
A Probabilistic Higher-order Fixpoint Logic
Yo Mitani
The University of Tokyo, Tokyo, Japan
mitaniyo@kb.is.s.u-tokyo.ac.jp

Naoki Kobayashi
The University of Tokyo, Tokyo, Japan
koba@kb.is.s.u-tokyo.ac.jp

Takeshi Tsukada
The University of Tokyo, Tokyo, Japan
tsukada@kb.is.s.u-toyko.ac.jp

Abstract
We introduce PHFL, a probabilistic extension of higher-order fixpoint logic, which can also be
regarded as a higher-order extension of probabilistic temporal logics such as PCTL and the µp-
calculus. We show that PHFL is strictly more expressive than the µp-calculus, and that the PHFL
model-checking problem for finite Markov chains is undecidable even for the µ-only, order-1 fragment
of PHFL. Furthermore the full PHFL is far more expressive: we give a translation from Lubarsky’s
µ-arithmetic to PHFL, which implies that PHFL model checking is Π1

1-hard and Σ1
1-hard. As a

positive result, we characterize a decidable fragment of the PHFL model-checking problems using
a novel type system.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Probabilistic logics, higher-order fixpoint logic, model checking

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.20

Acknowledgements We would like to thank anonymous referees for useful comments. This work
was supported by JSPS KAKENHI Grant Number JP15H05706 and 20H00577.

1 Introduction

Temporal logics such as CTL and CTL* have been playing important roles, for example, in
system verification. Among the most expressive temporal logics is the higher-order fixpoint
logic (HFL for short) proposed by Viswanathan and Viswanathan [21], which is a higher-
order extension of the modal µ-calculus [13]. HFL is known to be strictly more expressive
than the modal µ-calculus but the model-checking problem against finite models is still
decidable.

In view of the increasing importance of probabilistic systems, temporal logics for prob-
abilistic systems (such as PCTL [7]) and their model-checking problems have been studied
and applied to verification and analysis of probabilistic systems and randomized distributed
algorithms [14]. Recently Castro et al. [2] have proposed a probabilistic extension of the
modal µ-calculus, called the µp-calculus. They showed that the µp-calculus is strictly more
expressive than PCTL and that the model-checking problem for the µp-calculus belongs to
NP ∩ co-NP.

In the present paper, we introduce PHFL, a probabilistic higher-order fixpoint logic,
which can be regarded as a probabilistic extension of HFL and as a higher-order extension
of the µp-calculus. PHFL strictly subsumes the µp-calculus [2], which coincides with order-0
PHFL.

We prove that PHFL model checking for finite Markov chains is undecidable even for
the order-1 fragment of PHFL without fixpoint alternations, by giving a reduction of the

© Yo Mitani, Naoki Kobayashi and Takeshi Tsukada;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 20; pp. 20:1–20:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

20:2 A Probabilistic Higher-order Fixpoint Logic

value problem of probabilistic automata [20, 19]. In the presence of fixpoint alternations
(i.e., with both least and greatest fixpoint operators), PHFL model checking is even harder:
the order-1 PHFL model-checking problem is Π1

1-hard and Σ1
1-hard. The proof is by a

reduction from the validity checking problem for µ-arithmetic [16] to PHFL model checking.
This may be surprising, because both order-0 PHFL model checking (i.e. µp-calculus model
checking) for finite Markov chains [2] and HFL model checking for finite state systems [21]
are decidable. The combination of probabilities and higher-order predicates suddenly makes
the model-checking problem highly undecidable.

As a positive result, we identify a decidable subclass of PHFL model-checking problems.
To characterize the subclass, we introduce a type system for PHFL formulas, which is
parameterized by Markov chains M . We show that the model-checking problem M |= φ

is decidable provided that φ is typable by the type system for M , by giving a decision
procedure using the decidability of existential theories of reals. The decidable subclass
is reasonably expressive: the problem of computing termination probabilities of recursive
Markov chains [3] can be reduced to the subclass.

The rest of this paper is organized as follows. Section 2 introduces PHFL and shows
that it is strictly more expressive than the µp-calculus. Section 3 proves undecidability of
the model-checking problem for µ-only and order-1 PHFL. Section 4 proves that the PHFL
model-checking problem is both Π1

1-hard and Σ1
1-hard. Section 5 introduces a decidable

subclass of PHFL model-checking problems, and shows that the subclass is reasonably large.
Section 6 discusses related work, and Section 7 concludes the paper.

2 PHFL: Probabilistic Higher-order Fixpoint Logic

This section introduces PHFL, a probabilistic extension of HFL [21]. It is a logic used for
describing properties of Markov chains. We define its syntax and semantics and show that
it is more expressive than the µp-calculus [2].

2.1 Markov Chains

We first recall the standard notion of Markov chains. Our definitions follow those in [2].

▶ Definition 1. A Markov chain over a set AP of atomic propositions is a tuple (S, P, ρAP , sin)
where

S is a finite set of states,
P : S × S → [0, 1] satisfying ∀s.

∑
s′∈S P (s, s′) = 1 describes transition probabilities,

ρAP : AP → 2S is a labeling function, and
sin ∈ S is an initial state.

For a Markov chain M = (S, P, ρAP , sin), its embedded Kripke structure is K = (S,R, ρAP , sin)
where R ⊆ S × S is a relation such that R = {(s, s′)|P (s, s′) > 0}.

Intuitively, P (s, s′) denotes the probability that the state s transits to the state s′, and
ρAP(p) gives the set of states where p is true. Throughout the paper, we assume that the
set AP of atomic propositions is closed under negations, in the sense that for any p ∈ AP,
there exists p ∈ AP such that ρAP(p) = S \ ρAP(p).

Given a Markov chain M , we often write SM , PM , ρAP,M , sin,M for its components; we
omit the subscript M when it is clear from the context.

Y. Mitani et al. 20:3

2.2 Syntax of PHFL Formulas
As in HFL [21, 11], we need the notion of types to define the syntax of PHFL formulas.

The set of types, ranged over by τ , is given by:

τ ::= Prop{0,1} | Prop[0,1] | τ1 → τ2.

The type Prop{0,1} is for qualitative propositions, which take truth values (0 for false, and 1
for true). In contrast, Prop[0,1] is the type of quantitative propositions, whose values range
over [0, 1]. Intuitively, the value of a quantitative proposition represents the probability
that the proposition holds. The type τ1 → τ2 is for functions from τ1 to τ2. For exam-
ple, (Prop{0,1} → Prop{0,1}) → Prop[0,1] represents the type of (higher-order) quantitative
predicates on a qualitative predicate.

We assume a countably infinite set Var of variables, ranged over by X1, X2, The set
of PHFL (pre-)formulas, ranged over by ϕ, is given by:

ϕ ::= p |X |ϕ1 ∨ ϕ2 |ϕ1 ∧ ϕ2 | [ϕ]J | {ϕ} |□ϕ |♢ϕ | ⃝ ϕ |µX.ϕ | νX.ϕ |λX.ϕ |ϕ1 ϕ2.

Here, p ranges over the set AP of atomic propositions (of the underlying Markov chains; we
thus assume that AP is closed under negations). The subscript J of [ϕ]J is either “> r” or
“≥ r” for some rational number r ∈ [0, 1]. We often identify J with an interval: for example,
“> r” is regarded as (r, 1] = {x | r < x ≤ 1 }. Given a quantitative proposition ϕ, the formula
[ϕ]>r (resp. [ϕ]≥r) is a qualitative formula, which is true just if the probability that ϕ holds
is greater than r (resp. no less than r). The formulas □ϕ, ♢ϕ, and ⃝ϕ respectively mean
the minimum, maximum, and average probabilities that ϕ holds after a one-step transition.
The formulas µX.ϕ and νX.ϕ respectively denote the least and greatest fixpoints of λX.ϕ.
Note that ϕ may denote higher-order predicates (unlike in the modal µ-calculus and its
probabilistic variants [2, 17, 18], where fixpoints are restricted to propositions). We have
also λ-abstractions and applications, to manipulate higher-order predicates. The prefixes
µX, νX and λX bind the variable X. As usual, we identify formulas up to the renaming of
bound variables and implicitly allow α-conversions.

In order to exclude out ill-formed formulas like (p1 ∨ p2)(ϕ), we restrict the shape of
formulas through a type system. A type environment is a map from a finite set of variables
to the set of types. A type judgment is of the form Γ ⊢ ϕ : τ . The typing rules are shown
in Figure 1. In the figure, P is a meta-variable ranging over the set {Prop{0,1},Prop[0,1]} of
proposition types. For example, the rule for ϕ1 ∧ ϕ2 means that Γ ⊢ ϕi : Prop{0,1} for each
i ∈ {1, 2} implies Γ ⊢ ϕ1 ∧ϕ2 : Prop{0,1} and that Γ ⊢ ϕi : Prop[0,1] for each i ∈ {1, 2} implies
Γ ⊢ ϕ1 ∧ ϕ2 : Prop[0,1]. A formula ϕ is well-typed if Γ ⊢ ϕ : τ is derivable for some Γ and τ .
Henceforth, we consider only well-typed formulas.

▶ Example 2. For a proposition p ∈ AP, the formula ϕ = (µF.λX.X ∨ F (⃝X)) {p} is a
well-typed formula of type Prop[0,1]. By unfolding the fixpoint formula, we obtain:

ϕ ≡ (λX.X ∨ (µF.λX.X ∨ F (⃝X))(⃝X)){p}
≡ {p} ∨ (µF.λX.X ∨ F (⃝X))(⃝{p})
≡ {p} ∨ ⃝{p} ∨ (µF.λX.X ∨ F (⃝X))(⃝ ⃝ {p})
≡ {p} ∨ ⃝{p} ∨ ⃝ ⃝ {p} ∨ · · ·

Thus, intuitively, the formula represents the function that maps each state s to the value
supk≥0 qk where qk is the probability that a k-step transition sequence starting from the
state s ends in a state satisfying p. ◀

FSCD 2020

20:4 A Probabilistic Higher-order Fixpoint Logic

Γ ⊢ p : Prop{0,1} Γ, X : τ ⊢ X : τ
Γ ⊢ ϕ : Prop[0,1]

Γ ⊢ [ϕ]J : Prop{0,1}

Γ ⊢ ϕ : Prop{0,1}

Γ ⊢ {ϕ} : Prop[0,1]

Γ ⊢ ϕ1, ϕ2 : P
Γ ⊢ ϕ1 ∧ ϕ2 : P

Γ ⊢ ϕ1, ϕ2 : P
Γ ⊢ ϕ1 ∨ ϕ2 : P

Γ ⊢ ϕ : P
Γ ⊢ □ϕ : P

Γ ⊢ ϕ : P
Γ ⊢ ♢ϕ : P

Γ ⊢ ϕ : Prop[0,1]

Γ ⊢ ⃝ϕ : Prop[0,1]

Γ, X : τ ⊢ ϕ : τ
Γ ⊢ µX.ϕ : τ

Γ, X : τ ⊢ ϕ : τ
Γ ⊢ νX.ϕ : τ

Γ, X : τ1 ⊢ ϕ : τ2
Γ ⊢ λX.ϕ : τ1 → τ2

Γ ⊢ ϕ : τ1 → τ2 Γ ⊢ ψ : τ1
Γ ⊢ ϕψ : τ2

Figure 1 Type Derivation Rules for PHFL.

