ALMOST EVERY SIMPLY TYPED LAMBDA TERM HAS A LONG BETA-REDUCTION SEQUENCE

RYOMA SIN'YA KAZUYUKI ASADA NAOKI KOBAYASHI TAKESHI TSUKADA (THE UNIVERSITY OF TOKYO)

MOTIVATION

- A simply-typed term can have a very long β-reduction sequence.
 - k-EXP in the size of terms of order k [Beckmann 2001].

$$0\text{-}\mathrm{EXP}(n) = n$$
$$(m+1)\text{-}\mathrm{EXP}(n) = 2^{m\text{-}\mathrm{EXP}(n)}$$

How many terms have such long β-reduction sequences?

MOTIVATION

- A simply-typed term can have a very long β-reduction sequence.
 - k-EXP in the size of terms of order k [Beckmann 2001].

e.g.
$$(Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} (\lambda x.bxx)((\lambda x.x)c)$$

where
$$Twice = \lambda f \cdot \lambda x \cdot f(f x)$$

How many terms have such long β-reduction sequences?

SIDE REMARK

 The work has been motivated by quantitative analysis of the complexity of higher-order model checking (HOMC).

HIGHER-ORDER MODEL CHECKING [Ong 2006]

- Input : tree automaton \mathcal{A} and λ Y-term t.
 - Output : YES if A accepts the infinite tree represented by t, NO otherwise.

Complexity: k-EXPTIME-complete for order- $k \lambda$ Y-terms.

 We want to (*dis*)prove: HOMC can be efficiently solved for *almost every input*.

RELATED WORK

- Quantitative analysis of untyped terms:
 - Almost every λ-term is strongly normalizing (SN), but almost every SK-combinatory term is not SN [David et al. 2009].
 - Almost every de Bruijn λ-term is not SN [Bendkowski *et al.* 2015].
 - Empirical results: almost every λ -term is not β -normal, untypable [Grygiel-Lescanne 2013].

RELATED WORK

- Quantitative analysis of untyped terms:
 - Almost every λ-term is strongly normalizing (SN), but almost every SK-combinatory term is not SN [David et al. 2009].
 - Almost every de Bruijn λ-term is not SN [Bendkowski *et al.* 2015].
 - Empirical results: almost every λ -term is not β -normal, untypable [Grygiel-Lescanne 2013].
- Quantitative analysis of typed terms: little is known.

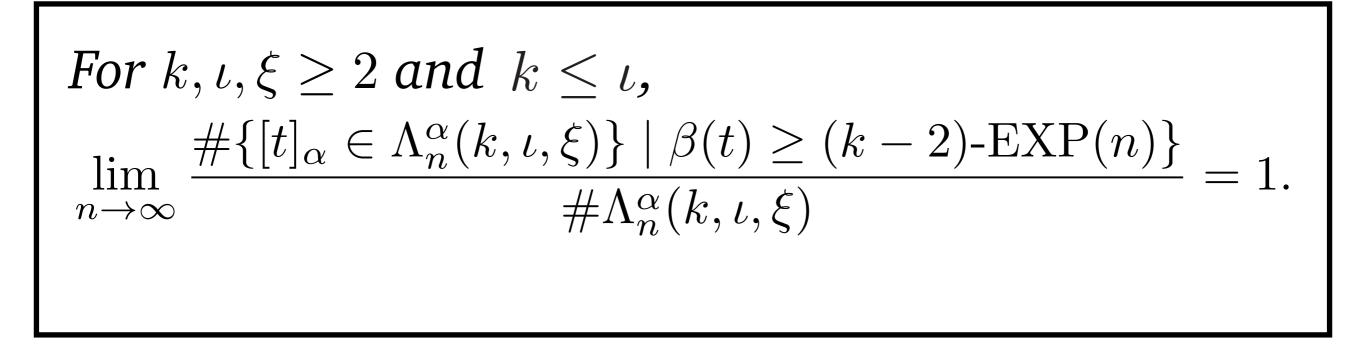
Introduction

•Our result

Proof of our result

Conclusion

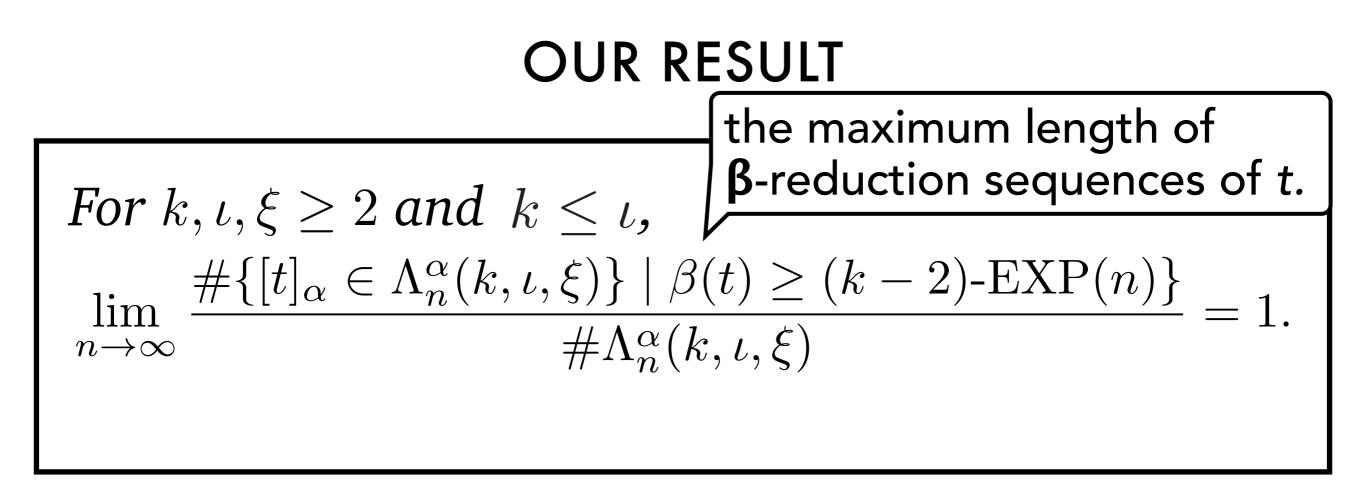
OUR RESULT



 $\Lambda_n^{lpha}(k,\iota,\xi)$: the set of **\alpha**-equivalence classes of size-*n* terms such that:

(1) the order is at most k.

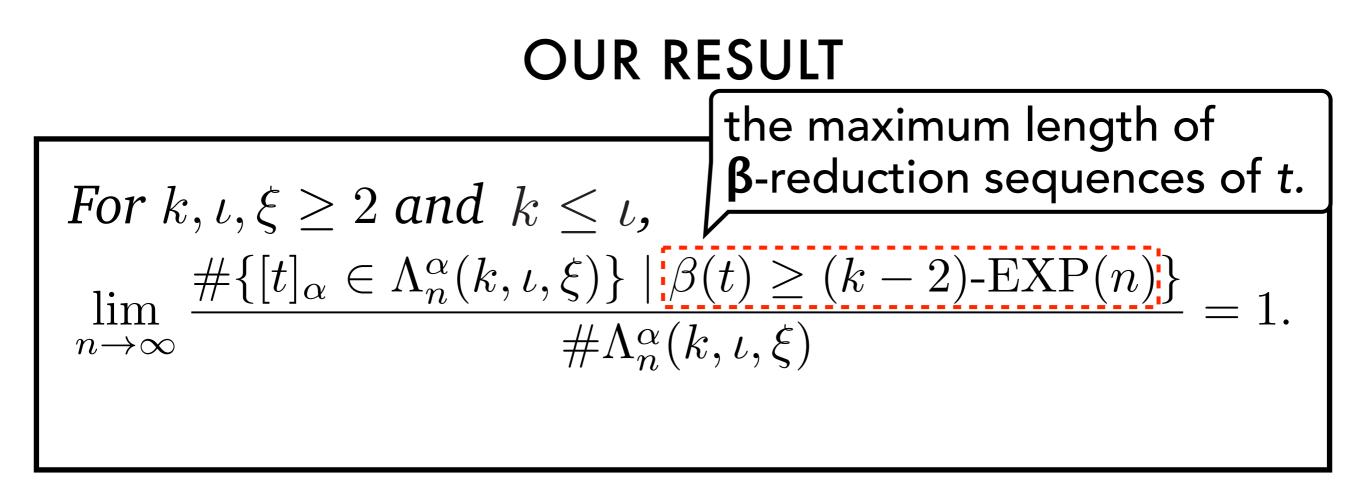
(2) the number of arguments (internal arity) is at most l.



 $\Lambda_n^\alpha(k,\iota,\xi) : \text{the set of } \pmb{\alpha}\text{-equivalence classes of size-} n \\ \text{terms such that:}$

(1) the order is at most k.

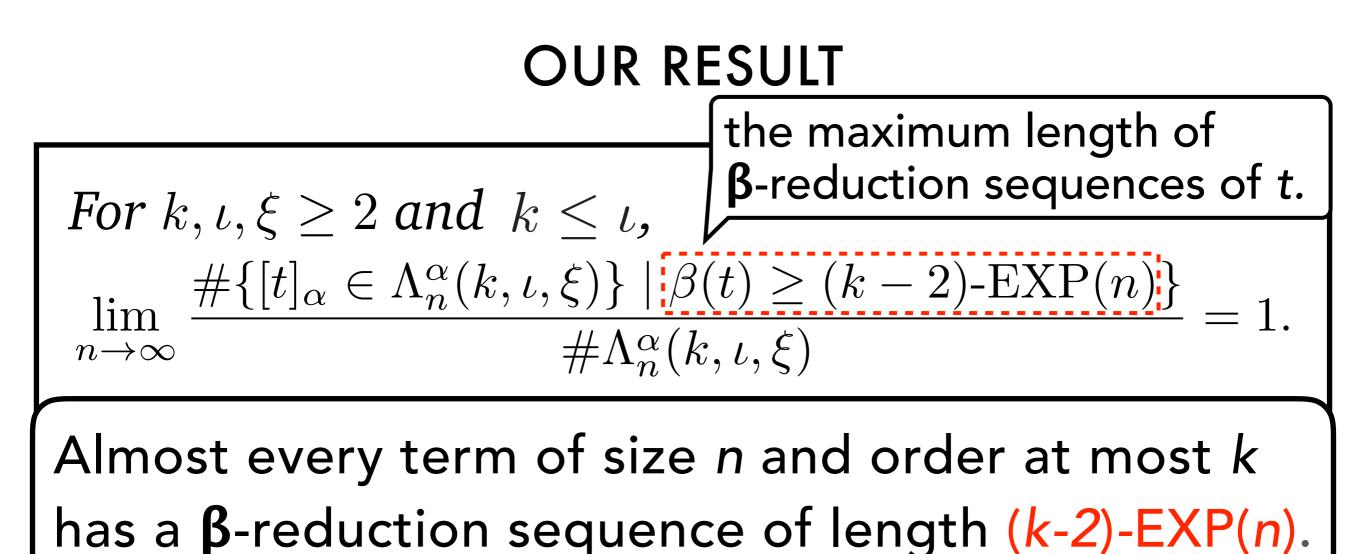
(2) the number of arguments (internal arity) is at most l.



 $\Lambda_n^{\alpha}(k,\iota,\xi) : \text{the set of } \pmb{\alpha}\text{-equivalence classes of size-} n \\ \text{terms such that:}$

(1) the order is at most k.

(2) the number of arguments (internal arity) is at most l.

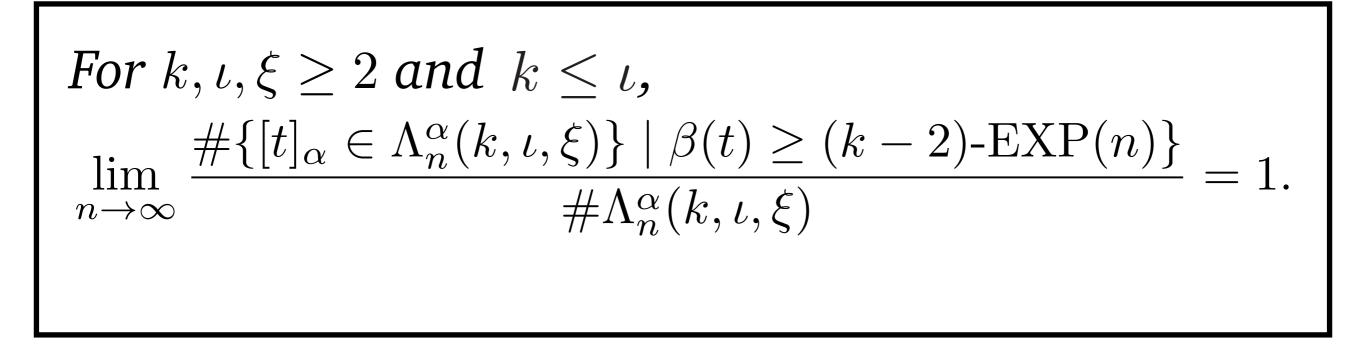


 $\Lambda_n^{\alpha}(k,\iota,\xi) : \text{the set of } \pmb{\alpha}\text{-equivalence classes of size-} n \\ \text{terms such that:}$

(1) the order is at most k.

(2) the number of arguments (internal arity) is at most l.

OUR RESULT



 $\Lambda_n^{lpha}(k,\iota,\xi)$: the set of **\alpha**-equivalence classes of size-*n* terms such that:

(1) the order is at most k.

(2) the number of arguments (internal arity) is at most l .

