Towards a Software Model Checker
for ML

Naoki Kobayashi
Tohoku University

Joint work with:

Ryosuke Sato and Hiroshi Unno (Tohoku University)

in collaboration with

Luke Ong (Oxford), Naoshi Tabuchi and Takeshi Tsukada (Tohoku)

This Talk

¢ Overview of our project to construct:

Software Model Checker for ML,

based on Aigher-order model checking (or, model
checking of higher-order recursion schemes)

Outline

¢ Introduction to higher-order model checking
- What are higher-order recursion schemes?
- What are model checking problems?

¢ Applications to program verification
- Verification of higher-order boolean programs

- Dealing with infinite data domains (integers,
lists,...)

¢ Towards a full-scale model checker for ML
¢ Conclusion

Higher-Order Recursion Scheme
¢ Grammar for generating an infinite tree

Order-0 scheme S g
(regular tree gramm s
S >ac B B> b
LA
B—->b S S)
s»>a —>a —H>a .7 clx
/N /\ / "\ /\\
c B ¢ b ¢ b b
| | .
S a

a
/\ A
E b

¢ C

Higher-Order Recursion Scheme

‘Gl‘ammal‘ fOl" Tree whose pafhs Ii'|'e '|'r'ee

Order-1 schem(are labeled by
S S Ac a™: br ¢
Ax—>a x (A(b x)) c/\a
S:0, A:o—> o0 an
b a
S >Ac—> a —>a - .- |b/\q
/N /N 1T D
cC a b ..
c A(b ¢) A I
b A(b(b c)) c

b
i
c' fr
C

Higher-Order Recursion Scheme

¢ Grammar for generating an infinite tree

Order-1 scheme
S > Ac

Ax—>a x (A(b x))

S:0, Ato—> o0

-

Higher-order recursion schemes
Call-by-name simply-typed A-calculus
+

recursion, free constructors

~S

~

Model Checking Recursion Schemes

Given
G: higher-order recursion scheme

Qioes A accept Tree(6)?

~

A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

J

e.g.
- Does every finite path end with "c"?

- Does “"a” occur below "b"?

Higher-Order Recursion Scheme

¢ Grammar for generating an infinite tree

Order-1 scheme
SH>Ac
Ax —>a x (A (b x) c/\a
S:0, A: 0> 0 b/\ﬂ
| 7 \(1
/Ql. Does every finite path end with “c"?\C VS

Q2. Does "a"” occur below "b"?

b

YES! |::; tl’
o ¢ 1
f!

S /

Model Checking Recursion Schemes
~

Given
G: higher-order recursion scheme
A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

does A accept Tree(G)?
° P 6) y

e.g.
- Does every finite path end with "c"?

- Does "a” occur eventually whenever "b" occurs?
f

.
k-EXPTIME-complete [Ong, LICSO6] k. / 7"

(for order-k recursion scheme) (2

_ Y,

TRecS [k., PPDPO9)
http://www_.kb_.ecei.tohoku.ac. jp/~koba/trecs/

QType—Based Model Checker for Hiegher—Order Recursion Scheme - Mozilla Firefox @@
Z7E RBEE TV BEQ® Jwv-i® v-D ANFH

@ v c‘ a7 | L] | http/fwan kbeceitohokuac.jp/ koba/trecs/

- | G-
8] HKRBEN-T PP Firefox BFESTHLED BIiZa-2A

| FrontPage - Kobalab Wiki __| Type-Based Model Checker for..E | = XeTFe—@REFEIZAI .

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit” button. Examples are given below. Currently, our model checker only accepts determimstic Buchy
automata with a trivial acceptance condition.

”_ First model checker for recursion schemes, \
restricted to safety property checking

- Based on reduction from higher-order model
checking to type checking

- Uses a practical algorithm that does not
always suffer from k-EXPTIME bottleneck /

%%%%%%%
/ rst state terpreted as the initial state. /

i

TE®
0.

g0 a =-> g0 g

(Non-exhaustive) History

¢ 70s: (1s'-order) Recursive program schemes
[Nivat;Coucelle-Nivat;...]

