
ALMOST EVERY SIMPLY TYPED 
LAMBDA TERM HAS A LONG 
BETA-REDUCTION SEQUENCE

RYOMA SIN’YA 

NAOKI KOBAYASHI

KAZUYUKI ASADA 

TAKESHI TSUKADA

(THE UNIVERSITY OF TOKYO)λ



MOTIVATION
• A simply-typed term can have a very long β-reduction 

sequence. 
• k-EXP in the size of terms of order k [Beckmann 2001].

0-EXP(n) = n

(m+ 1)-EXP(n) = 2m-EXP(n)

• How many terms have such long β-reduction 
sequences?



MOTIVATION

e.g.

• A simply-typed term can have a very long β-reduction 
sequence. 
• k-EXP in the size of terms of order k [Beckmann 2001].

• How many terms have such long β-reduction 
sequences?

where Twice = �f.�x.f(f x)

(Twice)n Twice · · ·Twice| {z }
k�2 times

(�x.bxx)((�x.x)c)



• The work has been motivated by quantitative analysis 
of the complexity of higher-order model checking 
(HOMC).

SIDE REMARK

• Input          : tree automaton     and λY-term t.  
Output       : YES if     accepts the infinite tree  
                     represented by t, NO otherwise.  
Complexity: k-EXPTIME-complete for order-k λY-terms.

• We want to (dis)prove: HOMC can be efficiently 
solved for almost every input.

HIGHER-ORDER MODEL CHECKING
A

A

[Ong 2006]



RELATED WORK

• Quantitative analysis of untyped terms:
• Almost every λ-term is strongly normalizing (SN), but 

almost every SK-combinatory term is not SN  
[David et al. 2009].

• Almost every de Bruijn λ-term is not SN 
[Bendkowski et al. 2015].

• Empirical results: almost every λ-term is not β-normal, 
untypable [Grygiel-Lescanne 2013].



RELATED WORK

• Quantitative analysis of untyped terms:
• Almost every λ-term is strongly normalizing (SN), but 

almost every SK-combinatory term is not SN  
[David et al. 2009].

• Almost every de Bruijn λ-term is not SN 
[Bendkowski et al. 2015].

• Empirical results: almost every λ-term is not β-normal, 
untypable [Grygiel-Lescanne 2013].

• Quantitative analysis of typed terms: little is known.



OUTLINE

λ•Introduction 

•Our result 

•Proof of our result 

•Conclusion



For                and          ,k, ◆, ⇠ � 2

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | �(t) � (k � 2)-EXP(n)}

#⇤↵
n(k, ◆, ⇠)

= 1.

k  ◆

OUR RESULT

: the set of α-equivalence classes of size-n  
  terms such that:

(2) the number of arguments (internal arity) is at most   .◆
(3) the number of distinct variables is at most    .⇠

⇤↵
n(k, ◆, ⇠)

(1) the order is at most   .k



For                and          ,k, ◆, ⇠ � 2

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | �(t) � (k � 2)-EXP(n)}

#⇤↵
n(k, ◆, ⇠)

= 1.

k  ◆

OUR RESULT

: the set of α-equivalence classes of size-n  
  terms such that:

(2) the number of arguments (internal arity) is at most   .◆
(3) the number of distinct variables is at most    .⇠

⇤↵
n(k, ◆, ⇠)

(1) the order is at most   .k

the maximum length of 
β-reduction sequences of t.



For                and          ,k, ◆, ⇠ � 2

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | �(t) � (k � 2)-EXP(n)}

#⇤↵
n(k, ◆, ⇠)

= 1.

k  ◆

OUR RESULT

: the set of α-equivalence classes of size-n  
  terms such that:

(2) the number of arguments (internal arity) is at most   .◆
(3) the number of distinct variables is at most    .⇠

⇤↵
n(k, ◆, ⇠)

(1) the order is at most   .k

the maximum length of 
β-reduction sequences of t.



For                and          ,k, ◆, ⇠ � 2

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | �(t) � (k � 2)-EXP(n)}

#⇤↵
n(k, ◆, ⇠)

= 1.

k  ◆

OUR RESULT

: the set of α-equivalence classes of size-n  
  terms such that:

(2) the number of arguments (internal arity) is at most   .◆
(3) the number of distinct variables is at most    .⇠

Almost every term of size n and order at most k 
has a β-reduction sequence of length (k-2)-EXP(n).

