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This Talk
Overview of our project to construct:

Software Model Checker for ML, 

based on higher-order model checking (or, model 
checking of higher-order recursion schemes)



Outline
Introduction to higher-order model checking
– What are higher-order recursion schemes?
– What are model checking problems?

Applications to program verification 
– Verification of higher-order boolean programs
– Dealing with infinite data domains (integers, 

lists,...)

Towards a full-scale model checker for ML
Conclusion



Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme 
(regular tree grammar)
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Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme
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Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S  → A c
A x → a  x  (A (b x))

S: o, A: o→ o

Higher-order recursion schemes
≈

Call-by-name simply-typed λ-calculus
+

recursion, tree constructors



Model Checking Recursion Schemes

e.g. 
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G:  higher-order recursion scheme
A:  alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?



Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A x → a  x  (A (b x))

S: o, A: o→ o
c a
a
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...
Q1. Does every finite path end with “c”?

YES!
Q2. Does “a” occur below “b”?

NO!



Model Checking Recursion Schemes

e.g. 
- Does every finite path end with “c”?
- Does “a” occur eventually whenever “b” occurs?

Given
G:  higher-order recursion scheme
A:  alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

k-EXPTIME-complete [Ong, LICS06]       
(for order-k recursion scheme)   

p(x)
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TRecS [K., PPDP09]
http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

- First model checker for recursion schemes,
restricted to safety property checking

- Based on reduction from higher-order model  
checking to type checking

- Uses a practical algorithm that does not 
always suffer from k-EXPTIME bottleneck



(Non-exhaustive) History
70s: (1st-order) Recursive program schemes

[Nivat;Coucelle-Nivat;...]

70-80s: Studies of high-level grammars 
[Damm; Engelfriet;..]

2002: Model checking of higher-order recursion 
schemes [Knapik-Niwinski-Urzyczyn02FoSSaCS]
Decidability for “safe” recursion schemes

2006: Decidability for arbitrary recursion schemes
[Ong06LICS]

2009: Model checker for higher-order recursion
schemes [K09PPDP]
Applications to program verification [K09POPL]



Outline
Introduction to higher-order model checking
– What are higher-order recursion schemes?
– What are model checking problems?

Applications to program verification 
– Verification of higher-order boolean programs

• Rechability
• Temporal properties

– Dealing with infinite data domains (integers, 
lists,...)

Towards a full-scale model checker for ML



Reachability verification for 
higher-order boolean programs

Theorem:
Given a closed term M of (call-by-name or
call-by-value) simply-typed λ-calculus with:
– recursion
– finite base types 
(including booleans and special constant “fail”)

– non-determinism,
it is decidable whether M →* fail

Proof: Translate M into a recursion scheme G    
s.t.  M→* fail  if and only if 

Tree(G) contains “fail”.



Example
fun repeatEven f x = if ∗ then x else f (repeatOdd f x)
fun repeatOdd f x = f (repeatEven f x) 
fun main( ) = if (repeatEven not true) then ( ) else fail

+

end +

end +

end ...

Higher-order recursion scheme that generates 
the tree containing all the possible outputs:



Example
fun repeatEven f x = if ∗ then x else f (repeatOdd f x)
fun repeatOdd f x = f (repeatEven f x) 
fun main( ) = if (repeatEven not true) then ( ) else fail

RepeatEven k f x → If TF (k x) (RepeatOdd (f k) f x)
RepeatOdd k f x → RepeatEven (f k) f x 
Main → RepeatEven C Not True
C b → If b end fail
Not k b → If b (k False) (k True)
If b x y → b x y
True x y → x      False x y → y
TF x y → + x y

encoding of booleans
bool = o->o->o

call-by-value CPS + encoding of booleans

+

end +

end +

end ...

Generated tree



Outline
Introduction to higher-order model checking
– What are higher-order recursion schemes?
– What are model checking problems?

Applications to program verification 
– Verification of higher-order boolean programs

• Rechability
• Temporal properties

– Dealing with infinite data domains (integers, 
lists,...)

