
Types and Recursion Schemes for
Higher-Order Program Verification

Naoki Kobayashi
 Tohoku University

In collaboration with
Luke Ong

(University of Oxford),

Ryosuke

Sato, Naoshi

Tabuchi, Takeshi Tsukada, Hiroshi Unno
 (Tohoku University)

This Talk
Type-theoretic approach to model checking
of recursion schemes
–

Simpler proofs of decidability/complexity of model
checking

–

A practical algorithm for model checking
 (c.f. TRecS: a type-based recursion scheme model

checker)

Applications to program verification
–

A sound, complete, and automated verification
method for higher-order functional programs

Plan of the Talk
Part 1
–

From program verification to model checking
recursion schemes [K. POPL09]

–

From model checking to type checking: Simple case
(safety properties) [K. POPL09]

–

Model checking (=type checking) algorithm
[K. PPDP09]

Part 2
–

From model checking to type checking:
General case [K. and Ong, LICS09]

–

Towards a software model checker for higher-order
languages [K., Tabuchi

and Unno, POPL10][Tsukada and K. FoSSaCS10]

–

Remaining challenges

Plan of the Talk
Part 1
–

From program verification to model checking
recursion schemes [K. POPL09]

–

From model checking to type checking: Simple
case (safety properties) [K. POPL09]

–

Model checking (=type checking) algorithm
[K. PPDP09]

Part 2
–

From model checking to type checking:
General case [K. and Ong, LICS09]

–

Towards a software model checker for higher-
 order languages

–

Remaining challenges

Program Verification Techniques
Finite state/pushdown model checking
–

Applicable to first-order procedures (pushdown
model checking), but not to higher-order
programs

Type-based program analysis
–

Applicable to higher-order programs

–

Sound but imprecise
Dependent types/theorem proving
–

Requires human intervention

Sound and precise verification techniques for
higher-order programs (e.g. ML/Java programs)?

From Program Verification
 to Model Checking Recursion Schemes

 [K. POPL 2009]

Program
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all
event sequences

or outputs)
+

Tree automaton,
recognizing

valid event sequences
or outputs

Model
Checking

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k →

+

(c k) (r(F

x k))
S →

F d

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

F x k →

+

(c k) (r(F

x k))
S →

F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
 Example

let f(x) =
 if ∗

then close(x)

 else read(x); f(x)
in
let y = open “foo”
in

f (y)

F x k →

+

(c k) (r(F

x k))
S →

F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
 Example

let f(x) =
 if ∗

then close(x)

 else

read(x); f(x)
in
let y = open “foo”
in

f (y)

F x k →

+

(c k)

(r(F

x k))
S →

F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
 Example

let f(x) =
 if ∗

then close(x)

else

read(x); f(x)
in
let y = open “foo”
in

f (y)

F x k →

+

(c k) (r(F

x k))
S →

F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k →

+

(c k) (r(F

x k))
S →

F d

S

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k →

+

(c k) (r(F

x k))
S →

F d

F d

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k →

+

(c k) (r(F

x k))
S →

F d

F d

+
c r

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k →

+

(c k) (r(F

x k))
S →

F d

+
c r

+

F d

c r

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k →

+

(c k) (r(F

x k))
S →

F d

From Program Verification
 to Model Checking Recursion Schemes

Program
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

Sound, complete, and automatic for:
-

A large class of higher-order programs:

 simply-typed λ-calculus + recursion
+ finite base types

-

A large class of verification problems:
 resource usage verification [Igarashi&K. POPL2002],

reachability, flow analysis, ...

Comparison with Traditional Approach
(Control Flow Analysis)

Control flow analysis

Our approach

Flow
Analysis

Higher-order
program

Control flow
graph
(finite state
or pushdown
machines)

verification

Program
Transformation

Higher-order
program

Recursion
scheme verification

Only information about
infinite data domains
is approximated!

Comparison with Traditional Approach
(Software Model Checking)

Program Classes Verification Methods
Programs with
while-loops

Finite state model checking

Programs with
1st-order recursion

Pushdown model checking

Higher-order functional
programs

Recursion scheme model
checking

infinite
state
model
checking

Plan of the Talk
Part 1
–

From program verification to model checking
recursion schemes [K. POPL09]

–

From model checking to type checking:
Simple case (safety properties) [K. POPL09]

–

Model checking (=type checking) algorithm
[K. PPDP09]

Part 2
–

From model checking to type checking:
General case [K. and Ong, LICS09]

–

Towards a software model checker for higher-
 order languages

–

Remaining challenges

Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A

if and only if

G is typable

in TS(A)

Model Checking as
Type Checking
(c.f. [Naik

& Palsberg, ESOP2005])

Why Type-Theoretic
Characterization?

