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Abstract. This paper introduces a new categorical structure that is a
model of a variant of the i/o-typed π-calculus, in the same way that a
cartesian closed category is a model of the λ-calculus. To the best of
our knowledge, no categorical model has been given for the i/o-typed
π-calculus, in contrast to session-typed calculi, to which corresponding
logic and categorical structure were given. The categorical structure in-
troduced in this paper has a simple definition, combining two well-known
structures, namely, closed Freyd category and compact closed category.
The former is a model of effectful computation in a general setting, and
the latter describes connections via channels, which cause the effect we
focus on in this paper. To demonstrate the relevance of the categori-
cal model, we show by a semantic consideration that the π-calculus is
equivalent to a core calculus of Concurrent ML.
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1 Introduction

The Curry-Howard-Lambek correspondence reveals the trinity of the simply-
typed λ-calculus, propositional intuitionistic logic and cartesian closed category.
Via the correspondence, a type of the calculus can be seen as a formula of the
logic, and as an object of a category; a term can be seen as a proof and as a
morphism (see, e.g., [23]). Since its discovery, a number of variations have been
proposed and studied.

In concurrency theory, a correspondence between a process calculus and logic
was established by Caires, Pfenning and Toninho [8,9] and later by Wadler [48].
What they found is that session types [18,20] can be seen as formulas of linear
logic [14], and processes as proofs. This remarkable result has inspired lots of
work (e.g. [45,46,25,3,4,10]).

This correspondence is, however, not completely satisfactory as pointed out
in [3,26], as well as by Wadler himself [48]. The session-typed calculi in [9,48] cor-
responding to linear logic have only well-behaved processes, because the session
type systems guarantee deadlock-freedom and race-freedom of well-typed pro-
cesses. This strong guarantee is often useful for programmers writing processes
in the typed calculus, but can be seen as a significant limitation of expressive
power. For example, it prevents us from modelling wild concurrent systems or
programs that might fall into deadlocks or race conditions.
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This paper describes an approach to a Curry-Howard-Lambek correspon-
dence for concurrency in the presence of deadlocks and race conditions, from the
viewpoint of categorical type theory.

What is the categorical model of the π-calculus? We focus on the π-
calculus [30,31] in this paper. This is not only because the π-calculus is widely
used and powerful, but also because of a classical result by Sangiorgi [39,42],
which is the starting point of our development.

Sangiorgi, in the early 90s, gave translations between the conventional, first-
order π-calculus and its higher-order variant [39,42]. This translation allows us
to regard the π-calculus as a higher-order programming language.

Let us review the observation by Sangiorgi, using a core of the asynchronous
π-calculus: P ::= 0 | (P |Q) | ā〈x〉 | a(x).P .1 The idea is to decompose the input-
prefixing a(x).P into a and (x).P . Let us write a[(x).P ] for a(x).P to emphasise
the decomposition. Then a reduction can also be decomposed as

ā〈x〉 | a[(y).P ] | Q −→ [(y).P ]〈x〉 | Q −→ P{x/y} | Q,

where the first step is the communication and the second step is the β-reduction
(i.e. (λy.P )x −→ P{x/y} in the λ-calculus notation). Hence we regard

– an output ā〈x〉 as an application of a function ā to x, and
– an input a(x).P as an abstraction (x).P (or λx.P ) “located” at a[−].

Now, ignoring the mysterious operator a[−], what we had are the core oper-
ations of functional programming languages (i.e. abstraction and application).
This functional programming language is effectful; in fact, communication via
channels is a side effect.

This observation leads us to base our categorical model for the π-calculus
on a model for effectful functional programs. Among several models, we choose
closed Freyd category [37] for modelling the functional part.

Then what is the categorical counterpart of a[−]? As this operation seems
responsible for communication, this question can be rephrased as: what is the
categorical structure for communication? An observation by Abramsky et al. [2]
answered this question. They pointed out the importance of compact closed cat-
egory [21] in concurrency theory, which nicely describes CCS-like processes in-
terconnected via ports.

By combining the two structures described above, this paper introduces a
categorical structure, which we call compact closed Freyd category, as a cate-
gorical model of the π-calculus.2 Despite its simplicity, compact closed Freyd

1 This calculus slightly differs from the calculus we shall introduce in Section 2, but
the differences are not important here.

2 Here is the reason why we do not use a monad for modelling the effect: it is unclear
for us how to integrate a monad with the compact closed structure. On the contrary,
a Freyd category has a (pre)monoidal category as its component; we can simply
require that it is compact closed.
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category captures the strong expressive power of the π-calculus. The compact
closed structure allows us to connect ports in an arbitrary way, in return for the
possibility of deadlocks; the Freyd structure allows us to duplicate objects, and
duplication of input channels introduces the possibility of race conditions.

Reconstructing calculi This paper introduces two calculi that are sound and
complete with respect to the compact closed Freyd category model. One is a
variant of the π-calculus, named πF ; the design of πF is based on the observations
described above. The other is a higher-order programming language λch defined
as an instance of the computational λ-calculus [33]. Designing λch is not so
difficult because we can make use of the correspondence between computational
λ-calculus and closed Freyd category (see Section 4). The λch -calculus have
operations for creating a channel and for sending a value via the channel and,
therefore, can be seen as a core calculus of Concurrent ML (or CML) [38].

Since the higher-order calculus λch and πF correspond to the same categor-
ical model, we can obtain translations between these calculi by simple semantic
computations. These translations are “correct by definition” and, interestingly,
coincide with those between higher-order and first-order π-calculus [39,42].

On β- vs. βη-theories The categorical analysis of this paper reveals that
many conventional behavioural equivalences for the π-calculus are problematic
from a viewpoint of categorical type theory. The problem is that they induce
only semicategories, which may not have identities for some objects. This is a
reminiscent of the β-theory of the λ-calculus, of which categorical model is given
by semi-categorical notions [16].

Adding a single rule (which we call the η-rule) resolves the problem. Our
categorical type theory deals with only equivalences that admits the η-rule, and
the simplicity of the theory of this paper essentially relies on the η-rule.

Interestingly the η-rule seems to explain some phenomenon in the literature.
For example, Sangiorgi observed that a syntactic constraint called locality [28,49]
is essential for his translation [39,42]. The correctness of the translation can be
proved without using the η-rule, when one restricts the calculus local; we expect
that Sangiorgi’s observation can be related to this phenomenon.

Contributions This paper introduces a new variant of the i/o-typed π-calculus,
which we call πF . A remarkable feature of πF is that it has a categorical coun-
terpart, called compact closed Freyd category. The correspondence is fairly firm;
the categorical semantics is sound and complete, and the term model is the
classifying category. The relevance of the model is demonstrated by a semantic
reconstruction of Sangiorgi’s translation [39,42]. These results open a new fron-
tier in the Curry-Howard-Lambek correspondence for concurrency; session-type
is not the only base for a Curry-Howard-Lambek correspondence for π-calculi.

Organisation of this paper. Section 2 introduces the calculus πF and discuss
equivalences on processes. Section 3 gives the categorical semantics of πF and
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shows soundness and completeness. A connection to a higher-order programming
language with channels is studied in Section 4. In Section 5, we (1) discuss how
our work relates to linear logic and (2) present some ideas for how to extend
the application range of our model. We discuss related work in Section 6 and
conclude in Section 7. Omitted proofs, as well as detailed definitions, are available
in the full version.

2 A polyadic, asynchronous π-calculus with i/o-types

This section introduces a variant of π-calculus, named πF . It is based on a fairly
standard calculus, namely polyadic and asynchronous π-calculus with i/o-types,
but the details are carefully designed so that πF has a categorical model.

2.1 The πF -calculus

This subsection defines the calculus πF , which is based on an asynchronous vari-
ant of the polyadic π-calculus with i/o-types in [35]. The aim of this subsection
is to explain what are the differences from the conventional π-calculus. Although
πF has some uncommon features, each of them was studied in the literature; see
Related Work (Section 6) for related ideas and calculi.

Types The set of types, ranged over by S and T , is given by

S, T ::= cho[T1, . . . , Tn] | chi[T1, . . . , Tn] (n ≥ 0).

The type cho[T1, . . . , Tn] is for output channels sending n arguments of types
T1, . . . , Tn. The type chi[T1, . . . , Tn] is for input channels. The dual T⊥ of type

T is defined by cho[~T ]⊥
def
= chi[~T ] and chi[~T ]⊥

def
= cho[~T ]. For a sequence ~T

def
=

T1, . . . , Tn of types, we write ~T⊥ for T⊥1 , . . . , T
⊥
n .