⇤↵
n(k, ◆, ⇠)

(1) the order is at most   .k

the maximum length of 
β-reduction sequences of t.



OUR RESULT

(2) the number of arguments (internal arity) is at most   .◆
(3) the number of distinct variables is at most    .⇠

For                and          ,k, ◆, ⇠ � 2

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | �(t) � (k � 2)-EXP(n)}

#⇤↵
n(k, ◆, ⇠)

= 1.

(1) the order is at most   .k

k  ◆

: the set of α-equivalence classes of size-n  
  terms such that:

⇤↵
n(k, ◆, ⇠)



NUMBER OF DISTINCT VARIABLES

#V(t)•           : the # of variables in t excluding unused 
variables.

#V↵([t]↵) , min{#V(t0) | t0 2 [t]↵}

• For an α-equivalence class      ,[t]↵



NUMBER OF DISTINCT VARIABLES

• For an α-equivalence class      ,[t]↵

Example

#V↵([t]↵) , min{#V(t0) | t0 2 [t]↵}

#V↵([(�z.z)�y.x]↵) = ?

#V(t)•           : the # of variables in t excluding unused 
variables.



NUMBER OF DISTINCT VARIABLES

• For an α-equivalence class      ,[t]↵

Example

#V↵([t]↵) , min{#V(t0) | t0 2 [t]↵}

#V↵([(�z.z)�y.x]↵) = ?

#V(t)•           : the # of variables in t excluding unused 
variables.

#V((�z.z)�y.x) = #{x, z} = 2



NUMBER OF DISTINCT VARIABLES

• For an α-equivalence class      ,[t]↵

Example

#V↵([t]↵) , min{#V(t0) | t0 2 [t]↵}

#V↵([(�z.z)�y.x]↵) = ?

#V(t)•           : the # of variables in t excluding unused 
variables.

#V((�z.z)�y.x) = #{x, z} = 2



NUMBER OF DISTINCT VARIABLES

• For an α-equivalence class      ,[t]↵

Example

#V↵([t]↵) , min{#V(t0) | t0 2 [t]↵}

#V↵([(�z.z)�y.x]↵) = ?

#V(t)•           : the # of variables in t excluding unused 
variables.

#V((�z.z)�y.x) = #{x, z} = 2

#V((�x.x)�y.x) = #{x} = 1



NUMBER OF DISTINCT VARIABLES

• For an α-equivalence class      ,[t]↵

Example

#V↵([t]↵) , min{#V(t0) | t0 2 [t]↵}

#V↵([(�z.z)�y.x]↵) = 1

#V(t)•           : the # of variables in t excluding unused 
variables.

#V((�z.z)�y.x) = #{x, z} = 2

#V((�x.x)�y.x) = #{x} = 1



OUR RESULT

(2) the number of arguments (internal arity) is at most   .◆
(3) the number of distinct variables is at most    .⇠

(1) the order is at most   .k

For                and          ,k, ◆, ⇠ � 2

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | �(t) � (k � 2)-EXP(n)}

#⇤↵
n(k, ◆, ⇠)

= 1.

k  ◆

[t]↵ 2 ⇤↵
n(k, ◆, ⇠)#V↵([t]↵)  ⇠ for every 

: the set of α-equivalence classes of size-n  
  terms such that:

⇤↵
n(k, ◆, ⇠)



OUTLINE

λ•Introduction 

•Our result 

•Proof of our result 

•Conclusion



OVERVIEW OF OUR PROOF

• Almost every term contains a certain “context” 
that has a very long β-reduction sequence.



OVERVIEW OF OUR PROOF

• Almost every term contains a certain “context” 
that has a very long β-reduction sequence.



OVERVIEW OF OUR PROOF

• Almost every term contains a certain “context” 
that has a very long β-reduction sequence.

• Inspired by Infinite Monkey Theorem: for any word x, 
almost every word contains x as a subword.



