
Types and Recursion Schemes for
Higher-Order Program Verification

Naoki Kobayashi
 Tohoku University

In collaboration with
Luke Ong

(University of Oxford),

Ryosuke

Sato, Naoshi

Tabuchi, Takeshi Tsukada, Hiroshi Unno
 (Tohoku University)

Plan of the Talk
Part 1
–

From program verification to model checking
recursion schemes [K. POPL09]

–

From model checking to type checking: Simple
case (safety properties) [K. POPL09]

–

Model checking (=type checking) algorithm
 [K. PPDP09]

Part 2
–

From model checking to type checking:
General case [K. and Ong, LICS09]

–

Towards a software model checker for higher-
 order languages

–

Remaining challenges

Model Checking Problem
 (Simple Case, for safety properties)

Given
 G: higher-order recursion scheme

 A: trivial automaton [Aehlig

CSL06]

(Büchi

tree automaton where
 all the states are accepting states)

 does A accept Tree(G)?

Model Checking Problem:
 General Case

Given
 G: higher-order recursion scheme

 A: alternating parity tree automaton
 (or modal μ-calculus formula)

 Does A accept Tree(G)?

Alternating

parity tree automata
for infinite trees

δ(q0, a) = ((1,q0) ∧(2,q0))
 ∨

(1, q1)

δ(q0, b) = (1, q1)
δ(q1, b) = (1, q1)
δ(q0, c) = true
δ(q1, c) = true

Positive
boolean

 formulas
c a

a

b
c

a
b
b
c

a
b
b
b
c

...

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1

Alternating

parity

tree automata
for infinite trees

δ(q0, a) = ((1,q0) ∧(2,q0))
 ∨

(1, q1)

δ(q0, b) = (1, q1)
δ(q1, b) = (1, q1)
δ(q0, c) = true
δ(q1, c) = true

Positive
boolean

 formulas
c a

a

b
c

a
b
b
c

a
b
b
b
c

...

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1

Priority function:
Ω(q0) = 1
Ω(q1) = 2

Acceptance condition: For any infinite path of the run tree,
the largest priority visited infinitely often must be even.

Types extended with priorities
q1→

q2: functions that take a tree of type q1

and return a tree of q2

q2

q1 + =
q1

q2

q1

Types extended with priorities
(q1, m) →

q2: functions that take a tree of type q1

and return a tree of q2

q2

q1 + =
q1

q2

q1

priority

Largest
priority is m

Types extended with priorities
((q1, 3) →

q2, 2) →

(q1, 3) →

q3 :

priority

+ =

q3

q1

q2

q1

q2
3

2
q3

q1

q23

Type judgment

x1

: (θ1

,m1

),..., xn

: (θn

,mn

) |−

M: θ
where

θ ::= q | (θ1

,m1

)∧...∧(θn

,mn

)→ θ

x1

:θ1

x2

:θ2
xn

:θn
m1

m2 mn

(A run tree of)
the tree

generated by M

Typing

Γ0┝ t1: (θ1,m1

)∧…∧

(θn,mn

)

→ θ Γi┝ t2:θi (i=1,..n)
−−−

Γ0

∪ Γ1↑m1

∪ ...∪

Γn↑mn

┝ t1 t2:θ

Γ, x:τ1

,..., x:τk

┝ t:θ

k≤n
−−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ λx.t: τ1

∧…∧τn

→ θ

x:(θ,Ω(θ))

┝ x:θ

{(i,qij

) | i∈1,..,n, j∈1,..,ki

} satisfies δ(q,a)
mij

= max(Ω(qij

),Ω(q)))
−−−

┝ a

: ∧j(q1j

,m1j

) →

…

→

∧j(qnj

,mnj

)

→

q

qa

1 n…
q11 qn1

1…
q1k

n
…

qnk

Typing

Γ0┝ t1: (θ1,m1

)∧…∧

(θn,mn

)

