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ABSTRACT

Rust is a systems programming language that gives strong static guarantees on properties
like memory and thread safety and has been widely used in recent years for high reliability
and performance. In Rust, code is usually under a static check of resource usage under the
ownership principle based on lifetimes. Also, we can robustly extend the expressivity of Rust
by writing libraries with implementation free from the static check and interfaces following the
ownership principle. Therefore, verifying safety and functional correctness of Rust programs
in an extensible and scalable way is a key to developing reliable high-performance software.
There is some existing work on verifying Rust programs. Jung et al. verified safety of Rust’s
type system and some Rust libraries in an extensible way using the higher-order separation
logic Iris in the Coq Proof Assistant. Matsushita et al. proposed amethod to automatically verify
functional correctness of programs in a basic subset of Rust. However, it was still unclear how to
verify functional correctness of Rust programs in an extensible and scalable way. In this thesis,
we propose a novel extensible logical foundation to specify and verify functional correctness
(and safety) of Rust programs, by extending the technique of prophecy used byMatsushita et al.
We semantically model types and verification conditions in Rust in Iris, combining the work of
Jung et al. with the technique of prophecy, to flexibly support new libraries and features of Rust.
As a basis for that, we present a new formulation of prophecy that allows flexible operation.
We plan to mechanize the results in Coq in the near future.

論文要旨

Rustはメモリ安全性やスレッド安全性などについて強い静的保証を与えるシステムプロ
グラミング言語であり、高い信頼性と性能を求めて近年幅広く使われている。Rustでは、
コードは通常ライフタイムに基づく所有権原理のもとでリソースの使用を静的に検査され
ている。また、静的検査を受けない実装と所有権原理に従うインターフェースを持つライ
ブラリを書くことで、Rustの表現力を堅牢に拡張することもできる。ゆえに、Rustプログ
ラムの安全性および機能正当性を拡張可能かつスケーラブルな形で検証することが信頼で
きる高性能ソフトウェアを開発するための鍵となる。Rustプログラムの検証についてはい
くつか既存研究がある。Jungらは Rustの型システムおよびいくつかの Rustライブラリの
安全性を定理証明支援系 Coq上で高階分離論理 Irisを用いて拡張可能な形で検証した。松
下らは Rustの基本的なサブセットのプログラムの機能正当性を自動検証する手法を提案し
た。しかしながら、Rustプログラムの機能正当性を検証するための拡張可能でスケーラブ
ルな手法は知られていなかった。この論文では、松下らの用いた預言の技術を拡張し、Rust
プログラムの機能正当性 (と安全性)を記述および検証するための、新しい拡張可能な論理
的基盤を提案する。Jungらの成果と預言の技術を組み合わせて、Iris上で Rustの型や検証
条件を意味論的にモデル化し、Rustの新しいライブラリや機能を柔軟に取り入れられるよ
うにする。このための基礎として、柔軟な操作を許す新しい預言の概念を提案する。近い
将来に成果を Coqで機械化する予定である。
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Chapter 1

Introduction

The Rust Programming Language (Matsakis and Klock, 2014; Rust Community, 2021a)
is a systems programming language that aims at a high level of performance, reliability
and productivity. Like C/C++, Rust allows users to use low-level operations for high
performance. At the same time, unlike common mainstream languages like C/C++ and
Java, Rust gives a high-level safety guarantees by a strong static check on resource
usage by its distinctive ownership principle based on lifetimes. Rust also allows unsafe
code, i.e., code that does not get the static resource-usage check. We can robustly extend
the expressivity of Rust by writing libraries with implementation with unsafe code and
interfaces that follow the ownership principle. Rust has been widely used in recent
years in industry and has attracted various academic interests. Therefore, verification
of safety and functional correctness of Rust programs is significant for development of
reliable high-performance software. In verification of Rust programs, scalability and
extensibility is important, because Rust is widely used for large-scale software and the
expressivity of Rust can be flexibly extended by libraries with unsafe code.

There are some existing studies on verification of Rust programs. RustBelt (Jung
et al., 2018a) verified memory and thread safety of Rust’s type system and some Rust li-
braries mechanically in the Coq Proof Assistant. Their proof is highly extensible thanks
to a semantic approach based on the higher-order separation logic Iris (Jung et al., 2015,
2018c). RustHorn (Matsushita et al., 2020a) proposed a method to automatically verify
functional correctness of Rust programs within a basic subset of features. Their verifi-
cation method leverages the guarantees of Rust’s ownership principle to give a clean
logic model to a Rust program, which allows a fairly scalable verification of Rust pro-
grams. The logic model precisely tracks the effect of updates performed through unique
references by the technique of prophecy, while it successfully omits explicit representa-
tion of the the heap memory and addresses. However, it was still unclear how to verify
functional correctness of Rust programs in an extensible and scalable way.

In this thesis, we propose a novel extensible logical foundation to specify and verify
functional correctness including safety, of Rust programs, using a prophecy-based clean
logic model in the style of RustHorn and taking a semantic approach in the style of
RustBelt. We name this research project RustHornBelt. As a basis of that, we present a
new framework of prophecy on top of Iris; in this framework, prophecy lives only in
the ghost state and allows flexible operations. We plan to mechanize our results in Coq
in the near future, taking advantage of the strong Coq support of Iris.

In § 1.1, we introduce the Rust programming language, especially in terms of the
type system. In §1.2, we introduce RustBelt. In §1.3, we introduce RustHorn and explain
its idea, giving some detailed examples of verification in RustHorn. In §1.4, we give an
overview of our work RustHornBelt.
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1.1 The Rust Programming Language

The Rust Programming Language (Matsakis and Klock, 2014; Klabnik et al., 2018; Rust
Community, 2021a) is a systems programming language aiming at a high level of per-
formance, reliability and productivity.

As a fairly new language (Rust 1.0 was released in 2015), Rust has been designed
on the basis of the lessons learned from existing programming languages and past de-
velopment experiences. Like C/C++, Rust allows users to use low-level operations to
achieve high memory and space efficiency. At the same time, Rust provides high-level
safety guarantees by a strong static check on resource usage by the ownership princi-
ple based on lifetimes, which is introduced later in this section. Also, productivity of
Rust is enhanced by various modern features, including pattern matching and lambda
expressions, and also mature development tools.

Rust has been developed by a large, energetic community and has rapidly gained
popularity. Rust is already used by software products such as Firefox (Mozilla, 2021),
Dropbox (Dropbox, 2020) and npm (npm, 2019). Also, Rust is officially sponsored by
Microsoft, Mozilla, Amazon and Google (Rust Community, 2021b).

Rust has attracted various academic interests. There have been various studies on
verification of Rust programs (Toman et al., 2015; Hahn, 2016; Ullrich, 2016; Jung et al.,
2018a; Lindner et al., 2018; Baranowski et al., 2018; Astrauskas et al., 2019; Dang et al.,
2020; Matsushita et al., 2020a). Some studies worked on aliasing disciplines for Rust
(Jung et al., 2020a), feature proposal on Rust (Fallin, 2020), and formalization of Rust
(Reed, 2015; Weiss et al., 2019). Some studies investigated real-world Rust programs
(Qin et al., 2020; Astrauskas et al., 2020). Some studies applied Rust to systems pro-
gramming (Levy et al., 2015; Anderson et al., 2016; Balasubramanian et al., 2017; Levy
et al., 2017; Lamowski et al., 2017; Ding et al., 2017; Almohri and Evans, 2018; Emmerich
et al., 2019), concurrency (Jespersen et al., 2015), and cryptography (Mindermann et al.,
2018).

In the remaining part of this section, we introduce and explain Rust’s type system,
especially in terms of the ownership principle based on lifetimes.

Possible Dangers of Pointer Use To understand the motivation of Rust’s type sys-
tem, let us first see how dangerous pointer manipulation can be without static check-
ing on resource usage. In most mainstream programming languages such as C/C++
and Java, each pointer can read, modify and release its target resource without much
restriction. This freedom can easily cause, however, unexpected errors.

A programmer can unintentionally use a pointer to a resource that has been im-
plicitly released.

Example 1.1 (Dangerous Update After Implicit Release). For example, let us consider
the following C++ code.

1 vector<int>* pv;

2 { vector<int> v { 0, 1, 2 }; pv = &v; } // v is released

3 /* ... some operations ... */ pv->push_back(3); // dangerous!

Here, vector<int> is a type for an integer vector, i.e., an array of integers that can
change in size. In the line 1, we declare an uninitialized pointer pv to an integer vector.
In the line 2, a local scope is introduced by curly brackets and within it a new vector
v is created with initial elements 0, 1, 2 and the pointer pv is set to &v. When we
leave the local scope, the vector v is automatically released. After some operations, in
the line 3, we try to append an element to the target vector of pv. Because the target
of pv has actually been invalidated, this memory access is highly dangerous. If another
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object is using the memory cells at the address pv, this memory access violates that
object.

An internal memory block of an object can be released by update on the object,
which may cause a tricky memory error.
Example 1.2 (Dangerous Update After Reallocation). Let us consider the following ex-
ample.

1 vector<int> v { 0, 1 }; int* p = &v[0];

2 v.push_back(2); // reallocation occurs

3 /* ... some operations ... */ *p = 10; // dangerous!

In the line 1, we create a vector of two elements 0 and 1 and store it to the variable v,
and then we take a pointer p to the first element of the vector. In the line 2, we push a
new element 2 to (the end of) the vector through v. Actually, at this point, the memory
block for the elements of the vector gets reallocated.1 After some operations, in the line
3, we try to update the target of the pointer p. However, because the memory cell at
the address p is no longer managed by v, it may be now used by another object, so this
memory access is highly dangerous and can cause unexpected behavior.

To sum up, when a resource is shared by multiple pointers, the programmer can
easily cause unexpected behavior by updating the resource from some pointer. In prac-
tice, such memory safety errors occur relatively frequently. For example, Miller (2019)
reported that about 70% of vulnerabilities in Microsoft in terms of CVE patches were
related to memory safety in the years 2006-2018.

Rust’s Ownership Principle Unlike languages like C/C++ and Java, Rust’s type
system guaranteesmemory safety by performing a strong static check on resource usage
under the ownership principle based on lifetimes. This kind of type system that is aware
of resource usage is called substructural (in a broad sense). Although substructural
type systems with ownership have been actively studied for a long time (Wadler, 1990;
Clarke et al., 1998; DeLine and Fähndrich, 2001; Jim et al., 2002; Fähndrich and DeLine,
2002; Fluet et al., 2006; Mazurak et al., 2010; Haller and Odersky, 2010; Zibin et al., 2010;
Tov and Pucella, 2011; Ghica and Smith, 2014; Morris, 2016; Bernardy et al., 2018), the
type system of Rust has some notable features. Now, before getting into Rust code
examples, we give a high-level overview of Rust’s ownership principle.

In Rust, an object can be pointed at by multiple pointers, but at each program point
only one pointer can have ownership (also called unique permission) on the object, which
permits writing to and reading from the object. While some pointer has ownership on
an object, any other pointers do not have ownership on it. Ownership is structural;
that is, ownership on an object includes ownership on any sub-objects of the object.

A key feature of Rust is borrowing. When a pointer a has ownership to some ob-
ject, we can create a new pointer ua to the object and temporarily move the ownership
on the object from a to ua during some period. The period for borrowing is called
a lifetime. The newly created pointer ua is called a unique reference. Also, precisely,
this type of borrowing is called a unique borrow. The lifetime is statically and globally
managed by Rust’s type system. While the lifetime is ongoing, the unique reference ua
has the ownership on the object and the original owner a temporarily loses the own-
ership. At the moment when the lifetime ends, ua loses the ownership and a retrieves
the ownership on the object. The key idea is that the unique reference ua and the orig-
inal owner a don’t need to directly communicate with each other when the ownership is

1 To be precise, whether or not reallocation occurs depends on the capacity of the vector, but in com-
mon implementations the capacity of the vector is set exactly to 𝑛 when we initialize a vector by an
initializer list of the length 𝑛.
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returned, because the static control based on the lifetime ensures that the ownership
is never shared by multiple pointers. So we do not have to strictly keep ua until the
lifetime ends. While the lifetime is ongoing, the borrowed ownership on the object can
freely be passed around, subdivided, and thrown away. This is a key feature of Rust
that realizes modular and scalable management of the ownership.

Rust also has the notion of sharing permission, which can be shared by multiple
pointers but permits only reading from the object, not writing to it. Sharing permission
is also structural like ownership. While a pointer has sharing permission on an object,
any other pointer cannot have ownership on the object. Rust has a shared borrow,
which is similar to a unique borrow but takes out sharing permission, not ownership
(i.e., unique permission). When a pointer a has ownership on some object, we can
create a new pointer sa called a shared reference and temporarily give it the sharing
permission on the object under some lifetime. Because sharing permission is sharable, a
shared reference can be copied, whereas a unique reference can’t be copied. The original
owner temporarily loses the ownership while the lifetime is ongoing and retrieves the
ownership at themoment the lifetime ends. While the lifetime is ongoing, the borrowed
sharing permission can be freely passed around, subdivided, and thrown away, just like
a unique borrow.

Notably, a lifetime in Rust is roughly speaking a set of program points instead of
just a lexical scope, which is important for flexibility of borrowing. This notion of a
lifetime is called a non-lexical lifetime. The compiler of Rust automatically infers non-
lexical lifetimes and checks the ownership principle with some elaborate algorithm
(Rust Community, 2020). This machinery is dubbed a borrow checker. Also, a new
algorithm for the borrow checker is under development (Matsakis, 2018, 2020; Rust
Community, 2021c).

The ownership principle of Rust can be too restrictive for the purpose of guarantee-
ing safety. Still, the Rust compiler exploits the guarantees of the ownership principle
for optimization, which is studied in depth by Jung et al. (2020a). Also, Rust allows users
to write unsafe code, which is code that does not get the static resource-usage check
based on the ownership principle; we can robustly extend the expressivity of Rust by
appropriately encapsulating unsafe code. We explain unsafe code more in depth later
in this section.

Examples of Unique Borrows Let us see how we can use unique borrows. You can
try the Rust compiler online at the Rust Playground https://play.rust-lang.or

g/.
For a very simple example, we can use a unique borrow as follows.2

1 let mut n: i32 = 3;

2 let p: &mut i32 = &mut n;

3 *p = *p + 4;

4 print!("{}", n); // 7

The type i32 represents a (32-bit) integer. In the line 1, we get an integer variable n
with the initial value 3. The keyword mut in let mut allows us to modify the data of
n. The type &mut T represents a unique reference (also called a mutable reference) to
an object typed T, which have temporarily acquired the ownership on its target object.
In the line 2, by &mut n, we perform a unique borrow (also called a mutable borrow)
to take a unique reference p to the integer data of n.3 Then in the line 3, we increment

2 If we want to make it a complete Rust program, we just need to put the code inside the entry point
function fn main() { ... }.

3 In Rust, the keyword mut, standing for ‘mutable’, is used for two different contexts. The use of mut
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the integer data by 4 through the unique reference p. In the line 4, ending the unique
borrow, we access the integer data through n and know that the value is now set to 7.
In Rust, each reference and borrow is associated with some lifetime but the lifetime is
inferred by the compiler and the programmer cannot explicitly specify it (except when
we handle polymorphism over lifetimes, which is explained later).

Now let us see how Rust’s type system prevents the two dangerous pointer usages
unregulated in C++ which were discussed above.
Example 1.3 (Update After Release Prevented by Rust). The first C++ code snippet of
Example 1.1 can be translated into the following Rust code.

1 let pv: &mut Vec<i32>;

2 { let mut v: Vec<i32> = vec![0, 1, 2]; pv = &mut v; }

3 /* ... some operations ... */ pv.push(3); // dangerous!

The type Vec<T> represents a vector of the element type T, which corresponds to C++’s
vector<T>. In the line 2, we first construct a vector by vec![0, 1, 2] and let the
variable v own it. Later in the line 2, we uniquely borrow the vector &mut v to get
a unique reference, which is named pv. The Rust compiler correctly judges this Rust
code dangerous, emitting an error message like below.
error: `v` does not live long enough
* | { ... pv = &mut v; } ...
| ^^^^^^ - `v` dropped here while still borrowed
| borrowed value does not live long enough

* | ... pv.push(3);
| -- borrow later used here

While the lifetime is ongoing, the alias v temporarily loses the ownership. Because
pv is used in the line 3 by the push pv.push(3), Rust judges that the lifetime is alive
until the end of the line 3. When the variable v gets out of the lexical scope of curly
braces, Rust tries to release (or drop) the vector through v but notices that this violates
the ownership principle with regard to the lifetime. This is the reason why the Rust
compiler emit the error message like shown above. Note that we remove the curly
brackets of the line 2 as follows, the code passes the type check.

1 let pv: &mut Vec<i32>;

2 let mut v: Vec<i32> = vec![0, 1, 2]; pv = &mut v;

3 pv.push(3);

Example 1.4 (Update After Reallocation Prevented by Rust). The second C++ code snip-
pet of Example 1.2 is translated into the following Rust code.

1 let mut v: Vec<i32> = vec![0, 1]; let p: &mut i32 = &mut v[0];

2 v.push(2); // reallocation occurs

3 /* ... some operations ... */ *p = 10; // dangerous!

Here, the operation &mut v[0] is syntax sugar of Vec::index_mut(&mut v, 0)4

and v.push(2) is syntax sugar of Vec::push(&mut v, 2). Again the Rust compiler
correctly judges this program dangerous and emits an error message like below.
error: cannot borrow `v` as mutable more than once at a time
* | ... let p: &mut i32 = &mut v[0];
| - first mutable borrow occurs here

* | v.push(2); ...
| ^ second mutable borrow occurs here

* | ... *p = 10; ...
| ------- first borrow later used here

in let mut allows the object directly owned by the variable to be modified. In the meanwhile, the use of
mut in &mut indicates a unique borrow/reference rather than a shared borrow/reference.

4 We need a declaration such as use std::ops::IndexMut; to use the name index_mut.
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In the line 1, the operation &mut v[0], which stands for Vec::index_mut(&mut v,

0), uniquely borrows v to take a unique reference and then subdivide it into a unique
reference to the head element of the vector by calling the function Vec::index_mut.
The resulting unique reference, typed &mut i32, is passed to the variable p. Since we
use p in the line 3 by *p = 10, the lifetime of this unique borrow should be continued
until the line 3. However, in the line 2, the operation v.push(2), which stands for
Vec::push(&mut v, 2), uniquely borrows v and performs the push operation by
calling the function Vec::push. To perform this second unique borrow, we need the
ownership of v here, but it should be temporarily lost until the lifetime of the first
borrow ends. This is why the compiler emits the error message like above. If we swap
the order of the updates like shown below, the Rust code becomes safe and passes the
static check of Rust.

1 let mut v: Vec<i32> = vec![0, 1]; let p: &mut i32 = &mut v[0];

2 *p = 10; // the lifetime of p ends here

3 v.push(2); // reallocation occurs but it's ok

Here, the Rust compiler infers that the lifetime of p or the unique borrow of &mut v[0]

ends at the line 2. Note that the Rust code passes the type check even if we change &mut
v[0] into &mut v[10]; the method index_mut performs dynamic bounds checking
and we simply get a dynamic error by this change.

In Rust, we can also create a new reference by borrowing from an existing unique
reference. This operation is called a reborrow.5

Example 1.5 (Reborrowing). For example, let us consider the following Rust code.

1 let mut v = vec![0]; let pv = &mut v;

2 pv.push(1); pv.push(2);

It passes Rust’s type check and works correctly. It seems fairly natural but actually
is made possible by reborrowing. The push operation pv.push(1) actually calls the
function Vec::push, which consumes the input unique reference. In order to perform
the second push pv.push(2) after the first push pv.push(1), we cannot consume pv
by the first push. Therefore, Rust implicitly performs reborrowing. For each push on pv,
Rust takes a new unique reference &mut *pv that lives only during the function call of
Vec::push. We can rewrite the Rust code above into the following code with explicit
reborrowing.6

1 let mut v = vec![0]; let pv = &mut v;

2 Vec::push(&mut *pv, 1); Vec::push(&mut *pv, 2);

Examples of Shared Borrows Let us see how we can use shared borrows.
We can copy shared references and use multiple shared references at the same time.

For a simple example, the following Rust code is valid.

1 let n: i32 = 7;

2 let p: &i32 = &n; let q: &i32 = p;

3 print!("{} and ", *p); print!("{}", *q); // 7 and 7

5 We do not need to think about reborrowing from a shared reference because shared references can
be copied.

6 We can also write Vec::push(pv, 1); instead of Vec::push(&mut *pv, 1); but still Rust im-
plicitly performs reborrowing of pv.
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The type &T (without the keyword mut) represents a shared reference (also called an
immutable reference) to an object typed T, which have temporarily acquired sharing
permission on the target object. In the line 2, we first perform a shared borrow (also
called an immutable borrow) &n to get a shared reference p to the integer data of n;
then we copy the address of p to get a shared reference q. In the line 3, we read the
integer value from p and then from q. This makes the lifetimes of p and q overlap
but it is still valid because sharing permission can be shared. At a low level (without
optimization), unique and shared borrows/references are the same operation/object,
but for simplicity of the type system Rust expects that programmers explicitly annotate
whether the borrow/reference is unique or shared by the notations &mut and &.

Rust forbids release of an object while we are using a shared reference to the object.
Example 1.6 (Read After Release Prevented by Rust). For example, the following Rust
code is correctly rejected by the Rust compiler.

1 let pv: &Vec<i32>;

2 { let v: Vec<i32> = vec![0, 1, 2]; pv = &v; }

3 /* ... */ print!("{}", pv[0]); // dangerous!

The type Vec<i32> represents a vector of shared references to integer data. In the
line 2, we construct the vector v and then take a shared reference pv to the vector v.
When we leave from the inner scope, the vector v is automatically released. In the
line 3, by pv[0], we try to access the head element of the vector through pv, where
pv[0] is syntax sugar for *Vec::index(&pv, 0).7 However, it is dangerous because
it can cause invalid memory access, including dereference of a null pointer. When we
perform pv[0], we first read the address data of the vector and then dereference it;
however, since the vector has already been released, the memory cell that used to store
the address now may have an invalid address, possibly the null value. This Rust code
does violate Rust’s ownership principle and the compiler emits an error message like
the following.
error: `v` does not live long enough
* | { ... pv = &v; } ...
| ^^ - `v` dropped here while still borrowed
| borrowed value does not live long enough

* | ... print!("{}", pv[0]); ...
| -- borrow later used here

Rust also forbids update of an object while we are using a shared reference to the
object.
Example 1.7 (Read After Reallocation Prevented by Rust). For example, the following
Rust code is correctly rejected by the Rust compiler.

1 let mut v: Vec<&i32> = vec![&0, &1]; let p: &&i32 = &v[0];

2 v.push(&2); // reallocation occurs

3 /* ... */ print!("{}", **p); // dangerous!

In the line 1, we first crate a vector v of shared references to integer data, of the type
Vec<&i32> and the initial value vec![&0, &1], and then take a shared reference p to
the head element of the vector, which itself is a shared reference to integer data. Here,
by performing &0, we statically allocate integer data 0 and take an address of it. In the
line 2, we push a new element &2 to the vector v, which causes reallocation. In the
line 3, after some operations, we try to access the inner integer data of **p. However
it is dangerous, because the data at p is no longer managed by the vector and thus *p
can be an invalid address, possibly the null value. This code violates Rust’s ownership
principle and the compiler emits an error message like the following.

7 We need declaration like use std::ops::Index; to use the method index, just like index_mut.
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error: cannot borrow `v` as mutable because it is also borrowed as
immutable↩→

* | ... let p: &&i32 = &v[0];
| - immutable borrow occurs here

* | v.push(&2); ...
| ^^^^^^^^^^ mutable borrow occurs here

* | ... print!("{}", **p); ...
| --- immutable borrow later used here

In Rust, a unique reference under a shared reference can only have the sharing
permission instead of the ownership (unique permission).

Example 1.8 (A Unique Reference Under a Shared Reference). For example, the follow-
ing Rust code is correctly rejected by the Rust compiler.

1 let mut v: Vec<&i32> = vec![&0, &1];

2 let pv: &mut Vec<&i32> = &mut v;

3 let ppv: & &mut Vec<&i32> = &pv; let q: &&i32 = &ppv[0];

4 ppv.push(2); // reallocation occurs

5 /* ... */ print!("{}", **q); // dangerous!

In the line 1, we create a vector v of shared references to integer data. Then in the line
2, we take a unique reference pv to the vector. In the line 3, we take a shared reference
ppv to the unique reference pv and then take a shared reference qv to the head element
of the vector using ppv. In the line 4, we perform the push operation ppv.push(2)

through ppv, which causes reallocation. In the line 5, after some operation, we try to
read the inner integer data of q. However, it is dangerous because the address at *qmay
be now invalid due to the reallocation. This code violates Rust’s ownership principle
and the compiler emits an error message like the following.

error: cannot borrow `**ppv` as mutable, as it is behind a `&`
reference↩→

* | let ppv: ... = &pv; ...
| --- help: consider changing this to be a mutable

reference: `&mut pv`↩→
* | ppv.push(2); ...
| ^^^ `ppv` is a `&` reference, so the data it refers to cannot be

borrowed as mutable↩→

Polymorphism over Lifetimes In Rust, a function can be polymorphic over life-
times, which is an important feature for modularity of borrowing.

For example, the method Vec::push used above has the following function signa-
ture.8

1 fn Vec::push<'a, T>(pv: &'a mut Vec<T>, a: T) -> ()

The keyword fn stands for ‘function’. The method Vec::push inputs a unique refer-
ence to a vector pv: &'a mut Vec<T> and a value a: T and appends the value to
the vector, possibly performing reallocation. The output type is the unit type (). The
function is polymorphic over the lifetime 'a of the reference pv, as well as the element
type T.

For another example, the method Vec::index_mut, which is used for index access
on a vector &mut pv[i], has the following signature.

1 fn Vec::index_mut<'a,T>(pv: &'a mut Vec<T>, i:usize) -> &'a mut T

8 Although Rust uses a special notation for methods, we use here a notation for usual functions.
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This method outputs the unique reference to the i-th element of the vector of the
type &'a mut T by subdividing the input unique reference to a vector pv: &'a mut

Vec<T>. The type usize represents an unsigned 64-bit integer (if we are using the 64-
bit architecture). We subdivide the input reference instead of performing a new borrow.
Therefore, the lifetime of the output reference &'a mut T has the same lifetime 'a as
the input reference &'a mut Vec<T>.

Variant Types Rust supports variant types, unlike common imperative languages
like C/C++ and Java.

For example, the following type Result<T, E> is commonly used.

1 enum Result<T, E> { Ok(T), Err(E) }

This type is parametrized over the main result type T and the error type E. A value of
the type Result<T, E> is either a successful value Ok(v) with a body value v: T or
an error value Err(e) with an error value e: E.

We can also make recursive types using variant types. For example, the singly
linked list type can be defined as follows.

1 enum List<T> { Nil, Cons(T, Box<List<T>>) }

Here, the box pointer type Box<U> represents a pointer to an object typed T with the
ownership on the object and the right to free (or deallocate) the memory block for the
object. A value of the type List<T> is either the nil Nil or the cons value Cons(v, l)

of the head value v: T and the boxed tail list l: Box<List<T>>. Using recursion, we
can write various functions over the list type. In particular, we can write interesting
functions by combining lists with unique references.

For example, we can write the following function inc_all.9

1 fn inc_all<'a>(pla: &'a mut List<i32>) -> () {

2 match pla {

3 Nil => {},

4 Cons(pa, pla2) => { *pa += 1; inc_all(pla2); }

5 }

6 }

It inputs a unique reference to a list pla and destructively increments all elements
of the list. The pattern Cons(pa, pla2) splits the unique reference pla: &'a mut

List<i32> into a unique reference to the head pa: &'a mut i32 and a unique ref-
erence to the tail pla2: &'a mut List<i32>.

For another example, we can write the following function split_unq.

1 fn split_unq<'a>(pla: &'a mut List<i32>) -> List<&'a mut i32> {

2 match pla {

3 Nil => Nil,

4 Cons(px, plx2) => Cons(px, Box::new(split_unq(plx2)))

5 }

6 }

It inputs a unique reference to an integer list pla: &'a mut List<i32> and outputs
a list of unique references to each element of the integer list.

9 Weneed a declaration like use List::*; to use the constructors Nil and Cons (without the qualifier
List::).
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Unsafe Code In Rust, we can also write unsafe code (Klabnik et al., 2018, §19.1),
which is code that does not take the static check on resource usage. If we want to make
a piece of code unsafe, we can just put it into the unsafe code block unsafe { ... }.
In unsafe code, we can use themutable raw pointer type *mut T and the immutable raw
pointer type *const T, which represent a pointer to an object typed T with or without
the ability to update its target object. In unsafe code, we can actively use any number of
mutable and immutable raw pointers to one object without restriction. Also, in unsafe
code, we can freely perform conversion between (unique or shared) references and raw
pointers.

We can robustly extend the expressivity of Rust using libraries that have internal
implementation with unsafe code and interfaces that follow the ownership principle. For
example, the internal implementation of the vector type Vec<T> depends on unsafe
code but we can use the vector type with safety guarantees as long as we access vectors
through the safe interfaces like Vec::push and Vec::index_mut. Although Rust’s
type system is quite restrictive by the strict enforcement of the ownership principle,
we can robustly extend the expressivity of Rust in this way.

Interior Mutability Using unsafe code, we can write a type whose internal data
structure can be modified through shared references. Such a property on a type is called
interior mutability (Klabnik et al., 2018, §15.5) (Jung, 2020, §8.6). Rust provides a bunch
of robust libraries that offer interior mutability.

For a simple example, Rust has the cell type Cell<T>. It can be used as follows.

1 let a: &Cell<i32> = & Cell::new(3); let b: &Cell<i32> = a;

2 a.set(7); print!("{}", b.get()); // 7

Here, we make a new integer cell with the initial value 3 by Cell::new(3). We take
a shared reference a to the cell, which can be copied to b. By a.set(7), which is
syntax sugar for Cell::set(a, 7), we can set the internal value of the cell to 7. By
b.get(), which is syntax sugar for Cell::get(b), we can get the internal value of
the cell, which is now set to 7. The methods Cell::set and Cell::get have the
following function signatures.

1 fn Cell::set<'a, T>(c: &'a Cell<T>, d: T) -> ()

2 fn Cell::get<'a, T>(c: &'a Cell<T>) -> T

Any shared reference to a cell has the right to call set and get. Actually, the call of
Cell::get requires that the type T is copyable, i.e., an object typed T can be copied.
Types like the integer type i32 and the shared reference type &T are copyable but types
like the vector type Vec<T> and the mutable reference type &mut T are not copyable.
Rust manages a property like copyability on a type using the machinery called a trait
(Klabnik et al., 2018, §10.2), which is comparable to Java’s interface and Haskell’s type
class.

For an advanced example, Rust also supports the mutex type Mutex<T>. A mutex
can be shared by multiple threads and be modified by exclusively taking the lock.

1.2 RustBelt — A Semantic Model of Rust Types

As explained in §1.1, Rust guarantees memory and thread safety using a static resource-
usage check by its distinctive lifetime-based ownership principle. In fact, many com-
mon errors in imperative programming (e.g., Example 1.1 and Example 1.2) are pre-
vented by Rust’s type system. Also, the expressivity of Rust can be robustly extended
using libraries have internal implementation with unsafe code and interfaces that fol-
low the ownership principle.
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The Rust community has been making a lot of efforts to enhance and guarantee
the safety of Rust’s type system and libraries through tests, bug reports and human
thoughts. Still, safety of Rust is highly tricky. In particular, when we have multiple
libraries with unsafe internal implementation, it is challenging to guarantee that any
combination of method calls on these libraries does not cause unexpected behaviors. In
fact, Rust has suffered from a number of bugs caused by interaction of multiple libraries
(Ben-Yehuda, 2015; Borowski, 2019).

Therefore, it is significant to give formal safety guarantees to Rust’s type system
and libraries in an extensible way, being open to new libraries and features of Rust. This
need gave rise to the work RustBelt (Jung et al., 2018a,b). They gave the firstmechanized
proof of memory and thread safety of a core of Rust’s type system and some key stan-
dard libraries of Rust, including ones with interior mutability such as Cell, RefCell,
Mutex and RwLock. They found a tricky bug of a real-world Rust library (Jung, 2017)
in the process of the formal verification. Their proof is mechanized in the Coq Proof
Assistant (Coq Community, 2021), making full use of the higher-order separation logic
Iris (Jung et al., 2015, 2018c), which is provided as a library in Coq (Krebbers et al.,
2017, 2018). Iris is a general-purpose separation logic that attains outstanding extensi-
bility by impredicativity or higher-order ghost states (Iris is explained more in depth in
Chapter 2).

The core of their proof is construction of semantic models of Rust types, which con-
sist of predicates in Iris. Each syntactic typing rule is semantically interpreted in Iris
and gets a separate soundness proof. Also, each library method with unsafe implemen-
tation and typed interfaces is likewise semantically interpreted in Iris and separately
verified. In this way, the safety proof of RustBelt is highly extensible. This semantic ap-
proach stands in contrast to common syntactic type soundness proof based on progress
and preservation (Wright and Felleisen, 1994); although the syntactic approach seems
handy, it is in general non-trivial how we can modify the syntactic soundness proof
when we add new execution rules and typing rules.

As an essential basis for their semantic approach, they designed the lifetime logic
on top of Iris in order to flexibly discuss borrowing of resources based on lifetimes. In
the lifetime logic, we can directly borrow Iris propositions instead of some fixed set of
resources, which is made possible by the impredicativity of Iris.

1.3 RustHorn — Verifying Rust Programs by Prophecy

How can we verify functional correctness of Rust programs leveraging the guarantees
given by Rust’s ownership principle? Let us first focus on a basic subset of Rust without
unsafe code. Without unique references, we can model Rust programs just as functional
programs. But what about with unique references? When we perform a unique borrow
and create a unique reference in Rust, in the verification model we can pass the current
value of the target object to the unique reference. When we update the target object of
the unique reference, in the model we can just accordingly update the current target
value of the unique reference. The problem is, after the lifetime of the borrow ends,
how we can tell the original owner the new value of the object, reflecting updates that
have been performed by the unique reference.

RustHorn (Matsushita et al., 2020a) proposed a very simple solution to this question:
we use a prophecy variable on the value at the end of the lifetime of the unique borrow.10
Roughly speaking a prophecy variable is a variable that peeks out some value that will

10 The idea of using prophecy for verifying Rust programs was first proposed by the senior thesis of
the author (Matsushita, 2019). The author completed the RustHorn paper (Matsushita et al., 2020a) in
collaboration with Takeshi Tsukada and Naoki Kobayashi, the supervisor of this thesis.
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be observed in the future. More specifically, the verification model handles a unique
borrow as follows. First we have some object a: T, which is modeled as a value 𝑣 .
When we create a unique reference ua: &mut T by uniquely borrowing a, we create
a prophecy variable 𝑥 , which prophesy the value of the borrowed object at the end of
the lifetime of the unique borrow. We model the unique reference ua as (𝑣, 𝑥), a pair
of the current value 𝑣 of the target object and the prophecy variable 𝑥 . Also, until
the lifetime of the borrow ends, we model a as the prophecy variable 𝑥 . When we
update the target object of ua, in the model we update the current target value 𝑣 of the
pair (𝑣, 𝑥) into the new target value 𝑣 ′, obtaining the model (𝑣 ′, 𝑥). And importantly,
at the point we throw away (or release) the unique reference ua modeled (𝑣, 𝑥), we
resolve the prophecy variable 𝑥 into the target value 𝑣 (i.e., assign 𝑣 to 𝑥 ), obtaining the
equality information 𝑥 = 𝑣 as a postcondition. This method also supports advanced
usage of unique references like reborrowing and subdivision (see Example 1.10). After
the lifetime of the borrow ends, the original owner a retrieves the ownership, now
being able to read and update its object. We know that a has the value 𝑥 , because 𝑥 has
been resolved to the value 𝑣 . In this way, we can translate any Rust program (within
a basic subset of Rust) into a logic model without explicit representation of the heap
memory and addresses, just like programs of functional programming languages. In a
sense, this prophecy-based technique gives us a general way to view a basic subset of
Rust as a functional programming language.