An important difference from [35] is that no channel allows both input and
output operations. We will refer this feature of πF as i/o-separation.

Processes Let N be a denumerable set of names, ranged over by x, y and z.
Each name is either input-only or output-only, because of i/o-separation.

The set of processes, ranged over by P , Q and R, is defined by

P,Q,R ::= 0 | (P |Q) | (νcho[~T ] xy)P | x〈~y〉 | !x(~y).P .

The notion of free names, as well as bound names, is defined as usual. The set
of free names (resp. bound names) of P is written as fn(P ) (resp. bn(P )). We
allow tacit renaming of bound names, and identify α-equivalent processes.

The meaning of the constructs should be clear, except for (νT xy)P which
is less common. The process 0 is the inaction; P | Q is a parallel composition;
x〈~y〉 is an output; and !x(~x).P is a replicated input. The restriction (νT xy)P
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Γ ` 0 : �
Γ ` P : � Γ ` Q : �

Γ ` P | Q : �
Γ, x : cho[~T ], y : chi[~T ] ` P : �

Γ ` (νcho[~T ] xy)P : �

(x : chi[~T ]) ∈ Γ Γ, ~y : ~T ` P : �
Γ ` !x(~y).P : �

(x : cho[~T ]) ∈ Γ ~y : ~T ⊆ Γ
Γ ` x〈~y〉 : �

Fig. 1. Typing rules for processes

hides the names x and y of type T and T⊥ and, at the same time, establishes a
connection between x and y. Communication takes place only over bound names
explicitly connected by ν. This is in contrast to the conventional π-calculus, in
which input-output correspondence is a priori (i.e. ā is the output to a).

The πF -calculus does not have non-replicated input x(~y).P .

Typing rules A type environment Γ is a finite sequence of type bindings of the
form x : T . We assume the names in Γ are pairwise distinct. If ~x = x1, . . . , xn
and ~T = T1, . . . , Tn, we write ~x : ~T for x1 : T1, . . . , xn : Tn. We write (~x : ~T ) ⊆ Γ
to mean xi : Ti ∈ Γ for every i.

A type judgement is of the form Γ ` P : �, meaning that P is a well-typed
process under Γ . The typing rules are listed in Fig. 1.

Notation 1. We define (νchi[~T ] xy)P as (νcho[~T ] yx)P ; then (νT xy)P is defined

for every T . We abbreviate (νT1 x1y1) . . . (νTn xnyn)P as (ν ~T ~x~y)P . We often
omit type annotations and write (νxy) for (νT xy) and (ν~x~y) for (ν ~T ~x~y). We
use a and b for names of input channel types and ā and b̄ for output. Note that
a and ā are connected only if they are bound by the same occurrence of ν. ut

Operational semantics Structural congruence, written ≡, is the smallest con-
gruence relation on processes that satisfies the following rules:

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νxy)(P | Q) ≡ ((νxy)P ) | Q (νwx)(νyz)P ≡ (νyz)(νwx)P

where x, y /∈ fn(Q) in the fourth rule and w, x, y, z are distinct in the fifth rule.
The reduction relation on processes, written −→, is defined by the base rule

(ν ~w~z)(νāa)(!a(~x).P | ā〈~y〉 | Q) −→ (ν ~w~z)(νāa)(!a(~x).P | P{~y/~x} | Q)

(where P{~x/~y} is the capture-avoiding substitution) and the structural rule
which concludes P −→ Q from ∃P ′Q′. P ≡ P ′ −→ Q′ ≡ Q. Note that, unlike
conventional π-calculi, communication only occurs over bound names connected
by ν. We write −→∗ for the reflexive and transitive closure of −→.

It should be clear that deadlocks and racy communications can be expressed
in πF . An example of race is (νāa)(ā〈~y〉 | !a(~x).P | !a(~x).Q), where two input
actions are trying to consume the output regarded as a resource. A similar
process (νāa)(!a(~x).P | ā〈~y〉 | ā〈~z〉) does not have a race since the receiver !a(~x).P
is replicated. In general, race conditions on output actions do not occur in πF .
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2.2 Equivalences on processes

To establish a Curry-Howard-Lambek correspondence is to find a nice alge-
braic or categorical structure of terms. For example, the original Curry-Howard-
Lambek correspondence reveals the cartesian closed structure of λ-terms.

Such a nice structure would become visible only when appropriate notions
of composition and of equivalence could be identified, such as substitution and
βη-equivalence for the λ-calculus.

As for process calculi, so-called “parallel composition + hiding” paradigm [17]
has been used to compose processes. Given typed processes

~x : ~T , ~y : ~S ` P : � and ~w : ~S⊥, ~u : ~U ` Q : �,

their composite via (~y, ~w) is defined as

~x : ~T , ~u : ~U ` (ν ~S ~y ~w)(P | Q) : �.

This kind of composition appears quite often in logical studies of π-calculi [1,5,19].
It also plays a central role in interaction category paradigm proposed by Abram-
sky, Gay and Nagarajan [2].

So it remains to determine an equivalence on π-calculus processes, appropri-
ate for our purpose. This subsection approaches the problem from two directions:

– Examining behavioural equivalences proposed and studied in the literature
– Developing a new equivalence based on categorical considerations

Let us clarify the notion of equivalence discussed below. An equation-in-
context is a judgement of the form Γ ` P = Q, where Γ ` P : � and Γ ` Q : �.
An equivalence E is a set of equations-in-context that is reflexive, transitive and
symmetric (e.g. (Γ ` P = P ) ∈ E for every Γ ` P : �).

Behavioural equivalences As mentioned above, we are interested in the struc-
ture of πF -processes modulo existing behavioural equivalences. Among the var-
ious behavioural equivalence, we start with studying barbed congruence [32],
which is one of the most widely used equivalences.

We define (asynchronous and weak) barbed congruence for πF . For each name
ā, we write P↓ā if P ≡ (ν~x~y)(ā〈~z〉 | Q) and ā is free, and P⇓ā if ∃Q.P −→∗ Q↓ā.
A (Γ/∆)-context is a context C such that Γ ` C[P ] : � for every ∆ ` P : �.

Definition 1. A barbed bisimulation is a symmetric relation R on processes
such that, whenever P R Q, (1) P↓ā implies Q⇓ā and (2) P −→ P ′ implies

∃Q′. (Q −→∗ Q′)∧ (P ′ R Q′). Barbed bisimilarity
•
≈ is the largest barbed bisim-

ulation. Typed processes ∆ ` P : � and ∆ ` Q : � are barbed congruent at ∆,

written ∆ ` P uc Q, if C[P ]
•
≈ C[Q] for every (Γ/∆)-context C. ut

Let us consider a category-like structure C in which an object is a type and
a morphism is an equivalence class of πF -processes modulo barbed congruence.
More precisely, a morphism from T to S is a process x : T, y : S⊥ ` P : � modulo
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barbed congruence (and renaming of free names x and y). Then the composi-
tion (i.e. “parallel composition + hiding”) is well-defined on equivalence classes,
because barbed congruence is a congruence. This is a fairly natural setting.

We have a strikingly negative result.

Theorem 1. C is not a category.

Proof. In every category, if f : A −→ A is a left-identity on A (i.e. f ◦ g = g for
every g : A −→ A), then f is the identity on A. The process a : cho[], b̄ : chi[] `
!a().b̄〈〉 : � seen as a morphism (cho[]) −→ (cho[]) is a left-identity but not the
identity. The former means that c : cho[], b̄ : chi[] `

(
(νāa)(!a().b̄〈〉 | P )

)
uc

P{b̄/ā} for every c : cho[], ā : chi[] ` P : �, which is a consequence of the repli-
cator theorems [35]. To prove the latter, observe that (ν b̄b)(!a().b̄〈〉 | 0) and 0

are not barbed congruent. Indeed the context C
def
= (νāa)(ā〈〉 | !a().ō〈〉 | [ ])

distinguishes the processes, where ō is the observable. ut

Note that race condition is essential for the proof, specifically, for the part
proving that the process !a().b̄〈〉 is not the identity. A race condition occurs
in C[(ν b̄b)(!a().b̄〈〉 | 0)], where ā in C has two receivers.

The process !a().b̄〈〉 is called forwarder, and forwarders will play a central

role in this paper. Its general form is a ↪→ b̄
def
= !a(~x).b̄〈~x〉. When x : T and

y : T⊥, we write x� y to mean x ↪→ y if T = chi[~S] and otherwise y ↪→ x.