→ θ Γi┝ t2:θi (i=1,..n)
−−−

Γ0

∪ Γ1↑m1

∪ ...∪

Γn↑mn

┝ t1 t2:θ

Γ, x:τ1

,..., x:τk

┝ t:θ

k≤n
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ λx.t: τ1

∧…∧τn

→ θ

Γ, x:(θ,Ω(θ))

┝ x:θ

{(i,qij

) | i∈1,..,n, j∈1,..,ki

} satisfies δ(q,a)
mij

= max(Ω(qij

),Ω(q)))
−−−

┝ a

: ∧j(q1j

,m1j

) →

…

→

∧j(qnj

,mnj

)

→

q

θ1 θ2 θn

m1 m2 mn

t1

Γ0

Typing

Γ0┝ t1: (θ1,m1

)∧…∧

(θn,mn

)

→ θ Γi┝ t2:θi (i=1,..n)
−−−

Γ0

∪ Γ1↑m1

∪ ...∪

Γn↑mn

┝ t1 t2:θ

Γ, x:τ1

,..., x:τk

┝ t:θ

k≤n
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ λx.t: τ1

∧…∧τn

→ θ

Γ, x:(θ,Ω(θ))

┝ x:θ

{(i,qij

) | i∈1,..,n, j∈1,..,ki

} satisfies δ(q,a)
mij

= max(Ω(qij

),Ω(q)))
−−−

┝ a

: ∧j(q1j

,m1j

) →

…

→

∧j(qnj

,mnj

)

→

q

t2 t2 t2

m1 m2 mn

t1

Γ1 Γ2
Γn

Γ0

Typing for Recursion?

Γ┝ tk

:

τ (for every Fk

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

→t1

,..., Fn

→

tn} : Γ

Parity conditions are not respected!

Recursion and parity conditions
Recursion scheme:
S →

t

F →

u

Typing:
S: (q0

, m1

), F: (τ, m2

) |-

t: q0
S: (q0

, m3

), F: (τ, m4

) |-

u: τ

Recursion and parity conditions
Recursion scheme:
S →

t

F →

u

Typing:
S: (q0

, m1

), F: (τ, m2

) |-

t: q0
S: (q0

, m3

), F: (τ, m4

) |-

u: τ

S:q0

F:τ

m1 m2

S:q0

Recursion and parity conditions
Recursion scheme:
S →

t

F →

u

Typing:
S: (q0

, m1

), F: (τ, m2

) |-

t: q0
S: (q0

, m3

), F: (τ, m4

) |-

u: τ

S:q0

F:τ

m1 m2

S:q0
F:τ

m3 m4

S:q0

F:τ

Recursion and parity conditions
Recursion scheme:
S →

t

F →

u

Typing:
S: (q0

, m1

), F: (τ, m2

) |-

t: q0
S: (q0

, m3

), F: (τ, m4

) |-

u: τ

S:q0

F:τ

m1 m2

S:q0
F:τ

m3 m4

S:q0

F:τ

S:q0

m1 m2

F:τ

m1 m3 m4

F:τ

F:τ

m1 m3 m4

S:q0

F:τS:q0

F:τ

m1 m2
S:q0

m1 m2

S:q0

F:τ

m3 m4

S:q0

F:τ

Recursion and parity conditions
Recursion scheme:
S →

t

F →

u

Typing:
S: (q0

, m1

), F: (τ, m2

) |-

t: q0
S: (q0

, m3

), F: (τ, m4

) |-

u: τ

S:q0

F:τ

m1 m2

S:q0
F:τ

m3 m4

S:q0

F:τ

S:q0

F: τ

m2

F:τ

m3

F:τS:q0

S:q0

m1

S:q0

F:τ

m2

F:τ

m4

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P):

Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ

Opponent (O):