RustHorn (Matsushita et al., 2020a) demonstrated this prophecy-based method par-
ticularly in the context of automated verification based on constrained Horn clauses
(CHCs) (Grebenshchikov et al., 2012; Bjørner et al., 2015). Roughly speaking, a CHC
representation of a program is a set of logical formulas of some format called CHCs,
which describe constraints on predicate variables that represent the input-output re-
lation of some function or continuation. The program verification problem is reduced
to the satisfiability problem on CHCs, which can be automatically solved by existing
CHC solvers (Komuravelli et al., 2014; Fedyukovich et al., 2017; Hojjat and Rümmer,
2018; Champion et al., 2018) in a highly scalable way. RustHorn (Matsushita et al.,
2020a) implemented an automated verifier that translates Rust programs into CHCs
using the idea of prophecy for unique borrows and then calls the backend CHC solvers
Spacer (Komuravelli et al., 2014) and HoIce (Champion et al., 2018). They also per-
formed experiments on benchmarks using the verifier, including comparison with Sea-
Horn (Gurfinkel et al., 2015), an existing CHC-based verification platform for the C
Programming Language. RustHorn succeeded in automated verification of fairly com-
plicated Rust programs.

In principle, the prophecy-based translation of RustHorn can also be applied to
many Rust libraries including vectors Vec. Still it cannot handle libraries with interior
mutability in a clean way in general, because mutable states are actually shared under
interior mutability, unlike ownership by unique references.

Belowwe show two examples of verification in RustHornwith detailed explanation.
Example 1.9 (Dynamic Decision of the Address of a Unique Reference). For example,
let us consider the following Rust code.

1 fn take_max<'a>(ua: &'a mut int, ub: &'a mut int)-> &'a mut int {

2 if *ua >= *ub { ua } else { ub }

3 }

4 fn test(mut a: int, mut b: int) {

5 let uc: &mut int = take_max(&mut a, &mut b); *uc += 1;

6 assert!(a != b);

7 }

For simplicity of verification, we assume here that we have an unbounded integer type

12



int. The function take_max takes two unique references to integer ua and ub and
returns the one with the greater target value. This function is quite simple, but the
point is that the address of the unique reference returned by it is determined by a dy-
namic condition *ua >= *ub. The function test performs a simple test of take_max.
It inputs two integer objects a and b. It uniquely borrows the two and passes them
to take_max to take a unique reference uc. Then it increments the target value of uc.
Finally it checks that the values of a and b are different. We want to verify that the
assertion of test always succeeds, regardless of the inputs. That property holds be-
cause the increment on uc makes the difference between a and b exactly one bigger.
However, it is tricky because we need to ensure that uc points to the greater of a and
b, not only either a or b.

RustHorn translates the Rust program (or verification problem) above into the fol-
lowing two CHCs.

take max ((𝑎, 𝑎◦), (𝑏, 𝑏◦), 𝑟 ) ⇐=(
𝑎 ≥ 𝑏 ∧ 𝑏◦ = 𝑏 ∧ 𝑟 = (𝑎, 𝑎◦)

)
∨

(
𝑎 < 𝑏 ∧ 𝑎◦ = 𝑎 ∧ 𝑟 = (𝑏, 𝑏◦)

)
𝑎◦ ≠ 𝑏◦ ⇐= take max ((𝑎, 𝑎◦), (𝑏, 𝑏◦), (𝑐, 𝑐◦)) ∧ 𝑐◦ = 𝑐 + 1

Each CHC is universally quantified over the free variables. The predicate logic for CHCs
is implicitly multi-sorted and each variable has some sort.

The first CHC characterizes the function take_max through the predicate variable
take max, which represents the input-output relation of take_max. The unique ref-
erence ua is modeled as (𝑎, 𝑎◦), the current target integer 𝑎 and the prophecy target
integer 𝑎◦. We do similarly for ub. Suppose 𝑎 ≥ 𝑏 holds. We release the unique ref-
erence (𝑏, 𝑏◦) and thus resolve the prophecy variable 𝑏◦ to 𝑏, obtaining the equality
𝑏◦ = 𝑏. We also set the return value 𝑟 to (𝑎, 𝑎◦). When 𝑎 < 𝑏 holds, we do a similar
thing swapping and (𝑎, 𝑎◦) and (𝑏, 𝑏◦).

The second CHC describes the function test. The inputs a and b correspond to the
variables 𝑎 and 𝑏. When we perform a unique borrow &mut a, we take a new prophecy
variable 𝑎◦, which represents the value of a just after the end of the borrow, and model
the created unique reference as (𝑎, 𝑎◦) and a now as 𝑎◦. We do similarly for &mut b.
The call of take_max is modeled as the use of the predicate variable take max. The
return value uc is modeled again as (𝑐, 𝑐◦). We increment the target integer of uc,
which updates the model of uc into (𝑐 + 1, 𝑐◦). Then we release uc and thus resolve
the prophecy variable 𝑐◦ into 𝑐 + 1, obtaining the equality 𝑐◦ = 𝑐 + 1. Finally, the
assertion assert!(a != b) is modeled as the condition 𝑎◦ ≠ 𝑏◦. The variables 𝑎◦ and
𝑏◦ perfectly reflect the values of a and b at this point.

The system of two CHCs can be satisfied by the following solution.

take max ((𝑎, 𝑎◦), (𝑏, 𝑏◦), (𝑐, 𝑐◦)) := 𝑐◦ = 𝑐 + 1 ⇒ 𝑎◦ ≠ 𝑏◦

In the experiment of RustHorn (Matsushita et al., 2020a, §4), this problem was auto-
matically and instantly solved.

We can also represent the Rust program as the following functional program (we
use OCaml here).

let take_max (a, a') (b, b') = if a >= b

then ( assume (b' = b); (a, a') )

else ( assume (a' = a); (b, b') )

let test a b =

let a' = Random.int(0) in let b' = Random.int(0) in

let (c, c') = take_max (a, a') (b, b') in
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assume (c' = c + 1);

assert (a <> b)

Here, the function assume is defined as follows.

let assume b = if b then () else assume b

This function falls into an infinite loop when b is false. Since we are solving the safety
problem, where non-termination is considered success, assume b simply introduces
the postcondition that b is true.

Combining the technique of prophecy with recursive types, we can perform inter-
esting verification.
Example 1.10 (Update of a List via a Unique Reference). Let us consider the following
recursive function on the list type List<T> (defined in §1.1).

1 fn take_some<'a>(ula: &'a mut List<int>) -> &'a mut int {

2 match ula {

3 Nil => take_some(ula),

4 Cons(ua, ula2) => if rand() { ua } else { take_some(ula2) }

5 }

6 }

The function take_some inputs a unique reference to an integer list ula and outputs
a unique reference to some non-deterministically chosen element of the list. Here, we
assume some non-deterministic function fn rand() -> bool. When the target list of
ula is cons, we split ula into unique references on the head ua: &'a mut int and the
tail ula2: &'a mut List<int> and either return ua or recursively call take_some
on ula2. When the target list is nil, we fall into an infinite loop. We can write the
following test function on take_some.

1 fn test(mut la: List<int>) {

2 let n = sum(&la); let ua = take_some(&mut la);

3 *ua += 1; assert!(sum(&la) == n + 1);

4 }

The function test first saves the initial sum of the list la, then uniquely borrows la
and passes it to take_some to get a unique reference ua, increments the target of ua,
and finally asserts that the sum of the list has increased by one. Here, the function sum
is defined as follows.

1 fn sum<'a>(sla: &'a List<int>) -> int {

2 match sla { Nil => 0, Cons(sa, sla2) => *sa + sum(sla2) }

3 }

RustHorn translates this Rust program into the following CHCs.

take some((nil, la◦), 𝑟 ) ⇐= take some((nil, la◦), 𝑟 )

take some((𝑎 :: la′, la◦), 𝑟 ) ⇐= la◦ = 𝑎◦ :: la′◦ ∧( (
la′◦ = la′ ∧ 𝑟 = (𝑎, 𝑎◦)

)
∨

(
𝑎′◦ = 𝑎

′ ∧ take some((la′, la′◦), 𝑟 )
) )

sum(nil, 𝑟 ) ⇐= 𝑟 = 0

sum(𝑎 :: la, 𝑟 ) ⇐= sum(la, 𝑟 ′) ∧ 𝑟 = 𝑎 + 𝑟 ′

𝑛′ = 𝑛 + 1 ⇐= sum(la, 𝑛) ∧ take some((la, la◦), (𝑎, 𝑎◦)) ∧
𝑎◦ = 𝑎 + 1 ∧ sum(la◦, 𝑛′)
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The first and second CHCs characterize the function take_some, respectively for the
cases where the target list of ula is nil or cons. The first CHC is a tautology. The second
CHC is interesting. Because we destruct ula into Cons(ua, ula2), we accordingly
subdivide the prophecy variable la◦ into two prophecy variables 𝑎◦, la◦, constraining
la◦ to 𝑎◦ :: la′◦. Now ua is modeled as (𝑎, 𝑎◦) and ula2 is modeled as (la, la◦). In general,
when we subdivide a unique reference, we also accordingly subdivide its prophecy
variable, which is an essential technique in this prophecy-based approach. Now what
we do is simple. Depending on the non-deterministic boolean rand(), we either (i)
release ula2, obtaining la′◦ = la′, and return ua or (ii) release ua, obtaining 𝑎′◦ = 𝑎′,
and recursively call take_some(ula2). The third and fourth CHCs characterize the
function sum. A shared reference is represented simply as the value of its target object.
The fifth CHC characterizes the test function. This system of CHCs has the following
simple solution.

take some((la, la◦), (𝑎, 𝑎◦)) := 𝑎◦ = 𝑎 + 1 ⇒ sum la◦ = sum la + 1

sum(la, 𝑟 ) := 𝑟 = sum la

Here, the function sum : ListZ→ Z is defined inductively as follows.

sumnil := 0 sum (𝑎 :: la) := 𝑎 + sum la

In the experiment (Matsushita et al., 2020a, §4), the verifier of RustHorn succeeded in
automated verification of this Rust program. This is because HoIce (Champion et al.,
2018), one of the CHC backend solvers, can find and handle an inductive function like
sum from the CHCs of sum. Once we have sum, the solution to take some presented
above can be easily found from the last CHC. The validity of this solution can be easily
checked using the equality sum (𝑎 :: la) = 𝑎 + sum la.

As these examples show, using the idea of prophecy, we can give a clean logic
model to a fairly wide class of Rust programs, which makes verification highly scal-
able. Although the paper of RustHorn focused on CHC-based automated verification,
by the technique of prophecy, we can also verify Rust programs using existing semi-
automated verification platforms for functional programming languages such as F*
(Swamy et al., 2016) and Why3 (Filliâtre and Paskevich, 2013).

The correctness of this prophecy-based method is non-trivial. The RustHorn paper
(Matsushita et al., 2020a,b) presented the proof of soundness and completeness of the
reduction from Rust programs to CHCs. It was achieved mainly by constructing a
bisimulation between the execution of Rust programs and some deduction algorithm
onCHCs. On the side of CHCs, prophecy variables of unique references are represented
simply as syntactic variables, which can be specialized later in the deduction algorithm.

1.4 Our Work, RustHornBelt — Unifying RustHorn and RustBelt

As introduced in §1.2, RustBelt (Jung et al., 2018a) verified memory and thread safety
of the core type and some basic libraries of Rust in an extensible way. Still, RustBelt did
not verified functional correctness. In particular, RustBelt models unique reference as a
kind of invariant saying that some object of the type is stored at the target address and
does not track precise information about the object. As introduced in §1.3, RustHorn
(Matsushita et al., 2020a) presented a newmethod of verifying functional correctness of a
wide class of Rust programs in a fairly scalable way leveraging the guarantees of Rust’s
ownership principle. The point is that for each unique borrow we can take a prophecy
variable on the value of the target object just after the end of the borrow and model
the unique reference as a pair of the current target value and the prophecy variable
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to track the final target value when the unique reference is released. Although this
prophecy-based modeling is expected to be applicable to a wide class of Rust libraries
including Vec and HashMap, we did not have a logical foundation for proving that in
an extensible way. Although Matsushita et al. (2020a,b) presented a proof of soundness
and completeness of their prophecy-based reduction, their proof depends heavily on
syntactic structures and has rather little extensibility (this aspect is discussed more in
depth in §3.1 and §6.5). It was unclear how we can unify the approaches of RustHorn
and RustBelt.

In this thesis, we propose a novel extensible logical foundation to specify and ver-
ify functional correctness of Rust programs, using a prophecy-based logic model in the
style of RustHorn and taking a semantic approach in the style of RustBelt. We name this
research project RustHornBelt, as it combines the approaches of RustHorn and RustBelt.
We build a new formalization of prophecy in Iris (Chapter 3), where the information
about prophecy lives only in the ghost state and we can perform an operation that we
call dependent resolution. We also develop a low-level foundation for verifying imper-
ative programs in Iris (Chapter 4), with a new technique for spending an unbounded
number of logical steps at one physical step. We give new semantic models or semantic
types to program types in Rust (Chapter 5), extending the semantic approach of Rust-
Belt with refinement of a type by a pure value that is parametrized over assignments on
prophecy variables, which allows us to use the prophecy-based logic model in the style
of RustHorn. Finally, in order to formalize and verify type-based translation of Rust
programs into logic models, we introduce and semantically model a type system for
Rust that manipulates a logic model, which we dub the refined type system (Chapter 6).
Thanks to the semantic approach, we can verify each deduction rule of the type system
separately, which brings about extensibility, allowing us to flexibly add new features
and libraries of Rust.

The remaining part of this thesis is structured as follows. In Chapter 2, we intro-
duce the higher-order separation logic Iris as preliminaries for the following chapters.
In Chapter 3, we present a new platform for prophecy. In Chapter 4, we present a low-
level foundation for verification of imperative programming. In Chapter 5, we define
our notion of the semantic type and model various Rust types. In Chapter 6, we intro-
duce and semantically model our refined type system for Rust, proving some deduction
rules in detail and giving some examples of verification. In Chapter 7, we present the
conclusion of the paper and discuss future work.

This work emerged during my research internship at the RustBelt team of Max
Planck Institute for Software Systems from September to December 2020. Nevertheless,
virtually all the core ideas of this thesis were conceived by the author unless otherwise
noted, although I received valuable advice about the direction of this research. It is
worth noting here that Jacques-Henri Jourdan conceived the idea of using cumulative
time receipts for swelling persistent time receipts (§ 4.2; CumuTime-Swell-PersTime),
which was an essential technique for completing the formalization of this thesis.
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Chapter 2

Preliminaries on the Higher-Order Separation
Logic Iris

A separation logic is a logic for scalable and modular reasoning about the resources,
which was introduced by O’Hearn et al. (2001) and Reynolds (2002). Various separa-
tion logics have been designed so far. The separation logic Iris (Jung et al., 2015, 2018c)
is a general-purpose separation logic that attains outstanding extensibility by impred-
icativity (or higher-order ghost states), which is made possible by step indexing (Appel
and McAllester, 2001; Birkedal et al., 2011). Also, Iris is mechanized in the Coq Proof
Assistant with sophisticated tactics and proof modes (Krebbers et al., 2017, 2018).

Iris is applied to verification of various contexts; to name a few, C11’s weakmemory
model (Kaiser et al., 2017), refinement on fine-grained concurrency (Frumin et al., 2018),
the ST monad (Timany et al., 2018), persistency of the Intel-x86 Architecture (Raad
et al., 2020), low-level sandboxing (Sammler et al., 2020a), session types (Hinrichsen
et al., 2020), distributed databases (Gondelman et al., 2021), effect handlers (de Vilhena
and Pottier, 2021), and gradual typing (Jacobs et al., 2021). And notably, Iris is a vital
foundation for RustBelt (Jung et al., 2018a). Our work RustHornBelt, which is based on
the technique of RustBelt, is also built on top of the separation logic Iris.

In this chapter, we briefly describe how we can use the higher-order separation
logic Iris at a fairly high level. In §2.1, we introduce basic connectives and deduction
rules of Iris. In §2.2, we introduce the notion of the resource algebra and explain how
we can customize Iris using resource algebras. In § 2.3, we describe how we can the
lifetime logic, which was built on top of Iris by Jung et al. (2018a) to discuss borrowing
of resources under lifetimes in Rust. This chapter serves as technical preliminaries for
the following chapters Chapter 3, Chapter 4, Chapter 5 and Chapter 6.

We still do not introduce any program logic in this chapter. The weakest precondi-
tion (and the Hoare triple) for imperative programs can be defined using the existing
connectives of Iris. Because our definition of the weakest precondition is a part of our
contribution, it is described later in §4.2.

2.1 Basic Connectives and Deduction Rules of Iris

In this section, we introduce and describe basic logical connectives and deduction rules
of Iris.

Before introducing the connectives, we explicitly write down here the precedence
on the connectives: (i, the strongest) □, ⊲,�, |⇛E (and similar connectives); (ii) ∗,∧,∨;
(iii) −∗,⇒,≡−∗E,⇛E (and similar connectives); (iv, the weakest) ∀𝑥 . , ∃ 𝑥 . .

Iris Proposition An Iris proposition 𝑃,𝑄, 𝑅 : IProp is roughly speaking a predicate
over resources. More precisely, it is a step-indexed, monotone predicate over valid re-
sources. Also, a resource for an Iris proposition is called a ghost state. The formal
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model of Iris propositions is well described in (Jung et al., 2018c, §4). In this thesis, we
often call an Iris proposition just a proposition.

We call a proposition of metalogic a pure proposition and represent it by variables
𝜙,𝜓 , to distinguish it from an Iris proposition. We write Prop for the type of pure
propositions.

Sequent Iris has a sequent 𝑃 ` 𝑄 , which is a (metalogic) binary relation on Iris propo-
sitions 𝑃,𝑄 : IProp. It satisfies reflexivity, transitivity and anti-symmetry.

Seq-Refl
𝑃 ` 𝑃

Seq-Trans
𝑃 ` 𝑄 𝑄 ` 𝑅

𝑃 ` 𝑅

Seq-AntiSym
𝑃 ` 𝑄 𝑄 ` 𝑃

𝑃 = 𝑄

Basic Connectives Iris has the basic connectives of predicate logic: the truth True,
falsehood False, conjunction 𝑃 ∧𝑄 , universal quantification ∀𝑥 :𝑇 . 𝑃𝑥 , disjunction 𝑃 ∨
𝑄 , existential quantification ∃ 𝑥 :𝑇 . 𝑃𝑥 , and implication 𝑃 ⇒ 𝑄 . These connectives are
defined based on Kripke semantics of intuitionistic logic and thus satisfy all tautologies
of intuitionistic logic. In particular, the following properties hold.

True-Intro
𝑃 ` True

False-Elim
False ` 𝑃

And-Univ
𝑅 ` 𝑃 𝑅 ` 𝑄
𝑅 ` 𝑃 ∧𝑄

All-Univ
∀𝑥 :𝑇 .

(
𝑄 ` 𝑃𝑥

)
𝑄 ` (∀𝑥 :𝑇 . 𝑃𝑥 )

Or-Univ
𝑃 ` 𝑅 𝑄 ` 𝑅
𝑃 ∨𝑄 ` 𝑅

Exist-Univ
∀𝑥 :𝑇 .

(
𝑃𝑥 ` 𝑄

)
(∃ 𝑥 :𝑇 . 𝑃𝑥 ) ` 𝑄

Imp-Univ
𝑃 ∧𝑄 ` 𝑅

𝑃 ` 𝑄 ⇒ 𝑅

Note that we can ‘throw away’ any proposition 𝑃 by the rule True-Intro. A separation
logic that satisfies this rule is called affine.

We can also promote a pure proposition 𝜙 : Prop into an Iris proposition. This pro-
motion preserves basic connectives — truth, falsehood, conjunction, universal quantifi-
cation, disjunction, existential quantification and implication.

We also introduce the following shorthand.

𝑃 ⇔𝑄 := (𝑃 ⇒𝑄) ∧ (𝑄 ⇒ 𝑃)

∃ 𝑥 s.t. 𝜙𝑥 . 𝑃 := ∃ 𝑥 . 𝜙𝑥 ∧ 𝑃 ∀𝑥 s.t. 𝜙𝑥 . 𝑃 := ∀𝑥 . 𝜙𝑥 ⇒ 𝑃

We say that an Iris proposition 𝑃 is a tautology if it is equal to True.

Separating Conjunction and Magic Wand The separating conjunction 𝑃 ∗ 𝑄 of
propositions 𝑃 and 𝑄 represents a resource that can be written as a composition of
some resource satisfying 𝑃 and some resource satisfying 𝑄 .

The separating conjunction is associative, commutative and unital (on True).

Sep-Assoc
(𝑃 ∗𝑄) ∗ 𝑅 = 𝑃 ∗ (𝑄 ∗ 𝑅)

Sep-Comm
𝑃 ∗𝑄 = 𝑄 ∗ 𝑃

Sep-Unit
𝑃 ∗ True = 𝑃

Also, we can compose sequents in parallel according to separating conjunction, which
is a very important property.

Sep-Parallel
𝑃 ` 𝑄 𝑃 ′ ` 𝑄 ′

𝑃 ∗ 𝑃 ′ ` 𝑄 ∗𝑄 ′
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We can derive the following rules.

Sep-Lose
𝑃 ∗𝑄 ` 𝑃

Sep-And
𝑃 ∗𝑄 ` 𝑃 ∧𝑄

Sep-All
𝑃 ∗ ∀𝑥 .𝑄𝑥 ` ∀𝑥 . 𝑃 ∗𝑄𝑥

Sep-Frame
𝑃 ` 𝑄

𝑃 ∗ 𝑅 ` 𝑄 ∗ 𝑅

The separating conjunction has the right adjoint, which is written as 𝑃 −∗ 𝑄 and
called the magic wand.

Wand-Univ
𝑃 ∗𝑄 ` 𝑅

𝑃 ` 𝑄 −∗ 𝑅

A magic wand 𝑃 −∗ 𝑄 from 𝑃 to 𝑄 can be understood as a resource such that if we
compose it with any resource satisfying 𝑃 then we get a resource satisfying 𝑄 . Given
that the implication is the right adjoint of the (plain) conjunction, roughly speaking, the
magic wand is to the separating conjunction what the implication is to the conjunction.

We can derive the following rules.
Imp-Wand
𝑃 ⇒𝑄 ` 𝑃 −∗𝑄

Wand-Apply
𝑃 ∗ (𝑃 −∗𝑄) ` 𝑄

Wand-Curry
𝑃 ∗ 𝑄 −∗ 𝑅 = 𝑃 −∗ (𝑄 −∗ 𝑅)

Wand-Id
True ` 𝑃 −∗ 𝑃

Wand-Comp
(𝑃 −∗𝑄) ∗ (𝑄 −∗ 𝑅) ` 𝑃 −∗ 𝑅

Wand-Parallel
(𝑃 −∗𝑄) ∗ (𝑃 ′ −∗𝑄 ′) ` 𝑃 ∗ 𝑃 ′ −∗ 𝑄 ∗𝑄 ′

Since the separating conjunction is a left adjoint of the magic wand, by the ‘left
adjoints preserve colimits’ law, we have the following.

Sep-Exist
𝑃 ∗ ∃ 𝑥 .𝑄𝑥 = ∃ 𝑥 . 𝑃 ∗𝑄𝑥

Persistence Modality Iris has the persistence modality □ 𝑃 . Intuitively, □ 𝑃 means
that 𝑃 holds in a ‘lightweight’ way.

The persistence modality satisfies the following property.

Pers-And-Sep
𝑄 ∧ □ 𝑃 = 𝑄 ∗ □ 𝑃

The proposition𝑄 ∧ □ 𝑃 can be understood as a resource that satisfies both𝑄 and □ 𝑃 .
By this rule, we can separate out a resource that satisfies □ 𝑃 from that resource (note
that 𝑄 ∧ □ 𝑃 is equivalent to (𝑄 ∧ □ 𝑃) ∧ □ 𝑃 ).

The persistence modality forms a comonad.

Pers-Mono
𝑃 ` 𝑄
□ 𝑃 ` □𝑄

Pers-Elim
□ 𝑃 ` 𝑃

Pers-Idem
□ 𝑃 = □□ 𝑃

The persistence modality commutes with the separating conjunction, conjunction,
universal quantification, disjunction, existential quantification, and pure-proposition
promotion.
Pers-Comm-Sep
□ (𝑃 ∗𝑄) = □ 𝑃 ∗ □𝑄

Pers-Comm-And
□ (𝑃 ∧𝑄) = □ 𝑃 ∧ □𝑄

Pers-Comm-All
□ (∀𝑥 . 𝑃𝑥 ) = ∀𝑥 . □ 𝑃𝑥

Pers-Comm-Or
□ (𝑃 ∨𝑄) = □ 𝑃 ∨ □𝑄

Pers-Comm-Exist
□ (∃ 𝑥 . 𝑃𝑥 ) = ∃ 𝑥 . □ 𝑃𝑥

Pers-Comm-Pure
□𝜙 = 𝜙
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Also, under the persistence modality, the separating conjunction and the conjunc-
tion coincide and so do the magic wand and the implication.

Pers-Eq-Sep-And
□ (𝑃 ∗𝑄) = □ (𝑃 ∧𝑄)

Pers-Eq-Wand-Imp
□ (𝑃 −∗𝑄) = □ (𝑃 ⇒𝑄)

We say that 𝑃 is persistent and write persistent(𝑃) when it is equal to □ 𝑃 .

persistent(𝑃) := 𝑃 = □ 𝑃

Persistent propositions satisfy the following properties.

Persistent-Eq-Sep-And
persistent(𝑃)
𝑃 ∗𝑄 = 𝑃 ∧𝑄

Persistent-Eq-Wand-Imp
persistent(𝑃)

𝑃 −∗𝑄 = 𝑃 ⇒𝑄

Persistent-Intro-Pers
persistent(𝑃) 𝑃 ` 𝑄

𝑃 ` □𝑄

Persistent-Dup
persistent(𝑃)
𝑃 = 𝑃 ∗ 𝑃

Persistent-Retain
persistent(𝑃) 𝑄 ` 𝑃

𝑄 ` 𝑄 ∗ 𝑃

The rule Persistent-Intro-Pers says that if we can prove𝑄 out of a persistent assump-
tion, we can also prove □𝑄 .

We have the following lemmas for finding persistent propositions.

Persistent-Pers
persistent(□ 𝑃)

Persistent-Pure
persistent(𝜙)

Persistent-Sep
persistent(𝑃) persistent(𝑄)

persistent(𝑃 ∗𝑄)

Persistent-And
persistent(𝑃) persistent(𝑄)

persistent(𝑃 ∧𝑄)

Persistent-Or
persistent(𝑃) persistent(𝑄)

persistent(𝑃 ∨𝑄)

Persistent-All
∀𝑥 . persistent(𝑃𝑥 )
persistent(∀𝑥 . 𝑃𝑥 )

Persistent-Exist
∀𝑥 . persistent(𝑃𝑥 )
persistent(∃ 𝑥 . 𝑃𝑥 )

Step Indexing Iris is a step-indexed logic. Step indexing allows us to introduce gen-
eral recursion and impredicativity, which is an essential source of expressivity and ex-
tensibility of Iris. Later we introduce the later modality ⊲ 𝑃 , which is an important con-
nective for step indexing. Before introducing the later modality, we briefly introduce
step indexing in Iris. See Jung et al. (2018c, §4) for details.

A step index is any natural number 𝑛 (in the setting of Iris). Intuitively, the world
is stratified over step indices and the world gets more clearer as the step index grows.
Formally, a step-indexed type (also known as an ordered family of equivalences or OFE)
is a type equipped with the step-indexed equality (𝑛=)𝑛 , which is a family of equivalence
relations indexed by step indices which is anti-monotone over step indices and whose
limit coincides with the equality. A function between step-indexed types is said to be
non-expansive if it preserves the step-indexed equality. Also, a function 𝑓 between step-
indexed types is said to be contractive if it further satisfies 𝑓 𝑥 0

= 𝑓 𝑦 and 𝑥 𝑛
= 𝑦 ⇒ 𝑓 𝑥

𝑛+1
=

𝑓 𝑦. We have the following fixed point theorem on contractive functions, which is
very useful in practice. Taking the fixed point by contractiveness can be understood as
coinduction over the step indices.
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Theorem 2.1 (Banach’s Fixed Point Theorem). Any contractive function 𝑓 :𝑇 → 𝑇 over
the step-indexed type 𝑇 has a unique fixed point, i.e., has a unique solution 𝑥 for the
equation 𝑥 = 𝑓 𝑥 .

A step-indexed proposition 𝑋 : SProp is a predicate over step indices that is anti-
monotone over step indices. The type SProp is equipped with the step-indexed equal-
ity 𝑋 𝑛

= 𝑌 , which is defined as ∀𝑚 ≤ 𝑛. 𝑋 𝑚 = 𝑌 𝑚, the equality at the step indices
0, . . . , 𝑛. An Iris proposition 𝑃 : IProp is a step-indexed predicate over resources, with
some restrictions and quotients. The type IProp is also equipped with the step-indexed
equality in a manner similar to SProp.

Later Modality Iris has the later modality ⊲ 𝑃 . Intuitively, ⊲ 𝑃 means that 𝑃 holds one
step later. More precisely, ⊲ 𝑃 holds at the step index 0 regardless of 𝑃 and holds at the
step index 𝑛 + 1 if 𝑃 holds at the step index 𝑛.

The later modality ⊲ is important for recursion and impredicativity because it is a
contractive function over IProp. Other logical connectives are also designed to be non-
expansive. So roughly speaking, a function over IProp composed by logical connectives
of Iris is non-expansive if all occurrences of the argument are under the later modality.
As we mentioned earlier, contractiveness allows us to take a unique fixed point, which
is very useful for recursive definitions.

The later modality is monotone and can be introduced.

Later-Mono
𝑃 ` 𝑄

⊲ 𝑃 ` ⊲𝑄
Later-Intro
𝑃 ` ⊲ 𝑃

The later modality is not idempotent because it just says ‘one step later’ instead of ‘any
steps later’.

Also, we have the following rule for Löb induction.

Löb
⊲ 𝑃 ⇒ 𝑃 = 𝑃

It means that whenever we prove 𝑃 we can assume ⊲ 𝑃 . This is a strong deduction rule
when we deal with recursive definition with the later modality.

The later modality also commutes with the truth, separating conjunction, conjunc-
tion, universal quantification, disjunction, inhabited existential quantification, impli-
cation, and persistent modality.

Later-Comm-True
⊲ True = True

Later-Comm-Sep
⊲ (𝑃 ∗𝑄) = ⊲ 𝑃 ∗ ⊲𝑄

Later-Comm-And
⊲ (𝑃 ∧𝑄) = ⊲ 𝑃 ∧ ⊲𝑄

Later-Comm-All
⊲ (∀𝑥 . 𝑃𝑥 ) = ∀𝑥 . ⊲ 𝑃𝑥

Later-Comm-Or
⊲ (𝑃 ∨𝑄) = ⊲ 𝑃 ∨ ⊲𝑄

Later-Comm-InhExist
∃ :𝑇 . True

⊲ (∃ 𝑥 :𝑇 . 𝑃𝑥 ) = ∃ 𝑥 :𝑇 . ⊲ 𝑃𝑥

Later-Comm-Pers
⊲□ 𝑃 = □ ⊲ 𝑃

The following also holds because of Later-Comm-Pers.

Persistent-Later
persistent(𝑃)
persistent(⊲ 𝑃)
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In order to help discussion about the later modality, we introduce the following
except-0 modality.

�𝑃 := ⊲ False ∨ 𝑃

It means that 𝑃 holds at least except at the step index 0. It forms a monad.

Except0-Mono
𝑃 ` 𝑄

�𝑃 ` �𝑄
Except0-Intro
𝑃 ` �𝑃

Except0-Idem
��𝑃 = �𝑃

It also satisfies the following properties.

Except0-Later
� ⊲ 𝑃 = ⊲ 𝑃

Except0-Comm-Sep
�(𝑃 ∗𝑄) = �𝑃 ∗ �𝑄

Except0-Comm-And
�(𝑃 ∧𝑄) = �𝑃 ∧ �𝑄

Except0-Comm-All
�(∀𝑥 . 𝑃𝑥 ) = ∀𝑥 . �𝑃𝑥

Except0-Comm-Or
�(𝑃 ∨𝑄) = �𝑃 ∨ �𝑄

Except0-Comm-Exist
�(∃ 𝑥 . 𝑃𝑥 ) = ∃ 𝑥 . �𝑃𝑥

Except0-Comm-Pers
�□ 𝑃 = □�𝑃

We say that 𝑃 is timeless and write timeless(𝑃) when ⊲ 𝑃 is equal to �𝑃 .

timeless(𝑃) := ⊲ 𝑃 = �𝑃

If we peek into the model, timeless(𝑃) turns out to be equivalent to saying that 𝑃 is
constant over the step indices.

We have the following lemmas for finding timeless propositions.

Timeless-Pure
timeless(𝜙)

Timeless-Sep
timeless(𝑃) timeless(𝑄)

timeless(𝑃 ∗𝑄)

Timeless-And
timeless(𝑃) timeless(𝑄)

timeless(𝑃 ∧𝑄)

Timeless-Or
timeless(𝑃) timeless(𝑄)

timeless(𝑃 ∨𝑄)

Timeless-All
∀𝑥 . timeless(𝑃𝑥 )
timeless(∀𝑥 . 𝑃𝑥 )

Timeless-Exist
∀𝑥 . timeless(𝑃𝑥 )
timeless(∃ 𝑥 . 𝑃𝑥 )

Timeless-Wand
timeless(𝑃)

timeless(𝑄 −∗ 𝑃)

Timeless-Imp
timeless(𝑃)

timeless(𝑄 ⇒ 𝑃)

Fancy Update Modality Iris also has the fancy update modality.
First, we introduce some notions. We use some infinite type InvName and call its

elements an invariant name and represent them by 𝜄. Internally in the model of Iris, an
invariant name is used for naming an Iris proposition used for an invariant. A mask E :
P InvName is a set of invariant names. A namespace N is an infinite set of invariant
names.1 We write > for the universal set of the type InvName.

Iris has the fancy update modality E |⇛E′
𝑃 for masks E, E′. Roughly speaking,

E |⇛E′
𝑃 represents a resource such that it can be updated into a resource satisfying

in a frame-preserving way; before the update we own the invariant names in E, which
can be used for the update, and after the update we own the invariant names in E′.
Actually, the fancy update modality is defined in Iris combining simpler connectives,
which is described in (Jung et al., 2018c, §7).

1 This formulation is a bit different from the actual Coq implementation in Iris.
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The fancy update modality forms an indexed monad.

FUpd-Mono
𝑃 ` 𝑄

E |⇛E′
𝑃 ` E |⇛E′

𝑄
FUpd-Intro
𝑃 ` E |⇛E 𝑃

FUpd-Join
E |⇛E′ E′

|⇛E′′
𝑃 ` E |⇛E′′

𝑃

We can regard the fancy update modality as some computation, as is often the case for
various monads in functional programming.

We also have the following stronger variant of FUpd-Intro.2

FUpd-Bounce
𝑃 ` E+E′

|⇛E E |⇛E+E′
𝑃

The fancy update modality also satisfies the following frame rule.

FUpd-Frame
𝑄 ∗ E |⇛E′

𝑃 ` E |⇛E′ (𝑄 ∗ 𝑃)

The fancy update modality can clear away the except-0 modality.

FUpd-Except0
� E |⇛E′ �𝑃 = E |⇛E′

𝑃

We can also derive the following rules.

FUpd-Merge
E |⇛E′

𝑃 ∗ E′
|⇛E′′

𝑄 ` E |⇛E′′ (𝑃 ∗𝑄)
FUpd-Wkn-Mask
E |⇛E′

𝑃 ` E+E′′
|⇛E′+E′′

𝑃

FUpd-Merge follows from FUpd-Frame and FUpd-Join. FUpd-Wkn-Mask follows from
FUpd-Bounce, FUpd-Frame and FUpd-Join.

The fancy update does not commute with any of the separating conjunction, magic
wand, conjunction, universal quantification, disjunction, existential quantification, im-
plication, persistence modality, and later modality.