Remark 1. The argument in the proof of Theorem 1 is widely applicable to i/o-
typed calculi, not specific to πF . In particular, i/o-separation (i.e. absence of

chi/o[~T ]) is not the cause, but the existence of cho[~T ] or chi[~T ] is. ut

Remark 2. Session-typed calculi in Caires, Pfenning and Toninho [8,9], which
correspond to linear logic, do not seem to suffer from this problem. In our un-
derstanding, this is because of race-freedom of their calculi. ut

To obtain a category, we should think of a coarser equivalence that identifies
(ν b̄b)(!a().b̄〈〉 | 0) with 0. Such an equivalence should be very coarse; even must-
testing equivalence [11] fails to equate them. As long as we have checked, only
may-testing equivalence [11] defined below satisfies the requirement.

Definition 2. Typed processes ∆ ` P : � and ∆ ` Q : � are may-testing
equivalent at ∆, written ∆ ` P =may Q, if C[P ]⇓ā ⇔ C[Q]⇓ā for every (Γ/∆)-
context C and name ā. ut

As we shall see, πF -processes modulo may-testing equivalence behaves well.
May-testing equivalence is, however, often too coarse.

Category-driven approach In this approach, we first guess an appropriate
categorical structure sufficient for interpreting πF , based on intuitions discussed
in Introduction (see also Section 3.1), and then design an equivalence so that it
is sound and complete with respect to the categorical semantics.

Figure 2 defines the equivalence, described as a set of rules. A πF -theory is
an equivalence that behaves well from the categorical perspective.
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a /∈ fn(P,C) ā /∈ bn(C)

Γ ` (νāa)(!a(~x).P | C[ā〈~y〉]) = (νāa)(!a(~x).P | C[P{~y/~x}])
(E-Beta)

a, ā /∈ fn(P )

Γ ` (νāa)!a(~y).P = 0
(E-GC)

ā, a /∈ fn(c̄〈~x〉)
Γ ` c̄〈~x〉 = (νāa)(a ↪→ b̄ | c̄〈~x{ā/b̄}〉)

(E-FOut)

b, ā /∈ fn(P )

Γ ` (νāa)(b ↪→ ā | P ) = P{b/a}
(E-Eta)

P ≡ Q
Γ ` P = Q

(E-SCong)
∆ ` P = Q C : Γ/∆-context

Γ ` C[P ] = C[Q]
(E-Ctx)

Fig. 2. Inference rules of equations-in-context. Each rule has implicit assumptions that
the both sides of the equation are well-typed processes.

Definition 3. An equivalence E is a πF -theory if it is closed under the rules
in Fig. 2. Any set Ax of equations-in-context has the minimum theory Th(Ax )
that contains Ax. We write Ax B Γ ` P = Q if (Γ ` P = Q) ∈ Th(Ax ). ut

Let us examine each rule in Fig. 2.
The rule (E-Beta) should be compared with the reduction relation. When

C = ([ ] | Q), then (E-Beta) claims

(νāa)(!a(~x).P | ā〈~y〉 | Q) = (νāa)(!a(~x).P | P{~y/~x} | Q)

provided that a /∈ fn(P,Q), which is indeed an instance of the reduction.
A significant difference from reduction is the side condition. It is essential

in the presence of race conditions. Without the side condition, every πF -theory
would be forced to contain the symmetric and transitive closure of the reduction
relation; thus it would identify P | (νāa)(!a().P | !a().Q) with Q | (νāa)(!a().P |
!a().Q) for every processes P and Q (where ā, a are fresh), because

(νāa)(ā〈〉 | !a().P | !a().Q) −→ P | (νāa)(!a().P | !a().Q)

(νāa)(ā〈〉 | !a().P | !a().Q) −→ Q | (νāa)(!a().P | !a().Q).

The side condition prevents πF -theories from collapsing.
Another, relatively minor, difference is that application of (E-Beta) is not

limited to the contexts of the form [ ] | Q. This kind of extension can be found in,
for example, work by Honda and Laurent [19] studying π-calculus from a logical
perspective.

The rule (E-GC) runs “garbage-collection”. Because no one can send a mes-
sage to the hidden name a, the process !a(~x).P will never be invoked and thus
is safely discarded. This rule is sound with respect to many behavioural equiv-
alences, including barbed congruence. Rules of this kind often appear in the
literature studying logical aspects of concurrent calculi (as in Honda and Lau-
rent [19] and Wadler [48]). There is, however, a subtle difference in the side
condition: (E-GC) requires that a and ā do not appear at all in P .
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The rule (E-FOut) can be seen as the η-rule of abstractions, as in the λ-
calculus and in the higher-order π-calculus [39]. In the latter, an output name b̄
can be identified with an abstraction (~y).b̄〈~y〉. Then we have, for example,

(νāa)(a ↪→ b̄ | c̄〈ā〉) = (νāa)(a ↪→ b̄ | c̄〈 (~y).ā〈~y〉 〉) = c̄〈 (~y).b̄〈~y〉 〉 = c̄〈b̄〉

where we use (E-Beta) and (E-GC) in the second step. An important usage
of (E-FOut) is to replace an output of free names with that of bound names.
This kind of operation has been studied in [7,28] as a part of translations from
the π-calculus to its local/internal fragments.3

The rule (E-Eta) requires the forwarders are left-identities, directly describ-
ing the requirement discussed above.4

The rules (E-SCong) and (E-Ctx) are easy to understand. The former
requires that structurally congruent processes should be identified; the latter
says that a πF -theory is a congruence.

These rules can be justified from the operational viewpoint, as well. A well-
known result on the i/o-typed π-calculus (see, e.g., [43,35]) shows the following
propositions.

Proposition 1. Barbed congruence is closed under all rules but (E-Eta). ut

Proposition 2. May-testing equivalence is a πF -theory. ut

In particular, the latter means that may-testing equivalence is in the scope of
the categorical framework of this paper; see Theorem 5.

3 Categorical semantics

This section introduces the class of compact closed Freyd categories and discusses
the interpretation of the πF -calculus in the categories. We show that the cate-
gorical semantics is sound and complete with respect to the equational theory
given in Section 2.2, and that the syntax of the πF -calculus induces a model.

This section, by its nature, is slightly theoretical compared with other sec-
tions. Section 3.1 explains the ideas of this section without heavily using cate-
gorical notions; the subsequent subsections require familiarity with categorical
type theory.

3.1 Overview

As mentioned in Section 1, the categorical model of πF is compact closed Freyd
category, which has both closed Freyd and compact closed structures. Here we

3 Free outputs can be eliminated from πF -processes by using the rules (E-FOut) and
(E-Eta), i.e. external mobility can be encoded by internal mobility [7,40]. If the
calculus is local [28,49], then we do not need (E-Eta) to eliminate free outputs.

4 A forwarder behaves as a right-identity with respect to every πF -theory. This is a
consequence of rules (E-Beta), (E-GC) and (E-FOut).
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informally discuss what is a compact closed Freyd category and how to interpret
πF by using syntactic representation.

A closed Freyd category is a model of higher-order programs with side effects.
It has, among others, the structures to interpret the function type A ⇒ B and
its constructor and destructor, namely, abstraction λx.t and application t u. It
also has a mechanism for unrestricted duplication of variables; in terms of logic,
contraction is admissible.

A compact closed category can be seen as MLL [14] with the left rule:

Γ,A∗, A ` I
Γ ` I

[
Γ ` A∗ ∆ ` A

Γ,∆ ` I

]
.

(The right rule is the companion, which itself is derivable in MLL.)
A compact closed Freyd category has all the constructs. It has the structures

corresponding to the following type constructors:

(closed Freyd) I, A⊗B,A⇒ B (compact closed) I, A⊗B,A∗.

Note that the pair type A⊗B (as well as the unit I) coming from the closed Freyd
structure is identified with that from the compact closed structure. Inference
rules for a compact closed Freyd category is those for functional languages and
the above rules of the compact closed structure.

Interpreting πF in a compact closed Freyd category is to interpret it by using
these constructs. As mentioned in Section 1, following Sangiorgi [39], we regard

– an output ā〈~x〉 as an application of a function ā to a tuple 〈~x〉, and
– an input !a(~x).P as an abstraction (~x).P (or λ~x.P ) located at a.