¢ 70-80s: Studies of high-level grammars
[Damm; Engelfriet:..]

¢ 2002: Model checking of higher-order recursion
schemes [Knapik-Niwinski-Urzyczyn02FoSSacCS]
Decidability for “safe” recursion schemes

¢ 2006: Decidability for arbitrary recursion schemes
[Ong06LICS]

¢ 2009: Model checker for higher-order recursion
schemes [KO9PPDP]
Applications to program verification [kKo9poPL]

Outline

¢ Introduction to higher-order model checking
- What are higher-order recursion schemes?
- What are model checking problems?

¢ Applications to program verification

- Verification of higher-order boolean programs
- Rechability

- Temporal properties

- Dealing with infinite data domains (integers,
lists,...)

¢ Towards a full-scale model checker for ML

Reachability verification for
higher-order boolean programs

" Theorem:)
Given a closed term M of (call-by-name or
call-by-value) simply-typed A-calculus with:
- recursion

- finite base types
(including booleans and special constant “fail”)

- non-determinism,
it is decidable whether M —>* fail

_

Proof: Translate M into a recursion scheme 6

s.t. M->* fail if and only if
Tree(6) contains “fail”.

Example

fun repeatEven f x = if * then x else f (repeatOdd f x)
fun repeatOdd f x = f (repeatEven f x)
fun main() = if (repeatEven not true) then () else fail

4)

)

\
Higher-order recursion scheme that generates
the tree containing all the possible outputs:

/\
end

/\

end T

7\

end

Example

-

\

fun repeatEven f x = if * then x else f (repeatOdd f x)
fun repeatOdd f x = f (repeatEven f x)
fun main() = if (repeatEven not true) then () else fail

~

)

1 call-by-value CPS + encoding of booleans

Main — RepeatEven C Not True

C b —» If b end fail

Not k b —> If b (k False) (k True)
Ifbxy >bxy

True Xy > x False xy —> vy

\Tny—>+xy

6epea’rEven k f x > If TF (k x) (RepeatOdd (f k) f x)\
RepeatOdd k f x — RepeatEven (f k) f x

[Genera‘red tree

7\

end +

/\

end +

K end

7\

~

V4

Outline

¢ Introduction to higher-order model checking
- What are higher-order recursion schemes?
- What are model checking problems?

¢ Applications to program verification

- Verification of higher-order boolean programs
- Rechability

- Temporal properties

- Dealing with infinite data domains (integers,
lists,...)

¢ Current status and remaining challenges

Verification of temporal properties

by higher-order model checking
[K. POPL 2009]

Higher-order

program
<+
specification

Rec. scheme
(describing all

—

Program
Transformation

event sequences)
—> + —

Tree automaton,

Model
Checking

recoghizing
valid event sequences

From Program Verification to Model Checking:

Example
let f(x) = Fxk—> + (c k) (r(F x k)
if * then close(x) S—>Fd *+
else read(x); f(x) / "\
let y = open "foo" o
ery N
in C rl'
f (y) VoA
C r
, D B
Is the file "foo” - ‘ 2
ccessed according| ——p | Is each path of the tree
to read™ close? , labeled by r*c?
\ y

expressing how "foo” is accessed

-
From Progr'am ‘ continuation parameter, ng:
after the call returns

T
let f(X) - F x k —; ';(C k) (r'(F X k))
if * then close(x) S-F .
else read(x); f(x) oPe O
n “r Transformation!
let y = open “foo .
in C rl'
f (y) VoA
C r
, D |
Is the file "foo” (‘ \
ccessed according| —p | Is each path of the tree
to read™ close? , labeled by r*c?
\ y

From Program Verification to Model Checking:

Example
+
if * then E>S_)Fd*+
else /\
let y = open "foo” !
ety = op N
in C rl'
f (y) VoA
C r
) |
Is the file "foo - ‘ \
ccessed according| —p | Is each path of the tree
to read™ close? , labeled by r*c?
\ y

From Program Verification to Model Checking:
Example

close(x)

in
let y = open "foo”

in
f (y)

~
Is the file “"foo”

ccessed according | ——p

to read™ close?
J

(c k)

»S > Fdx

+

/\

C

|
* N

C
|
*

+ =3

+ -3

7\
C r
|

(

_

Is each path of the tree
labeled by r*c?