Given Γ,
 pick F:(τ, m) ∈ Γ

 (and ask P to show
why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

priority
S:q0

r.h.s

of F’s rule

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

priority
S:q0

F:τ
m1

m2

S:q0

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

priority
S:q0

F:τ
m1

m2

S:q0

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

S:q0

F:τ
m1

m2

S:q0

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

S:q0

F:τ
m1

m2

S:q0

F:τ
m1

m2

S:q0

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

S:q0

F:τ
m1

m2

S:q0

F:τ
m1

m2

S:q0

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

S:q0

F:τ
m1

m2

S:q0

F:τ
m1

m2

S:q0

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

S:q0

F:τ
m1

m2

S:q0

F:τ
m1

m2

S:q0

F:τ
m3

m4

S:q0

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

S:q0

F:τ
m1

m2

S:q0

F:τ
m1

m2

S:q0

F:τ
m3

m4

S:q0

Typability as Parity Game
Initial state: S:(q0

, 0)
Player (P): Given F:(τ, m),

pick Γ

such that Γ |− tF

: τ
Opponent (O): Given Γ,

 pick F:(τ, m) ∈ Γ
 (and ask P to show

why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

S:q0

F:τ
m1 m2

S:q0

F:τ
m1

m2

S:q0

F:τ
m3 m4

S:q0

Example
Recursion scheme: S →

F c F → λx.a

x (b (F x))

Automaton:
 δ(q0

,a)=δ(q1

,a)=(1,q0

)∧(2,q0

)

δ(q0

,b)=δ(q1

,b)=(1, q1

)
δ(q0

, c) = δ(q1

, c) = true Ω(q0

)=1, Ω(q1

)=2

F: ((q0

,1)∧(q0

,2)∧(q1

,2)

→

q0

, 1) |-

F c: q0

F: ((q0

,2)∧(q1

,2)

→

q1

, 2)
|-

λx.a

x (F (b x)) : (q0

,1)∧(q0

,2)∧(q1

,2)

→

q0
F: ((q0

,2)∧(q1

,2)

→

q1

, 2)
|-

λx.a

x (F (b x)) : (q0

,2)∧(q1

,2)

→

q1

S:q0

F:(q0

,1)∧(q0

,2)∧(q1

,1)→q0

F:((q0

,1)∧(q0

,2)∧(q1

,1)→q0

,1) 1

2
F:((q0

,2) ∧

(q1

,2)

→

q0

, 2)
F:(q0

,2)∧(q1

,1)→q0

1

Soundness and Completeness

Let
 G: Recursion scheme

A: Alternating parity tree automaton
 TS(A): Intersection type system

(with priorities) derived from A
Then,
Tree(G) is accepted by A

 if and only if
 G is well-typed in TS(A)

(Naïve) Model Checking Algorithm
 (= Type Checking Algorithm)

Construct an arena for the parity game
For each F →

t ∈

G,

 enumerate all valid judgments Γ |− t: τ

Solve the parity game [Jurdziński 2000]

of edges and vertices: O(|G| expn

(aQm)1+ε)
|G|: size of G, n: the largest order of types, a: the largest arity,
Q: # of states, m: # of priorities

O(m

E Vm/2) = O(|G|1+m/2

expn

(aQm)1+ε)
Polynomial in |G|,

if other parameters are fixed

of order-n types:

2
2 …

2(aQm)1+εn

Hybrid Type Checking Algorithm

Step 1:
Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ

= ∩k

Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!

Hybrid Type Checking Algorithm
Step 1:

Run the recursion scheme
a finite number of steps

Automaton
get stuck?

Error path
yes

no
Step 2: Extract
type environment

Γ0

Step 3: Compute all the valid
type judgment

constructed from Γ0

Is there
a winning
strategy?no

yes
Property
Is
Satisfied!

Note: One may have to prepare two automaton, one for the property and
the other for its negation, and run the algorithm for both automata concurrently.