Simpler decidability proof of model
checking recursion schemes
–

Previous proofs [Ong, 2006][Hague et. al, 2008]

 made heavy use of game semantics

More efficient model checking algorithm
–

Known algorithms [Ong, 2006][Hague et. al, 2008]

 always

require n-EXPTIME

Model Checking Problem

Given
 G: higher-order recursion scheme

(without safety restriction)
 A: alternating parity tree automaton (APT)

 (a formula of modal μ-calculus or MSO),
 does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
 (for order-n recursion scheme)

Model Checking Problem
Given

 G: higher-order recursion scheme
(without safety restriction)

 A: trivial automaton [Aehlig

CSL06]

(Büchi

tree automaton where
 all the states are accepting states)

 does A accept Tree(G)?

The general case (full modal μ-calculus model
checking) is discussed in Part 2

(Trivial) tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1
In every path,
“a”

cannot occur after “b”

Types for Recursion Schemes
Automaton state as the type of trees
–

q: trees accepted from state q

–

q1∧q2: trees accepted from both q1 and q2

q

Does A accept Tree(G)?

Does Tree(G) have type q0

?

Types for Recursion Schemes
Automaton state as the type of trees

–

q1→

q2: functions that take a tree of type q1
and return a tree of q2

q2

q1 + =
q1

q2

q1

Types for Recursion Schemes
Automaton state as the type of trees
–

q1∧q2 →

q3:

functions that take a tree of type q1∧q2 and
return a tree of type q3

+ =
q1, q2

q3

q1 q2

q3

q1 q2

Types for Recursion Schemes
Automaton state as the type of trees
(q1 →

q2) →

q3:

functions that take a function of type q1 →

q2
and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2

Example

a: q0 →q0

→q0

aq0

q0 q0

bq0

q1

Automaton:
δ(q0

, a) = q0

q0

δ(q0

, b) = q1
 δ(q0

, c) = δ(q1

, c) = ε

λx.a

c (b x): q1

→q0b: q1

→q0

aq0

q0 q0c b
q1

x

Γ, x:τ

┝ x

:τ

Typing

Γ┝ t1 : τ1

∧…∧τn

→ τ
Γ┝ t2 :τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2 :τ

Γ, x:τ1

,..., x:τn

┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1

∧…∧τn

→ τ

Γ┝ tk

:

τ (for every Fk

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

→t1

,..., Fn

→

tn} : Γ

δ(q, a) = q1

…qn
−−−−−−−−−−−−−−−−−−−
┝ a

:q1 →

…

→

qn

→

q

Soundness and Completeness
 [K., POPL2009]

Let
 G: Rec. scheme with initial non-terminal S

 A: Trivial automaton with initial state q0
 TS(A): Intersection type system

derived from A
Then,
Tree(G) is accepted by A

 if and only if
 S has type q0

in TS(A)

Plan of the Talk
Part 1
–

From program verification to model checking
recursion schemes [K. POPL09]

–

From model checking to type checking: Simple
case (safety properties) [K. POPL09]

–

Model checking (=type checking) algorithm
•

Naive algorithm

•

Practical algorithm

Part 2
–

From model checking to type checking:
General case [K. and Ong, LICS09]

–

Summary of our recent results
–

Ongoing and future work

Typing

Γ┝ t1 : τ1

∧…∧τn

→ τ
Γ┝ t2 :τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2 :τ

Γ, x:τ1

,..., x:τn

┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1

∧…∧τn

→ τ

Γ, x:τ

┝ x

:τ

Γ┝ tj

:

τ (for every Fj

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

→t1

,..., Fn

→

tn} : Γ

δ(q, a) = q1

…qn
−−−−−−−−−−−−−−−−−−−
┝ a

:q1 →

…

→

qn

→

q

Naïve Type Checking Algorithm
Recursion Scheme:
{F1

→t1

, ..., Fm

→tm

}
S has type q0

(i)

Γ |− tj

: τ
for each Fj

:τ ∈ Γ
(ii) S:q0

∈ Γ
for some Γ

S:q0

∈

gfp(H) = ∩k

Hk(Γmax

)
where

H(Γ) = { Fj

:τ

∈

Γ | Γ |−

tj

:τ

}
Γmax

= {F:τ

| τ :: sort(F)