We also use the following shorthand for propositions 𝑃,𝑄 and masks E, E′.

𝑃 E≡−∗E′
𝑄 := 𝑃 −∗ E |⇛E′

𝑄 𝑃 E⇛E′
𝑄 := □

(
𝑃 E≡−∗E′

𝑄
)

We call 𝑃 E≡−∗E′
𝑄 a view shift from 𝑃 to 𝑄 , under the input and output masks E, E′.

Intuitively, 𝑃 E≡−∗E′
𝑄 means that, by consuming a resource satisfying 𝑃 and performing

an update that inputs the mask E and outputs the mask E′, we get a resource satisfying
𝑄 . The proposition 𝑃 E⇛E′

𝑄 means that the view shift 𝑃 E≡−∗E′
𝑄 holds persistently;

the symbol looks more like the implication than the magic wand, which is justified by
the fact that under the persistent modality the implication and the magic wand coincide
(Pers-Eq-Wand-Imp).

We can derive the following properties on the view shift.

VShift-Apply
𝑃 ∗ (𝑃 E≡−∗E′

𝑄) ` E |⇛E′
𝑄

VShift-Id
True ` 𝑃 E≡−∗E 𝑃

VShift-Comp
(𝑃 E≡−∗E′

𝑄) ∗ (𝑄 E′≡−∗E′′
𝑅) ` 𝑃 E≡−∗E′′

𝑅

VShift-Merge
(𝑃 E≡−∗E′

𝑄) ∗ (𝑃 ′ E′≡−∗E′′
𝑄 ′) ` 𝑃 ∗ 𝑃 ′ E≡−∗E′′

𝑄 ∗𝑄 ′

2 For sets𝐴, 𝐵, we write𝐴+𝐵 for the disjoint union of them, i.e., the union𝐴∪𝐵 with the precondition
that the argument sets are disjoint 𝐴 ∩ 𝐵 = ∅.
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VShift-Wkn-Mask
𝑃 E≡−∗E′

𝑄 ` 𝑃 E+E′′≡−∗E′+E′′
𝑄

VShift-Except0
𝑃 E≡−∗E′ �𝑄 = 𝑃 E≡−∗E′

𝑄 = �𝑃 E≡−∗E′
𝑄

For common use cases, the input and output masks for the fancy update are the
same. So we introduce the following shorthand.

|⇛E 𝑃 := E |⇛E 𝑃 𝑃 ≡−∗E 𝑄 := 𝑃 E≡−∗E 𝑄 𝑃 ⇛E 𝑄 := 𝑃 E⇛E 𝑄

We also introduce the following step-taking fancy update modality.

|≡⇛▶⊲ E 𝑃 := E |⇛∅ ⊲ ∅|⇛E 𝑃

It means that we get 𝑃 after performing an update consuming the mask E, spending
one step index, and performing an update that returns the mask E. Informally, when
we have |≡⇛▶⊲ E 𝑃 , we say that after one logical step under the mask E we get 𝑃 . We also
introduce the following shorthand.

𝑃 ≡≡−∗▶⊲ E 𝑄 := 𝑃 −∗ |≡⇛▶⊲ E 𝑄 𝑃 ≡⇛▶⊲ E 𝑄 := □
(
𝑃 ≡≡−∗▶⊲ E 𝑄

)
Moreover, we also introduce the following shorthand for repeating logical steps.

|≡⇛▶⊲ 0
E 𝑃 := |⇛E 𝑃 |≡⇛▶⊲ 𝑛+1

E 𝑃 := |≡⇛▶⊲ E |≡⇛▶⊲ 𝑛
E 𝑃

𝑃 ≡≡−∗▶⊲ 𝑛
E 𝑄 := 𝑃 −∗ |≡⇛▶⊲ 𝑛

E 𝑄 𝑃 ≡⇛▶⊲ 𝑛
E 𝑄 := □

(
𝑃 ≡≡−∗▶⊲ 𝑛

E 𝑄
)

Note that |≡⇛▶⊲ 0
E 𝑃 is defined as |⇛E 𝑃 instead of 𝑃 . Note also that |≡⇛▶⊲ 1

E 𝑃 , 𝑃 ≡≡−∗▶⊲ 1
E 𝑄 and

𝑃 ≡⇛▶⊲ 1
E 𝑄 are equal to |≡⇛▶⊲ E 𝑃 , 𝑃 ≡≡−∗▶⊲ E 𝑄 and 𝑃 ≡⇛▶⊲ E 𝑄 , respectively.
We can derive the following properties on the step-taking fancy update modality.

StFUpd-Mono
𝑃 ` 𝑄

|≡⇛▶⊲ 𝑛
E 𝑃 ` |≡⇛▶⊲ 𝑛

E 𝑄
Later-StFUpd
⊲𝑛 𝑃 ` |≡⇛▶⊲ 𝑛

E 𝑃
StFUpd-FUpd
|⇛E |≡⇛▶⊲ 𝑛

E |⇛E 𝑃 = |≡⇛▶⊲ 𝑛
E 𝑃

StFUpd-Wkn-Mask
|≡⇛▶⊲ 𝑛

E 𝑃 ` |≡⇛▶⊲ 𝑛
E+E′ 𝑃

StFUpd-Frame
𝑄 ∗ |≡⇛▶⊲ 𝑛

E 𝑃 ` |≡⇛▶⊲ 𝑛
E (𝑄 ∗ 𝑃)

StFUpd-Merge
|≡⇛▶⊲ 𝑛

E 𝑃 ∗ |≡⇛▶⊲ 𝑛
E 𝑄 ` |≡⇛▶⊲ 𝑛

E (𝑃 ∗𝑄)
StFUpd-Add-NStep
|≡⇛▶⊲ 𝑛

E |≡⇛▶⊲
𝑚
E 𝑃 = |≡⇛▶⊲ 𝑛+𝑚

E 𝑃

Note that step-taking updates can be merged in parallel by the rule StFUpd-Merge,
which follows from FUpd-Merge and Later-Comm-Sep. The rule StFUpd-Wkn-Mask fol-
lows from FUpd-Bounce, FUpd-Frame, Later-Intro and Later-Comm-Sep.

The step-taking fancy update modality satisfies the following soundness theorem.

Theorem 2.2 (Soundness of the Step-Taking Fancy Update Modality). For any pure
proposition 𝜙 : Prop, if |≡⇛▶⊲ 𝑛

E 𝜙 is a tautology for some mask E and natural number 𝑛, then
𝜙 holds.

Invariant In Iris, we can store an Iris proposition ⊲ 𝑃 to the world as an invariant and
share it by the invariant token 𝑃

E which is persistent. The mask E is what we need to
consume to take out the Iris proposition ⊲ 𝑃 .

Formally, the invariant token 𝑃
E is defined as the following persistent view shift.

𝑃
E := True E⇛∅ ⊲ 𝑃 ∗

(
⊲ 𝑃 ∅≡−∗E True

)
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By consuming themask E, we can take out ⊲ 𝑃 , and after we put back ⊲ 𝑃 we can retrieve
the mask E.

We can get an invariant token by the following rule.
Inv-Intro
⊲ 𝑃 ` |⇛∅ 𝑃

N

We can use any namespaceN , which is an infinite set of invariant names. Internally, we
choose some unused invariant name 𝜄 fromN (always only a finite number of invariant
names are used), associate 𝜄 with 𝑃 , and store ⊲ 𝑃 to some globally shared place; when
we temporarily take out ⊲ 𝑃 , we temporarily deposit the ownership on the invariant
name 𝜄 to that shared place. Actually, in order to achieve this operation, the fancy
update modality E |⇛E′ is equipped with the masks E, E′.

Later in § 3.3, we use the mechanism of the invariant to formalize the prophecy
resolution (Proph-Resolve).

2.2 Customizing Iris by Resource Algebras

We can customize Iris by registering new resource algebras to the global resource. A
resource algebra (RA) is a variant of a partial commutative monoid (PCM). In this sec-
tion, we define the RA, introduce various RAs, and describe how we can customize Iris
through RAs.

Resource Algebra A resource algebra (RA) Ra is a quintuple of (i) the underlying
type |Ra| : Type, (ii) the composition operation · : |Ra| → |Ra| → |Ra|, (iii) the unit
𝜀 : |Ra|, (iv) the validity predicate ✓ : |Ra| → Prop, and (v) the core of each item |−| :
|Ra| → |Ra|, satisfying the following properties.3

RA-Assoc
(𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐)

RA-Comm
𝑎 · 𝑏 = 𝑏 · 𝑎

RA-Unit
𝑎 · 𝜀 = 𝑎

RA-Valid-Unit
𝑎 · 𝜀 = 𝑎

RA-Valid-Mono
𝑎 ≼ 𝑏 ✓ 𝑏

✓ 𝑎
RA-Core-Unit
𝑎 · |𝑎 | = 𝑎

RA-Core-Idem
| |𝑎 | | = |𝑎 |

RA-Core-Mono
𝑎 ≼ 𝑏

|𝑎 | ≼ |𝑏 |

where 𝑎 ≼ 𝑏 := ∃ 𝑐. 𝑎 · 𝑏 = 𝑐

The composition is associative, commutative and unital (RA-Assoc, RA-Comm, RA-Unit).
The validity predicate holds for the unit and anti-monotone over composition (RA-
Valid-Unit, RA-Valid-Mono). The core |𝑎 | of an item 𝑎 can be understood as what works
like a unit in the presence of 𝑎 (RA-Core-Unit). The core is idempotent and monotone
over composition (RA-Core-Idem, RA-Core-Mono).

RA is similar to a partial commutative monoid (PCM) but different from that in that
(i) RA uses a total composition operation and separately discusses validity, while PCM
has a partial composition operation, and (ii) RA has the core operation, which PCM
does not have.

We introduce the following relation 𝑎⇝ 𝐵 for an item 𝑎: |Ra| and a set of items 𝐵:
P|Ra|.

𝑎⇝ 𝐵 := ∀𝑐 s.t. ✓ (𝑎 · 𝑐) . ∃𝑏 ∈ 𝐵. ✓ (𝑏 · 𝑐)
It means that we can safely update 𝑎 into some element of the set 𝐵 without losing
validity for any frame 𝑐 , i.e., the remaining part of the global resource. This kind of
update is called frame-preserving update.

3 This algebra is actually called a unital RA in Iris. Iris allows an RA to lack the unit and the totality of
the core operation. In this thesis, we only use unital RAs for simplicity.
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Various RAs Now we introduce various RAs, which are used later in the paper.
We call a positive rational number no greater than 1 a fraction. The type of fractions

Q(0,1] is defined as the subtype { 𝑎: Q / 0 < 𝑎 ≤ 1 }.4 We use the letter 𝑞 to represent a
fraction.

The fraction RA frac is defined as follows.

𝑎 : |frac | ::= 0 | 𝑞 (𝑞: Q(0,1] ) |  𝑎 · 𝑏 :=
{
𝑎 + 𝑏 𝑎, 𝑏 ≠  , 𝑎 + 𝑏 ≤ 1 otherwise

𝜀 := 0 ✓ 𝑎 := 𝑎 ≠  |𝑎 | := 0

An item of frac is (i) 0, (ii) a fraction 𝑞 : Q(0,1] , or (iii)  , the invalid element.
The exclusive RA ex(𝑇 ) on the type 𝑇 is defined as follows.

𝑎 : |ex(𝑇 ) | ::= 𝜀 | ex𝑥 (𝑥 :𝑇 ) |  𝑎 · 𝑏 :=

𝑎 𝑏 = 𝜀
𝑏 𝑎 = 𝜀 otherwise

𝜀 := 𝜀 ✓ 𝑎 := 𝑎 ≠  |𝑎 | := 𝜀

An item of ex(𝑇 ) is (i) 𝜀, the unit, (ii) ex𝑥 , witnessing 𝑥 :𝑇 exclusively, or (iii)  , invalid.
The exclusive RA admits the following frame-preserving update for any 𝑥,𝑦 : 𝑇 .

ex𝑥 ⇝ {ex𝑦 }

The fractional ownership RA fracown(𝑇 ) on the type 𝑇 is defined as follows.

𝑎 : |fracown(𝑇 ) | ::= 𝜀 | fown𝑞 𝑥 (𝑞: Q(0,1], 𝑥 :𝑇 ) |  
𝑎 · 𝑏 :=


𝑎 𝑏 = 𝜀
𝑏 𝑎 = 𝜀
fown𝑞+𝑞′ 𝑥 𝑎 = fown𝑞 𝑥, 𝑏 = fown𝑞′ 𝑥, 𝑞 + 𝑞′ ≤ 1 otherwise

𝜀 := 𝜀 ✓ 𝑎 := 𝑎 ≠  |𝑎 | := 𝜀

An item of fracown(𝑇 ) is (i) 𝜀, the unit, (ii) fown𝑞 𝑥 , witnessing 𝑥 :𝑇 with the fraction
𝑞, or (iii)  , invalid. When we have fown𝑞 𝑥 and fown𝑞′ 𝑦 in a valid way, the sum of
fractions 𝑞 + 𝑞′ should be no more than 1 and 𝑥 and 𝑦 should coincide. This fractional
ownership RA admits the following frame-preserving update for any 𝑥,𝑦 : 𝑇 , just like
the exclusive RA.

fown1 𝑥 ⇝ {fown1𝑦 }

Also note that we have the following rules on the fraction RA.

✓
(
fown𝑞 𝑥 · fown𝑞′ 𝑦

)
𝑥 = 𝑦 ∧ 𝑞 + 𝑞′ ≤ 1

𝑞 + 𝑞′ ≤ 1

fown𝑞+𝑞′ 𝑥 = fown𝑞 𝑥 · fown𝑞′ 𝑥

The product RA
∏

𝑖 Cmra𝜆 of an indexed family of RAs (Cmra𝑖)𝑖 is defined point-
wise as follows.

|∏𝑖 Cmra𝑖 | :=
∏

𝑖 |Cmra𝑖 |

𝑎 · 𝑏 := 𝜆𝑖. 𝑎 𝑖 · 𝑏 𝑖 𝜀 := 𝜆𝑖.𝜀 ✓ 𝑎 := ∀ 𝑖 . ✓ (𝑎 𝑖) |𝑎 | := 𝜆𝑖. |𝑎 𝑖 |
4 In this thesis, we use the notation { 𝑥 :𝑇 / 𝜙𝑥 } for the subtype of 𝑇 : Type that consists of any value

𝑥 :𝑇 satisfying the condition 𝜙𝑥 . We implicitly promote a value of the type { 𝑥 :𝑇 / 𝜙𝑥 } into the type 𝑇 .
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We can combine the frame-preserving updates of the component RAs in the product
RA as follows.

∀ 𝑖 . 𝑎 𝑖 ⇝ 𝐵𝑖

𝑎 ⇝
∏

𝑖 𝐵𝑖

The finite-support map RA𝑇 fin→Ra on the type𝑇 and the RA Ra is defined as follows.

|𝑇 fin→ Ra | :=
{
𝑓 : 𝑇 → |Ra| / { 𝑥 | 𝑓 𝑥 ≠ 𝜀 } is finite

}
𝑎 · 𝑏 := 𝜆𝑥 . 𝑎 𝑥 · 𝑏 𝑥

𝜀 := 𝜆𝑥 .𝜀 ✓ 𝑎 := ∀𝑥 . ✓ (𝑎 𝑥) |𝑎 | := 𝜆𝑥 . |𝑎 𝑥 |

An item of 𝑇 fin→ Ra is a function 𝑓 : 𝑇 → |Ra| such that 𝑓 𝑥 is non-unit for only a finite
number of 𝑥 . The operations on this RA are defined pointwise. For 𝑥 :𝑇 and 𝑎: Ra, we
write [𝑥 � 𝑎] for the element of 𝑇 fin→ Ra that returns 𝑎 if the input is 𝑥 and returns 𝜀
otherwise.5 The finite-support map RA admits the following frame-preserving update,
which ‘allocates’ a valid element𝑏 of the target RA Ra to some fresh place 𝑥 : 𝑇 (𝑎{𝑥�𝑏 }
denotes the map 𝑎 with the output for 𝑥 replaced with 𝑏).

✓ 𝑏

𝑎 ⇝
{
𝑎{𝑥 � 𝑏 } | 𝑥 : 𝑇, 𝑎 𝑥 = 𝜀

}
The RA also admits the following frame-preserving update for modifying the item at
one place.

𝑎 𝑥 ⇝ 𝐵

𝑎 ⇝
{
𝑎{𝑥 � 𝑏 } | 𝑏 ∈ 𝐵

}
Global Camera We can also define a step-indexed version of a resource algebra,
which is called a camera. The definition of the camera can be found in (Jung et al.,
2018c, §4.4); in this thesis we omit it. Any resource algebra can be promoted into a
discrete camera. We use Cmra to represent a camera.

An Iris proposition is parametrized over some camera, whichwe call the global cam-
era and write as GlobCmra in this thesis. The global camera GlobCmra is constructed
as follows for a finite set of component cameras CompCmras.6

GlobCmra :=
∏

Cmra∈CompCmras
(
GhostName fin→ Cmra

)
Here, GhostName is some infinite type, whose elements are called ghost names and are
represented by 𝛾 . The type of Iris propositions IProp is defined based on this global
camera GlobCmra. Actually, Iris has a mechanism for impredicativity, which allows
GlobCmra to depend on IProp, using the fixed point theorem on locally contractive
profunctors. For the purpose of this thesis, we don’t need to get deeply into this mech-
anism.

A proof in Iris can be extensible by keeping it parametrized over the set of compo-
nent cameras CompCmras, assuming only that the set contains the cameras we need.
We benefit a lot from going open-world.

In RustHornBelt, we register our RAs to the global camera, i.e., add them to the set
CompCmras — proph in §3.3, heap and time in §4.2, and unq in §5.3.

5 For some 𝑇 , we need some classical axioms to construct [𝑥 � 𝑎].
6The actual Coq implementation of Iris uses a finite sequence of component cameras possibly with

duplication in order to avoid equality on cameras.
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Customizing Iris by Cameras/RAs Iris has the connective Own(𝑎) for owning the
resource 𝑎 : |GlobCmra| in the global camera. It satisfies the following properties.7

Own-Comp
Own(𝑎) ∗ Own(𝑏) = Own(𝑎 · 𝑏)

Own-Unit
True = Own(𝜀)

Own-Core-Pers
persistent(Own( |𝑎 |) )

Own-Valid
Own(𝑎) ` ✓ 𝑎

Own-Upd
𝑎⇝ 𝐵

Own(𝑎) ` |⇛∅ ∃𝑏 ∈ 𝐵. Own(𝑏)

We can merge and split Own according to the composition of the camera (Own-Comp).
We always own the unit (Own-Unit). Owning the core of any item is persistent (Own-
Core-Pers). Owning an item ensures that the item is valid (Own-Valid). When the
frame-preserving update 𝑎⇝ 𝐵 holds, consuming Own(𝑎) we get Own(𝑏) for some 𝑏
in 𝐵 (Own-Upd).

Importantly, the frame-preserving update 𝑎 ⇝ 𝐵 we can use for Own-Upd can be
extended by registering new cameras to the global camera.

Usually, instead of directly using Own, we use the connective 𝑎 𝛾
Cmra, which owns

the resource 𝑎: |Cmra| at the specific ghost name 𝛾 and the camera Cmra, where Cmra
is in the set of component cameras CompCmras.

𝑎
𝛾
Cmra :=

[
Cmra� [𝛾 � 𝑎]

]
It satisfies the following properties, which follows from the properties on Own.

GOwn-Comp
𝑎

𝛾
Cmra ∗ 𝑏

𝛾
Cmra = 𝑎 · 𝑏 𝛾

Cmra

GOwn-Unit
True = 𝜀

𝛾
Cmra

GOwn-Core-Pers
persistent( |𝑎 | 𝛾

Cmra
)

GOwn-Valid
𝑎

𝛾
Cmra ` ✓ 𝑎

GOwn-Timeless
Cmra is a discrete camera

timeless( 𝑎 𝛾
Cmra )

GOwn-Alloc
✓ 𝑎

True ` |⇛∅ ∃𝛾 . 𝑎 𝛾
Cmra

GOwn-Upd
𝑎⇝ 𝐵

𝑎
𝛾
Cmra ` |⇛∅ ∃𝑏 ∈ 𝐵. 𝑏 𝛾

Cmra

GOwn-Upd-Two
(𝑎, 𝑎′) ⇝ 𝐵 Cmra ≠ Cmra′

𝑎
𝛾
Cmra ∗ 𝑎′

𝛾 ′

Cmra′ ` |⇛∅ ∃ (𝑏, 𝑏′) ∈ 𝐵.
(
𝑏

𝛾
Cmra ∗ 𝑏′

𝛾 ′

Cmra′
)

GOwn-Alloc says that a valid element 𝑎 can be allocated to some ghost name 𝛾 . GOwn-
Upd-Two can discuss interaction of two different cameras Cmra,Cmra′ registered to
the global camera; the frame preserving update (𝑎, 𝑎′) ⇝ 𝐵 is discussed in the product
camera Cmra × Cmra′.

2.3 Lifetime Logic — Borrowing Propositions Under Lifetimes

The lifetime logic was introduced by Jung et al. (2018a,b) to discuss borrowing of re-
sources under lifetimes in Rust. The lifetime logic is formalized as a group of definitions
and lemmas in the separation logic Iris with Coq mechanization. Using the impredica-
tivity of the Iris, the lifetime logic allows us to borrow any Iris proposition 𝑃 , which
is very important for extensibility of the proofs with regard to borrowing. Our work,
RustHornBelt, depends a lot on the lifetime logic (Chapter 5 and Chapter 6).

7 The validity predicate ✓ 𝑎 used in Own-Valid is actually step-indexed.
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The Iris model of the lifetime logic is highly complicated and subtle, which is well
described and explained by Jung (2020, Chapter 11). However, if we just use the lifetime
logic, we just need to understand the deduction rules of the lifetime logic.

In this chapter, we describe howwe can use the lifetime logic. To aid understanding,
the formulas and names of the deduction rules are a bit modified from those of (Jung
et al., 2018b; Jung, 2020).

Presenting Deduction Rules in Iris A deduction rule like the following for an Iris
proposition 𝑃 means that 𝑃 is a tautology.

Some-Simple-Rule
𝑃

A deduction rule like the following for Iris propositions ®𝑄, 𝑃 means that 𝑄0 ∧𝑄1 ∧
· · · ∧𝑄𝑛−1 ⇒ 𝑃 is a tautology.

Some-Rule-With-Assumptions
𝑄0 𝑄1 · · · 𝑄𝑛−1

𝑃

To aid understanding, we only use persistent propositions for the assumptions ®𝑄 .
Sometimes we may hide some common assumptions that are persistent. For the

lifetime logic, we hide the lifetime context Ctxlft, which is an invariant token on some
complicated proposition.

Lifetimes A lifetime 𝛼, 𝛽 is an object of some type Lft.
We have the intersection operation over lifetimes 𝛼 u 𝛽 , which is associative, com-

mutative, and unital under the eternity lifetime∞.

(𝛼 u 𝛼 ′) u 𝛼 ′′ = 𝛼 u (𝛼 ′ u 𝛼 ′′) 𝛼 u 𝛽 = 𝛽 u 𝛼 ∞u 𝛼 = 𝛼

Lifetime Tokens and Dead-Lifetime Tokens In order to manage the information
about the liveness of lifetimes, we use the lifetime token [𝛼]𝑞 and the dead lifetime
token [†𝛼].

The lifetime token [𝛼]𝑞 witnesses with the fraction 𝑞 that the lifetime 𝛼 is still alive.
The dead-lifetime token [†𝛼] persistently witnesses that the lifetime 𝛼 has been dead.

Both types of tokens are timeless. A dead-lifetime token is persistent.

timeless( [𝛼]𝑞) persistent([†𝛼]) timeless([†𝛼])

We can introduce a new lifetime 𝛼 by the following rule.

Lft-Intro
True ⇛Nlft ∃𝛼. [𝛼]1 ∗

(
[𝛼]1 ≡≡−∗▶⊲ Nlft

[†𝛼]
)

We get the full lifetime token [𝛼]1 and the step-taking view shift [𝛼]1 ≡≡−∗▶⊲ Nlft
[†𝛼].

The view shift allows us to end the lifetime one step after we consume the full lifetime
token [𝛼]1.

A lifetime token can be split and merged according to the fraction.

LftToken-Frac
[𝛼]𝑞+𝑞′ ⇔ [𝛼]𝑞 ∗ [𝛼]𝑞′
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A lifetime cannot be alive and dead at the same time.
LftToken-DeadLft

[†𝛼]
[𝛼]𝑞 ⇒ False

The intersection operation and the null lifetime interact with the lifetime and dead-
lifetime tokens as follows.

LftToken-Intrsct
[𝛼 u 𝛽]𝑞 ⇔ [𝛼]𝑞 ∗ [𝛽]𝑞

DeadLft-Intrsct
[†(𝛼 u 𝛽)]𝑞 ⇔ [†𝛼] ∨ [†𝛽]

LftToken-Eter
[∞]𝑞

DeadLft-Eter
[†∞] ⇒ False

Lifetime Inclusion We define inclusion between lifetimes 𝛼 v 𝛽 as follows.

𝛼 v 𝛽 :=
(
∀𝑞. [𝛼]𝑞 ⇛Nlft ∃𝑞′. [𝛽]𝑞′ ∗ ( [𝛽]𝑞′ ≡−∗Nlft

[𝛼]𝑞 )
)
∧

(
[†𝛽] ⇛Nlft [†𝛼]

)
It means that (i) out of a fractional lifetime token on 𝛼 of any fraction 𝑞, we can tem-
porarily take out a fractional lifetime token on 𝛽 of some fraction 𝑞′, and (ii) if we have
the dead lifetime token on 𝛽 , we can make the dead lifetime token on 𝛼 . Intuitively, it
means that the lifetime 𝛽 lives longer than 𝛼 . We say the lifetime 𝛽 outlives the lifetime
𝛼 when 𝛼 v 𝛽 holds.

We can use lifetime inclusion by the following rules.

LftIncl-LftToken
𝛼 v 𝛽

[𝛼]𝑞 ⇛Nlft ∃𝑞′. [𝛽]𝑞′ ∗ ( [𝛽]𝑞′ ≡−∗Nlft
[𝛼]𝑞 )

LftIncl-DeadLft
𝛽 v 𝛼 [†𝛼]
True ⇛Nlft [†𝛽]

We can derive the following rules for deducing lifetime inclusion.

LftIncl-Refl
𝛼 v 𝛼

LftIncl-Trans
𝛼 v 𝛼 ′ 𝛼 ′ v 𝛼 ′′

𝛼 v 𝛼 ′′

LftIncl-Intrsct-L
𝛼 u 𝛽 v 𝛼

LftIncl-Intrsct-R
𝛼 v 𝛽 𝛼 v 𝛽 ′

𝛼 v 𝛽 u 𝛽 ′
LftIncl-Eter
𝛼 v ∞

Full Borrows A full borrow &𝛼
full 𝑃 fully borrows the Iris proposition 𝑃 : IProp under

the lifetime 𝛼 . It corresponds to a unique reference in Rust.
For soundness of impredicativity, the full borrow owns ⊲ 𝑃 instead of just 𝑃 , just

like invariants.
We can introduce a full borrow by the following rule.

FullBor-Intro
⊲ 𝑃 ⇛Nlft &𝛼

full 𝑃 ∗
(
[†𝛼] ≡−∗Nlft

⊲ 𝑃
)

By consuming ⊲ 𝑃 , we get a full borrow &𝛼
full 𝑃 and the view shift [†𝛼] ≡−∗Nlft

⊲ 𝑃 . Using
the view shift, we can retrieve ⊲ 𝑃 after the lifetime 𝛼 ends.

We can temporarily access ⊲ 𝑃 out of a full borrow &𝛼
full 𝑃 with help of a fractional

lifetime token [𝛼]𝑞 .

FullBor-Access
&𝛼

full 𝑃 ∗ [𝛼]𝑞 ⇛Nlft ⊲ 𝑃 ∗
(
⊲ 𝑃 ≡−∗Nlft

&𝛼
full 𝑃 ∗ [𝛼]𝑞

)
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The fractional lifetime token [𝛼]𝑞 is returned after we put back ⊲ 𝑃 .
We can also reborrow a full borrow &𝛽

full 𝑃 from a full borrow &𝛼
full 𝑃 instead of ⊲ 𝑃 .

FullBor-Rebor
𝛽 v 𝛼

&𝛼
full 𝑃 ⇛Nlft &𝛽

full 𝑃 ∗
(
[†𝛽] ≡−∗Nlft

&𝛼
full 𝑃

)
It corresponds to reborrowing a unique reference out of a unique reference in Rust.

We can modify the lifetime and the proposition of a full borrow.

FullBor-Mono-Lft
𝛽 v 𝛼

&𝛼
full 𝑃 ⇒ &𝛽

full 𝑃

FullBor-Iff
⊲□ (𝑃 ⇔𝑄)

&𝛼
full 𝑃 ⇔ &𝛼

full𝑄

Note that a version of FullBor-Iff with⇔ replaced with one-side implication ⇒ does
not hold, because the target proposition 𝑃 of a full borrow &𝛼

full 𝑃 represents both what
we get from and what we have to put into the full borrow.

We also have various operations on full borrows.
We can split and merge full borrows according to separating conjunction.

FullBor-Split
&𝛼

full (𝑃 ∗ 𝑄) ⇛Nlft &𝛼
full 𝑃 ∗ &𝛼

full𝑄
FullBor-Merge
&𝛼

full 𝑃 ∗ &𝛼
full𝑄 ⇛Nlft &𝛼

full (𝑃 ∗ 𝑄)

We can freeze an internal parameter inside the target proposition of a full borrow,
as long as the type 𝑇 of the variable is inhabited.

FullBor-Freeze
∃ :𝑇 . True

&𝛼
full (∃𝑎:𝑇 . 𝑃𝑎) ⇛Nlft ∃𝑎:𝑇 . &𝛼

full 𝑃𝑎

A later modality inside a full borrow can be removed in one logical step.

FullBor-Unlater
&𝛼

full(⊲ 𝑃 ) ≡⇛▶⊲ Nlft &𝛼
full 𝑃

A full borrow of a full borrow can be unnested into a full borrow with the intersec-
tion lifetime in one logical step.

FullBor-Unnest
&𝛼

full &
𝛽
full 𝑃 ≡⇛▶⊲ Nlft &𝛼u𝛽

full 𝑃

We have the following strong rule for subdividing a full borrow &𝛼
full 𝑃 into a new

full borrow &𝛼
full𝑄 .

FullBor-Subdiv
&𝛼

full 𝑃 ∗ [𝛼]𝑞 ⇛Nlft ⊲ 𝑃 ∗ ∀𝑄.
(
⊲𝑄 ∗ (⊲𝑄 ≡−∗∅ ⊲ 𝑃) ≡−∗Nlft

&𝛼
full𝑄 ∗ [𝛼]𝑞

)
Wefirst consume the full borrow&𝛼

full 𝑃 with help of a fractional lifetime token [𝛼]𝑞 . We
access the content ⊲ 𝑃 . Then we can decide the Iris proposition 𝑄 , possibly depending
on internal parameters of 𝑃 . We have to construct ⊲𝑄 and also a view shift ⊲𝑄 ≡−∗∅ ⊲ 𝑃
that turns ⊲𝑄 into ⊲ 𝑃 under the empty mask ∅. By consuming them, we finally get the
new subdivided full borrow &𝛼

full𝑄 and also get back [𝛼]𝑞 .
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Fractured Borrows A fractured borrow &𝛼
frac Φ is a persistent proposition that bor-

rows an Iris proposition parametrized over a fraction Φ: Q(0,1] → IProp.

persistent(&𝛼
frac Φ)

We can make a fractured borrow of Φ out of a full borrow of Φ(1).

FullBor-FracBor
&𝛼

full Φ(1) ⇛Nlft &𝛼
frac Φ

With help of a lifetime token, we can temporarily access the content of a fractured
borrow &𝛼

frac Φ, getting a proposition ⊲Φ(𝑞) for some fraction 𝑞.

FracBor-Access
&𝛼

frac Φ □
(
∀𝑞0, 𝑞1. Φ(𝑞0 + 𝑞1) ⇔ Φ(𝑞0) ∗ Φ(𝑞1)

)
[𝛼]𝑞′ ⇛Nlft ∃𝑞. ⊲Φ(𝑞) ∗

(
⊲Φ(𝑞) ≡−∗Nlft

[𝛼]𝑞′
)

The second assumption persistently witnesses that Φ can be split and merged according
to the fraction.

We can modify the lifetime and the target predicate of fractured borrows.

FracBor-Mono-Lft
&𝛼

frac Φ 𝛽 v 𝛼

&𝛽
frac Φ

FracBor-Iff
⊲□

(
∀𝑞. Φ(𝑞) ⇔ Φ′(𝑞)

)
&𝛼

frac Φ ⇔ &𝛼
frac Φ

′

Also, we can dynamically create lifetime inclusion 𝛼 v 𝛽 by introducing a fractured
borrow of a fractional lifetime token of 𝛽 under the lifetime 𝛼 .

FracBor-LftIncl
&𝛼

frac

(
𝜆𝑞′. [𝛽]𝑞 ·𝑞′

)
𝛼 v 𝛽

Note that we can create the fractured borrow &𝛼
frac

(
𝜆𝑞′. [𝛽]𝑞 ·𝑞′

)
by the following view

shift, which can be derived from FullBor-Intro and FullBor-FracBor.

[𝛽]𝑞 ⇛Nlft &𝛼
frac

(
𝜆𝑞′. [𝛽]𝑞 ·𝑞′

)
∗
(
[†𝛼] ≡−∗Nlft

[𝛽]𝑞
)
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Chapter 3

A New Formulation of Prophecy

In program verification, our reasoning usually goes forward, along the execution of the
program. For some advanced reasoning, however, we need to know and use some infor-
mation about what happens in the future (i.e., events occurring later in the execution).
For example, we sometimes need to know in advance what non-deterministic choices
will be made in the future. Also, even if the verified program is deterministic, we can
often avoid elaborate analysis of the program by peeking out information about the
future. To address that need, prophecy variables are employed. A prophecy variable is
a special variable that conveys information about the future for verification.1 Roughly
speaking, we use a prophecy variable in the following way. We create a prophecy vari-
able 𝑥 at some point. From then on, we can use the value of 𝑥 for verification to refer
to some information about the future. Later at a certain point, after some program ex-
ecution, we construct some value 𝑣 based on information we have at the moment, and
we resolve 𝑥 to 𝑣 , i.e., we finally assign to 𝑥 the value 𝑣 .

The idea of prophecy variables has been long used in various contexts. Abadi and
Lamport (1988, 1991) introduced the idea of prophecy variables for a new technique
of verifying refinement between state machines. Later, prophecy variables were used
by Sezgin et al. (2010) to verify non-interference on concurrent programs and by Cook
and Koskinen (2011) and Lamport and Merz (2017) to automatically verify temporal
properties of transition systems. Jung et al. (2020b) presented a separation logic with
prophecy variables by extending Iris, which was used by them to verify logical atom-
icity of the RDCSS operation and by de Vilhena et al. (2020) to verify that the local
generic solver computes the least fixed point. And as we discussed in §1.3, RustHorn by
Matsushita et al. (2020a) is a notable application of prophecy variables for verification
of imperative programs in Rust.

For our work RustHornBelt, aiming at unifying RustHorn and RustBelt, we newly
built a new flexible framework of prophecy in the separation logic Iris, which is different
in many aspects from existing work. Prophecy variables live only in the ghost state
and allows resolution of a prophecy variable to a value that depends on other prophecy
variables. In this chapter, we introduce this new framework of prophecy. In §3.1, we
explain the motivation of our framework in light of what we need for RustHornBelt.
In §3.2, we present a high-level overview of our framework. In §3.3, we present the
formulation of our framework. In §3.4, we discuss related work.