▶ Remark 3. Following [11], we have excluded out negations. By a transformation similar to
that in [15] and our assumption that the set of atomic propositions is closed under negations,
any closed formula of PHFL extended with negations can be transformed to an equivalent
negation-free formula. ◀

We define the order of a type τ by:

order(Prop{0,1}) = order(Prop[0,1]) = 0 order(τ1 → τ2) = max(order(τ1)+1, order(τ2)).

The order of a formula ϕ such that Γ ⊢ ϕ : τ is the largest order of types used in the
derivation of Γ ⊢ ϕ : τ . The order-k PHFL is the fragment of PHFL consisting of formulas
of order up to k. Order-0 PHFL coincides with the µp-calculus [2].

2.3 Semantics
We first give the semantics of types. We write ≤R for the natural order over the set R of
real numbers, and often omit the subscript when there is no danger of confusion. For a map
f , we write dom(f) for the domain of f .

▶ Definition 4 (Semantics of Types). For each τ , we define a partially ordered set JτK =
(Dτ ,≤τ) inductively by:

DProp{0,1} = S → {0, 1} f ≤Prop{0,1} g
def⇐⇒ ∀s ∈ S.f(s) ≤ g(s)

DProp[0,1] = S → [0, 1] f ≤Prop[0,1] g
def⇐⇒ ∀s ∈ S.f(s) ≤ g(s)

Dτ1→τ2 = {f ∈ Dτ1 → Dτ2 | ∀x, y ∈ Dτ1 .x ≤τ1 y =⇒ f(x) ≤τ2 f(y)}
f ≤τ1→τ2 g

def⇐⇒ ∀x ∈ Dτ1 .f(x) ≤τ2 g(x).

For a type environment Γ, we write JΓK for the set of maps f such that dom(f) = dom(Γ)
and f(x) ∈ DΓ(x) for every x ∈ dom(Γ).

Note that JτK forms a complete lattice for each τ . We write ⊥τ for the least element ofJτK, and for a set V ⊆ Dτ , we write
∨

τV for the least upper bound of S with respect to
≤τ ; we often omit the subscript τ if it is clear from the context. Note also that for every
functional type τ1 → τ2, every element of Dτ1→τ2 is monotonic. Thus, for every type τ and
every function f ∈ Dτ→τ , the least and greatest fixed points of f exist.

Y. Mitani et al. 20:5

We now define the semantics of formulas. Since the meaning of a formula depends on
its type environment, we actually define the semantics JΓ ⊢ ϕ : τKM for each type judgment
Γ ⊢ ϕ : τ . Here, M is the underlying Markov chain, which is often omitted.

▶ Definition 5 (Semantics of Type Judgement). Let M be a Markov chain and assume
Γ ⊢ ϕ : τ is derivable. Then its semantics JΓ ⊢ ϕ : τKM ∈ JΓK → JτK is defined by induction
on the (unique) derivation of Γ ⊢ ϕ : τ by:

JΓ ⊢ p : Prop{0,1}KM (ρ) = λs ∈ SM .if s ∈ ρAP,M (p) then 1 else 0JΓ ⊢ X : τKM (ρ) = ρ(X)JΓ ⊢ ϕ1 ∧ ϕ2 : PKM (ρ) = λs ∈ SM . min
i∈{1,2}

JΓ ⊢ ϕi : PKM (ρ)(s)

JΓ ⊢ ϕ1 ∨ ϕ2 : PKM (ρ) = λs ∈ SM . max
i∈{1,2}

JΓ ⊢ ϕi : PKM (ρ)(s)

JΓ ⊢ [ϕ]J : Prop{0,1}KM (ρ) = λs ∈ SM .if JΓ ⊢ ϕ : Prop[0,1]KM (ρ)(s) ∈ J then 1 else 0JΓ ⊢ {ϕ} : Prop[0,1]KM (ρ) = JΓ ⊢ ϕ : Prop{0,1}KM (ρ)JΓ ⊢ □ϕ : PKM (ρ) = λs ∈ SM . min
s′:PM (s,s′)>0

JΓ ⊢ ϕ : PKM (ρ)(s′)

JΓ ⊢ ♢ϕ : PKM (ρ) = λs ∈ SM . max
s′:PM (s,s′)>0

JΓ ⊢ ϕ : PKM (ρ)(s′)

JΓ ⊢ ⃝ϕ : Prop[0,1]KM (ρ) = λs ∈ SM .
∑

s′∈SM

PM (s, s′)JΓ ⊢ ϕ : Prop[0,1]KM (ρ)(s′)

JΓ ⊢ µX.ϕ : τKM (ρ) = LFP(λv ∈ Dτ .JΓ, X : τ ⊢ ϕ : τKM (ρ[X 7→ v]))JΓ ⊢ νX.ϕ : τKM (ρ) = GFP(λv ∈ Dτ .JΓ, X : τ ⊢ ϕ : τKM (ρ[X 7→ v]))JΓ ⊢ λX.ϕ : τ1 → τ2KM (ρ) = λv ∈ Dτ1 .JΓ, X : τ1 ⊢ ϕ : τ2KM (ρ[X 7→ v])JΓ ⊢ ϕ1 ϕ2KM (ρ) = JΓ ⊢ ϕ1KM (ρ) (JΓ ⊢ ϕ2KM (ρ))

Here P ∈ { Prop{0,1},Prop[0,1] }.

In the definitions of the semantics of □ϕ and ♢ϕ, the set S′ = {s′ ∈ S|P (s, s′) > 0} is
non-empty and finite, because

∑
s′∈S P (s, s′) = 1 and S is finite by the definition of Markov

chains. Thus the max/min operations are well-defined. We also note that JΓ ⊢ ϕ : τK is a
monotone function from JΓK to JτK (here JΓK is ordered by the component-wise ordering; note
also Remark 6 below). This ensures the well-definedness of the semantics of abstractions.

▶ Remark 6. Recall that in a formula [ϕ]J , we allow the predicate J to be “> r” or “≥ r”
(where r ∈ [0, 1]), but neither “< r” nor “≤ r”. Allowing “< r” would break the monotonicity
of the semantics of a formula. For example, J∅ ⊢ λX.[X]<1 : Prop[0,1] → Prop{0,1}K = λv ∈
DProp[0,1] .λs ∈ S.(if v(s) < 1 then 1 else 0) is not monotonic. ◀

We often omit M , the type of the formula, and the type environment in the notation of
semantics when there is no confusion and just write JϕK or JΓ ⊢ ϕK for JΓ ⊢ ϕ : τKM . For
a Markov chain M = (S, P, ρAP , sin) and a closed PHFL formula ϕ of type Prop{0,1}, we
write M |= ϕ if JϕK(sin) = 1.

▶ Example 7. Recall the PHFL formula ϕ = ψ {p} where ψ = µF.λX.X ∨ F (⃝X) in
Example 2. We have

JψK = LFP
(
λv ∈ DProp[0,1]→Prop[0,1] .λx ∈ DProp[0,1] .λs ∈ S.

max
(
x s, v (λs′ ∈ S.

∑
s′′

P (s′, s′′) · (xs′′)) s
))

FSCD 2020

20:6 A Probabilistic Higher-order Fixpoint Logic

≥
(
λv.λx.λs.max

(
x s, v (λs′ ∈ S.

∑
s′′

P (s′, s′′) · (xs′′)) s
))n+1

(⊥Prop[0,1]→Prop[0,1])

= λx.λs. max
0≤k≤n

∑
s0s1...sk∈Sk+1,s0=s

(
x(sk) ·

∏
0≤j≤k−1

P (sj , sj+1)
)

for every n ≥ 0. Thus, we have:

JψK ≥ λx.λs ∈ S. supk≥0
∑

s0s1...sk∈Sk+1,s0=s

(
x(sk) ·

∏
0≤j≤k−1 P (sj , sj+1)

)
.

Actually, the equality holds, because the righthand side is a fixpoint of

λv ∈ DProp[0,1]→Prop[0,1] .λx ∈ DProp[0,1] .max(x, v(λs ∈ S.
∑

s′

P (s, s′) · (xs′))).

The semantics of ϕ is, therefore, given by

JϕK = λs ∈ S. sup
k≥0

∑
s0s1...sk∈Sk+1,s0=s

(
ρAP(p)(sk) ·

∏
0≤j≤k−1

P (sj , sj+1)
)
. ◀

2.4 Expressive Power
PHFL obviously subsumes the µp-calculus [2], which coincides with order-0 PHFL. Hence
PHFL also subsumes PCTL [7], since the µp-calculus subsumes PCTL [2].

PHFL is strictly more expressive than the µp-calculus.

▶ Theorem 8. Order-1 PHFL is strictly more expressive than the µp-calculus, i.e., there
exists an order-1 PHFL proposition ϕ such that ϕ is not equivalent to any µp-formula.

Proof. Let M be the set of Markov chains M = (S, P, ρAP , sin) that satisfy the following
conditions.

S = {s0, s1, . . . , sn} for a positive integer n,
P (si, si+1) = 1 (0 ≤ i ≤ n− 1), P (sn, sn) = 1 and P (si, sj) = 0 otherwise.
There are three atomic propositions a, b, c with ρAP(a) ∪ ρAP(b) = {s0, s1, . . . , sn−1},
ρAP(a) ∩ ρAP(b) = ∅ and ρAP(c) = {sn}.
The initial state is sin = s0

Let ϕ be the order-1 PHFL formula of type Prop{0,1}:

(µF.λX.a ∧ ♢(X ∨ F (b ∧ ♢X)))(b ∧ ♢c).

Note that, for M ∈ M, M |= ϕ holds just if n is even, and ρAP satisfies ρAP(a) =
{s0, s1, . . . , sn

2 −1} and ρAP(b) = {sn
2
, sn

2 +1, . . . , sn−1}.
We show that there is no µp-formula equivalent to ϕ. Suppose that a µp-formula ϕ′ were

equivalent to ϕ, which would imply that M |= ϕ if and only if M |= ϕ′ for any M ∈ M.
For M ∈ M, let us write KM for the embedded Kripke structure of M . Since all the
transitions in M are deterministic, there exists a modal µ-calculus formula ϕ′′ such that
M |= ϕ′ if and only if KM |= ϕ′′ (note that ϕ′′ is obtained by replacing ⃝ with ♢, and
replacing [ϕ1]J with true if J is “≥ 0” and with ϕ1 otherwise). That would imply that
KM |= ϕ′′ for M ∈ M, just if n is even and ρAP satisfies ρAP(a) = {s0, s1, . . . , sn

2 −1}
and ρAP(b) = {sn

2
, sn

2 +1, . . . , sn−1}. But then ϕ′′ corresponds to the non-regular language
{ambm | m ≥ 1}, which contradicts the fact that the modal µ-calculus can express only
regular properties. ◀

Y. Mitani et al. 20:7

3 Undecidability of PHFL Model Checking

In this section we prove the undecidability of the following problem.