}

All the possible
type bindings
E.g. for F:o→o,
{F:T → q0, F:q0 → q0,
F: q1 → q0,
F:q0∧q1 → q0,…}

Filter out invalid type bindings

Example
Recursion scheme:

S →

F c F → λx.a

x (F (b x))
(S:o, F: o→o)

Automaton:
δ(q0

, a) = q0 q0

δ(q0

, b) = q1
δ(q0

, c) = δ(q1

, c) = ε

Γmax= {S:q0

, S:q1

, F: T→q0

, F: q0

→q0

, F: q1

→q0

, F: q0

∧q1

→q0

,
F: T→q1

, F: q0

→q1

, F: q1

→q1

, F: q0

∧q1

→q1

}

Γ1

= { S:τ ∈ Γmax

| Γmax

|−

F c:τ

}
∪

{ F:τ ∈ Γmax

| Γmax

|−

λx.a

x (F(b

x))

:τ

}
=

{S:q0

, S:q1

, F: q0

→q0

, F: q0

∧q1

→q0

}
Γ2

= {S:q0

, F: q0

∧q1

→q0

}
Γ3

= {S:q0

, F: q0

∧q1

→q0

} = Γ2

Naïve Algorithm Does NOT Work

sort # of types (Q={q0

,q1

,q2

,q3

})
o 4 (q0

,q1

,q2

,q3

)
o → o 24

×4 = 64 (∧S→ q, with S∈2Q, q∈Q)

(o→o) → o 264

×4 = 266

((o→o) → o) → o 266

10000000000000000000
2 ×4 > 10

S has type q0

S:q0

∈

gfp(H) = ∩k

Hk(Γmax

)
where H(Γ) = { Fj

:τ

∈

Γ | Γ |−

tj

:τ

}
Γmax

= {F:τ

| τ :: sort(F)

} This is huge!

Plan of the Talk
Part 1
–

From program verification to model checking
recursion schemes [K. POPL09]

–

From model checking to type checking: Simple
case (safety properties) [K. POPL09]

–

Model checking (=type checking) algorithm
•

Naive algorithm

•

Practical algorithm

Part 2
–

From model checking to type checking:
General case [K. and Ong, LICS09]

–

Summary of our recent results
–

Ongoing and future work

More Efficient Algorithm?
S has type q0
⇔

S:q0

∈

∩k

Hk(Γmax

)
where

H(Γ) = { Fj

:τ

∈

Γ | Γ |−

tj

:τ

}

Γ0
⇐

Challenges:
(i) How can we find an appropriate Γ0 ?

(ii) How can we guarantee completeness?

“Run”

the recursion scheme (finitely many steps),
and extract type information

Iteratively repeat (i) and type checking

Hybrid Type Checking Algorithm

Step 1:
Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ

= ∩k

Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!

Soundness and Completeness of
 the Hybrid Algorithm

Given:
–

Recursion scheme G

–

Deterministic trivial automaton A,
the algorithm eventually terminates, and:
(i) outputs an error path

 if Tree(G) is not accepted by A
(ii) outputs a type environment

 if Tree(G) is accepted by A

Example
Recursion scheme:

S →

F c F → λx.a

x (F (b x))
Automaton:

δ(q0

, a) = q0 q0

δ(q0

, b) = q1
δ(q0

, c) = δ(q1

, c) = ε

→

F

c

c F(b

c)

→

a

c a

→

a

b F(b(b

c))

c

S
q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Example
Recursion scheme:

S →

F c F → λx.a

x (F (b x))
Automaton:

δ(q0

, a) = q0 q0

δ(q0

, b) = q1
δ(q0

, c) = δ(q1

, c) = ε

→

F c

c F(b

c)

→

a

c a

→

a

b F(b(b

c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
S: q0

Example
Recursion scheme:

S →

F c F → λx.a

x (F (b x))
Automaton:

δ(q0

, a) = q0 q0

δ(q0

, b) = q1
δ(q0

, c) = δ(q1

, c) = ε

→

F

c

c F(b

c)

→

a

c a

→

a

b F(b(b

c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧

q1
→

q0

Example
Recursion scheme:

S →

F c F → λx.a

x (F (b x))
Automaton:

δ(q0

, a) = q0 q0

δ(q0

, b) = q1
δ(q0

, c) = δ(q1

, c) = ε

→

F c

c F(b

c)

→

a

c a

→

a

b F(b(b

c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧

q1
→

q0

F: q0 →

q0

Example
Recursion scheme:

S →

F c F → λx.a

x (F (b x))
Automaton:

δ(q0

, a) = q0 q0

δ(q0

, b) = q1
δ(q0

, c) = δ(q1

, c) = ε

→

F c

c F(b

c)

→

a

c a

→

a

b F(b(b

c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧

q1
→

q0

F: q0 →

q0

F: T

→

q0

Example
Step 1:

Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ

= ∩k

Hk(Γ0)

S:q0

∈ Γ ?no
yes Property

Is
Satisfied!