1 Some literature uses the term prophecy variable only for a form of auxiliary variable, i.e., a variable
employed in ghost code that was added to the original program for verification. In this thesis, we use the
term prophecy variable in a broader sense to refer to any kind of variable that describes something about
the future for verification.
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3.1 Motivation

What kind of framework of prophecy do we need for our work RustHornBelt? To
model Rust in the style of RustHorn on top of the separation logic Iris, we should be
able to resolve the prophecy variable of a unique reference into a value described in the
ghost state modeling the target object of the unique references. Moreover, when we
release a unique reference to some object that itself contains other unique references,
which we call a nested unique reference, we have to resolve its prophecy variable into a
value depending on other prophecy variables (later we show a detailed example of this),
which we call dependent resolution. Also, in order to tackle Rust’s elaborate lifetime-
based ownership principle in an extensible way, we need to build our framework of
prophecy in an extensible and powerful separation logic like Iris. In particular, it will
be great if we can to reuse the lifetime logic (introduced in §2.3), which is built on top
of Iris.

However, none of the existing formulations of prophecy variables were sufficiently
flexible and powerful for our project RustHornBelt. The framework by Jung et al.
(2020b) targets a OCaml-like value-based language, and requires us to add to the orig-
inal program some ghost code manipulating prophecy variables, in order to observe
physical values in the execution. This is far from sufficient for modeling Rust’s unique
references with prophecies. The proof of soundness and completeness of RustHorn by
Matsushita et al. (2020b) tackles this difficulty by focusing on a formalization of a safe
subset of Rust (not allowing unsafe code) and building a bisimulation between execu-
tion of a Rust program and some deduction algorithm (named SLDC resolution) on the
CHCs, or logic formulas, generated by RustHorn as a model of the program. In the
proof, prophecy variables of unique references are encoded as universally quantified
syntactic variables in a logic formula, which can be specialized later in the deduction
algorithm. The use of syntactic variables is justified by soundness and completeness of
the deduction algorithm (with respect to the least-fixed-point model of the CHCs). In
this way, we can support dependent resolution in a natural way. Although this proof
works well in that setting, assuming that verified Rust programs do not have unsafe
code, it is rather fragile. For the proof, we have to carefully design the transition sys-
tems of the formalization of Rust and the deduction algorithm, as well as the CHCs
generated for a Rust program, and we also have to depend heavily on syntactic struc-
tures of logic formulas. So it was unclear how to extend the proof to support Rust
programs with unsafe code for in general.

This is the reason why we decided to try to design a new formulation of prophecy
that is sufficient for our work RustHornBelt. Let us discuss more in detail the features
we want for our new formulation of prophecy through some examples of Rust code.

To begin with, consider the following very simple code.

1 let mut a : i32 = 1; let ua : &mut i32 = &mut a; /* (i) */

2 *ua += 2; /* (ii) */ print!("{}", a); // 3

By the unique borrow &mut a, we introduce a new prophecy variable x that represents
the value of a at the end of the borrow.2 At (i), ua is modeled as (1, 𝑥), a pair of the
current value 1 and the prophecy variable 𝑥 , so that 𝑥 can be resolved to an appropriate
value when ua is released. Also, at (i), a is modeled as 𝑥 so that we can access the value
of a when we use a again. By the operation *ua += 2, the model of ua is updated into
(3, 𝑥). Then at (ii), we release ua and we resolve the prophecy variable 𝑥 to the value
3. Now we can end the borrow and retrieve a. As we know that 𝑥 has been resolved to
3, at last we successfully know that a has the value 3.

2 In this thesis, hereinafter, we usually use𝑥,𝑦, 𝑧 for prophecy variables and𝑎, 𝑏, 𝑐 for programvariables.
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When we handle nested unique references (i.e., unique references to an object con-
taining unique references), the situation can be very tricky and we need dependent
resolution.

Example 3.1 (Nested Unique Reference). Let us consider the following Rust code.

1 let mut a = 0; let mut b = 1;

2 let mut uc = &mut a; *uc += 2; let ub = &mut b; /* (i) */

3 let uuc = &mut uc; /* (ii) */ *uuc = ub; /* (iii) */

4 *uc += 3; /* (iv) */ print!("{}, {}", a, b); // 2, 4

Here, a and b are typed i32, uc and ub are typed &mut i32, and uuc is typed &mut

&mut i32 — uuc is a nested unique reference. We omit lifetime information since it is
not relevant to the discussion. Let 𝑥 , 𝑦 and 𝑧 be the prophecy variables for the unique
borrows uc = &mut a, ub = &mut b and uuc = &mut uc. At (i), uc is modeled as
(2, 𝑥), ub as (1, 𝑦), a as 𝑥 , and b as 𝑦. At (ii), after the borrow for uuc, uuc is modeled
((2, 𝑥), 𝑧) and the model of uc is updated into 𝑧.

At (iii), after the update *uuc = ub, the model of uuc is updated into ((1, 𝑦), 𝑧).
Since (2, 𝑥) is lost here, we resolve 𝑥 to 2. Now, we release the nested unique reference
uuc, modeled as ((1, 𝑦), 𝑧), and thus resolve 𝑧 to (1, 𝑦) — resolution of a prophecy variable
𝑧 to a value depending on another prophecy variable 𝑦. This is an instance of dependent
resolution. Through this resolution, uc is now modeled as (1, 𝑦).

At (iv), the model of uc is updated into (4, 𝑦). Here we release uc and resolve 𝑦 to
4. Now, since 𝑥 and 𝑦 have been resolved to 2 and 4, we know that a and b have the
values 2 and 4 at last.

If we allow dependent resolution without restriction, we can accidentally introduce
circular dependencies between prophecies, causing unsoundness. For example, if we
can resolve 𝑥 to 𝑦 + 1 and 𝑦 to 𝑥 + 1, we fall into a contradiction. Naturally, we can use
the following simple and intuitive restriction: a prophecy variable can only be resolved
into a value depending on other unresolved prophecy variables. This is a good idea in
modeling Rust, because resolution dependencies can be determined in a dynamic way
in Rust.

Example 3.2 (Dynamically Determined Resolution Dependency). For example, suppose
the following code, which uses a tricky recursive type MNat featuring the unique-
reference type:

1 enum MNat<'a> { MZero, MSucc( &'a mut MNat<'a> ) } use MNat::*;

2 let mut a = MZero; let mut b = MZero;

3 let ua = &mut a; let ub = &mut b;

4 if rand() { *ua = MSucc(ub); } else { *ub = MSucc(ua); }

5 print!("{}, {}", a, b);

Here, we assume some non-deterministic function fn rand() -> bool. Let 𝑥 and 𝑦
be the prophecy variables for ua and ub. Now ua is modeled as (MZero, 𝑥) and ub is
modeled as (MZero, 𝑦). If rand() returns true, *ua is updated into MSucc(𝑢𝑏) and
ua is released; thereby the prophecy variable 𝑥 is resolved into MSucc((MZero, 𝑦)),
making 𝑥 depend on 𝑦. Otherwise, we do exactly the other way around; 𝑦 is resolved
into MSucc((MZero, 𝑥)), making 𝑦 depend on 𝑥 . Importantly, whether 𝑥 depends on
𝑦 or 𝑦 depends on 𝑥 is determined by a dynamic condition rand(). In particular, the
lifetime information is insufficient to capture this kind of dependency, as both ua and
ub have the same lifetime.
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3.2 Overview of Our Formulation of Prophecy

The difficulty with prophecy is that we don’t know what happens in the future in a
usual sense, especially when the program is non-deterministic. Then how canwemodel
prophecy variables within the ghost state?

Intuitively, it seems natural to model prophecies in the following way. Every time
we take a new prophecy variable 𝑥 , the current world ramifies intomany possible worlds
with different values assigned to 𝑥 . When we resolve 𝑥 to some value 𝑣 , we prune all the
possible worlds that assign to 𝑥 any value different from 𝑣 . The soundness of this model
is guaranteed by the fact that we never lose all the possible worlds, i.e., the constraint
over possible worlds is always satisfiable. We can even perform dependent resolution
as long as we can ensure satisfiability of the constraint. Although this approach works,
ramification and pruning of possible worlds seems to be a global operation which con-
flicts with the modular, local reasoning of separation logic.

Instead, we can take a slightly different approach. First, we fix a closed set of
prophecy variables, which is infinite. Each time we want to introduce a new prophecy
variable, we can choose a fresh prophecy variable from this set. Next, we introduce
the notion of a prophecy assignment 𝜋 , a map that assigns to each prophecy variable
a value of some expected type, representing a possible world. The key idea is that we
retain a set of possible worlds that remain valid (i.e., have not yet been pruned) in each
Hoare triple, instead of choosing one specific possible world for each Hoare triple like
Jung et al. (2020b) did. We can share information about the conditions that the valid
possible worlds satisfy. Note that, since we have a closed set of possible worlds, we
never ramify possible worlds more and only prune them. For prophecy-based reason-
ing, we pervasively use a value parametrized over a possible world / prophecy assignment,
which we call a 𝜋-parametrized value and represent by a letter with a hat like 𝑣, 𝑤̂ . A 𝜋-
parametrized value can be regarded as a value depending on values of some prophecy
variables. This framework supports dependent resolution: we can resolve a prophecy
variable 𝑥 to a 𝜋-parametrized value 𝑣 depending only on other unresolved prophecy
variables; after the resolution, we know that 𝜋 𝑥 = 𝑣 𝜋 holds for any valid prophecy
assignment 𝜋 .

We can naturally adapt this idea to the modular reasoning of separation logic, es-
pecially Iris. In order to manage resolution of prophecy variables, we use a prophecy
token [𝑥]𝑞 , which observes with a fraction 𝑞 that the prophecy variable 𝑥 has not yet
been resolved. When we introduce a fresh prophecy variable 𝑥 , we get a full prophecy
token [𝑥]1. We also use a persistent token 〈𝜋. 𝜙𝜋 〉 called a prophecy observation, which
means that a pure proposition 𝜙𝜋 holds for any valid prophecy assignment 𝜋 . In the
notation 〈𝜋. 𝜙𝜋 〉, the first part 𝜋. binds the variable 𝜋 and the second part 𝜙𝜋 describes
a condition on 𝜋 . Now, dependent resolution is supported in the following way: we can
resolve 𝑥 into a 𝜋-parametrized value 𝑣 to get a prophecy observation 〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉,
by consuming the full prophecy token [𝑥]1 and temporarily using a partial prophecy
token [𝑦]𝑞 (which ensures that 𝑦 is unresolved and different from 𝑥 ) for every depen-
dency 𝑦 of 𝑣 . We can modify the prophecy observations acquired through resolution
by merging (i.e., getting 〈𝜋. 𝜙𝜋 ∧𝜓𝜋 〉 out of 〈𝜋. 𝜙𝜋 〉 and 〈𝜋. 𝜓𝜋 〉) and weakening (i.e.,
getting 〈𝜋. 𝜙 ′

𝜋 〉 out of 〈𝜋. 𝜙𝜋 〉 and ∀𝜋. 𝜙𝜋 ⇒ 𝜙 ′
𝜋 ). We use the following lemma to

link a prophecy observation to the ‘reality’: when we have 〈𝜋. 𝜙 𝜋 〉, there exists some
prophecy assignment 𝜋∗ satisfying 𝜙 𝜋∗. This lemma intuitively means that there al-
ways remains some possible world that has not been pruned. Notably, this formulation
of prophecies is completely independent of how we define the weakest precondition
predicate or the Hoare triple.

This very simple formulation of prophecies is flexible enough to model unique ref-
erences in Rust. Each variable of Rust is now modeled as a 𝜋-parametrized value. Each
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unique reference is equipped with the full prophecy token [𝑥]1 of its prophecy variable
𝑥 .
Example 3.3 (Nested Unique Reference, Revisited). To see how our framework works,
let us reconsider the Rust program of Example 3.1, an example of using a nested unique
reference.

1 let mut a = 0; let mut b = 1;

2 let mut uc = &mut a; *uc += 2; let ub = &mut b; /* (i) */

3 let uuc = &mut uc; /* (ii) */ *uuc = ub; /* (iii) */

4 *uc += 3; /* (iv) */ print!("{}, {}", a, b); // 2, 4

On the unique borrows &mut a and &mut b, we create full prophecy tokens [𝑥]1 and
[𝑦]1 for fresh prophecy variables 𝑥 and 𝑦, which are given to the unique references uc
and ub. At (i), uc is modeled as a 𝜋-parametrized value 𝜆𝜋. (2, 𝜋 𝑥), ub as 𝜆𝜋. (1, 𝜋 𝑦), a
as 𝜆𝜋.𝜋 𝑥 and b as 𝜆𝜋.𝜋 𝑦.

At (ii), letting 𝑧 be the prophecy variable for the borrow &mut uc, uc is modeled
as 𝜆𝜋.𝜋 𝑧 and uuc as 𝜆𝜋. ((2, 𝜋 𝑥), 𝜋 𝑧). Through the update *uuc = ub, consuming
the full prophecy token [𝑥]1 previously owned by *uuc, we resolve 𝑥 into 2 to get a
prophecy observation 〈𝜋. 𝜋 𝑥 = 2〉.

At (iii), uuc is modeled as 𝜆𝜋. ((1, 𝜋 𝑦), 𝜋 𝑧), and we release uuc here. We resolve 𝑧
into (1, 𝜋 𝑦) by consuming [𝑧]1 owned by uuc and temporarily accessing [𝑦]1 owned
by *uuc, and get 〈𝜋. 𝜋 𝑧 = (1, 𝜋 𝑦) 〉. This is dependent resolution. We temporarily use
[𝑦]1 to ensure that 𝑦 has not been resolved.

When we access again uc in the line 4, we know that uc is modeled as some 𝜋-
parametrized value 𝑣 satisfying 〈𝜋. 𝑣 𝜋 = 𝜋 𝑧〉. The type of uc tells us that 𝑣 is of the form
𝜆𝜋. (𝑛, 𝜋 𝑦′) for some integer𝑛 and prophecy variable𝑦′. We get 〈𝜋. (𝑛, 𝜋 𝑦′) = (1, 𝜋 𝑦) 〉
from the two previously introduced prophecy observations, which entails 𝑛 = 1 and
〈𝜋. 𝜋 𝑦′ = 𝜋 𝑦〉. Here, we got 𝑛 = 1 from 〈𝜋. 𝑛 = 1〉. Although we don’t obtain 𝑦 = 𝑦′

here, it suffices to just have 〈𝜋. 𝜋 𝑦′ = 𝜋 𝑦〉 for verification.
At (iv), after the update *uc += 3, uc is modeled as 𝜆𝜋. (4, 𝜋 𝑦′), and by releasing

uc we get 〈𝜋. 𝜋 𝑦′ = 3〉. Now, from the prophecy observations we have acquired, we
get 〈𝜋. 𝜋 𝑥 = 2 ∧ 𝜋 𝑦 = 4〉. Therefore, we successfully know that the values of a and b
are set to 2 and 4 at last.

3.3 Technical Details

Now we discuss technical details of our formulation of prophecy variables described
in the previous section. Although the idea was originally conceived for our project
RustHornBelt, this formulation is designed so that it can be employed for a general
purpose. We assume that we work on a dependent type system like Coq, but our nota-
tion does not strictly follow the style of Coq.

Basic Concepts A prophecy variable 𝑥,𝑦, 𝑧 is modeled as an object of the record type

ProphVar := (discr: N, type: InhType),

consisting of (discr) the discriminator number and (type) the type of a value assigned
to the variable. Here, InhType denotes the type of inhabited types and is defined as the
subtype {𝑇 : Type / ∃ :𝑇 . True }.3 Notably, for the value type of a prophecy variable,

3 Note that Coq prevents unsoundness about a ‘type of types’ by having a hierarchy of universes. The
type Type actually has an implicit parameter 𝑖 representing some universe, being of the form Type𝑖 . For
any 𝑖 , the type Type𝑖 belongs to the type Type𝑖+1, but not to Type𝑖 . In the definition of InhType, Type is
in fact Type𝑖 for some universe level 𝑖 .
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we can use any inhabited type; we can use especially a predicate type𝑇 → Prop, which
is essential for modeling Rust’s function type in RustHornBelt (see §6.1.4).

A prophecy assignment 𝜋 is an object of the dependent function type

ProphAsn := (𝑥 : ProphVar) → 𝑥 .type,

which assigns to each prophecy variable some value of the expected type. A prophecy
assignment can be regarded as a representation of a possible world. Since for any
prophecy variable 𝑥 the type 𝑥 .type is inhabited, it is guaranteed that there exists some
prophecy assignment (i.e., ∃ 𝜋 : ProphAsn. True holds),4 which is a vital property for
this framework (and is later used for the proof of Theorem 3.1).

A 𝜋-parametrized value 𝑣, 𝑤̂ over a type 𝑇 is a map of the type ProphAsn → 𝑇 ,
which is an important machinery in this framework. In particular, later in the formu-
lation of RustHornBelt, each object in Rust is associated with a 𝜋-parametrized value
(see Chapter 5).

A key notion about 𝜋-parametrized values is the relation Dep(𝑣, 𝑋 ), meaning that
a 𝜋-parametrized value 𝑣 : ProphAsn → 𝑇 depends only on values assigned to the
prophecy variables in the set 𝑋 : PProphVar. For example, the following holds.

Dep
(
𝜆𝜋. inj0 ((1, 𝜋 𝑥), 𝜋 𝑦), {𝑥,𝑦}

)
Let us define this relation. First, we introduce an equivalence relation on prophecy
assignments 𝜋 ≡𝑋 𝜋 ′, meaning that 𝜋 and 𝜋 ′ assign exactly the same value to every
prophecy variable in the set 𝑋 . It is simply defined as follows.

𝜋 ≡𝑋 𝜋 ′ := ∀𝑥 ∈ 𝑋 . 𝜋 𝑥 = 𝜋 ′𝑥

Each equivalence class on (≡𝑋 ) is characterized exactly by what values are assigned to
the prophecy variables in 𝑋 . Therefore, Dep(𝑣, 𝑋 ) can be defined as the property that
𝑣 stays constant within each equivalence class on (≡𝑋 ), which is formally described as
follows.

Dep(𝑣, 𝑋 ) := ∀𝜋, 𝜋 ′ s.t. 𝜋 ≡𝑋 𝜋 ′. 𝑣 𝜋 = 𝑣 𝜋 ′

We have the following lemmas on the relation Dep(𝑣, 𝑋 ).

Dep-One
Dep(𝜆𝜋.𝜋 𝑥, {𝑥})

Dep-Construct
∀ 𝑖 . Dep(𝑣𝑖 , 𝑋𝑖) 𝑓 does not depend on 𝜋

Dep
(
𝜆𝜋. 𝑓 (−→̂𝑣 𝜋), ∪𝑖 𝑋𝑖

)
Dep-Destruct
Dep

(
𝜆𝜋. 𝑓 (−→̂𝑣 𝜋), 𝑋

)
𝑓 is injective

Dep(𝑣𝑖 , 𝑋 )

The basic 𝜋-parametrized value 𝜆𝜋.𝜋 𝑥 depends only on 𝑥 (Dep-One). Dep-Construct
says that, when we have 𝜋-parametrized values ®̂𝑣 depending only on ®𝑋 respectively,
the 𝜋-parametrized value constructed by applying a function 𝑓 (which does not depend
on 𝜋 ) to them depends only on the union of the sets ®𝑋 . Conversely, Dep-Destruct says
that, if the 𝜋-parametrized value constructed by applying an injective function 𝑓 (which
does not depend on 𝜋 ) to ®̂𝑣 depends only on 𝑋 , then each 𝑣𝑖 depends only on 𝑋 .

4 In Coq, we use the functional choice axiom to prove the existence.
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Prophecy Log To manage resolution of prophecy variables, we introduce the notion
of a prophecy log P. It is a list [(𝑥0, 𝑣0), . . . , (𝑥𝑛−1, 𝑣𝑛−1)] which records the resolutions
that have been performed in reverse chronological order; each item (𝑥𝑖 , 𝑣𝑖) means that a
prophecy variable 𝑥𝑖 has been resolved to a 𝜋-parametrized value 𝑣𝑖 . When we resolve
a prophecy variable 𝑥 to a 𝜋-parametrized value 𝑣 , we update the prophecy log P into
(𝑥, 𝑣) :: P. Formally, each item of a prophecy log is of the dependent pair type

ProphLogItem := (𝑥 : ProphVar) × (ProphAsn → 𝑥 .type)

and a prophecy log has the type

ProphLog := List ProphLogItem.

The set of resolutions in a prophecy log P forms a constraint over prophecy assign-
ments. We use the following relation 𝜋 ⊳ P to describe the constraint.

𝜋 ⊳ P := ∀ (𝑥, 𝑣) in P . 𝜋 𝑥 = 𝑣 𝜋

It is essential to always make sure that the prophecy log P is satisfiable, i.e., there exists
some prophecy assignment 𝜋∗ that satisfies 𝜋∗ ⊳ P. We can achieve that by ensuring
the following property: each time we resolve a prophecy variable 𝑥 to a 𝜋-parametrized
value 𝑣 , 𝑥 has never been resolved before that and 𝑣 depends only on other unresolved
prophecy variables. Formally, we model this idea as the following validity condition
✓ P over a prophecy log P.

✓
(
(𝑥, 𝑣) :: P

)
:= 𝑥 ∈ unres(P) ∧ Dep

(
𝑣, unres(P)−{𝑥}

)
∧ ✓ P ✓ nil := True

Here, unres(P) denotes the set of prophecy variables that have not been resolved by P,
i.e., the complement of { 𝑥 | ∃ 𝑣 . (𝑥, 𝑣) in P }. As we intended, we achieve the following
theorem.

Theorem 3.1 (Satisfiability of a Valid Prophecy Log). For any prophecy log P∗ that
satisfies ✓ P∗, there exists a prophecy assignment 𝜋∗ that satisfies 𝜋∗ ⊳ P∗.

Proof. We introduce the following function modifyP 𝜋 that modifies a prophecy as-
signment 𝜋 based on the information of P.

modify(𝑥,𝑣) ::P 𝜋 := modifyP
(
𝜋 {𝑥 � 𝑣 𝜋 }

)
modifynil 𝜋 := 𝜋

Here, 𝜋 {𝑥 � 𝑣 𝜋 } is a prophecy assignment that assigns 𝑣 𝜋 to 𝑥 and 𝜋 𝑦 to any 𝑦 ≠ 𝑥 .
We inductively show modifyP 𝜋 ≡unres(P) 𝜋 for any P. Using that, we inductively
showmodifyP 𝜋 ⊳ P for any P satisfying ✓ P. By taking some prophecy assignment
𝜋0, we set 𝜋∗ := modifyP∗ (𝜋0).

5

Machinery for Prophecy on Iris Now, using the notions formulated so far, we build
the machinery for prophecy upon the separation logic Iris.

First, we introduce the following RA proph, named the prophecy RA.6

|proph| := |ex(ProphLog) | × (ProphAsn → Prop) × |ProphVar fin→ frac|

(𝑎, 𝜙, 𝑓 ) · (𝑏,𝜓, 𝑔) :=
(
𝑎 · 𝑏, 𝜆𝜋. 𝜙 𝜋 ∧𝜓 𝜋, 𝑓 · 𝑔

)
5 We need classical axioms to discuss equality over Type.
6 We can use N fin→ InhType → frac instead of ProphVar fin→ frac for this RA to simplify formalization

about finiteness.
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𝜀 := (𝜀, 𝜆𝜋.True, 𝜀) | (𝑎, 𝜙, 𝑓 ) | := (𝜀, 𝜙, 𝜀)

✓ (𝑎, 𝜙, 𝑓 ) := ✓ 𝑎 ∧ (∃ 𝜋. 𝜙 𝜋 ) ∧ ✓ 𝑓 ∧
∀P s.t. exP = 𝑎. ✓ P ∧

(
∀𝜋 ⊳ P . 𝜙 𝜋

)
∧

(
∀𝑥 ∉ unres(P) . 𝑓 𝑥 = 0

)
An item (𝑎, 𝜙, 𝑓 ) of this RA consists of (i) an item 𝑎: |ex(ProphLog) | (later used

for the prophecy context), (ii) a known condition on valid prophecy assignments 𝜙 :
ProphAsn → Prop (later used for prophecy observations), and (iii) a finite-support map
from prophecy variables to extended fractions 𝑓 : |ProphVar fin→frac| that manages un-
resolved prophecy variables (later used for prophecy tokens).

For definition, we piggyback the unit elements 𝜀 and the compositions (·) of the
RAs ex(ProphLog) and ProphVar fin→ frac. The composition of the prophecy RA is de-
fined component-wise; for the ProphAsn → Prop part, we take the (pointwise) logical
conjunction. Since logical conjunction is idempotent, the core | (𝑎, 𝜙, 𝑓 ) | can be set to
(𝜀, 𝜙, 𝜀) (later this makes prophecy observations persistent).

The validity predicate ✓ of this RA is important. An item (exP, 𝜙, 𝑓 ) is valid when
(i) P is valid, (ii) 𝜙 𝜋 holds for any 𝜋 satisfying P (which entails satisfiability of 𝜙 by
Theorem 3.1), and (iii) 𝑓 is valid and 𝑓 𝑥 = 0 holds for any 𝑥 resolved by P. An item
(𝜀, 𝜙, 𝑓 ) is valid when 𝜙 is satisfiable and 𝑓 is valid.

Now we register the prophecy RA proph as a component of the global camera and
take some fresh namespace Nproph. We define the following prophecy context Ctxproph.

Ctxproph := ∃ P . (exP, 𝜆𝜋.True, 𝜀) 𝛾proph

proph

Nproph

It is a persistent token that refers to an invariant in Nproph that governs the prophecy
log P at a ghost name 𝛾proph. We need this context to resolve prophecy variables (see
the lemma Proph-Resolve). The ghost name 𝛾proph is chosen when we introduce the
context Ctxproph by the following lemma.

Proph-Ctx-Intro
True ⇛∅ ∃𝛾proph. Ctxproph

Since Ctxproph is persistent, later on we implicitly assume Ctxproph.
After 𝛾proph is fixed, we can define the following prophecy observation 〈𝜋. 𝜙𝜋 〉 and

prophecy token [𝑥]𝑞 .

〈𝜋. 𝜙𝜋 〉 := (𝜀, 𝜆𝜋.𝜙𝜋 , 𝜀)
𝛾proph

proph
[𝑥]𝑞 := (𝜀, 𝜆𝜋.True, [𝑥 � 𝑞]) 𝛾proph

proph

A prophecy observation 〈𝜋. 𝜙𝜋 〉 persistently witnesses that the pure proposition 𝜙𝜋
holds for any valid prophecy assignment 𝜋 . A prophecy token [𝑥]𝑞 witnesses with the
fraction 𝑞: Q(0,1] that the prophecy variable 𝑥 has not been resolved. We also use the
shorthand [𝑋 ]𝑞 := ∗𝑥∈𝑋 [𝑥]𝑞 for 𝑋 : PfinProphVar.

The following properties hold.

persistent(〈𝜋. 𝜙𝜋 〉) timeless(〈𝜋. 𝜙𝜋 〉) timeless( [𝑥]𝑞)

ProphToken-Intro
∃ :𝑇 . True

True ⇛∅ ∃ 𝑥 s.t. 𝑥 .type = 𝑇 . [𝑥]1
ProphToken-Frac
[𝑥]𝑞+𝑞′ ⇔ [𝑥]𝑞 ∗ [𝑥]𝑞′

Proph-Resolve
Dep(𝑣, 𝑌 )

[𝑥]1 ∗ [𝑌 ]𝑞 ⇛Nproph 〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉 ∗ [𝑌 ]𝑞

ProphObs-Merge
〈𝜋. 𝜙𝜋 〉 〈𝜋. 𝜓𝜋 〉

〈𝜋. 𝜙𝜋 ∧𝜓𝜋 〉
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ProphObs-Wkn
∀𝜋. 𝜙𝜋 ⇒𝜓𝜋 〈𝜋. 𝜙𝜋 〉

〈𝜋. 𝜓𝜋 〉

ProphObs-Sat
〈𝜋. 𝜙 𝜋 〉
∃ 𝜋∗. 𝜙 𝜋∗

ProphObs-Fact
〈𝜋. 𝜙 〉
𝜙

ProphToken-Intro says that we can always take a fresh prophecy variable 𝑥 of any
expected (inhabited) type 𝑇 and get a full prophecy token [𝑥]1. A prophecy token can
be split and merged according to the fraction (ProphToken-Frac). Proph-Resolve says
that, by consuming a full prophecy token of 𝑥 , as long as we have a partial prophecy
token on the prophecy variables that a 𝜋-parametrized value 𝑣 may depend on, we
can resolve 𝑥 to 𝑣 and obtain a prophecy observation 𝜋 𝑥 = 𝑣 𝜋 (note that we assume
here that 𝑣 has the type ProphAsn → 𝑥 .type). Prophecy observations can be merged
(ProphObs-Merge) and weakened (ProphObs-Wkn). ProphObs-Sat says that a prophecy
observation 〈𝜋. 𝜙 𝜋 〉 implies that there exists a prophecy assignment 𝜋∗ satisfying the
predicate 𝜙 . ProphObs-Fact says that having a prophecy observation 〈𝜋. 𝜙 〉, where 𝜙
does not depend on 𝜋 , is the same thing as knowing that 𝜙 holds.

Proof of ProphToken-Intro. Because only a finite number of prophecy variables have
been used in the global resource, i.e., resolved by the prophecy log or included in the
support of the map ProphVar fin→ frac, we can always find a prophecy variable that has
not been used yet.

Proof of Proph-Resolve. We update the prophecy log in the invariant from P to (𝑥, 𝑣) ::
P. The validity condition on the prophecy log is retained, because the prophecy tokens
[𝑥]1 and [𝑌 ]𝑞 ensure that 𝑥 has not been resolved, that each 𝑦 in 𝑌 has not been re-
solved, and that 𝑥 is not included in 𝑌 . Also, by consuming the full token [𝑥]1, we are
allowed to switch the state of 𝑥 from unresolved to resolved. Because the constraint
on a prophecy assignment 𝜋 denoted by the prophecy log just changes from 𝜋 ⊳ P to
𝜋 𝑥 = 𝑣 𝜋 ∧ 𝜋 ⊳ P, we can obtain the prophecy observation 〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉.

Proof of ProphObs-Sat. By the definition of the validity predicate ✓ of proph.

Proof of ProphObs-Fact. The forward implication follows by ProphObs-Sat. The back-
ward implication follows by the definition of 𝜀 in proph.

3.4 Related Work

The idea of prophecy variables was first introduced in the theoretical work by Abadi
and Lamport (1988, 1991) as the ‘mirror image’ of history variables (auxiliary variables
describing the past events), for a new technique of verifying refinement between state
machines. In general, we can verify that a state machine 𝑆1 refines 𝑆2 (i.e., the observ-
able behaviors of 𝑆1 are a subset of those of 𝑆2) by finding a refinement mapping from
𝑆1 to 𝑆2 (i.e., a behavior-preserving map from 𝑆1’s states to 𝑆2’s states). We can get a
more powerful verification method by using history and prophecy variables. A state
machine 𝑆∗1 obtained by adding history and prophecy variables to 𝑆1 has the same traces
with 𝑆1, and existence of a refinement mapping from 𝑆∗1 to 𝑆2 entails refinement of 𝑆2
by 𝑆1. Actually, this new method is complete: under some conditions, if 𝑆1 refines 𝑆2,
there exist a state machine 𝑆∗1 , obtained by adding some history and prophecy variables
to 𝑆1, and a refinement mapping from 𝑆∗1 to 𝑆2. Here, prophecies are employed to know
in advance what non-deterministic choices 𝑆2 makes in the future. This completeness
theorem is the main theoretical result of their work. Note that in their verification
method they make a modified state machine 𝑆∗1 with prophecy variables, which can be
understood as addition of some prophecy-related ghost code to programs.

41



The studies of Vafeiadis (2008, §5.3.3), Zhang et al. (2012) and Jung et al. (2020b)
employed prophecy variables for verification in separation logic. At a high level, all of
them basically took the same approach. They added to the program some ghost code
that introduces prophecy variables as physical variables and resolves them by informa-
tion observed physically. They performed Hoare-style verification over the modified
program with the prophecy-handling ghost code, letting each Hoare triple choose one
specific possible world on prophecies (in contrast to our approach of retaining a set of
possible worlds). Also, they separately proved the erasure theorem, saying that wished
properties on the original program can be ensured by verifying the modified program
with ghost code. As a key use case, all of them targeted verification of linearizability
of the RDCSS (restricted double-compare single-swap) operation proposed by Harris
et al. (2002). We say a concurrent operation is linearizable if it has a single physical
step called the linearization point where the relevant part of the ghost state is atomically
updated, even though the operation may not be physically atomic, i.e., may take multi-
ple physical steps. Verifying linearizability of the RDCSS operation naturally requires
prophecies because the linearization point depends on information about the future
(specifically, whether the current thread wins the race to perform some completion
operation). Because atomicity over the ghost state, or logical atomicity, is technically
subtle, their approach of adding prophecy-handling ghost code is fairly reasonable. In
fact, Jung et al. (2020b) successfully verified a very strong version of linearizability for
the RDCSS operation. Still, we did not take their approach for our project RustHornBelt,
because resolution of the prophecy variables of unique references actually depends on
information about the ghost state, rather than the physical state, in the presence of un-
safe code. If we were to take their approach for our purpose, we would have to prove
our version of the erasure theorem with regard to the ghost state, which seems highly
non-trivial.

The idea of retaining a set of possibilities about the future has been employed in the
context of separation logic by Turon et al. (2013), in the name of speculation. They used
speculation to verify linearizability (via contextual refinement) of a simplified version
of the RDCSS operation, called conditional increment. Later, Liang and Feng (2013) ex-
tended the idea to verify the original version of RDCSS. Both studies took basically the
same approach, which is quite different from ours. Each separation-logic proposition
𝑃 is parametrized over a set of speculative states Σ, which is non-empty and finite. They
use the speculative choice 𝑃 ⊕ 𝑄 over propositions 𝑃 and 𝑄 , which says that the set of
speculative states Σ is the union of some Σ0 satisfying 𝑃 and Σ1 satisfying𝑄 . When they
perform some speculation about the future, where each case corresponds to 𝑃0, . . . , 𝑃𝑛 ,
they obtain 𝑃0 ⊕ · · · ⊕ 𝑃𝑛 . When an expression 𝑒 can turn 𝑃 into 𝑃 ′ and 𝑄 into 𝑄 ′, 𝑒
can turn 𝑃 ⊕ 𝑄 into 𝑃 ′ ⊕ 𝑄 ′. When they have 𝑃 ⊕ 𝑄 and (physically) observe that the
speculation of 𝑃 is correct, they can get 𝑃 out of 𝑃 ⊕ 𝑄 . They successfully used the
mechanism to do case analysis for verifying linearizability of conditional increment or
RDCSS. However, in their frameworks they could not do speculation on an unbounded
integer value, for example, which introduces an infinite number of possibilities, espe-
cially because of the nature of the speculative choice (⊕) operator. Therefore, their
frameworks were unsuitable for our project RustHornBelt.

Matsushita et al. (2020b) proved soundness and completeness of RustHorn’s reduc-
tion from Rust programs to CHCs by establishing bisimulation between the execution
of a Rust program and the course of some deduction algorithm, named SLDC resolution,
on the CHCs generated by RustHorn. SLDC resolution was specially designed for this
work, extending the idea of SLD resolution proposed by Kowalski (1974). In general,
a resolution7 algorithm over CHCs can be understood as top-down construction (i.e.,

7 Resolution over CHCs is not quite related to resolution over prophecy variables.
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construction from the goal/root) of a proof tree on CHCs, where each CHC is regarded
as a deduction rule. In the SLDC resolution algorithm, intermediate states can contain
some syntactic logic variables, which can model the prophecy variables of unique ref-
erences in Rust. Because these logic variables are universally quantified semantically,
each intermediate state of SLDC resolution virtually handles a set of possible worlds
that is parametrized over values assigned to the variables. Their proof is rather fragile,
because the formalized execution of Rust programs and the SLDC resolution algorithm
are carefully designed to form bisimulation and SLDC resolution depends heavily on
syntactic structures of logic formulas. Also, their proof omits detailed discussion about
locality of the effects of various Rust operations, without formal machinery like sep-
aration logic. Our approach to prophecies for RustHornBelt can be understood as a
semantic reformulation of their syntactic approach built upon the mechanized separa-
tion logic Iris.
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Chapter 4

A Low-level Foundation for Verification

Before building the verification platform specifically for Rust, we introduce a simple
lambda calculus for imperative programming and build a low-level program logic on the
calculus on top of the separation logic Iris. The calculus supports heap manipulation,
concurrency and non-determinism. Although our program logic serves as a low-level
foundation for verifying Rust programs later in Chapter 5 and Chapter 6, the logic is
designed for a general purpose.

