
10 Years of the Higher-Order Model
Checking Project (at UTokyo)

Naoki Kobayashi
The University of Tokyo

Thanks to numerous collaborators:
Kazuyuki Asada, Atsushi Igarashi, Etienne Lozes, Luke Ong, Ryosuke Sato,
Ayumi Shinohara, Takeshi Tsukada, Hiroshi Unno, (ex-)students at UTokyo
and Tohoku University, ...

This Talk
 Summary of the Higher-Order Model Checking

(HOMC) Project at UTokyo, which started in 2009,
following the two papers:

POPL 2009 PPDP 2009

JACM, 2013

JACM 2013

Tool demonstration:
MoCHi

[K&Sato&Unno, PLDI 2011]
(a software model checker

for a subset of functional programming
language OCaml)

Outline
What is Higher-Order Model Checking?
 History of the Project

– ... with (hopefully) gentle introduction to foundations,
algorithms and applications of higher-order model checking

 Conclusion

2009 2019

Two Notions of
Higher-Order Model Checking

Models Logic

finite state
model checking finite state systems

modal
µ-calculus

(or LTL, CTL, ...)

Two Notions of
Higher-Order Model Checking

Models Logic

finite state
model checking finite state systems modal

µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

Higher-order tree grammars,
useful for modeling a certain class of

infinite state systems
(such as higher-order functional programs)

Models Logic

finite state
model checking finite state systems modal

µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems
higher-order

modal fixpoint
logic (HFL)

Useful for describing
non-regular properties

Two Notions of
Higher-Order Model Checking

Models Logic

finite state
model checking finite state systems modal

µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems
higher-order

modal fixpoint
logic (HFL)

Two Notions of
Higher-Order Model Checking

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Order-0 HORS
(regular tree grammar)

S → a c B
B → b S

S → a
c B

B → b
S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-0 HORS
(regular tree grammar)

S → a c B
B → b S

→ a

c B c b

→ a

S

c b

→ a

a

c B

→ ... →
c b

a

c b

a

c b

a

S

S → a
c B

B → b
S

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Order-1 HORS
S → A c
A x → a x (A (b x))

S: o, A: o→ o
Key restrictions on rewriting rules:
- Rules must be simply-typed.
- There are no pattern matching on trees.

Higher-Order Recursion Scheme (HORS)
Grammar for generating an infinite tree

Order-1 HORS

S → A c
A x → a x (A (b x))

S: o, A: o→ o

→A c

c A(b c)

→ a → ... →

c a

→ a

b A(b(b c))

c

c a

a

b

c

a

b

b

c

a

b

b

b
c

...

Tree whose paths are
labeled by
am+1 bm c

S

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Order-1 HORS
S → A c
A x → a x (A (b x))

S: o, A: o→ o

HORS
≈

A simply-typed functional program
for generating a tree

HORS Model Checking

e.g.
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G: HORS
ϕ: a formula of modal µ-calculus

(or a tree automaton),
does Tree(G) satisfy ϕ?

HORS Model Checking

Order-1 HORS
S → A c
A x → a x (A (b x))

S: o, A: o→ o
c a

a

b

c

a

b

b

c

a

b

b

b
c

...
Q1. Does every finite path end with “c”?

YES!
Q2. Does “a” occur below “b”?

NO!

HORS Model Checking

e.g.
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G: HORS
ϕ: a formula of modal µ-calculus

(or a tree automaton),
does Tree(G) satisfy ϕ?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

p(x)
2

..
2

2

HORS Model Checking as Generalization of Finite
State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking

c b

a

c b

a

c b

a
infinite tree

a

c b

transition system≈

Does “a”
occur

below “b”?
Is there a transition
sequence in which

“a” occurs after “b”?

HORS Model Checking as Generalization of Finite
State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking

infinite tree (infinite-state) transition system≈

Does “a”
occur

below “b”?

Is there a transition
sequence in which

“a” occurs after “b”?

c a

a

b

c

a

b

b

c

a

b

b

b

...

a

c b

a

b

a

b

a ...

...