Current status and remaining challenges



Verification of temporal properties 
by higher-order model checking

[K. POPL 2009]

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 

event sequences)
+

Tree automaton,
recognizing 

valid event sequences

Model
Checking



From Program Verification to Model Checking:
Example

let f(x) = 
if ∗ then close(x) 
else read(x); f(x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according 

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 



From Program Verification to Model Checking:
Example

let f(x) = 
if ∗ then close(x) 
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d 

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according 

to read* close?
Is each path of the tree

labeled by r*c?

CPS 
Transformation!

continuation parameter, 
expressing how “foo” is accessed 

after the call returns
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Program Verification 
by Higher-order Model Checking

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 

event sequences)
+

automaton for
infinite trees

Model
Checking

Sound, complete, and automatic for:
- A large class of higher-order programs:

finitary PCF (simply-typed λ-calculus + recursion 
+ finite base types)

- A large class of verification problems:
resource usage verification (or typestate checking), 
reachability, flow analysis,...



Comparison with Other Model Checking

Program Classes Verification Methods
Programs with 
while-loops

Finite state model checking

Programs with 
1st-order recursion

Pushdown model checking

Higher-order functional 
programs with arbitrary 
recursion

Higher-order model 
checking

infinite
state
model 
checking



Outline
Introduction to higher-order model checking
– What are higher-order recursion schemes?
– What are model checking problems?

Applications to program verification 
– Verification of higher-order boolean programs
– Dealing with infinite data domains (integers, 

lists,...)

Current status and remaining challenges



Dealing with Infinite Data Domains

Abstractions of data structures by 
tree automata [K.,Tabuchi&Unno, POPL 2010]

Predicate abstraction and CEGAR
[K-Sato-Unno, PLDI 2011]
(c.f. BLAST, SLAM, …)



Predicate Abstraction and CEGAR 
for Higher-Order Model Checking

Predicate 
abstraction

Higher-order
functional program

Higher-order
boolean program

f(g,x)=g(x+1)

λx.x>0

F(g, b)= 
if b then g(true)
else g(∗)

Higher-order
model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates



What are challenges?
Predicate abstraction
– How to consistently abstract a program,

so that the resulting HOBP is a safe abstraction?

CEGAR (counterexample-guided abstraction refinement)

– How to find new predicates to abstract each term 
to guarantee progress 
(i.e. any spurious counterexample is eliminated)?

let sum n k = if n ≤ 0 then k 0
else sum (n-1) (λx.k(x+n))

in sum m (λx.assert(x ≥ m))
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What are challenges?
Predicate abstraction
– How to consistently abstract a program,

so that the resulting HOBP is a safe abstraction?

CEGAR
– How to find new predicates to abstract each term 

to guarantee progress 
(i.e. any spurious counterexample is eliminated)?

let sum n k = if n ≤ 0 then k 0
else sum (n-1) (λx.k(x+n))

in sum m (λx.assert(x ≥ m))

Abstracted with 
λx.x≥m 

Should be abstracted 
with λx.x≥n

Should be 
abstracted with 

λx.x≥n-1



Abstraction Types
as Abstraction Interface

int[P1,...,Pn]
Integers that should be abstracted by P1,...,Pn

e.g. 

x:int[P1,...,Pn]→ int[Q1,...,Qm]
Assuming that argument x is abstracted by P1,...,Pn,
abstract the return value by Q1,...,Qm

e.g. λx.x+x: (x:int[λx.x>0]→ int[λy.y>x])
λx.x+x: (x:int[λx.x>1, even?]→ int[λy.y>0])

3: int[λx.x>0, even?] ⇒ (true, false)

⇒ λb.b

⇒ λ(b1,b2).if b1 then true else ∗

x>0?

x+x>x?