▶ Definition 9 (PHFL Model Checking). The PHFL model-checking problem for finite
Markov chains is the problem of deciding whether M |= ϕ, given a (finite) Markov chain M

and a closed PHFL formula ϕ of type Prop{0,1} as input.

We prove that the problem is undecidable even for the order-1 fragment of PHFL with-
out fixpoint alternations, by a reduction from the undecidability of the value-1 problem [6]
for probabilistic automata [20]. In contrast to the undecidability of PHFL model check-
ing, the corresponding model-checking problems are decidable for the full fragments of the
µp-calculus [2] and (non-probabilistic) HFL [21], with fixpoint alternations. Thus, the com-
bination of probabilities and higher-order predicates introduces a new difficulty.

In Section 3.1, we review the definition of probabilistic automata and the value-1 problem.
Section 3.2 shows the reduction from the value-1 problem to the PHFL model-checking
problem.

3.1 Probabilistic Automata
We review probabilistic automata [20] and the undecidability of the value-1 problem. Our
definition follows [4].

▶ Definition 10 (Probabilistic Automata). A probabilistic automaton A is a tuple (Q,Σ, qI ,∆, F)
where

Q is a finite set of states,
Σ is a finite set of input symbols,
qI ∈ Q is an initial state,
∆ : Q × Σ → D(Q), where D(Q) := { f : Q → [0, 1] |

∑
q∈Q f(q) = 1 } is the set of

probabilistic distributions over the set Q, represents transition probabilities, and
F ⊆ Q is a set of accepting states.

For a word w = w1 · · ·wn ∈ Σn, the probability that w is accepted by A = (Q,Σ, qI ,∆, F),
written A(w), is defined by:

A(w) :=
∑

q0,...,qn−1∈Q,qn∈F
s.t. q0=qI

∏
1≤i≤n

∆(qi−1, wi)(qi).

The value of a probabilistic automaton A, denoted by val(A), is defined by

val(A) := sup
w∈Σ∗

A(w).

The problem of deciding whether val(A) = 1, called the value-1 problem, is known to be
undecidable.

▶ Theorem 11 (Undecidability of The Value-1 Problem [6]). Given a probabilistic automaton
A, whether val(A) = 1 is undecidable.

3.2 The Undecidability Result
Let A = (Q,Σ, qI ,∆, F) be a probabilistic automaton, where Σ = {c1, . . . , c|Σ|} with |Σ| > 0.
We shall construct a Markov chain MA and a PHFL formula ϕA, so that val(A) = 1 if and

FSCD 2020

20:8 A Probabilistic Higher-order Fixpoint Logic

only if MA |= ϕA. The undecidability of PHFL model checking then follows immediately
from Theorem 11.

We first construct a Markov chain. The set AP of atomic propositions is { pc | c ∈
Σ } ⊎ { pF }. The Markov chain MA = (S, P, ρAP , sin) is defined as follows.

The set S of states is Q ⊎ (Q× Σ).
The transition probability P is given by:

P ((q, c), q′) = ∆(q, c)(q′) (c ∈ Σ and q, q′ ∈ Q)

P (q, (q, c)) = 1
|Σ|

(c ∈ Σ and q ∈ Q)

P (s, s′) = 0 (otherwise)

The first transition (from (q, c) to q′) is used to simulate the transition of A from q to
q′ for the input symbol c. The second transition (from q to (q, c)) is used to choose the
next input symbol to be supplied to the automaton; the probability is not important, and
replacing 1/|Σ| with any non-zero probability does not affect the following arguments.
ρAP is defined by:

ρAP(pc) = { (q, c) | q ∈ Q } ρAP(pF) = { q | q ∈ F }.

The initial state is sin = qI .
Intuitively, the Markov chain MA simulates the behavior of A. The atomic proposition pc

means that A is currently reading the symbol c, and pF means that A is in a final state.
Based on this intuition, we now construct the PHFL formula ϕA. For each c ∈ Σ, we

define a formula fc of type Prop[0,1] → Prop[0,1] by:

fc := λX.♢({pc} ∧ ⃝X).

Intuitively fc(ϕ) denotes the probability that the automaton transits to a state satisfying ϕ
given c as the next input. Given a word w = w1w2 . . . wn ∈ Σ∗, we define the formula gw by

gw := fw1(fw2(. . . (fwn
{pF }) . . .)).

We write Aq for the automaton obtained from A by replacing the initial state with q.

▶ Lemma 12. Aq(w) = JgwKMA
(q) for every q ∈ Q.

Proof. By induction on the length of w. ◀

Using Lemma 12, we obtain val(A) = supn∈ωJ∨w∈Σ≤n gwKMA
(qI), where Σ≤n is the set

of words of length up to n. This can be expressed by using the least fixpoint operator.

▶ Theorem 13. Let θA be the formula of type Prop[0,1] → Prop[0,1] defined by:

θA := µF.
(
λX.X ∨

∨
c∈Σ

F (fc X)
)
.

and let ϕA := [θA {pF }]≥1. Then val(A) = JθA {pF }KMA
(qI). Therefore MA |= ϕA if and

only if val(A) = 1.

Proof. Let

ξ := λF.λX.X ∨
∨
c∈Σ

F (fc X).

Y. Mitani et al. 20:9

Then, it is easy to verify:

JθAKM = JµF.ξ F KM =
∨

Prop[0,1]→Prop[0,1]
{Jξn(⊥)K | n ∈ ω}

where ⊥ := λZ.µU.U is the formula of type Prop[0,1] → Prop[0,1], and ξn(x) denotes n-times
applications of ξ to x.

We have also: Jξn(⊥) {pF }KM = J∨w∈Σ≤n gwKM . Therefore, we obtain:

val(A) = sup
n

(J ∨
w∈Σ≤n

gwKMA
(qI)) = sup

n
(Jξn(⊥){pF }K(qI)) = JθA {pF }KMA

(qI),

which implies the required result. ◀

The following is an immediate corollary of Theorems 11 and 13.

▶ Corollary 14 (Undecidability of PHFL Model-Checking Problem). There is no algorithm
that, given a Markov chain M and a closed order-1 formula ϕ of type Prop{0,1}, decides
whether M |= ϕ.

We close this section with some remarks.1

▶ Remark 15. Note that the value val(A) of a probabilistic automaton cannot even be ap-
proximately computable [4]: there is no algorithm that outputs “Yes” if val(A) = 1 and
“No” if val(A) ≤ 1

2 . Thus, the proof of Theorem 13 (in particular, the result val(A) =JθA {pF }KMA
(qI)) also implies that for a qualitative formula of PHFL ψ, JψK is not approx-

imately computable in general.
▶ Remark 16. It would be interesting to study a converse encoding, i.e., to find an encoding
of some fragment of the PHFL model checking problem into the value-1 problem. Such an
encoding may help us find a decidable class of the PHFL model checking problem, based on
decidable subclasses for the value-1 problem, such as the one studied in [5].

4 Hardness of the PHFL Model-Checking Problem

In the previous section, we have seen that PHFL model checking is undecidable even for the
fragment of PHFL without fixpoint alternations. In this section, we give a lower bound of
the hardness of the PHFL model-checking problem in the presence of fixpoint alternations.
The following theorem states the main result of this section.

▶ Theorem 17. The order-1 PHFL model-checking problem is Π1
1-hard and Σ1

1-hard.

Note that Π1
1 and Σ1

1, defined in terms of the second-order arithmetic, contain very hard
problems. For example, the problem of deciding whether a given first-order Peano arithmetic
formula is true is in those classes.

We prove this theorem by reducing the validity checking problem of the µ-arithmetic [16]
to the PHFL model-checking problem. It is even possible to reduce the validity checking
problem of a higher-order extension of the µ-arithmetic to the PHFL model-checking prob-
lem. The key in the proof is a representation of natural numbers as quantitative propositions
such that all the operations on natural numbers in the µ-arithmetic are expressible in PHFL.

This section is structured as follows. Section 4.1 reviews the basic notions of the µ-
arithmetic. Section 4.2 describes the reduction and proves the theorem above.

1 We would like to thank an anonymous reviewer for pointing them out.

FSCD 2020

20:10 A Probabilistic Higher-order Fixpoint Logic

Γ, X :A ⊢µ X : A Γ ⊢µ Z : N
Γ ⊢µ s : N

Γ ⊢µ S s : N
Γ ⊢µ s, t : N

Γ ⊢µ s ≤ t : Ω

Γ ⊢µ ϕ, ψ : Ω
Γ ⊢µ ϕ ∧ ψ : Ω

Γ ⊢µ ϕ, ψ : Ω
Γ ⊢µ ϕ ∨ ψ : Ω

Γ, X : A ⊢µ ϕ : T
Γ ⊢µ λX.ϕ : A → T

Γ ⊢µ ϕ : A → T Γ ⊢µ ψ : A
Γ ⊢µ ϕψ : T

Γ, X : T ⊢µ ϕ : T
Γ ⊢µ µX.ϕ : T

Γ, X : T ⊢µ ϕ : T
Γ ⊢µ νx.ϕ : T

Figure 2 Typing Rules for the Higher-order Fixpoint Arithmetic.

4.1 Higher-Order Fixpoint Arithmetic
The µ-arithmetic [16] is a first-order arithmetic with fixpoint operators. This section briefly
reviews its higher-order extension, studied by Kobayashi et al. [12].

As in PHFL, we first define the types of µ-arithmetic formulas. The set of types, ranged
over by A, is given by:

A ::= N |T T ::= Ω |A → T.

The type N is for natural numbers, Ω for (qualitative) propositions, and A → T for functions.
We do not allow functions to return values of type N . We define the order of types of the
µ-arithmetic similarly to the PHFL types, by: order(N) = order(Ω) = 0 and order(A →
T) = max(order(A) + 1, order(T)).

Assume a countably infinite set Var of variables ranged over by X. The set of formulas
is given by the following grammar.

s ::= X |Z |Ss ϕ ::= X | s1 ≤ s2 |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |λX.ϕ |ϕ1 ϕ2 |µX.ϕ | νX.ϕ.

Here, Z and S respectively denote the constant 0 and the successor function on natural
numbers.

The typing rules are shown in Fig. 2. We shall consider only well-typed formulas. We
define the order of a formula as the largest order of the types of its subformulas.