Although the construction of the program logic in Iris largely follows the standard
technique, we present a new technique for spending an unbounded number of logical
steps for each physical step in the finite-step-indexed logic Iris, which is technically
important for our work.

In §4.1, we present our lambda calculus for imperative programming. In §4.2, we
present our program logic for the calculus, with the new technique for spending an
unbounded number of logical steps at a time. In §4.3 we discuss some related work.

4.1 A Lambda Calculus for Imperative Programming

We introduce a simple lambda calculus for imperative programming, which models the
unsafe part of Rust. To ease verification, we use this substitution-based calculus, just
like RustBelt (Jung et al., 2018a) did (see also (Jung, 2020, §7.3)).1 Advanced operations
can be represented as syntax sugar in this calculus. The so-called safe part of Rust can
be understood as some subset of this calculus.

Syntax An address 𝔩2 is an object of the record type

Addr := (block: Z, cell: Z),

consisting of (block) the id of the memory block and (cell) the index of a memory cell.
(These notions get clearer when we formalize the heap memory later in the paragraph
Operational Semantics.) We write addr(𝑛, 𝑖) for the address whose block field equals 𝑛
and whose cell field equals 𝑖 . For 𝔩: Addr and 𝑛: Z, we define 𝔩 + 𝑛 as follows.

𝔩 + 𝑛 := addr ( 𝔩.block, 𝔩.cell + 𝑛)

A cell value 𝔞, 𝔟, 𝔠: CellVal is a value stored in a single memory cell. An expression 𝑒:
Expr is a structural program that may perform some imperative operations. Cell values
and expressions are mutually inductively defined as follows.

1 To be precise, this deviates from the behavior the real-world systems (e.g., a function definition is
stored in the text segment of the program memory instead of carried around as a value). Still, we believe
that this is a reasonable simplification.

2 The letter ‘l’ stands for ‘location’.
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(cell value) 𝔞, 𝔟, 𝔠 : CellVal ::= 𝑛 (integer; 𝑛: Z) | 𝔩 (address) | 𝔣 (function) |  (invalid)

(function value) 𝔣 : FnVal ::= fn 𝑓 ( ®𝑎) {𝑒 }

(expression) 𝑒 : Expr ::= 𝑎 (variable) | 𝔞 (value)

| 𝑒 ( ®𝑒′) (function call) | alloc 𝑒 (allocate) | free 𝑒 (free)

| ∗𝑒 (load) | 𝑒 � 𝑒′ (store) | 𝑒.𝑒′ (address shift)

| case 𝑒 of
{
0� 𝑒′, 1� 𝑒′′

}
(conditional branching)

| 𝑒 pp 𝑒′ (concurrent execution)

| 𝑒 iop 𝑒′ (integer operation) | 𝑒 irel 𝑒′ (integer relation)

| ndint (non-deterministic integer)

(program variable) 𝑎, 𝑏, 𝑐, 𝑓 : Var

iop ::= + | − | × | · · · irel ::= ≤ | < | = | · · ·

A cell value 𝔞, 𝔟, 𝔠 can be an integer 𝑛, an address 𝔩, a function value 𝔣, or the invalid
value  . We use variables 𝔞̄, 𝔟̄, 𝔠 for a list of cell values. The invalid value cannot be
used in a meaningful way. A function value 𝔣 = fn 𝑓 ( ®𝑎) {𝑒 } consists of (i) the variable 𝑓
binding the function itself, which is used for recursion in 𝑒 , (ii) the parameter variables
®𝑎, and (iii) the function body 𝑒 .

We describe here the meaning of the expression primitives. By 𝑒 ( ®𝑒′), we call a
function 𝑒 with arguments ®𝑒′. By alloc 𝑒 , we allocate a new memory block of the size 𝑒 .
By free 𝑒 , we free the memory block starting at the address 𝑒 . By ∗𝑒 , we load the value
of the memory cell at the address 𝑒 . By 𝑒 � 𝑒′, we update the value of the memory
cell at the address 𝑒 into the value 𝑒′. By 𝑒.𝑒′, we get the address that is ahead of the
address 𝑒 by the integer 𝑒′. By case 𝑒 of

{
0� 𝑒′, 1� 𝑒′′

}
, we conditionally branch by

the value of 𝑒 , executing 𝑒′ if the value is 0 and 𝑒′′ when if 1. By 𝑒 pp 𝑒′, we execute
the expressions 𝑒 and 𝑒′ concurrently; the expression finally returns the cell value of 𝑒
after both 𝑒 and 𝑒′ terminates. We calculate a binary integer operation (that inputs and
outputs an integer) by 𝑒 iop 𝑒′ and a binary integer relation by 𝑒 irel 𝑒′. By ndint, we
get a non-deterministic integer value.

We write irelbool for the function of the type Z → Z → B that corresponds to the
binary integer relation irel.

We use the following shorthand for cell values.

tt := 1 ff := 0 fn( ®𝑎) {𝑒 } := fn ( ®𝑎) {𝑒 }

We use the underscore for a special program variable from which we never take out
the value (i.e., is never used as a variable expression).

We use the following shorthand for expressions.

let 𝑎 = 𝑒 in 𝑒′ := ( fn(𝑎) {𝑒′ })(𝑒) 𝑒; 𝑒′ := let = 𝑒 in 𝑒′

if 𝑒 {𝑒′ } else {𝑒′′ } := case 𝑒 of
{
0� 𝑒′′, 1� 𝑒′ } if 𝑒 {𝑒′ } := if 𝑒 {𝑒′ } else { }

for 𝑎 � 𝑒 .. 𝑒′ {𝑒′′ } :=(
fn for (𝑏, 𝑐, 𝑓 )

{
if 𝑏 ≥ 𝑐 { } else { 𝑓 (𝑏); for (𝑏 + 1, 𝑐, 𝑓 ) }

} )
(𝑒, 𝑒′, fn(𝑎) {𝑒′′ })

𝑒 �∗
𝑒′′ 𝑒

′ :=
(
fn(𝑎, 𝑏, 𝑐)

{
for 𝑖 � 0 .. 𝑐 {𝑎.𝑖 � ∗(𝑏.𝑖) }

} )
(𝑒, 𝑒′, 𝑒′′)

For simplicity, let binding let 𝑎 = 𝑒 in 𝑒′ is defined using a function call. The for loop
for 𝑎�𝑒 .. 𝑒′ {𝑒′′ } iteratively performs 𝑒′′ setting𝑎 to each integer value from the integer
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𝑒 to the integer 𝑒′ exclusive. The sequential store 𝑒 �∗
𝑒′′ 𝑒

′ copies 𝑒′′ consecutive cell
values from the source address 𝑒′ to the target address 𝑒 .

Operational Semantics A heap (or heap memory) 𝐻 is an object of the type

Heap := Z fin
⇀ List CellVal,

a finite map frommemory block ids to a list of cell values, representing the sequence of
memory cells for the memory block.

For a heap 𝐻 , we define the address domain Dom𝐻 : PfinAddr as follows.

Dom𝐻 := { 𝔩: Addr | 𝔩.block ∈ dom𝐻 ∧ 0 ≤ 𝔩.cell < len 𝐻 [𝔩.block] }

Here, dom𝐻 : PfinN denotes the domain of 𝐻 as a finite map over natural numbers. For
an address 𝔩 in Dom𝐻 , we introduce the following shorthand.

𝐻 [𝔩] := 𝐻 [𝔩.block] [𝔩.cell] 𝐻 {𝔩 � 𝔞 } := 𝐻
{
𝔩.block� 𝐻 [𝔩.block] {𝔩.cell� 𝔞 }

}
Here, 𝐻 [𝔩] denotes the cell value at the address 𝔩 and 𝐻 {𝔩 � 𝔞 } denotes the heap with
the value of the memory cell at 𝔩 updated into 𝔞.

Also, for a heap 𝐻 and a memory block id 𝑛, 𝐻 −𝑛 denotes the heap obtained from
𝐻 by erasing the memory block at 𝑛.

The evaluation context 𝐾 : EvCtx is defined as follows.

𝐾 : EvCtx ::= • | 𝑒 (®𝔞, 𝐾, ®𝑒) | 𝐾 (®𝔞) | alloc𝐾 | free𝐾

| ∗𝐾 | 𝑒 � 𝐾 | 𝐾 � 𝔞 | 𝐾.𝑒 | 𝔞.𝐾 | case 𝐾 of
{
0� 𝑒, 1� 𝑒′

}
| 𝐾 pp 𝑒 | 𝑒 pp 𝐾 | 𝐾 iop 𝑒 | 𝔞 iop 𝐾 | 𝐾 irel 𝑒 | 𝔞 irel 𝐾

For the concurrent execution 𝑒 pp 𝑒′, we can choose whether to reduce 𝑒 or 𝑒′ for each
reduction step. In the store expression 𝑒 � 𝑒′, the source expression 𝑒′ is evaluated
earlier than the target expression 𝑒 .

Now the reduction relation (𝑒, 𝐻 ) → (𝑒′, 𝐻 ′) is defined inductively by the following
rules.3

(𝑒, 𝐻 ) → (𝑒′, 𝐻 )
(𝐾 [𝑒], 𝐻 ) → (𝐾 [𝑒′], 𝐻 )

𝔣 = fn 𝑓 (𝑎0, . . . , 𝑎𝑛−1) {𝑒 }(
𝔣(𝔞0, . . . , 𝔞𝑛−1), 𝐻

)
→

(
𝑒 [𝔣/𝑓 ,−−→𝔞/𝑎], 𝐻

)
𝑚 ∉ dom𝐻 𝐻 ′ = 𝐻 {𝑚 � 𝔞̄ }(
alloc𝑛, 𝐻

)
→

(
addr(𝑚, 0), 𝐻 ′ ) 𝔩.cell = 0 𝐻 ′ = 𝐻 − 𝔩.block

( free 𝔩, 𝐻 ) → ( , 𝐻 ′ )

𝔩 ∈ Dom𝐻

(∗𝔩, 𝐻 ) → (𝐻 [𝔩], 𝐻 )
𝔩 ∈ Dom𝐻

( 𝔩 � 𝔞, 𝐻 ) → ( , 𝐻 {𝔩 � 𝔞 })
𝔩′ = 𝔩 + 𝑛

( 𝔩.𝑛, 𝐻 ) → ( 𝔩′, 𝐻 )

𝑖 = 0 ∨ 𝑖 = 1

(case 𝑖 of { 0� 𝑒0, 1� 𝑒1 }, 𝐻 ) → (𝑒𝑖 , 𝐻 )
(𝔞 pp 𝔟, 𝐻 ) → (𝔞, 𝐻 )

𝑙 =𝑚 iop 𝑛

(𝑚 iop 𝑛, 𝐻 ) → (𝑙, 𝐻 )
bl =𝑚 irelbool 𝑛

(𝑚 irel 𝑛, 𝐻 ) → (bl, 𝐻 )
(ndint, 𝐻 ) → (𝑛, 𝐻 )

Note that the reduction rules expect some preconditions on the form of the expression
and the heap. When the preconditions are not satisfied, the reduction gets stuck. Also
note that we cannot perform any reduction when the expression 𝑒 is simply a cell value.

3 In the rule on irel, the Boolean value bl is interpreted as 1 or 0 as a cell value.
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For convenience, we introduce the following set Next(𝑒, 𝐻 ), which is the set of
configurations to which the configuration (𝑒, 𝐻 ) can reduce.

Next(𝑒, 𝐻 ) := { (𝑒′, 𝐻 ′) | (𝑒, 𝐻 ) → (𝑒′, 𝐻 ′) }

Also, we introduce the following pure predicate red(𝑒, 𝐻 ), which means that the con-
figuration (𝑒, 𝐻 ) is reducible.

red(𝑒, 𝐻 ) := Next(𝑒, 𝐻 ) ≠ ∅

4.2 Verification in Iris

We model the weakest precondition and the Hoare triple for the imperative lambda
calculus presented in the previous section.

We introduce a simple but new mechanism that enables us to spend unboundedly
many logical steps for each physical step in Iris, in a sense. It is an important technique
in Iris, because Iris employs finite step indexing; in Iris, the proposition ∃𝑛. |≡⇛▶⊲ 𝑛

E 𝑃 is
equivalent to True for any 𝑃 , because at each step index 𝑖 we can set 𝑛 to 𝑖 , which makes
all the ‘visible part’ at the step index True. More specifically, our machinery enables
spending step(𝑛) + 1 logical steps for the 𝑛-th physical step, for some fixed monotone
function step, e.g., 𝜆𝑛.𝑛. This comes from the observation that (i) typically the number
of logical steps we need to spend at once is proportional to the depth or complexity of
the manipulated object and that (ii) the depth of the object lower-bounds the number
of program steps we have spent so far. In order to manage how many physical steps
have passed, we introduce a new time receipt RA, extending the idea of Mével et al.
(2019). This machinery is used later in RustHornBelt to temporarily take out prophecy
tokens deep inside an object for dependent resolution (see SemTy-Own-ProphToken and
SWkn-UnqRef-Release).

HeapRA In order tomanage information about the heap, we introduce the following
heap RA heap.

|heap| := |ex(Heap) | × |Z→ ex(N) | × |Addr → fracown(CellVal) |

(𝑎, 𝑓 , ℎ) · (𝑏,𝑔, ℎ′) := (𝑎 · 𝑏, 𝑓 · 𝑔, ℎ · ℎ′ ) 𝜀 := (𝜀, 𝜀, 𝜀) | (𝑎, 𝑓 , ℎ) | := (𝜀, 𝜀, 𝜀)

✓ (𝑎, 𝑓 , ℎ) := ✓ 𝑎 ∧ ✓ 𝑓 ∧ ✓ℎ ∧ ∀𝐻 s.t. ex𝐻 = 𝑎.(
∀𝑚,𝑛 s.t. ex𝑛 = 𝑓 𝑚. 𝑚 ∈ dom𝐻 ∧ len𝐻 [𝑚] = 𝑛

)
∧(

∀ 𝔩, 𝔞, 𝑞 s.t. fown𝑞 𝔞 = ℎ 𝔩. 𝔩 ∈ Dom𝐻 ∧ 𝐻 [𝔩] = 𝔞
)

We register the heap RA heap to the global camera. Using some ghost name 𝛾heap,
we introduce the following exclusive heap token Ex(𝐻 ), free-right token Free𝑛 (𝔩) and
maps-to token 𝔩

𝑞↦→ 𝔞.

Ex(𝐻 ) := (ex𝐻, 𝜀, 𝜀) 𝛾heap

heap Free𝑛 (𝔩) := 𝔩.cell = 0 ∗ (𝜀, [𝔩.block� 𝑛], 𝜀) 𝛾heap

heap

𝔩
𝑞↦→ 𝔞 := (𝜀, 𝜀, [𝔩 � fown𝑞 𝔞])

𝛾heap

heap

An exclusive heap token Ex(𝐻 ) registers the heap 𝐻 . A free-right token Free𝑛 (𝔩) owns
the right to free the memory block starting at 𝔩 of the size 𝑛. A points-to token 𝔩

𝑞↦→
𝔞 witnesses with the fraction 𝑞 that the value of the memory cell at 𝔩 is 𝔞. We also
introduce the following sequential points-to token 𝔩

𝑞↦→ 𝔞̄, which witnesses with the
fraction 𝑞 that the cell values of the len 𝔞̄ consecutive memory cells starting at 𝔩 are 𝔞̄.

𝔩
𝑞↦→ 𝔞̄ := ∗𝑖< len 𝔞̄ 𝔩 + 𝑖 𝑞↦→ 𝔞̄ [𝑖]
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We also use the following shorthand.

𝔩
𝑞↦→ := ∃ 𝔞. 𝔩 𝑞↦→ 𝔞 𝔩

𝑞↦→ 𝑛 := ∃ 𝔞̄ s.t. len 𝔞̄ = 𝑛. 𝔩
𝑞↦→ 𝔞̄

The ghost name 𝛾heap is fixed when we introduce the exclusive heap token Ex(𝐻 ) using
the following rule.

ExHeap-Intro
True ⇛∅ ∃𝛾heap. Ex(𝐻 )

The following properties hold.

timeless
(
Ex(𝐻 )

)
timeless

(
Free𝑛 (𝔩)

)
timeless

(
𝔩

𝑞↦→ 𝔞
)

MapsTo-Frac
𝔩
𝑞 + 𝑞′↦→ 𝔞 ⇔ 𝔩

𝑞↦→ 𝔞 ∗ 𝔩
𝑞′↦→ 𝔞

MapsTo-Agree
𝔩

𝑞↦→ 𝔞 ∗ 𝔩
𝑞′↦→ 𝔞′ ⇒ 𝔞 = 𝔞′

Heap-Alloc
𝑚 ∉ dom𝐻 len 𝔞̄ = 𝑛 𝔩 = addr(𝑚, 0)

Ex(𝐻 ) ⇛∅ Free𝑛 (𝔩) ∗ 𝔩 1↦→ 𝔞̄ ∗ Ex(𝐻 {𝑚 � 𝔞̄ })

Heap-Free
Free𝑛 (𝔩) ∗ 𝔩 1↦→ 𝑛 ∗ Ex(𝐻 ) ⇛∅ Ex(𝐻 − 𝔩.block)

Heap-Load
𝔩

𝑞↦→ 𝔞 ∗ Ex(𝐻 ) ⇒ 𝔩 ∈ Dom𝐻 ∧ 𝐻 [𝔩] = 𝔞

Heap-Store
𝔩 1↦→ 𝔞 ∗ Ex(𝐻 ) ⇛∅ 𝔩 1↦→ 𝔟 ∗ Ex(𝐻 {𝔩 � 𝔟})

Points-to tokens can be split and merged according to the fraction (MapsTo-Frac). Two
points-to tokens on the same address should agree on the cell value (MapsTo-Agree).
Heap-Alloc says that, when we allocate in the heap a new memory block of the length
𝑛 and the cell values 𝔞̄, letting 𝔩 be the head address of the memory block, we get a
free-right token Free𝑛 (𝔩) and a full sequential points-to token 𝔩 1↦→ 𝔞̄. Heap-Free says
that, by consuming a free-right token on an address 𝔩 and the size 𝑛 and a full points-to
token on the 𝑛 consecutive memory cells starting at 𝔩, we can free the memory block
of 𝔩. Heap-Load says that, when we have a fractional points-to token 𝔩

𝑞↦→ 𝔞, we know
that there exists a memory cell at 𝔩 storing 𝔞. Heap-Store says that, by consuming a full
points-to token 𝔩 1↦→ 𝔞, we can update the value of the memory cell at 𝔩 into any value
𝔟 and obtain a new full points-to token 𝔩 1↦→ 𝔟.

Time Receipt RA In order to manage information about how many physical steps
have passed, we introduce the following time receipt RA time.

|time| := |ex(N) | × N × N

(𝑎,𝑚, 𝑛) · (𝑏,𝑚′, 𝑛′) := (𝑎 · 𝑏, 𝑚 +𝑚′, max{𝑛, 𝑛′}) 𝜀 := (𝜀, 0, 0)

|(𝑎,𝑚, 𝑛) | := (𝜀, 0, 𝑛) ✓ (𝑎,𝑚, 𝑛) := ✓ 𝑎 ∧ ∀ 𝑙 s.t. ex 𝑙 = 𝑎. 𝑙 ≥ 𝑚 + 𝑛

We register the time receipt RA time to the global camera. Using some ghost name
𝛾time, we introduce the following exclusive time receipt

▶◀ 𝑛, cumulative time receipt

▷◀ 𝑛,
and persistent time receipt

▷◁ 𝑛.4

▶◀ 𝑛 := (ex𝑛, 0, 0) 𝛾time

time

▷◀ 𝑛 := (𝜀, 𝑛, 0) 𝛾time

time

▷◁ 𝑛 := (𝜀, 0, 𝑛) 𝛾time

time

4 The symbols represent sandglasses.
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An exclusive time receipt

▶◀ 𝑛 registers the number 𝑛 of physical steps that have passed.
When we have a cumulative time receipt

▷◀ 𝑚 and a persistent time receipt

▷◁ 𝑛, we
witness that at least𝑚 +𝑛 physical steps have passed. Cumulative time receipts follow
the addition law

▷◀ 𝑚 ∗

▷◀ 𝑛 ⇔

▷◀ (𝑚 + 𝑛) but are not persistent. Persistent time receipts
are persistent but do not follow such an addition law. We fix the ghost name 𝛾time when
we introduce the exclusive time receipt by the following rule (typically 𝑛 is set to 0).

ExTime-Intro
True ⇛∅ ∃𝛾time.

▶◀ 𝑛

The following properties hold.

timeless(

▶◀ 𝑛) timeless(

▷◀ 𝑛) persistent(
▷◁ 𝑛) timeless(

▷◁ 𝑛)

ExTime-Increment-CumuTime▶◀ 𝑛 ⇛∅

▶◀ (𝑛 + 1) ∗

▷◀ 1
CumuTime-Add▷◀ 𝑚 ∗

▷◀ 𝑛 ⇔
▷◀ (𝑚 + 𝑛)

PersTime-0▷◁ 0

CumuTime-Swell-PersTime▷◁ 𝑛

▷◀ 𝑚 ⇛∅

▷◁ (𝑚 + 𝑛)

PersTime-Bound-ExTime▷◁ 𝑚

▶◀ 𝑛 ⇒ 𝑛 ≥ 𝑚

ExTime-Increment-CumuTime says that, when we increment the number of the exclu-
sive time receipt, we get a cumulative time receipt of one step

▷◀ 1. Cumulative time
receipts follow the addition law CumuTime-Add. A persistent receipt of zero step

▷◁ 0
can be freely obtained (PersTime-0). The rule CumuTime-Swell-PersTime is interesting
and important; by consuming a cumulative time receipt

▷◀ 𝑚, we can swell a persistent
time receipt

▷◁ 𝑛 into
▷◁ (𝑚 + 𝑛).5 PersTime-Bound-ExTime says that the number 𝑚 of a

persistent time receipt

▷◁ 𝑚 lower-bounds the number 𝑛 of the exclusive time receipt▶◀ 𝑛.

Weakest Precondition andHoare Triple Wefix somemonotone function over nat-
ural numbers step: N→ N. For RustHornBelt, we particularly set step(𝑛) = 2𝑛.

Now we define the weakest precondition wpE 𝑒 {Φ}, where Φ is the postcondition
over the returned cell value (typed CellVal → IProp).

wpE 𝑒 {Φ} := (∃ 𝔞 s.t. 𝔞 = 𝑒. |⇛E Φ𝔞) ∨
(
(∀𝔞. 𝔞 ≠ 𝑒) ∧

∀𝐻,𝑛. Ex(𝐻 ) ∗

▶◀ 𝑛 ≡≡−∗▶⊲ step(𝑛)+1
E red(𝑒, 𝐻 ) ∗

∀ (𝑒′, 𝐻 ′) ∈ Next(𝑒, 𝐻 ) . |⇛E
(
Ex(𝐻 ′) ∗

▶◀ (𝑛+1) ∗ wpE 𝑒
′ {Φ}

) )
This recursive equation over wpE · · · {Φ} has the unique solution due to the contrac-
tiveness introduced by the step-taking view shift ≡≡−∗▶⊲ step(𝑛)+1

E (by Banach’s fixed point
theoremTheorem 2.1).

This definition of theweakest preconditionwpE 𝑒 {Φ} can be understood as follows.
When the given expression 𝑒 is the form of some value 𝔞, the postcondition Φ𝔞 should
be satisfied after a fancy update (|⇛E ). When 𝑒 is not a value, and when the heap is 𝐻
and it is the𝑛-th physical step, having the tokens Ex(𝐻 ) and

▶◀ 𝑛, after fancy updatewith
step(𝑛) +1 logical steps (|≡⇛▶⊲ step(𝑛)+1

E ), we know that the configuration (𝑒, 𝐻 ) is not stuck,
and for any next possible configuration (𝑒′, 𝐻 ′), along with the tokens Ex(𝐻 ′) and▶◀ (𝑛+1) we get the weakest precondition wpE 𝑒

′ {Φ}, which gives us the postcondition
Φ after executing 𝑒′.

5 This use of a cumulative time receipt was conceived by Jacques-Henri Jourdan.

49



We introduce the following super fancy update modality |≡⇛▶⊲ #
E 𝑃 .

|≡⇛▶⊲ #
E 𝑃 := |≡⇛▶⊲ E

(
∃𝑛.

▷◁ 𝑛 ∗ |≡⇛▶⊲ step(𝑛)
E 𝑃

)
It means that, after one logical step, for some 𝑛 such that we know that 𝑛 physical steps
have passed by

▷◁ 𝑛, we can get 𝑃 after step(𝑛) logical steps, under the mask E. Note that
∃𝑛.

▷◁ 𝑛 ∗ |≡⇛▶⊲ step(𝑛)
E 𝑃 is not equal to True, unlike ∃𝑛. |≡⇛▶⊲ step(𝑛)

E 𝑃 , because the persistent
time receipt

▷◁ 𝑛 prevents us from taking unboundedly large 𝑛 as the step index grows.
We can construct a proposition under a super fancy update modality using the fol-

lowing properties.

SpFUpd-Def
|≡⇛▶⊲ E

(
∃𝑛.

▷◁ 𝑛 ∗ |≡⇛▶⊲ step(𝑛)
E 𝑃

)
⇔ |≡⇛▶⊲ #

E 𝑃
SpFUpd-Zero
|≡⇛▶⊲ step(0)+1

E 𝑃 ⇒ |≡⇛▶⊲ #
E 𝑃

SpFUpd-Merge
|≡⇛▶⊲ #

E 𝑃 ∗ |≡⇛▶⊲ #
E 𝑄 ⇒ |≡⇛▶⊲ #

E (𝑃 ∗𝑄)

We also introduce the following shorthand.

𝑃 ≡≡−∗▶⊲ #
E 𝑄 := 𝑃 −∗ |≡⇛▶⊲ #

E 𝑄 𝑃 ≡⇛▶⊲ #
E 𝑄 := □

(
𝑃 ≡≡−∗▶⊲ #

E 𝑄
)

We can strip off the super fancy update modality using the following property.

ExTime-SpFUpd-CumuTime
|≡⇛▶⊲ #

E 𝑃 ∗
▶◀ 𝑛 ≡⇛▶⊲ step(𝑛)+1

E 𝑃 ∗

▷◀ 1 ∗

▶◀ (𝑛+1)

It means that, spending step(𝑛) +1 logical steps under the mask E, if we update

▶◀ 𝑛 into▶◀ (𝑛+1), we can strip off one super fancy update modality |≡⇛▶⊲ #
E and get a cumulative

time receipt

▷◀ 1.

Proof. Assume that we have |≡⇛▶⊲ #
E 𝑃 and

▶◀ 𝑛. We can decompose |≡⇛▶⊲ #
E 𝑃 into

▷◁ 𝑚 and
|≡⇛▶⊲ step(𝑚)+1

E 𝑃 for some𝑚. By PersTime-Bound-ExTime we know 𝑛 ≥ 𝑚. Since step(𝑛) +
1 ≥ step(𝑚) + 1 holds by monotonicity of step, we can update |≡⇛▶⊲ step(𝑚)+1

E 𝑃 into 𝑃 in
step(𝑛) + 1 logical steps. Also, by ExTime-Increment-CumuTime, we can update

▶◀ 𝑛 into▷◀ 1 and

▶◀ (𝑛+1).

By ExTime-SpFUpd-CumuTime, we can prove the following basic lemma for dis-
cussing the weakest precondition over an operation that takes one reduction step.

Wp-Step
Ex(𝐻 ) ∗ 𝑃 ⇛E red(𝑒, 𝐻 ) ∗ ∀ (𝑒′,𝐻 ′) ∈ Next(𝑒,𝐻 ) . |⇛E

(
Ex(𝐻 ′) ∗ wpE 𝑒′ {Φ}

)
|≡⇛▶⊲ #

E 𝑃 ⇒ wpE 𝑒 {𝜆𝔞.

▷◀ 1 ∗ Φ𝔞 }

In one physical step, we can strip off the super fancy later modality and gain a cumu-
lative time receipt

▷◀ 1.
We also have the following lemmas for the weakest precondition on an evaluation

context and a value expression.

Wp-EvCtx
wpE 𝑒 {𝜆𝔞. wpE 𝐾 [𝔞] {Φ}} ⇒ wpE 𝐾 [𝑒] {Φ}

Wp-Val
Φ𝔞 ⇔ wpE 𝔞 {Φ}

We can modify the postcondition part of the weakest precondition using a view
shift.

Wp-VShift
(∀𝔞. Φ𝔞 ≡−∗E Ψ 𝔞) ∗ wpE 𝑒 {Φ} ⇒ wpE 𝑒 {Ψ}

We can prove this rule using Löb induction (Löb).
The weakest precondition satisfies the following adequacy theorem.
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Theorem 4.1 (Adequacy of the Weakest Precondition). Let 𝜙 be a pure predicate on a
cell value. If

|⇛E ∃𝛾heap, 𝛾time. Ex(𝐻0) ∗

▶◀ 𝑘 ∗ wpE 𝑒0 {𝜙 }

is a tautology, for any reduction sequence (𝑒0, 𝐻0) → (𝑒1, 𝐻1) → · · · → (𝑒𝑛, 𝐻𝑛) such
that ¬red(𝑒𝑛, 𝐻𝑛) holds, 𝑒𝑛 is a cell value satisfying 𝜙 .

Here, the tokens Ex(𝐻0) and

▶◀ 𝑘 depend on the ghost names 𝛾heap and 𝛾time. We can
use the fancy update |⇛E and the existential quantification ∃𝛾heap, 𝛾time. for introduc-
ing the tokens Ex(𝐻0) and

▶◀ 𝑘 by the rules ExHeap-Intro and ExTime-Intro.

Proof. By the definition of the weakest precondition, the following holds for each re-
duction step (𝑒𝑖 , 𝐻𝑖) → (𝑒𝑖+1, 𝐻𝑖+1).

Ex(𝐻𝑖) ∗

▶◀ (𝑘+𝑖) ∗ wpE 𝑒𝑖 {𝜙 } ≡⇛▶⊲ step(𝑘+𝑖 )+1
E Ex(𝐻𝑖+1) ∗

▶◀ (𝑘+𝑖+1) ∗ wpE 𝑒𝑖+1 {𝜙 }

Therefore, using the assumption tautology Ex(𝐻0) ∗

▶◀ 𝑘 ∗ wpE 𝑒0 {𝜙 }, we get the fol-
lowing tautology.

|≡⇛▶⊲
∑𝑛−1

𝑖=0 (step(𝑘+𝑖 )+1)
E ∃𝛾heap, 𝛾time.

(
Ex(𝐻𝑛) ∗

▶◀ (𝑘+𝑛) ∗ wpE 𝑒𝑛 {𝜙 }
)

Also, since ¬red(𝑒𝑛, 𝐻𝑛) holds, when we have the tokens Ex(𝐻𝑛) and

▶◀ (𝑘 + 𝑛), it
turns out after step(𝑘+𝑛) + 1 logical steps that the weakest precondition cannot take
the right-hand disjunct. So we have the following tautology.

(∃𝛾heap, 𝛾time. Ex(𝐻𝑛) ∗

▶◀ (𝑘+𝑛) ∗ wpE 𝑒𝑛 {𝜙 }) ≡⇛▶⊲ step(𝑘+𝑛)+1
E ∃ 𝔞 s.t. 𝔞 = 𝑒𝑛 . 𝜙 𝔞

Combining the two tautologies, we have the following tautology.

|≡⇛▶⊲
∑𝑛

𝑖=0 (step(𝑘+𝑖 )+1)
E ∃ 𝔞 s.t. 𝔞 = 𝑒𝑛 . 𝜙 𝔞

By the soundness theorem on the step-taking fancy update modality Theorem 2.2,
we finally get ∃ 𝔞 s.t. 𝔞 = 𝑒𝑛 . 𝜙 𝔞.

For verification, it is more convenient to use the Hoare triple
{
𝑃
}
𝑒
{
𝔞. 𝑄𝔞

}
E than

directly use the weakest precondition. It is simply defined as follows.{
𝑃
}
𝑒
{
𝔞. 𝑄𝔞

}
E := 𝑃 ⇛E wpE 𝑒 {𝜆𝔞.𝑄 }

Note that the Hoare triple is persistent. Also, we introduce the following shorthand for
the case where the returned value is ignored by the postcondition.{

𝑃
}
𝑒
{
𝑄
}
E :=

{
𝑃
}
𝑒
{
. 𝑄

}
E

We have the following structural rules on the Hoare triple.

Hoare-Frame{
𝑃
}
𝑒
{
𝔞. 𝑄𝔞

}
E{

𝑃 ∗ 𝑅
}
𝑒
{
𝔞. 𝑄𝔞 ∗ 𝑅

}
E

Hoare-VShift
𝑃 ′ ⇛E 𝑃

{
𝑃
}
𝑒
{
𝔞. 𝑄𝔞

}
E ∀𝔞. 𝑄𝔞 ⇛E 𝑄 ′

𝔞{
𝑃 ′

}
𝑒
{
𝔞. 𝑄 ′

𝔞

}
E

Hoare-Ctx-In
persistent(𝑃) 𝑃

{
𝑃 ∗ 𝑄

}
𝑒
{
𝔞. 𝑅𝔞

}
E{

𝑄
}
𝑒
{
𝔞. 𝑅𝔞

}
E

Hoare-Ctx-Out
𝑃 ⇛E

{
𝑄
}
𝑒
{
𝔞. 𝑅𝔞

}
E{

𝑃 ∗ 𝑄
}
𝑒
{
𝔞. 𝑅𝔞

}
E
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Hoare-False{
False

}
𝑒
{
𝔞. 𝑃

}
E

Hoare-Disj{
𝑃
}
𝑒
{
𝔞. 𝑅𝔞

}
E

{
𝑄
}
𝑒
{
𝔞. 𝑅𝔞

}
E{

𝑃 ∨𝑄
}
𝑒
{
𝔞. 𝑅𝔞

}
E

Hoare-Exist
∀𝑥 .

{
𝑃𝑥

}
𝑒
{
𝔞. 𝑄𝔞

}
E{

∃ 𝑥 . 𝑃𝑥
}
𝑒
{
𝔞. 𝑄𝔞

}
E

Hoare-Mono-Mask{
𝑃
}
𝑒
{
𝔞. 𝑄𝔞

}
E E ⊆ E′{

𝑃
}
𝑒
{
𝔞. 𝑄𝔞

}
E′

Hoare-Frame is an important rule that removes a proposition 𝑅 that is shared under
separating conjunction by the precondition and postcondition, which is called a frame.
Hoare-VShift modifies the precondition and postcondition of the Hoare triple using
view shifts. Both Hoare-Frame and Hoare-VShift follow from Wp-VShift. Hoare-Ctx-
In adds persistent knowledge 𝑃 to the precondition. Hoare-Ctx-Out takes out a part
𝑃 of the precondition into an assumption of the Hoare triple. Hoare-False, Hoare-
Disj and Hoare-Exist eliminate false, disjunction and existential quantification in the
precondition. Hoare-Mono-Mask weakens the mask.

We also have the following rules for an evaluation context and a value expression.

Hoare-EvCtx{
𝑃
}
𝑒
{
𝔞. 𝑄𝔞

}
E ∀𝔞.

{
𝑄𝔞

}
𝐾 [𝔞]

{
𝔟. 𝑅𝔟

}
E{

𝑃
}
𝐾 [𝑒]

{
𝔟. 𝑅𝔟

}
E

Hoare-Val
𝑃 ⇛E 𝑄𝔞{

𝑃
}
𝔞

{
𝔞′. 𝑄𝔞′

}
E

Hoare-EvCtx follows from Wp-EvCtx and Hoare-Val follows from Wp-Val.
We have the following rule for concurrent execution.