S: q0 F: q0 ∧

q1

→

q0
F: q0 →

q0 F: T

→

q0

Example:
Filtering out invalid judgments
Recursion scheme:

S →

F c F → λx.a

x (F (b x))
Automaton:

δ(q0

, a) = q0 q0

δ(q0

, b) = q1
δ(q0

, c) = δ(q1

, c) = ε

Γ0

= {S: q0

, F: q0 ∧

q1

→

q0,

F: q0 →

q0 , F: T →

q0

}

Γ1

=

H(Γ0

) = { Fk

:τ ∈ Γ0

| Γ0

|−

tk

:τ

}
 = {S: q0

, F: q0 ∧

q1

→

q0,

F: q0 →

q0 }

Γ2

=

{S: q0

, F: q0 ∧

q1

→

q0

}
Γ3

=

{S: q0

, F: q0 ∧

q1

→

q0

}

Example
Step 1:

Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ

= ∩k

Hk(Γ0)

S:q0

∈ Γ ?no
yes Property

Is
Satisfied!

S: q0 F: q0 ∧

q1

→

q0
F: q0 →

q0 F: T

→

q0

S: q0
F: q0 ∧

q1

→

q0

Example
Step 1:

Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ

= ∩k

Hk(Γ0)

S:q0

∈ Γ ?no
yes Property

Is
Satisfied!

S: q0 F: q0 ∧

q1

→

q0
F: q0 →

q0 F: T

→

q0

S: q0
F: q0 ∧

q1

→

q0

TRecS
 http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

The first model checker for recursion schemes (or,
for higher-order functions)
Restricted to deterministic trivial automata
Based on the hybrid model checking algorithm,
with certain additional optimizations

Experiments
order rules states result Time

(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1

TwofilesE 4 12 5 Yes 2

FileOcamlC 4 23 4 Yes 5

Lock 4 11 3 Yes 5

Order5 5 9 4 Yes 2

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of
Objective Caml, consisting of
about 60 lines of O’Caml

code

(A simplified version of)
FileOcamlC

let readloop

fp

=
if * then () else readloop

fp; read fp

let read_sect() =
let fp

= open “foo”

in

{readc=fun x -> readloop

fp;
closec

= fun x -> close fp}

let loop s =
if * then s.closec() else s.readc();loop

s

let main() =
let s = read_sect() in loop s

Demonstration

Conclusion (for Part I)
Recursion schemes are very relevant to
program verification, hence of practical
interest
Type-based approach gives a simple,
efficient model checking algorithm
Despite the disappointing worst case
complexity, the model checking of recursion
schemes may be tractable for realistic
inputs

	Types and Recursion Schemes for Higher-Order Program Verification
	This Talk
	Plan of the Talk
	Plan of the Talk
	Program Verification Techniques
	From Program Verification�to Model Checking Recursion Schemes�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to Model Checking Recursion Schemes�
	Comparison with Traditional Approach (Control Flow Analysis)
	Comparison with Traditional Approach (Software Model Checking)
	Plan of the Talk
	Goal
	Why Type-Theoretic Characterization?
	Model Checking Problem
	Model Checking Problem
	(Trivial) tree automaton �for infinite trees
	Types for Recursion Schemes
	Types for Recursion Schemes
	Types for Recursion Schemes
	Types for Recursion Schemes
	Example
	Typing
	Soundness and Completeness�[K., POPL2009]
	Plan of the Talk
	Typing
	Naïve Type Checking Algorithm
	Example
	Naïve Algorithm Does NOT Work
	Plan of the Talk
	More Efficient Algorithm?
	Hybrid Type Checking Algorithm
	Soundness and Completeness of�the Hybrid Algorithm
	Example
	Example
	Example
	Example
	Example
	Example
	Example: �Filtering out invalid judgments
	Example
	Example
	TRecS�http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/
	Experiments
	(A simplified version of) FileOcamlC
	Demonstration
	Conclusion (for Part I)