Outline
What is Higher-Order Model Checking?
 History of the Project

– start of the project (through 2009)
• application to program verification [POPL09]
• type-theoretic foundation [POPL09]
• practical algorithm [PPDP09]

– tool development and quest for better algorithms
and more foundations (2010-2016)

– shift to HFL model checking (2017-)

 Conclusion

2009 2019

Background of the Project
 I attended two talks by Luke Ong on

HORS model checking
– IFIP WG 2.2 meeting in 2007

“Theoretically interesting, but ...”

– FoSSaCS 2008 invited talk
“Maybe useful for program verification?”

2009 2019

Background of the Project
 I attended two talks by Luke Ong on

HORS model checking
– IFIP WG 2.2 meeting in 2007
– FoSSaCS 2008 invited talk

 I was working with Atsushi Igarashi on
resource usage analysis [Igarashi&K, POPL02]

let rec f x =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in f (y)

Is the file “foo”
accessed according

to read* close?

2009 2019

From Program Verification
to HORS Model Checking

let f x =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c

...

r

r

r

Is the file “foo”
accessed according

to read* close?

Is each path of the tree
labeled by r*c?

F x k → + (c k) (r (F x k))
S → F d

Represents
how the file
is accessed.

c
+

+

c
+

c

...

r

r

r

From Program Verification
to HORS Model Checking

F x k → + (c k) (r (F x k))
S → F d

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

continuation parameter,
expressing how “foo” is

accessed after the call returns

let f x =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c

...

r

r

r

From Program Verification
to HORS Model Checking

F x k → + (c k) (r(F x k))
S → F d

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c

...

r

r

r

From Program Verification
to HORS Model Checking

F x k → + (c k) (r(F x k))
S → F d

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c

...

r

r

r

From Program Verification
to HORS Model Checking

F x k → + (c k) (r(F x k))
S → F d

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

S

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

F d

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

F d

+
c

r

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

+
c

r

+

F d

c

r

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c

...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

From Program Verification
to HORS Model Checking

Program
Transformation

Higher-order
program

+
specification

HORS
(describing all

event sequences)
+

Tree property

Model
Checking

Sound, complete, and automatic for:
- A large class of higher-order programs:

simply-typed λ-calculus + recursion
+ finite base types (e.g. booleans) + exceptions + ...

- A large class of verification problems:
resource usage verification (or typestate checking),
reachability, flow analysis, strictness analysis, ...

From Program Verification
to HORS Model Checking

Program
Transformation

Higher-order
program

+
specification

HORS
(describing all

event sequences)
+

Tree property

Model
Checking

For finite-data HO programs,
automated verification comes for free
from HORS model checking!
But ...
is HORS model checking feasible in practice?
(recall: HORS model checking is k-EXPTIME complete)

2009 2019

How to solve HORS MC problems?

- The decidability proof (in a 55 page paper) was based on
game semantics.

- The proof included an algorithm, which always suffers from
k-EXPTIME bottleneck.

- The key notion of “variable profiles” reminded me of
intersection types.

[Ong, LICS 2006]

2009 2019

Outline
What is Higher-Order Model Checking?
 History of the Project

– start of the project (through 2009)
• application to program verification [POPL09]
• type-theoretic foundation [POPL09]
• practical algorithm [PPDP09]

– tool development and quest for better algorithms
and more foundations (2010-2016)

– shift to HFL model checking (2017-)

 Conclusion

2009 2019

Type-Theoretic Approach to
HORS Model Checking [K, POPL09][K&Ong, LICS09]

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A

if and only if

G is typable in TS(A)

cf. “Model Checking as Type Checking”
[Naik & Palsberg, ESOP2005]

2009 2019

HORS Model Checking Problem:
Restricted version

Given
G: HORS
A: trivial automaton [Aehlig CSL06]

(Büchi tree automaton where
all the states are accepting states)

does A accept Tree(G)?

k-EXPTIME-complete [K&Ong, ICALP09]

(for order-k HORS)

Trivial tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1
“a” does not occur below “b”

q0 q0

Types for HORS
 Automaton state as the type of trees

– q: trees accepted from state q

– q1∧q2: trees accepted from both q1 and q2

q

Is Tree(G) accepted by A?

Does Tree(G) have type q0?

Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Soundness and Completeness [K., POPL2009]

Tree(G) is accepted by A
if and only if

S has type q0

i.e. ∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈ Γ. Γ |− tk : τ)
(G = {F1 →t1, ..., Fm →tm } with S=F1 ; A: Trivial automaton with initial state q0)

Consequences:
- Straightforward algorithm, which runs in time linear in |G|

(if the other parameters are fixed):
Γ := Γmax (all the possible typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
return (S: q0 ∈ Γ)

Shrink(Γ) = {Fk:τ ∈ Γ | Γ |− tk : τ}
filters out invalid typings

Type environment for
non-terminals F1,...,Fm

Soundness and Completeness [K., POPL2009]

Tree(G) is accepted by A
if and only if

S has type q0

i.e. ∃Γ.(S:q0 ∈ Γ ∧ ∀(Fk:τ)∈ Γ. Γ |− tk : τ)
(G = {F1 →t1, ..., Fm →tm } with S=F1 ; A: Trivial automaton with initial state q0)

Consequences:
- Straightforward algorithm, which runs in time linear in |G|

(if certain parameters are fixed):

− Γ serves as a certificate, which can be checked efficiently
(cf. NP problems)

Γ := Γmax (all the possible typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
return (S: q0 ∈ Γ)

Summary of POPL 09 Paper
+ Sound and complete reduction

from higher-order program verification
to HORS model checking

+ Type-based characterization of
(a subclass of) HORS model checking,
which yields
a naive fixed-parameter linear-time algorithm

- It remained open whether HORS model checking is feasible
in practice.
(The naive algorithm is impractical due to the huge constant factor.)

2009 2019

Outline
What is Higher-Order Model Checking?
 History of the Project

– start of the project (through 2009)
• application to program verification [POPL09]
• type-theoretic foundation [POPL09]
• practical algorithm [PPDP09]

– tool development and quest for better algorithms
(2010-2016)

– shift to HFL model checking (2017-)

 Conclusion

2009 2019

Practical Algorithm for HORS
Model Checking?

 Naive algorithm:

 Practical algorithm [K, PPDP09]

Γ := Γmax (all the possible typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
return (S: q0 ∈ Γ)

Too large: k-fold exponential in the size of
automata and the largest arity of functions

while true do {
Γ := (guess typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
if S: q0 ∈ Γ then return true

}

Practical Algorithm for HORS
Model Checking?

 Practical algorithm [K, PPDP09]

while true do {
Γ := (guess typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
if S: q0 ∈ Γ then return true

}

How can we guess types?
- The type of a function describes how it will be used in a program
=> Guess the type of a function by executing the program

and observing how the function is used.

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

S
q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
S: q0

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: ? → q0

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

F: T → q0

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

F: T → q0

while true do {
Γ := (guess typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
if S: q0 ∈ Γ then return true

}

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

F: T → q0

while true do {
Γ := (guess typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
if S: q0 ∈ Γ then return true

}

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

F: T → q0

while true do {
Γ := (guess typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
if S: q0 ∈ Γ then return true

}

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

F: T → q0

while true do {
Γ := (guess typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
if S: q0 ∈ Γ then return true

}

Example
HORS:

S → F c F x → a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

F: T → q0

while true do {
Γ := (guess typings for non-terminals)
repeat Γ := Shrink(Γ) until Γ= Shrink(Γ)
if S: q0 ∈ Γ then return true

}

TRecS [K. PPDP09]
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/

 The first practical model checker for HORS

 Does not immediately suffer from k-EXPTIME
bottleneck

 Used as a backend of the software model checker
MoCHi

Summary of the Results in 2009
 Applications to program verification [POPL09]

 Type-theoretic foundations

– [POPL09] for trivial automata model checking

– [LICS09, with Ong] for full µ-calculus model checking

 The first practical algorithm [PPDP09]

 Complexity

– parameterized complexity [POPL09, LICS09]

– complexity of subclasses [ICALP09, with Ong]

2009 2019

Outline
What is Higher-Order Model Checking?
 History of the Project

– start of the project (through 2009)
• application to program verification [POPL09]
• type-theoretic foundation [POPL09]
• practical algorithm [PPDP09]

– tool development and quest for better algorithms
and more foundations (2010-2016)

– shift to HFL model checking (2017-)

 Conclusion

2009 2019

HOMC Project: 2010 - 2016
Applications

– Automated program verification
• MoCHi [K+, PLDI 11]
• Termination and temporal properties

[Kuwahara+ ESOP14, CAV15][Murase+ POPL16][Watanabe+ ICFP16]

– Data compression [K+ PEM12]

Quest for better HORS MC algorithms
– GTRecS, HorSat, HorSat2, HorSatP, ...