▶ Definition 18 (Semantics of Types). The semantics of a type A is a partially ordered setJAKµ = (DA,⊑A) defined inductively on the structure of A as follows.
1. The semantics of types N and Ω are defined as follows.

DN = N n ⊑N m
def⇐⇒ n = m

DΩ = {0, 1} p ⊑Ω q
def⇐⇒ p ≤ q

2. The semantics of the type A → T is defined as follows.

DA→T = { f : DA → DT | ∀u, v ∈ DA.u ⊑A v =⇒ f(u) ⊑T f(v) }

f ⊑A→T g
def⇐⇒ ∀v ∈ DA.f(v) ⊑T g(v)

The semantics JT Kµ of a type T forms a complete lattice; we write
∨

T for the least upper
bound operation, and ⊥T for the least element.

The interpretation JΓKµ of a type environment Γ is the set of functions θ such that
dom(θ) = dom(Γ) and that θ(X) ∈ JΓ(X)Kµ for every X ∈ dom(Γ). It is ordered by the
point-wise ordering.

Y. Mitani et al. 20:11

▶ Definition 19 (Semantics of Formulas). The semantics of a formula ϕ with judgment
Γ ⊢µ ϕ : A is a monotone map from JΓKµ to JAKµ, defined as follows.

JΓ ⊢µ X : AKµ(θ) := θ(X)JΓ ⊢µ Z : NKµ(θ) := 0JΓ ⊢µ Ss : NKµ(θ) := JΓ ⊢µ s : NKµ(θ) + 1

JΓ ⊢µ s ≤ t : ΩKµ(θ) :=

{
1 (if JΓ ⊢µ s : NKµ(θ) ≤ JΓ ⊢µ t : NKµ(θ))
0 (if JΓ ⊢µ s : NKµ(θ) > JΓ ⊢µ t : NKµ(θ))JΓ ⊢µ ϕ ∧ ψ : ΩKµ(θ) := JΓ ⊢µ ϕ : ΩKµ(θ) ∧ JΓ ⊢µ ϕ : ΩKµ(θ)JΓ ⊢µ ϕ ∨ ψ : ΩKµ(θ) := JΓ ⊢µ ϕ : ΩKµ(θ) ∨ JΓ ⊢µ ϕ : ΩKµ(θ)JΓ ⊢µ λX.ϕ : A → T Kµ(θ) := λv ∈ JAKµ.JΓ, X : A ⊢µ ϕ : T Kµ(θ[X 7→ v])JΓ ⊢µ ϕψ : T Kµ(θ) := JΓ ⊢µ ϕ : A → T Kµ(θ) (JΓ ⊢µ ψ : AKµ(θ))JΓ ⊢µ µX.ϕ : T Kµ(θ) := LFP(λv ∈ DT .JΓ, v : T ⊢µ ϕ : T K(θ[X 7→ v]))JΓ ⊢µ νX.ϕ : T Kµ(θ) := GFP(λv ∈ DT .JΓ, v : T ⊢µ ϕ : T K(θ[X 7→ v]))

As in the case of PHFL, we write JϕKµ(θ) for JΓ ⊢µ ϕ : AKµ(θ) and just JϕKµ for JϕKµ(∅)
when there is no confusion.

▶ Example 20. Let ϕ = µF.λX.(X = 100 ∨F (S(S X))) where 100 is an abbreviation of the
term S(S(. . . S︸ ︷︷ ︸

100

Z) . . .). The semantics JϕKµ is a function f : N → {0, 1} where f(n) = 1 if

and only if n is an even number no greater than 100.

The validity checking problem of the higher-order fixpoint arithmetic is the problem of,
given a closed formula ϕ of type Ω, deciding whether JϕKµ = 1. The following result is
probably folklore, which follows from the well-known fact that the fair termination problem
for programs is Π1

1-complete (see, e.g., Harel [8]), and the fact that the fair termination of a
program can be reduced to the validity of a first-order fixpoint arithmetic formula (see, e.g.,
[12] for the reduction).

▶ Theorem 21. The validity checking problem of the first-order fixpoint arithmetic is Π1
1-

hard and Σ1
1-hard.

▶ Remark 22. As for an upper bound, Lubarsky [16] has shown that predicates on natural
numbers definable by µ-arithmetic formulas belong to ∆1

2. One can prove that the validity
problem for the µ-arithmetic is ∆1

2 as well.

4.2 Hardness of PHFL Model Checking
We give a reduction of the validity checking problem of the higher-order fixpoint arithmetic
to the PHFL model-checking problem. The main theorem of this section (Theorem 17) is
an immediate consequence of this reduction and Theorem 21.

Given a formula ϕ of the higher-order fixpoint arithmetic, we need to effectively construct
a pair (ψ,M) of a formula of PHFL and a Markov chain such that ϕ is true if and only if
M |= ψ. The Markov chain M is independent of the formula ϕ. We first define the Markov
chain and then explain the intuition of the translation of formulas.

The Markov chain M = (S, P, ρAP , sin) is shown in Figure 3. It is defined as follows.
The set of states is S = {s0, s

′
0, s1, s

′
1}.

FSCD 2020

20:12 A Probabilistic Higher-order Fixpoint Logic

����
s′

0

����
s0

����
s′

1

����
s1

�
0.5

�

0.5

-0.5
�

1

-
0.5

� 1

Figure 3 The Markov Chain for Reduction from Higher-order Fixpoint Arithmetic to PHFL.

The transition probability satisfies P (s0, s1) = P (s0, s
′
0) = P (s′

0, s0) = P (s′
0, s

′
1) = 1

2 ,
P (s1, s0) = P (s′

1, s
′
0) = 1 and P (si, sj) = 0 for all other pairs of states.

There are four atomic propositions p0, p
′
0, p1, and p′

1, representing each state (e.g. ρAP(p0) =
{s0}).
The initial state sin is s0.

For notational convenience, we write v ∈ JProp[0,1]KM as a tuple (v(s0), v(s′
0), v(s1), v(s′

1)).
As mentioned at the beginning of this section, the key of the reduction is the representa-

tion of natural numbers, as well as operations on natural numbers. We represent a natural
number n by a quantitative propositional formula ψ such that JψKM = (1

2n , 1 − 1
2n ,_,_).

Here, _ denotes a “don’t care” value. We implement primitives on natural numbers Z, S
and ≤, as follows.

The constant Z can be represented by {p0}: then J{p0}KM = (1, 0, 0, 0) = (1/20, 1 −
(1/20), 0, 0) as expected.

Assuming that ψ represents n (i.e. JψKM = (1/2n, 1 − (1/2n),_,_)), the successor n+ 1
can be given by

ψ′ := ⃝((⃝ψ ∧ (p1 ∨ p′
1)) ∨ p0).

Indeed, we have:

J⃝ψKM = (_,_, 1
2n
, 1 − 1

2n
)

J⃝ψ ∧ (p1 ∨ p′
1)KM = (0, 0, 1

2n
, 1 − 1

2n
)

J(⃝ψ ∧ (p1 ∨ p′
1)) ∨ p0KM = (1, 0, 1

2n
, 1 − 1

2n
)

J⃝((⃝ψ ∧ (p1 ∨ p′
1)) ∨ p0)KM = (1

2
× 1

2n
,

1
2

+ 1
2

× (1 − 1
2n

),_,_)

= (1
2n+1 , 1 − 1

2n+1 ,_,_).

It remains to encode ≤. We use the fact that, for any natural numbers n and m,

n ≤ m ⇔ 1
2n

≥ 1
2m

⇔ 1
2n

+ (1 − 1
2m

) ≥ 1.

The s′
0-component of the representation of a natural number plays an important role below.

Assume that ψ and χ represent n and m respectively. Then we have

J⃝ψ ∧ p1KM = (0, 0, 1
2n
, 0) Jχ ∧ p′

0KM = (0, 1 − 1
2m

, 0, 0)

Y. Mitani et al. 20:13

and thus

J(⃝ψ ∧ p1) ∨ (χ ∧ p′
0)KM = (0, 1 − 1

2m
,

1
2n
, 0).

Therefore

J⃝((⃝ψ ∧ p1) ∨ (χ ∧ p′
0))KM = (1

2
×
(1

2n
+ (1 − 1

2m
)
)
,_,_,_).

Therefore, n ≤ m if and only if the s0-component of the above formula is ≥ 1
2 .

Let us formalize the above argument. We first give the translation of types:

tr(N) = Prop[0,1] tr(Ω) = Prop{0,1} tr(A → T) = tr(A) → tr(T).

The translation can be naturally extended to type environments. Following the above dis-
cussion, the translation of formulas of type N is given by

tr(Z) = {p0} and tr(S s) = ⃝((⃝tr(s) ∧ (p1 ∨ p′
1)) ∨ p0).

The comparison operator can be translated as follows:

tr(s ≤ t) = [(⃝((⃝tr(s) ∧ p1) ∨ (tr(t) ∧ p′
0)))]≥ 1

2
.

The translation of other connectives is straightforward:

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ) tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ) tr(λX.ϕ) = λX.tr(ϕ)
tr(X) = X tr(ϕψ) = tr(ϕ) tr(ψ) tr(µX.ϕ) = µX.tr(ϕ) tr(νX.ϕ) = νX.tr(ϕ).

The following lemma states that the translation preserves types.

▶ Lemma 23. If Γ ⊢µ ϕ : A, then tr(Γ) ⊢ tr(ϕ) : tr(A).

We prove the correctness of the translation. For each type A of the higher-order fixpoint
arithmetic, we define a relation (∼A) ⊆ JAKµ × Jtr(A)KM by induction on A as follows:

n ∼N (r0, r
′
0, r1, r

′
1) def⇐⇒ r0 = 1

2n
and r′

0 = 1 − 1
2n

b ∼Ω (r0, r
′
0, r1, r

′
1) def⇐⇒ b = r0

f ∼A→T g
def⇐⇒ ∀x ∈ JAKµ.∀y ∈ Jtr(A)KM . x ∼A y =⇒ f x ∼T g y.

This relation can be naturally extended to the interpretations of type environments: given
a type environment Γ of the µ-arithmetic, the relation (∼Γ) ⊆ JΓKµ × Jtr(Γ)KM is defined by

θ ∼Γ ρ
def⇐⇒ ∀X ∈ dom(Γ). θ(X) ∼Γ(X) ρ(X).

▶ Theorem 24. Let Γ ⊢µ ϕ : A be a formula of the higher-order fixpoint arithmetic. Assume
θ ∈ JΓKµ and ρ ∈ Jtr(Γ)K. If θ ∼Γ ρ, then JΓ ⊢µ ϕ : AKµ(θ) ∼A Jtr(Γ) ⊢ tr(ϕ) : tr(A)KM (ρ).

Proof. See Appendix A. ◀

▶ Corollary 25. The validity problem of the order-k fixpoint arithmetic (where k > 0) is
reducible to the order-k PHFL model-checking problem.

