Types and Recursion Schemes for Higher-Order Program Verification

Naoki Kobayashi Tohoku University

In collaboration with Luke Ong (University of Oxford), Ryosuke Sato, Naoshi Tabuchi, Takeshi Tsukada, Hiroshi Unno (Tohoku University)

Plan of the Talk

♦ Part 1

- From program verification to model checking recursion schemes [K. POPL09]
- From model checking to type checking: Simple case (safety properties) [K. POPL09]
- Model checking (=type checking) algorithm
 [K. PPDP09]

Part 2

- From model checking to type checking: General case [K. and Ong, LICS09]
- Towards a software model checker for higherorder languages
- Remaining challenges

Model Checking Problem (Simple Case, for safety properties)

Given

- G: higher-order recursion scheme
- A: trivial automaton [Aehlig CSL06] (Büchi tree automaton where all the states are accepting states) does A accept Tree(G)?

Model Checking Problem: General Case

Given

- G: higher-order recursion scheme
- A: alternating parity tree automaton (or modal μ-calculus formula)
 Does A accept Tree(G)?

Acceptance condition: For any infinite path of the run tree, the largest priority visited infinitely often must be even.

Types extended with priorities

 $q1 \rightarrow q2$: functions that take a tree of type q1 and return a tree of q2

Types extended with priorities

 $(q1, m) \rightarrow q2$: functions that take a tree of type q1 and return a tree of q2

Types extended with priorities

$$((q1, 3) \rightarrow q2, 2) \rightarrow (q1, 3) \rightarrow q3 :$$
priority

Type judgment $\mathbf{x}_1: (\mathbf{\theta}_1, \mathbf{m}_1), \ldots, \mathbf{x}_n: (\mathbf{\theta}_n, \mathbf{m}_n) \mid - \mathbf{M}: \mathbf{\theta}$ where $\theta ::= \mathbf{q} \mid (\theta_1, \mathbf{m}_1) \land \ldots \land (\theta_n, \mathbf{m}_n) \rightarrow \theta$ (A run tree of) the tree generated by M

Typing

$$\Gamma_0 \cup \Gamma_1 \uparrow \mathbf{m}_1 \cup ... \cup \Gamma_n \uparrow \mathbf{m}_n \vdash \mathbf{t}_1 \mathbf{t}_2: \boldsymbol{\theta}$$

Typing for Recursion?

Parity conditions are not respected!

Recursion and parity conditions

Recursion scheme: $S \rightarrow t$ $F \rightarrow u$

Typing: S: (q_0, m_1) , F: $(\tau, m_2) | - t: q_0$ S: (q_0, m_3) , F: $(\tau, m_4) | - u: \tau$

Recursion and parity conditions

Recursion scheme: $S \rightarrow t$ $F \rightarrow u$

Recursion and parity conditions

Recursion scheme: $S \rightarrow t$ $F \rightarrow u$

Typing:
S:
$$(q_0, m_1)$$
, F: $(\tau, m_2) \mid - t: q_0$
S: (q_0, m_3) , F: $(\tau, m_4) \mid - u: \tau$

Initial state: S: $(q_0, 0)$ priority Player (P): Given F: (τ, m) , pick Γ such that $\Gamma \models t_F : \tau$ Opponent (O): Given Γ , pick F: $(\tau, m) \in \Gamma$ (and ask P to show why F has type τ)

Initial state: S: $(q_0, 0)$ priority Player (P): Given F: (τ, m) , pick Γ such that $\Gamma \models t_F$: τ Opponent (O): Given Γ , pick F: $(\tau, m) \in \Gamma$ (and ask P to show why F has type τ) S:q₀ m₁ m₂ F:τ

Initial state: S: $(q_0, 0)$ priority Player (P): Given F: (τ, m) , pick Γ such that $\Gamma \models t_F$: τ Opponent (O): Given Γ , pick F: $(\tau, m) \in \Gamma$ (and ask P to show why F has type τ)

