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MOTIVATION
• A simply-typed term can have a very long β-reduction 

sequence. 
• k-EXP in the size of terms of order k [Beckmann 2001].

0-EXP(n) = n

(m+ 1)-EXP(n) = 2m-EXP(n)

• How many terms have such long β-reduction 
sequences?
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e.g.

• A simply-typed term can have a very long β-reduction 
sequence. 
• k-EXP in the size of terms of order k [Beckmann 2001].

• How many terms have such long β-reduction 
sequences?

where Twice = �f.�x.f(f x)

(Twice)n Twice · · ·Twice| {z }
k�2 times

(�x.bxx)((�x.x)c)



• The work has been motivated by quantitative analysis 
of the complexity of higher-order model checking 
(HOMC).

SIDE REMARK

• Input          : tree automaton     and λY-term t.  
Output       : YES if     accepts the infinite tree  
                     represented by t, NO otherwise.  
Complexity: k-EXPTIME-complete for order-k λY-terms.

• We want to (dis)prove: HOMC can be efficiently 
solved for almost every input.

HIGHER-ORDER MODEL CHECKING
A

A

[Ong 2006]



RELATED WORK

• Quantitative analysis of untyped terms:
• Almost every λ-term is strongly normalizing (SN), but 

almost every SK-combinatory term is not SN  
[David et al. 2009].

• Almost every de Bruijn λ-term is not SN 
[Bendkowski et al. 2015].

• Empirical results: almost every λ-term is not β-normal, 
untypable [Grygiel-Lescanne 2013].
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• Quantitative analysis of typed terms: little is known.
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For                and          ,k, ◆, ⇠ � 2

lim
n!1

#{[t]↵ 2 ⇤↵
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= 1.

k  ◆

OUR RESULT
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  terms such that:
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NUMBER OF DISTINCT VARIABLES

#V(t)•           : the # of variables in t excluding unused 
variables.

#V↵([t]↵) , min{#V(t0) | t0 2 [t]↵}
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NUMBER OF DISTINCT VARIABLES

• For an α-equivalence class      ,[t]↵

Example

#V↵([t]↵) , min{#V(t0) | t0 2 [t]↵}

#V↵([(�z.z)�y.x]↵) = 1

#V(t)•           : the # of variables in t excluding unused 
variables.

#V((�z.z)�y.x) = #{x, z} = 2

#V((�x.x)�y.x) = #{x} = 1
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OVERVIEW OF OUR PROOF

• Almost every term contains a certain “context” 
that has a very long β-reduction sequence.

• Inspired by Infinite Monkey Theorem: for any word x, 
almost every word contains x as a subword.
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PROOF IDEA

1. Parameterizing Infinite Monkey Theorem. 

2. Extending (1) to λ-terms. 

3. Constructing “explosive context” that generates 
a long β-reduction sequence.
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IDEA1: PARAMETERIZING INFINITE MONKEY THEOREM

For any family of words          over A such that 
                        

(xn)n

lim
n!1

#{w 2 A

n | xn v w}
#A

n
= 1.

log

(2)
(n) = log(log(n))

|xn| = dlog(2)(n)e,



IDEA2: EXTENDING IDEA1 TO TERMS

For any family of contexts          such that                         (Cn)n

if               .

|Cn| = dlog(2)(n)e,

C � t ,                           for some context     and term  .C 0t = C 0[C[t0]] t0

lim
n!1

#{[t]↵ 2 ⇤↵
n(k, ◆, ⇠)} | Cn � t}

#⇤↵
n(k, ◆, ⇠)

= 1.

k, ◆, ⇠ � 2
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• For parameters n and k, we define the explosive 
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�
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�
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n
k
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HARVEST

+ A direct corollary of the explosive property: 

� t ) (k � 2)-EXP(n)  �(t).

Almost every term of size n and order at most k 
has a β-reduction sequence of length (k-2)-EXP(n).
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PROOF IDEA

1. Parameterizing Infinite Monkey Theorem. 

2. Extending (1) to λ-terms. 

3. Constructing “explosive context” that generates 
a long β-reduction sequence.

Most technical part

We first give a proof of 
(1), because it clarify 
the overall structure of 
the proof of (2).
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• Previous proof is based on a “good” decomposition of words. 
• This good decomposition is induced by the following 

coproduct-product form:

|{z}
`

(n mod `)<`z}|{
w = w1 w2 · · · wbn/`c w

0

|{z}
`

|{z}
`

An 3
cf.

DECOMPOSITION OF WORDS

An ⇠=
a

w02A(n mod `)

Y

ibn/`c

A`

• This point of view forms the basis of the later extensions.
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For any family of words          over A such that 
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CHALLENGE IN PROVING PARAMETERISED 
MONKEY THEOREM FOR TERMS

• How to obtain such a “good” decomposition for the        
set of λ-terms                    ? 

• Non-trivial since terms have various shapes:

⇤↵
n(k, ◆, ⇠)
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ANALOGY BETWEEN 
THE DECOMPOSITION OF TERMS AND WORDS
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SUMMARY OF THE MAIN PROOF

the probability that a term                             has a 
β-reduction sequence of length (k-2)-EXP(n)

the probability that                            holdsk

(     Monkey Theorem)*

(     explosive property)*
� � t

[t]↵ 2 �↵
n(k, ◆, ⇠)

! 1 (n ! 1)

dlog(2)(n)e

⇤↵
n(k, ◆, ⇠)
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FUTURE WORK
• Quantitative analysis of simply typed λ-terms in 

different settings: 

• with an unbounded number of variables. 

• with recursion.

• Almost every terms of size n and order at most k has a  
β-reduction sequence of length (k-2)-EXP(n). 

• The core of our proof is a non-trivial extension of 
well-known Infinite Monkey Theorem.

CONCLUSION