Proof. Assume ∅ ⊢µ ϕ : Ω. By Theorem 24, JϕKµ ∼Ω Jtr(ϕ)KM . Therefore, JϕKµ = 1 if and
only if Jtr(ϕ)KM (s0) = 1, i.e. M |= tr(ϕ). The mapping ϕ 7→ (tr(ϕ),M) is obviously effective,
and preserves the order. ◀

Theorem 17 is an immediate consequence of Theorem 21 and Corollary 25.

FSCD 2020

20:14 A Probabilistic Higher-order Fixpoint Logic

5 Decidable Subclass of Order-1 PHFL Model Checking

As we have seen in the last section, PHFL model checking is undecidable in general, even
for order 1. In this section, we identify a decidable subclass of the order-1 PHFL model-
checking problems (i.e., a set of pairs (ϕ,M) such that whether M |=ϕ is decidable). We
identify the subclass by using a type system: we define a type system TM for PHFL formulas,
parameterized by M , such that if ϕ is a proposition well-typed in TM , then M |=ϕ is decidable.

We first explain the idea of the restriction imposed by the type system. By definition, the
semantics of a (closed) order-1 PHFL formula ϕ of type Prop[0,1] → Prop[0,1] with respect to
the Markov chain M is a map fϕ from the set of functions S → [0, 1] to the same set, where
S is the set of states of M . Thus, if S = {s1, s2, . . . , sn} is fixed, fϕ can be regarded as a
function from [0, 1]n to [0, 1]n. Now, if the function fϕ were affine, i.e., if there are functions
f1, f2, . . . , fn such that fϕ(r1, r2, . . . , rk) = (f1(r1, r2, . . . , rk), . . . , fn(r1, r2, . . . , rk)), where
fi(r1, r2, . . . , rk) = ci,0 + ci,1r1 + · · · + ci,krk for some real numbers ci,j , then the function fϕ

would be representable by a finite number of reals ci,j . The semantics of an (alternation-free)
fixpoint formula would then be given as a solution of a fixpoint equation on the coefficients,
which is solvable by appealing to the existential theories of reals.

Based on the observation above, we use a type system to restrict the formulas so that the
semantics of every order-1 formula is affine. The conjunction ϕ1∧ϕ2 is one of the problematic
logical connectives that may make the semantics of an order-1 formula non-affine: recall that
the min operator was used to define the semantics of conjunction. We require that for every
subformula of the form ϕ1 ∧ϕ2 and for each state s ∈ S, one of the values Jϕ1K(s) and Jϕ2K(s)
is the constant 0 or 1. We can then remove the min operator, since we have min(0, x) = 0
and min(1, x) = x for every x ∈ [0, 1].

The discussion above motivates us to refine the type Prop[0,1] of quantitative propositions
to PropT,U where T,U ⊆ S and T ∩U = ∅. Intuitively, the type PropT,U is a type for values
v ∈ Prop[0,1] such that v(s) = 0 for all s ∈ T and v(s) = 1 for all s ∈ U ; there is no guarantee
on the value of v(s) for s ∈ S \ (T ∪ U). The syntax of refined types is given by:

σ ::= κ | Prop{0,1} κ ::= PropT,U | PropT,U → κ

where T and U range over the subsets of S satisfying T ∩ U = ∅. Note that each type
κ ̸= Prop{0,1} can be expressed as PropT1,U1 → PropT2,U2 → · · · → PropTk,Uk → PropT,U

where k ≥ 0. The formal definition of the semantics of types is given later.
We restrict PHFL formulas to those given by:

ψ ::= [ϕ]J ϕ ::= {p} |x |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 | ⃝ ϕ |µx.ϕ |λx.ϕ |ϕ1 ϕ2

and further restrict them by using the typing rules in Figure 4. In the figure, the type
environment K maps each variable to a type in the set ranged over by κ. The operator [·]
has been restricted to the top-level, and the operators ♢,□ and ν have been removed. Note
that ψ is a qualitative formula and ϕ is a quantitative formula.

A key rule is for conjunctions. Note that Jϕ1 ∧ ϕ2K(s) = 0 if either Jϕ1K(s) = 0 orJϕ2K(s) = 0 holds; hence s ∈ T1 ∪T2 implies Jϕ1 ∧ϕ2K(s) = 0. Note also that Jϕ1 ∧ϕ2K(s) = 1
if both Jϕ1K(s) = 1 and Jϕ2K(s) = 1 hold. Thus, s ∈ U1 ∩ U2 implies Jϕ1 ∧ ϕ2K(s) = 1. This
is why ϕ1 ∧ϕ2 has type PropT1∪T2,U1∩U2 . The extra condition T1 ∪U1 ∪T2 ∪U2 = S requires
that, for each state s, either Jϕ1K(s) or Jϕ2K(s) is the constant 0 or 1; recall the earlier
discussion on a sufficient condition for the semantics of an order-1 formula to be affine. The
rule for disjunctions is analogous.

The following lemma states that a formula that is well-typed in TM is also well-typed in
the original PHFL type system.

Y. Mitani et al. 20:15

K ⊢M {p} : PropρAP(p),ρAP(p)

K ⊢M ϕ : PropT,U T ′ ⊆ T U ′ ⊆ U

K ⊢M ϕ : PropT ′,U ′

K ⊢M ϕ1 : PropT1,U1 K ⊢M ϕ2 : PropT2,U2 T1 ∪ U1 ∪ T2 ∪ U2 = S

K ⊢M ϕ1 ∧ ϕ2 : Prop(T1∪T2),(U1∩U2)

K ⊢M ϕ1 : PropT1,U1 K ⊢M ϕ2 : PropT2,U2 T1 ∪ U1 ∪ T2 ∪ U2 = S

K ⊢M ϕ1 ∨ ϕ2 : Prop(T1∩T2),(U1∪U2)

K, X : κ ⊢M X : κ
K ⊢M ϕ : PropT,U

K ⊢M [ϕ]J : Prop{0,1}

K ⊢M ϕ : PropT,U

K ⊢M ⃝ϕ : Prop∅,∅

K, X : κ ⊢M ϕ : κ
K ⊢M µX.ϕ : κ

K, X : κ1 ⊢M ϕ : κ2
K ⊢M λX.ϕ : κ1 → κ2

K ⊢M ϕ0 : PropT1,U1 → · · · → PropTk,Uk → PropT,U K ⊢M ϕi : PropTi,Ui (1 ≤ i ≤ k)
K ⊢M ϕ0 ϕ1 . . . ϕk : PropT,U

Figure 4 Type Derivation Rules for the PHFL Subclass. Here X means the complement S \ X.

▶ Lemma 26. Let ϕ be a PHFL formula such that K ⊢M ϕ : κ in TM . Define the translation
from the set of types in TM to the set of types in PHFL by

tr(Prop{0,1}) = Prop{0,1} tr(PropT,U) = Prop[0,1] tr(κ1 → κ2) = tr(κ1) → tr(κ2)

and the translation of type environment K by (tr(K))(x) = tr(K(x)). Then we have tr(K) ⊢
ϕ : tr(κ).

The lemma above can be proved by induction on the structure of ϕ. Using the lemma, we
can define the semantics of a type judgment of the type system TM by JK ⊢M ϕ : κKM =Jtr(K) ⊢ ϕ : tr(κ)KM . The semantics is well-defined, i.e., JK ⊢M ϕ : κK(η) ∈ JκK for every ϕ
and η. As before, we often omit the type environment, the derived type and the subscript
of the Markov chain in the notation of the semantics.

▶ Example 27. Let p1, p2, p3 ∈ AP be atomic propositions satisfying ρAP(p2)∩ρAP(p3) = ∅.
Consider the formula ϕ = ⃝(({p2} ∧ ⃝{p1}) ∨ ({p3} ∧ ⃝{p1})). For each s ∈ S, the valueJϕK(s) represents the probability that a two-step transition starting from s reaches a state
satisfying p1 through a state satisfying p2 or p3. We can derive ∅ ⊢M ϕ : Prop∅,∅ as
follows. First, {p1}, {p2}, and {p3} have types PropρAP(p1),ρAP(p1), PropρAP(p2),ρAP(p2), and
PropρAP(p3),ρAP(p3). It follows that {p2} ∧ ⃝{p1} and {p3} ∧ ⃝{p1} have types PropρAP(p2),∅)

and PropρAP(p3),∅. Since ρAP(p2) ∪ ρAP(p3) = ρAP(p2) ∩ ρAP(p3) = ∅ = S, the formula
({p2} ∧ ⃝{p1}) ∨ ({p3} ∧ ⃝{p1}) has type PropρAP(p2)∩ρAP(p3),∅, from which we obtain ∅ ⊢M

ϕ : Prop∅,∅. Note that the condition L(p2) ∩ L(p3) = ∅ was crucial in the type derivation
above. ◀

We have the following two theorems. The former one states the decidability result, and
the latter one states that the restricted subclass of the PHFL model-checking problems is
reasonably expressive. Proofs are found in Appendix B.

▶ Theorem 28. Let M be a Markov chain, and ψ be a PHFL formula satisfying ⊢M ψ :
Prop{0,1}. Then it is decidable whether M |= ψ.

FSCD 2020

20:16 A Probabilistic Higher-order Fixpoint Logic

▶ Theorem 29. There exists an algorithm that takes a recursive Markov chain R and a
rational number r as input, and outputs an order-1 PHFL formula ϕR and a Markov chain
MR such that ⊢MR

[ϕR]≥r : Prop{0,1}, and the termination probability of R is no less than
r if and only if MR |= [ϕR]≥r.

6 Related Work

As mentioned in Section 1, PHFL can be regarded as a probabilistic extension of the higher-
order fixpoint logic, and as a higher-order extension of the µp-calculus. We thus compare
our work with previous studies on (non-probabilistic) higher-order fixpoint logic and those
on (non-higher-order) probabilistic logics. As already mentioned, for (non-probabilistic)
HFL, model checking of finite-state systems is known to be decidable [21], and k-EXPTIME
complete [1]. This is in a sharp contrast with our result that PHFL model checking is
highly undecidable (both Π1

1-hard and Σ1
1-hard) even at order 1. As for studies on proba-

bilistic logics, besides the µp-calculus, there are other probabilistic extensions of the modal
µ-calculus [18, 9, 17]. To our knowledge, however, ours is the first higher-order and proba-
bilistic extension of the modal µ-calculus.

Recently, Kobayashi et al. [10] introduced PHORS, a probabilistic extension of higher-
order recursion schemes (HORS), which can also be viewed as a higher-order extension of
recursive Markov chains (or probabilistic pushdown systems), and proved that the almost
sure termination problem is undecidable. Although the problem setting is quite different (in
our work, the logic is higher-order whereas the system to be verified is higher-order in their
work), our encoding of the µ-arithmetic has been partially inspired by their undecidability
proof; they also represented a natural number n as the probability 1

2n .