- #V(t): the # of variables in t excluding unused variables.
- For an $\boldsymbol{\alpha}$ -equivalence class $[t]_{\alpha}$,

 $\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$

- #V(t): the # of variables in t excluding unused variables.
- For an $\boldsymbol{\alpha}$ -equivalence class $[t]_{lpha}$,

 $\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$

Example $\# \mathbf{V}_{\alpha}([(\lambda z.z)\lambda y.x]_{\alpha}) = ?$

- #V(t): the # of variables in t excluding unused variables.
- For an $\boldsymbol{\alpha}$ -equivalence class $[t]_{lpha}$,

 $\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$

$$\# \mathbf{V}_{\alpha}([(\lambda z.z)\lambda y.x]_{\alpha}) = ?$$

$$\#\mathbf{V}((\lambda z.z)\lambda y.x) = \#\{x,z\} = 2$$

- #V(t): the # of variables in t excluding unused variables.
- For an $\boldsymbol{\alpha}$ -equivalence class $[t]_{lpha}$,

 $\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$

$$\# \mathbf{V}_{\alpha}([(\lambda z.z)\lambda y.x]_{\alpha}) = ?$$

$$\#\mathbf{V}((\lambda z.z)\lambda y.x) = \#\{x,z\} = 2$$

- #V(t): the # of variables in t excluding unused variables.
- For an $\boldsymbol{\alpha}$ -equivalence class $[t]_{lpha}$,

 $\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$

$$\# \mathbf{V}_{\alpha}([(\lambda z.z)\lambda y.x]_{\alpha}) = ?$$

$$\#\mathbf{V}((\lambda z.z)\lambda y.x) = \#\{x,z\} = 2$$
$$\#\mathbf{V}((\lambda x.x)\lambda y.x) = \#\{x\} = 1$$

- #V(t): the # of variables in t excluding unused variables.
- For an $oldsymbol{lpha}$ -equivalence class $[t]_{lpha}$,

 $\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$

$$\# \mathbf{V}_{\alpha}([(\lambda z.z)\lambda y.x]_{\alpha}) = 1$$

$$#\mathbf{V}((\lambda z.z)\lambda y.x) = #\{x,z\} = 2$$
$$#\mathbf{V}((\lambda x.x)\lambda y.x) = \#\{x\} = 1$$

OUR RESULT

For
$$k, \iota, \xi \ge 2$$
 and $k \le \iota$,
$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid \beta(t) \ge (k-2) \cdot \mathrm{EXP}(n)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$

 $\Lambda_n^{lpha}(k,\iota,\xi)$: the set of **\alpha**-equivalence classes of size-*n* terms such that:

(1) the order is at most k.

(2) the number of arguments (internal arity) is at most l.

(3) the number of distinct variables is at most ξ .

 $\# \mathbf{V}_{\alpha}([t]_{\alpha}) \leq \xi \text{ for every } [t]_{\alpha} \in \Lambda_{n}^{\alpha}(k,\iota,\xi)$

Introduction

•Our result

Proof of our result

Conclusion

OVERVIEW OF OUR PROOF

 Almost every term contains a certain "context" that has a very long β-reduction sequence.

OVERVIEW OF OUR PROOF

• Almost every term contains a certain "context" that has a very long β -reduction sequence.

OVERVIEW OF OUR PROOF

• Almost every term contains a certain "context" that has a very long β -reduction sequence.

 Inspired by Infinite Monkey Theorem: for any word x, almost every word contains x as a subword.

Introduction

- •Our result
- Proof of our result
 Idea
 - Infinite Monkey Theorem

OUTLINE

- Decomposition of terms
- Sketch of the proof

Conclusion

PROOF IDEA

1. Parameterizing Infinite Monkey Theorem.

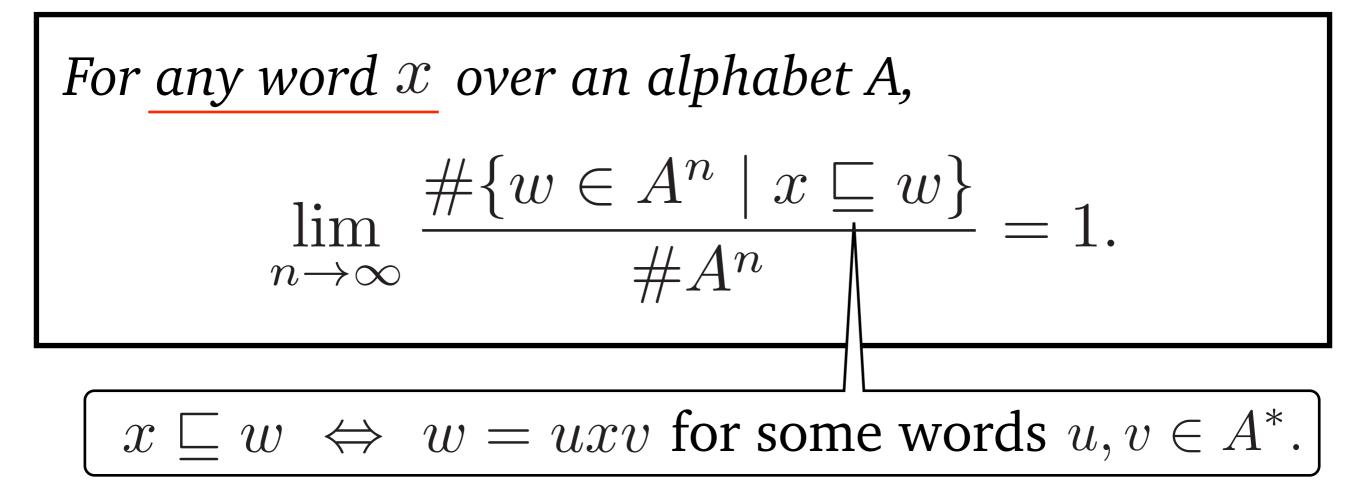
2. Extending (1) to λ -terms.

3. Constructing "explosive context" that generates a long β -reduction sequence.

INFINITE MONKEY THEOREM



INFINITE MONKEY THEOREM



IDEA1: PARAMETERIZING INFINITE MONKEY THEOREM

For any family of words
$$(x_n)_n$$
 over A such that

$$|x_n| = \lceil \log^{(2)}(n) \rceil,$$

$$\lim_{n \to \infty} \frac{\#\{w \in A^n \mid x_n \sqsubseteq w\}}{\#A^n} = 1.$$

$$\log^{(2)}(n) = \log(\log(n))$$

IDEA2: EXTENDING IDEA1 TO TERMS

For any family of contexts
$$(C_n)_n$$
 such that

$$|C_n| = \lceil \log^{(2)}(n) \rceil,$$

$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid C_n \leq t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$
if $k, \iota, \xi \geq 2$.

$$C \leq t \iff t = C'[C[t']] \text{ for some context } C' \text{ and term } t'.$$

IDEA3: CONSTRUCTING "EXPLOSIVE" CONTEXT

• For parameters *n* and *k*, we define the explosive context \bigcap_{n}^{k} of order-*k* as:

Ax.
$$((Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} Dup(Id[]))$$

where $Twice = \lambda f.\lambda x.f(fx)$
 $Dup = \lambda x.(\lambda y.\lambda z.y)xx$ and $Id = \lambda x.x$

IDEA3: CONSTRUCTING "EXPLOSIVE" CONTEXT

• For parameters *n* and *k*, we define the explosive context \bigcap_{n}^{k} of order-*k* as:

Ax.
$$((Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} Dup(Id[]))$$

where $Twice = \lambda f.\lambda x.f(fx)$
 $Dup = \lambda x.(\lambda y.\lambda z.y)xx$ and $Id = \lambda x.x$

It has the following "explosive property":

$$\beta(\mathbf{v}_{n}^{k}) \geq k - \mathrm{EXP}(n)$$

IDEA3: CONSTRUCTING "EXPLOSIVE" CONTEXT

• For parameters *n* and *k*, we define the explosive context \bigcap_{n}^{k} of order-*k* as:

Ax.
$$((Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} Dup(Id[]))$$

where $Twice = \lambda f.\lambda x.f(fx)$
 $Dup = \lambda x.(\lambda y.\lambda z.y)xx$ and $Id = \lambda x.x$

It has the following "explosive property":

$$\bigotimes_{n}^{k} \leq t \Rightarrow k \operatorname{-} \operatorname{EXP}(n) \leq \beta(t).$$

HARVEST

For
$$k, \iota, \xi \ge 2$$
 and $k \le \iota$,
$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$

HARVEST

For
$$k, \iota, \xi \ge 2$$
 and $k \le \iota$,
$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$

A direct corollary of the explosive property: $\sum_{[\log^{(2)}(n)]}^{k} \leq t \Rightarrow (k-2) - \mathrm{EXP}(n) \leq \beta(t).$

Almost every term of size *n* and order at most *k* has a β -reduction sequence of length (*k*-2)-EXP(*n*).

PROOF IDEA

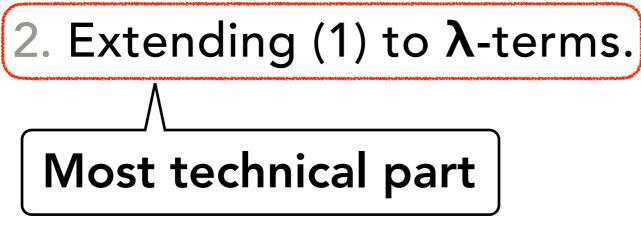
1. Parameterizing Infinite Monkey Theorem.

2. Extending (1) to λ -terms.

3. Constructing "explosive context" that generates a long β -reduction sequence.

PROOF IDEA

1. Parameterizing Infinite Monkey Theorem.



3. Constructing "explosive context" that generates a long β -reduction sequence.

PROOF IDEA

1. Parameterizing Infinite Monkey Theorem.

2. Extending (1) to λ -terms.

Most technical part

We first give a proof of (1), because it **clarify** the overall structure of the proof of (2).

3. Constructing "explosive context" that generates a long β -reduction sequence.

Introduction

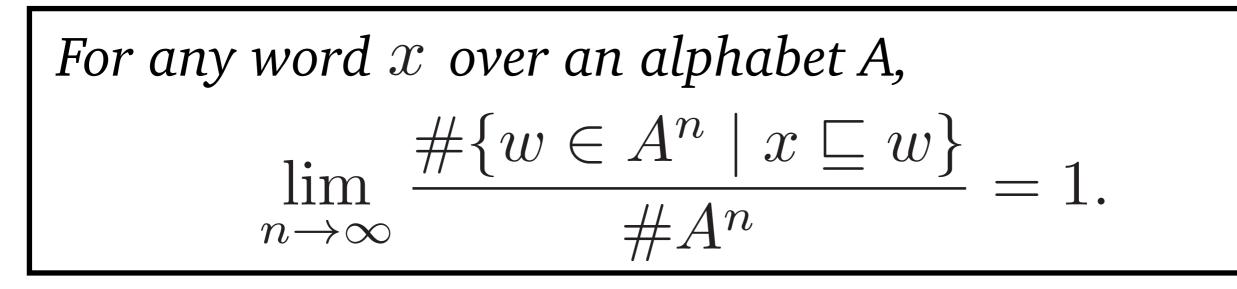
OUTLINE

- •Our result
- Proof of our result
 Idea

- Infinite Monkey Theorem
- Decomposition of terms
- Sketch of the proof

Conclusion

http://en.wikipedia.org/wiki/ Infinite_monkey_theorem



It suffice to show that:

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \to 0 \ (n \to \infty)$$

$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \xrightarrow{?} 0 \ (n \to \infty)$

Let $\ell = |x|, w \in A^n$.

 $\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \xrightarrow{?} 0 \ (n \to \infty)$

Let
$$\ell = |x|, w \in A^n$$
.

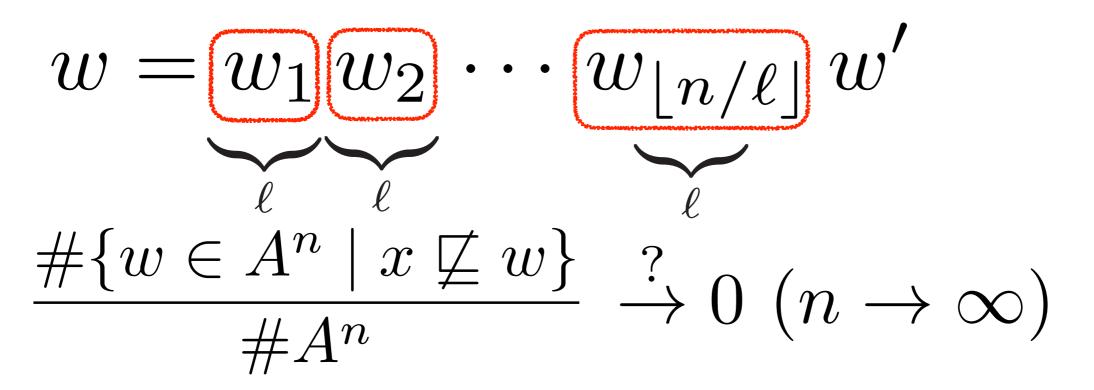
$$w = w_1 \, w_2 \, \cdots \, w_{\lfloor n/\ell \rfloor} \, w'$$

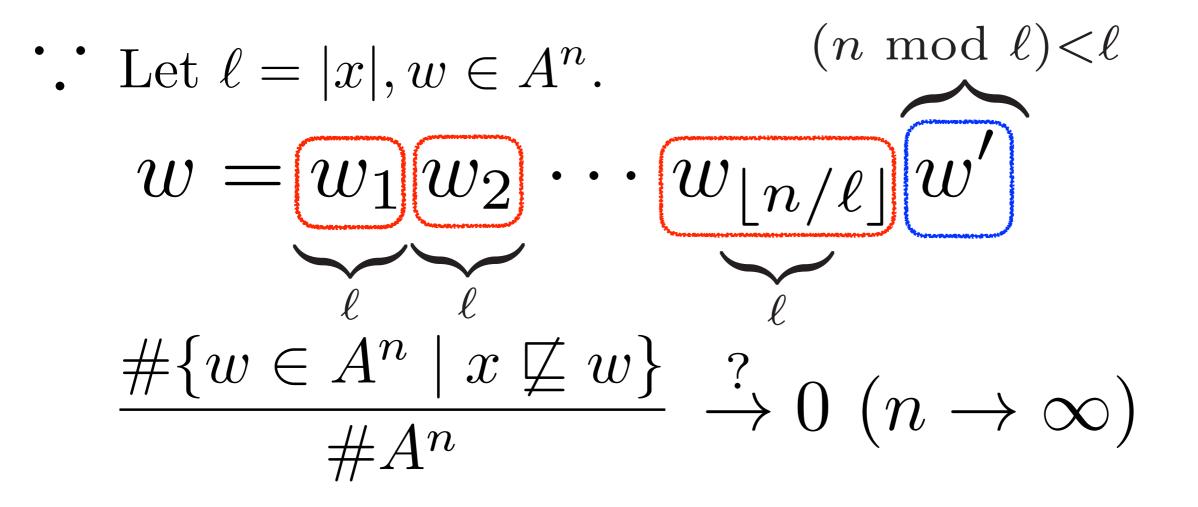
$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \xrightarrow{?} 0 \ (n \to \infty)$$