~

J

From Program Verification to Model Checking:

Example
(r(F x k))
F»S >Fdx
+
read(x); f(x) /" \
in f N
!e'r y = open “foo” xR
in C rl'
f (y) VoA
C r
N |
Is the file "foo" - ‘ \
ccessed according| —p | Is each path of the tree
to read™ close? , labeled by r*c?
\ y

Program Verification
by Higher-order Model Checking

Rec. scheme

Higher-order (describing all

rogram event sequences
P ? .| Program | a)_’ Model
specification (Transformation| . +omaton for Checking

infinite trees

éound, complete, and automatic for:)
- A large class of higher-order programs:

finitary PCF (simply-typed A-calculus + recursion

+ finite base types)
- A large class of verification problems:

resource usage verification (or typestate checking),

\ reachability, flow analysis, ... W,

Comparison with Other Model Checking

Program Classes Verification Methods
Programs with Finite state model checking
while-loops
Programs with Pushdown model checking [] infinite
1st-order recursion state
Higher-order functional Higher-order model " model.

: : : checking
programs with arbitrary checking
recursion)

Outline

¢ Introduction to higher-order model checking
- What are higher-order recursion schemes?
- What are model checking problems?

¢ Applications to program verification
- Verification of higher-order boolean programs

- Dealing with infinite data domains (integers,
lists,...)

¢ Current status and remaining challenges

Dealing with Infinite Data Domains

¢ Abstractions of data structures by
tree automata [K., Tabuchi&Unno, POPL 2010]

¢ Predicate abstraction and CEGAR
[K-Sato-Unno, PLDI 2011]

(c.f. BLAST, SLAM, .)

Predicate Abstraction and CEGAR

for Higher-Order Model Checking
f(g.x)=g(x+1

Program is unsafe!
Higher-order
unctional progra
\x_x>0 | Predicate A*Q :

abstraction

l

@er-order
boolean program
F(g. b)=

if b then g(true)
else g(*)

Error path

property not satisfied

igher-order
nodel checking

property satisfied
Program is safel!

What are challenges?

¢ Predicate abstraction

- How to consistently abstract a program,
so that the resulting HOBP is a safe abstraction?

~
4 let sumnk =ifn<0 thenk O

else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x > m))

_ J

¢ CEGAR (counterexample-guided abstraction refinement)

- How to find new predicates to abstract each term
to guarantee progress
(i.e. any spurious counterexample is eliminated)?

What are challenges?

¢ Predicate abstraction

- How to consistently abstract a program,
so that the resulting HOBP is a safe abstraction?

~
4 let sumnk =ifn<0 thenk O

else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x > m))

_

¢ CEGAR AX.X>m

- How to find new predicates to abstract each term
to guarantee progress
(i.e. any spurious counterexample is eliminated)?

Abstracted with]

What are challenges?

¢ Predicate abstraction Should be abstracted

- How to consistently abstr with Ax.x>n
so that the resulting HOB

~
4 let sumnk = if n <0 then k O

else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x > m))

_

¢ CEGAR AX.X>m

- How to find new predicates to abstract each term
to guarantee progress
(i.e. any spurious counterexample is eliminated)?

Abstracted with]

What are challenges?

¢ Predicate abstraction

- How to consistently abstr
so that the resulting HOB

-

_

let sumnk=if n<0thenk O
else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x > m))

Abstracted with
¢ CEGAR AX. X>m

~

A

Should be abstracted

with Ax.x>n

Should be
abstracted with
AX.x>n-1

J

- How to find new predicates to abstract each term

to guarantee progress

(i.e. any spurious counterexample is eliminated)?