7 Conclusion

We have introduced PHFL, a probabilistic logic which can be regarded as both a probabilistic
extension of HFL and a higher-order extension of the probabilistic logic µp-calculus. We have
shown that the model-checking problem for PHFL for a finite Markov chain is undecidable
for the µ-only and order-1 fragment. We have also shown that the model-checking problem
for the full order-1 fragment of PHFL is Π1

1-hard and Σ1
1-hard. As positive results, we have

introduced a decidable subclass of the PHFL model-checking problems, and showed that the
termination problem of Recursive Markov Chains can be encoded in the subclass.

Finding an upper bound of the hardness of the PHFL model-checking problem is left for
future work. It is also left for future work to find a larger, more natural decidable class of
PHFL model-checking problems.

References

1 Roland Axelsson, Martin Lange, and Rafal Somla. The complexity of model check-
ing higher-order fixpoint logic. Logical Methods in Computer Science, 3(2), 2007.
doi:10.2168/LMCS-3(2:7)2007.

2 Pablo F. Castro, Cecilia Kilmurray, and Nir Piterman. Tractable probabilistic mu-calculus
that expresses probabilistic temporal logics. In Ernst W. Mayr and Nicolas Ollinger, editors,
32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015,
March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 211–223. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.211.

Y. Mitani et al. 20:17

3 Kousha Etessami and Mihalis Yannakakis. Recursive markov chains, stochastic gram-
mars, and monotone systems of nonlinear equations. J. ACM, 56(1):1:1–1:66, 2009.
doi:10.1145/1462153.1462154.

4 Nathanaël Fijalkow. Undecidability results for probabilistic automata. SIGLOG News,
4(4):10–17, 2017.

5 Nathanaël Fijalkow, Hugo Gimbert, Edon Kelmendi, and Youssouf Oualhadj. Deciding the
value 1 problem for probabilistic leaktight automata. Logical Methods in Computer Science,
11(2), 2015. doi:10.2168/LMCS-11(2:12)2015.

6 Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable
and undecidable problems. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Fried-
helm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Pro-
gramming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010,
Proceedings, Part II, volume 6199 of Lecture Notes in Computer Science, pages 527–538.
Springer, 2010. doi:10.1007/978-3-642-14162-1_44.

7 Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Asp. Comput., 6(5):512–535, 1994. doi:10.1007/BF01211866.

8 David Harel. Effective transformations on infinite trees, with applications to high undecid-
ability, dominoes, and fairness. J. ACM, 33(1):224–248, 1986. doi:10.1145/4904.4993.

9 Michael Huth and Marta Z. Kwiatkowska. Quantitative analysis and model check-
ing. In Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, War-
saw, Poland, June 29 - July 2, 1997, pages 111–122. IEEE Computer Society, 1997.
doi:10.1109/LICS.1997.614940.

10 Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. On the termination problem for
probabilistic higher-order recursive programs. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages
1–14. IEEE, 2019. doi:10.1109/LICS.2019.8785679.

11 Naoki Kobayashi, Étienne Lozes, and Florian Bruse. On the relationship between higher-
order recursion schemes and higher-order fixpoint logic. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 246–259. ACM,
2017.

12 Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. Higher-order program verification
via HFL model checking. In Amal Ahmed, editor, Programming Languages and Systems -
27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings, volume 10801 of Lecture Notes in Computer Science, pages 711–738.
Springer, 2018. doi:10.1007/978-3-319-89884-1_25.

13 Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354,
1983. doi:10.1016/0304-3975(82)90125-6.

14 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 585–591.
Springer, 2011. doi:10.1007/978-3-642-22110-1_47.

15 Étienne Lozes. A type-directed negation elimination. In Ralph Matthes and Matteo Mio,
editors, Proceedings Tenth International Workshop on Fixed Points in Computer Science,
FICS 2015, Berlin, Germany, September 11-12, 2015, volume 191 of EPTCS, pages 132–142,
2015. doi:10.4204/EPTCS.191.12.

16 Robert S. Lubarsky. mu-definable sets of integers. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June
5-8, 1989, pages 343–352. IEEE Computer Society, 1989. doi:10.1109/LICS.1989.39189.

FSCD 2020

20:18 A Probabilistic Higher-order Fixpoint Logic

17 Matteo Mio and Alex Simpson. Łukasiewicz mu-calculus. In David Baelde and Ar-
naud Carayol, editors, Proceedings Workshop on Fixed Points in Computer Science, FICS
2013, Turino, Italy, September 1st, 2013, volume 126 of EPTCS, pages 87–104, 2013.
doi:10.4204/EPTCS.126.7.

18 Carroll Morgan and Annabelle McIver. A probabilistic temporal calculus based on expecta-
tions. In Proc. Formal Methods Pacific, pages 4–22. Springer, 1997.

19 Azaria Paz. Introduction to probabilistic automata. Academic Press, 1971.
20 Michael O Rabin. Probabilistic automata. Information and control, 6(3):230–245, 1963.
21 Mahesh Viswanathan and Ramesh Viswanathan. A higher order modal fixed point logic.

In Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency The-
ory, 15th International Conference, London, UK, August 31 - September 3, 2004, Proceed-
ings, volume 3170 of Lecture Notes in Computer Science, pages 512–528. Springer, 2004.
doi:10.1007/978-3-540-28644-8_33.

Appendix

A Proof of Theorem 24

We prove the theorem by induction on the structure of ϕ. In this proof, we omit the subscript
M of J−KM for simplicity.

Case ϕ = X.
We have tr(ϕ) = X and

Jtr(ϕ)Kµ(θ) = θ(X) ∼Γ(X) ρ(X) = Jtr(ϕ)K(ρ).

Case ϕ = Z.
Then tr(ϕ) = {p′

0} and A = N . We have

JϕKµ(θ) = 0 ∼N (1, 0, 0, 0) = Jtr(ϕ)K(ρ).

Case ϕ = S t.
Let n = JtKµ(θ). By the induction hypothesis, we have

Jtr(t)K(ρ) =
(

1
2n
, 1 − 1

2n
, _, _

)
.

By the definition of tr(ϕ) and calculation, we have

Jtr(ϕ)K(ρ) =
(

1
2n+1 , 1 − 1

2n+1 , _, _
)
,

which implies JS tKµ(θ) = n+ 1 ∼N Jtr(ϕ)K(ρ).
Case ϕ = (s ≤ t).
Let n = JsKµ(θ) and m = JtKµ(θ). By the induction hypothesis, we have

Jtr(s)K(ρ) = (1
2n
, , 1 − 1

2n
, _, _)

Jtr(t)K(ρ) = (1
2m

, , 1 − 1
2m

, _, _).

By the definition of tr(s ≤ t) and calculation, we have

Jtr(s ≤ t)K(ρ) =

{
(1,_,_,_) (if 1

2 ×
(1

2n + (1 − 1
2m)
)

≥ 1
2 , i.e. if n ≤ m)

(0,_,_,_) (if 1
2 ×

(1
2n + (1 − 1

2m)
)
< 1

2 , i.e., if n > m).

Thus, we have Js ≤ tKµ(θ) ∼Ω Jtr(s ≤ t)K(ρ) as required.

Y. Mitani et al. 20:19

Case ϕ = ψ1 ∧ ψ2.
In this case we have A = Ω and tr(A) = Prop{0,1}.
By the induction hypothesis, we have

JΓ ⊢µ ψi : AKµ(θ) ∼A Jtr(Γ) ⊢ tr(ψi) : tr(A)K(ρ)

for each i = 1, 2.
By definition of ∼Ω, we have

Jtr(Γ) ⊢ tr(ψi) : tr(Ω)K(ρ) = (JΓ ⊢µ ψi : ΩKµ(θ), _, _, _)

for each i = 1, 2. Therefore we have

JΓ ⊢µ ψ1 ∧ ψ2 : ΩKµ(θ) = Jψ1Kµ(θ) ∧ Jψ2Kµ(θ)
∼Ω (Jψ1Kµ(θ) ∧ Jψ2Kµ(θ), _, _, _)
= Jψ1K(ρ) ∧ Jψ2K(ρ)
= Jψ1 ∧ ψ2K(ρ)

as desired.
Case ϕ = ψ1 ∨ ψ2.
Similar to the above case.
Case ϕ = λX.ψ. In this case, A is of the form B → T , with Γ, X : B ⊢µ ψ : T . By the
induction hypothesis, ψ satisfies

JΓ, X : B ⊢µ ψ : T Kµ(θ[X 7→ v]) ∼B→T Jtr(Γ, X : B) ⊢ tr(ψ) : tr(T)K(ρ[X 7→ u])

for any v ∈ JBK and u ∈ Jtr(B)K such that v ∼B u.
Therefore, by the definition of ∼B→T , we have

JΓ ⊢µ ϕ : B → T Kµ(θ) ∼B→T Jtr(Γ) ⊢ tr(ϕ) : tr(B → T)K(ρ)

as required.
Case ϕ = ψ1 ψ2. We have A = T , with Γ ⊢µ ψ1 : B → T and Γ ⊢µ ψ2 : B.
By the induction hypothesis, we have Jψ1Kµ(θ) ∼B→T Jtr(ψ1)K(ρ) and Jψ2Kµ(θ) ∼BJtr(ψ2)K(ρ). Therefore by the definition of ∼B→T , we have

Jψ1 ψ2Kµ(θ) = Jψ1Kµ(θ) (Jψ2Kµ(θ))
∼A Jtr(ψ1)K(ρ) (Jtr(ψ2)K(ρ))
= Jtr(ψ1 ψ2)K(ρ)

as desired.
Case ϕ = µX.ψ.
In this case, A = T , with Γ, X : T ⊢µ ψ : T . By the induction hypothesis, for any
v ∈ JT Kµ and u ∈ Jtr(T)K such that v ∼T u, we have

JψKµ(θ[X 7→ v]) ∼T Jtr(ψ)K(ρ[X 7→ u]).

Since tr(µX.ψ) = µX.tr(ψ), it suffices to show:

JµX.ψKµ(θ) ∼T JµX.tr(ψ)K(ρ).

FSCD 2020

20:20 A Probabilistic Higher-order Fixpoint Logic

Let F : JT Kµ → JT Kµ and G : Jtr(T)K → Jtr(T)K be the functions defined by:

F(v) := JψKµ(θ[X 7→ v]) G(u) := Jtr(ψ)K(ρ[X 7→ u]).