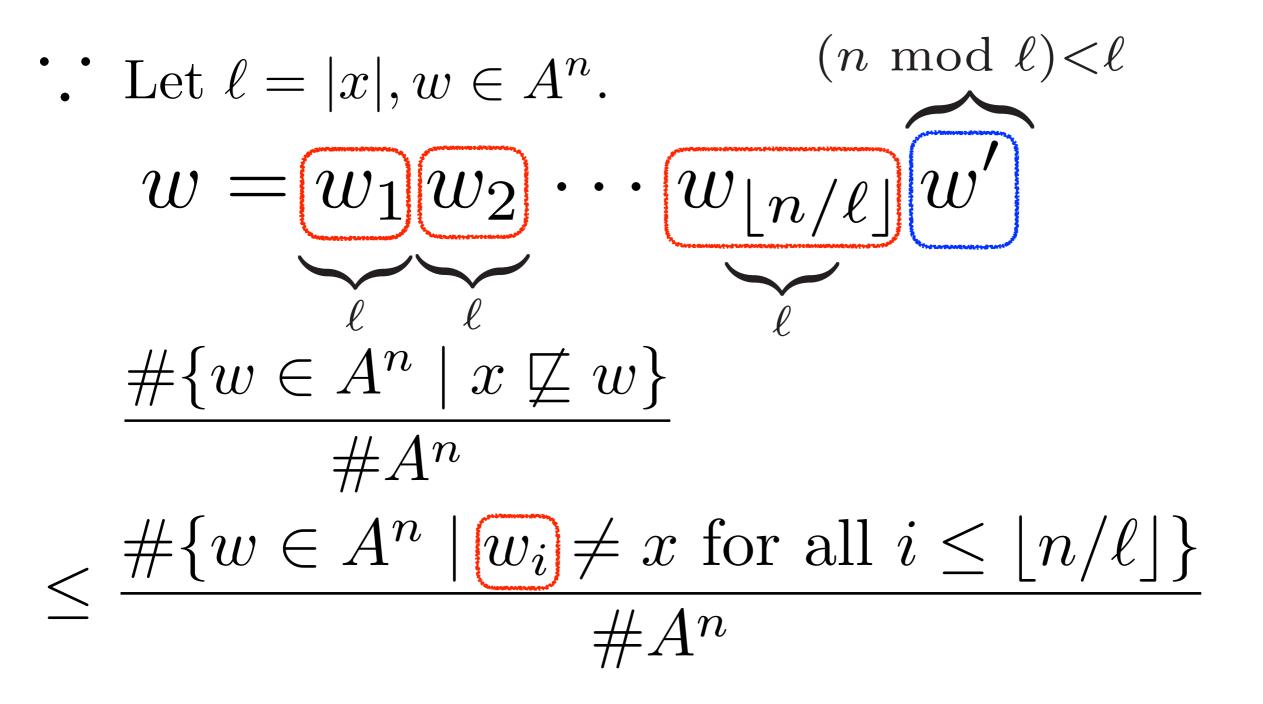
$$\therefore \text{ Let } \ell = |x|, w \in A^n. \\ w = \underbrace{w_1}_{\ell} w_2 \cdots w_{\lfloor n/\ell \rfloor} w' \\ \underbrace{\#\{w \in A^n \mid x \not\subseteq w\}}_{\#A^n} \xrightarrow{?} 0 \ (n \to \infty)$$

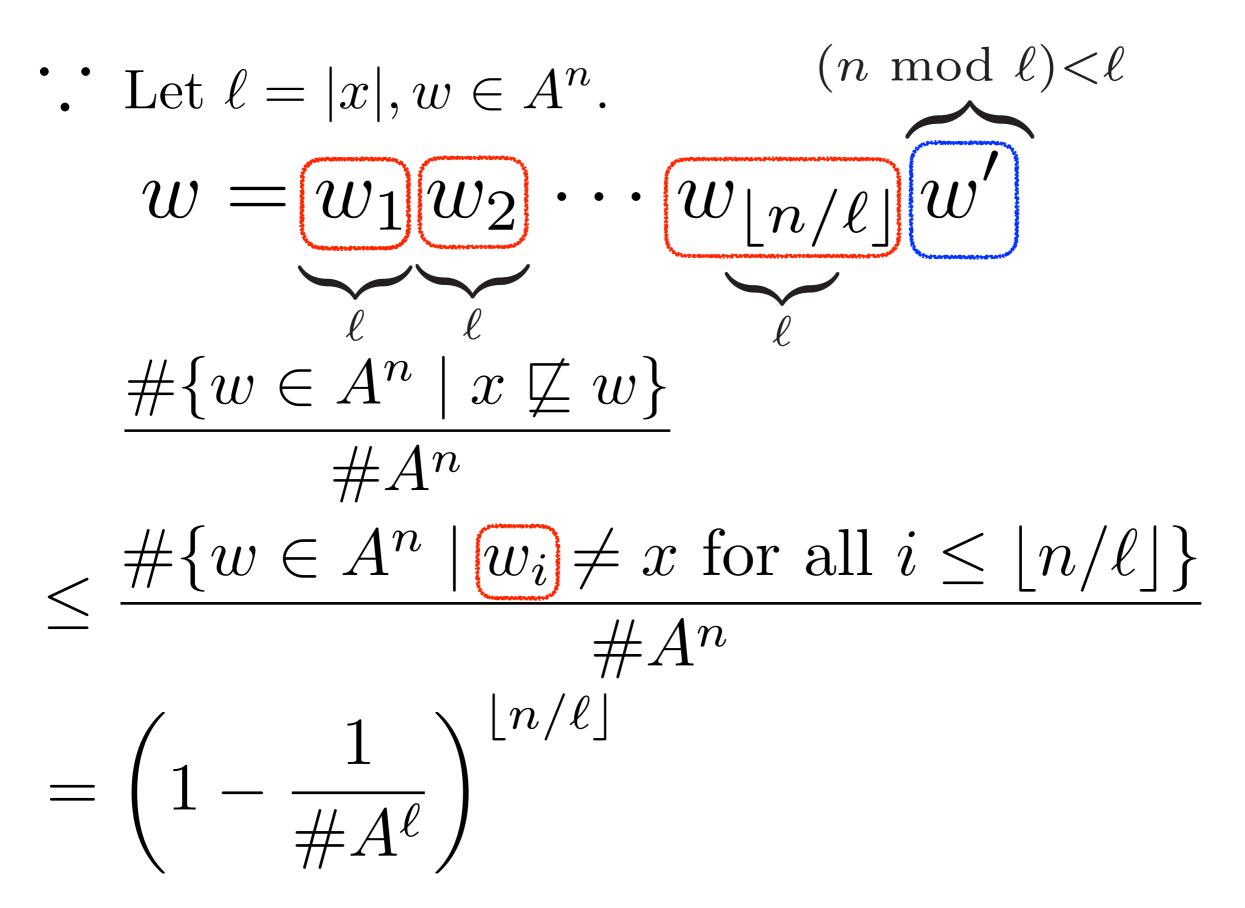
$$\therefore \text{ Let } \ell = |x|, w \in A^n. \\ w = \underbrace{w_1 w_2}_{\ell} \cdots w_{\lfloor n/\ell \rfloor} w' \\ \underbrace{\#\{w \in A^n \mid x \not\sqsubseteq w\}}_{\#A^n} \xrightarrow{?} 0 \ (n \to \infty)$$

Let
$$\ell = |x|, w \in A^n$$









$$\therefore \text{ Let } \ell = |x|, w \in A^n. \qquad (n \mod \ell) < \ell$$

$$w = \underbrace{w_1 w_2}_{\ell} \cdots \underbrace{w_{\lfloor n/\ell \rfloor}}_{\ell} \underbrace{w'}_{\ell}$$

$$\frac{\#\{w \in A^n \mid x \not\subseteq w\}}{\#A^n}$$

$$\leq \frac{\#\{w \in A^n \mid w_i \neq x \text{ for all } i \leq \lfloor n/\ell \rfloor\}}{\#A^n}$$

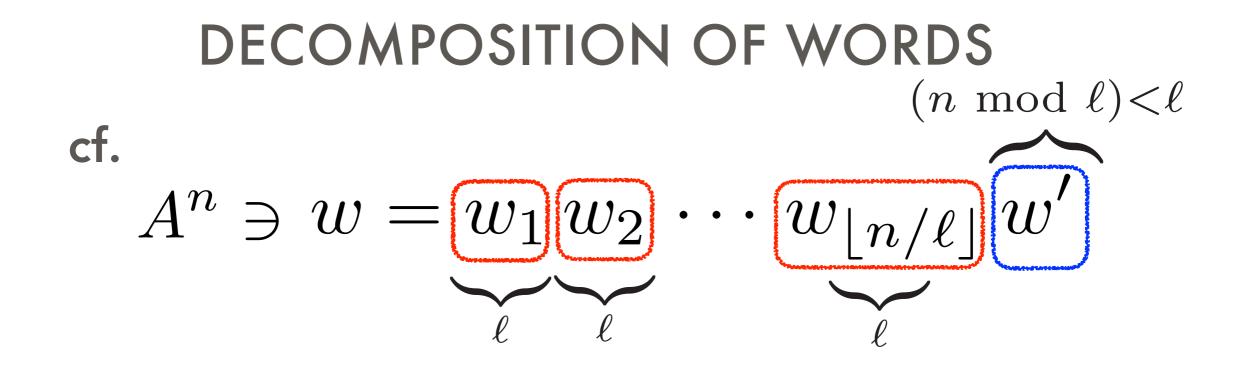
$$= \left(1 - \frac{1}{\#A^\ell}\right)^{\lfloor n/\ell \rfloor} \rightarrow 0 \ (n \to \infty)$$

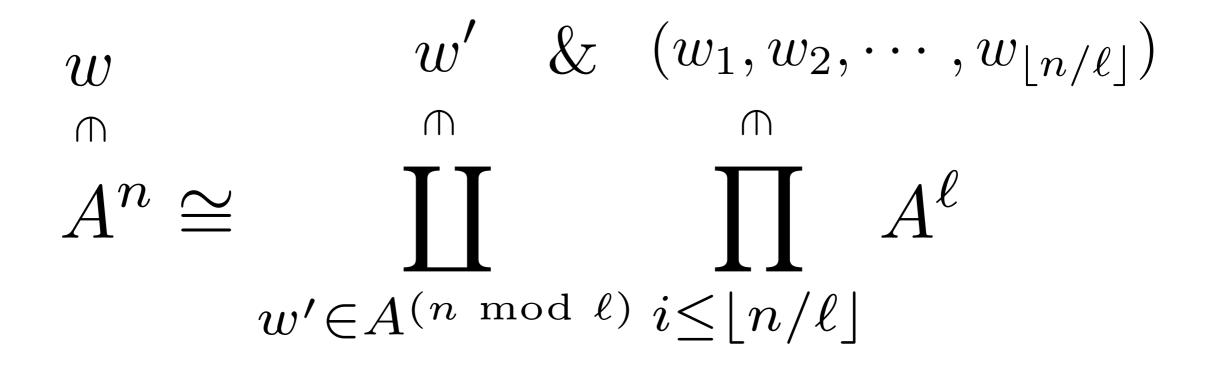
DECOMPOSITION OF WORDS
(n mod
$$\ell$$
)< ℓ
cf.
 $A^n \ni w = \underbrace{w_1 w_2}_{\ell} \cdots \underbrace{w_{\lfloor n/\ell \rfloor} w'}_{\ell}$

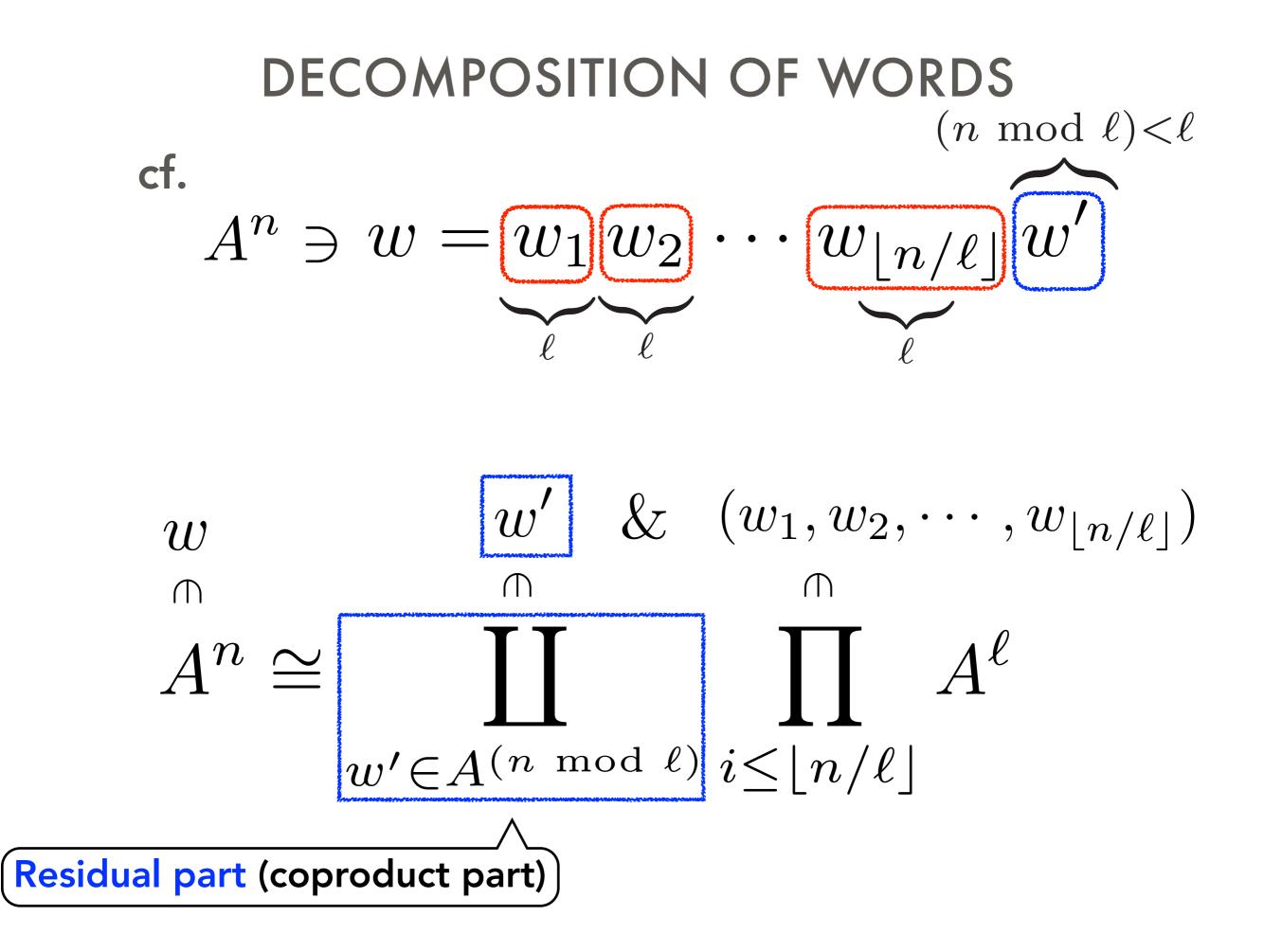
- Previous proof is based on a "good" decomposition of words.
 - This good decomposition is induced by the following coproduct-product form:

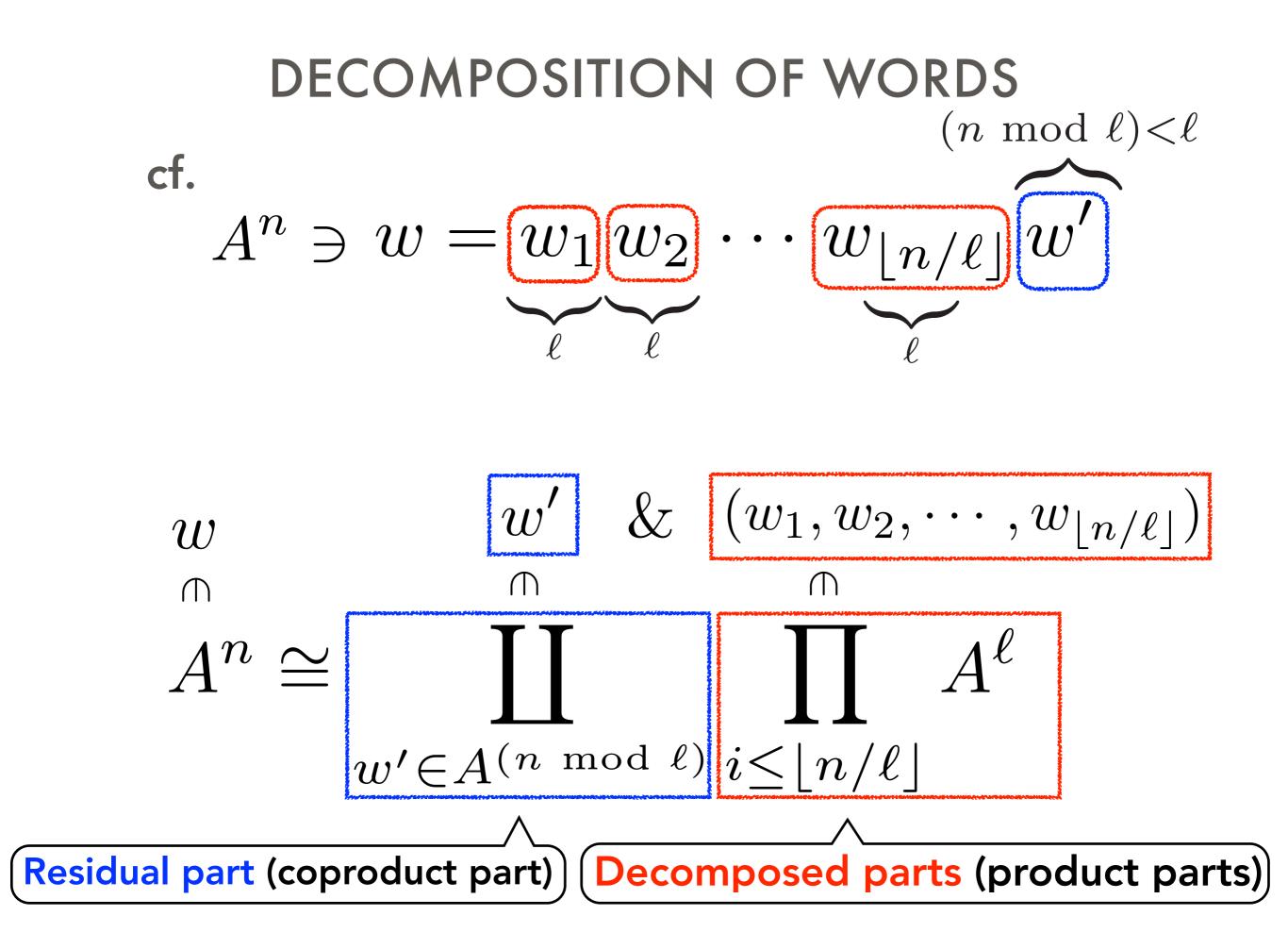
$$A^{n} \cong \prod_{w' \in A^{(n \mod \ell)}} \prod_{i \le \lfloor n/\ell \rfloor} A^{\ell}$$

• This point of view forms the basis of the later extensions.



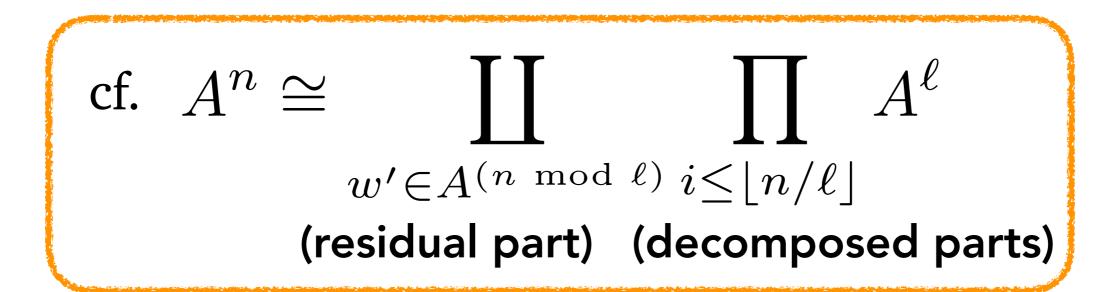


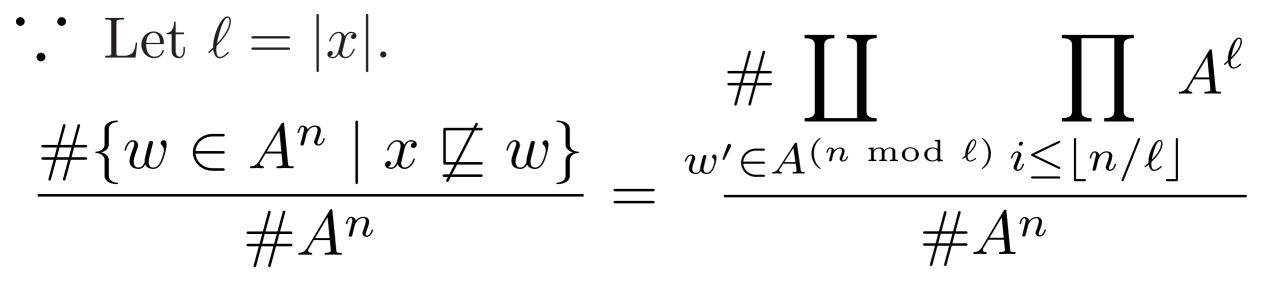


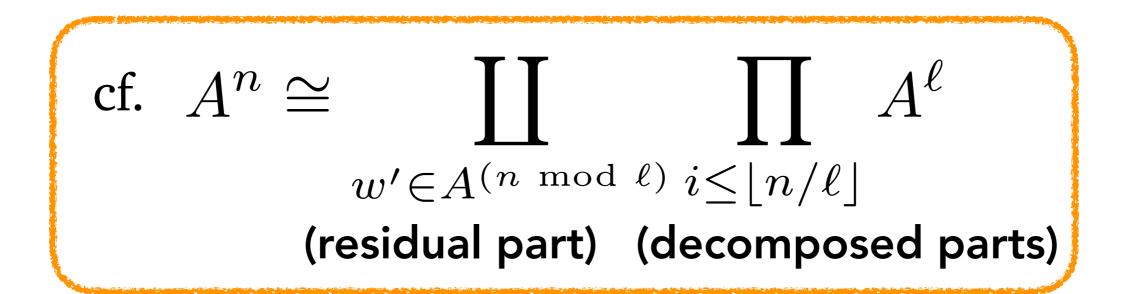


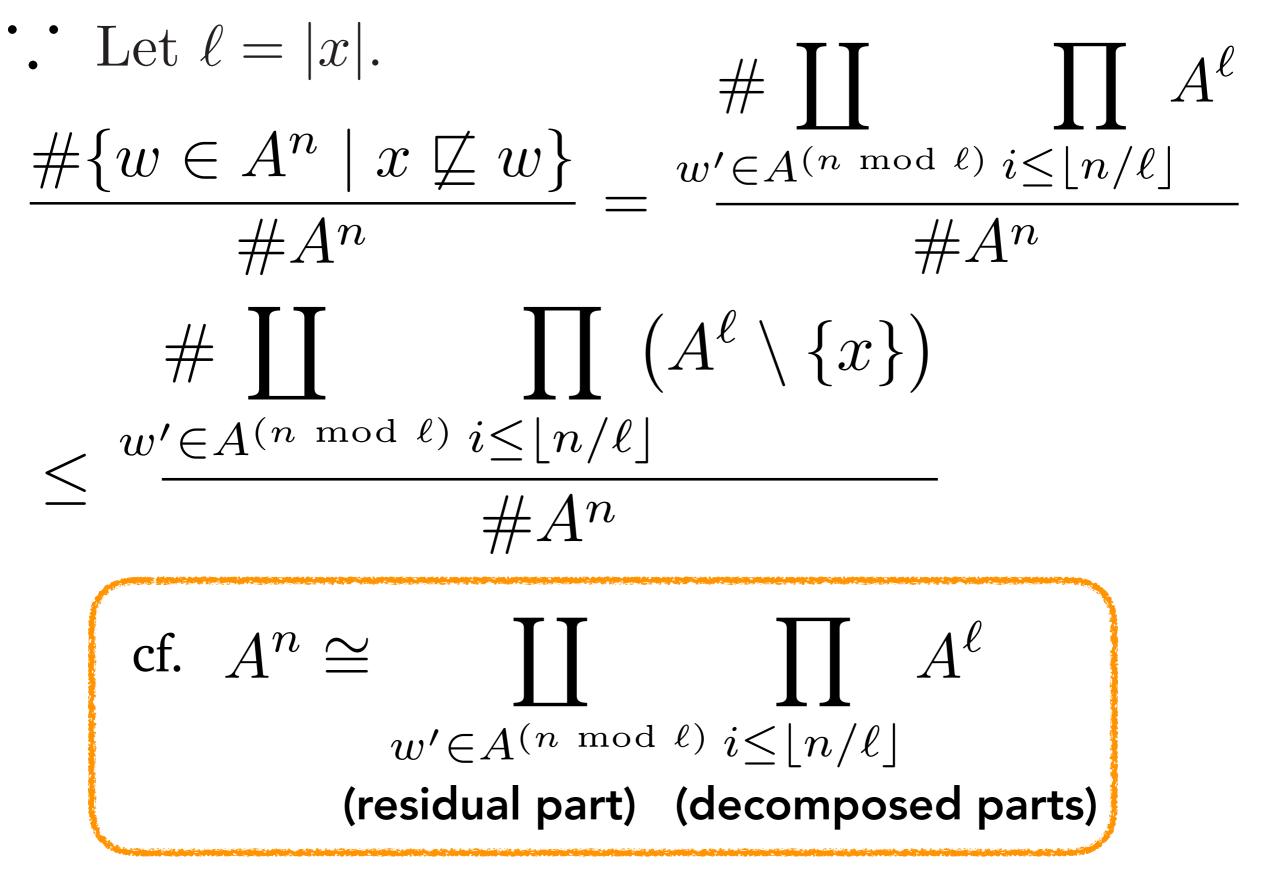
Let $\ell = |x|$.

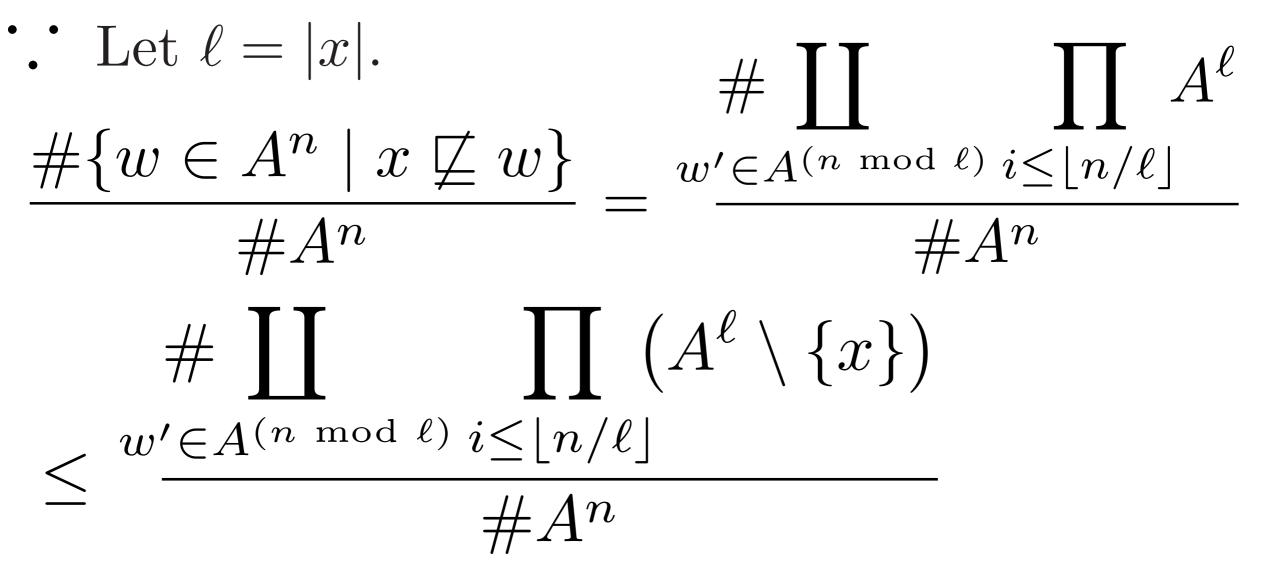
 $#\{w \in A^n \mid x \not\sqsubseteq w\}$ $#A^n$