OUTLINE

λ
•Introduction 

•Our result 

•Proof of our result 

 

•Conclusion

• Idea 
• Infinite Monkey Theorem 
• Decomposition of terms 
• Sketch of the proof



PROOF IDEA

1. Parameterizing Infinite Monkey Theorem. 

2. Extending (1) to λ-terms. 

3. Constructing “explosive context” that generates 
a long β-reduction sequence.



INFINITE MONKEY THEOREM

For any word     over an alphabet A,

u, v 2 A⇤.                                        for some words
x v w , w = uxv

lim
n!1

#{w 2 A

n | x v w}
#A

n
= 1.

x



INFINITE MONKEY THEOREM

For any word     over an alphabet A,

u, v 2 A⇤.                                        for some words
x v w , w = uxv

lim
n!1

#{w 2 A

n | x v w}
#A

n
= 1.

x



IDEA1: PARAMETERIZING INFINITE MONKEY THEOREM

For any family of words          over A such that 
                        

(xn)n

lim
n!1

#{w 2 A

n | xn v w}
#A

n
= 1.

log

(2)
(n) = log(log(n))

|xn| = dlog(2)(n)e,



IDEA2: EXTENDING IDEA1 TO TERMS

For any family of contexts          such that                         (Cn)n

if               .

|Cn| = dlog(2)(n)e,

C � t ,                           for some context     and term  .C 0t = C 0[C[t0]] t0

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | Cn � t}

#⇤↵
n(k, ◆, ⇠)

= 1.

k, ◆, ⇠ � 2



IDEA3: CONSTRUCTING “EXPLOSIVE” CONTEXT

• For parameters n and k, we define the explosive 
context          of order-k as:

�x.

�
(Twice)n Twice · · ·Twice| {z }

k�2 times

Dup(Id [ ])
�

where Twice = �f.�x.f(f x)

Dup = �x.(�y.�z.y)xx and Id = �x.x

n
k



IDEA3: CONSTRUCTING “EXPLOSIVE” CONTEXT

• For parameters n and k, we define the explosive 
context          of order-k as:

n
k�

⇣ ⌘
� k-EXP(n)

• It has the following “explosive property”:

�x.

�
(Twice)n Twice · · ·Twice| {z }

k�2 times

Dup(Id [ ])
�

where Twice = �f.�x.f(f x)

Dup = �x.(�y.�z.y)xx and Id = �x.x

n
k



IDEA3: CONSTRUCTING “EXPLOSIVE” CONTEXT

� t ) k-EXP(n)  �(t).n
k

• It has the following “explosive property”:

• For parameters n and k, we define the explosive 
context          of order-k as:

�x.

�
(Twice)n Twice · · ·Twice| {z }

k�2 times

Dup(Id [ ])
�

where Twice = �f.�x.f(f x)

Dup = �x.(�y.�z.y)xx and Id = �x.x

n
k



HARVEST

For                and          ,k, ◆, ⇠ � 2
k
dlog(2)(n)e

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | � t}
#⇤↵

n(k, ◆, ⇠)
= 1.

k  ◆



HARVEST

+ A direct corollary of the explosive property: 

� t ) (k � 2)-EXP(n)  �(t).

Almost every term of size n and order at most k 
has a β-reduction sequence of length (k-2)-EXP(n).

k

dlog(2)(n)e

For                and          ,k, ◆, ⇠ � 2
k
dlog(2)(n)e

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | � t}
#⇤↵

n(k, ◆, ⇠)
= 1.

k  ◆



PROOF IDEA

1. Parameterizing Infinite Monkey Theorem. 

2. Extending (1) to λ-terms. 

3. Constructing “explosive context” that generates 
a long β-reduction sequence.



PROOF IDEA

1. Parameterizing Infinite Monkey Theorem. 

2. Extending (1) to λ-terms. 

3. Constructing “explosive context” that generates 
a long β-reduction sequence.

Most technical part



PROOF IDEA

1. Parameterizing Infinite Monkey Theorem. 

2. Extending (1) to λ-terms. 

3. Constructing “explosive context” that generates 
a long β-reduction sequence.

Most technical part

We first give a proof of 
(1), because it clarify 
the overall structure of 
the proof of (2).