Abstraction Types
as Abstraction Interface

int[P,,....P,]
Integers that should be abstracted by P,,..., P,

e.g.
3: int[Ax.x>0, even?] = (true, false)

x:int[P,,...,P,]—> int[Qq,....Q,]

Assuming that argument x is abstracteP,,
abstract the return value by Qq, ..., Q

e.g. Ax.x+x: (x:int[Ax.x>0]— int[Ay.y>x]) = Ab.b

Ax.x+x: (x:int[Ax.x>1, even?]— in1'
= Mb,,b,).if by the

Type-based Predicate Abstraction

CFM;:(x:1,>1)=>N;, TFM:1,= N,

I I-M].MZ: [Mz/X]T: NINZ

program type

program

\

[source j abs‘rr'ac'rion] fabstract

r, xit, FM: 1 = N

I FAx.M: (x:1, > 1t)= Ax.N

Type-based Predicate Abstraction

CFM;: (xi1,>1) L FM,,

T F MMy [M,/x]0

T, xit, FM: 1

I FAx.M: (x:1, > 1)

Example (predicate abstraction)
4 O
let sum n k = if n<O then k O
else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x>m))

Abstraction type environment:
sum: (n:int[J— (int[Ax.x>n] ->%*) >%)

a4)

let sum n k = if * then k true
else sum () (A\b.k(if b then true else *))

in sum () (Ab.assert(b))
N)

Example (predicate abstraction)

~
let sum n k = if n<O then k O
else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x>m))
/

Abstraction type environment:
sum: (n:int[]—> (int[Ax.x>n] ->%*) —>*)

a4)

let sum n k = if * then k true
else sum () (\b.k(if b then true else *))

in sum () (A\b.assert(b))
N /

Example (predicate abstraction)

~
let sum n k = if n<O then k O
else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x>m))
/

Abstraction type environment:
sum: (n:int[J— (inf[Ax.x>n] ->%*) >%)

a4)

let sum n k = if * then k true
else sum () (Ab.k(if b then true else *))

in sum () (Ab.assert(b))
N)

Example (predicate abstraction)

~
let sum n k = if n<O then k O
else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x>m))
/

Abstraction type environment:
sum: (n:int[J— (inf[Ax.x>n] ->%*) >%)

a4)

let sum n k = if * then k true
else sum () (\b.k(if b then true else *))

in sum () (Ab.assert(b))
N)

Example (predicate abstraction)

~
let sum n k = if n<O then k O
else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x>m))
/

Abstraction type environment:
sum: (n:int[J— (inf[Ax.x>n] ->%*) >%)

a4)

let sum n k = if * then k true
else sum () (\b.k(if b then true else *))

in sum () (Ab.assert(b))
_ x>n-1 .

N J

Example (predicate abstraction)

~
let sum n k = if n<O then k O
else sum (n-1) (Ax.k(x+n))
in sum m (Ax.assert(x>m))
/

Abstraction type environment:
sum: (n:int[J— (inf[Ax.x>n] ->%*) >%)

a4)

let sum n k = if * then k true
else sum () (\b.k(if b then true else *))

in sum () (Ab.assert(b))
_ x>n-1 .

N J

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

Program is unsafe!
Higher-order
unctional progra

l

Predicate
abstraction

l

Higher-order
boolean program

New
abstraction
types

Error path

property not satisfied

igher-order
nodel checking

property satisfied
Program is safel!