Hoare-Concur{
𝑃
}
𝑒
{
𝔞. 𝑄𝔞

}
E

{
𝑃 ′

}
𝑒′

{
𝑄 ′ }

E{
𝑃 ∗ 𝑃 ′

}
𝑒 pp 𝑒′

{
𝔞. 𝑄𝔞 ∗ 𝑄 ′ }

E

This rule separatingly conjoins the preconditions and postconditions of the assumption
Hoare triples on 𝑒 and 𝑒′. It is a standard rule of concurrent separation logic (O’Hearn,
2007).

Using the lemma Wp-Step, we can prove the following Hoare-triple rules on basic
operations.

Hoare-FnCall
𝔣 = fn 𝑓 (𝑎0, . . . , 𝑎𝑛−1){𝑒 }

{
𝑃 ∗

▷◀ 1
}
𝑒 [𝔣/𝑓 ,−−→𝔞/𝑎]

{
𝔠. 𝑄𝔠

}
E{

|≡⇛▶⊲ #
E 𝑃

}
𝔣(𝔞0, . . . , 𝔞𝑛−1)

{
𝔠. 𝑄𝔠

}
E

Hoare-Alloc{
|≡⇛▶⊲ #

E 𝑃
}
alloc𝑛

{
𝔞. ∃ 𝔩 s.t. 𝔩 = 𝔞. Free𝑛 (𝔩) ∗ 𝔩 1↦→ 𝑛 ∗

▷◀ 1 ∗ 𝑃
}
E

Hoare-Free{
|≡⇛▶⊲ #

E (Free𝑛 (𝔩) ∗ 𝔩 1↦→ 𝑛 ∗ 𝑃 )
}
free 𝔩

{ ▷◀ 1 ∗ 𝑃
}
E

Hoare-Load{
|≡⇛▶⊲ #

E ( 𝔩 𝑞↦→ 𝔞 ∗ 𝑃 )
}
∗𝔩

{
𝔞′. 𝔞′ = 𝔞 ∗ 𝔩

𝑞↦→ 𝔞 ∗

▷◀ 1 ∗ 𝑃
}
E

Hoare-Store{
|≡⇛▶⊲ #

E ( 𝔩 1↦→ ∗ 𝑃 )
}
𝔩 � 𝔞

{
𝔩 1↦→ 𝔞 ∗

▷◀ 1 ∗ 𝑃
}
E

Hoare-AddrShift{
|≡⇛▶⊲ #

E 𝑃
}
𝔩.𝑛

{
𝔞. 𝔞 = 𝔩 + 𝑛 ∗

▷◀ 1 ∗ 𝑃
}
E
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Hoare-Case
𝑖 = 0 ∨ 𝑖 = 1

{
𝑃 ∗

▷◀ 1
}
𝑒𝑖

{
𝔞. 𝑄𝔞

}
E{

|≡⇛▶⊲ #
E 𝑃

}
case 𝑖 of { 0� 𝑒0, 1� 𝑒1 }

{
𝔞. 𝑄𝔞

}
E

Hoare-IntOp{
|≡⇛▶⊲ #

E 𝑃
}
𝑚 iop 𝑛

{
𝔞. 𝔞 =𝑚 iop 𝑛 ∗

▷◀ 1 ∗ 𝑃
}
E

Hoare-IntRel{
|≡⇛▶⊲ #

E 𝑃
}
𝑚 irel 𝑛

{
𝔞. 𝔞 =𝑚 irel 𝑛 ∗

▷◀ 1 ∗ 𝑃
}
E

Hoare-NdInt{
|≡⇛▶⊲ #

E 𝑃
}
ndint

{
𝔞. ∃𝑛. 𝔞 = 𝑛 ∗

▷◀ 1 ∗ 𝑃
}
E

For each physical step, we can strip off the super fancy update modality |≡⇛▶⊲ #
E and obtain

a cumulative time receipt

▷◀ 1. The rules Hoare-Alloc, Hoare-Free, Hoare-Load and
Hoare-Store follow particularly from the rules Heap-Alloc, Heap-Free, Heap-Load and
Heap-Store, respectively.

Using the rules above, we can derive the following rules.

Hoare-Let{
𝑃
}
𝑒
{
𝔞. |≡⇛▶⊲ #

E 𝑄𝔞
}
E ∀𝔞.

{
𝑄𝔞 ∗

▷◀ 1
}
𝑒′ [𝔞/𝑎]

{
𝔟. 𝑅𝔟

}
E{

𝑃
}
let 𝑎 = 𝑒 in 𝑒′

{
𝔟. 𝑅𝔟

}
E

Hoare-Seq{
𝑃
}
𝑒
{
|≡⇛▶⊲ #

E 𝑄
}
E

{
𝑄 ∗

▷◀ 1
}
𝑒′

{
𝔞. 𝑅𝔞

}
E{

𝑃
}
𝑒; 𝑒′

{
𝔞. 𝑅𝔞

}
E

Hoare-If{
𝑃 ∗

▷◀ 1
}
𝑒bl

{
𝔞. 𝑄𝔞

}
E{

|≡⇛▶⊲ #
E 𝑃

}
if bl {𝑒tt } else {𝑒ff }

{
𝔞. 𝑄𝔞

}
E

Hoare-SeqCopy
len 𝔞̄ = len 𝔟̄ = 𝑛{

|≡⇛▶⊲ #
E
𝑛+1( 𝔩 1↦→ 𝔞̄ ∗ 𝔩′

𝑞↦→ 𝔟̄ ∗ 𝑃 )
}
𝔩 �∗

𝑛 𝔩′
{
𝔩 1↦→ 𝔟̄ ∗ 𝔩′

𝑞↦→ 𝔟̄ ∗

▷◀ (𝑛+1) ∗ 𝑃
}
E

4.3 Related Work

TimeReceipts The idea of time receipts came fromMével et al. (2019). A time receipt
lower-bounds the number of physical steps that have elapsed. It was conceived as a dual
of a time credit (Atkey, 2011), which upper-bounds the number of physical steps that
have elapsed and is typically used for verifying an upper bound on the execution time
of a program. Mével et al. (2019) used time receipts to ensure that undesirable events
like integer overflows cannot occur within𝑁 physical steps, where𝑁 is a global constant
that is typically set to a very large number like 263. Unlike their use of time receipts,
we use time receipts to ensure that we do not need to consume an undesirably large
number of logical steps with respect to the number of physical steps that have elapsed.
Also, our time receipt RA combines the cumulative and persistent time receipts through
the swelling rule CumuTime-Swell-PersTime, which is a new idea.

Transfinite Iris A recent emerging study by Spies et al. (2020) introduces a variant of
Iris called Transfinite Iris, which incorporates transfinite step indexing (i.e., machinery
where a step index can be a transfinite ordinal) into Iris, which currently uses finite step
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indexing (i.e., machinery where a step index is a natural number or finite ordinal). In
Transfinite Iris, we can easily spend any finite number of logical steps for each physical
step. This is due to the existential property of Transfinite Iris, which says that if ∃ 𝑥 :𝑇 .
𝑃𝑥 is a tautology then 𝑃𝑥 is a tautology for some𝑥 :𝑇 , as long as the cardinality of𝑇 is not
too large. In particular, ∃𝑛: N. |≡⇛▶⊲ 𝑛

E 𝑃 is not equivalent to True in Transfinite Iris, unlike
Iris. They also provide Coq mechanization of Transfinite Iris. However, in Transfinite
Iris we lose many useful deduction rules of the original Iris, including commutativity
of the later modality over the inhabited existential quantifier Later-Comm-InhExist and
the separating conjunction Later-Comm-Sep. Because of this, it remains unclear howwe
canmodel the lifetime logic in Transfinite Iris, which prevents us from using Transfinite
Iris for RustHornBelt.
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Chapter 5

A New Design of Semantic Types for Rust

Semantically modeling the guarantees of program types is one approach to proving cor-
rectness (e.g., reducibility, memory safety) of a type system in an extensible way. We
call such a semantic model of a program type a semantic type. For a simple example, if
we target a simple functional programming language instead of Rust, we can seman-
tically model each program type as the set of values that the type accepts. In general,
this semantic approach is more extensible to new features than common syntactic ap-
proaches, such as type soundness proof by progress and preservation.

When we target Rust, one challenge is that an object of a program type can have
some ownership or permission on resources. For example, an object of Box<i32> is a
pointer that owns a memory block of an integer value with permission to update and
read the integer data and release the memory block. More subtly, a unique reference
of the type &'a mut i32 can update and read its target integer data only while the
lifetime 'a is alive. This is exactly the challenge that RustBelt (Jung et al., 2018a) solved.
They model the guarantees of program types as propositions in the separation logic Iris
(Chapter 2). In order to handle borrows based on lifetimes, they built the lifetime logic
(§2.3) on Iris.

For our work RustHornBelt, we have another challenge. We want to verify func-
tional correctness of Rust programs, not only safety, unlike RustBelt. Moreover, we
want to model each object of Rust as a pure value without irrelevant low-level infor-
mation, even using prophecy to model unique references. For example, an object of
the box pointer type Box<i32> should be modeled simply as its target integer value,
without the information about the address. Furthermore, a unique reference &'a mut

i32 should be modeled as a pair of two integers, the current target value and the final
target value that is prophesied.

For this purpose, we extend RustBelt’s approach using our new formulation of
prophecy in Iris introduced in Chapter 3. A key idea is to assign to each Rust ob-
ject a 𝜋-parametrized pure value, a pure value that is parametrized over assignments on
prophecy variables, as we roughly discussed in §3.2.

In this chapter, we introduce our new design of semantic types for Rust. In §5.1, we
give an overview and a formal definition of our notion of the semantic type. In §5.2,
we present the semantic types for basic program types in Rust. In § 5.3, we present
the semantic type for the unique reference type in Rust, introducing some additional
machinery on prophecy. In §5.4, we present the semantic type for the general recursive
type.

Defining semantic types itself does not conclude the functional correctness proof
for Rust programs. Later in Chapter 6, we introduce a type system that handles logic
models, which we dub a refined type system, for Rust programs. It uses a typing judg-
ment emitting a logic model, dubbed a refined typing judgment, which is modeled as
persistent Iris propositions using the Iris predicates of the semantics types we define.
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Related work of the combination of this chapter and Chapter 6 is discussed in §6.5.
The function type is defined later in § 6.2.4, because it is modeled using the refined
typing judgment.

5.1 Our Notion of the Semantic Type

Nowwe introduce our new notion of the semantic type for RustHornBelt, extending the
approach of RustBelt (Jung et al., 2018a) with our formulation of prophecy introduced
in Chapter 3.

First, a semantic type for a Rust program type has an Iris predicate Own describing
the ownership of the object of that type, which we call the ownership predicate. The
predicate Own has the type LowVal → (ProphAsn→ PureVal) → IProp. Here, LowVal
and PureVal are types of low-level values and pure values designed for the program
type. The Own predicate takes as an argument a 𝜋-parametrized pure value 𝑣 instead of
just a pure value, in order to handle prophecy in the style described in §3.2.

For example, let us discuss the semantic type for the box pointer type Box<i32>. We
can set the type LowVal to the address type and set the type PureVal to the integer type
Z. The ownership predicateOwn 𝔩 𝑣 for the box pointer type is set to ∃𝑛 s.t. 𝑣 = const𝑛.
𝔩 1↦→𝑛, saying that 𝑣 is a constant function over some integer 𝑛 and the object fully owns
the address 𝔩 with the value 𝑛.

For another example, let us roughly discuss the semantic type for the the unique
reference type &'a mut i32. We can set LowVal again to the address type and and set
PureVal to the pair type of two integers, in the style of RustHorn. Defining the ownership
predicate Own 𝔩 𝑣 for &'a mut i32 is fairly challenging. Roughly speaking, it contains
existential quantification like ∃ 𝑥 s.t. (.1) ◦ 𝑣 = 𝜆𝜋.𝜋 𝑥 . · · ·, checking that there is some
prophecy variable 𝑥 that represents the final target value on 𝑣 , and the full prophecy
token [𝑥]1 is in some sense owned by the unique reference. Later this part is elaborated
in §5.3.

The story does not end here. In order to deal with shared references &'a T in
general, we equip the semantic type with another predicate Share: Lft → LowVal →
PureVal → IProp, representing the condition to share an object of the program type
with some low-level and pure values. We need this because in Rust a program type
works quite differently under the ownership (unique permission) and the sharing per-
mission. For example, a shared reference to a unique reference &'b &'a mut i32 is
copyable but only has the sharing permission on the inner integer data (as explained
by Example 1.8), unlike a bare unique reference &'a mut i32. The idea of using two
predicates Own and Share for unique and sharing permissions comes from RustBelt.

Our actual formulation is a bit different from the explanation above. As a tech-
nical workaround to mitigate later modalities in Iris, we add to Own and Share an
extra natural-number parameter dubbed the depth. Also, we use symbolic notation
𝔞̄ ◀ 𝜏 {𝑣 }𝑑 , which corresponds to something like Own𝜏 𝔞̄ 𝑣 𝑑 in the explanation above,
and write 𝔞̄ ◁𝛼 𝜏 {𝑣 }𝑑 for the Share counterpart.

For simplicity and flexibility, in this thesis, we formalize program types only in
terms of semantic types, not introducing any fixed syntax of program types. We can
do so particularly because later (in Chapter 6) we formulate our deductive type system
for Rust only in semantic terms, without introducing any syntactic structures about
deduction.

Formal Definition of a Semantic Type We write List𝑛 CellVal for the subtype { 𝔞̄:
List CellVal / len 𝔞̄ = 𝑛 }, i.e., the type of a list of cell values that has the length 𝑛.
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A semantic type 𝜏 : SemTy is a quintuple(
b𝜏c : Type, |𝜏 | : N, − v 𝜏 : Lft → IProp,

− ◀ 𝜏 {−}− : List |𝜏 | CellVal → (ProphAsn→ b𝜏c) → N → IProp

− ◁− 𝜏 {−}− : List |𝜏 | CellVal → Lft → (ProphAsn→ b𝜏c) → N → IProp
)

that satisfies the following properties.

SemTy-Outlv-Pers
persistent(𝛼 v 𝜏)

SemTy-Outlv-Mono
𝛼 v 𝜏 𝛽 v 𝛼

𝛽 v 𝜏

SemTy-Own-Mono
𝑑 ≤ 𝑑 ′

𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ⇒ 𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ′

SemTy-Shr-Pers
persistent(𝔞̄ ◁𝛼 𝜏 {𝑣 }𝑑 )

SemTy-Shr-Mono
𝔞̄ ◁𝛼 𝜏 {𝑣 }𝑑 𝛽 v 𝛼 𝑑 ≤ 𝑑 ′

𝔞̄ ◁𝛽 𝜏 {𝑣 }𝑑 ′

SemTy-Own-Shr
𝛼 v 𝜏 𝛼 v 𝛽

&𝛽
full

(
𝔞̄ ◀ 𝜏 {𝑣 }𝑑

)
∗ [𝛼]𝑞 ≡⇛▶⊲ 𝑑

Nlft
𝔞̄ ◁𝛽 𝜏 {𝑣 }𝑑 ∗ [𝛼]𝑞

SemTy-Own-ProphToken
𝛼 v 𝜏

𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ∗ [𝛼]𝑞 ≡⇛▶⊲ 𝑑
Nlft

∃𝑋 s.t. Dep(𝑣, 𝑋 ) . ∃𝑞′. [𝑋 ]𝑞′ ∗
(
[𝑋 ]𝑞′ ≡−∗Nlft

𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ∗ [𝛼]𝑞
)

SemTy-Shr-ProphToken
𝛼 v 𝜏 𝛼 v 𝛽

𝔞̄ ◁𝛽 𝜏 {𝑣 }𝑑 ∗ [𝛼]𝑞 ≡⇛▶⊲ 𝑑
Nlft

∃𝑋 s.t. Dep(𝑣, 𝑋 ) . ∃𝑞′. [𝑋 ]𝑞′ ∗
(
[𝑋 ]𝑞′ ≡−∗Nlft

𝔞̄ ◁𝛽 𝜏 {𝑣 }𝑑 ∗ [𝛼]𝑞
)

A semantic type 𝜏 consists of: (i) the pure type b𝜏c, which is used for valuesmodeling
data of 𝜏 ; (ii) the size |𝜏 |: int, which is the number of memory cells used for data typed
𝜏 at the shallowest level; (iii) the outliving predicate 𝛼 v 𝜏 : IProp for 𝛼 : Lft, which is the
persistent condition for the type 𝜏 to outlive the lifetime 𝛼 ; (iv) the ownership predicate
𝔞̄ ◀ 𝜏 {𝑣 }𝑑 , which is the condition to own data typed 𝜏 that has the list of cell values 𝔞̄
at the low level, is modeled as the 𝜋-parametrized value 𝑣 , and has the depth 𝑑 ; and (v)
the sharing predicate 𝔞̄ ◁𝛼 𝜏 {𝑣 }𝑑 , which is the persistent condition to share data typed
𝜏 associated with 𝔞̄, 𝑣 and 𝑑 until the lifetime 𝛼 ends.

We equip the semantic type with an outliving predicate 𝛼 v 𝜏 instead of directly
giving the lifetime of the type. It enables us to use later modalities, which facilitates
definition of the recursive type (§5.4).1

The outliving predicate 𝛼 v 𝜏 should be persistent (SemTy-Outlv-Pers) and anti-
monotone over 𝛼 (SemTy-Outlv-Mono). The ownership predicate 𝔞̄ ◀ 𝜏 {𝑣 }𝑑 should
be monotone over 𝑑 (SemTy-Own-Mono). The sharing predicate 𝔞̄ ◁𝛼 𝜏 {𝑣 }𝑑 should
be persistent (SemTy-Shr-Pers) as well as anti-monotone over 𝛼 and monotone over 𝑑
(SemTy-Shr-Mono). SemTy-Own-Shr says that we should be able to transform a full bor-
row of the ownership predicate &𝛽

full 𝔞̄ ◀ 𝜏 {𝑣 }𝑑 into a sharing predicate 𝔞̄ ◁𝛽 𝜏 {𝑣 }𝑑
taking 𝑑 logical steps, by temporarily depositing a partial token on 𝛼 u 𝛽 . SemTy-Own-
ProphToken says that, out of the ownership predicate 𝔞̄ ◀ 𝜏 {𝑣 }𝑑 , we should be able
to temporarily take a partial prophecy token [𝑋 ]𝑞′ on prophecy variables 𝑋 that 𝑣 de-
pends on, taking 𝑑 logical steps, by temporarily depositing a partial token on 𝛼 . SemTy-
Shr-ProphToken is a similar rule for a sharing predicate. Note that the depth of an

1 This idea was conceived by Jacques-Henri Jourdan.
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object determines how many logical steps we can use for SemTy-Own-Shr, SemTy-Own-
ProphToken and SemTy-Shr-ProphToken.

5.2 Basic Semantic Types

In this section, we introduce a number of basic semantic types.
We introduce notation for list slicing. For a list 𝑣 and 𝑖 such that 0 ≤ 𝑖 < len 𝑣 , 𝑣 [.. 𝑖]

and 𝑣 [𝑖 ..] denote [𝑣 [0], . . . , 𝑣 [𝑖−1]] and [𝑣 [𝑖], . . . , 𝑣 [len 𝑣 −1]] respectively. Also, for a
list 𝑣 and 𝑖, 𝑗 such that 0 ≤ 𝑖 ≤ 𝑗 < len 𝑣 , 𝑣 [𝑖 .. 𝑗] denotes [𝑣 [𝑖], . . . , 𝑣 [ 𝑗−1]].

Integer Type The (unbounded) integer type int is an idealization of Rust’s bounded
integer types like i32. Note that in our low-level formulation one memory cell can
contain any integer, idealizing the real-world hardware. We define int as the following
semantic type.

bintc := Z | int | := 1 𝛼 v int := True

[𝔞] ◀ int {𝑣 }𝑑 = [𝔞] ◁𝛼 int {𝑣 }𝑑 := ∃𝑛 s.t. 𝑛 = 𝔞. 𝑣 = const𝑛

We use an integer of the mathematical type Z to model an object of the program type
int. At the low level, int occupies one memory cell that has an integer value 𝑛. Any
lifetime outlives int. The 𝜋-parametrized integer value for int should be a constant
function that returns the expected integer 𝑛. Any depth is permitted for int.

Boolean Type The boolean type bool, which corresponds to Rust’s bool, is defined
as follows, in a similar way to the integer type.

bboolc := B |bool | := 1 𝛼 v bool := True

[𝔞] ◀ bool {𝑣 }𝑑 = [𝔞] ◁𝛼 bool {𝑣 }𝑑 := ∃ bl s.t. bl = 𝔞. 𝑣 = const bl

To model boolean data, we use the mathematical boolean type B, which has two values
tt (true) and ff (false).

Invalid-Data Type We introduce the invalid-data type  𝑛 of the size 𝑛.

b 𝑛c := Unit | 𝑛 | := 𝑛 𝛼 v  𝑛 := True

𝔞̄ ◀  𝑛 {𝑣 }𝑑 = 𝔞̄ ◁𝛼  𝑛 {𝑣 }𝑑 := True

The 𝜋-parametrized value 𝑣 used here has the type ProphAsn → Unit, which has only
one value const (). In modeling Rust, we can use the invalid-data type  𝑛 to model
data invalidated after a move operation and also to model uninitialized data obtained
by memory allocation.2 In particular, an object of a type 𝜏 can be invalidated into an
invalid object of the type  |𝜏 | .
Box Pointer Type The box pointer type box𝜏 , which corresponds to Box<T> in Rust,
represents a pointer that targets an object of the type 𝜏 and has full ownership on the
target object, i.e., can read, update and delete it. It can be defined as follows.

2 This is actually a simplification of the actual behavior of the Rust compiler, which handles validity
flags on each variable apart from type information.
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bbox𝜏c := b𝜏c |box𝜏 | := 1 𝛼 v box𝜏 := ⊲
(
𝛼 v 𝜏

)
[𝔞] ◀ box𝜏 {𝑣 }𝑑 := 𝑑 > 0 ∗ ∃ 𝔩 s.t. 𝔩 = 𝔞. ∃ 𝔟̄.

𝔩 1↦→ 𝔟̄ ∗ Free |𝜏 | (𝔩) ∗ ⊲
(
𝔟̄ ◀ 𝜏 {𝑣 }𝑑−1

)
[𝔞] ◁𝛼 box𝜏 {𝑣 }𝑑 := 𝑑 > 0 ∗ ∃ 𝔩 s.t. 𝔩 = 𝔞. ∃ 𝔟̄.

∗𝑖 &𝛼
frac

(
𝜆𝑞. 𝔩 + 𝑖 𝑞↦→ 𝔟̄[𝑖]

)
∗ ⊲

(
𝔟̄ ◁𝛼 𝜏 {𝑣 }𝑑−1

)
The value for a box pointer is set to the value for its target object, without the ad-

dress information. The outliving predicate of box𝜏 is ⊲
(
𝛼 v 𝜏

)
, the outliving predicate

of the target type under the later modality.
The ownership predicate of box𝜏 consists mainly of (i) the full points-to token 𝔩 1↦→ 𝔟̄,

which owns |𝜏 | consecutive memory cells starting at 𝔩 with the cell values 𝔟̄, (ii) the
free-right token Free |𝜏 | (𝔩), which owns the right to free the memory block of the size
|𝜏 | starting at 𝔩, and (iii) ⊲

(
𝔟̄ ◀ 𝜏 {𝑣 }𝑑−1

)
, the ownership predicate on the target object

under the later modality.
On the other hand, the sharing predicate consists mainly of (i) fractured borrows

on the points-to tokens to each address ∗𝑖 &𝛼
frac

(
𝜆𝑞. 𝔩 + 𝑖 𝑞↦→ 𝔟̄[𝑖]

)
,3 from which we can

temporarily take out 𝔩 𝑞↦→ 𝔟̄ for some 𝑞 while the lifetime 𝛼 is alive, and (ii) the target
sharing predicate under the later modality ⊲

(
𝔟̄ ◁𝛼 𝜏 {𝑣 }𝑑−1

)
.

The contractiveness introduced by the later modality in the outliving, owning and
sharing predicates is useful in defining recursive types with self reference under box
(e.g., the standard singly linked list type; see §5.4). The depth of a box pointer is set to
1 plus the depth of its target object, which gives us one logical step to strip off the later
modality on the outliving, ownership and sharing predicate in proving SemTy-Own-
Shr, SemTy-Own-ProphToken and SemTy-Shr-ProphToken of box𝜏 . Here we elaborate
the proof of SemTy-Own-Shr of box𝜏 .

Proof of SemTy-Own-Shr of box𝜏 . Assume that the input is a full borrow under 𝛼 of the
ownership predicate of a box pointer, &𝛼

full [𝔞] ◀ box𝜏 {𝑣 }𝑑 . We freeze the inner param-
eters 𝔩, 𝔟̄ of the full borrow (FullBor-Freeze) and then split it (FullBor-Split) to get two
full borrows, (i) a full borrow of the points-to token 𝑃 := &𝛼

full

(
𝔩 1↦→ 𝔟̄

)
and (ii) a full bor-

row of the target ownership predicate under later 𝑄 := &𝛼
full

(
⊲ 𝔟̄ ◁𝛼 𝜏 {𝑣 }𝑑−1

)
. In one

logical step, we strip off the later modality of the full borrow𝑄 (FullBor-Unlater) and
also the outliving predicate on the target object. Using SemTy-Own-Shr on the target
type 𝜏 in 𝑑 − 1 logical steps, we get the target sharing predicate. The full borrow 𝑃 can
be transformed into fractured borrows∗𝑖 &𝛼

frac

(
𝜆𝑞. 𝔩 + 𝑖 𝑞↦→ 𝔟̄[𝑖]

)
(by FullBor-Split and

FullBor-FracBor).

Shared Reference Type The shared reference type &𝛼
shr 𝜏 , which corresponds to &'a

T in Rust, can be defined fairly easily using the sharing predicate of 𝜏 .

b&𝛼
shr 𝜏c := b𝜏c |&𝛼

shr 𝜏 | := 1 𝛽 v &𝛼
shr 𝜏 := 𝛽 v 𝛼 ∧ ⊲

(
𝛽 v 𝜏

)
[𝔞] ◀ &𝛼

shr 𝜏 {𝑣 }𝑑 = [𝔞] ◁𝛽 &𝛼
shr 𝜏 {𝑣 }𝑑 :=

𝑑 > 0 ∗ ∃ 𝔩 s.t. 𝔩 = 𝔞. ∃ 𝔟̄. ∗𝑖 &𝛼
frac

(
𝜆𝑞. 𝔩 + 𝑖 𝑞↦→ 𝔟̄[𝑖]

)
∗ ⊲

(
𝔟̄ ◁𝛼 𝜏 {𝑣 }𝑑−1

)
The ownership and sharing predicates of &𝛼

shr 𝜏 is the same as the sharing predicate of
box𝜏 with the lifetime 𝛼 . Interestingly, we can ignore the lifetime argument 𝛽 of the
sharing predicate; we can still prove SemTy-Own-Shr because the ownership predicate

3We need to use∗𝑖 &𝛼
frac

(
𝜆𝑞. 𝔩+𝑖 𝑞↦→ 𝔟̄[𝑖]

)
instead of simpler &𝛼

frac

(
𝜆𝑞. 𝔩

𝑞↦→ 𝔟̄
)
because the lifetime logic

does not have the split rule like FullBor-Split for fractured borrows.
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is already persistent. Note that SemTy-Own-ProphToken of &𝛼
shr 𝜏 can be proved using

SemTy-Shr-ProphToken on the target type 𝜏 .
The later modality in the outliving, ownership and sharing predicates are for con-

tractiveness, just as in the box pointer type box𝜏 .

Plain Reference Type To aid verification, we introduce the following plain reference
type &𝑞 𝜏 for a type 𝜏 and a fraction 𝑞.

b&𝑞 𝜏c := b𝜏c |&𝑞 𝜏 | := 1 𝛼 v &𝑞 𝜏 := ⊲
(
𝛼 v 𝜏

)
[𝔞] ◀ &𝑞 𝜏 {𝑣 }𝑑 := 𝑑 > 0 ∗ ∃ 𝔩 s.t. 𝔩 = 𝔞. ∃ 𝔟̄. 𝔩

𝑞↦→ 𝔟̄ ∗ ⊲
(
𝔟̄ ◀ 𝜏 {𝑣 }𝑑−1

)
[𝔞] ◁𝛼 &𝑞 𝜏 {𝑣 }𝑑 := True

It is a reference to an object typed 𝜏 . The pure value of a plain reference is set to the
pure value of its target object. The ownership predicate of a plain reference mainly
consists of (i) the points-to token to the target values of the fraction 𝑞, 𝔩 𝑞↦→ 𝔟̄, and (ii)
the ownership predicate on the target object under later, ⊲

(
𝔟̄ ◀ 𝜏 {𝑣 }𝑑−1

)
.

A plain reference type is intended to be used at the top level of a type and not
inside other types. Since we do not need to use the plain reference type under a shared
reference, the sharing predicate of the type is set to the trivial proposition True.

The later modality in the outliving, ownership and sharing predicates helps com-
patibility with other pointer types such as the box pointer type box𝜏 .

We call a plain reference with the fraction 1 of the type &1 𝜏 a full plain reference
and call a plain reference with any fraction 𝑞 a fractional plain reference.

Pair Type The pair type 𝜏 × 𝜏 ′ of the semantic types 𝜏 and 𝜏 ′, which corresponds to
Rust’s (T, T'), is defined as follows.

b𝜏 × 𝜏 ′c := b𝜏c × b𝜏 ′c |𝜏 × 𝜏 ′ | := |𝜏 | + |𝜏 ′ | 𝛼 v 𝜏 × 𝜏 ′ := 𝛼 v 𝜏 ∧ 𝛼 v 𝜏 ′

𝔞̄ ◀ 𝜏 × 𝜏 ′ {𝑣 }𝑑 := 𝔞̄ [.. |𝜏 |] ◀ 𝜏 { (.0) ◦ 𝑣 }𝑑 ∗ 𝔞̄ [|𝜏 | ..] ◀ 𝜏 ′ { (.1) ◦ 𝑣 }𝑑

𝔞̄ ◁𝛼 𝜏 × 𝜏 ′ {𝑣 }𝑑 := 𝔞̄ [.. |𝜏 |] ◁𝛼 𝜏 { (.0) ◦ 𝑣 }𝑑 ∗ 𝔞̄ [|𝜏 | ..] ◁𝛼 𝜏 ′ { (.1) ◦ 𝑣 }𝑑

For 𝑖 = 0, 1, (.𝑖) denotes the function 𝜆𝑣 .𝑣 .𝑖 and thus (.𝑖) ◦ 𝑣 is equal to 𝜆𝜋. (𝑣 𝜋) .𝑖 .
We piggyback the components (b𝜏c, 𝛼 v 𝜏 , etc.) of 𝜏 and 𝜏 ′ to construct the semantic

type 𝜏 ×𝜏 ′. The list of cell values for data typed 𝜏 ×𝜏 ′ is the concatenation of the list for
𝜏 and the list for 𝜏 ′. The value for data typed 𝜏 × 𝜏 ′ is set to the pair of the value for b𝜏c
and the value for b𝜏 ′c (for each 𝜋 ). The outliving predicate of 𝜏 × 𝜏 ′ is the conjunction
of those of 𝜏 and 𝜏 ′. The ownership predicate for 𝜏 × 𝜏 ′ is defined as the separating
conjunction of those for 𝜏 and 𝜏 ′, sharing the same depth. The sharing predicate is
defined in a similar way. We can prove the required properties (SemTy-Outlv-Pers,
etc.) of 𝜏 × 𝜏 ′ by using those of 𝜏 and 𝜏 ′.

Variant Type The variant type 𝜏0 + 𝜏1, modeling Rust’s enum type (e.g., Result<T0,
T1>), is defined as follows.

b𝜏0 + 𝜏1c := b𝜏0c + b𝜏1c |𝜏0 + 𝜏1 | := 1 +max{ |𝜏0 |, |𝜏1 | }

𝛼 v 𝜏0 + 𝜏1 := 𝛼 v 𝜏0 ∧ 𝛼 v 𝜏1

𝔞̄ ◀ 𝜏0 + 𝜏1 {𝑣 }𝑑 := ∃ 𝑖, 𝑤̂ s.t. 𝔞̄ [0] = 𝑖 ∧ 𝑣 = inj𝑖 ◦ 𝑤̂ . 𝔞̄ [1 .. 1+ |𝜏𝑖 |] ◀ 𝜏𝑖 {𝑤̂ }𝑑

𝔞̄ ◁𝛼 𝜏0 + 𝜏1 {𝑣 }𝑑 := ∃ 𝑖, 𝑤̂ s.t. 𝔞̄ [0] = 𝑖 ∧ 𝑣 = inj𝑖 ◦ 𝑤̂ . 𝔞̄ [1 .. 1+ |𝜏𝑖 |] ◁𝛼 𝜏𝑖 {𝑤̂ }𝑑
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Here, 𝑖 is either 0 or 1 and 𝑤̂ is a 𝜋-parametrized value of the type ProphAsn → b𝜏𝑖c
(depending on 𝑖). Note that inj𝑖 ◦ 𝑤̂ is equal to 𝜆𝜋. inj𝑖 (𝑤̂ 𝜋).

Vector Type The vector type vec𝜏 , modeling Rust’s Vec<T>, represents a dynamically
allocated, growable array of objects typed 𝜏 . It is defined as follows, extending the
definition of the box pointer type box𝜏 .

bvec𝜏c := List b𝜏c |vec𝜏 | := 3 𝛼 v vec𝜏 := ⊲
(
𝛼 v 𝜏

)
𝔞̄ ◀ vec𝜏 {𝑣 }𝑑 := 𝑑 > 0 ∗ ∃ 𝔩, cap, len s.t. [𝔩, cap, len] = 𝔞̄ ∧ cap ≥ len.

∃ 𝔟̄ s.t. len 𝔟̄ = cap · |𝜏 |. 𝔩 1↦→ 𝔟̄ ∗ Freecap· |𝜏 | (𝔩) ∗ (∀𝜋. len (𝑣 𝜋) = len) ∗
∗𝑖<len ⊲

(
𝔟̄[𝑖 · |𝜏 | .. (𝑖 +1) · |𝜏 |] ◀ 𝜏 {𝜆𝜋. (𝑣 𝜋) [𝑖] }𝑑−1

)
𝔞̄ ◁𝛼 vec𝜏 {𝑣 }𝑑 := 𝑑 > 0 ∗ ∃ 𝔩, cap, len s.t. [𝔩, cap, len] = 𝔞̄ ∧ cap ≥ len.

∃ 𝔟̄ s.t. len 𝔟̄ = cap · |𝜏 |. ∗𝑖 &𝛼
frac

(
𝜆𝑞. 𝔩 + 𝑖 𝑞↦→ 𝔟̄[𝑖]

)
∗ (∀𝜋. len (𝑣 𝜋) = len) ∗

∗𝑖<len ⊲
(
𝔟̄[𝑖 · |𝜏 | .. (𝑖 +1) · |𝜏 |] ◁𝛼 𝜏 {𝜆𝜋. (𝑣 𝜋) [𝑖] }𝑑−1

)
At the low level, a vector consists of three cell values — the head location of data 𝔩, the
capacity size cap, and the content length len. The value for vec𝜏 is set to the list of len
elements.

The ownership predicate of the vector type consists mainly of (i) the full points-to
token 𝔩 1↦→ 𝔟̄ that owns cap · |𝜏 | (= len 𝔟̄) consecutive memory cells starting at 𝔩, (ii) the
free-right token Freecap· |𝜏 | (𝔩) on the memory block of the size cap · |𝜏 | starting at 𝔩, and
(iii) the (separating) conjunction of the ownership predicate for the len elements. The
sharing predicate is obtained by some modification to the ownership predicate, in an
analogous way to the box pointer type.

The later modality in the outliving, ownership and sharing predicates are for con-
tractiveness, just as in the box pointer type box𝜏 .

5.3 Modeling the Unique Reference Type with Prophecy

The unique reference type &𝛼
unq 𝜏 is the key semantic type in our framework RustHorn-

Belt. A unique reference is modeled as the 𝜋-parametrized value 𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥), where
𝑣 models the current target value and 𝑥 is the prophecy variable for the borrow.