λhttp://en.wikipedia.org/wiki/
Infinite_monkey_theorem

OUTLINE•Introduction 

•Our result 

•Proof of our result 

 

•Conclusion

• Idea 
• Infinite Monkey Theorem 
• Decomposition of terms 
• Sketch of the proof

http://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://en.wikipedia.org/wiki/Infinite_monkey_theorem


For any word     over an alphabet A,x

lim
n!1

#{w 2 A

n | x v w}
#A

n
= 1.

*
It suffice to show that:

#{w 2 A

n | x 6v w}
#A

n ! 0 (n ! 1)

PROOF OF MONKEY THEOREM FOR WORDS



PROOF OF MONKEY THEOREM FOR WORDS

*

?! 0 (n ! 1)
#{w 2 A

n | x 6v w}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

?! 0 (n ! 1)

Let ` = |x|, w 2 A

n
.

#{w 2 A

n | x 6v w}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

?! 0 (n ! 1)

w = w1 w2 · · · wbn/`c w
0

Let ` = |x|, w 2 A

n
.

#{w 2 A

n | x 6v w}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

|{z}
`

?! 0 (n ! 1)

w = w1 w2 · · · wbn/`c w
0

Let ` = |x|, w 2 A

n
.

#{w 2 A

n | x 6v w}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

|{z}
`

?! 0 (n ! 1)

w = w1 w2 · · · wbn/`c w
0

Let ` = |x|, w 2 A

n
.

|{z}
`

#{w 2 A

n | x 6v w}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

|{z}
`

?! 0 (n ! 1)

w = w1 w2 · · · wbn/`c w
0

Let ` = |x|, w 2 A

n
.

|{z}
`

|{z}
`

#{w 2 A

n | x 6v w}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

|{z}
`

(n mod `)<`z}|{

?! 0 (n ! 1)

w = w1 w2 · · · wbn/`c w
0

Let ` = |x|, w 2 A

n
.

|{z}
`

|{z}
`

#{w 2 A

n | x 6v w}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

|{z}
`

(n mod `)<`z}|{
w = w1 w2 · · · wbn/`c w

0
Let ` = |x|, w 2 A

n
.

|{z}
`

|{z}
`

#{w 2 A

n | x 6v w}
#A

n

 #{w 2 A

n | wi 6= x for all i  bn/`c}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

=

✓
1� 1

#A`

◆bn/`c

|{z}
`

(n mod `)<`z}|{
w = w1 w2 · · · wbn/`c w

0
Let ` = |x|, w 2 A

n
.

|{z}
`

|{z}
`

#{w 2 A

n | x 6v w}
#A

n

 #{w 2 A

n | wi 6= x for all i  bn/`c}
#A

n



PROOF OF MONKEY THEOREM FOR WORDS

*

=

✓
1� 1

#A`

◆bn/`c

|{z}
`

(n mod `)<`z}|{
w = w1 w2 · · · wbn/`c w

0
Let ` = |x|, w 2 A

n
.

|{z}
`

|{z}
`

#{w 2 A

n | x 6v w}
#A

n

! 0 (n ! 1) *

 #{w 2 A

n | wi 6= x for all i  bn/`c}
#A

n



• Previous proof is based on a “good” decomposition of words. 
• This good decomposition is induced by the following 

coproduct-product form:

|{z}
`

(n mod `)<`z}|{
w = w1 w2 · · · wbn/`c w

0

|{z}
`

|{z}
`

An 3
cf.

DECOMPOSITION OF WORDS

An ⇠=
a

w02A(n mod `)

Y

ibn/`c

A`

• This point of view forms the basis of the later extensions.



DECOMPOSITION OF WORDS

An ⇠=
a

w02A(n mod `)

Y

ibn/`c

A`

2w
w0 & (w1, w2, · · · , wbn/`c)2 2

|{z}
`

(n mod `)<`z}|{
w = w1 w2 · · · wbn/`c w

0

|{z}
`

|{z}
`

An 3
cf.



DECOMPOSITION OF WORDS

An ⇠=
a

w02A(n mod `)

Y

ibn/`c

A`

2w
w0 & (w1, w2, · · · , wbn/`c)2 2

Residual part (coproduct part)

|{z}
`

(n mod `)<`z}|{
w = w1 w2 · · · wbn/`c w

0

|{z}
`

|{z}
`

An 3
cf.