Foundations (properties on HO languages)
– HO languages vs context-sensitive languages
– Pumping lemmas [K, LICS13] [Asada&K, ICALP17]

HOMC Project: 2010 - 2016
Applications

– Automated program verification
• MoCHi [K+, PLDI 11]
• Termination and temporal properties

[Kuwahara+ ESOP14, CAV15][Murase+ POPL16][Watanabe+ ICFP16]

– Data compression [K+ PEM12]

Quest for better HORS MC algorithms
– GTRecS, HorSat, HorSat2, HorSatP, ...

Foundations (properties on HO languages)
– HO languages vs context-sensitive languages
– Pumping lemmas [K, LICS13] [Asada&K, ICALP17]

MoCHi: Software Model Checker for
OCaml [K, Sato&Unno, PLDI11]

 Based on HORS MC + predicate abstraction

 Support:
– higher-order functions + recursion (by HORS MC)
– integers (by predicate abstraction)
– exceptions (by extended CPS transformation)
– (restricted) ADT (by encoding into functions)

[τ list] = int × (int → [τ])

MoCHi

HORS MC

SLAM [Ball+]

pushdown MC

Blast [Beyer+]

finite-state MC

length function from indices to elements

MoCHi: Software Model Checker for
OCaml [K, Sato&Unno, PLDI11]

 Based on HORS MC + predicate abstraction

 Support:
– higher-order functions + recursion (by HORS MC)
– integers (by predicate abstraction)
– exceptions (by extended CPS transformation)
– (restricted) ADT (by encoding into functions)

[τ list] = int × (int → [τ])
nil = (0, λx. fail)

cons = λx.λ(len,f). (len+1, λi.if i=0 then x else f(i-1))
hd (len,f) = f(0)
...

MoCHi

HORS MC

SLAM [Ball+]

pushdown MC

Blast [Beyer+]

finite-state MC

HOMC Project: 2010 - 2016
Applications

– Automated program verification
• MoCHi [K+, PLDI 11]
• Termination and temporal properties [Kuwahara+ ESOP14,

CAV15][Murase+ POPL16][Watanabe+ ICFP16]

– Data compression [K+ PEM12]

Quest for better HORS model checkers
– GTRecS, HorSat, HorSat2, HorSatP, ...

Foundations
– HO languages vs context-sensitive languages
– Pumping lemmas [K, LICS13] [Asada&K, ICALP17]

HorSat2 [K, 2014]

* State-of-the-art trivial automata model checker for HORS
- scales up to 10,000 – 100,000 rules

* Based on
- Type-theoretic foundations [POPL09,LICS09]
- Saturation-based algorithm [Broadbent&K, CSL13]

with Preface [Ramsay+, POPL14]-style flow analysis

Outline
What is Higher-Order Model Checking?
 History of the Project

– start of the project (through 2009)
• application to program verification [POPL09]
• type-theoretic foundation [POPL09]
• practical algorithm [PPDP09]

– tool development and quest for better algorithms
and more foundations (2010-2016)

– shift to HFL model checking (2017-)

 Conclusion

2009 20192011 2017

HOMC Project: 2017-
From HORS to HFL model checking

Models Logic

finite state
model checking finite state systems modal

µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems
higher-order

modal fixpoint
logic (HFL)

Higher-Order Modal Fixpoint Logic (HFL)
[Viswanathan&Viswanathan 04]

Higher-order extension of the modal µ-calculus
ϕ ::= true

ϕ1 ∧ ϕ2

ϕ1 ∨ ϕ2

[a]ϕ ϕ must hold after a
<a>ϕ ϕ may hold after a
X variable
µX.ϕ least fixpoint
νX.ϕ greatest fixpoint

e.g. µX. true ∨ <a>X
“b” may occur after a finite number of “a” transitions

Higher-Order Modal Fixpoint Logic (HFL)
[Viswanathan&Viswanathan 04]