We should design the semantic type &𝛼
unq 𝜏 so that we can support various oper-

ations on unique references. First, when we release a unique reference modeled 𝜆𝜋.
(𝑣 𝜋, 𝜋 𝑥), we should be able to resolve the prophecy variable 𝑥 to 𝑣 . On the other
hand, we should also be able to throw away a unique reference without resolving the
prophecy variable, letting the borrowee resolve the prophecy variable when it reclaims
the borrowed object; we need this feature because Rust’s type system allows an object
to be leaked out of the static control, especially when we have circular references (Klab-
nik et al., 2018, §15.6). Moreover, we should be able to subdivide a unique reference in
various ways (e.g., take &𝛼

unq 𝜏 out of &𝛼
unq(𝜏 × 𝜏 ′)) and also support unique reborrows.

We already have the lifetime logic (introduced in § 2.3) developed by Jung et al.
(2018a), which supports various operations for borrows. We set up some machinery on
the side of prophecy.

Prophecy Equalizer First, we introduce the following predicate dubbed a prophecy
equalizer PE(𝑤̂, 𝑣) for 𝑤̂, 𝑣 : ProphAsn → 𝑇 on some type 𝑇 .

PE(𝑤̂, 𝑣) := ∀𝑋 s.t. Dep(𝑣, 𝑋 ) . ∀𝑞. [𝑋 ]𝑞 ≡−∗Nproph
〈𝜋. 𝑤̂ 𝜋 = 𝑣 𝜋 〉 ∗ [𝑋 ]𝑞
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It can be explained as a delayed prophecy observation 〈𝜋. 𝑤̂ 𝜋 = 𝑣 𝜋 〉; the acquisition
of the prophecy observation is delayed until we get a partial prophecy token [𝑋 ]𝑞 on
the dependency𝑋 of 𝑣 . This notion is useful for supporting flexible timing of resolution;
we need it for RustHornBelt, because the prophecy variable of a unique borrow can be
resolved by the unique reference and also by the borrowee.

We can use a prophecy equalizer in the following way.

ProphEqz-Use
Dep(𝑣, 𝑋 )

PE(𝑤̂, 𝑣) ∗ [𝑋 ]𝑞 ⇛Nproph 〈𝜋. 𝑤̂ 𝜋 = 𝑣 𝜋 〉 ∗ [𝑋 ]𝑞

We can construct prophecy equalizers using the following lemmas.

ProphEqz-ProphToken
[𝑥]1 ⇒ PE

(
𝜆𝜋.𝜋 𝑥, 𝑣

) ProphEqz-ProphObs
〈𝜋. 𝑤̂ 𝜋 = 𝑣 𝜋 〉

PE(𝑤̂, 𝑣)

ProphEqz-Modify
〈𝜋. 𝑤̂ ′𝜋 = 𝑤̂ 𝜋 〉

PE(𝑤̂, 𝑣) ⇒ PE(𝑤̂ ′, 𝑣)

ProphEqz-Transform
𝑓 is injective

∗𝑖<𝑛 PE(𝑤̂𝑖 , 𝑣𝑖) ⇒ PE
(
𝜆𝜋. 𝑓 (𝑤̂0 𝜋, . . . , 𝑤̂𝑛−1 𝜋), 𝜆𝜋. 𝑓 (𝑣0 𝜋, . . . , 𝑣𝑛−1 𝜋)

)
ProphEqz-ProphToken says that, out of a full prophecy token [𝑥]1, we can create a
prophecy equalizer for 𝜆𝜋.𝜋 𝑥 and any 𝜋-parametrized value 𝑣 ; it follows from Proph-
Resolve. ProphEqz-ProphObs says that a prophecy equalizer can be trivially obtained
from a prophecy observation on the expected equality. ProphEqz-Modify allows us
to modify the first argument of a prophecy equalizer using a prophecy observation.
ProphEqz-Transform says that we can get a new prophecy equalizer out of prophecy
equalizers, where both for the first and second arguments we construct the new value
for the output by applying the same injective function 𝑓 (which does not depend on 𝜋 )
to the values of the inputs.

Proof of ProphEqz-Transform. We satisfy the dependency precondition of each of the
input prophecy equalizers by Dep-Destruct. Also, we split the partial prophecy token
into 𝑛 pieces to feed the prophecy equalizers. Then we compose the view shifts of
them in parallel. Finally, we merge the prophecy observations and the partial prophecy
tokens that were returned by them.

Value Observer and Prophecy Control Nowwe introduce extra machinery for the
unique reference type using the prophecy equalizer. First, we register the following RA
unq to the global camera.

unq := (𝑥 : ProphVar) fin→ fracown
(
(ProphAsn → 𝑥 .type) × N

)
In this RA, we assign to a finite number of prophecy variables a value of the type
(ProphAsn → 𝑥 .type) × N, under fractional ownership by fracown. A value as-
signed to a prophecy variable is a pair (𝑣, 𝑑) of a 𝜋-parametrized pure value 𝑣 and a
depth 𝑑 . Using this RA, taking some fixed ghost name 𝛾unq, we introduce the following
predicates, a value observer VO𝑥 (𝑣, 𝑑) and a prophecy control PC(𝑥, 𝑣, 𝑑).

VO𝑥 (𝑣, 𝑑) := [𝑥 � fown1/2(𝑣, 𝑑) ]
𝛾unq

unq

PC(𝑥, 𝑣, 𝑑) :=
(
[𝑥 � fown1/2(𝑣, 𝑑) ]

𝛾unq

unq
∗ [𝑥]1

)
∨(

(∃𝑎. [𝑥 � fown1 𝑎]
𝛾unq

unq ) ∗ PE(𝜆𝜋.𝜋 𝑥, 𝑣)
)
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A value observer VO𝑥 (𝑣, 𝑑) witnesses with half ownership that (𝑣, 𝑑) is assigned to 𝑥
by the unq RA at 𝛾unq. A prophecy control PC(𝑥, 𝑣, 𝑑) either (i) witnesses with half
ownership that (𝑣, 𝑑) is assigned to 𝑥 and owns the full prophecy token [𝑥]1 or (ii) has
full ownership on the value assigned to 𝑥 and owns a prophecy equalizer on 𝜆𝜋.𝜋 𝑥
and 𝑣 . They satisfy the following properties.

timeless
(
VO𝑥 (𝑣, 𝑑)

) ValObs-ProphCtrl-Timeless
timeless

(
VO𝑥 (𝑣, 𝑑) ∗ PC(𝑥, 𝑣, 𝑑)

)
ValObs-ProphCtrl-Intro
True ⇛∅ ∃ 𝑥 s.t. 𝑥 .type = 𝑇 . VO𝑥 (𝑣, 𝑑) ∗ PC(𝑥, 𝑣, 𝑑)

ValObs-ProphCtrl-Agree
VO𝑥 (𝑣, 𝑑) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′) ⇒ 𝑣 = 𝑣 ′ ∧ 𝑑 = 𝑑 ′

ValObs-ProphCtrl-Update
VO𝑥 (𝑣, 𝑑) ∗ PC(𝑥, 𝑣, 𝑑) ⇛Nproph VO𝑥 (𝑣 ′, 𝑑 ′) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

ValObs-ProphCtrl-ProphToken
VO𝑥 (𝑣, 𝑑) ∗ PC(𝑥, 𝑣, 𝑑) ⇒ VO𝑥 (𝑣, 𝑑) ∗ [𝑥]1 ∗

(
[𝑥]1 −∗ PC(𝑥, 𝑣, 𝑑)

)
ValObs-ProphCtrl-Resolve

Dep(𝑣, 𝑌 )
VO𝑥 (𝑣, 𝑑) ∗ PC(𝑥, 𝑣, 𝑑) ∗ [𝑌 ]𝑞 ⇛Nproph 〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉 ∗ PC(𝑥, 𝑣, 𝑑) ∗ [𝑌 ]𝑞

ValObs-ProphCtrl-Preresolve
Dep(𝑤̂, 𝑌 )

VO𝑥 (𝑣, 𝑑) ∗ PC(𝑥, 𝑣, 𝑑) ∗ [𝑌 ]𝑞 ⇛Nproph

〈𝜋. 𝜋 𝑥 = 𝑤̂ 𝜋 〉 ∗ [𝑌 ]𝑞 ∗
(
∀ 𝑣 ′, 𝑑 ′. PE(𝑤̂, 𝑣 ′) −∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

)
ProphCtrl-ProphEqz
PC(𝑥, 𝑣, 𝑑) ⇒ PE(𝜆𝜋.𝜋 𝑥, 𝑣)

A value observer is timeless. A prophecy control itself is not timeless because of
the view shift of the prophecy equalizer. Still, the separating conjunction of a prophecy
control and a value observer is timeless (ValObs-ProphCtrl-Timeless).

ValObs-ProphCtrl-Intro says that, taking a fresh prophecy variable 𝑥 , we can cre-
ate a value observer VO𝑥 (𝑣, 𝑑) and a prophecy control PC(𝑥, 𝑣, 𝑑). When we have a
value observer and a prophecy control on the same prophecy variable, the values of
the two agree (ValObs-ProphCtrl-Agree) and the values can be simultaneously updated
(ValObs-ProphCtrl-Update). We can temporarily take out the full prophecy token out
of a prophecy control as long as we have a value observer on the same prophecy vari-
able (ValObs-ProphCtrl-ProphToken).

ValObs-ProphCtrl-Resolve says that, consuming a prophecy control and a value
observer on a prophecy variable 𝑥 , we can resolve 𝑥 to a value 𝑣 and reclaim a prophecy
control with the value 𝑣 , with help of a partial prophecy token on a dependency 𝑌 of 𝑣 .
We use this rule to resolve the prophecy variable when we release a unique reference
(see SWkn-UnqRef-Release in § 6.3.3). ValObs-ProphCtrl-Preresolve is an advanced
variant of the previous rule; in this lemma, we first resolve 𝑥 to some value 𝑤̂ and,
after we get a prophecy equalizer PE(𝑤̂, 𝑣 ′) for some 𝑣 ′, we achieve a prophecy control
with the value 𝑣 ′ and any depth 𝑑 ′. We use this rule for subdividing a unique reference
(e.g., Rfn-Split-UnqRef-Pair-R in §6.3.4). ProphCtrl-ProphEqz says that we can obtain
a prophecy equalizer out of a prophecy control. We use this rule to reclaim a borrowed
variable (seeWkn-UnqBor-PlnRef in §6.3.1 and SWkn-End-LocalLft-Reclaim in §6.1.2).
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Proof of ValObs-ProphCtrl-Timeless. The left-hand disjunct of the prophecy control, the
separating conjunction of [𝑥 � fown1/2(𝑣, 𝑑) ]

𝛾unq

unq
and [𝑥]1, is timeless. The prophecy

control cannot take the right-hand disjunct, because that side contains the full owner-
ship token [𝑥 � fown1(𝑣, 𝑑) ]

𝛾unq

unq, which is timeless and conflicts with the half owner-
ship token of the value observer.

Proof of ValObs-ProphCtrl-Intro. We take a fresh prophecy variable 𝑥 of the type𝑇 that
has not been used both by the proph RA at 𝛾proph and by the unq RA at 𝛾unq. We obtain
[𝑥]1 just like ProphToken-Intro. We know that the type𝑇 is inhabited because we have
𝑣 : ProphAsn → 𝑇 . We newly assign (𝑣, 𝑑) to 𝑥 in the unq RA to get a full ownership
token [𝑥 � fown1(𝑣, 𝑑) ]

𝛾unq

unq, which can be halved into two half ownership tokens.
Therefore, we finally obtain VO𝑥 (𝑣, 𝑑) and the right-hand disjunct of PC(𝑥, 𝑣, 𝑑). (We
can use the rule GOwn-Upd-Two for this update.)

Proof of Proph-Resolve. By agreement on the unq RA, since we have a value observer
VO𝑥 (𝑣, 𝑑), we know that the input prophecy control PC(𝑥, 𝑣, 𝑑) takes the left-hand dis-
junct. By consuming the full prophecy token [𝑥]1 of the prophecy control, by Proph-
Resolve, we resolve 𝑥 into 𝑣 to obtain a prophecy observation 〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉. We
obtain a prophecy control PC(𝑥, 𝑣, 𝑑) by constructing the right-hand disjunct: by con-
suming the half ownership token of the value observer, in the unq RA we change
the value assigned to 𝑥 into none and get the half ownership token for that; we get a
prophecy equalizer from the prophecy observation we have just obtained by ProphEqz-
ProphObs.

Proof of ValObs-ProphCtrl-Preresolve. First, like ValObs-ProphCtrl-Resolve, we con-
sume the full prophecy token [𝑥]1 of the prophecy control to obtain a prophecy ob-
servation 〈𝜋. 𝜋 𝑥 = 𝑤̂ 𝜋 〉. Also, out of two half ownership tokens of the value ob-
server and the left-hand disjunct of the prophecy control, we get a full ownership token
for the right-hand disjunct of a prophecy control. After we get a prophecy equalizer
PE(𝑤̂, 𝑣 ′), by ProphEqz-Modify, conjoining it with the prophecy observation we have
just obtained, we get a prophecy equalizer PE(𝜆𝜋.𝜋 𝑥, 𝑣 ′). Therefore, we can construct
a prophecy control PC(𝑥, 𝑣 ′, 𝑑 ′).

Proof of ProphCtrl-ProphEqz. When the input prophecy control takes the left-hand dis-
junct, by ProphEqz-ProphToken we turn the full prophecy token [𝑥]1 into a prophecy
equalizer. When the prophecy control takes the right-hand disjunct, we can just use
the prophecy equalizer it has.

UniqueReference Type Finally we define the semantic type of the unique reference
type &𝛼

unq 𝜏 .

b&𝛼
unq 𝜏c := b𝜏c × b𝜏c |&𝛼

unq 𝜏 | := 1 𝛽 v &𝛼
unq 𝜏 := 𝛽 v 𝛼 ∧ ⊲ 𝛽 v 𝜏

[𝔞] ◀ &𝛼
unq 𝜏 {𝑣 }𝑑 := 𝑑 > 0 ∗ ∃ 𝔩 s.t. 𝔩 = 𝔞. ∃ 𝑥 s.t. (.1) ◦ 𝑣 = 𝜆𝜋.𝜋 𝑥 .

VO𝑥 ((.0) ◦ 𝑣, 𝑑−1) ∗ &𝛼
full

(
∃ 𝔟̄, 𝑣 ′, 𝑑 ′. 𝔩 1↦→ 𝔟̄ ∗ 𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑 ′ ∗

▷◁ (𝑑 ′+1) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′)
)

[𝔞] ◁𝛽 &𝛼
unq 𝜏 {𝑣 }𝑑 := 𝑑 > 0 ∗ ∃ 𝔩 s.t. 𝔩 = 𝔞. ∃ 𝔟̄. ∃ 𝑥 s.t. Dep((.1) ◦ 𝑣, {𝑥 }) .
&𝛽u𝛼

frac

(
𝜆𝑞. [𝑥]𝑞

)
∗ ∗𝑖 &

𝛽u𝛼
frac

(
𝜆𝑞. 𝔩 + 𝑖 𝑞↦→ 𝔟̄[𝑖]

)
∗ ⊲

(
𝔟̄ ◁𝛽u𝛼 𝜏 { (.0) ◦ 𝑣 }𝑑−1

)
The ownership predicate [𝔞] ◀ &𝛼

unq 𝜏 {𝑣 }𝑑 of &𝛼
unq 𝜏 is quite tricky. The inner

predicate of the full borrow is existentially quantified over the cell values 𝔟̄, the 𝜋-
parametrized value 𝑣 ′ and the depth 𝑑 ′ of the target object, because a unique reference
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should be able to update the target object. In order to fix the inner parameters 𝑣 ′ and
𝑑 ′ to the expected values (.0) ◦ 𝑣 and 𝑑 − 1, the ownership predicate has a value ob-
server VO𝑥 ((.0) ◦ 𝑣, 𝑑 − 1). The inner predicate of the full borrow has the points-to
token 𝔩 1↦→ 𝔟̄, the ownership predicate on the target 𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑 ′ , the persistent time
receipt

▷◁ (𝑑 ′+1), and the prophecy control PC(𝑥, 𝑣 ′, 𝑑 ′). These objects are passed to the
borrowee when the borrowee that the unique reference originates from reclaims the
object. The borrowee obtains a prophecy observation 〈𝜋. 𝜋 𝑥 = 𝑣 ′𝜋 〉 by consuming the
returned prophecy control by ProphCtrl-ProphEqz and ProphEqz-Use. The full borrow
introduces contractiveness and thus we set the depth 𝑑 to 1 plus the depth of the target
object.

In the sharing predicate of &𝛼
unq 𝜏 , the 𝜋-parametrized pure value and the depth

of the target are simply fixed to (.0) ◦ 𝑣 and 𝑑 − 1, and the cell values 𝔟̄ are existen-
tially quantified outside borrows; the sharing predicate has fractured borrows on the
prophecy token [𝑥]𝑞 and on the memory ownership 𝔩

𝑞↦→ 𝔟̄ as well as the sharing pred-
icate on the target object. The value (.1) ◦ 𝑣 can be anything as long as it depends only
on the prophecy variable 𝑥 .

Proof of SemTy-Own-Shr of &𝛼
unq 𝜏 . Assume that the input is a full borrow under the life-

time 𝛽 of the ownership predicate of &𝛼
unq 𝜏 , i.e., &

𝛽
full

(
[𝔞] ◀ &𝛼

unq 𝜏 {𝑣 }𝑑
)
. After freeze

by FullBor-Freeze and split by FullBor-Split, we obtain a full borrow of the full borrow
of the ownership predicate of the form &𝛽

full &𝛼
full · · ·, which we unnest it into &𝛽u𝛼

full · · ·
in one logical step by FullBor-Unnest. We freeze its inner parameters 𝔟̄, 𝑣 ′ and 𝑑 ′ by
FullBor-Freeze and split it by FullBor-Split to get full borrows of the points-to token
&𝛽u𝛼

full (𝔩 1↦→ 𝔟̄), of the ownership predicate of the target object &𝛽u𝛼
full (𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑 ′), and

of the prophecy control &𝛽u𝛼
full PC(𝑥, 𝑣 ′, 𝑑 ′). We also have a full borrow on the value

observer &𝛽
full VO𝑥 ((.0) ◦𝑣, 𝑑−1). By agreement of the value observer and the prophecy

control (ValObs-ProphCtrl-Agree), 𝑣 ′ and 𝑑 ′ turn out to be equal to (.0) ◦ 𝑣 and 𝑑 − 1.
We merge the full borrows on the value observer and the prophecy control by

FullBor-Merge and then turn it into a full borrow on the full prophecy token &𝛽u𝛼
full [𝑥]1

by FullBor-Subdiv and ValObs-ProphCtrl-ProphToken, which is turned into a frac-
tured borrow &𝛽u𝛼

frac

(
𝜆𝑞. [𝑥]𝑞

)
by FullBor-FracBor. Also, the full borrow on the points-

to token is turned into a fractured borrow ∗𝑖 &
𝛽u𝛼
frac

(
𝜆𝑞. 𝔩 + 𝑖 𝑞↦→ 𝔟̄[𝑖]

)
by FullBor-Split

FullBor-FracBor. The full borrow on the ownership predicate of the target object is
transformed into the sharing predicate 𝔟̄ ◁𝛽u𝛼 𝜏 { (.0) ◦ 𝑣 }𝑑−1 in 𝑑 − 1 logical steps by
SemTy-Own-Shr on the target type 𝜏 .

Proof of SemTy-Own-ProphToken of &𝛼
unq 𝜏 . We temporarily access the content of the

full borrow of the ownership predicate of &𝛼
unq 𝜏 by FullBor-Access, stripping off the

later modality using one logical step. From the prophecy control PC(𝑥, 𝑣 ′, 𝑑 ′) we can
temporarily get the full token [𝑥]1 by ValObs-ProphCtrl-ProphToken, with help of the
value observer. Using 𝑑 − 1 logical steps, we obtain partial prophecy tokens on depen-
dencies of 𝑣 ′ out of the resource of the target 𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑−1 by SemTy-Own-ProphToken
of 𝜏 .

Proof of SemTy-Shr-ProphToken on &𝛼
unq 𝜏 . Accessing the content of the fractured bor-

row &𝛽u𝛼
frac

(
𝜆𝑞. [𝑥]𝑞

)
by FracBor-Access, we temporarily get [𝑥]𝑞 for some 𝑞. We strip

off the later modality of the target resource in one logical step and obtain expected
partial prophecy tokens out of the resource 𝔟̄ ◁𝛽u𝛼 𝜏 { (.0) ◦ 𝑣 }𝑑−1 in 𝑑 − 1 logical steps
by SemTy-Shr-ProphToken on 𝜏 .
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5.4 Recursive Type

In this section, we introduce the recursive type. We support recursion by contractiveness,
which includes contravariant and invariant recursion as well as covariant recursion.

We write SemTy𝑇,𝑛 for the subtype { 𝜏 : SemTy / b𝜏c = 𝑇 ∧ |𝜏 | = 𝑛 } for the seman-
tics types of the pure type 𝑇 and the size 𝑛.

The recursive type rec𝑇,𝑛 𝜎 is defined for a pure type 𝑇 : Type, a size 𝑛 : N, and a
contractive function over semantic types 𝜎 : SemTy𝑇,𝑛 → SemTy𝑇,𝑛 . We introduce some
notions for defining and using the recursive type.

Injection Type For convenience, we introduce the following semantic type in(𝜏, 𝑓 ),
whichwe dub the injection type, for any semantic type 𝜏 , pure type𝑇 : Type and injective
function 𝑓 : b𝜏c → 𝑇 .

bin(𝜏, 𝑓 )c := 𝑇 | in(𝜏, 𝑓 ) | := |𝜏 | 𝛼 v in(𝜏, 𝑓 ) := 𝛼 v 𝜏

𝔞̄ ◀ in(𝜏, 𝑓 ) {𝑣 }𝑑 := ∃ 𝑣 ′ s.t. 𝑣 = 𝑓 ◦ 𝑣 ′. 𝔞̄ ◀ 𝜏 {𝑣 ′ }𝑑

𝔞̄ ◁𝛼 in(𝜏, 𝑓 ) {𝑣 }𝑑 := ∃ 𝑣 ′ s.t. 𝑣 = 𝑓 ◦ 𝑣 ′. 𝔞̄ ◁𝛼 𝜏 {𝑣 ′ }𝑑

SemTy-Own-ProphToken and SemTy-Shr-ProphToken on in(𝜏, 𝑓 ) follow from the corre-
sponding properties on 𝜏 , the injectivity of 𝑓 , and Dep-Destruct.

The injection type satisfies the following rules on type equality.

TyEq-InjTy-Id
𝜏 = in(𝜏, id)

TyEq-InjTy-Comp
in(𝜏, 𝑔 ◦ 𝑓 ) = in(in(𝜏, 𝑓 ), 𝑔)

TyEq-InjTy-Comp-Id
𝑔 ◦ 𝑓 = id

𝜏 = in(in(𝜏, 𝑓 ), 𝑔)

Non-expansiveness and Contractiveness We say a function over semantic types
𝜎 : SemTy𝑇,𝑛 → SemTy𝑈 ,𝑚 (for some 𝑇, 𝑛,𝑈 ,𝑚) is non-expansive and write Nonex(𝜎) if
it is non-expansive as a function over the triple of the outliving, ownership and sharing
predicates. We say 𝜎 is contractive and write Contr(𝜎) if it is contractive from that
perspective.

We have the following rules on non-expansiveness and contractiveness.

Nonex-Id
Nonex(id)

Contr-Const
Contr(const𝜏)

Contr-Nonex
Contr(𝜎)
Nonex(𝜎)

Contr-BoxPtr
Nonex(𝜎)

Contr(box ◦ 𝜎)

Contr-ShrRef
Nonex(𝜎)

Contr(&𝛼
shr ◦ 𝜎)

Contr-UnqRef
Nonex(𝜎)

Contr(&𝛼
unq ◦ 𝜎)

Contr-Vec
Nonex(𝜎)

Contr(vec ◦ 𝜎)

Nonex-Pair
∀ 𝑖 . Nonex(𝜎𝑖)

Nonex(𝜆𝜏 . 𝜎0 𝜏 × 𝜎1 𝜏)

Contr-Pair
∀ 𝑖 . Contr(𝜎𝑖)

Contr(𝜆𝜏 . 𝜎0 𝜏 × 𝜎1 𝜏)

Nonex-Vrnt
∀ 𝑖 . Nonex(𝜎𝑖)

Nonex(𝜆𝜏 . 𝜎0 𝜏 + 𝜎1 𝜏)

Contr-Vrnt
∀ 𝑖 . Contr(𝜎𝑖)

Contr(𝜆𝜏 . 𝜎0 𝜏 + 𝜎1 𝜏)

Nonex-InjTy
Nonex(𝜎)

Nonex(𝜆𝜏 . in(𝜎 𝜏, 𝑓 ))

Contr-InjTy
Contr(𝜎)

Contr(𝜆𝜏 . in(𝜎 𝜏, 𝑓 ))

The pointer types box𝜏 , &𝛼
shr 𝜏 , &

𝛼
unq 𝜏 and vec𝜏 are all contractive. For the unique

reference type &𝛼
unq 𝜏 , the contractiveness comes from the contractiveness of the full

borrow &𝛼
full, as well as the later modality in the outliving and sharing predicates.

66



Recursive Type We define the recursive type rec𝑇,𝑛 𝜎 for a pure type 𝑇 : Type, a size
𝑛 : N, and a contractive function over semantic types 𝜎 : SemTy𝑇,𝑛 → SemTy𝑇,𝑛 as the
semantic type that satisfies the following recursive equation.

rec𝑇,𝑛 𝜎 := 𝜎 (rec𝑇,𝑛 𝜎 )

The existence and uniqueness of the solution is ensured by the contractiveness of 𝜎 (by
Banach’s fixed point theoremTheorem 2.1). Note that rec𝑇,𝑛 𝜎 is equal to 𝜎 (rec𝑇,𝑛 𝜎 ).

We introduce the following notation for convenience.

rec𝑇,𝑛 (𝜎, 𝑓 ) := rec𝑇,𝑛
(
𝜆𝜏 . in (𝜎 𝜏, 𝑓 )

)
Also, we omit the size (i.e., use the notation rec𝑇 𝜎 and rec𝑇 (𝜎, 𝑓 )) when the size infor-
mation is clear.

The recursive type satisfies the following properties on type equality.

TyEq-Rec
rec𝑇,𝑛 𝜎 = 𝜎 (rec𝑇,𝑛 𝜎 )

TyEq-Rec-InjTy
rec𝑇,𝑛 (𝜎, 𝑓 ) = in

(
𝜎 (rec𝑇,𝑛 (𝜎, 𝑓 ) ), 𝑓

)
The recursive type satisfies the following non-expansiveness and contractiveness

rules.

Nonex-Rec
∀𝜏 ′. Nonex(𝜆𝜏 .𝜎 𝜏 𝜏 ′)
Nonex

(
𝜆𝜏 . rec𝑇,𝑛 (𝜎 𝜏)

) Contr-Rec
∀𝜏 ′. Contr(𝜆𝜏 .𝜎 𝜏 𝜏 ′)
Contr

(
𝜆𝜏 . rec𝑇,𝑛 (𝜎 𝜏)

)
ExampleRecursive Types We introduce and discuss a few example recursive types.

Example 5.1 (List Type). The semantic type of the singly linked list type list𝜏 can be
defined as the following recursive type, using the list type List𝑇 of the metalogic.

list𝜏 := rec List b𝜏 c
(
𝜆𝜏 ′. 0 + 𝜏 × box𝜏 ′, inList

)
Here, we define inList : Unit +𝑇 × List𝑇 → List𝑇 as follows.

inList (inj0 ()) := nil inList (inj1(𝑣,𝑤)) := 𝑣 ::𝑤

The contractiveness condition is satisfied because the self reference is under the box
pointer box. The function inList has the following inverse outList.

outList nil := inj0 () outList (𝑣 ::𝑤) := inj1(𝑣,𝑤)

The following properties hold on list𝜏 .

TyEq-List
list𝜏 = in

(  0 + 𝜏 × box list𝜏, inList
)

blist𝜏c = List b𝜏c | list𝜏 | = |𝜏 | + 2 𝛼 v list𝜏 ⇔ 𝛼 v 𝜏

𝔞̄ ◀ list𝜏 {𝑣 }𝑑 ⇔ 𝔞̄ ◀  0 + 𝜏 × box list𝜏 {outList ◦ 𝑣 }𝑑

𝔞̄ ◁𝛼 list𝜏 {𝑣 }𝑑 ⇔ 𝔞̄ ◁𝛼  0 + 𝜏 × box list𝜏 {outList ◦ 𝑣 }𝑑

The property 𝛼 v list𝜏 ⇔ 𝛼 v 𝜏 on the outliving predicate holds by Löb induction: let
𝑃 be 𝛼 v list𝜏 ; by definition, 𝑃 is equivalent to 𝛼 v 𝜏 ∧ ⊲ 𝑃 ; so 𝛼 v 𝜏 is equivalent to
⊲ 𝑃 ⇒ 𝑃 , which is equivalent to 𝑃 by Löb induction (Löb).
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Example 5.2 (Recursion Under the Unique Reference Type). We can also construct a
recursive type with self reference under the unique reference type. For example, we
have the following irregular Peano number type mnat𝛼 whose self reference is under
a unique reference instead of a box pointer.

mnat𝛼 := recBNat
(
𝜆𝜏 . 0 + &𝛼

unq 𝜏, inBNat
)

Here, the metalogic type BNat is the following inductive binary tree type without node
data, having the data constructor inBNat.

inductive BNat := inBNat : BNat + BNat × BNat → BNat

Note that the unique reference type &𝛼
unq 𝜏 is not monotone over 𝜏 , which makes it

impossible to use the least fixed point of covariant induction to model recursive types
like mnat𝛼 .

Example 5.3 (Recursion Under the Recursive Type). We can construct a recursion type
with self reference under the recursive type. For example, we can construct the following
rose tree type rose𝜏 .

rose𝜏 := recRose b𝜏 c
(
𝜆𝜏 ′. 𝜏 × box list𝜏 ′, inRose

)
Here, the metalogic type Rose𝑇 is the following inductive type with the data construc-
tor inRose.

inductive Rose𝑇 := inRose : 𝑇 × List Rose𝑇 → Rose𝑇

The contractiveness of 𝜆𝜏 ′. 𝜏 × box list𝜏 ′ follows from Nonex-InjTy and Nonex-Rec and
Contr-BoxPtr.
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Chapter 6

A Refined Type System for Verifying Rust
Programs

In order to formalize and verify type-based translation of Rust programs into clean logic
models in the style of RustHorn, we introduce and semantically model a type system
for Rust that handles logic models for functional correctness, which we dub the refined
type system. In the refined type system, we mainly use a typing judgment equipped
with a logic model, which we call a refined typing judgment. The refined type system
is designed as a composable and flexible deduction system. Although the typing rules
are highly non-deterministic, once we get a deduction tree for typing, we can compute
the logic model in a straightforward way. Thanks to the semantic approach built on
the separation logic Iris, we can prove soundness of the refined type system just by
checking each deduction rule semantically, instead of checking the global behavior of
the system.

For simplicity and flexibility, we formalize the refined typing judgment only se-
mantically as a persistent predicate and treat each deduction rule as a lemma on them,
without introducing any syntactic structures for reasoning. We also do not provide al-
gorithms for type checking. In modeling the refined typing judgments, we use semantic
types (Chapter 5) to model type information, lifetime logic (Jung et al., 2018a) (explained
in §2.3) to handle lifetime information, and prophecy observations 〈𝜋. 𝜙𝜋 〉 to describe
the precondition and postcondition handling prophecy information.

The logic model of each operation is formalized as a (backward) predicate trans-
former, a function that maps each postcondition to some precondition, which is a stan-
dard technique used by various verification tools such as F* (Swamy et al., 2016). For
example, for the following expression of incrementing the target integer of a unique
reference and then releasing the unique reference, we get the following refined typing
judgment, where the last part is the predicate transformer (Example 6.3).

𝛼 p 𝔞: &𝛼
unq int ` 𝔞 � ∗𝔞 + 1;  p p 𝜆post, ((𝑛, 𝑛◦)) . 𝑛◦ = 𝑛 + 1 ⇒ post ()

Although the input-output relation is also a common representation for the postcondi-
tion used for verification methods like reduction to constrained Horn clauses (Greben-
shchikov et al., 2012; Bjørner et al., 2015), we can lift an input-output relation into a
predicate transformer in a natural way, as we see later in §6.1.2. We can translate Rust
programs into CHCs in a fairly straightforward way using our refined type system,
although we do not present a specific algorithm for that in this thesis for brevity.

In §6.1, we introduce the judgments used for the refined type system and basic rules
on them. We also introduce the function type in §6.1.4. In §6.2, we introduce refined
typing rules for basic types (excluding the unique reference type). In §6.3, we introduce
refined typing rules for the unique reference type, giving detailed proofs for some of
them. In §6.4, we present some examples of verifying functional correctness of Rust
programs using the refined typing rules. In §6.5 we discuss some related work.
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6.1 Judgments for the Refined Type System

We introduce the judgments used for the refined type system — the refined typing
judgment and the weakening, super weakening, copyability, subtyping, and access
judgments. We also introduce some basic rules on the judgments. These judgments
are semantically modeled as persistent predicates in the separation logic Iris. We also
introduce here the function type, which depends on the refined typing judgment.

6.1.1 Refined Typing Judgment and Its Variants

Variants of the Ownership Predicate We introduce the following variant of the
ownership predicate which hides the depth information.

𝔞̄ ◀ 𝜏 {𝑣 } := ∃𝑑. 𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ∗
▷◁ 𝑑

Here, we can use any depth 𝑑 for the ownership predicate 𝔞̄ ◀ 𝜏 {𝑣 }𝑑 as long as we
have a persistent time receipt

▷◁ 𝑑 , which witnesses that at least 𝑑 physical steps have
been passed.

We also introduce the following predicate that represents the resource for an object
which is borrowed under the lifetime 𝛼 .

𝔞̄ ◀†𝛼 𝜏 {𝑣 } := [†𝛼] ≡−∗Nlft
∃ 𝑣 ′. 𝔞̄ ◀ 𝜏 {𝑣 ′ } ∗ ⊲ PE(𝑣, 𝑣 ′)

After we know that the lifetime 𝛼 has ended, with update in one logical step, we get
the resource of the ownership predicate with some value 𝑣 ′ and a prophecy equalizer
under later ⊲ PE(𝑣, 𝑣 ′). If we can temporarily access a relevant partial prophecy token
by SemTy-Own-ProphToken, consuming the prophecy equalizer we can get a prophecy
observation 〈𝜋. 𝑣 𝜋 = 𝑣 ′𝜋 〉 by ProphEqz-Use.

We introduce the notion of an activity mode act: Act, which is of the form ! (unbor-
rowed) or †𝛼 (borrowed under the lifetime 𝛼 : Lft). We define the following variant of
the ownership predicate which is parametrized over an activity mode.

𝔞̄ ◀act 𝜏 {𝑣 } :=

{
𝔞̄ ◀ 𝜏 {𝑣 } (act = !)
𝔞̄ ◀†𝛼 𝜏 {𝑣 } (act = †𝛼)

Type and Lifetime Contexts A type context Γ is a sequence of items of the form
𝔞 :act 𝜏 , which represents an object of a cell value 𝔞: CellVal, an activity mode act: Act,
and a type 𝜏 : SemTy1. Here, SemTy1 denotes the subtype { 𝜏 : SemTy / |𝜏 | = 1 }, the
type for a semantic type whose size is 1. For an item of a type context, we just write 𝔞:
𝜏 for 𝔞 :! 𝜏 (the case act = !). Roughly speaking, a type context represents a sequence of
‘local variables’, but each ‘local variable’ is not given an explicit name.