Initial state: S: $(q_0, 0)$ Player (P): Given F: (τ, m) , pick Γ such that $\Gamma \models t_F$: τ Opponent (O): Given Γ , pick F: $(\tau, m) \in \Gamma$ (and ask P to show why F has type τ)

Initial state: S: $(q_0, 0)$ Player (P): Given F: (τ, m) , pick Γ such that $\Gamma \models t_F : \tau$ Opponent (O): Given Γ , pick F: $(\tau, m) \in \Gamma$ (and ask P to show why F has type τ)

Typability as Parity Game **S**:**q**₀ Initial state: $S:(q_0, 0)$ Player (P): Given $F:(\tau, m)$, F:τ pick Γ such that $\Gamma \models \mathbf{t}_{\mathsf{F}}$: τ **Opponent (O):** Given Γ , m2 pick F: $(\tau, m) \in \Gamma$ F:τ (and ask P to show why F has type τ)

Typability as Parity Game **S**:**q**₀ Initial state: $S:(q_0, 0)$ Player (P): Given $F:(\tau, m)$, F:τ pick Γ such that $\Gamma \models \mathbf{t}_{\mathsf{F}}$: τ **Opponent (O):** Given Γ , m₂ pick F: $(\tau, m) \in \Gamma$ **F**:τ (and ask P to show why F has type τ)

Typability as Parity Game **S**:**q**₀ Initial state: $S:(q_0, 0)$ Player (P): Given $F:(\tau, m)$, **F**:τ pick Γ such that $\Gamma \models \mathbf{t}_{\mathsf{F}}$: τ **Opponent (O):** Given Γ , m₂ pick F: $(\tau, m) \in \Gamma$ -τ (and ask P to show why F has type τ) **F**:τ

Definition: Recursion scheme G is well-typed if

P has a winning strategy for the parity game.

Typability as Parity Game **S**:**q**₀ Initial state: $S:(q_0, 0)$ Player (P): Given $F:(\tau, m)$, **F**:τ pick Γ such that $\Gamma \models \mathbf{t}_{\mathsf{F}}$: τ **Opponent (O):** Given Γ , m₂ pick F: $(\tau, m) \in \Gamma$ -τ (and ask P to show m₂ why F has type τ) **F**:τ

Definition: Recursion scheme G is well-typed if

P has a winning strategy for the parity game.

Typability as Parity Game **S**:**q**₀ Initial state: $S:(q_0, 0)$ Player (P): Given $F:(\tau, m)$, **F**:τ pick Γ such that $\Gamma \models \mathbf{t}_{\mathsf{F}}$: τ **Opponent (O):** Given Γ , m_2 pick F: $(\tau, m) \in \Gamma$ **F**:τ (and ask P to show Ma why F has type τ) **F**:τ

Definition: Recursion scheme G is well-typed if

P has a winning strategy for the parity game.

Example

Recursion scheme: $S \rightarrow F c$ $F \rightarrow \lambda x.a \times (b (F x))$ Automaton:

 $\begin{array}{ll} \delta(q_0,a) = \delta(q_1,a) = (1,q_0) \land (2,q_0) & \delta(q_0,b) = \delta(q_1,b) = (1, q_1) \\ \delta(q_0, c) = \delta(q_1, c) = true & \Omega(q_0) = 1, \ \Omega(q_1) = 2 \end{array}$

$$\begin{split} \mathsf{F} \colon & ((q_0,1) \land (q_0,2) \land (q_1,2) \to q_0, \ 1) \mid - \mathsf{F} \ c \colon q_0 \\ \mathsf{F} \colon & ((q_0,2) \land (q_1,2) \to q_1, \ 2) \\ \mid - \lambda x. a \ x \ (\mathsf{F} \ (b \ x)) \colon (q_0,1) \land (q_0,2) \land (q_1,2) \to q_0 \\ \mathsf{F} \colon & ((q_0,2) \land (q_1,2) \to q_1, \ 2) \\ \mid - \lambda x. a \ x \ (\mathsf{F} \ (b \ x)) \colon (q_0,2) \land (q_1,2) \to q_1 \end{split}$$

Soundness and Completeness

Let

- G: Recursion scheme
- A: Alternating parity tree automaton
 TS(A): Intersection type system
 (with priorities) derived from A