Finding new abstraction types
from a spurious error path

¢ Reduction to a dependent type inference
problem for SHP (straightline higher-order
program) that exactly corresponds to the
spurious path

[Source] { Spurious J
+
program error path
(a kind of) slicing
| osHp |
‘b dependent type inference

[New abstraction types]

Example (predicate discovery)
?

let sum n k = if n<O then k O
else sum (n-1) (Ax.k(x+n))

in sum m (Ax.assert(x>m))
o /

l sum: (n:int[]— (int[] o %) > X*)

4 O
let sum n k = if * then k ()

else sum () (Ax.k ())
in sum () (Ax.assert(*))

/

spurious error path (with k = AX.assert(*)):
sum () k > if * then k() else ... = k() — assert(*) — fail

Example (predicate discovery)

4 N
let sum n k = if n<O then k O else sum (n-1) (Ax.k(x+n))

in sum m (Ax.assert(x>m))
. y,

Spurious error path:
sum () k > if * then k() else ... - k() —» assert(*) — fail

Example (predicate discovery)

4 N
let sum n k = if n<O then k O else sum (n-1) (Ax.k(x+n))
in sum m (Ax. if x>m then () else fail)

_ y,

1 Spurious error path:
sum () k > if * then k() else ... - k() —» assert(*) — fail

4)
Straightline higher-order program (SHP):

let sum n k = if (n<0) then k O else _

in sum m (Ax.if x>m then _ else fail)
_ _/

‘ Dependent type inference with interpolants [Unno&K. PPDPO9]

[Typing for SHP: sum: (n:int —» ({x:int | x>n} - *) > *]

¥

[Absfrac'rion type: sum: (n:int[] — (x:int[Ax.x>n] > *) > *]

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

Program is unsafe!
Higher-order
unctional progra

l

Predicate
abstraction

l

Higher-order
boolean program

New
abstraction
types

Error path

property not satisfied

igher-order
nodel checking

property satisfied
Program is safel!

Summary (up to this point)

¢ Higher-order model checking provides a
sound and complete verification method for
higher-order boolean programs

¢ Combination with predicate abstraction and
CEGAR provides a sound verification method
for simply-typed higher-order programs
- Dependent types are used in the background

Outline

¢ Introduction to higher-order model checking
- What are higher-order recursion schemes?
- What are model checking problems?

¢ Applications to program verification
- Verification of higher-order boolean programs

- Dealing with infinite data domains (integers,
lists,...)

¢ Current status and remaining challenges
¢ Conclusion

Current Status of MoCHi

¢ Reachability verification for:

- Call-by-value simply-typed A-calculus with
recursion, booleans and integers
(or, call-by-value PCF)

¢ Ongoing work to support:
- Exceptions
- Algebraic data types

How far is the goal?
("software model checker for ML")

¢ Missing features:
- algebraic data types
- exceptions
- |e'r-po|ymor'phism Inline let-definitions
or use intersection types
- modules

- references

¢ Scalability problems

- bottleneck: predicate discovery and
higher-order model checking

How far is the goal?
("software model checker for ML")

¢ Missing features:
- algebraic data types
- exceptions exception handlers as auxiliary continuations
- let-polymorphism
- modules
- references

¢ Scalability problems

- bottleneck: predicate discovery and
higher-order model checking

Dealing with Exceptions

Extend CPS transformation by:

[try e; with x > e,] k h =
[e;] k (Ax.[e,]k h)
[raise el k h = [e] h h

Ordinary Exception
continuation handler

How far is the goal?
("software model checker for ML")

¢ Missing features:
- algebraic data types
- exceptions
- let-polymorphism
- modules
- references

¢ Scalability problems

- bottleneck: predicate discovery and
higher-order model checking

Dealing with algebraic data types
¢ Algebraic data types as functions

length function from indices to elements
[7 list] = int x (int = [1])
nil = (0, Ax. fail)
cons = Ax.A(len,f).
(len+1, Ai.if i=0 then x else f(i-1))
hd (len,f) = f(0)
tl (len, f) = assert(len>0); (len-1, Li. f(i+1))
Pros:

- Can reuse predicate abstraction and cegar for integers
- Generalization of container abstraction [Dillig-Dillig- Aiken]

Cons:

- More burden on model checker and cegar

How far is the goal?
("software model checker for ML")

¢ Missing features:
- algebraic data types
- exceptions
- let-polymorphism
- modules

store passing
- references (and stores as functions)?