Type-based Predicate Abstraction

Γ┝ M1: (x:τ2 → τ ) ⇒ N1    Γ┝ M2:τ2 ⇒ N2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ M1M2: [M2/x]τ ⇒ N1N2

Γ, x:τx ┝ M: τ ⇒ N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ λx.M: (x:τx → τ ) ⇒ λx.N

source 
program

abstraction 
type

abstract 
program



Type-based Predicate Abstraction

Γ┝ M1: (x:τ2 → τ ) ⇒ N1    Γ┝ M2:τ2 ⇒ N2
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Γ, x:τx ┝ M: τ ⇒ N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ λx.M: (x:τx → τ ) ⇒ λx.N



Example (predicate abstraction)

Abstraction type environment:
sum: (n:int[]→ (int[λx.x≥n] → ) → )

let sum n k = if n≤0 then k 0
else sum (n-1) (λx.k(x+n))

in sum m (λx.assert(x≥m))

let sum n k = if ∗ then k true
else sum ( ) (λb.k(if b then true else ∗))

in sum ( ) (λb.assert(b))
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Abstraction type environment:
sum: (n:int[]→ (int[λx.x≥n] → ) → ) 

let sum n k = if n≤0 then k 0
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in sum m (λx.assert(x≥m))

let sum n k = if ∗ then k true
else sum ( ) (λb.k(if b then true else ∗))

in sum ( ) (λb.assert(b))
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Predicate Abstraction and CEGAR 
for Higher-Order Model Checking

Predicate 
abstraction

Higher-order
functional program

Higher-order
boolean program Higher-order

model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates

New
abstraction 

types



Finding new abstraction types
from a spurious error path

Reduction to a dependent type inference 
problem for SHP (straightline higher-order 
program) that exactly corresponds to the 
spurious path

Source 
program

Spurious 
error path+

SHP

New abstraction types

dependent type inference

(a kind of) slicing



Example (predicate discovery)

sum: (n:int[]→ (int[ ] → ) → )

let sum n k = if n≤0 then k 0
else sum (n-1) (λx.k(x+n))

in sum m (λx.assert(x≥m))

let sum n k = if ∗ then k ( )
else sum ( ) (λx.k ( ))

in sum ( ) (λx.assert(∗))

spurious error path (with k = λx.assert(*) ):
sum ( ) k → if ∗ then k( ) else ... → k( ) → assert(*) → fail



Example (predicate discovery)
let sum n k = if n≤0 then k 0 else sum (n-1) (λx.k(x+n))
in sum m (λx.assert(x≥m))

Spurious error path:
sum ( ) k → if ∗ then k( ) else ... → k( ) → assert(∗) → fail 



Example (predicate discovery)
let sum n k = if n≤0 then k 0 else sum (n-1) (λx.k(x+n))
in sum m (λx. if x≥m then () else fail)

Straightline higher-order program (SHP):
let sum n k = if (n≤0) then k 0 else _
in sum m (λx.if x≥m then _ else fail)

Spurious error path:
sum ( ) k → if ∗ then k( ) else ... → k( ) → assert(∗) → fail 

Typing for SHP: sum: (n:int → ({x:int | x≥n} → ) →

Dependent type inference with interpolants [Unno&K. PPDP09] 

Abstraction type: sum: (n:int[] → (x:int[λx.x≥n] → ) →



Predicate Abstraction and CEGAR 
for Higher-Order Model Checking

Predicate 
abstraction

Higher-order
functional program

Higher-order
boolean program Higher-order

model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates

New
abstraction 

types



Summary (up to this point)
Higher-order model checking provides a 
sound and complete verification method for 
higher-order boolean programs 

Combination with predicate abstraction and 
CEGAR provides a sound verification method 
for simply-typed higher-order programs
– Dependent types are used in the background



Outline
Introduction to higher-order model checking
– What are higher-order recursion schemes?
– What are model checking problems?

Applications to program verification 
– Verification of higher-order boolean programs
– Dealing with infinite data domains (integers, 

lists,...)