Then,

- Tree(G) is accepted by A
 - if and only if
- G is well-typed in TS(A)

(Naïve) Model Checking Algorithm (= Type Checking Algorithm)

♦ Construct an arena for the parity game For each $F \rightarrow t \in G$, enumerate all valid judgments $\Gamma \models t$: τ

of edges and vertices: $O(|G| \exp_n (aQm)^{1+\epsilon})$

♦ Solve the parity game [Jurdziński 2000]
O(m E V^{m/2}) = O(|G|^{1+m/2} exp_n (aQm)^{1+ε})

Polynomial in |G|, if other parameters are fixed

Hybrid Type Checking Algorithm

Note: One may have to prepare two automaton, one for the property and the other for its negation, and run the algorithm for both automata concurrently.

Plan of the Talk

♦ Part 1

- From program verification to model checking recursion schemes [K. POPL09]
- From model checking to type checking: Simple case (safety properties) [K. POPL09]
- Model checking (=type checking) algorithm

Part 2

- From model checking to type checking: General case [K. and Ong, LICS09]
- Towards a software model checker for higher-order languages
- Remaining challenges

Recursion schemes as models of higher-order programs?

- + simply-typed λ -calculus
- + recursion
- + tree constructors
- + finite data domains (via Church encoding; true = $\lambda x . \lambda y . x$, false= $\lambda x . \lambda y . y$)
- infinite data domains (integers, lists, trees,...)
- advanced types (polymorphism, recursive types, object types, ...)
- imperative features/concurrency

Ongoing work to overcome the limitation

- Predicate abstraction and CEGAR, to deal with numeric data (c.f. BLAST, SLAM, ...)
- From recursion schemes to transducers, to deal with algebraic data types (lists, trees, ...)
- Infinite intersection types, to deal with non-simply-typed programs

Plan of the Talk

♦ Part 1

- From program verification to model checking recursion schemes [K. POPL09]
- From model checking to type checking: Simple case (safety properties) [K. POPL09]
- Model checking (=type checking) algorithm

Part 2

- From model checking to type checking: General case [K. and Ong, LICS09]
- Towards a software model checker for higherorder languages
- Remaining challenges
 (from a program verification point of view)

Challenges (1)

More efficient model checker

- Limitations of the current implementation
 - \cdot Worst-case complexity is not optimal
 - \cdot Too heuristic on the choice of expanded nodes
 - Not scalable on the size of tree automata
- Possible approaches:
 - More language-theoretic properties of recursion schemes (e.g. pumping lemmas), to avoid redundant computation
 - \cdot BDD-like representation of intersection types
 - Other approaches to model checking? (e.g. model-theoretic approach?)

Challenges (2)

- Full modal μ -calculus model checker
 - The hybrid algorithm [K. PPDP09] can be extended easily.
 - Getting an efficient implementation remains a challenge.

Challenges (3)

- Extension of the decidability result
 - A larger class of MSO-decidable trees than recursion schemes?
 - A larger class of properties that are decidable for the trees generated by recursion schemes?

Conclusion

- Recursion schemes have important applications in program verification.
- Type-theoretic approach yields a practical model checking algorithm, (despite the extremely high worst-case complexity)
- A More (both theoretical and practical) studies on recursion schemes are required to get practical software model checkers

References

 K., Types and higher-order recursion schemes for verification of higher-order programs, POPL09

From program verification to model-checking, and typing

- K.&Ong, Complexity of model checking recursion schemes for fragments of the modal mu-calculus, ICALP09
 Complexity of model checking
- K.&Ong, A type system equivalent to modal mu-calculus modelchecking of recursion schemes, LICS09
 From model-checking to type checking
- K., Model-checking higher-order functions, PPDP09
 Type checking (= model-checking) algorithm
- K., Tabuchi & Unno, Higher-order multi-parameter tree transducers and recursion schemes for program verification, POPL10 Extension to transducers and its applications
- Tsukada & K., Untyped recursion schemes and infinite intersection types, FoSSaCS 10