We interpret the output action by using the function application. Hence the type
cho[T ] is regarded as a function type T ⇒ I (where the unit type I is the type
for processes i.e. �); then the typing rule for output actions becomes

Γ, ā : (T ⇒ I), x : T ` ā : T ⇒ I Γ, ā : (T ⇒ I), x : T ` x : T

Γ, ā : (T ⇒ I), x : T ` ā〈x〉 : I

The type chi[T ] is understood as (T ⇒ I)∗; the input-prefixing rule becomes

Γ, a : (T ⇒ I)∗ ` a : (T ⇒ I)∗
Γ, a : (T ⇒ I)∗, x : T ` P : I

Γ, a : (T ⇒ I)∗ ` (x).P : T ⇒ I

Γ, a : (T ⇒ I)∗ ` !a(x).P : I

This derivation directly expresses the intuition that an input-prefixing is abstrac-
tion followed by allocation; here allocation is interpreted by using the compact
closed structure, i.e. connection of ports. The name restriction also has a natural
derivation:

Γ, a : (T ⇒ I)∗, ā : (T ⇒ I) ` P : I

Γ ` (νāa)P : I
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3.2 Compact closed Freyd category

Let us formalise the ideas given in Section 3.1. Hereafter in this section, we
assume basic knowledge of category theory and of categorical type theory.

We recall the definitions of compact closed category and closed Freyd cat-
egory. For simplicity, the structures below are strict and chosen; a functor is
required to preserve the chosen structures on the nose.

Definition 4 (Compact closed category [21]). Let (C,⊗, I) be a symmetric
strict monoidal category. The dual of an object A in C is an object A∗ equipped
with unit ηA : I −→ A⊗A∗ and counit εA : A∗⊗A −→ I that satisfy the “triangle
identities” (ηA⊗ idA); (idA⊗ εA) = idA and (idA∗⊗ηA); (εA⊗ idA∗) = idA∗ . The
category C is compact closed if each object is equipped with a chosen dual. ut

Definition 5 (Closed Freyd category [37]). A Freyd category is given by
(1) a category with chosen finite products (C,⊗, I), called value category, (2) a
symmetric strict monoidal category (K,⊗, I, symm), called producer category,
and (3) an identity-on-object strict symmetric monoidal functor J : C → K. A
Freyd category is a closed Freyd category if the functor J(−) ⊗ A : C → K has
the (chosen) right adjoint A⇒ − : K → C for every object A. We write ΛA,B,C
for the natural bijection K(J(A) ⊗ B,C) −→ C(A,B ⇒ C) and evalA,B for
Λ−1(idA⇒B) : (A⇒ B)⊗A −→ B in K. ut

Remark 3. The above definition is a restriction of the original one [37], in which
K is a premonoidal [36] category. This change reflects concurrency of the cal-
culus. In fact, it validates the following law, expressed by the syntax of the
computational λ-calculus [33],

letx = M in let y = N inL = let y = N in letx = M inL.

Then one can evaluate M by using the left form and N by using the right form.
This law allows us to evaluate M and N in arbitrary order, or concurrently. ut

We now introduce the categorical structure corresponding to the πF -calculus.

Definition 6 (Compact closed Freyd category). A compact closed Freyd
category is a Freyd category J : C −→ K such that (1) K is compact closed, and
(2) J has the (chosen) right adjoint I ⇒ − : K → C. ut
We shall often write J for a compact closed Freyd category J : C ⊥ K.

A compact closed Freyd category is a closed Freyd category:

K(J(A)⊗B,C) ∼= K(J(A), B∗ ⊗ C) ∼= C(A, I ⇒ (B∗ ⊗ C)).

Example 1. The most basic example of a compact closed Freyd category is (the
strict monoidal version of) J : Sets ⊥ Rel : P. Here J is the identity-on-object
functor that maps a function to its graph and P is the “power set functor”

that maps a relation R ⊆ A × B to a function P(R)
def
= {(SA, SB) | SB =

{b | a ∈ SA, a R b}}. Another example is obtained by replacing sets with posets,
functions with monotone functions and relations with downward closed relations.

ut



12 K. Sakayori & T. Tsukada

Jchi[T1, . . . , Tn]K def
= ((JT1K⊗ · · · ⊗ JTnK)⇒ I)∗

Jcho[T1, . . . , Tn]K def
= (JT1K⊗ · · · ⊗ JTnK)⇒ I

JΓ ` 0 : �K def
= J(!Γ )

JΓ ` !a(~x).P : �K def
= J(〈πΓa , ΛΓ,~T ,I(JΓ, ~x : ~T ` P : �K)〉); εch[~T ]

JΓ ` ā〈~x〉 : �K def
= J(〈πΓā , πΓx1 , . . . , π

Γ
xn〉); eval~T ,I

JΓ ` P | Q : �K def
= J(∆Γ ); (JΓ ` P : �K⊗ JΓ ` Q : �K)

JΓ ` (νxy)P : �K def
= (idΓ ⊗ ηT ); JΓ, x : T, y : T⊥ ` P : �K

Fig. 3. Interpretation of types and processes. Here !Γ , ∆Γ and πΓy are maps in C
induced by the cartesian structure, namely, !Γ : JΓ K −→ I is the terminal map,
∆Γ : JΓ K −→ JΓ K ⊗ JΓ K is the diagonal map and, when Γ = (y1 : T1, . . . , yn : Tn)
and x = yj , the morphism πΓx : JΓ K −→ JTjK is the j-th projection. The interpretation
of a type environment x1 : T1, . . . , xn : Tn is JT1K⊗ · · · ⊗ JTnK.

Example 2. A more sophisticated example is taken from Laird’s game-semantic
model of π-calculus [22]. Precisely speaking, the model in [22] itself is not com-
pact closed Freyd, but its variant (with non-negative arenas) is. This model is
important since it is fully abstract w.r.t. may-testing equivalence [22, Theorem 1];
hence our framework has a model that captures the may-testing equivalence. ut

3.3 Interpretation

Given a compact closed Freyd category J : C ⊥ K, this section defines the inter-
pretation J−KJ . It maps types and type environments to objects as usual, and a
well-typed process Γ ` P : � to a morphism JP K : JΓ K→ I in K (recall that the
tensor unit I is the interpretation of the type for processes).

Figure 3 defines the interpretation of types and processes. It simply formalises
the ideas presented in Section 3.1: for example, the interpretation of !a(~x).P is
the abstraction Λ (from the closed Freyd structure) followed by location ε (from
the compact closed structure). There are some points worth noting.

– (A⇒ I)∗ is not isomorphic to A∗ ⇒ I, A⇒ I nor I ⇒ A. Indeed (A⇒ I)∗

cannot be simplified. Do not confuse it with a valid law I ⇒ (A∗) ∼= A⇒ I.
– A parallel composition is interpreted as a pair. Recall that two components

of a pair are evaluated in parallel in this setting (cf. Remark 3).
– All but the last rule use the cartesian structure of C in order to duplicate or

discard the environment.

Example 3. Let us consider y : T ` (νāa)(ā〈y〉 | !a(x).P ) : �, where ā, a, y /∈
fn(P ) and a : chi[T ]. By (E-Beta) and (E-GC), this process is equal to P{y/x}.
It is natural to expect that the interpretations of the two processes coincide; in-
deed it is. As the following calculation indicates, our semantics factorises the
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reduction into two steps: (1) the “transmission” of the closure λ~x.P by the tri-
angle identity of the compact closed structure, and (2) the β-reduction modelled
by eval of the closed Freyd structure:

Jy : T ` (νāa)(ā〈y〉 | !a(x).P ) : �K
= (idT ⊗ ηcho[T ]); Jy : T, ā : cho[T ], a : chi[T ] ` ā〈y〉 | !a(x).P : �K
= (id⊗ η); (Jy : T, ā : cho[T ] ` ā〈y〉 : �K⊗ Ja : chi[T ] ` !a(x).P : �K)
= (id⊗ η); ((symmT,cho[T ]; evalT,I)⊗ (idch[T ]∗ ⊗ J(Λ(Jx : T ` P : �K))); εT⇒I
= (idT ⊗ J(Λ(Jx : T ` P : �K))); symmT,cho[T ]; evalT,I (By triangle identity)

= (J(Λ(Jx : T ` P : �K))⊗ idT ); evalT,I

= Jx : T ` P K (By the universality of eval)

= Jy : T ` P{y/x} : �K.

(Here we implicitly use derived rules for weakening and exchange.) ut

Example 4. The interpretation of a forwarder a : chi[~T ], b̄ : cho[~T ] ` a ↪→ b̄ : � is

the counit εcho[~T ] : Jcho[~T ]K∗ ⊗ Jcho[~T ]K −→ I in K, which is the one-sided form

of the identity. Recall that a forwarder is the identity in every πF -theory. ut

The semantics is sound and complete. That means, a judgement Ax B Γ `
P = Q is provable if and only if Γ ` P = Q is valid in all models J of Ax .