DECOMPOSITION OF WORDS

An ⇠=
a

w02A(n mod `)

Y

ibn/`c

A`

2w
w0 & (w1, w2, · · · , wbn/`c)2 2

Decomposed parts (product parts)Residual part (coproduct part)

|{z}
`

(n mod `)<`z}|{
w = w1 w2 · · · wbn/`c w

0

|{z}
`

|{z}
`

An 3
cf.



*

An ⇠=
a

w02A(n mod `)

Y

ibn/`c

A`cf.

(residual part) (decomposed parts)

Let ` = |x|.

#{w 2 A

n | x 6v w}
#A

n

PROOF OF INFINITE MONKEY THEOREM (REVISED)



*

An ⇠=
a

w02A(n mod `)

Y

ibn/`c

A`cf.

(residual part) (decomposed parts)

Let ` = |x|.

#{w 2 A

n | x 6v w}
#A

n
=

#
a

w02A(n mod `)

Y

ibn/`c

A`

#An

PROOF OF INFINITE MONKEY THEOREM (REVISED)



*

An ⇠=
a

w02A(n mod `)

Y

ibn/`c

A`cf.

(residual part) (decomposed parts)

Let ` = |x|.

#{w 2 A

n | x 6v w}
#A

n
=

#
a

w02A(n mod `)

Y

ibn/`c

A`

#An



#
a

w02A(n mod `)

Y

ibn/`c

�
A

` \ {x}
�

#A

n

PROOF OF INFINITE MONKEY THEOREM (REVISED)



PROOF OF INFINITE MONKEY THEOREM (REVISED)
* Let ` = |x|.

#{w 2 A

n | x 6v w}
#A

n
=

#
a

w02A(n mod `)

Y

ibn/`c

A`

#An



#
a

w02A(n mod `)

Y

ibn/`c

�
A

` \ {x}
�

#A

n



PROOF OF INFINITE MONKEY THEOREM (REVISED)
* Let ` = |x|.

#{w 2 A

n | x 6v w}
#A

n
=

#
a

w02A(n mod `)

Y

ibn/`c

A`

#An



#
a

w02A(n mod `)

Y

ibn/`c

�
A

` \ {x}
�

#A

n

=

✓
1� 1

#A`

◆bn/`c



PROOF OF INFINITE MONKEY THEOREM (REVISED)
* Let ` = |x|.

#{w 2 A

n | x 6v w}
#A

n
=

#
a

w02A(n mod `)

Y

ibn/`c

A`

#An



#
a

w02A(n mod `)

Y

ibn/`c

�
A

` \ {x}
�

#A

n

=

✓
1� 1

#A`

◆bn/`c
! 0 (n ! 1) *



For any family of words          over A such that 
                        

(xn)n

lim
n!1

#{w 2 A

n | xn v w}
#A

n
= 1.

|xn| = dlog(2)(n)e,

PROOF OF PARAMETERIZED 
INFINITE MONKEY THEOREM FOR WORDS

cf.

(residual part) (decomposed parts)

An ⇠=
a

w02A(n mod dlog(2)(n)e)

Y

ibn/dlog(2)

(n)ec

Adlog(2)

(n)e

* #{w 2 A

n | xn 6v w}
#A

n

 #{w 2 A

n | every decomposed part 6= x}
#A

n



For any family of words          over A such that 
                        

(xn)n

lim
n!1

#{w 2 A

n | xn v w}
#A

n
= 1.

|xn| = dlog(2)(n)e,

PROOF OF PARAMETERIZED 
INFINITE MONKEY THEOREM FOR WORDS

* #{w 2 A

n | xn 6v w}
#A

n

 #{w 2 A

n | every decomposed part 6= x}
#A

n

! 0 (n ! 1) *=

✓
1� 1

Adlog(2)
(n)e

◆bn/dlog(2)
(n)ec



CHALLENGE IN PROVING PARAMETERISED 
MONKEY THEOREM FOR TERMS

• How to obtain such a “good” decomposition for the        
set of λ-terms                    ? 

