ o
→A c

c A(b c)

→ a → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths
are labeled by

am+1 bm c

S

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A → λx. a x (A (b x))

S: o, A: o→ o

Higher-order recursion schemes
≈

Call-by-name simply-typed λ-calculus
+

recursion, tree constructors

Model Checking Recursion Schemes

e.g.
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G: higher-order recursion scheme
A: alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A → λx. a x (A (b x))

S: o, A: o→ o
c a
a

b
c

a
b
b
c

a
b
b
b
c

...
Q1. Does every finite path end with “c”?

YES!
Q2. Does “a” occur below “b”?

NO!

Model Checking Recursion Schemes

e.g.
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G: higher-order recursion scheme
A: alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)

p(x)
2

..
2

2

(Non-exhaustive) History
70s: (1st-order) Recursive program schemes

[Nivat;Coucelle-Nivat;...]

70-80s: Studies of high-level grammars
[Damm; Engelfriet;..]

2002: Model checking of higher-order recursion
schemes [Knapik-Niwinski-Urzyczyn02FoSSaCS]
Decidability for “safe” recursion schemes

2006: Decidability for arbitrary recursion schemes
[Ong06LICS]

2009: Model checker for higher-order recursion
schemes [K09PPDP]
Applications to program verification [K09POPL]

Outline
What is higher-order model checking?
– higher-order recursion schemes
– model checking problems
Applications
– program verification:

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
Future directions

From Program Verification
to Model Checking Recursion Schemes

[K. POPL 2009]

Program
Transformation

Higher-order
program

+
specification
(on events or
output)

Rec. scheme
(describing all
event sequences

or outputs)
+

Tree automaton,
recognizing

valid event sequences
or outputs

Model
Checking

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?

F x k → + (c k) (r(F x k))
S → F d

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

continuation parameter,
expressing how “foo” is accessed

after the call returns

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification
to Model Checking Recursion Schemes

Program
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all

event sequences)
+

automaton for
infinite trees

Model
Checking

Sound, complete, and automatic for:
- A large class of higher-order programs:

simply-typed λ-calculus + recursion
+ finite base types (e.g. booleans)

- A large class of verification problems:
resource usage verification (or typestate checking),
reachability, flow analysis,...

Combination with Predicate Abstraction
and CEGAR [K&Sato&Unno,PLDI11]

Predicate
abstraction

Higher-order
functional program

Higher-order
boolean program Higher-order

model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates

Comparison with Traditional Approach
(Software Model Checking)

Program Classes Verification Methods
Programs with
while-loops

Finite state model checking

Programs with
1st-order recursion

Pushdown model checking

Higher-order functional
programs

Higher-order model
checking

infinite
state
model
checking

Applications to Program Verification:
Summary

Sound, complete, and automatic
for simply-typed programs with recursion and
finite base types (e.g. booleans)

Sound (but incomplete) and automatic
for simply-typed programs with recursion and
infinite base types (e.g. integers, lists, ...)
by combination with predicate abstraction and
CEGAR

Outline
What is higher-order model checking?
– higher-order recursion schemes
– model checking problems
Applications
– program verification:

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
Future directions

Applications to Data Compression

Compressed data as higher-order grammars
(c.f. Kolmogorov complexity)
– Hyper-exponential compression ratio

Data processing without decompression
using higher-order model checking

Compressed Data as Recursion Schemes

a(a(a(.....(a(e))...)))

2n

S = Twice(Twice(...(Twice a)...)) e

Twice f x = f(f(x)) n

Compression ratio : O(n/2n)

Compressed Data as Recursion Schemes

a(a(a(.....(a(e))...)))

S = ((Twice Twice) ... Twice) a e

Twice f x = f(f(x)) n

2
2

..
2
2 compression

Applications to Data Compression

Compressed data as higher-order grammars
– Hyper-exponential compression ratio

Data processing without decompression
using higher-order model checking
– pattern match queries
– associated data processing to compute:

• matching positions
• the number of matches
• ... (whatever expressed by transducers)

Pattern Matching without Decompression
by Higher-Order Model Checking

Does Tree(G) match a pattern P?