¢ Scalability problem

- bottleneck: predicate discovery and
higher-order model checking

Problems on Predicate Abstraction
and Discovery

¢ Too specific predicates are discovered

let copy n = if n=0 then O else 1+copy(n-1)
in assert(copy(copy m) = m)

- discovered predicates (for return values)
r=0, r=1, r=2, ...

- what we want:
r=n (for argument n)

¢ Supported predicates are limited
- only linear constraints on base types

let rec rev| = .. (list reverse *)
in assert(rev(rev |) = I)

How far is the goal?
("software model checker for ML")

¢ Missing features:
- algebraic data types
- exceptions
- let-polymorphism
- modules
- references

¢ Scalability problems

- bottleneck: predicate discovery and
higher-order model checking

Higher-Order Model Checker TRecS [PPDP09]:
Current Status

¢ Can verify recursion schemes of a few hundred lines
in a few seconds

¢ Can become a bottleneck if:

- The order of a program is very high
(after CPS) Direct support of call-by-value semantics?

- Many irrelevant predicates are used in
abstractions
BDD-like implementation techniques?

FAQ

[Does HO model checking scale?]

(It shouldn't, because of k-EXPTIME completeness)

answer' . \

Don't know yet.

But there is a good hope it does, because:

(i) worst-case complexity is linear time in the
program size (for safety properties)

(AQ)L*e
o(l61x %,2)
2

(ii) the worst-case behavior seems to come from
___the expressive power of higher-order functions /

m
Recursion schemes generating d ¢

4)
| Order-1:

S—F; ¢, F; xoF,(F, x),..., F, x—>a(a x)
_ Y,
(" N

Order-0:

S$—»a 6, 6,5a6,,..., 6,> c (n=2m)

- y,

Exponential time algorithm for order-1

~)

Polynomial time algorithm for order-0

m
Recursion schemes generating d ¢

4)
| Order-1:

S—F; ¢, F; xoF,(F, x),..., F, x—>a(a x)
_ Y,
(" N

Order-0:

S$—»a 6, 6,5a6,,..., 6,> c (n=2m)

- y,

k-EXPTIME algorithm for order-k

Polynomial time algorithm for order-0

m
Recursion schemes generating d ¢

4)
| Order-1:

S—F; ¢, F; xoF,(F, x),..., F, x—>a(a x)
_ Y,
(" N

Order-0:

S$—»a 6, 6,5a6,,..., 6,> c (n=2m)

- y,

(fixed-parameter)

Polynomial time algorithm for order-k [K11FoSSaCS]
>>

Polynomial time algorithm for order-0

FAQ

Does HO model checking scale?
(It shouldn't, because of n-EXPTIME completeness)

answer‘:

Don't know yeft.

But there is a good hope it does, because:

(i) worst-case complexity is linear time in the
program size (for safety properties)

(ii) the worst-case behavior seems to come from

\-

the expressive power of higher-order functions

/

Outline

¢ Introduction to higher-order model checking
- What are higher-order recursion schemes?
- What are model checking problems?

¢ Applications to program verification
- Verification of higher-order boolean programs

- Dealing with infinite data domains (integers,
lists,...)

¢ Current status and remaining challenges
¢ Conclusion

Conclusion

¢ Higher-order model checking is useful for
verification of functional programs

¢ MoCHi: software model checker for a tiny subset
of ML

¢ A long way to construct a scalable, full-scale
software model checker for ML

- Support of more features: algebraic data structures,...
- Better predicate abstraction and discovery

- Better algorithms and implementations of higher-order
model checker

- Modular verification

Exciting research topics for the next decadel!

References

¢ A short survey:
[K, LICS11]

¢ Applications to program verification
[K,POPLO9] [K&Tabuchi&Unno, POPL10]
[K&Sato&Unno, PLDI11]

¢ From model checking to type checking
[K,POPLO9] [K&Ong,LICS09] [Tsukada&K, F0oSSaCS10]

¢ HO model checking algorithms
[K, PPDPO9] [K, FoSSaCS11]

¢ Complexity of HO model checking
[K&Ong, ICALPO9]