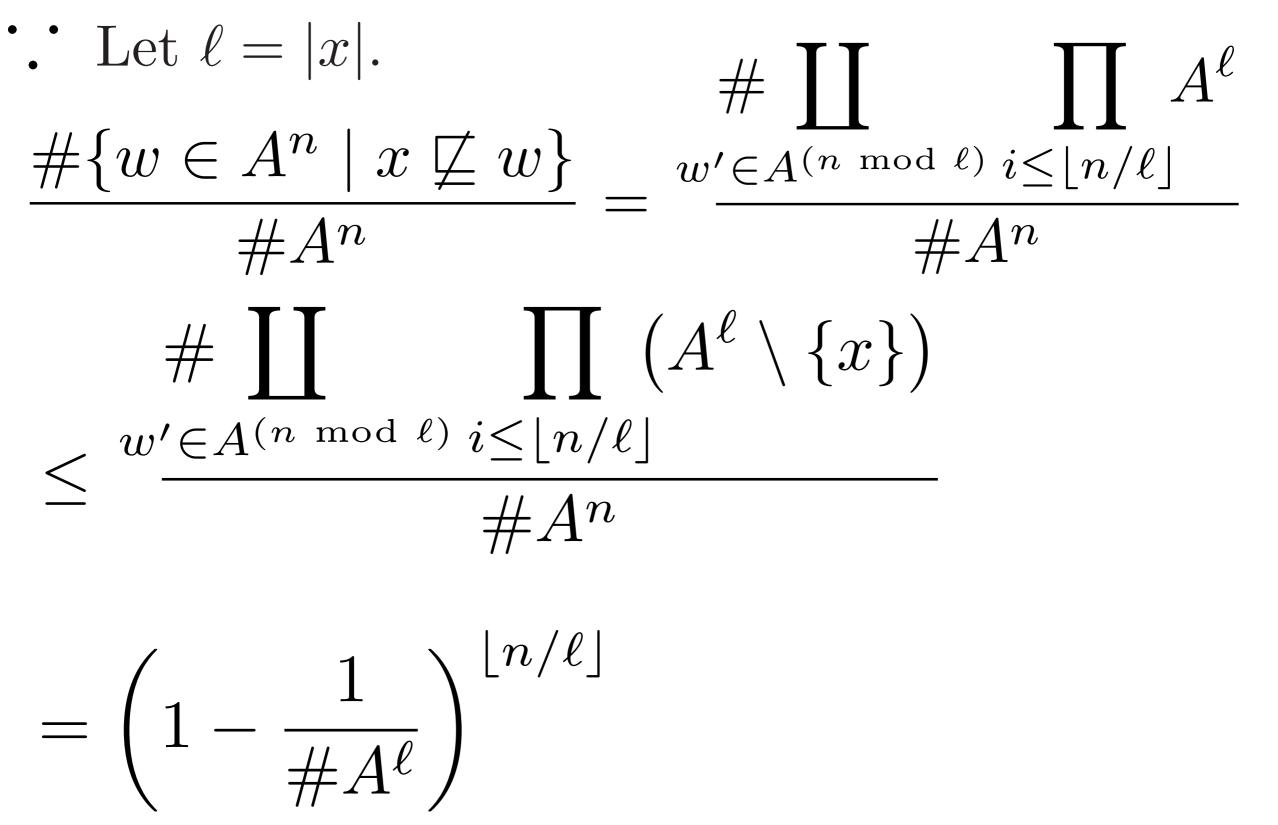


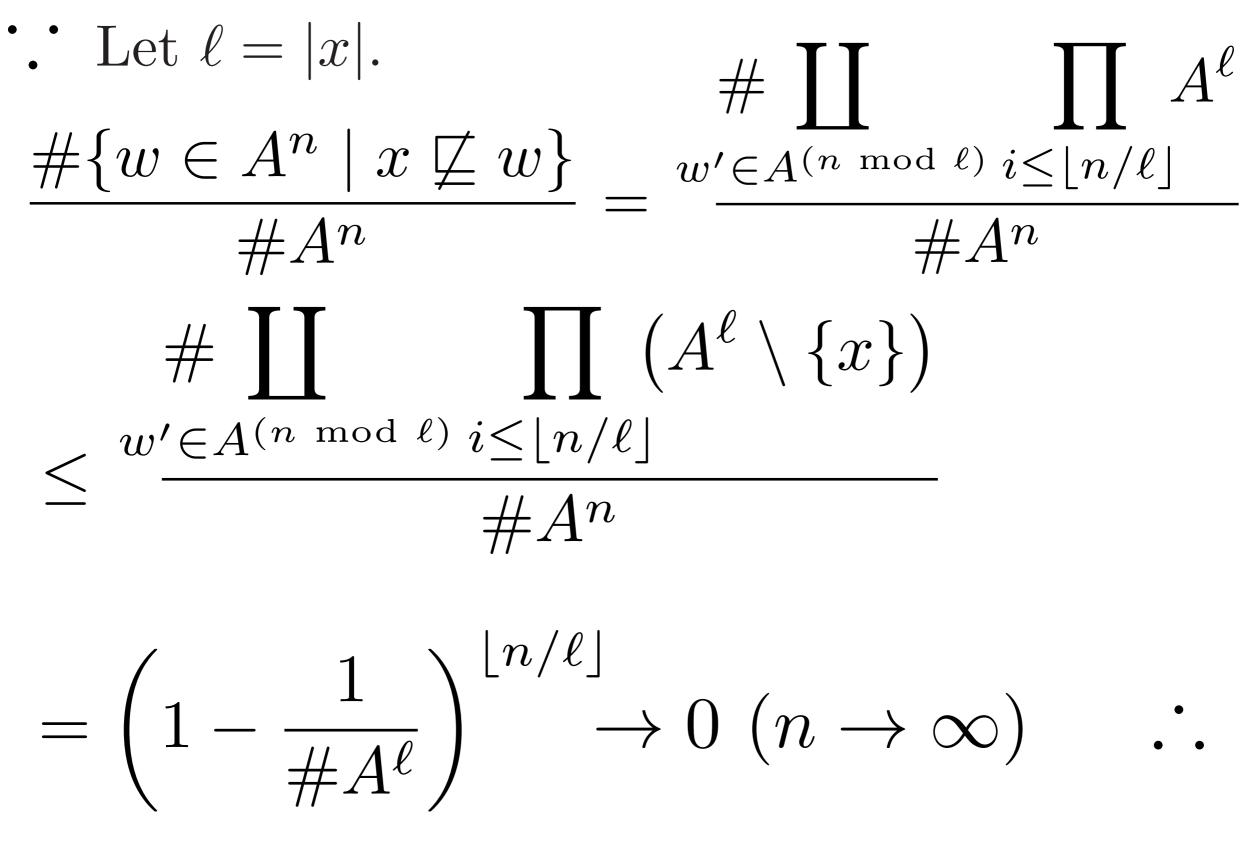


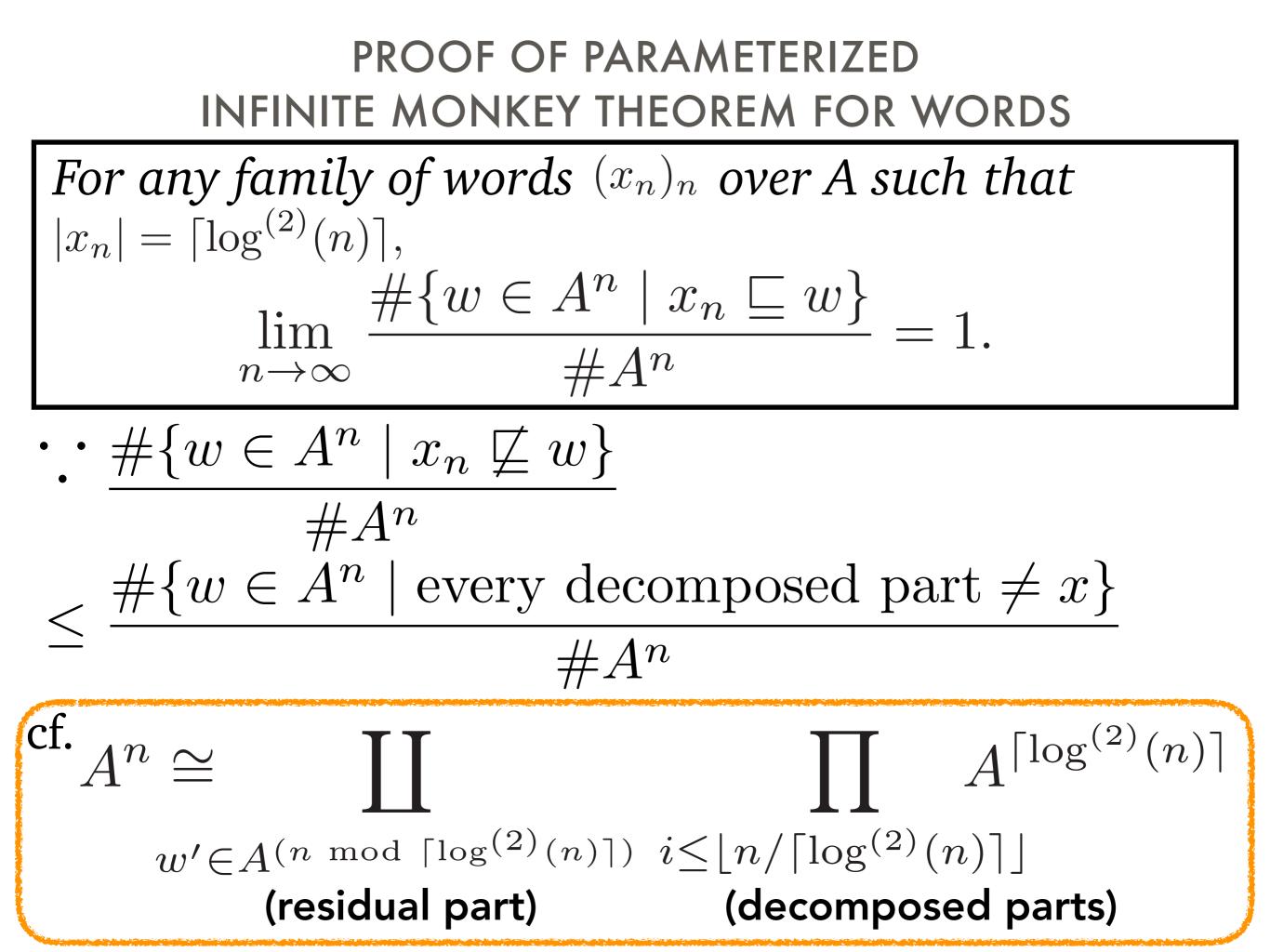








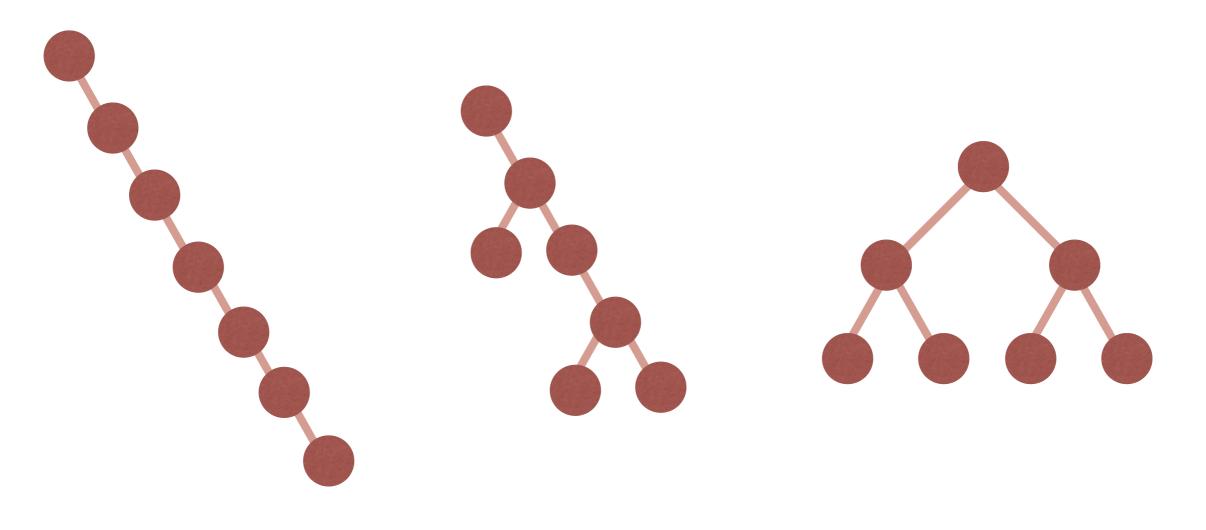




PROOF OF PARAMETERIZED
INFINITE MONKEY THEOREM FOR WORDS
For any family of words
$$(x_n)_n$$
 over A such that
 $|x_n| = \lceil \log^{(2)}(n) \rceil$,
 $\lim_{n \to \infty} \frac{\#\{w \in A^n \mid x_n \sqsubseteq w\}}{\#A^n} = 1.$
 $\therefore \frac{\#\{w \in A^n \mid x_n \nvDash w\}}{\#A^n}$
 $\leq \frac{\#\{w \in A^n \mid \text{every decomposed part} \neq x\}}{\#A^n}$
 $= \left(1 - \frac{1}{A^{\lceil \log^{(2)}(n) \rceil}}\right)^{\lfloor n/\lceil \log^{(2)}(n) \rceil \rfloor} \rightarrow 0 \ (n \to \infty) \quad \therefore$

CHALLENGE IN PROVING PARAMETERISED MONKEY THEOREM FOR TERMS

- How to obtain such a "good" decomposition for the set of **\lambda**-terms $\Lambda_n^{lpha}(k,\iota,\xi)$?
 - Non-trivial since terms have various shapes:



Introduction

•Our result

Proof of our result

- Idea
- Infinite Monkey Theorem

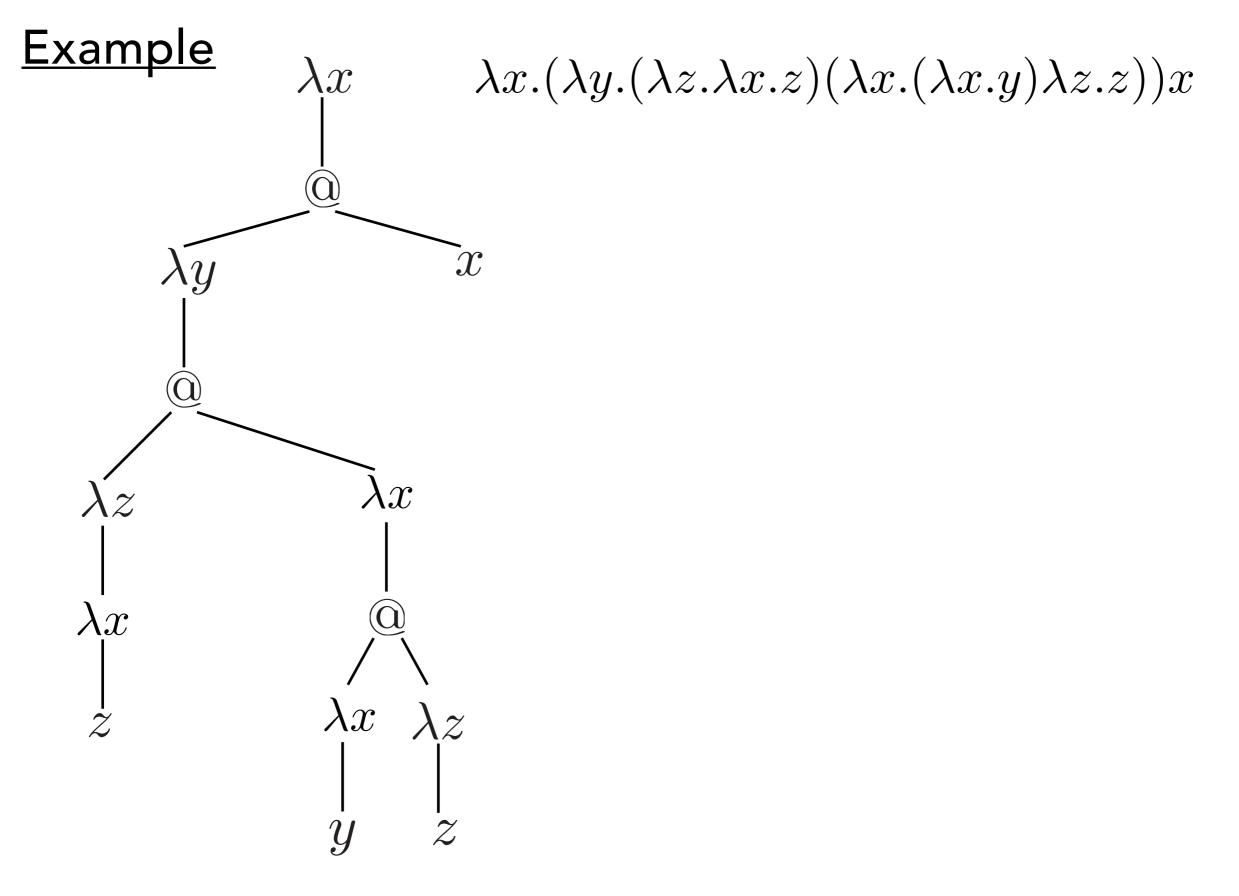
OUTLINE

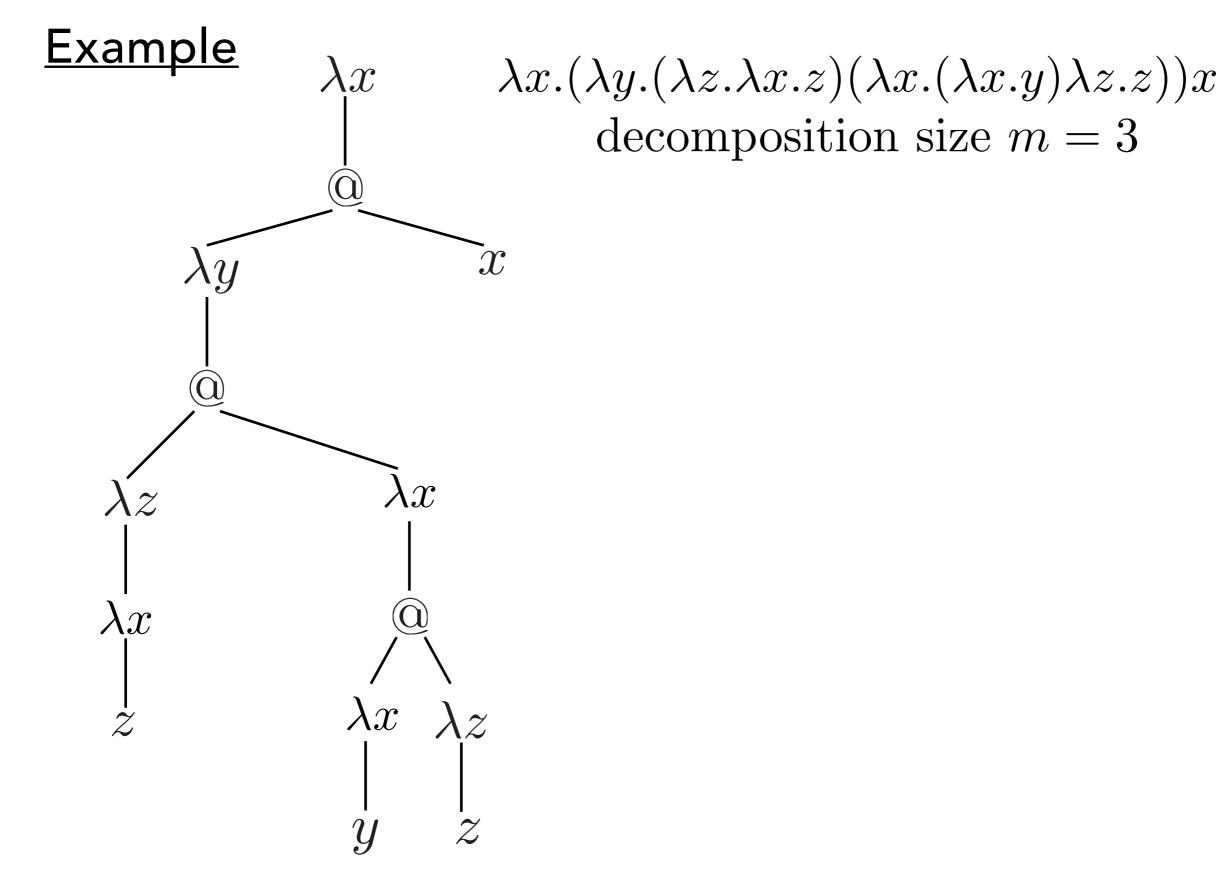
- Decomposition of terms
- Sketch of the proof

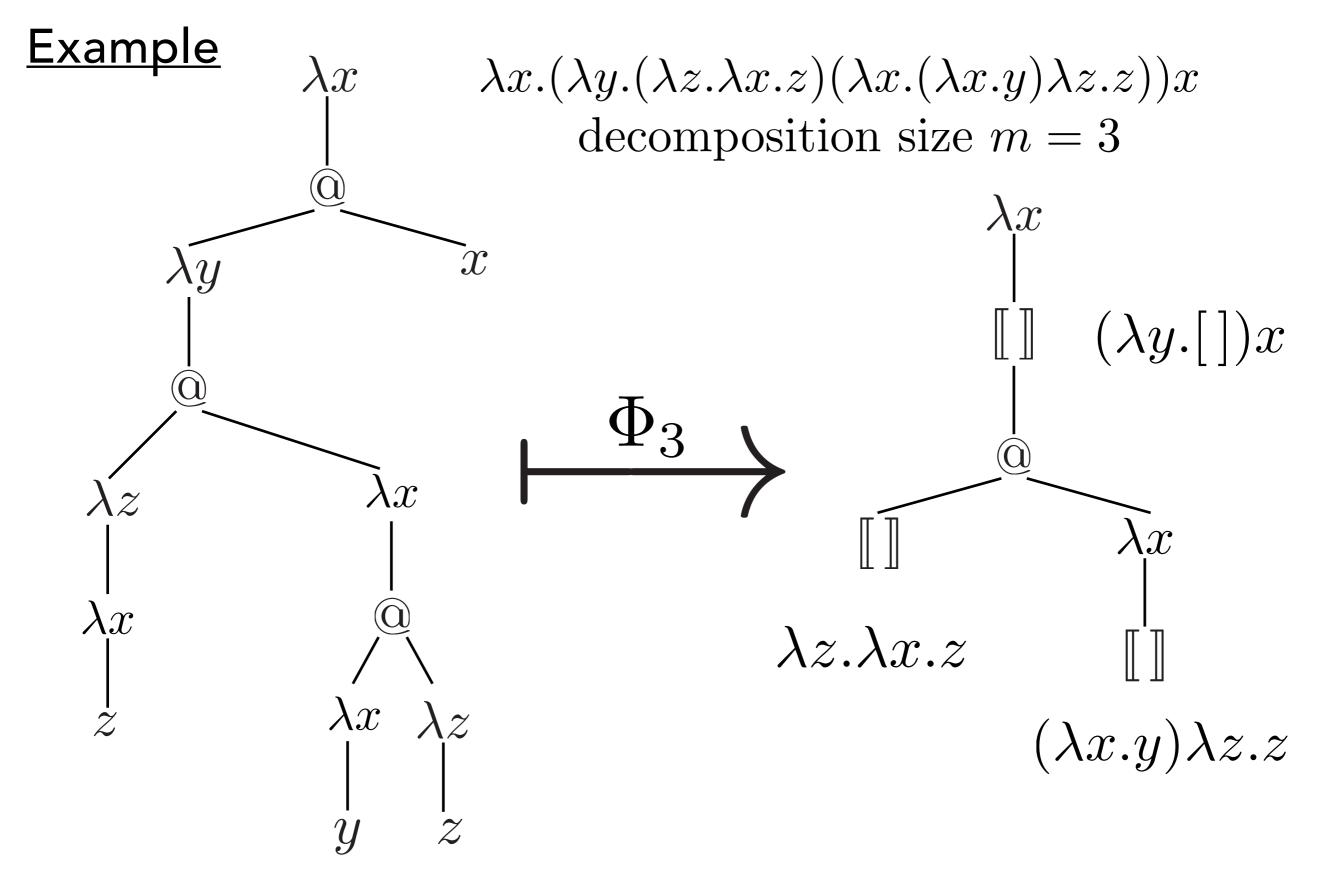
Conclusion

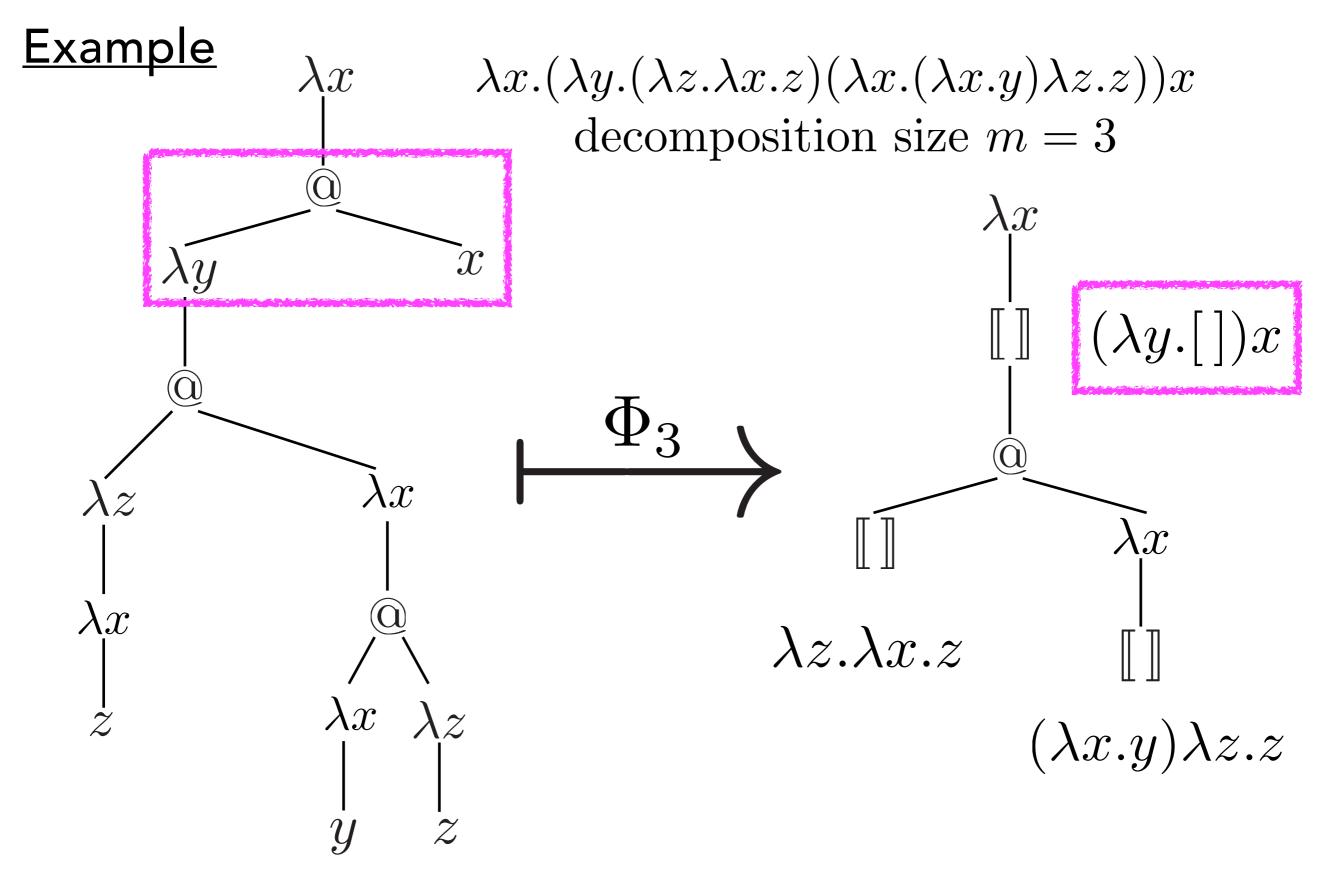
Example

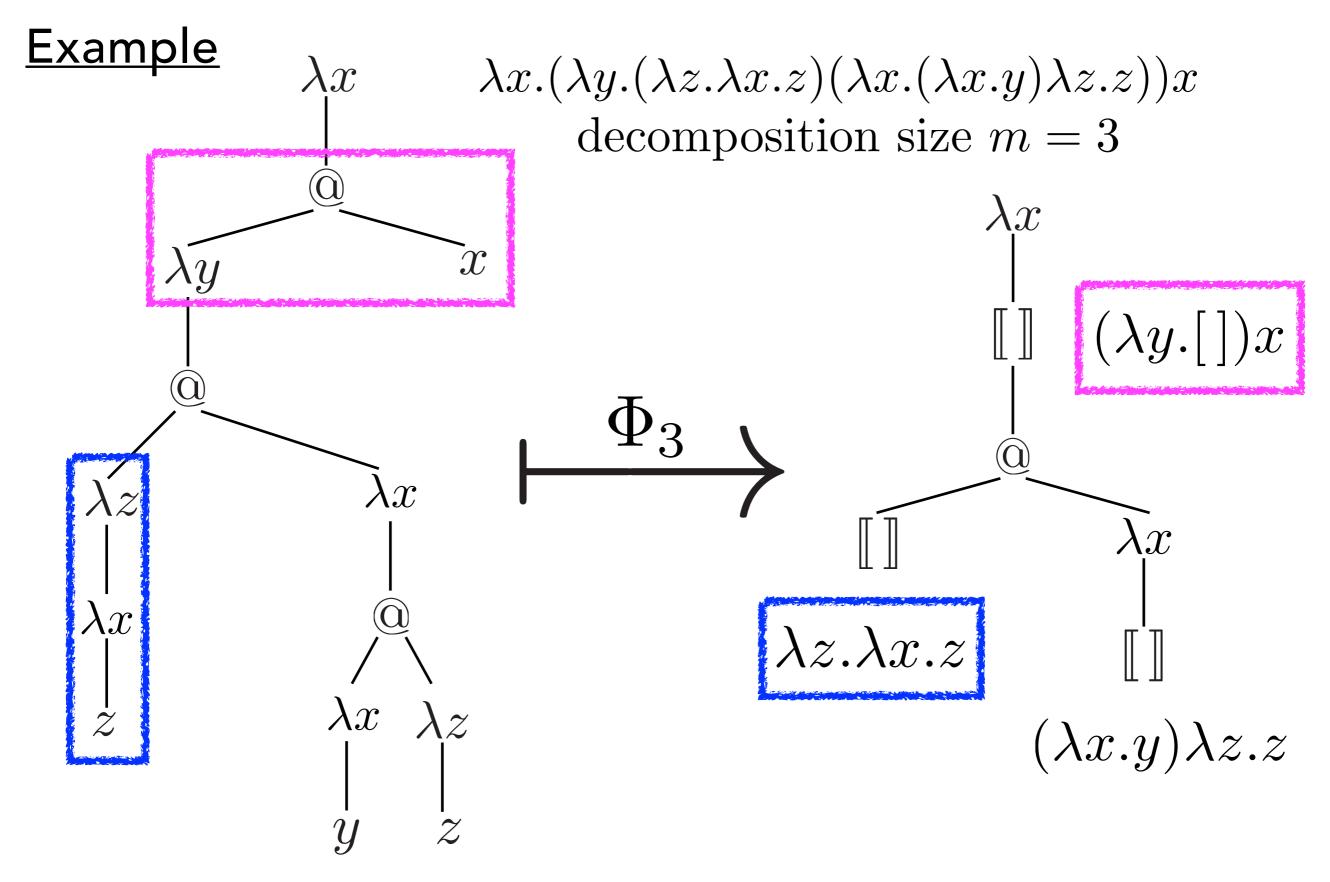
 $\lambda x.(\lambda y.(\lambda z.\lambda x.z)(\lambda x.(\lambda x.y)\lambda z.z))x$