Here we define the related notions and prove soundness; completeness is the
topic of the next subsection.

Definition 7. An equational judgement Γ ` P = Q is valid in J if JΓ ` P :
�KJ = JΓ ` Q : �KJ . Given a set Ax of non-logical axioms, J is a model of Ax,
written J |= Ax, if it validates all judgements in Ax. We write Ax BΓ 
 P = Q
if Γ ` P = Q is valid in every J such that J |= Ax. ut

Theorem 2 (Soundness). If Ax B Γ ` P = Q, then Ax B Γ 
 P = Q. ut

3.4 Term model

A term model is a category whose objects are type environments and whose mor-
phisms are terms (i.e. processes in this setting). This section gives a construction
of the term model, by which we show completeness. This subsection basically
follows the standard arguments in categorical type theory; we mainly focus on
the features unique to our model, giving a sketch to the common part.

Given a set Ax of axioms, we define the term model JAx : CAx ⊥ KAx , which
we also write as Cl(Ax ).

The definition of the producer category KAx follows the standard recipe.
As usual, its objects are finite lists of types. The monoidal product ~T ⊗ ~S is
the concatenation of the lists and the dual ~T ∗ is ~T⊥. Given objects ~T and ~S,
a morphism from ~T to ~S is a process ~x : ~T , ~y : ~S⊥ ` P : � (modulo renaming

of variables ~x and ~y). If Ax B ~x : ~T , ~y : ~S⊥ ` P = Q is provable, then P and



14 K. Sakayori & T. Tsukada

Q are regarded as the same morphism. Composition of morphisms is defined as
“parallel composition plus hiding”: For morphisms P : ~T −→ ~S and Q : ~S −→ ~U ,
i.e. processes such that ~x : ~T , ~y : ~S⊥ ` P : � and ~z : ~S, ~w : ~U⊥ ` Q : �, their
composite is ~x : ~T , ~w : ~U⊥ ` (ν~y~z)(P | Q) : �. The monoidal product P ⊗ Q
of morphisms is the parallel composition P | Q. The identity, as well as the
symmetry of the monoidal product and the unit and counit of the compact closed
structure, is a parallel composition of forwarders: for example, the identity on
~S is ~x : ~S, ~y : ~S⊥ ` x1 � y1 | · · · | xn � yn : � where n is the length of ~S.
The facts that most structural morphisms are forwarders and that forwarders
compose are the keys to show that KAx is a compact closed category.

We then see the definition of CAx , of which the definition of morphisms has
a subtle point. The objects of CAx are by definition the same as KAx , i.e. lists
of types. The definition of morphisms relies on the notion of values. The values
are defined by the grammar V ::= x | (~x).P , where P is a process and (~x).P is
called an abstraction. Typing rules for values are as follows:

x : T ∈ Γ
Γ ` x : T

Γ, ~x : ~T ` P
Γ ` (~x).P : cho[~T ]

.

(To understand the right rule, recall that Jcho[~T ]K = J~T K ⇒ I.) A morphism

from ~T to ~S = (S1, . . . , Sn) is an n-tuple (V1, . . . , Vn) of values of type ~x : ~T `
Vi : Si for each i (modulo renaming of ~x). Composition is intuitively defined by
“substitution followed by β-reduction” whose definition is omitted here.5

The functor JAx places the values to the channels. For example, let ~T =
(chi[U1], cho[U2]) and consider the morphism in CAx given by

a : chi[T1], b̄ : cho[T2] ` (a, b̄, (~x).P ) : (chi[T1], cho[T2], cho[~S])

where ~S is the type for ~x. The image of this morphism by the functor JAx is

a : chi[T1], b̄ : cho[T2], c̄ : cho[T1], d : chi[T2], e : chi[~S] ` a ↪→ c̄ | d ↪→ b̄ | !e(~x).P : �.

This example contains all the three ways to place a value to a given channel.

Theorem 3. Cl(Ax ) is a compact closed Freyd category for every Ax. ut

In the model Cl(Ax ), the interpretation of a process Γ ` P : � is the equiv-
alence class that P belongs to. This fact leads to completeness.

Theorem 4 (Completeness). If Ax BΓ 
 P = Q, then Ax BΓ ` P = Q. ut

Theorem 5. There exists a compact closed Freyd category J that is fully ab-
stract w.r.t. may-testing equivalence, i.e. Γ ` P =may Q iff JP KJ = JQKJ .

Proof. Let J be the term model Cl(=may) and use Proposition 2. ut
5 Here is a subtle technical issue that we shall not address in this paper; see the long

version for the formal definition. We think, however, that this paragraph conveys a
precise intuition.
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3.5 Theory/model correspondence

It is natural to expect that Cl(Ax ) is the classifying category as in the standard
categorical type theory. This means, to give a model of Ax in J is equivalent to
give a structure-preserving functor Cl(Ax ) −→ J . This subsection clarifies and
studies this claim.

The set Mod(Ax , J) of models of Ax in J is defined as follows. If J |= Ax ,
then Mod(Ax , J) is a singleton set6; otherwise Mod(Ax , J) is the empty set.

We then define the notion of structure-preserving functors.

Definition 8. A strict compact closed Freyd functor from J : C ⊥ K : I ⇒ (−)
to J ′ : C′ ⊥ K′ : I ⇒′ (−) is a pair of functor (Φ, Ψ) such that

– Φ is a strict finite product preserving functor from C to C′,
– Ψ is a strict symmetric monoidal functor from K to K′ that preserves the

chosen compact closed structures (i.e. units and counits) on the nose, and
– (Φ, Ψ) is a map of adjoints between J a I ⇒ (−) and J ′ a I ⇒′ (−).

ut

The collection of (small) compact closed Freyd categories and strict compact
closed Freyd functors form a 1-category, which we write as CCFC .

Now the question is whether Mod(Ax , J)
?∼= CCFC (Cl(Ax ), J) in Set.

Unfortunately this does not hold. More precisely, the left-to-right inclusion
does not hold in general. This means that the term model satisfies some addi-
tional axioms reflecting some aspects of the πF -calculus.

The additional axioms reflect the definition of the dual ~T ∗ in the term model;

we have ~T ∗
def
= ~T⊥ by definition, and thus ~T ∗∗ = ~T and (~T ⊗ ~S)∗ = ~T ∗ ⊗ ~S∗.

It might be surprising that these equations are harmful because isomorphisms
A∗∗ ∼= A and (A⊗ B)∗ ∼= A∗ ⊗ B∗ exist in every compact closed category. The
point is that the equations also require C to have isomorphisms A∗∗ ∼= A and
(A⊗B)∗ ∼= A∗ ⊗B∗ (witnessed by the respective identities).

We formally define the additional axioms, which we call (I) and (D):

(I) The canonical isomorphism A∗∗ −→ A in K is the identity.
(D) The canonical isomorphism (A⊗B)∗ −→ A∗ ⊗B∗ in K is the identity.

Theorem 6. If J satisfies (I) and (D), then Mod(Ax , J) ∼= CCFC (Cl(Ax ), J).
ut

4 A concurrent λ-calculus and (de)compilation

In order to demonstrate the relevance of our semantic framework, this section
tries to give a semantic reconstruction of fully-abstract compilation and de-
compilation from a higher-order calculus to the (first-order) π-calculus, such as
[39,42]. We first design an instance of the computational λ-calculus [33], named

6 Because we consider only the empty signature, the set of valuations is singleton.
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σ ::= τ → τ ′ ξ ::= σ τ ::= (ξ1, . . . , ξn)

V ::= x | λ〈~x〉.M

M ::= 〈~V 〉 | V 〈~V 〉 | let 〈~x〉 = M inM ′

(a) λc

ξ ::= · · · | σ∗

V ::= · · · | channelσ | sendσ

(b) λch (difference from λc)

Fig. 4. Syntax of types and terms of the λc- and λch -calculi. The syntax of λc is adapted
to the setting of this paper.

λch , that is sound and complete with respect to compact closed Freyd cate-
gories. It is obtained by a straightforward extension of the coincidence between
the computational λ-calculus and closed Freyd categories (Section 4.1). There
are translations between πF and λch since both are sound and complete with
respect to compact closed Freyd categories. Section 4.2 actually calculates the
translations, and compare them with those in [39,42].