By the reasoning above, we have F ∼T →T G. By the definitions of the semantics, we
have JµX.ψKµ(θ) = LFP(F) and JµX.ψK(ρ) = LFP(G). Then there exists an ordinal α
such that

LFP(F) = Fα(⊥T) and LFP(G) = Gα(⊥tr(T)),

where fβ(x) is defined by f0(x) = x, fβ+1 = f(fβ(x)), and fβ =
∨

γ<β
fγ(x) if β is a

limit ordinal. We shall prove by (transfinite) induction on β that Fβ(⊥T) ∼T Gβ(⊥tr(T)),
which would imply

LFP(F) = Fα(⊥T) ∼T Gα(⊥tr(T)) = LFP(G)

as required.
The base case F0(⊥T) = ⊥T ∼T ⊥tr(T) = G0(⊥tr(T)) follows by a straightforward induc-
tion on the structure of T . The case where β is a successor ordinal follows immediately
from the induction hypothesis and F ∼T →T G. If β is a limit ordinal, then

Fβ(⊥T) =
∨

γ<β
Fγ(⊥T) and Gβ(⊥T) =

∨
γ<β

Gγ(⊥T).

By the induction hypothesis (of the transfinite induction),

Fγ(⊥T) ∼T Gγ(⊥T)

for every γ < β. By Lemma 30 below, we have

Fβ(⊥T) ∼T Gβ(⊥T)

as required.
Case ϕ = νX.ψ. Similar to the case for ϕ = µX.ψ above.

We prove the lemma used above.

▶ Lemma 30. Let I be a set and T be a type of µ-arithmetic. Assume families {vi}i∈I and
{ui}i∈I of elements of JT Kµ and JT K, respectively, and suppose that vi ∼T ui for every i ∈ I.
Then

⊔
i∈I vi ∼T

⊔
i∈I ui.

Proof. By induction on the structure of T . The base case τ = Ω is obvious. Assume that
T = A → T ′.

Let x ∈ JAKµ and y ∈ Jtr(B)K and assume that x ∼A y. For each i ∈ I, since vi ∼T ui,
we have vi x ∼T ′ ui y. By the induction hypothesis,⊔

i∈I

(vi x) ∼T ′

⊔
i∈I

(ui y).

Since the order on functions are component-wise, we have(⊔
i∈I

vi

)
x =

⊔
i∈I

(vi x) and

(⊔
i∈I

ui

)
y =

⊔
i∈I

(ui y).

So (⊔
i∈I

vi

)
x ∼T ′

(⊔
i∈I

ui

)
y.

Y. Mitani et al. 20:21

Since x ∼A y is arbitrary, this means that(⊔
i∈I

vi

)
∼A→T ′

(⊔
i∈I

ui

)
.

◀

B Proofs for Section 5

B.1 Proof of Theorem 28
B.1.1 Matrix Representation
In this section we give a matrix representation for each value of the semantics of the types
in TM .

As mentioned before, we fix the underlying Markov chain M with the set of states
S = {s1, s2, . . . , sn}. Henceforth, we identify the set of functions S → [0, 1] with the set
[0, 1]n.

We first give the formal definition of the semantics of types in TM . As explained in
Section 5, the values of function types are restricted to affine functions.

▶ Definition 31. For each type κ ̸= Prop{0,1} in the type system TM , we define its semanticsJκK = (Dκ,⊑κ) by induction on κ as follows.
1. For κ = PropT,U , Dκ is the set {v ∈ JProp[0,1]K | ∀s ∈ T.v(s) = 0,∀s ∈ U.v(s) = 1} and

f1 ⊑κ f2 if and only if ∀s ∈ S.f1(s) ≤ f2(s).
2. For κ = PropT1,U1 → PropT2,U2 → . . .PropTk,Uk → PropT,U (k ≥ 1), Dκ is the set of

affine functions f : ([0, 1]n)k → [0, 1]n which belong to Jtr(κ)K (with the identification
between [0, 1]S and [0, 1]n), and f1 ⊑κ f2 if and only if for every tuple (v1, v2, . . . , vk) inJPropT1,U1K × · · · × JPropTk,UkK, the relation f1 v1 v2 . . . vk ⊑ f2 v1 v2 . . . vk holds.

We now give a matrix representation Matκ(f) for each type κ ̸= Prop{0,1} of TM and
f ∈ JκK. For v ∈ JPropT,U K, we write Vec(v) for the 1 × n matrix (v(s1) v(s2) . . . v(sn)).

▶ Definition 32 (Matrix Representation). For an element f ∈ JκK where κ = PropT1,U1 →
PropT2,U2 → . . .PropTk,Uk → PropT,U (k ≥ 0), its matrix representation Matκ(f) is the
(unique) matrix M = (mij)ij of size (n+ 1) × (kn+ 1) satisfying the following conditions.
1. For every tuple (v1, v2, . . . , vk) where vi ∈ JPropTi,UiK (1 ≤ i ≤ k), the following equality

holds.

M
(

1 Vec(v1) Vec(v2) . . . Vec(vk)
)⊤ =

(
1 Vec(f v1 v2 . . . vk)

)⊤

2. For each i (1 ≤ i ≤ k), sj ∈ Ti ∪Ui, and ℓ (1 ≤ ℓ ≤ n+1), the equality mℓ,(i−1)n+j+1 = 0
holds.

3. For each j (1 ≤ j ≤ kn+ 1) and si ∈ T , the equality mi+1,j = 0 holds. Also, for each j
(2 ≤ j ≤ kn+ 1) and si ∈ U , the equaities mi+1,1 = 1 and mi+1,j = 0 hold.

4. For each j (2 ≤ j ≤ kn+ 1), the equalities m11 = 1 and m1j = 0 hold.
The existence of M satisfying the first condition is obvious from the assumption that f is
affine. The other conditions are imposed to ensure the uniqueness of M . We often omit
the type annotation and just write Mat for Matκ. For a (n + 1) × (kn + 1)-matrix M that
satisfies the condition 1 in Definition 32 for an element f ∈ JκK, we write normalizeκ(f)(M)
for Matκ(f).

FSCD 2020

20:22 A Probabilistic Higher-order Fixpoint Logic

When k = 0, the matrix representation Mat(v) for v ∈ JPropT,U K is given by Mat(v) =(
1 Vec(v)

)⊤.
Given a 2-dimensional matrix M , we write Mij for the (i, j)-entry of M . The order

≤ between two matrices M and M ′ of the same size (n + 1) × (kn + 1) is defined as the
pointwise order, i.e., M ≤ M ′ def⇐⇒ ∀1 ≤ i ≤ n+ 1, 1 ≤ j ≤ kn+ 1.Mij ≤ M ′

ij .
We define the matrix semantics of a type κ by JκKMat = Mat(JκK) = {Mat(f) | f ∈ JκK}.

For a type environment K, its matrix semantics JKKMat is the set of maps ηMat satisfying
dom(ηMat) = dom(K) and ηMat(X) ∈ JK(X)KMat for all X ∈ dom(K). For a type derivation
K ⊢M ϕ : κ, we write JK ⊢M ϕ : κKMat for the map from JKKMat to Mat(JκK) defined by:

JK ⊢M ϕ : κKMat(ηMat) = Mat(JK ⊢M ϕ : κK(η))

Here, η satisfies η(X) = Mat−1(ηMat(X)) for each X ∈ dom(K). For the well-definedness ofJK ⊢M ϕ : κKMat above, it must be the case that JK ⊢M ϕ : κK(η) ∈ JκK, which can be easily
checked.

▶ Lemma 33. For each type κ, the function Matκ : JκK → JκKMat is an isomorphism.

Proof. We prove the lemma for the case κ = PropT1,U1 → PropT,U . Extension to other
cases is easy.

We prove f1 ⊑ f2 =⇒ Mat(f1) ≤ Mat(f2). Let M1 = Mat(f1) and M2 = Mat(f2).
Assume M1 ≤ M2 does not hold. Then there exist i and j such that (M1)ij > (M2)ij .
By the definition of Mat, we have 2 ≤ i, j ≤ n+ 1 and sj−1 ̸∈ T1 ∪U1. Thus we can take
v ∈ JPropT1,U1K where v(sj−1) ̸= 0. For such v we have f1 v ̸⊑ f2 v, which means that
f1 ⊑ f2 does not hold. This implies f1 ⊑ f2 =⇒ M1 ≤ M2.
We prove Mat(f1) ≤ Mat(f2) =⇒ f1 ⊑ f2. Assume f1 ⊑ f2 does not hold. Then
there exists v ∈ JPropT1,U1K such that f1 v ⊑ f2 v does not hold. This v does not satisfy
Mat(f1)Mat(v) ≤ Mat(f2)Mat(v), which means that Mat(f1) ≤ Mat(f2) does not hold.
This implies Mat(f1) ≤ Mat(f2) =⇒ f1 ⊑ f2.
Injectivity of Mat can be proved similarly as the claim f1 ⊑ f2 =⇒ Mat(f1) ≤ Mat(f2).
Surjectivity of Mat is trivial by definition of JκKMat.

◀

▶ Example 34. Let M = (S, P, ρAP , sin) be a Markov chain such that
S = {s1, s2, s3},
P satisfies P (s1, s2) = 0.4, P (s1, s3) = 0.6, P (s2, s1) = P (s3, s1) = 1 and P (si, sj) = 0
for all the other pairs (si, sj) ∈ S × S,
there exist p1, p2, p3 ∈ AP such that ρAP(pi) = {si} for each i ∈ {1, 2, 3}, and
sin = s1

Let us consider the the formula ϕ = λX. ⃝ ((({p1} ∨ {p2}) ∧ ⃝X) ∨ ({p3} ∧ ⃝X)). The
matrix representation of the semantics of ϕ is

r
ϕ : Prop{s3},∅ → Prop∅,∅

z
Mat

=


1 0 0 0
0 1 0 0
0 0 0.4 0
0 0 0.4 0


r
ϕ : Prop∅,{s3} → Prop∅,∅

z
Mat

=


1 0 0 0
0 1 0 0

0.6 0 0.4 0
0.6 0 0.4 0


Note that the matrix representation Jϕ : κKMat depends on the type κ. ◀

Y. Mitani et al. 20:23

B.1.2 Model-Checking Algorithm
In this section we give the model-checking algorithm of the restricted class, and prove The-
orem 28.

We first consider formulas without fixpoint operators and give an algorithm to calculate
the matrix JK ⊢M ϕ : κKMat(η) for the case where

ϕ is of the form λY1.λY2.λYl.ψ,
dom(K) = {X1, X2, . . . , Xk},
K(Xi) = κi for each 1 ≤ i ≤ k,
κ = PropT1,U1 → PropT2,U2 → · · · → PropTl,Ul → PropT,U and
ϕ′ contains neither fixpoint operators nor λ-abstractions.