• Non-trivial since terms have various shapes:

⇤↵
n(k, ◆, ⇠)



OUTLINE

λ
•Introduction 

•Our result 

•Proof of our result 

 

•Conclusion

• Idea 
• Infinite Monkey Theorem 
• Decomposition of terms 
• Sketch of the proof



DECOMPOSITION OF TERMS

�x.(�y.(�z.�x.z)(�x.(�x.y)�z.z))x
Example



DECOMPOSITION OF TERMS

�x.(�y.(�z.�x.z)(�x.(�x.y)�z.z))x

zy

x

@

@

@

z

�z

�x

�y

�z

�x

�x

�x

Example



DECOMPOSITION OF TERMS

�x.(�y.(�z.�x.z)(�x.(�x.y)�z.z))x
decomposition size m = 3

zy

x

@

@

@

z

�z

�x

�y

�z

�x

�x

�x

Example



DECOMPOSITION OF TERMS

�x.(�y.(�z.�x.z)(�x.(�x.y)�z.z))x
decomposition size m = 3

zy

x

@

@

@

z

�z

�x

�y

�z

�x

�x

�x

7�!�3 @

J K

J K

J K

�x

�x

(�y.[ ])x

�z.�x.z

(�x.y)�z.z

Example



DECOMPOSITION OF TERMS

�x.(�y.(�z.�x.z)(�x.(�x.y)�z.z))x
decomposition size m = 3

zy

x

@

@

@

z

�z

�x

�y

�z

�x

�x

�x

7�!�3 @

J K

J K

J K

�x

�x

(�y.[ ])x

�z.�x.z

(�x.y)�z.z

Example



DECOMPOSITION OF TERMS

�x.(�y.(�z.�x.z)(�x.(�x.y)�z.z))x
decomposition size m = 3

zy

x

@

@

@

z

�z

�x

�y

�z

�x

�x

�x

7�!�3 @

J K

J K

J K

�x

�x

(�y.[ ])x

�z.�x.z

(�x.y)�z.z

Example



DECOMPOSITION OF TERMS

�x.(�y.(�z.�x.z)(�x.(�x.y)�z.z))x
decomposition size m = 3

zy

x

@

@

@

z

�z

�x

�y

�z

�x

�x

�x

7�!�3 @

J K

J K

J K

�x

�x

(�y.[ ])x

�z.�x.z

(�x.y)�z.z

Example



DECOMPOSITION OF TERMS

�x.(�y.(�z.�x.z)(�x.(�x.y)�z.z))x
decomposition size m = 3

zy

x

@

@

@

z

�z

�x

�y

�z

�x

�x

�x

7�!�3 @

J K

J K

J K

�x

�x

(�y.[ ])x

�z.�x.z

(�x.y)�z.z

Residual part 
(second-order context)

Example



ANALOGY BETWEEN 
THE DECOMPOSITION OF TERMS AND WORDS

zy

x

@

@

@

z

�z

�x

�y

�z

�x

�x

�x

7�!�3 @

J K

J K

J K

�x

�x

(�y.[ ])x

�z.�x.z

(�x.y)�z.z

abracadabra

＊ Decomposed part                ＊  Residual part

7�! abr aca dab ra
decompose



cf.

DECOMPOSITION LEMMA

For                 and                     ,n � m � 2

⇤↵
n(k, ◆, ⇠) ⇠=

a

E2Bn
m

Y

ishn(E)

Um
E.i

k, ◆, ⇠ � 0

An ⇠=
a

w2A(n mod m)

Y

ib n
m c

Am



cf.

DECOMPOSITION LEMMA

For                 and                     ,n � m � 2

⇤↵
n(k, ◆, ⇠) ⇠=

a

E2Bn
m

Y

ishn(E)

Um
E.i

k, ◆, ⇠ � 0

some set of 
second-order contexts

An ⇠=
a

w2A(n mod m)

Y

ib n
m c

Am



cf.

DECOMPOSITION LEMMA

For                 and                     ,n � m � 2

⇤↵
n(k, ◆, ⇠) ⇠=

a

E2Bn
m

Y

ishn(E)

Um
E.i

k, ◆, ⇠ � 0

some set of 
second-order contexts
the number of holes     in EJ K

An ⇠=
a

w2A(n mod m)

Y

ib n
m c

Am



cf.