4.1 The λch -calculus

The λch -calculus is a computational λ-calculus with additional constructors deal-
ing with channels. This section introduces and explains the calculus.

The situation is nicely expressed by the following intuitive equation:

λch
λc

≈ (compact closed Freyd category + I + D)

(closed Freyd category)
.

The base calculus λc is the computational λ-calculus, which corresponds to closed
Freyd category [33,37]. It is a call-by-value higher-order programming language,
given in Fig. 4(a). Our calculus λch is obtained by adding type and term con-
structors originating from the compact closed structure, which λc does not have.

Syntax As for types, λch has a new constructor coming from the dual object
A∗. Normalising occurrences of the dual A∗ using the axioms (I) A∗∗ = A and
(D) (A⊗B)∗ = A∗ ⊗B∗, we obtain the following grammar of types:

σ ::= τ → τ ′ ξ ::= σ | σ∗ τ ::= (ξ1, . . . , ξn)

where n ≥ 0 and (ξ1, . . . , ξn) is an alternative notation for ξ1⊗· · ·⊗ξn. Compared
with λc, the only new type is the dual type σ∗ of a function type σ.

As for terms, λch has constructors corresponding to the unit and counit

ηA : I −→ A⊗A∗ εA : A∗ ⊗A −→ I (for each object A)

of the compact closed structure. We simply add these morphisms as constants:

Γ ` channelσ : ()→ (σ, σ∗)
and

Γ ` sendσ : (σ∗, σ)→ ()
.
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We shall often omit the subscript σ.
In summary, we obtain the syntax of λch shown in Fig. 4. Interestingly, λch

can be seen as a very core of Concurrent ML [38], a practical higher-order concur-
rent language, although λch is developed from purely semantic considerations.

Semantics Let us first discuss the intuitive meanings of the new constructors.
The type σ∗ is for output channels; channel 〈〉 creates and returns a pair of an
input channel and an output channel that are connected; and send 〈α, V 〉 sends
the value V via the output channel α. The following points are worth noting.

– λch has no type constructor for input channels. The type system does not
distinguish between input channels for type σ and values of type σ.

– λch has no receive constructor. Receiving operation is implicit and on de-
mand, delayed as much as possible.

– The send operator broadcasts a value via a channel. Several receivers may
receive the same value from the same channel.

The first two points reflect the asynchrony of πF , and the last point reflects the
absence of non-replicated input (cf. Section 4.2).

Based on this intuition, we develop the operational, axiomatic and categorical
semantics of λch . We shall use the following abbreviations:

(νxy)M
def
= let 〈x, y〉 = channel 〈〉 inM M ‖ N def

= let 〈〉 = M inN.

Operational semantics Assume an infinite set X of channels, ranged over by α
and β. For each channel α, we write α for the input name and ᾱ for the output
name, both of which are values. A configuration is a tuple (M, ~α, µ) of a term
M , a sequence ~α of generated channels and a sequence µ of performed send
operations, i.e. µ = (send 〈β̄1, V1〉, . . . , send 〈β̄k, Vk〉). The reduction relation is
defined by the following rules for channels

(E[channel 〈〉], ~α, µ) −→ (E[〈β, β̄〉], ~α · β, µ) (β /∈ ~α)

(E[send 〈β̄, V 〉], ~α, µ) −→ (E[〈〉], ~α, µ · send 〈β̄, V 〉)
(E[β V ], ~α, µ) −→ (E[W V ], ~α, µ) (send 〈β̄,W 〉 ∈ µ).

in addition to the standard rules for λ-abstractions and let-expressions, which
change only M . Here the set of evaluation contexts is given by the grammar:

E ::= [] | let 〈~x〉 = E inM | let 〈~x〉 = M inE.

Note that M and N in let 〈~x〉 = M inN are evaluated in parallel (cf. Remark 3).
This justifies the notation M ‖ N , an abbreviation for let 〈〉 = M inN .

Axiomatic semantics The inference rules of the equational logic for λch are those
for λc with the rule of concurrent evaluation

let 〈~x〉 = M in let 〈~y〉 = N inL = let 〈~y〉 = N in let 〈~x〉 = M inL ;
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the β- and η-rules for channels

(νxx̄)(send 〈x̄, V 〉 ‖M) = (νxx̄)(send 〈x̄, V 〉 ‖M{V/x})
(νyȳ)(send 〈z̄, y〉 ‖ N) = N{z̄/ȳ}

where x̄ /∈ Fv(V ) ∪ Fv(M), y /∈ Fv(N) and z̄ 6= ȳ; and a GC rule.

Categorical semantics One can interpret λch -terms in a compact closed Freyd
category with (I) and (D). The interpretation of the λc-calculus part is stan-
dard [37,24]; the constant channelσ (resp. sendσ) is interpreted as the “closure”
whose body is ησ (resp. εσ) as expected.

JΓ ` channelσ : ()→ (σ, σ∗)K def
= J(!Γ ;ΛI,I,σ⊗σ∗(ησ))

JΓ ` sendσ : (σ∗, σ)→ ()K def
= J(!Γ ;ΛI,σ⊗σ∗,I(εσ)).

The categorical semantics is sound and complete with respect to the equa-
tional theory of the λch -calculus. The proofs are basically straightforward but
there is a subtle issue in the definition of the term model: we have different def-
initions of the right adjoint I ⇒ (−), which are of course equivalent but do not

coincide on the nose. Our choice here is I ⇒ 〈~ξ〉 def
= (~ξ⊥)→ ().

4.2 Translations between λch and πF

The higher-order calculus λch is equivalent to πF . This is because both calculi
correspond to the same class of categories, namely, the class of compact closed
Freyd categories with (I) and (D), i.e.,

(λch) ≈ (compact closed Freyd category + I + D) ≈ (πF ).

This subsection studies translations derived from this semantic correspondence.
The translations are defined by the interpretations in the term models. For

example, the translation L−M from λch to πF is induced by the interpretation
of λch -terms in the term model Cl(∅). The interpretation JMKCl(∅) of a λch -
term M is an equivalence class of πF -processes, since a morphism in Cl(∅) is an
equivalence class of πF -processes. The translation LMM is defined by choosing a
representative of the equivalence class. The other direction [(−)] is obtained by
the interpretation of πF in the term model of λch .

Figures 5 and 6 are concrete definitions of the translations for a natural choice
of representatives. Let us discuss the translations in more details.

The translation from πF to λch (Fig. 5) is easy to understand. It directly
expresses the higher-order view of the first-order π-calculus. For example, an
output action is mapped to an application and an input-prefixing !a(~x).P to a
send operation of the value λ〈~x〉.P via the channel a.

An interesting (and perhaps confusing) phenomenon is that an input channel
in πF is mapped to an output channel in λch . This can be explained as follows.
In the name-passing viewpoint, the reduction

(νxy)(!y(~z).P | x〈~u〉) −→ (νxy)(!y(~z).P | P{~u/~z})
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[(cho[~T ])]
def
= [(~T )]→() [(chi[~T ])]

def
= ([(~T )]→())∗ [((T1, . . . , Tn))]

def
= ([(T1)], . . . , [(Tn)])

[(0)]
def
= 〈〉 [(P | Q)]

def
= [(P )] ‖ [(Q)] [((νxy)P )]

def
= (νxy)[(P )]

[(ā〈~x〉)] def
= ā 〈~x〉 [(!a(~x).P )]

def
= send 〈a, λ(~x).[(P )]〉

Fig. 5. Translation from πF to λch

Lτ1 → τ2M
def
= cho[Lτ1M, Lτ2M⊥] Lσ∗M def

= LσM⊥ L(τ1, . . . , τn)M def
= (Lτ1M, . . . , LτnM)

LxMp
def
= (p� x) Lλ~x.MMp

def
= !p(~x, ~q).LMM~q L〈~V 〉M~p

def
= LV1Mp1 | · · · | LVnMpn

LV 〈 ~W 〉M~p
def
= (νaā)(ν~r~s)(LV Ma | L〈 ~W 〉M~s | ā〈~r, ~p〉)

Llet 〈~x〉 = M inNM~p
def
= (ν~x~q)(LMM~q | LNM~p)

LchannelMp
def
= !p(x, y).x ↪→ y LsendMp

def
= !p(x, y).x ↪→ y

Fig. 6. Translation from λch to πF

sends ~u to the process !y(~z).P , and thus x is output and y is input. In the
process-passing viewpoint, the abstraction (~z).P is sent to the location of x, and
thus y is the output and x is the input.