Higher-order extension of the modal µ-calculus
ϕ ::= true

ϕ1 ∧ ϕ2

ϕ1 ∨ ϕ2

[a]ϕ ϕ must hold after a
<a>ϕ ϕ may hold after a
X predicate variable
µXκ.ϕ least fixpoint
νXκ.ϕ greatest fixpoint
λXκ.ϕ (higher-order) predicate
ϕ1 ϕ2 application

κ ::= the type of propositions
κ1→κ2

Selected Typing Rules for HFL

Γ, X:κ ┝ X:κ

Γ, X:κ1 ┝ ϕ:κ2
−−−−−−−−−−−−−−−−−−

Γ┝ λX.ϕ: κ1 → κ2

Γ┝ ϕ: κ1 → κ2 Γ┝ ψ: κ1
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ ψ: κ2

Γ, X:κ ┝ ϕ:κ
−−−−−−−−−−−−−−−−−−

Γ┝ µX.ϕ: κ

Γ ┝ true: Γ ┝ ϕ:
−−−−−−−−−−−−−−−−−−

Γ┝ [a]ϕ:
Γ┝ ϕ: Γ┝ ψ:

−−−−−−−−−−−−−−−−−−−−−−−−
Γ┝ ϕ∧ψ:

Example
(µF→→.λX.λY. (X∧Y) ∨ F (<a>X) (Y)) P Q

= (λX.λY. (X∧Y) ∨ (µF...) (<a>X) (Y))) P Q
= (P∧Q) ∨

(µF→→.λX.λY. (X∧Y) ∨

F(<a>X)(Y)) (<a>P)(Q)
= (P∧Q) ∨ (<a>P∧Q) ∨ (<a><a>P∧Q) ∨ ...
For some n, <a>n P and n Q hold

P

Q

an

bn

HFL Model Checking
[Viswanathan&Viswanathan 2004]

e.g. L |= ϕ for:
L:

Given
L: (finite-state) labeled transition system
ϕ: HFL formula,

does L satisfy ϕ?

a

b
d c

ϕ: (µF.λX.λY. (X∧Y)
∨ F (<a>X) (Y))
(<c>true) (<d>true)

HORS/HFL Model Checking and
Program Verification

HO program verification

HORS
model checking

HFL
model checking

[K, POPL09]

[K&Lozes&Bruse,
POPL 17]

[K+, ESOP 18]
[Watanatabe+, PEPM 19]

2009 20192011 2017

HORS/HFL Model Checking and
Program Verification

HO program verification

HORS
model checking

HFL
model checking

[K, POPL09]

[K&Lozes&Bruse,
POPL 17]

[K+, ESOP 18]
[Watanatabe+, PEPM 19]

2009 20192011 2017

Models Spec
HO program
verification

HO programs safety,
termination, ...

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

formula
HFL

model checking
[Viswanathan&

Viswanathan 04]

finite state systems HFL
formula

Higher-Order Program Verification
vs HFL/HORS Model Checking

[K, POPL09], ...

??

Models Spec
HO program
verification

HO programs safety,
termination, ...

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

formula
HFL

model checking
[Viswanathan&

Viswanathan 04]

finite state systems HFL
formula

Higher-Order Program Verification
vs HFL/HORS Model Checking

[K, POPL09], ...

“The program’s
behavior is correct”

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

read(y); close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true

LTS:

s0 s1
close

read end

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

read(y); close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true

Does LTS:

satisfy the formula S?
s0 s1

close
read end

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

if * then
(read(y); close(y))

else close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true
∧
<close><end>true

Does LTS:

satisfy the formula S?

s0 s1
close

read end

From Program Verification
to HFL Model Checking: Example

let f x =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?

Does LTS:

satisfy the formula S?

s0 s1
close

read end

HFL formula that says
“the behavior of the program
is correct”

From Program Verification
to HFL Model Checking: Example

let f x k =
if * then close x k
else read x (f x k)

in
let y = open “foo”
in

f y ()

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
F x k =ν <close>k

∧ (<read>(F x k))
S =ν F true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

From Program Verification
to extended HFL (HFLZ) Model Checking

let f n x k =
if n≤0 then close x k
else
read x (f (n-1) x k)

in
let y = open “foo”
in f m y ()

Is the file “foo”
accessed according

to read* close?