DECOMPOSITION LEMMA

For                 and                     ,n � m � 2

⇤↵
n(k, ◆, ⇠) ⇠=

a

E2Bn
m

Y

ishn(E)

Um
E.i

k, ◆, ⇠ � 0

some set of 
second-order contexts the set of “good” contexts 

that can be filled in the  
i-th hole of E.

the number of holes     in EJ K

An ⇠=
a

w2A(n mod m)

Y

ib n
m c

Am



For                 and                     ,

Each decomposed part 
does NOT depend on the 
residual part w

Am

cf.

DECOMPOSITION LEMMA

n � m � 2

⇤↵
n(k, ◆, ⇠) ⇠=

a

E2Bn
m

Y

ishn(E)

Um
E.i

k, ◆, ⇠ � 0

An ⇠=
a

w2A(n mod m)

Y

ib n
m c

Am

Each decomposed part  
DOES depend on the 
residual part E
(and also on the index i)

Um
E.i



OUTLINE

λ
•Introduction 

•Our result 

•Proof of our result 

 

•Conclusion

• Idea 
• Infinite Monkey Theorem 
• Decomposition of terms 
• Sketch of the proof



For any family of contexts         of               such 
that                         

(Cn)n

if               .

|Cn| = dlog(2)(n)e,

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | Cn � t}

#⇤↵
n(k, ◆, ⇠)

= 1.

k, ◆, ⇠ � 2

PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS

⇤↵
n(k, ◆, ⇠)

*
#{[t]↵ 2 ⇤↵

n(k, ◆, ⇠) | Cn 6� t}
#⇤↵

n(k, ◆, ⇠)
! 0 (n ! 1)

It is suffice to show that



PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS*

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠) | Cn 6� t}

#⇤↵
n(k, ◆, ⇠)

! 0 (n ! 1)
?

cf.

2

[t]↵

⇤↵
n(k, ◆, ⇠) ⇠=

a

E2Blog

(2)

(n)

n

Y

ishn(E)

U log

(2)

(n)
E.i

2

�
log

(2)

(n)7������! E &
2

(u1, u2, · · ·, ushn(E))



PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS*

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠) | Cn 6� t}

#⇤↵
n(k, ◆, ⇠)

! 0 (n ! 1)
?

cf.

2

[t]↵

⇤↵
n(k, ◆, ⇠) ⇠=

a

E2Blog

(2)

(n)

n

Y

ishn(E)

U log

(2)

(n)
E.i

2

�
log

(2)

(n)7������! E &
2

(u1, u2, · · ·, ushn(E))

 #{[t]↵ 2 ⇤

↵
n(k, ◆, ⇠) | Cn 6� ui for every i}

#⇤

↵
n(k, ◆, ⇠)



=

#
a

E2Bdlog(2)(n)e
n

Y

ishn(E)

n

ui 2 U dlog(2)

(n)e
E.i | Cn 66� ui

o

#⇤↵
n(k, ◆, ⇠)

PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠) | Cn 6� t}

#⇤↵
n(k, ◆, ⇠)

! 0 (n ! 1)
?

 #{[t]↵ 2 ⇤

↵
n(k, ◆, ⇠) | Cn 6� ui for every i}

#⇤

↵
n(k, ◆, ⇠)

*



=

#
a

E2Bdlog(2)(n)e
n

Y

ishn(E)

n

ui 2 U dlog(2)

(n)e
E.i | Cn 66� ui

o

#⇤↵
n(k, ◆, ⇠)

PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠) | Cn 6� t}

#⇤↵
n(k, ◆, ⇠)

! 0 (n ! 1)
?

 #{[t]↵ 2 ⇤

↵
n(k, ◆, ⇠) | Cn 6� ui for every i}

#⇤

↵
n(k, ◆, ⇠)

*


⇣
1� 1/c�2dlog(2)

(n)e
⌘n/4dlog(2)

(n)e



=

#
a

E2Bdlog(2)(n)e
n

Y

ishn(E)

n

ui 2 U dlog(2)

(n)e
E.i | Cn 66� ui

o

#⇤↵
n(k, ◆, ⇠)

PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠) | Cn 6� t}

#⇤↵
n(k, ◆, ⇠)

! 0 (n ! 1)
?