Current status and remaining challenges
Conclusion



Current Status of MoCHi
Reachability verification for:
– Call-by-value simply-typed λ-calculus with 

recursion, booleans and integers 
(or, call-by-value PCF)

Ongoing work to support:
– Exceptions
– Algebraic data types



How far is the goal? 
(“software model checker for ML”)

Missing features:
– algebraic data types
– exceptions
– let-polymorphism
– modules
– references
Scalability problems
– bottleneck: predicate discovery and 
higher-order model checking

Inline let-definitions 
or use intersection types



How far is the goal? 
(“software model checker for ML”)

Missing features:
– algebraic data types
– exceptions
– let-polymorphism
– modules
– references
Scalability problems
– bottleneck: predicate discovery and 
higher-order model checking

exception handlers as auxiliary continuations



Dealing with Exceptions

Extend CPS transformation by:

[try e1 with x → e2] k h =
[e1] k (λx.[e2]k h) 

[raise e] k h = [e] h h
Ordinary 

continuation
Exception
handler
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Dealing with algebraic data types
Algebraic data types as functions

[ τ list ] = int × (int → [τ] )
nil = (0, λx. fail )

cons = λx.λ(len,f).
(len+1, λi.if i=0 then x else f(i-1))

hd (len,f) = f(0)
tl (len, f) = assert(len>0); (len-1, λi. f(i+1))

Pros: 
- Can reuse predicate abstraction and cegar for integers  
- Generalization of container abstraction [Dillig-Dillig-Aiken]

Cons: 
- More burden on model checker and cegar

length function from indices to elements



How far is the goal? 
(“software model checker for ML”)

Missing features:
– algebraic data types
– exceptions
– let-polymorphism
– modules
– references
Scalability problem
– bottleneck: and 
higher-order model checking

store passing 
(and stores as functions)?

predicate discovery



Problems on Predicate Abstraction 
and Discovery

Too specific predicates are discovered
let copy n = if n=0 then 0 else 1+copy(n-1)
in assert(copy(copy m) = m)
- discovered predicates (for return values) 

r=0, r=1, r=2, ...
- what we want:

r=n (for argument n)

Supported predicates are limited
– only linear constraints on base types

• let rec rev l = …  (* list reverse *)
in assert(rev(rev l) = l)



How far is the goal? 
(“software model checker for ML”)

Missing features:
– algebraic data types
– exceptions
– let-polymorphism
– modules
– references
Scalability problems
– bottleneck: and
higher-order model checking

predicate discovery



Higher-Order Model Checker TRecS [PPDP09]:
Current Status

Can verify recursion schemes of a few hundred lines 
in a few seconds
Can become a bottleneck if:
– The order of a program is very high 

(after CPS)
– Many irrelevant predicates are used in 

abstractions

Direct support of call-by-value semantics?

BDD-like implementation techniques?



FAQ 
Does HO model checking scale?
(It shouldn’t, because of k-EXPTIME completeness)

Answer:
Don’t know yet.
But there is a good hope it does, because:
(i) worst-case complexity is linear time in the

program size (for safety properties)

(ii) the worst-case behavior seems to come from
the expressive power of higher-order functions

(AQ)1+ε

2
..
2

2

O(|G|× )



Recursion schemes generating

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

m
2a c

Exponential time algorithm for order-1
≈
Polynomial time algorithm for order-0

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

Order-0:
S→a G1, G1 →a G2,..., Gn → c  (n=2m)
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Recursion schemes generating

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

m
2a c

(fixed-parameter)
Polynomial time algorithm for order-k [K11FoSSaCS]
>>
Polynomial time algorithm for order-0

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

Order-0:
S→a G1, G1 →a G2,..., Gn → c  (n=2m)
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Conclusion
Higher-order model checking is useful for 
verification of functional programs
MoCHi: software model checker for a tiny subset 
of ML
A long way to construct a scalable, full-scale 
software model checker for ML
– Support of more features: algebraic data structures,...
– Better predicate abstraction and discovery
– Better algorithms and implementations of higher-order 

model checker
– Modular verification

Exciting research topics for the next decade!
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