Is Tree(G) accepted by MP?

e.g. contains “bb”?

e.g. accepted by the following automaton?

b b
a a

Example: a Fibonacci word
Fibonacci word:
w0=b, w1=a, w2=w1w0=ab, w3=w2w1=aba,...,
wn=wn-1wn-2

S = Twice(Twice(...(Twice Next)..)) Fst b a e
Next k u v = k v (Concat v u)
Concat f g x = f(g(x))
Twice f x = f(f(x))

m
Compression (case n=2m)

Query: Does w1024 contain “bb”?
(Note: |w1024| > 10200)

Applications to Data Compression

Compressed data as higher-order grammars
– Hyper-exponential compression ratio

Data processing without decompression
using higher-order model checking
– pattern match queries
– associated data processing to compute:

• matching positions
• the number of matches
• ... (whatever expressed by transducers)

Data Transformation without Decompression

tree T

grammar G

decompress
T = Tree(G)

transducer f
e.g. counting “ab”:

tree f(T)

grammar G’

decompress
f(T)=Tree(G’)

higher-order
model checking
+ α

a/ε

a/ε
b/1b/ε

Applications to Data
Compression: Summary

Compressed data as higher-order
grammars
– Hyper-exponential compression ratio

Data processing without decompression
using higher-order model checking
– pattern match queries; and
– associated data processing expressed by
transducers

Outline
What is higher-order model checking?
Applications
– program verification:

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
– from model checking to typing
– practical algorithms
Future directions

Difficulty of higher-order model checking

Extremely high worst-case complexity
– n-EXPTIME complete [Ong, LICS06]

– Earlier algorithms [Ong06;Aehlig06;Hague et al.08]
almost always suffer from n-EXPTIME bottleneck.

p(x)
2

..
2

2

Our approach:
from model checking to typing

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A

if and only if

G is typable in TS(A)

Model Checking as
Type Checking
(c.f. [Naik & Palsberg, ESOP2005])

Model Checking Problem

Given
G: higher-order recursion scheme

(without safety restriction)
A: alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)

Model Checking Problem:
Restricted version

Given
G: higher-order recursion scheme

(without safety restriction)
A: trivial automaton [Aehlig CSL06]

(Büchi tree automaton where
all the states are accepting states)

does A accept Tree(G)?

See [K.&Ong, LICS09] for the general case
(full modal μ-calculus model checking)

Trivial tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

“a” does not occur below “b”

q0 q0

Trivial tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

“a” does not occur below “b”

q0 q0

Trivial tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0

“a” does not occur below “b”

q0 q0

Trivial tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0

“a” does not occur below “b”

q0 q0

Trivial tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

“a” does not occur below “b”

q0 q0

Trivial tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1
“a” does not occur below “b”

q0 q0

Types for Recursion Schemes
Automaton state as the type of trees
– q: trees accepted from state q

– q1∧q2: trees accepted from both q1 and q2

q

Is Tree(G) accepted by A?

Does Tree(G) have type q0?

Types for Recursion Schemes
Automaton state as the type of trees

– q1→ q2: functions that take a tree of type q1
and return a tree of q2

q2

q1 + =
q1

q2

q1

Types for Recursion Schemes
Automaton state as the type of trees
– q1∧q2 → q3:

functions that take a tree of type q1∧q2 and
return a tree of type q3

+ =
q1, q2

q3

q1 q2q2

q3

q1 q2q2

Types for Recursion Schemes
Automaton state as the type of trees
(q1 → q2) → q3:

functions that take a function of type q1 → q2
and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2

Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Γ, x:τ ┝ x :τa

…

q

q1 qn

Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Soundness and Completeness
[K., POPL2009]

G = {F1 →t1, ..., Fm →tm } (with S=F1)
A: Trivial automaton with initial state q0
TS(A): Intersection type system for A

Tree(G) is accepted by A
if and only if

S has type q0 in TS(A),
i.e. ∃Γ.(S:q0∈ Γ ∧ |− {F1→t1,..., Fn → tn} : Γ)

if and only if
∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈Γ. Γ|− tk : τ)

Soundness and Completeness
[K., POPL2009]

Tree(G) is accepted by A
if and only if

S has type q0 in TS(A),
i.e. ∃Γ.(S:q0∈ Γ ∧ |− {F1→t1,..., Fn → tn} : Γ)

if and only if
∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈Γ. Γ|− tk : τ)

if and only if
∃Γ.(S: q0 ∈ Γ ∧ Γ = H(Γ))
for H(Γ) = { Fk:τ ∈ Γ | Γ |− tk:τ }

Function to filter out invalid type bindings

Type checking (=model checking) problem

Is there a fixedpoint of H greater than {S:q0}?
(where H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })

Γmax (the set of all type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

⊆ ⊆

...