F n x k =µ
(n≤0 ⇒<close>k)

∧ (¬n≤0 ⇒
<read>(F (n-1) x k))

S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

HOMC Project: 2017-
HFL approach to program verification

– More streamlined than HORS-based approach

2017 20192009

safety

terminationfair termination

non-termination

fair
non-termination

predicate abstraction

program
transformation

HORS
model checking

HORS-based Approach

[PLDI11]
[CAV15][ICFP16]

[ESOP14][POPL16]

higher-order
boolean programs

HFL-based Approach

verification problems

Reduction to HFLZ
model checking

Reduction to
ν-only fragment

predicate abstraction

pure HFL model
checking

HOMC Project: 2017-
HFL approach to program verification

– More streamlined than HORS-based approach
– Natural extension of other approaches

• Constrained Horn Clauses (CHC)
+ higher-order predicates + fixpoint alternations
(cf. SeaHorn [Gurfinkel+], JayHorn [Kahsai+])

• HoCHC [Burn+, 2018] + fixpoint alternations

 Improving scalability of MoCHi
– modular verification [Sato&K, ESOP17]

– machine-learning for predicate discovery
[Champion+ TACAS18][Sato+ PEPM19]

HOMC Project:
Where are we heading now?

Tool constructions for HFL-based approach
– Pure HFL model checker [Hosoi+, APLAS19]
– validity checker for first-order fragment of HFLZ

(or, CHC + fixpoint alternations) [K+, SAS19]

Average-case complexity of HOMC
– Why does HOMC work in practice?

Probabilistic HORS model checking
[K, Dal Lago&Grellois, LICS19]

2017 20192009

Conclusion
 Summarized HOMC Project at UTokyo

– HOMC works in practice, despite k-EXPTIME completeness

– Applicable to program verification and data compression

– Of the two kinds of HOMC, the HFL-based approach seems
more promising

 Remaining challenges
– More tool constructions

• scalability to larger programs,
• non-functional features (references, concurrency, etc.)

– More theories
• Justification for why HOMC works in practice
• open problems about higher-order languages

	10 Years of the Higher-Order Model Checking Project (at UTokyo)
	This Talk
	Tool demonstration:�MoCHi�[K&Sato&Unno, PLDI 2011]�(a software model checker �for a subset of functional programming language OCaml)�
	Outline
	Two Notions of �Higher-Order Model Checking
	Two Notions of �Higher-Order Model Checking
	スライド番号 7
	スライド番号 8
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	HORS Model Checking
	HORS Model Checking
	HORS Model Checking
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	Outline
	Background of the Project
	Background of the Project
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking�
	From Program Verification �to HORS Model Checking�
	How to solve HORS MC problems?
	Outline
	Type-Theoretic Approach to�HORS Model Checking [K, POPL09][K&Ong, LICS09]
	HORS Model Checking Problem: �Restricted version
	Trivial tree automaton �for infinite trees
	Types for HORS
	Typing
	Soundness and Completeness [K., POPL2009]
	Soundness and Completeness [K., POPL2009]
	Summary of POPL 09 Paper
	Outline
	Practical Algorithm for HORS Model Checking?
	Practical Algorithm for HORS Model Checking?
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	Summary of the Results in 2009
	Outline
	HOMC Project: 2010 - 2016
	HOMC Project: 2010 - 2016
	MoCHi: Software Model Checker for OCaml [K, Sato&Unno, PLDI11]
	MoCHi: Software Model Checker for OCaml [K, Sato&Unno, PLDI11]
	HOMC Project: 2010 - 2016
	HorSat2 [K, 2014]
	Outline
	HOMC Project: 2017-
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Selected Typing Rules for HFL
	Example
	HFL Model Checking �[Viswanathan&Viswanathan 2004]
	HORS/HFL Model Checking and Program Verification
	HORS/HFL Model Checking and Program Verification
	スライド番号 101
	スライド番号 102
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to extended HFL (HFLZ) Model Checking
	HOMC Project: 2017-
	スライド番号 113
	HOMC Project: 2017-
	HOMC Project: �Where are we heading now?
	Conclusion