Next, we explain the translation from λch to πF (Fig. 6).
Let us first examine the translation of types. The most non-trivial part is

the translation of a function type τ1 → τ2. A key to understand the translation
is the isomorphism τ1 → τ2 ∼= τ1 ⊗ τ⊥2 → (). The latter form of function type
corresponds to an output channel type in πF . Hence a function is understood as
a process additionally taking channels to which the return values are passed.

The translation LMM~p of a λch -term Γ `M : (ξ1, . . . , ξn) takes extra param-
eters ~p = p1, . . . , pn to which the values should be placed. This is a consequence
of the definition in the πF -term model that a morphism ~T −→ ~S is a process
~x : ~T , ~y : ~S⊥ ` P : �. Here ~p corresponds to ~y, Γ to ~x : ~T and ~ξ to ~S.

Now it is not so difficult to understand the interpretations of constructs in the
λc-calculus. For example, the abstraction Lλ〈~x〉.MMp is mapped to an abstraction
(~x, ~q).LMM~q placed at p, which takes additional channels ~q to which the results
of the evaluation of M should be sent.

It might be surprising that the interpretations of channel and send coincide.
This is because of the one-sided formulation of πF . In the two-sided formula-
tion, the unit η and counit ε of the compact closed structure, corresponding to
channel and send, can be written as logical inference rules

Γ,A,A⊥ ` ∆
Γ ` ∆

and
Γ ` A⊥, A,∆

Γ ` ∆
,

which are different. In the one-sided formulation, however, they become

Γ,A,A⊥, ∆⊥ `
Γ,∆⊥ `

.
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L0M def
= 0 LP | QM def

= LP M | LQM L(νxy)P M def
= (νxy)LP M L !x vM def

= LvMx

Lv〈w1, . . . , wn〉M
def
= (νāa)(ν b̄1b1) . . . (ν b̄nbn)(LvMa | Lw1Mb1 | · · · | LwnMbn | ā〈b̄1, . . . , b̄n〉)

LxMa
def
= (a ↪→ x) L(~x).P Ma

def
= !a(~x).LP M

Fig. 7. Translation from AHOπ to πF

Hence η and ε (or channel and send) cannot be distinguished in πF .
The translation L−M must be the inverse of [(−)] because both the term models

are the initial compact closed Freyd category with (I) and (D). That means,
∅ B Γ ` P = L[(P )]M and ∅ B Γ ` M = [(LMM)] are provable for every P and M .
This result is independent of the choice of representatives.

4.3 Relation to other calculi and translations

A number of higher-order concurrent calculi, as well as their translations to the
first-order π-calculus, have been proposed and studied (e.g. [29,47,39,40,42,45]).
The calculus λch and the translations have a lot of ideas in common with those
calculi and translations; see Section 6.

This subsection mainly discusses the relationship to the translations by San-
giorgi [42] (see also [43]) between asynchronous higher-order π-calculus (AHOπ
for short) and asynchronous local π-calculus (Lπ for short). Here we focus on
this work because it is closest to ours. We shall see that our semantic or cat-
egorical development provides us with a semantic reconstruction of Sangiorgi’s
translations, as well as an extension.

A variant of AHOπ can be seen as a fragment of λch . The syntax of processes
of AHOπ and representation by λch -terms are given as follow:

v, w ::= x | (~x).P P,Q ::= 0 | (P | Q) | (νxy)P | !x v | v〈~w〉
x λ〈~x〉.P 〈〉 P ‖ Q (νxy)P send 〈x, v〉 v 〈~w〉.

(It slightly differs from the original syntax, as ν binds a pair of names.)
This fragment is nicely described as the limitation on types:

σ ::= (~σ)→ () ξ ::= σ | σ∗ τ ::= ().

Recall that σ is a type for abstractions, ξ is a type for variables, and τ is a type
for terms. This limitation means that (1) an abstraction cannot take a channel
as an argument, and (2) a term M must be of the unit type, i.e. a process.

Once regarding AHOπ as a fragment of λch , the translation from AHOπ to
πF is obtained by restricting L−M to AHOπ. The resulting translation is in Fig. 7.
As mentioned, the translation is the same as that of Sangiorgi [42] except for
minor differences due to the slight change of the syntax.

Sangiorgi also gave a translation in the opposite direction, from Lπ to AHOπ
in the same paper. The calculus Lπ is a fragment of the π-calculus in which only
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output channels can be passed. The i/o-separation of πF allows us to characterise
the local version of πF by a limitation on types. In the local variant, the output
channel type is restricted to T ::= cho[~T ], expressing that only output channels
can be passed via an output channel. Then the definition of type environment
should be changed accordingly: Γ ::= · | x : T | x : T⊥ (since the syntactic class
represented by T is not closed under the dual (−)⊥ in the local setting).

Interestingly the limitation on types in AHOπ coincides with that in Lπ,
when one identify cho[~T ] with (~T ) → () (as we have done in many places). In
other words, the syntactic restrictions of AHOπ and Lπ are the same semantic
conditions described in different syntax. As a consequence, the image of Lπ by
[(−)] is indeed in AHOπ.

Remark 4. There is, however, a notable difference from Sangiorgi’s work [42].
Sangiorgi proved that the translation is fully-abstract with respect to barbed
congruence; in contrast, we only show that ` M = N iff ` LMM = LNM. In
particular, the η-rule is inevitable for our argument. The presence of the η-
rules significantly simplifies the argument, at the cost of operational justification
(recall that the η-rule is not sound with respect to barbed congruence).

It is natural to ask how one can reconstruct the full-abstraction result with
respect to barbed congruence. An interesting observation is that, if M and N
are AHOπ processes, then `	 M = N iff `	 LMM = LNM, where `	 means prov-
ability without using η-rules. We expect that this semantic observation explains
why locality is essential as noted in [42]; we leave the details for future work. ut

5 Discussions

Connection to logics We have so far studied a connection between compact
closed Freyd category and π-calculus. Here we briefly discuss the missing piece
of the Curry-Howard-Lambek correspondence, namely logic.

The model of this paper is closely related to linear logic. Actually, every
compact closed Freyd category is a model of linear logic (more precisely, MELL),
as an instance of linear-non-linear model [6] (see, e.g., [27] for categorical models
of linear logic). The interpretation of formulas is shown in Table 1. It differs
from the translations by Abramsky [1] and Bellin and Scott [5] and from the
Curry-Howard correspondence for session types by Caires and Pfenning [8], but
resembles the connection between a variant of local π-calculus and a polarised
linear logic by Honda and Laurent [19]; a detailed analysis of the translation is
left for future work.

The logic corresponding to compact closed Freyd category should be a proper
extension of linear logic, since compact closed Freyd categories form a proper
subclass of linear-non-linear models. For example, the following rules are invalid
in linear logic but admissible in compact closed Freyd categories:

` Γ ` ∆
` Γ,∆

` Γ,A,B ` ∆,A⊥, B⊥

` Γ,∆
` Γ,A,A⊥

` Γ
.
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linear logic compact closed Freyd category πF -calculus
(formula) (object) (type environment)

A⊗B
A`B

A⊗B x : A, y : B

!A I ⇒ A x : cho[A⊥]

?A (A⇒ I)∗ x : chi[A]

Table 1. The categorical and πF -calculus interpretations of MELL formulas

These rules, especially the second rule called multicut, were often studied in
concurrency theory; see Abramsky et al. [2] for their relevance to concurrency.

Do the above rules fill the gap between linear logic and compact closed Freyd
category? Recent work by Hasegawa [15] suggests that MELL with above rules
is still weaker than compact closed Freyd category. First observe that the above
rules can be interpreted in any linear-non-linear model of which the monoidal
category is compact closed. Hasegawa showed that a linear-non-linear model
whose monoidal category is compact closed induces a closed Freyd category of
which the monoidal category is traced (and vice versa) but the induced Freyd
category is not necessarily compact closed. Hence the logic corresponding to
compact closed Freyd category has further axioms or rules in addition to the
above ones. A reasonable candidate for the additional axiom is ! ∼= ?; interest-
ingly, Atkey et al. [3] reached a similar rule from a different perspective. Further
investigation is left for future work.

Non-empty signature The categorical type theory for the λ-calculus considers
a family parameterised by signatures, consisting of atomic types and constants.
It covers, for example, the λ-calculus with natural number type and arithmetic
constants (such as addition and multiplication), as well as a calculus with integer
reference type and read and update functions.