..
. ...

∅

⊆

x fixedpoint of H

Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H

(H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x fixedpoint

H(Γmax) x

...

Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H

(H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x fixedpoint

H(Γmax) x

H2(Γmax) x

Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H

(H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x fixedpoint

H(Γmax) x

H2(Γmax) x

H3(Γmax) x
...

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
(S:o, F: o→o)

Automaton:
δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

Γmax= {S:q0, S:q1, F: T→q0, F: q0 →q0, F: q1 →q0, F: q0 ∧q1 →q0,
F: T→q1, F: q0 →q1, F: q1 →q1, F: q0 ∧q1 →q1}

H(Γmax) = { S:τ ∈ Γmax | Γmax |− F c:τ }
∪ { F:τ ∈ Γmax | Γmax |− λx.a x (F(b x)) :τ }

= {S:q0, S:q1, F: q0 →q0, F: q0∧q1 →q0}
H2(Γmax) = {S:q0, F: q0∧q1 →q0}
H3(Γmax) = {S:q0, F: q0∧q1 →q0} = H2(Γmax)

Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H

(H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x fixedpoint

H(Γmax) x

H2(Γmax) x

H3(Γmax) x
...

Drawbacks:
- Huge cost for computing H
- Huge number of iterations
(both as huge as |Γmax| =

O(|G|×)

)

(AQ)1+ε

2
..
2

2 A: largest arity
Q: automaton size

How large is Γmax?

sort # of types for each sort
(Q={q0,q1,q2,q3})

o (trees) 4 (q0,q1,q2,q3)

o → o 24 ×4 = 64 (∧S→ q, with S∈2Q, q∈Q)

(o→o) → o 264 ×4 = 266

((o→o) → o) → o 266 10000000000000000000
2 ×4 > 10

Γmax: the set of all possible type bindings for non-terminals

(A|Q|)1+ε

2
..
2

2
|Γmax| = O(|G|×)

Outline
What is higher-order model checking?
Applications
– program verification:

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
– from model checking to typing
– practical algorithms
Future directions

Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

1.Guess a type environment Γ0

2.Compute greatest fixedpoint Γ smaller than Γ0

3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

Γmax (the set of all possible type bindings)

{S:q0}
......

Γ0 x

Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

1.Guess a type environment Γ0

2.Compute greatest fixedpoint Γ smaller than Γ0

3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

Γmax (the set of all possible type bindings)

{S:q0}
......

H(Γ0) x
H2(Γ0) x

...

Γ0 x

Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

Γmax (the set of all possible type bindings)

{S:q0}
...

...

Γ0 x

1.Guess a type environment Γ0

2.Compute greatest fixedpoint Γ smaller than Γ0

3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

Γmax (the set of all possible type bindings)

{S:q0}
...

...

H(Γ0) x
H2(Γ0) x

...

Γ0 x

1.Guess a type environment Γ0

2.Compute greatest fixedpoint Γ smaller than Γ0

3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

How to guess Γ0?
PPDP09 algorithm
– Reduce a recursion scheme

a finite number of steps
– Observe how each function

is used and express it
as types

FoSSaCS11 algorithm
– Like PPDP09, but avoid

reductions by using game
semantic interpretation of
types

Γmax

{S:q0}

......

H(Γ0) x
H2(Γ0) x

...

Γ0 x

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

S
q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
S: q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: ? → q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

F: T → q0

Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

1.Guess a type environment Γ0

2.Compute greatest fixedpoint Γ smaller than Γ0

3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

{S:q0}

...

H(Γ0) x
H2(Γ0) x

...

Γ0 x

Γ0 = {S: q0, F: q0 ∧ q1→ q0,
F: q0 → q0 , F: T → q0}

H(Γ0) = { Fk:τ ∈ Γ0 | Γ0 |− tk:τ }
= {S: q0, F: q0 ∧ q1→ q0,

F: q0 → q0 }

H2(Γ0) = {S: q0, F: q0 ∧ q1→ q0}

H3(Γ0) = {S: q0, F: q0 ∧ q1→ q0}

TRecS [K. PPDP09]
http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

The first model checker for recursion
schemes

Based on the PPDP09 algorithm,
with certain additional optimizations

Experiments
order rules states result Time

(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1
TwofilesE 4 12 5 Yes 2
FileOcamlC 4 23 4 Yes 5
Lock 4 11 3 Yes 10
Order5 5 9 4 Yes 2
mc91 4 49 1 Yes 50
xhtml 2 64 50 Yes 884