 #{[t]↵ 2 ⇤

↵
n(k, ◆, ⇠) | Cn 6� ui for every i}

#⇤

↵
n(k, ◆, ⇠)

*


⇣
1� 1/c�2dlog(2)

(n)e
⌘n/4dlog(2)

(n)e

shn(E) � n/4dlog(2)(n)e for any E 2 Bdlog(2)
(n)e

n

Lemma



=

#
a

E2Bdlog(2)(n)e
n

Y

ishn(E)

n

ui 2 U dlog(2)

(n)e
E.i | Cn 66� ui

o

#⇤↵
n(k, ◆, ⇠)

PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠) | Cn 6� t}

#⇤↵
n(k, ◆, ⇠)

! 0 (n ! 1)
?

 #{[t]↵ 2 ⇤

↵
n(k, ◆, ⇠) | Cn 6� ui for every i}

#⇤

↵
n(k, ◆, ⇠)

*


⇣
1� 1/c�2dlog(2)

(n)e
⌘n/4dlog(2)

(n)e

shn(E) � n/4dlog(2)(n)e for any E 2 Bdlog(2)
(n)e

n

Lemma

#Udlog(2)
(n)e

E.i = O(c�2dlog(2)
(n)e)

for some constants c and �

Lemma



=

#
a

E2Bdlog(2)(n)e
n

Y

ishn(E)

n

ui 2 U dlog(2)

(n)e
E.i | Cn 66� ui

o

#⇤↵
n(k, ◆, ⇠)

PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠) | Cn 6� t}

#⇤↵
n(k, ◆, ⇠)

! 0 (n ! 1)
?

 #{[t]↵ 2 ⇤

↵
n(k, ◆, ⇠) | Cn 6� ui for every i}

#⇤

↵
n(k, ◆, ⇠)

*


⇣
1� 1/c�2dlog(2)

(n)e
⌘n/4dlog(2)

(n)e



=

#
a

E2Bdlog(2)(n)e
n

Y

ishn(E)

n

ui 2 U dlog(2)

(n)e
E.i | Cn 66� ui

o

#⇤↵
n(k, ◆, ⇠)

PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠) | Cn 6� t}

#⇤↵
n(k, ◆, ⇠)

! 0 (n ! 1)
?

 #{[t]↵ 2 ⇤

↵
n(k, ◆, ⇠) | Cn 6� ui for every i}

#⇤

↵
n(k, ◆, ⇠)

*


⇣
1� 1/c�2dlog(2)

(n)e
⌘n/4dlog(2)

(n)e
! 0 (n ! 1) *



For any family of contexts         of               such 
that                         

(Cn)n

if               .

|Cn| = dlog(2)(n)e,

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | Cn � t}

#⇤↵
n(k, ◆, ⇠)

= 1.

k, ◆, ⇠ � 2

PROOF OF PARAMETERISED 
INFINITE MONKEY THOREM FOR TERMS

⇤↵
n(k, ◆, ⇠)

*

*
#{[t]↵ 2 ⇤↵

n(k, ◆, ⇠) | Cn 6� t}
#⇤↵

n(k, ◆, ⇠)
! 0 (n ! 1)



SUMMARY OF THE MAIN PROOF

the probability that a term                             has a 
β-reduction sequence of length (k-2)-EXP(n)

the probability that                            holdsk

(     Monkey Theorem)*

(     explosive property)*
� � t

[t]↵ 2 �↵
n(k, ◆, ⇠)

! 1 (n ! 1)

dlog(2)(n)e

⇤↵
n(k, ◆, ⇠)



OUTLINE

λ•Introduction 

•Proof of our result 

•Conclusion



FUTURE WORK
• Quantitative analysis of simply typed λ-terms in 

different settings: 

• with an unbounded number of variables. 

• with recursion.

• Almost every terms of size n and order at most k has a  
β-reduction sequence of length (k-2)-EXP(n). 

• The core of our proof is a non-trivial extension of 
well-known Infinite Monkey Theorem.

CONCLUSION