We write λY⃗ ψ for λY1.λY2. . . . λYl.ψ.
The calculation proceeds by induction on the structure of the formula ψ. We denoter

λY⃗ .ψi

z
Mat

by Mi for each i = 1, 2 and
r
λY⃗ .ψ′

z
Mat

by M ′. We also denote the type of

λY⃗ .ψ′ as the subformula of ϕ by κ.
Case ψ′ = Xi:
We have JϕKMat = Mat(η(Xi)).
Case ψ′ = Yi:
Let the (n + 1) × (ln + 1) matrix N be such that N1,1 = 1, Nj+1,in+j+1 = 1 for each
1 ≤ j ≤ n and Nj,j′ = 0 for any other valid (j, j′). Then we have M ′ = normalizeκ(N).
Case ψ′ = ϕ1 ∧ ϕ2:
Let the (n + 1) × (ln + 1) matrix N be such that for each j (1 ≤ j ≤ n + 1), row j

of the matrix N is minlex{(M1)j,∗, (M2)j,∗}, where (Mi)j,∗ represents the row j of the
matrix Mi and minlex denotes the lexicographical minimum operation. Then we have
M ′ = normalizeκ(N).
Case ψ′ = ϕ1 ∨ ϕ2
Analogous to the Case ϕ1 ∧ ϕ2, while the operator minlex should be replaced by the
maxlex operator which takes the lexicographical maximum.
Case ψ′ = ⃝ϕ1:
Let A be the (n+ 1) × (n+ 1) matrix whose entities are given depending on the Markov
chain as follows.

Aij =


1 (i = j = 1)
0 (i = 1, 1 < j ≤ n+ 1)
0 (1 < i ≤ n+ 1, j = 1)
P (sj−1, si−1) (1 < i, j ≤ n+ 1)

Then the matrix M ′ is given by M ′ = AM1.
Case ψ′ = f ϕ1 ϕ2 . . . ϕa:
Note that the function f is one of the free variables X1, X2, . . . , Xk, since we assumed
that the formula ψ does not contain any function abstractions. We can also assume that
ψ′ has type PropT,U for some T and U , since we do not allow partial function applications
in the type system.
Let f = Xi. Then the matrix M ′ is given by

M ′ = normalizeκ

(
Mi

(
1 Vec(v1) Vec(v2) . . . Vec(va)

)⊤)
where vi = JϕiK for each i.

FSCD 2020

20:24 A Probabilistic Higher-order Fixpoint Logic

The correctness of this algorithm is immediate from the definition of JϕKMat.
We now consider formulas possibly with fixpoint operators using HES form.
For an HES E = (X1 =µ ϕ1;X2 =µ ϕ2; . . . ;Xk =µ ϕk), we define the fixpoint equation

toFP(E) as follows.

toFP(E) := (M1 = Jϕ1KMat(ηMat);M2 = Jϕ2KMat(ηMat); . . . ;Mk = JϕkKMat(ηMat))

Here, ηMat maps each variable Xi to the matrix Mi that contains variables that represent
unknown values.

▶ Theorem 35. Let ϕ be a formula whose HES form is (X1 =µ ϕ1;X2 =µ ϕ2; . . . ;Xk =µ ϕk).
Suppose ∅ ⊢M ϕ : PropT,U . Let (M1 = m1;M2 = m2; . . . ;Mk = mk) be the least solution of
the fixpoint equation toFP(E), and v be the entry of the matrix m1 which corresponds to the
initial state sin of the Markov chain. Then we have JϕK(sin) = v.

Since a fixpoint equation on reals can be solved in PSPACE [3], we have the following result
as a corollary of this theorem, which subsumes Theorem 28.

▶ Corollary 36. Let M be a Markov chain. If ∅ ⊢M ψ : Prop{0,1}, then whether M |= ψ is
decidable in space polynomial in n(d+ s), where n is the number of the states of M , d is the
size of ψ and s is the sum of the arities of the order-1 variables bound by fixpoint operators.

We prove Theorem 35 in the rest of this section.
Let K be a type environment such that dom(K) = {X1, X2, . . . , Xk} and K(Xi) = κi.

We write T and TMat for the sets Jτ1K× Jτ2K×· · ·× JτkK and Jτ1KMat × Jτ2KMat ×· · ·× JτkKMat
respectively. We define functions F : T → T and FMat : TMat → TMat by:

F (v1, v2, . . . , vk) = (Jϕ1K(η), Jϕ2K(η), . . . , JϕkK(η))
FMat(m1,m2, . . . ,mk) = (Jϕ1KMat(ηMat), Jϕ2KMat(ηMat), . . . , JϕkKMat(ηMat))

where dom(η) = dom(ηMat) = {X1, X2, . . . , Xk}, η(Xi) = vi and ηMat(Xi) = mi. We define
the function MatT by Mat((v1, v2, . . . vk)) = (Mat(v1),Mat(v2), . . . ,Mat(vk)).

By the correctness of the algorithm for fixpoint-free formulas, we have FMat(Mat(v)) =
Mat(f(v)) for any v ∈ T . Using these equations and Lemma 33 we get the following lemma.

▶ Lemma 37. The equation LFP(F) = Mat−1(LFP(FMat)) holds.

Theorem 35 follows immediately from Lemma 37.

B.2 Proof of Theorem 29
Recursive Markov chains can be encoded as order-1 probabilistic HORS (PHORS) [10]. Thus,
in this section, we show how the termination problem for PHORS can be encoded into a
PHFL model-checking problem in the restricted class.

We transform an order-1 PHORS G to a pair of a Markov chain M and a PHFL formula
ϕ typable in TM where, for any 0 ≤ r ≤ 1, the value J[ϕ]≥rK(sin) over the Markov chain M

equals 1 if and only if the termination probability of G is no less than r.
In the rest of this section we follow the notational conventions and definitions about

PHORS and higher-order fixpoint equations from [10].
We first fix an order-1 PHORS G = (N ,R, S) where dom(N) = {S, F1, F2, . . . , Fm},

N (Fi) = o → o → · · · → o︸ ︷︷ ︸
ki

→ o (which is denoted by oki → o) and R is such that Fi X1 X2 . . . Xki
=

ti,L ⊕pi
ti,R for each 1 ≤ i ≤ m and S = tS ⊕1 Ω. Without loss of generality, we assume

p1 ≤ p2 ≤ · · · ≤ pm. We write P(G) for the termination probability of the PHORS G.
We define the Markov chain M = (S, P, ρAP , sin) as follows.

Y. Mitani et al. 20:25

S = {s0, s1, . . . , sm+1},
P satisfies P (s0, s1) = p1, P (s0, si) = pi − pi−1 for 2 ≤ i ≤ m, P (s0, sm+1) = 1 − pm,
P (si, s0) = 1 for 1 ≤ i ≤ m+ 1 and P (si, sj) = 0 otherwise,
ρAP(Pi) = {si} for each 0 ≤ i ≤ m+ 1, and
sin = s0.

Before defining the formula ϕ, we define, for each applicative term t of PHORS, the
PHFL formula ⟨t⟩ by induction on the structure of t as follows.

⟨halt⟩ = {P0} ⟨Ω⟩ = {false}
⟨X⟩ = X ⟨Fi⟩ = Fi

⟨f u1 u2 . . . um⟩ = ⟨f⟩ ⟨u1⟩ ⟨u2⟩ . . . ⟨uk⟩ .

We also define the formula br(ϕL, ϕR, i) for formulas ϕL, ϕR and an index 1 ≤ i ≤ m by:

br(ϕL, ϕR, i) = {P0}∧⃝

(⃝ϕL) ∧

 ∨
1≤j≤i

{Pj}

 ∨

(⃝ϕR) ∧

 ∨
i+1≤j≤m+1

{Pj}

 .

Then the desired formula ϕ is given by ϕ = toPHFL(E) where E = (S =µ ⟨tS⟩ ;F1 =µ

λX1.λX2. . . . λXk1 .br(⟨t1,L⟩ , ⟨t1,R⟩ , 1); . . . ;Fm =µ λX1.λX2. . . . λXkm .br(⟨tm,L⟩ , ⟨tm,R⟩ ,m)).
We can prove the following lemma by induction on the structure of applicative terms in
rewriting rules.

▶ Lemma 38. Let σ = Prop{s1,s2,...,sm+1},∅. The HES E is well-typed in TM and can be
typed as SτS and F τi

i for 1 ≤ i ≤ m, where τS = σ and τi = σki → σ.

The correctness of the transformation is stated in the theorem below.

▶ Theorem 39. The equation P(G) = JϕK(sin) holds.

Proof. As stated in [10], the value P(G) is given by ρEG (S) where EG is a fixpoint equation
defined from G and ρE denotes the least solution of the fixpoint equation E . We prove the
value JϕK(sin) is also the least solution of the same fixpoint equation.

We define the translation (·)# on PHFL formulas as follows.

P#
0 = 1 false# = 0

X# = X F#
i = Fi

br(ϕL, ϕR, i)# = piϕ
#
L + (1 − pi)ϕ#

R

We then define the fixpoint equation Eϕ by

{S = ⟨tS⟩#
,

F1 X1 X2 . . . Xk1 = br(⟨t1,L⟩ , ⟨t1,R⟩ , 1)#,

. . . ,

Fm X1 X2 . . . Xkm
= br(⟨tm,L⟩ , ⟨tm,R⟩ ,m)#}

Let Γ be the type environment such that Γ ⊢ Eϕ.
By Lemma 37 and the fact that ρEϕ

is given by ⊔i∈ωF i
Eϕ

(⊥Γ), we have JϕK(sin) = ρEϕ
(S).

Moreover, we can prove that the two equations EG and Eϕ are (syntactically) same by
induction on the structures of applicative terms in R. Thus the theorem is proved. ◀

FSCD 2020

20:26 A Probabilistic Higher-order Fixpoint Logic

S

1

0

1F

*

-
j

F

Gp

1 − p

1
*

-
j

G

F Fp

1 − p

1 1
*

* -
R

Figure 5 Recursive Markov Chain A in Example 40.

▶ Example 40. Consider the PHORS consisting of the following rewriting rules:

S → F halt
F x → (G x) ⊕p x

G x → F (F x) ⊕p x

The corresponding Recursive Markov chain is shown in Figure 5.
Let ϕ be the formula corresponding to the HES E = (S =µ F {false};F X =µ br(GX,X);GX =µ

br(F (F X), X)) where

br(ϕ1, ϕ2) = {P0} ∧ ⃝ (({P1} ∧ ⃝ϕ1) ∨ ({P2} ∧ ⃝ϕ2))

Also, let M be the Markov chain (S, P, ρAP , sin) where
S = {s0, s1, s2},
P (s0, s1) = p, P (s0, s2) = 1 − p, P (s1, s0) = P (s2, s0) = 1 and P (si, sj) = 0 otherwise,
ρAP(Pi) = {si} for i = 0, 1, 2, and
sin = s0,

over which the formula ϕ is interpreted. Then the formula ϕ is well-typed in TM . The valueJϕK(sin) is the value of s in the least solution of the equations:

(s = f 0; f x = pg x+ (1 − p)x; g x = pf(f x) + (1 − p)x),

which coincides with the termination probability of the PHORS above.

