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Plan of the Talk
Part 1
–

 
From program verification to model checking 
recursion schemes [K. POPL09]

–
 

From model checking to type checking: Simple 
case (safety properties) [K. POPL09]

–
 

Model checking (=type checking) algorithm
 [K. PPDP09]

Part 2
–

 
From model checking to type checking: 
General case  [K. and Ong, LICS09]

–
 

Towards a software model checker for higher-
 order languages

–
 

Remaining challenges



Model Checking Problem
 (Simple Case, for safety properties)

Given
 G:  higher-order recursion scheme

 A:  trivial automaton [Aehlig
 

CSL06]

(Büchi
 

tree automaton where
 all the states are accepting states)

 does A accept Tree(G)?



Model Checking Problem:
 General Case

Given
 G:  higher-order recursion scheme

 A:  alternating parity tree automaton
 (or modal μ-calculus formula)

 Does A accept Tree(G)?



Alternating
 

parity tree automata 
for infinite trees
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Priority function:
Ω(q0) = 1
Ω(q1) = 2

Acceptance condition: For any infinite path of the run tree, 
the largest priority visited infinitely often must be even.



Types extended with priorities
q1→

 
q2: functions that take a tree of type q1 

and return a tree of q2

q2
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Types extended with priorities
(q1, m) →

 
q2: functions that take a tree of type q1 

and return a tree of q2

q2

q1 + =
q1

q2

q1

priority

Largest 
priority is m



Types extended with priorities
((q1, 3) →

 
q2, 2) →

 
(q1, 3) →

 
q3 :

priority
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Type judgment

x1
 

: (θ1
 

,m1
 

),..., xn
 

: (θn
 

,mn
 

) |−
 

M: θ
where 

θ ::= q | (θ1
 

,m1
 

)∧...∧(θn
 

,mn
 

)→ θ

x1
 

:θ1

x2
 

:θ2
xn

 

:θn
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m2 mn

(A run tree of)
the tree 

generated by M



Typing
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(θn,mn
 

)
 

→ θ      Γi┝ t2:θi (i=1,..n)
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Typing for Recursion?

Γ┝ tk
 

:
 

τ (for every Fk
 

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

 
→t1

 
,..., Fn

 
→

 
tn} : Γ

Parity conditions are not respected!



Recursion and parity conditions
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Typability  as Parity Game
Initial state: S:(q0

 

, 0)
Player (P):

 
Given F:(τ, m), 

pick Γ
 

such that Γ |− tF
 

: τ

Opponent (O):
 

Given Γ,
 pick F:(τ, m) ∈ Γ

 (and ask P to show 
why F has type τ)

Definition: Recursion scheme G is well-typed if
P has a winning strategy for the parity game.

priority
S:q0

r.h.s
 

of F’s rule
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Example
Recursion scheme: S →

 
F c    F → λx.a

 
x (b (F x))

Automaton:
 δ(q0
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,a)=(1,q0
 

)∧(2,q0
 

)
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, c) = true Ω(q0
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)=2
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,2)
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,1) 1
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,2) ∧
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Soundness and Completeness

Let
 G: Recursion scheme 

A: Alternating parity tree automaton
 TS(A): Intersection type system 

(with priorities) derived from A
Then,
Tree(G) is accepted by A

 if and only if
 G is well-typed in TS(A)



(Naïve) Model Checking Algorithm
 (= Type Checking Algorithm)

Construct an arena for the parity game
For each F →

 
t ∈

 
G,

 enumerate all valid judgments Γ |− t: τ

Solve the parity game [Jurdziński 2000]

# of edges and vertices:   O(|G| expn
 

(aQm)1+ε)
|G|: size of G, n: the largest order of types, a: the largest arity, 
Q: # of states, m: # of priorities

O(m
 

E Vm/2) = O(|G|1+m/2
 

expn
 

(aQm)1+ε)
Polynomial in |G|,

 
if other parameters are fixed

# of order-n types:

2
2 …

2(aQm)1+εn



Hybrid Type Checking Algorithm

Step 1:
Run the recursion scheme
a finite number of steps

Property 
violated?

Error path
yes

no Step 2: Extract 
type environment

Γ0

Step 3: Compute
Γ

 
= ∩k

 

Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!



Hybrid Type Checking Algorithm
Step 1:

Run the recursion scheme
a finite number of steps

Automaton
get stuck?

Error path
yes

no
Step 2: Extract 
type environment

Γ0

Step 3: Compute all the valid
type judgment 

constructed from Γ0

Is there
a winning
strategy?no

yes
Property
Is
Satisfied!

Note: One may have to prepare two automaton, one for the property and 
the other for its negation, and run the algorithm for both automata concurrently.



Plan of the Talk
Part 1
–

 
From program verification to model checking 
recursion schemes [K. POPL09]

–
 

From model checking to type checking: 
Simple case (safety properties) [K. POPL09]

–
 

Model checking (=type checking) algorithm
Part 2
–

 
From model checking to type checking: 
General case  [K. and Ong, LICS09]

–
 

Towards a software model checker for 
higher-order languages

–
 

Remaining challenges



Recursion schemes as 
models of higher-order programs?
+ simply-typed λ-calculus
+ recursion
+ tree constructors
+ finite data domains (via Church encoding; 

true = λx.λy.x, false=λx.λy.y)
-

 
infinite data domains 
(integers, lists, trees,…)

-
 

advanced types (polymorphism, recursive 
types, object types, …)

-
 

imperative features/concurrency



Ongoing work 
to overcome the limitation

Predicate abstraction and CEGAR,
to deal with numeric data 
(c.f. BLAST, SLAM, …)
From recursion schemes to transducers,
to deal with algebraic data types 
(lists, trees, …)
Infinite intersection types,
to deal with non-simply-typed programs



Plan of the Talk
Part 1
–

 
From program verification to model checking 
recursion schemes [K. POPL09]

–
 

From model checking to type checking: Simple 
case (safety properties) [K. POPL09]

–
 

Model checking (=type checking) algorithm
Part 2
–

 
From model checking to type checking: 
General case  [K. and Ong, LICS09]

–
 

Towards a software model checker for higher-
 order languages

–
 

Remaining challenges 
(from a program verification point of view)



Challenges (1)
More efficient model checker
–

 
Limitations of the current implementation
•

 
Worst-case complexity is not optimal

•
 

Too heuristic on the choice of expanded nodes
•

 
Not scalable on the size of tree automata

–
 

Possible approaches:
•

 
More language-theoretic properties of recursion 
schemes (e.g. pumping lemmas),

 to avoid redundant computation
•

 
BDD-like representation of intersection types

•
 

Other approaches to model checking?
 (e.g. model-theoretic approach?)



Challenges (2)

Full modal μ-calculus model checker
–

 
The hybrid algorithm [K. PPDP09]

 
can be 

extended easily.
–

 
Getting an efficient implementation 
remains a challenge.



Challenges (3)
Extension of the decidability result
–

 
A larger class of MSO-decidable trees

 than recursion schemes?
–

 
A larger class of properties that are decidable 
for the trees generated by recursion schemes?



Conclusion
Recursion schemes have important 
applications in program verification.
Type-theoretic approach yields a practical 
model checking algorithm,
(despite the extremely high worst-case 
complexity)
More (both theoretical and practical) 
studies on recursion schemes are required 
to get practical software model checkers
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