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of
Objective Caml, consisting of
about 60 lines of O’Caml code

(A simplified version of)
FileOcamlC

let readloop fp =
if * then () else readloop fp; read fp

let read_sect() =
let fp = open “foo” in
{readc=fun x -> readloop fp;
closec = fun x -> close fp}

let loop s =
if * then s.closec() else s.readc();loop s

let main() =
let s = read_sect() in loop s

Algorithms for Higher-Order
Model Checking: Summary

Model checking can be reduced to type checking,
which in turn becomes a fixedpoint problem

Greatest fixedpoint is too costly to compute

Practical algorithms guess a type environment and
use it as a start point of fixedpoint computation

FoSSaCS11 algorithm (for trivial automata model
checking) is linear time in the size of grammar
if other parameters (the size of types and
automaton) are fixed

Outline
What is higher-order model checking?
Applications
– program verification:

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
– from model checking to typing
– practical algorithms
Discussions on FAQ and Future Directions

FAQ
Does HO model checking scale?
(It shouldn’t, because of n-EXPTIME completeness)

FAQ
Does HO model checking scale?
(It shouldn’t, because of n-EXPTIME completeness)

Answer:
Don’t know yet.
But there is a good hope it does!

Does higher-order model checking scale?

Bad News
- n-EXPTIME complete

- Huge constant factor

Good News
+ Fixed-parameter PTIME
in the grammar size
(linear time for safety
properties)

+ Use PPDP09 or
FoSSaCS11 algorithm

+ Worst-case behavior shows
an advantage of HO functions,
rather than a disadvantage
of HO model checking

Recursion schemes generating

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

m
2a c

Exponential time algorithm for order-1
≈
Polynomial time algorithm for order-0

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

Order-0:
S→a G1, G1 →a G2,..., Gk → c (k=2m)

Recursion schemes generating

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

m
2a c

n-EXPTIME algorithm for order-n
≈
Polynomial time algorithm for order-0

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

Order-0:
S→a G1, G1 →a G2,..., Gk → c (k=2m)

Recursion schemes generating

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

m
2a c

(fixed-parameter)
Polynomial time algorithm for order-n [K11FoSSaCS]
>>
Polynomial time algorithm for order-0

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

Order-0:
S→a G1, G1 →a G2,..., Gk → c (k=2m)

FAQ
Does higher-order model checking scale?
(It shouldn’t, because of n-EXPTIME completeness)

Answer:
Don’t know yet.
But there is a good hope it does!

Advantages of HO model checking
for program verification

(1) Sound, complete and automatic for a large
class of higher-order programs
– no false alarms!
– no annotations

Advantages of HO model checking
for program verification

(1) Sound, complete and automatic for a large
class of higher-order programs
– no false alarms!
– no annotations

(2) Subsumes finite-state/pushdown model
checking
– Order-0 rec. schemes ≈ finite state systems
– Order-1 rec. schemes ≈ pushdown systems

Advantages of HO model checking
for program verification

(3) Take the best of model checking and types

– Types as certificates of successful verification
⇒ applications to PCC (proof-carrying code)

– Counterexample when verification fails
⇒ error diagnosis,

CEGAR (counterexample-guided
abstraction refinement)

Advantages of HO model checking
for program verification

(4) Encourages structured programming

Previous techniques:
- Imprecise for higher-order functions and recursion,
hence discourage using them

Our technique:
- No loss of precision for higher-order functions and
recursion

- Performance penalty? -- Not necessarily!
If higher-order functions are properly used,
there may be performance gain!

Remaining Challenges
Refinement of HO model checkers
– More efficiency
– Support of full modal μ-calculus
Software model checkers for
full-scale programming languages
– Refinement of predicate abstraction and CEGAR
– Dealing with advanced types, references, etc.
Extension of the decidability result?
– Extension of models (recursion schemes)
– Extension of properties
Other applications
(e.g. data compression)

Conclusion
HO model checking problems can often be
solved efficiently, despite the high worst-case
complexity
(More justifications are needed, though.)
Important and interesting applications:
– automated program verification
– data compression

Only the first step from theory to practice;
more efforts are required both in theoretical
and practical communities