Plan of the Talk
Part 1
–

From program verification to model checking
recursion schemes [K. POPL09]

–

From model checking to type checking:
Simple case (safety properties) [K. POPL09]

–

Model checking (=type checking) algorithm
Part 2
–

From model checking to type checking:
General case [K. and Ong, LICS09]

–

Towards a software model checker for
higher-order languages

–

Remaining challenges

Recursion schemes as
models of higher-order programs?
+ simply-typed λ-calculus
+ recursion
+ tree constructors
+ finite data domains (via Church encoding;

true = λx.λy.x, false=λx.λy.y)
-

infinite data domains
(integers, lists, trees,…)

-

advanced types (polymorphism, recursive
types, object types, …)

-

imperative features/concurrency

Ongoing work
to overcome the limitation

Predicate abstraction and CEGAR,
to deal with numeric data
(c.f. BLAST, SLAM, …)
From recursion schemes to transducers,
to deal with algebraic data types
(lists, trees, …)
Infinite intersection types,
to deal with non-simply-typed programs

Plan of the Talk
Part 1
–

From program verification to model checking
recursion schemes [K. POPL09]

–

From model checking to type checking: Simple
case (safety properties) [K. POPL09]

–

Model checking (=type checking) algorithm
Part 2
–

From model checking to type checking:
General case [K. and Ong, LICS09]

–

Towards a software model checker for higher-
 order languages

–

Remaining challenges
(from a program verification point of view)

Challenges (1)
More efficient model checker
–

Limitations of the current implementation
•

Worst-case complexity is not optimal

•

Too heuristic on the choice of expanded nodes
•

Not scalable on the size of tree automata

–

Possible approaches:
•

More language-theoretic properties of recursion
schemes (e.g. pumping lemmas),

 to avoid redundant computation
•

BDD-like representation of intersection types

•

Other approaches to model checking?
 (e.g. model-theoretic approach?)

Challenges (2)

Full modal μ-calculus model checker
–

The hybrid algorithm [K. PPDP09]

can be

extended easily.
–

Getting an efficient implementation
remains a challenge.

Challenges (3)
Extension of the decidability result
–

A larger class of MSO-decidable trees

 than recursion schemes?
–

A larger class of properties that are decidable
for the trees generated by recursion schemes?

Conclusion
Recursion schemes have important
applications in program verification.
Type-theoretic approach yields a practical
model checking algorithm,
(despite the extremely high worst-case
complexity)
More (both theoretical and practical)
studies on recursion schemes are required
to get practical software model checkers

References
K., Types and higher-order recursion schemes for verification of
higher-order programs, POPL09
From program verification to model-checking, and typing

K.&Ong, Complexity of model checking recursion schemes for
fragments of the modal mu-calculus, ICALP09
Complexity of model checking

K.&Ong, A type system equivalent to modal mu-calculus model-
checking of recursion schemes, LICS09

From model-checking to type checking

K., Model-checking higher-order functions, PPDP09
Type checking (= model-checking) algorithm

K., Tabuchi & Unno, Higher-order multi-parameter tree
transducers and recursion schemes for program verification,
POPL10 Extension to transducers and its applications
Tsukada & K., Untyped recursion schemes and infinite intersection
types, FoSSaCS 10

	Types and Recursion Schemes for Higher-Order Program Verification
	Plan of the Talk
	Model Checking Problem�(Simple Case, for safety properties)
	Model Checking Problem:�General Case
	Alternating parity tree automata �for infinite trees
	Alternating parity tree automata �for infinite trees
	Types extended with priorities
	Types extended with priorities
	Types extended with priorities
	Type judgment
	Typing
	Typing
	Typing
	Typing for Recursion?
	Recursion and parity conditions
	Recursion and parity conditions
	Recursion and parity conditions
	Recursion and parity conditions
	Recursion and parity conditions
	Typability as Parity Game
	Typability as Parity Game
	Typability as Parity Game
	Typability as Parity Game
	Typability as Parity Game
	Typability as Parity Game
	Typability as Parity Game
	Typability as Parity Game
	Typability as Parity Game
	Typability as Parity Game
	Example
	Soundness and Completeness
	(Naïve) Model Checking Algorithm�(= Type Checking Algorithm)
	Hybrid Type Checking Algorithm
	Hybrid Type Checking Algorithm
	Plan of the Talk
	Recursion schemes as �models of higher-order programs?
	Ongoing work �to overcome the limitation
	Plan of the Talk
	Challenges (1)
	Challenges (2)
	Challenges (3)
	Conclusion
	References

