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sequence.
k-EXP in the size of terms of order k [Beckmann 2001].

e.g. (Twice)™ Twice--- Twice(Ax.bxx)((Ax.x)c)

k—2 times

where Twice = A\f \x.f(f x)

How many terms have such long B-reduction
sequences?



SIDE REMARK

The work has been motivated by quantitative analysis
of the complexity of higher-order model checking

(HOMC).

HIGHER-ORDER MODEL CHECKING [Ong 2006]

Input : tree automaton A and AY-term t.
Output : YES it A accepts the infinite tree

represented by t, NO otherwise.
Complexity: k-EXPTIME-complete for order-k AY-terms.

We want to (dis)prove: HOMC can be eftficiently
solved for almost every input.



RELATED WORK

Quantitative analysis of untyped terms:

Almost every A-term is strongly normalizing (SN), but

almost every SK-combinatory term is not SN
[David et al. 2009].

Almost every de Bruijn A-term is not SN
[Bendkowski et al. 2015].

Empirical results: almost every A-term is not B-normal,
untypable [Grygiel-Lescanne 2013].
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Almost every A-term is strongly normalizing (SN), but

almost every SK-combinatory term is not SN
[David et al. 2009].

Almost every de Bruijn A-term is not SN
[Bendkowski et al. 2015].

Empirical results: almost every A-term is not B-normal,
untypable [Grygiel-Lescanne 2013].

Quantitative analysis of typed terms: little is known.
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NUMBER OF DISTINCT VARIABLES

#V(t): the # of variables in t excluding unused
variables.

For an at-equivalence class [t],
#Vo([t]a) = min{#V (') | t' € [t]o}

Example

#V.([(Az.2) \y.z]o) = 1

#V((Az.2)\y.x) = #{z,z} =2
#V((Ax.x)\y.x) = #{z} =1




OUR RESULT

Fork,.,£6 >2and k <,

#iltle € AL (K, 1, E)} | B
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A% (k, 1, &) : the set of x-equivalence classes of size-n
terms such that:
(1) the order is at most k.
(2) the number of arguments (internal arity) is at most L.

(3) the number of distinct variables is at most &.

#V.([t]la) <& forevery [tla € AL (K, ¢, €)
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OVERVIEW OF OUR PROOF

Almost every term contains a certain “context”

that has a very long B-reduction sequence.

Inspired by Infinite Monkey Theorem: for any word x,
almost every word contains x as a subword.
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IDEA1: PARAMETERIZING INFINITE MONKEY THEOREM

For any family of words (Zn)n over A such that
2| = [log'? (n)],

ﬂ . #{w e A" |z, C w} _
n— 00 H A

L.

[10g(2)(n) = log(log(n)) ]




IDEA2: EXTENDING IDEAT TO TERMS

For any family of contexts (Cy,), such that
Cn| = [log'? (n)],

o €AYk 1O} | Cu 2t}

n—00 #AG (K, 0, )
if k,u,&> 2.

1.

[ C <t & t=C'[C[t']]for some context ¢’and term t’.]
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IDEA3: CONSTRUCTING “EXPLOSIVE” CONTEXT

For parameters n and k, we define the explosive

context %k of order-k as:

n

Az ((Twice)™ Twice - - - Twice Dup(Id[]))
N——

k—2 times

where Twice = Af. x.f(f x)
Dup = Mx.(Ay.Az.y)xx and Id = Ax.x

It has the following “explosive property”:

@ <t = HEXP(n) < B().
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HARVEST

Fork,..&€ >2and k <,

#{(the € A3(k,1,0)} | @it} _
n— 00 #AO‘ ]{j L f .

lim

\U/ A direct corollary of the explosive property:

’?’bﬁ o 1= (k= 2-EXP(n) < 5(0).

Almost every term of size n and order at most k
has a B-reduction sequence of length (k-2)-EXP(n).
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PROOF IDEA

[ Parameterizing Infinite Monkey Theorem.)

A ,
We first give a proof of

( Extending (1) to A-terms} (1), because it clarify
A the overall structure of

[ Most technical part ] the proof of (2).

Constructing “explosive context” that generates
a long B-reduction sequence.
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PROOF OF MONKEY THEOREM FOR WORDS

For any word x over an alphabet A,

#{w e A" | x C w}

= 1.

lim

n— 00 H A

It suffice to show that:

#{w e A" |z L w}
Yy — 0

(n — 00)
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DECOMPOSITION OF WORDS
(n mod €)<€

A s w {wﬂ[w] [wwjﬂ

E

Previous proof is based on a “good” decomposition of words.
This good decomposition is induced by the following

| R U

w/EA(n mod £) 1 < I_n/gj

A’n

10

This point of view forms the basis of the later extensions.
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CHALLENGE IN PROVING PARAMETERISED
MONKEY THEOREM FOR TERMS

* How to obtain such a “good” decomposition for the

set of A-terms AJ (k,¢,£)?

* Non-trivial since terms have various shapes:
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DECOMPOSITION OF TERMS
AT

| |(second-order context)

AT (Ay.( Az x.2)(Ax.(Ax.y)Az.2))x
decomposition size m = 3

| [Residual part




ANALOGY BETWEEN
THE DECOMPOSITION OF TERMS AND WORDS

@
— T
AY
|
Q
/ \ @3
AT Q
/ \
z TT Az
Yy <
decompose

abracadabra H abr]laca]|dab) @

** Decomposed part * Residual part
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INFINITE MONKEY THOREM FOR TERMS
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PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

For any family of contexts (Cy,)n of Ay, (k,¢,&)such
that|C,| = [log'® (n)],

[t € A2k, 1,0} | Co <1}

n—roc S U
if k,u,&> 2.

1.

lim

#{[t]a = A%(k,b,g) ‘ Ch A t}
# A (K, ¢, €)




SUMMARY OF THE MAIN PROOF

the probability that a term [t|o € A (K, ¢, &) has a
p-reduction sequence of length (k-2)-EXP(n)

("." explosive property)

> the probability that

k

“Og(z) (n)] j t holds

(*." Monkey Theorem)
—1 (n — o00)
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CONCLUSION

Almost every terms of size n and order at most k has a
B-reduction sequence of length (k-2)-EXP(n).

The core of our proof is a non-trivial extension of
well-known Infinite Monkey Theorem.

FUTURE WORK

Quantitative analysis of simply typed A-terms in
different settings:

with an unbounded number of variables.

with recursion.