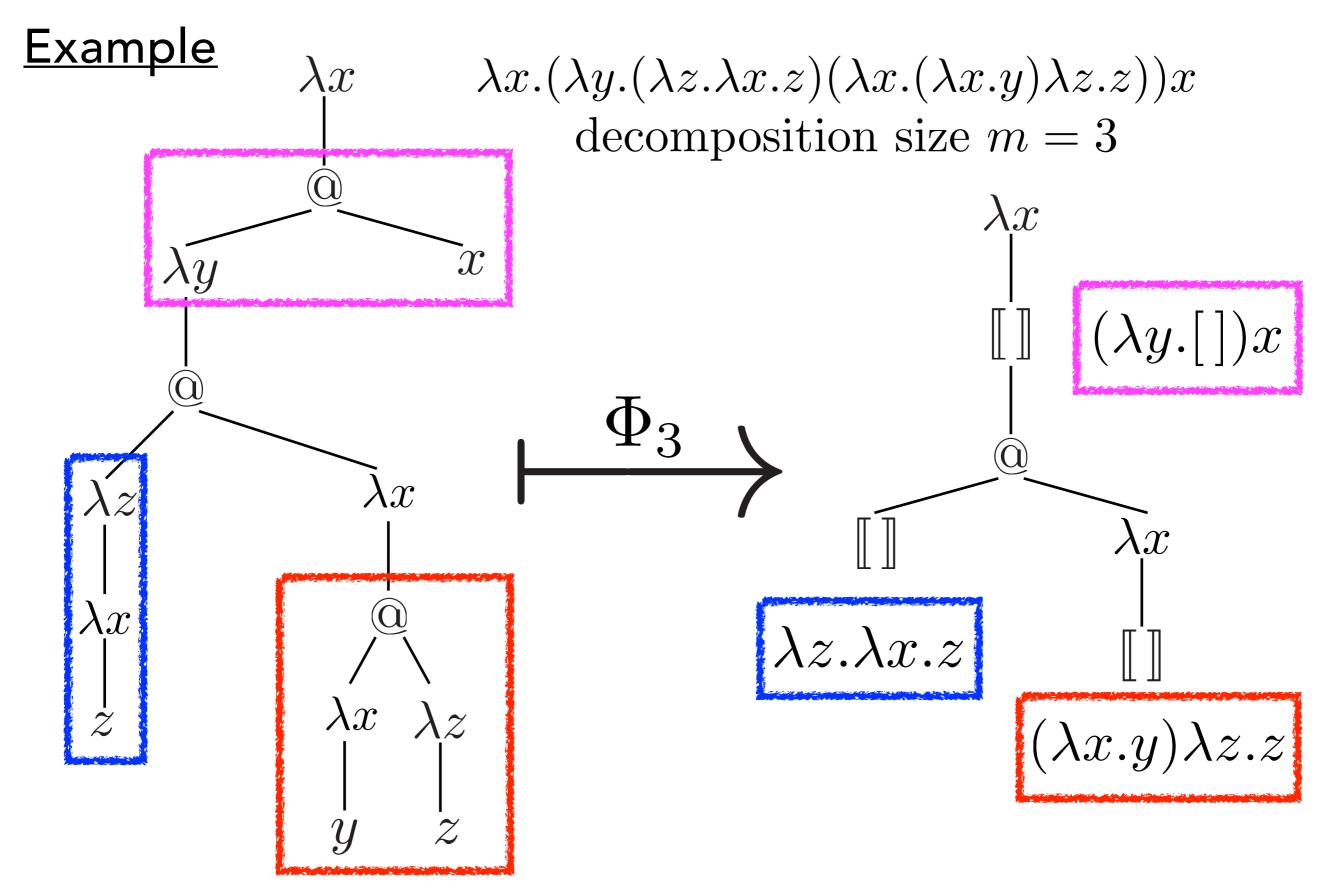


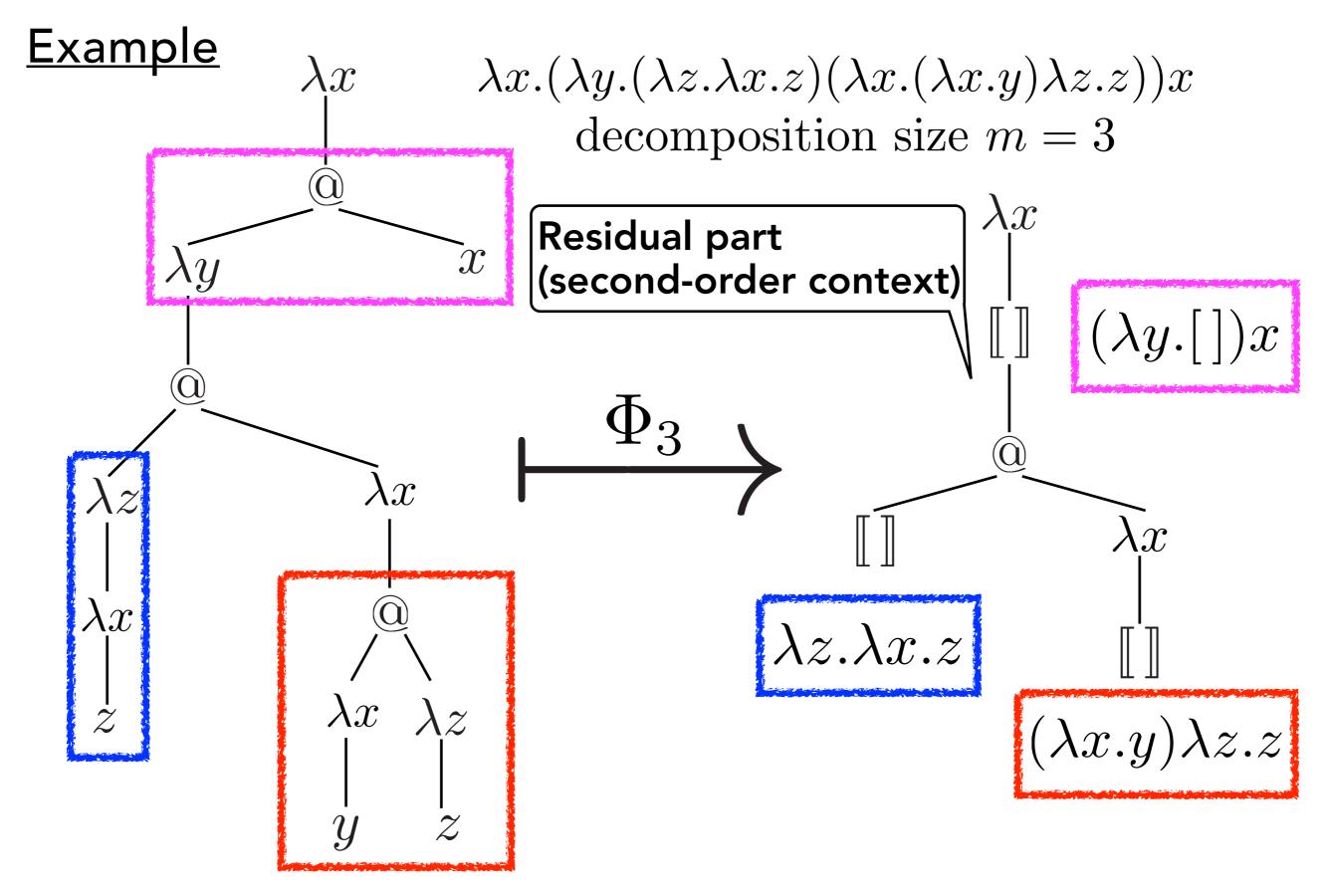




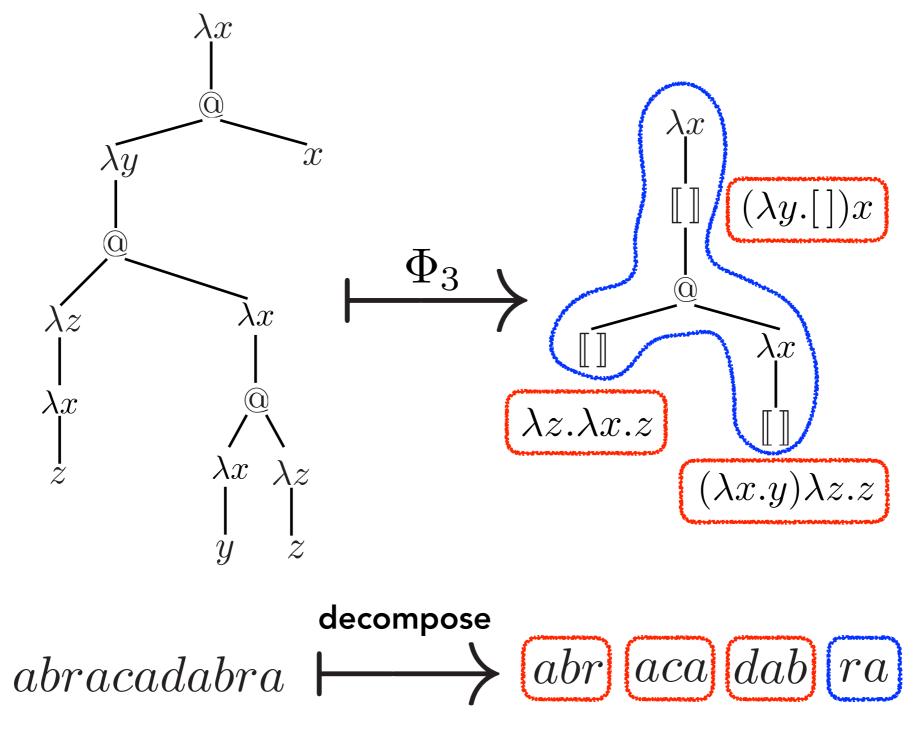








ANALOGY BETWEEN THE DECOMPOSITION OF TERMS AND WORDS

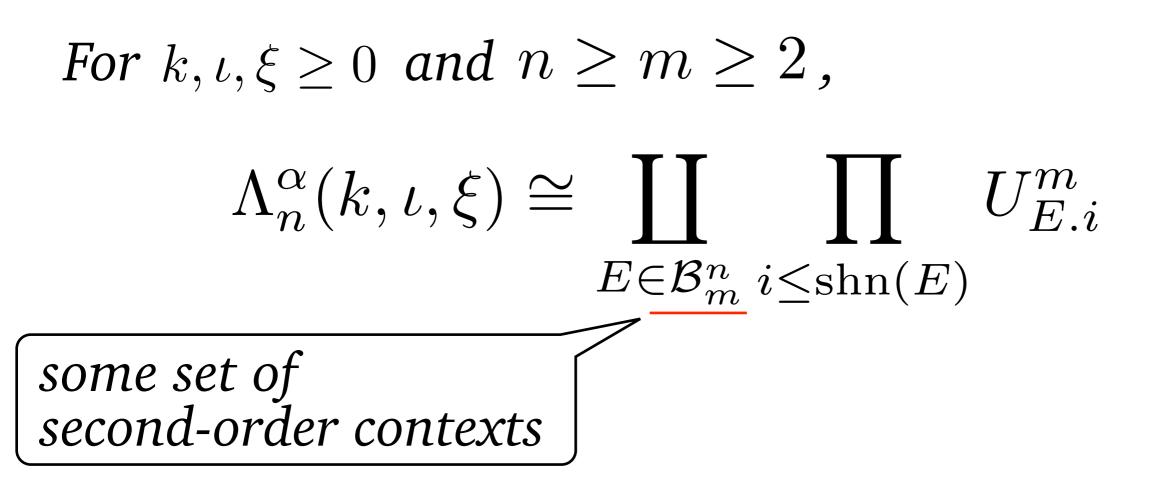


***** Decomposed part

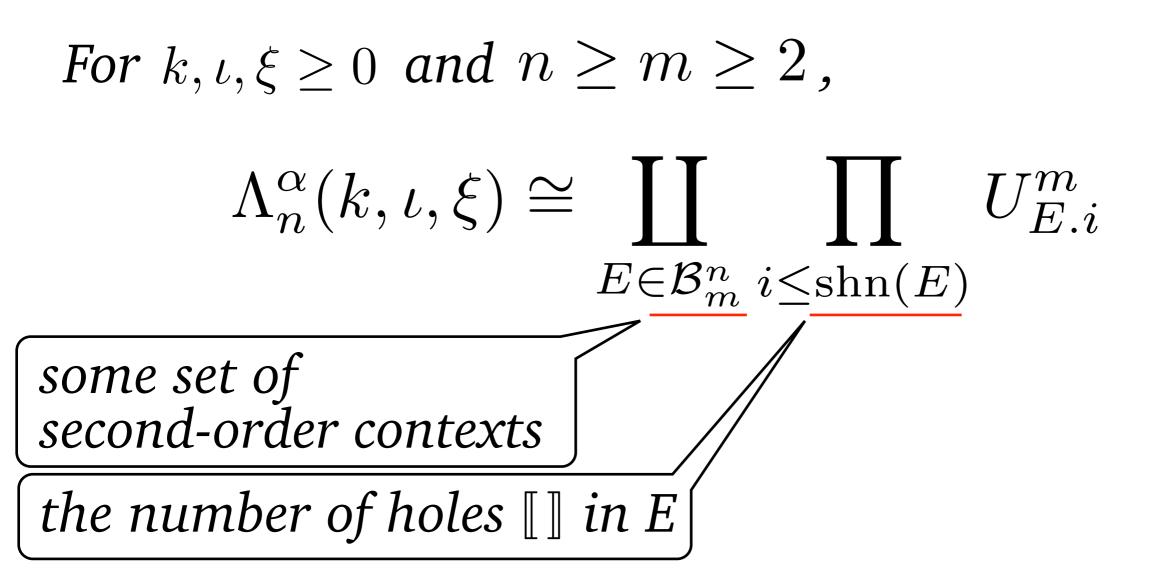
***** Residual part

For $k, \iota, \xi \ge 0$ and $n \ge m \ge 2$, $\Lambda_n^{\alpha}(k, \iota, \xi) \cong \coprod_{E \in \mathcal{B}_m^n} \prod_{i \le \operatorname{shn}(E)} U_{E,i}^m$