Although this paper only considers the calculus with the empty signature,
which has no additional type nor constant, extending our theory to handle non-
empty signatures is, in a sense, not difficult. The easiest way is to apply the
established theory of the computational λ-calculus [33,37]. As we have seen in
Section 4, the πF -calculus can be seen as a computational λ-calculus λch hav-
ing constants for manipulating channels; hence the πF -calculus with additional
constants is λch with the additional constants, which is still in the family of
computational λ-calculus.

The πF -calculus with non-empty signature has several applications. We shall
briefly discuss some of them.

An important example of πF with non-empty signature is the calculus with
non-replicated input, which we regard as a calculus with additional “process
constants” but without any additional type. A key observation is that every
non-replicated input process a(~x).P can be expressed as

a(~x).P uc (ν b̄b)(a(~x).b̄〈~x〉 | !b(~x).P ) (uc is weak barbed congruence)

and thus it suffices to deal with non-replicated input processes in special form,
namely a : chi[~T ], b̄ : cho[~T ] ` a(~x).b̄〈~x〉 : �. Adding these processes as con-
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stants and the computational rules of a(~x).b̄〈~x〉 as equational axioms results in a
calculus with non-replicated inputs. The categorical model is a compact closed
Freyd category with distinguished morphisms (A ⇒ I) −→ (A ⇒ I) for each
object A which satisfy certain axioms.

This technique is applicable to synchronous output as well. Because

ā〈~x〉.P uc (ν b̄b)(ā〈~x〉.b̄〈〉 | !b().P ),

it suffices to consider constants representing ā : cho[~T ], ~x : ~T , b̄ : cho[] ` ā〈~x〉.b̄〈〉 : �.

6 Related Work

Logical studies of π-calculi There is a considerable amount of studies on
connections between process calculi and linear logic. Here we divide these stud-
ies into two classes. These classes are substantially different; for example, one
regards the formula A ⊗ B as a type for processes with two “ports” of type A
and B, whereas the other as the session-type !A.B. Our work is more closely
related to the former than the latter, but some interesting coincidence to the
latter kind of studies can also be found.

The former class of research dates back to the work by Abramsky [1] and
Bellin and Scott [5], where they discovered that π-calculus processes can encode
proof-nets of classical linear logic. Later, Abramsky et al. [2] introduced the in-
teraction categories to give a semantic description of a CCS-like process calculus.
In their work, they observed that the compact closed structure is important to
capture the strong expressive power of process calculi.

A tighter connection between π-calculus and proof-nets was recently pre-
sented by Honda and Laurent [19]. They showed that an i/o-typed π-calculus
corresponds to polarised proof-nets, and introduced the notion of extended reduc-
tion for the π-calculus to simulate cut-elimination. The π-calculus used in this
work is very similar to πF in terms of syntax and reduction. Their calculus is
asynchronous, does not allow non-replicated inputs, and requires i/o-separation.
Furthermore, the extended reduction is almost the same as the rules (E-Beta)
and (E-GC) except for the side conditions. A significant difference compared
to our work is that their calculus is local [28,49], reflecting the fact that the
corresponding logic is polarised.

Our work is inspired by these studies. The idea of i/o-separation can already
be found in the work by Bellin and Scott and the use of compact closed category
is motivated by the study of interaction category. It is worth mentioning here
that the design of πF is also influenced by the calculus introduced by Laird [22],
although it is not a logical study but categorical (see below).

The latter approach started with the Curry-Howard correspondences between
session-typed π-calculi and linear logic established by Caires, Pfenning and Ton-
inho [8,9] and subsequently by Wadler [48]. These correspondences are exact in
the sense that every process has a corresponding proof, and vice versa. As a con-
sequence, processes of the calculi inherit good properties of linear logic proofs
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such as termination and confluence of cut-elimination. In terms of process cal-
culi, process of these calculi do not fall into deadlock or race condition. This can
be seen as a serious restriction of expressive power [48,3,26].

Several extensions to increase the expressiveness of these calculi have been
proposed and studied. Interestingly, ideas behind some of these extensions are
related to our work, in particular to Section 5 discussing the multicut rule [2] and
the axiom ! ∼= ?. Atkey et al. [3] studied CP [48] with the multicut rule and ! ∼= ?
and discussed how these extensions increase the expressiveness of the calculus,
at the cost of losing some good properties of CP. Dardha and Gay [10] studied
another extension of CP with multicut, keeping the calculus deadlock-free by an
elaborated type system.

Balzer and Pfenning [4] proposed a session-typed calculus with shared (mu-
table) resources, inspired by linear-non-linear adjunction [6].

Categorical semantics of π-calculi The idea of using a closed Freyd cate-
gory to model the π-calculus is strongly inspired by Laird [22]. He introduced
the distributive-closed Freyd category to describe abstract properties of a game-
semantic model of the asynchronous π-calculus and showed that distributive-
closed Freyd categories with some additional structures suffice to interpret the
asynchronous π-calculus. The additional structures are specific to his game model
and not completely axiomatised.7 Our notion of compact closed Freyd category
might be seen as a reformulation of his idea, obtained by filtering out some struc-
tures difficult to axiomatise and by strengthening some others to make axioms
simpler. A significant difference is that our categorical model does not deal with
non-replicated inputs, which we think is essential for a simple axiomatisation.

Another approach for categorical semantics of the π-calculus has been the
presheaf based approach [44,12]. These studies gave particular categories that
nicely handles the nominal aspects of the π-calculus; these studies, however, do
not aim for a correspondence between a categorical structure and the π-calculus.

Higher-order calculi with channels Besides the λch -calculus, there are num-
bers of functional languages augmented by communication channels, from theo-
retical ones [13,46,48,25] to practical languages [38,34].

On the practical side, Concurrent ML (CML) [38], among others, is a well-
developed higher-order concurrent language. CML has primitives to create chan-
nels and threads, and primitives to send and accept values through channels.
Since our λch -calculus can create (non-linear) channels and send values via chan-
nels, the λch -calculus can be seen as a core calculus of CML despite its origin in
categorical semantics. The major difference between CML and the λch -calculus
is that communications in CML are synchronous whereas communications in the
λch -calculus are asynchronous.

On the theoretical side, session-typed functional languages have been actively
studied [13,46,48,25]. Notably, some of these languages [46,48,25] are built upon

7 A list of properties in [22] does not seem to be complete. We could not prove some
claims in the paper only from these properties, but with ones specific to his model.
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the Curry-Howard foundation between linear logic and session-typed processes.
It might be interesting to investigate whether we can relate these languages and
the λch -calculus through the lens of Curry-Howard-Lambek correspondence.

Higher-order vs. first-order π-calculus A number of translations from
higher-order languages to the π-calculus have been developed [47,39,40,42,45]
since Milner [29] presented the encodings of the λ-calculus into the π-calculus.
The basic idea shared by these studies is to transform λx.M to a process
!a(x, p).P that receives the argument x together with a name p where the rest
of the computation will be transmitted. In our framework, this idea is described
as the isomorphism A⇒ B ∼= A⊗B∗ ⇒ I.

Among others, the translation from AHOπ to Lπ [42] is the closest to our
translation from the λch -calculus to the πF -calculus. Sangiorgi [41] observed
that Milner’s translation can be established via the translation of AHOπ by
applying the CPS transformation to the λ-calculus. This observation also applies
to our translation. That is, we can obtain Milner’s translation by combining CPS
transformation and the compilation of the λch -calculus.

7 Conclusion and future work

We have introduced an i/o-typed π-calculus (πF -calculus) as well as the categor-
ical counterpart of πF -calculus (compact closed Freyd category) and showed the
categorical type theory correspondence between them. The correspondence was
established by regarding the π-calculus as a higher-order programming language,
introducing the i/o-separation, and introducing the η-rule, a rule that explains
the mismatch between behavioural equivalences and categorical models.

As an application of our semantic framework we introduced a higher-order
calculus λch -calculus “equivalent” to the πF -calculus. We have demonstrated
that translations between λch -calculus and πF -calculus can be derived by a sim-
ple semantic argument, and showed that the translation from λch to πF is a
generalisation of the translation from AHOπ to Lπ given by Sangiorgi [42].

There are three main directions for future work. First, further investigation
on the η-rule is indispensable. We plan to construct a categorical model of the
πF -calculus with an additional constant that captures barbed congruence. Re-
vealing the relationship between locality and the η-rule is another important
problem. Second, the operational properties of the λch -calculus and its relation
to the equational theory needs a further investigation. Third, finding the logi-
cal counterpart of compact closed Freyd category to establish a proper Curry-
Howard-Lambek correspondence is an interesting future work.
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