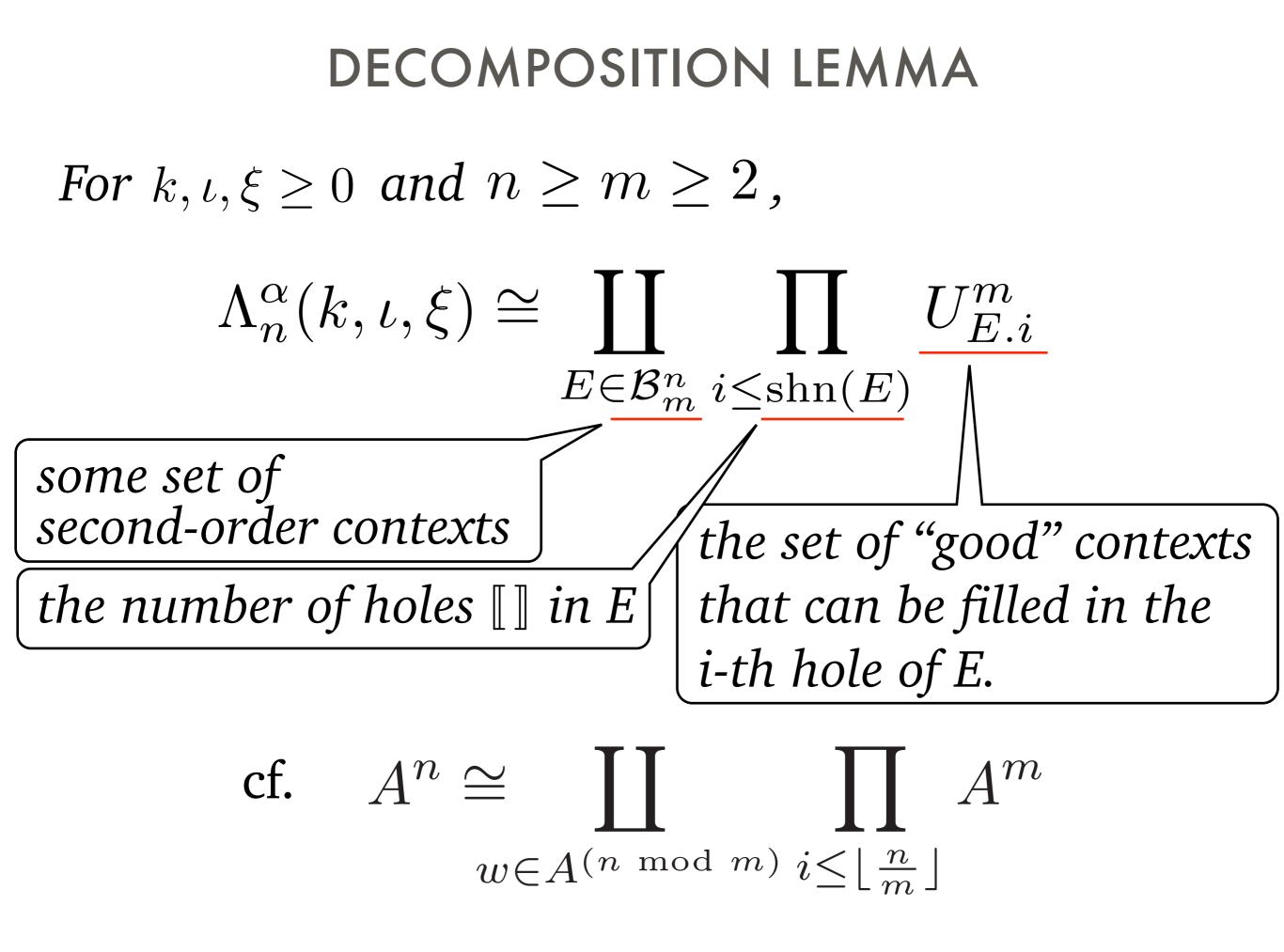
cf. $A^n \cong \prod_{w \in A^{(n \mod m)}} \prod_{i \le \lfloor \frac{n}{m} \rfloor} A^m$

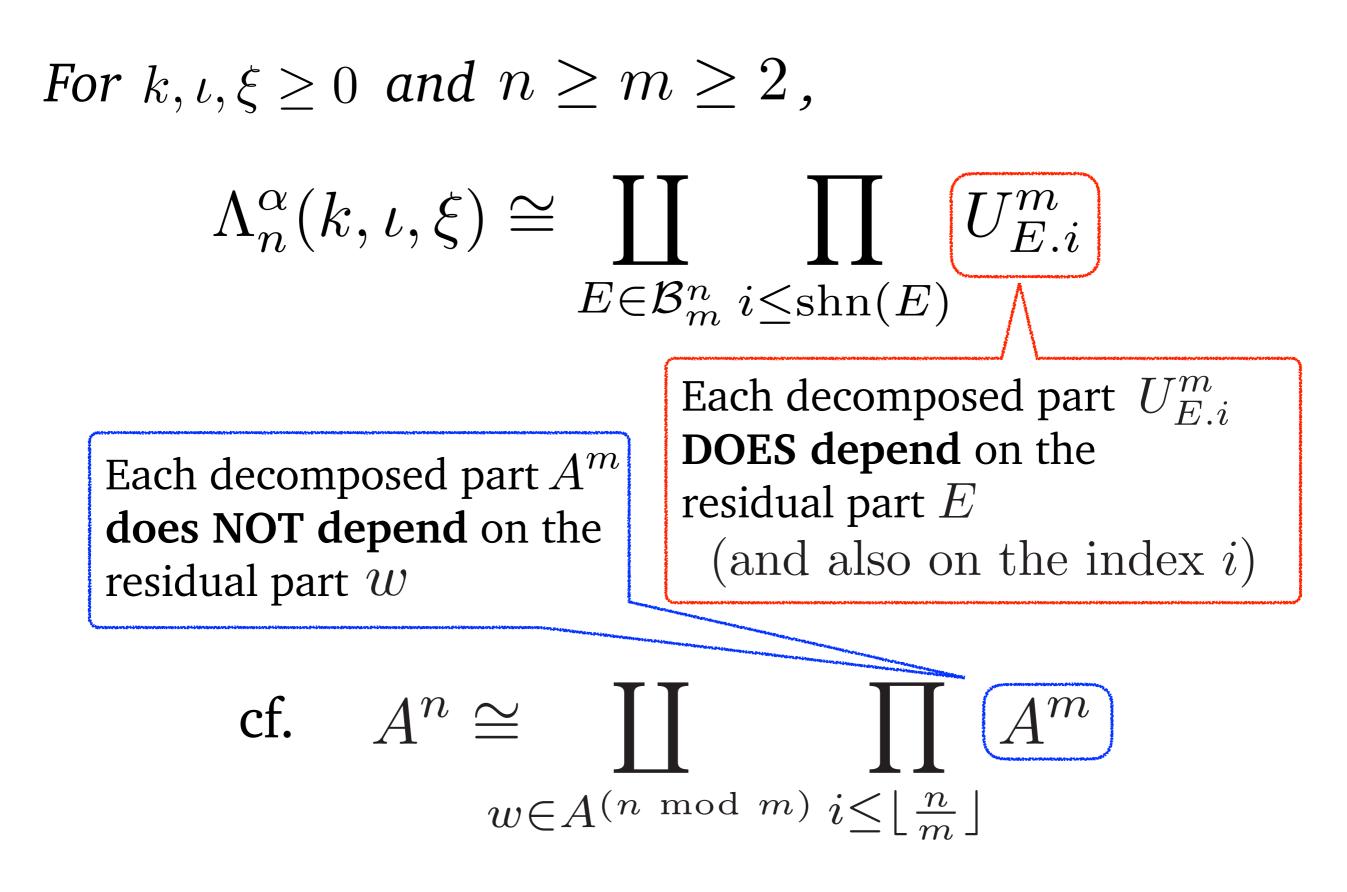


cf. $A^n \cong \prod_{w \in A^{(n \mod m)}} \prod_{i \le \lfloor \frac{n}{m} \rfloor} A^m$



cf.
$$A^n \cong \prod_{w \in A^{(n \mod m)}} \prod_{i \le \lfloor \frac{n}{m} \rfloor} A^m$$





Introduction

•Our result

Proof of our result

- Idea
- Infinite Monkey Theorem

OUTLINE

- Decomposition of terms
- Sketch of the proof

Conclusion

For any family of contexts
$$(C_n)_n$$
 of $\Lambda_n^{\alpha}(k, \iota, \xi)$ such
that $|C_n| = \lceil \log^{(2)}(n) \rceil$,

$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid C_n \leq t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$
if $k, \iota, \xi \geq 2$.

. It is suffice to show that

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k,\iota,\xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k,\iota,\xi)} \to 0 \quad (n \to \infty)$$

cf. $\Lambda_{n}^{\alpha}(k,\iota,\xi) \cong \coprod_{\substack{E \in \mathcal{B}_{n}^{\log^{(2)}(n)} \\ \bigcup \\ [t]_{\alpha} \xrightarrow{\Phi_{\log^{(2)}(n)}} E \& (u_{1},u_{2},\cdots,u_{\operatorname{shn}(E)})} \prod_{\substack{E \in \mathcal{B}_{n}^{\log^{(2)}(n)} \\ \bigcup \\ \bigcup \\ U \\ E \& (u_{1},u_{2},\cdots,u_{\operatorname{shn}(E)})}}$

PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

$$\therefore \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i}\} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

cf. $\Lambda_{n}^{\alpha}(k,\iota,\xi) \cong \coprod_{\substack{E \in \mathcal{B}_{n}^{\log^{(2)}(n)} \\ \bigcup \\ [t]_{\alpha} \xrightarrow{\Phi_{\log^{(2)}(n)}} E \& (u_{1},u_{2},\cdots,u_{\mathrm{shn}(E)})}} \prod_{i \leq \mathrm{shn}(E)} U_{E.i}^{\log^{(2)}(n)}$

$$PROOF OF PARAMETERISED$$

$$INFINITE MONKEY THOREM FOR TERMS$$

$$\therefore \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$= \frac{\#\prod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \operatorname{shn}(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$PROOF OF PARAMETERISED$$

$$INFINITE MONKEY THOREM FOR TERMS$$

$$\therefore \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$= \frac{\#\prod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}}{\prod_{i \leq \operatorname{shn}(E)}} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \left(1 - 1/c\gamma^{2\lceil \log^{(2)}(n) \rceil}\right)^{n/4\lceil \log^{(2)}(n) \rceil}$$

PROOF OF PARAMETERISED INFINITE MONKEY THOREM FOR TERMS

$$\begin{aligned}
\mathbf{Lemma} \\
\mathrm{shn}(E) &\geq n/4 \lceil \log^{(2)}(n) \rceil \text{ for any } E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil} \\
&\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ fo} \\
\#\Lambda_{n}^{\alpha}(k, \iota, \xi) \\
&\# \prod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \mathrm{shn}(E)} \left\{ u_{i} \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\} \\
&= \frac{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)} \\
&\leq \left(1 - 1/c\gamma^{2\lceil \log^{(2)}(n) \rceil}\right)^{n/4\lceil \log^{(2)}(n) \rceil}
\end{aligned}$$

PROOF OF PARAMETERISED INFINITE MONKEY THOREM FOR TERMS

$$\begin{aligned}
\mathbf{Lemma} \\
\mathrm{shn}(E) \geq n/4 \lceil \log^{(2)}(n) \rceil \text{ for any } E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil} \\
\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\mathbf{Lemma}} \\
\#U_{E.i}^{\lceil \log^{(2)}(n) \rceil} = O(c\gamma^{2 \lceil \log^{(2)}(n) \rceil}) | (n) \rceil \\
for some constants c and \gamma \\
\#\lambda_{n}^{\alpha}(k, \iota, \xi) \\
\leq \left(1 - 1/c\gamma^{2 \lceil \log^{(2)}(n) \rceil}\right)^{n/4 \lceil \log^{(2)}(n) \rceil}
\end{aligned}$$

$$PROOF OF PARAMETERISED$$

$$INFINITE MONKEY THOREM FOR TERMS$$

$$\therefore \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$= \frac{\#\prod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}}{\prod_{i \leq \operatorname{shn}(E)}} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \left(1 - 1/c\gamma^{2\lceil \log^{(2)}(n) \rceil}\right)^{n/4\lceil \log^{(2)}(n) \rceil}$$

$$PROOF OF PARAMETERISED$$

$$INFINITE MONKEY THOREM FOR TERMS$$

$$\therefore \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\# \prod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \operatorname{shn}(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}$$

$$= \frac{\# \Lambda_{n}^{\alpha}(k, \iota, \xi)}{\# \Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

For any family of contexts
$$(C_n)_n$$
 of $\Lambda_n^{\alpha}(k, \iota, \xi)$ such
that $|C_n| = \lceil \log^{(2)}(n) \rceil$,

$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid C_n \leq t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$
if $k, \iota, \xi \geq 2$.

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k,\iota,\xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k,\iota,\xi)} \to 0 \quad (n \to \infty)$$

• •

SUMMARY OF THE MAIN PROOF

the probability that a term $[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)$ has a β -reduction sequence of length (*k*-2)-EXP(*n*)


```
( \therefore Monkey Theorem) 
 \rightarrow 1 \ (n \rightarrow \infty)
```


Introduction

Proof of our result

Conclusion

CONCLUSION

- Almost every terms of size n and order at most k has a β -reduction sequence of length (k-2)-EXP(n).
 - The core of our proof is a non-trivial extension of well-known Infinite Monkey Theorem.

FUTURE WORK

- Quantitative analysis of simply typed λ-terms in different settings:
 - with an **unbounded** number of variables.
 - with recursion.