A lifetime context Δ is simply a sequence of lifetimes ®𝛼 , each of which represents a
local lifetime, a lifetime such that we know it is alive and we have the right to end it.
The Iris proposition dΔe for a lifetime context Δ is defined as follows.

d ®𝛼e := ∗𝑖

(
[𝛼𝑖]1 ∗ ([𝛼𝑖]1 ≡⇛▶⊲ Nlft [†𝛼𝑖])

)
For each lifetime 𝛼𝑖 , it has (i) the full token [𝛼𝑖]1 and (ii) the step-taking view shift
[𝛼𝑖]1 ≡⇛▶⊲ Nlft [†𝛼𝑖] which can end the lifetime 𝛼𝑖 by consuming the full token (see also
the rule Lft-Intro).

For a lifetime 𝛼 and a lifetime context Δ = ®𝛽 , we write u(𝛼,Δ) for the intersection
of 𝛼, ®𝛽 .
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Refined Typing Judgment Now we introduce the refined typing judgment, which
has the following form.

𝛼 p Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre

It specifies the effect of executing the expression 𝑒 . The input objects, i.e., the objects
we have before the execution of 𝑒 , are represented by Γ. The immediate output object
of the expression 𝑒 has the type 𝜏 . The remaining output objects are represented by Γ′.

The lifetime contexts Δ,Δ′ represent the set of local lifetimes we have before and
after the execution of 𝑒 . The lifetime 𝛼 at the head is the lifetime that remains alive
during the execution of 𝑒 aside from the local lifetimes. Unlike RustBelt (Jung et al.,
2018a,b), we omit information about the outliving order 𝛼 v 𝛽 over lifetimes from this
judgment; for reasoning about the outliving order, we piggyback the inference rules of
the lifetime logic and Iris.

The last part pre represents the specification of the operation in terms of a predicate
transformer, whose first argument is the postcondition on the pure values of the output
objects and whose second argument is the tuple of the pure values of the input objects.
If we have Γ =

−−−−−→
𝔞 :act 𝜏 ′ and Γ′ =

−−−−−−→
𝔟 :act 𝜏 ′′, the predicate transformer pre has the following

type.
pre :

(
×(b𝜏c,−−−→b𝜏 ′′c) → Prop

)
→ ×(−−→b𝜏 ′c) → Prop

Here, ×(𝑇0, . . . ,𝑇𝑛−1) denotes the tuple type 𝑇0 × · · · ×𝑇𝑛−1.
The refined typing judgment is defined as the following persistent predicate.

𝛼 p Δ;
−−−−−→
𝔞 :act 𝜏 ′ ` 𝑒 : 𝜏 p Δ′;

−−−−−−→
𝔟 :act

′
𝜏 ′′ p pre := ∀post, 𝑞.{

∃ ®̂𝑣 .
⟨
𝜋. pre post (−→̂𝑣 𝜋 )

⟩
∗ ∗𝑖

(
[𝔞𝑖] ◀act𝑖 𝜏 ′𝑖 {𝑣𝑖 }

)
∗ bΔc ∗ [𝛼]𝑞

}
𝑒

{
𝔠. ∃ 𝑤̂,−→̂𝑣 ′ .⟨

𝜋. post (𝑤̂ 𝜋, −−→𝑣 ′𝜋 )
⟩
∗ [𝔠] ◀ 𝜏 {𝑤̂ } ∗ ∗𝑗

(
[𝔟𝑗 ] ◀act

′
𝑗 𝜏 ′′𝑗 {𝑣 ′𝑗 }

)
∗ bΔ′c ∗ [𝛼]𝑞

}
>

The Hoare triple is universally quantified over the postcondition post, as well as the
fraction 𝑞 for the lifetime 𝛼 . The input objects have the 𝜋-parametrized pure values
𝑣𝑖 ; we know that they satisfy the precondition pre post for any valid 𝜋 through the
prophecy observation

⟨
𝜋. pre post (−→̂𝑣 𝜋 )

⟩
. The output object have the 𝜋-parametrized

pure values 𝑤̂,
−→̂
𝑣 ′ , where 𝑤̂ is for the immediate output and

−→̂
𝑣 ′ are for the rest; we know

that they satisfy the postcondition for any valid 𝜋 through the prophecy observation⟨
𝜋. post (𝑤̂ 𝜋, −−→𝑣 ′𝜋 )

⟩
.

We also use the following variant of the refined typing judgment that ignores the
immediate output of the expression 𝑒 .

𝛼 p Δ; Γ ` 𝑒 p Δ′; Γ′ p pre :=
𝛼 p Δ; Γ ` 𝑒 :  1 p Δ′; Γ′ p pre ◦

(
𝜆post, (®𝑣) . post ((), ®𝑣)

)
Here, the function 𝜆post, (®𝑣) . post ((), ®𝑣) modifies the postcondition.

For a refined typing judgment, we can omit the parts ‘Δ;’ and ‘Δ′;’ if the input and
output lifetime contexts Δ,Δ′ are empty, and we can omit the first part 𝛼 p if 𝛼 is∞.

The refined typing judgment satisfies the following adequacy theorem on integers.

Theorem 6.1 (Adequacy of the Refined Typing Judgment on Integers). The following
is a tautology for any expression 𝑒 , predicate transformer pre and postcondition post.

−−−→
𝔞: int ` 𝑒 : int p p pre ⇒{

∃ ®𝑚 s.t. ∀ 𝑖 .𝑚𝑖 = 𝔞𝑖 . pre post ( ®𝑚)
}
𝑒
{
𝔟. ∃𝑛 s.t. 𝑛 = 𝔟. post 𝑛

}
>

Proof. By the definition of the integer type int (§5.2) and the rule ProphObs-Fact.
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Weakening and Super Weakening Judgments We also introduce the following
weakening judgment, which amounts to the refined typing judgment without execution.

𝛼 p Δ; Γ ` Δ′; Γ′ p pre

We use a predicate transformer, instead of just a function over pure values, which allows
us to impose a precondition on the weakening operation; it is later effectively used in
the rules likeWkn-PlnRef-Vrnt-Triple. The weakening judgment is defined as follows,
in a way analogous to the definition of the refined typing judgment.

𝛼 p Δ;
−−−−−→
𝔞 :act 𝜏 ′ ` Δ′;

−−−−−−→
𝔟 :act

′
𝜏 ′′ p pre := ∀post, 𝑞.(

∃ ®̂𝑣 .
⟨
𝜋. pre post (−→̂𝑣 𝜋 )

⟩
∗ ∗𝑖

(
[𝔞𝑖] ◀act𝑖 𝜏𝑖 {𝑣𝑖 }

)
∗ dΔe ∗ [𝛼]𝑞

)
⇛>

∃ 𝑤̂,−→̂𝑣 ′ .
⟨
𝜋. post (𝑤̂ 𝜋,−−→𝑣 ′𝜋 )

⟩
∗ ∗𝑗

(
[𝔟𝑗 ] ◀act

′
𝑗 𝜏 ′′𝑗 {𝑣 ′𝑗 }

)
∗ dΔ′e ∗ [𝛼]𝑞

We also introduce the following super weakening judgment.

𝛼 p Δ; Γ `# Δ′; Γ′ p pre

It is defined as follows.

𝛼 p Δ;
−−−−−→
𝔞 :act 𝜏 ′ ` Δ′;

−−−−−−→
𝔟 :act

′
𝜏 ′′ p pre := ∀post, 𝑞.(

∃ ®̂𝑣 .
⟨
𝜋. pre post (−→̂𝑣 𝜋 )

⟩
∗ ∗𝑖

(
[𝔞𝑖] ◀act𝑖 𝜏𝑖 {𝑣𝑖 }

)
∗ dΔe ∗ [𝛼]𝑞

)
≡⇛▶⊲ #

>

∃ 𝑤̂,−→̂𝑣 ′ .
⟨
𝜋. post (𝑤̂ 𝜋,−−→𝑣 ′𝜋 )

⟩
∗ ∗𝑗

(
[𝔟𝑗 ] ◀act

′
𝑗 𝜏 ′′𝑗 {𝑣 ′𝑗 }

)
∗ dΔ′e ∗ [𝛼]𝑞

Unlike the weakening judgment, we can use a super fancy update. We can perform a
superweakening judgment on let binding (Rfn-Let) and sequential execution (Rfn-Seq).

For weakening and super weakening judgments, we can omit the parts ‘Δ;’ and ‘Δ′;’
if the input and output lifetime contexts Δ,Δ′ are empty, and we can omit the first part
𝛼 p if 𝛼 is∞.

6.1.2 Basic Deduction Rules

Structural Rules We can modify a refined typing judgment both on the input and
output sides using weakening judgments.

Rfn-Wkn
𝛼 p Δ0; Γ0 ` 𝑒 : 𝜏 p Δ1; Γ1 p pre

𝛼 p Δ′
0; Γ

′
0 ` Δ0; Γ0 p pre0 ∀𝔞. 𝛼 p Δ1; Γ1 ` Δ′

1; Γ
′
1 p pre1

𝛼 p Δ′
0; Γ

′
0 ` 𝑒 : 𝜏 p Δ′

1; Γ
′
1 p pre0 ◦ pre ◦ pre1

We compose the predicate transformers of the three judgments. Likewise, we can mod-
ify a super weakening judgment by weakening judgments.

SWkn-Wkn
𝛼 p Δ0; Γ0 `# Δ1; Γ1 p pre

𝛼 p Δ′
0; Γ

′
0 ` Δ0; Γ0 p pre0 ∀𝔞. 𝛼 p Δ1; Γ1 ` Δ′

1; Γ
′
1 p pre1

𝛼 p Δ′
0; Γ

′
0 `# Δ′

1; Γ
′
1 p pre0 ◦ pre ◦ pre1

Also, weakening judgments can be composed.

Wkn-Comp
𝛼 p Δ; Γ ` Δ′; Γ′ p pre 𝛼 p Δ′; Γ′ ` Δ′′; Γ′′ p pre′

𝛼 p Δ; Γ ` Δ′′; Γ′′ p pre ◦ pre′
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We have the frame rules on the refined typing, weakening and super weakening
judgments.

Rfn-Frame
𝛼 p Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre

𝛼 p Δ; 𝔞 :act 𝜏, Γ ` 𝑒 : 𝜏 p Δ; 𝔞 :act 𝜏, Γ′ p
𝜆post, (𝑣, ®𝑤). pre

(
𝜆 (𝑤 ′, ®𝑤 ′′). post (𝑤 ′, 𝑣, ®𝑤 ′′)

)
( ®𝑤)

Wkn-Frame
𝛼 p Δ; Γ ` Δ′; Γ′ p pre

𝛼 p Δ; 𝔞 :act 𝜏, Γ ` Δ′; 𝔞 :act 𝜏, Γ′ p 𝜆post, (𝑣, ®𝑤). pre
(
𝜆 ( ®𝑤 ′) . post (𝑣, ®𝑤 ′)

)
( ®𝑤)

SWkn-Frame
𝛼 p Δ; Γ ` Δ′; Γ′ p pre

𝛼 p Δ; 𝔞 :act 𝜏, Γ `# Δ′; 𝔞 :act 𝜏, Γ′ p 𝜆post, (𝑣, ®𝑤) . pre
(
𝜆 ( ®𝑤 ′) . post (𝑣, ®𝑤 ′)

)
( ®𝑤)

We can move a local lifetime 𝛼 to the head lifetime if we do not end 𝛼 during the
execution.

Rfn-Lft-Local-Head
𝛽 u 𝛼 p Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre

𝛼 p 𝛽,Δ; Γ ` 𝑒 : 𝜏 p 𝛽,Δ′; Γ′ p pre

Wkn-Lft-Local-Head
𝛽 u 𝛼 p Δ; Γ ` Δ′; Γ′ p pre

𝛼 p 𝛽,Δ; Γ ` 𝛽,Δ′; Γ′ p pre

SWkn-Lft-Local-Head
𝛽 u 𝛼 p Δ; Γ `# Δ′; Γ′ p pre

𝛼 p 𝛽,Δ; Γ `# 𝛽,Δ′; Γ′ p pre

We can modify the head lifetime and the predicate transformer.

Rfn-Mono
𝛼 p Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre pre ¤⇒ pre′ 𝛽 v 𝛼

𝛽 p Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre′

Wkn-Mono
𝛼 p Δ; Γ ` Δ′; Γ′ p pre pre ¤⇒ pre′ 𝛽 v 𝛼

𝛽 p Δ; Γ ` Δ′; Γ′ p pre′

SWkn-Mono
𝛼 p Δ; Γ `# Δ′; Γ′ p pre pre ¤⇒ pre′ 𝛽 v 𝛼

𝛽 p Δ; Γ `# Δ′; Γ′ p pre′

Here, the relation pre′ ¤⇒ pre denotes the following pointwise implication.

pre′ ¤⇒ pre := ∀post, (®𝑣). pre′post (®𝑣) ⇒ pre post (®𝑣)

We can freely permute the type context, accordingly modifying the predicate trans-
former, by using the following rule as well as Wkn-Frame and Wkn-Comp a number of
times.

Wkn-Swap
𝔞 :act 𝜏, 𝔟 :act

′
𝜏 ′, Γ ` 𝔟 :act

′
𝜏 ′, 𝔞 :act 𝜏, Γ p 𝜆post, (𝑣, 𝑣 ′, ®𝑤) . post (𝑣 ′, 𝑣, ®𝑤)

We can also permute the lifetime context.

Wkn-Lft-Permute
Δ′ is a permutation of Δ

Δ; ` Δ′; p id
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We can throw away an object in the type context.

Wkn-Leak
𝔞 :act 𝜏 ` p 𝜆post, (𝑣). post ()

We can modify the lifetime limit of a borrowed object in the type context.

Wkn-Mono-BorLft
𝛼 v 𝛽

𝔞 :†𝛼 𝜏 ` 𝔞 :†𝛽 𝜏 p id

We have the reflexive super weakening judgment.

SWkn-Refl
𝛼 p Δ; Γ `# Δ; Γ p id

Binding We have the following binding rule based on an evaluation context.

Rfn-EvCtx
𝛼 p Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre ∀𝔞. 𝛼 p Δ′; 𝔞: 𝜏, Γ′ ` 𝐾 [𝔞] : 𝜏 ′ p Δ′′; Γ′′ p pre′

𝛼 p Δ; Γ ` 𝐾 [𝑒] : 𝜏 ′ p Δ′′; Γ′′ p pre ◦ pre′

The cell value we get from 𝑒 is universally quantified under the name 𝔞. Note that the
output type context Γ′′ cannot depend on the value 𝔞. The resulting predicate trans-
former pre ◦ pre′ is simply the composite of the given predicate transformers pre, pre′.

Based on Rfn-EvCtx, we can introduce the following binding rule for let binding
let 𝑎 = 𝑒 in 𝑒′.

Rfn-Let
𝛼 p Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre ∀𝔞. 𝛼 p Δ′; 𝔞: 𝜏, Γ′ `# Δ+; Γ+𝔞 p pre

+

□
(
𝑃 ⇒ ∀𝔞. 𝛼 p Δ+; Γ+𝔞 ` 𝑒′ [𝔞/𝑎] : 𝜏 ′ p Δ′′; Γ′′ p pre′

)
⊲ 𝑃

𝛼 p Δ; Γ ` let 𝑎 = 𝑒 in 𝑒′ : 𝜏 ′ p Δ′′; Γ′′ p pre ◦ pre+ ◦ pre′

We replace the program variable 𝑎 in the expression 𝑒′ with the evaluation result 𝔞 of
𝑒 . Using the physical step for let binding, we can perform the super fancy update of a
super weakening judgment. We can also strip off the later modality on any (persistent)
assumption 𝑃 , which can be used for strengthening the outliving assumptions on a
function (e.g., strengthening 𝛼 v box𝜏 into 𝛼 v 𝜏).

Since sequential execution 𝑒; 𝑒′ is defined as let = 𝑒 in 𝑒′, we can derive the
following rule for sequential execution from Rfn-Let.

Rfn-Seq
𝛼 p Δ; Γ ` 𝑒 p Δ′; Γ′ p pre 𝛼 p Δ′; Γ′ `# Δ+; Γ+ p pre+

□
(
𝑃 ⇒ 𝛼 p Δ+; Γ+ ` 𝑒′ : 𝜏 ′ p Δ′′; Γ′′ p pre′

)
⊲ 𝑃

𝛼 p Δ; Γ ` 𝑒; 𝑒′ : 𝜏 ′ p Δ′′; Γ′′ p pre ◦ pre+ ◦ pre′

Concurrency We have the following refined typing rule for the concurrent execu-
tion 𝑒 pp 𝑒′.

Rfn-Concur
𝛼 p Δ; Γ ` 𝑒 : 𝜏 p Δ+; Γ+ p pre 𝛼 p Δ′; Γ′ ` 𝑒′ p Δ′

+; Γ
′
+ p pre

′

𝛼 p Δ,Δ′; Γ, Γ′ ` 𝑒 pp 𝑒′ : 𝜏 p Δ+,Δ
′
+; Γ+, Γ

′
+ p 𝜆post, (®𝑣, ®𝑣 ′) .

pre
(
𝜆 ( ®𝑤) . ∀ ®𝑤 ′. post ( ®𝑤, ®𝑤 ′)

)
(®𝑣) ∧ pre′

(
𝜆 ( ®𝑤 ′). ∀ ®𝑤. post ( ®𝑤, ®𝑤 ′)

)
( ®𝑣 ′)

When we have the postcondition post on the outputs of both 𝑒 and 𝑒′, we can let the
postcondition on the outputs of 𝑒 be 𝜆 ( ®𝑤) . ∀ ®𝑤 ′. post ( ®𝑤, ®𝑤 ′) and of 𝑒′ be 𝜆 ( ®𝑤 ′) . ∀ ®𝑤.
post ( ®𝑤, ®𝑤 ′). We can prove this rule using Hoare-Concur.
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Manipulating Local Lifetimes We have the following rule for introducing a new
local lifetime.

Rfn-Intro-LocalLft
∀𝛼. 𝛽 p 𝛼,Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre

𝛽 p Δ; Γ ` 𝑒 : 𝜏 p Δ′; Γ′ p pre

This rule follows from Lft-Intro, which acquires a full lifetime token [𝛼]1 and a step-
taking view shift [𝛼]1 ≡⇛▶⊲ > [†𝛼] for some lifetime 𝛼 . To eliminate existential quantifica-
tion over 𝛼 , we need the universal quantifier over the lifetime 𝛼 in the assumption of
the rule Rfn-Intro-LocalLft. The lifetime and type contexts Δ,Δ′, Γ, Γ′ and the type 𝜏
cannot depend on the lifetime 𝛼 ; in particular, Δ′ cannot contain 𝛼 .

We can borrow objects using local lifetimes. Later we introduce the rules for bor-
rowing (e.g., SWkn-ShrBor-BoxPtr, Wkn-UnqBor-BoxPtr, Wkn-UnqBor-UnqRef).

For a local lifetime 𝛼 , we have a full lifetime token [𝛼]1 and a step-taking view shift
[𝛼]1 ≡⇛▶⊲ Nlft [†𝛼].

After we get [†𝛼], we can reclaim a borrowed object using the following lemma.

Raw-Reclaim
[†𝛼] 𝛽 v 𝜏

[𝔞] ◀†𝛼 𝜏 {𝑣 } ∗ [𝛽]𝑞 ⇛Nlft ∃𝑑.▷◁ 𝑑 ∗ |≡⇛▶⊲ 𝑑+1
Nlft+Nproph

(
∃ 𝑣 ′. [𝔞] ◀ 𝜏 {𝑣 ′ } ∗ 〈𝜋. 𝑣 𝜋 = 𝑣 ′𝜋 〉

)
Although the 𝜋-parametrized value changes from 𝑣 to 𝑣 ′, the prophecy observation
〈𝜋. 𝑣 𝜋 = 𝑣 ′𝜋 〉 tells us that 𝑣 and 𝑣 ′ are the same for valid prophecy assignments.

Proof. From [†𝛼] and 𝛼 ′ v 𝛼 , we obtain the dead-lifetime token [†𝛼 ′] by LftIncl-
DeadLft. Using it, we turn the borrowed ownership predicate 𝔞̄ ◀†𝛼 ′

𝜏 {𝑣 } (defined in
§ 6.1.1) into an ownership predicate 𝔞̄ ◀ 𝜏 {𝑣 ′ } and a prophecy equalizer under later
⊲ PE(𝑣, 𝑣 ′), for some 𝜋-parametrized value 𝑣 ′. The ownership predicate can be decom-
posed into 𝔞̄ ◀ 𝜏 {𝑣 ′ }𝑑 and a persistent time receipt

▷◁ 𝑑 for some depth 𝑑 . We spend
one logical step to strip off the later modality on the prophecy equalizer PE(𝑣, 𝑣 ′).

By SemTy-Own-ProphToken, we temporarily take out from the ownership predicate
a partial prophecy token on some dependency 𝑋 of 𝑣 ′ in 𝑑 logical steps, with help of
a partial lifetime token on 𝜏 . By consuming the prophecy equalizer with help of the
partial prophecy token by ProphEqz-Use, we get a prophecy observation 〈𝜋. 𝑣 𝜋 = 𝑣 ′𝜋 〉.

Using Raw-Reclaim, we can prove the following refined typing rule for ending a
local lifetime 𝛼 and reclaiming objects borrowed under 𝛼 .

SWkn-End-LocalLft-Reclaim
∀ 𝑖 . 𝛽 v 𝜏𝑖

𝛽 p 𝛼 ;
−−−−→
𝔞 :†𝛼 𝜏 `# −−→𝔞: 𝜏 p id

Input-Output Relations and Predicate Transformers An input-output relation is
a common representation of the postcondition of functions and programs, which is used
in verification methods like reduction to constrained Horn clauses (Grebenshchikov
et al., 2012; Bjørner et al., 2015).

We can lift an input-output relation 𝑅 : 𝑇 →𝑈 → Prop (where𝑇 and𝑈 respectively
represent the input and the output) into the following (backward) predicate transformer
d𝑅e : (𝑈 → Prop) →𝑇 → Prop.

d𝑅e := 𝜆post, 𝑣 . ∀𝑤. 𝑅 𝑣 𝑤 ⇒ post𝑤
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Various operations on predicate transformers correspond to natural operations on
input-output relations through the lift function.

d𝑅e ◦ d𝑅′e =
⌈
𝜆𝑢,𝑤 . ∃ 𝑣 . 𝑅 𝑢 𝑣 ∧ 𝑅′𝑣 𝑤

⌉
𝜆post, 𝑣 . post (𝑓 𝑣) =

⌈
𝜆𝑣,𝑤 . 𝑤 = 𝑓 𝑣

⌉
𝜆post, 𝑣 . 𝜙 𝑣 ⇒ d𝑅e post 𝑣 =

⌈
𝜆𝑣,𝑤 . 𝜙 𝑣 ∧ 𝑅 𝑣 𝑤

⌉
𝜆post, 𝑣 . d𝑅e post 𝑣 ∧ d𝑅′e post 𝑣 =

⌈
𝜆𝑣,𝑤 . 𝑅 𝑣 𝑤 ∨ 𝑅′𝑣 𝑤

⌉
Composition of predicate transformers amounts to relational composition of input-
output relations. Passing a value transformed by a function 𝑓 to the postcondition in
the predicate transformer amounts to the relational graph of 𝑓 used as the input-output
relation. Adding an assumption𝜙 𝑣 on the input 𝑣 in the predicate transformer amounts
to adding the postcondition 𝜙 𝑣 in the input-output relation. Conjunction of predicate
transformers amounts to disjunction of input-output relations.

6.1.3 Other Judgments

Copyability Judgment We introduce the copyability judgment 𝜏 copy, which is de-
fined as the following persistent predicate.

𝜏 copy := ∀ 𝔞̄, 𝑣, 𝑑, 𝛼 . □
(
𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ⇔ 𝔞̄ ◁𝛼 𝜏 {𝑣 }𝑑

)
It simply means that the the ownership and sharing predicates of the type 𝜏 are equiv-
alent.

By the persistence of the sharing predicate, it allows us to duplicate the ownership
predicate, i.e., the following lemma holds.

Raw-Copy
𝜏 copy

𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ⇒ 𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ∗ 𝔞̄ ◀ 𝜏 {𝑣 }𝑑

Using this lemma, we can prove the following refined typing rule for copying an un-
borrowed object of a copyable type.

Wkn-Copy
𝜏 copy

𝔞: 𝜏 ` 𝔞: 𝜏, 𝔞: 𝜏 p 𝜆post, (𝑣) . post (𝑣, 𝑣)

It follows from Raw-Copy.
The integer type int, the invalid-data type  𝑛 and the shared reference type &𝛼

shr 𝜏
are copyable (Copy-Int, Copy-Invalid, Copy-ShrRef). We have also structural copyability
rules (Copy-Pair, Copy-Vrnt, Copy-InjTy).

Types like the box pointer type box𝜏 , the vector type vec𝜏 and the unique reference
type &𝛼

unq 𝜏 are not copyable.

Subtyping Judgment We introduce the notion of an access mode acc: Acc, which is
either own (ownership) or shr(𝛼) (sharing under the lifetime 𝛼).

The subtyping judgment has the following form.

𝜏 vacc 𝜏 ′ p 𝑓

We transform an object typed 𝜏 into an object typed 𝜏 ′ using the value transformer 𝑓 :
b𝜏c → b𝜏 ′c. When we apply subtyping, letting 𝑣 be the pure value of the input object,
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the pure value of the output object is 𝑓 𝑣 . We also require that the types 𝜏, 𝜏 ′ should
have the same size (i.e., satisfy |𝜏 | = |𝜏 ′ |).

Now the subtyping judgment is defined as the follows.

𝜏 vown 𝜏 ′ p 𝑓 := ∀ 𝔞̄, 𝑣, 𝑑 . □
(
𝔞̄ ◀ 𝜏 {𝑣 }𝑑 ⇒ 𝔞̄ ◀ 𝜏 ′ { 𝑓 ◦ 𝑣 }𝑑

)
𝜏 vshr(𝛼 ) 𝜏 ′ p 𝑓 := ∀ 𝔞̄, 𝑣, 𝑑 . □

(
𝔞̄ ◁𝛼 𝜏 {𝑣 }𝑑 ⇒ 𝔞̄ ◁𝛼 𝜏 ′ { 𝑓 ◦ 𝑣 }𝑑

)
When the access mode acc is own, we work on the ownership predicate, and wheen it
is shr(𝛼), we work on the sharing predicate with the lifetime set to 𝛼 .

By applying the subtyping judgment, we can modify the type and value of an object
in the type context.

Wkn-Subty
𝜏 vown 𝜏 ′ p 𝑓

𝔞 :act 𝜏 ` 𝔞 :act 𝜏 ′ p 𝜆post, (𝑣) . post (𝑓 𝑣)

Any type is a subtype of itself under the identity transformer.

Subty-Id
𝜏 vacc 𝜏 p id

We can compose subtyping judgments, accordingly composing the value transformers.

Subty-Comp
𝜏 vacc 𝜏 ′ p 𝑓 𝜏 ′ vacc 𝜏 ′′ p 𝑔

𝜏 vacc 𝜏 ′′ p 𝑔 ◦ 𝑓

Access Judgment We introduce the following access judgment.

𝛼 p 𝔞 : 𝜏+/𝜏 ′+ ` 𝑒 : 𝑞. 𝜏 (𝑞)/𝜏 ′ (𝑞) p get; set

The meaning of the expression is as follows. First we have an object of the cell value
𝔞 and the type 𝜏+. Out of this object, by performing the expression 𝑒 , we can take out
a sub-object of the type 𝜏𝑞 for some fraction 𝑞. (The part ‘𝑞.’ binds the variable 𝑞.) The
fraction can be defined by the plain reference type introduced above. We can freely
update the sub-object. After we get back the sub-object with a new type 𝜏 ′(𝑞), we
retrieve the original object with the updated type 𝜏 ′+. The initial value of the sub-object
is specified by the getter function get : b𝜏+c → b𝜏 (1)c, which takes the pure value of
the original object. The value of the retrieved object is specified by the setter function
set : b𝜏+c → b𝜏 ′(1)c → b𝜏 ′+c, which takes the pure value of the original object and the
returned sub-object. The use of the getter and setter functions here is closely related to
the notion of functional lenses used in functional programming (Foster et al., 2007).

Here, we assume that all the types 𝜏+, 𝜏+′, 𝜏 (𝑞), 𝜏 ′(𝑞) have the size 1 (regardless of 𝑞)
and that the pure types b𝜏 (𝑞)c and b𝜏 ′(𝑞)c are constant over the fraction 𝑞. The lifetime
𝛼 is ensured to be alive during this access.

The access judgment is defined as the following persistent predicate.

𝛼 p 𝔞 : 𝜏+/𝜏 ′+ ` 𝑒 : 𝑞. 𝜏 (𝑞)/𝜏 ′ (𝑞) p get; set := ∀𝑞′.{
[𝔞] ◀ 𝜏+ {𝑣 } ∗ [𝛼]𝑞′

}
𝑒

{
𝔟. ∃𝑞. [𝔟] ◀ 𝜏 (𝑞) {𝜆𝜋.get (𝑣 𝜋) } ∗

∀𝑤̂ .
(
[𝔟] ◀ 𝜏 ′(𝑞) {𝑤̂ } ≡−∗> [𝔞] ◀ 𝜏 ′+ {𝜆𝜋. set (𝑣 𝜋) (𝑤̂ 𝜋) } ∗ [𝛼]𝑞′

) }
>

We introduce the following shorthand on the access judgment. We can omit the
part ‘𝛼 p ’ when the lifetime 𝛼 is∞. We can omit the part ‘𝑞.’ if the types 𝜏 (𝑞) and 𝜏 ′(𝑞)
do not depend on the fraction 𝑞.
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We can temporarily take out a full plain reference out of a box pointer and a unique
reference (Acc-BoxPtr-PlnRef, Acc-UnqRef-PlnRef) and a fractional plain reference out
of a shared reference (Acc-ShrRef-PlnRef). We can also subdivide plain references (e.g.,
Acc-Deref-PlnRef-BoxPtr, Acc-PlnRef-Pair-L).

By the following rule, we can use an access judgment whose expression 𝑒 is just the
original address 𝔞.

Rfn-Acc-Same
𝛼 p 𝔞 : 𝜏+/𝜏 ′+ ` 𝔞 : 𝑞. 𝜏 (𝑞)/𝜏 ′ (𝑞) p get; set

∀𝑞. 𝛼 p Δ; 𝔞: 𝜏 (𝑞), Γ ` 𝑒∗ : 𝜏∗ p Δ′; 𝔞: 𝜏 ′(𝑞), Γ′ p pre
𝛼 p Δ; 𝔞: 𝜏+, Γ ` 𝑒∗ : 𝜏∗ p Δ′; 𝔞: 𝜏 ′+, Γ

′ p
𝜆post, (𝑣, ®𝑤) . pre

(
𝜆 (𝑣 ′, ®𝑤 ′) . post (set 𝑣 𝑣 ′, ®𝑤 ′)

)
(get 𝑣, ®𝑤)

The assumption refined typing judgment is universally quantified over the fraction 𝑞
and has 𝔞: 𝜏 (𝑞) in the inputs and 𝔞: 𝜏 ′(𝑞) in the outputs. The predicate transformer pre
of the assumption judgment is modified using the getter and setter functions. Note that
we can use the reverse direction of the rule Hoare-Val to prove this rule.

The following rule is a variant of Rfn-Acc-Same for an access judgment whose ex-
pression may not be just the original value.

Rfn-Acc-Expr
𝛼 p 𝔞 : 𝜏+/𝜏 ′+ ` 𝑒 : 𝑞. 𝜏 (𝑞)/𝜏 ′ (𝑞) p get; set

∀𝔟, 𝑞. 𝛼 p Δ; 𝔟: 𝜏 (𝑞), Γ ` 𝐾∗ [𝔟] : 𝜏∗ p Δ′; 𝔟: 𝜏 ′(𝑞), Γ′ p pre
𝛼 p Δ; 𝔞: 𝜏+, Γ ` 𝐾∗ [𝑒] : 𝜏∗ p Δ′; 𝔞: 𝜏 ′+, Γ

′ p
𝜆post, (𝑣, ®𝑤) . pre

(
𝜆 (𝑣 ′, ®𝑤 ′) . post (set 𝑣 𝑣 ′, ®𝑤 ′)

)
(get 𝑣, ®𝑤)

We have the following reflexive access judgment.

Acc-Id
𝔞 : 𝜏/𝜏 ′ ` 𝔞 : 𝜏/𝜏 ′ p id; 𝜆𝑣,𝑤 .𝑤

We can modify the head lifetime of the access judgment.

Acc-Mono-Lft
𝛼 p 𝔞 : 𝜏+/𝜏 ′+ ` 𝔞 : 𝑞. 𝜏 (𝑞)/𝜏 ′ (𝑞) p get; set 𝛽 v 𝛼

𝛽 p 𝔞 : 𝜏+/𝜏 ′+ ` 𝔞 : 𝑞. 𝜏 (𝑞)/𝜏 ′ (𝑞) p get; set

We can compose access judgments.

Acc-Comp
𝛼 p 𝔞 : 𝜏++/𝜏 ′++ ` 𝑒 : 𝑞. 𝜏+ (𝑞)/𝜏 ′+ (𝑞) p get; set

∀𝔟, 𝑞. 𝛼 p 𝔟 : 𝜏+ (𝑞)/𝜏 ′+ (𝑞) ` 𝐾 [𝔟] : 𝜏 (𝑞)/𝜏 ′ (𝑞) p get′; set′

𝛼 p 𝔞 : 𝜏++/𝜏 ′++ ` 𝐾 [𝑒] : 𝑞. 𝜏 (𝑞)/𝜏 ′ (𝑞) p get′ ◦ get; 𝜆𝑣,𝑤 . set 𝑣
(
set′ (get′𝑣)𝑤

)
Acc-Comp-Var

𝛼 p 𝔞 : 𝜏++/𝜏 ′++ ` 𝑒 : 𝑞. 𝜏+ (𝑞)/𝜏 ′+ (𝑞) p get; set
∀𝔟, 𝑞. 𝛼 p 𝔟 : 𝜏+ (𝑞)/𝜏 ′+ (𝑞) ` 𝐾 [𝔟] : 𝑞′. 𝜏 (𝑞

′ )/𝜏 ′ (𝑞′ ) p get′; set′

𝛼 p 𝔞 : 𝜏++/𝜏 ′++ ` 𝐾 [𝑒] : 𝑞′. 𝜏 (𝑞
′ )/𝜏 ′ (𝑞′ ) p get′ ◦ get; 𝜆𝑣,𝑤 . set 𝑣

(
set′ (get′𝑣)𝑤

)
The getter and setter functions are composed in the standard way. In Acc-Comp the
second access judgment keeps the fraction𝑞 given by the first access judgment, whereas
in Acc-Comp-Var the second access judgment introduces a new fraction 𝑞′.
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6.1.4 Function Type

Now that the refined typing judgment is defined, we can introduce the function type. It
has the following form.

∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼

The function type is universally quantified over the lifetime parameters ®𝛼 . We omit the
assumptions on inclusion among these lifetimes; we virtually don’t lose expressivity
because we can use conjunction over lifetimes. The input types are −→𝜏 ®𝛼 and the output
type is 𝜏 ′®𝛼 , which depends on the lifetime parameters ®𝛼 . The input and output types
should have the size 1 regardless of ®𝛼 and the pure types of the input and output types
should be constant over ®𝛼 .

The function type is modeled as follows.

b∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 c :=
(
×(b𝜏 ′®∞c) → Prop

)
→ ×(−−−→b𝜏 ®∞c) → Prop

|∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 | := 1 𝛽 v ∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 := True

[𝔞] ◀ ∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 {𝑣 }𝑑 = [𝔞] ◁𝛼 ′ ∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 :=

∃ 𝑓 , ®𝑏, 𝑒. let 𝔣 = fn 𝑓 ( ®𝑏) {𝑒 } in 𝔞 = 𝔣 ∗ ∃ pre s.t. 𝑣 = const pre.

∀ ®𝛼, ®𝔟, 𝛽 . ⊲ □
(
𝛽 v (−→𝜏 ®𝛼 ) ⇒ 𝛽 p

−−−→
𝔟: 𝜏 ®𝛼 ` 𝑒 [𝔣/𝑓 , −−→𝔟/𝑏] : 𝜏 ′®𝛼 p p pre

)
Here, we introduce the following shorthand.

𝛼 v (®𝜏) := ∀ 𝑖 . 𝛼 v 𝜏𝑖

The 𝜋-parametrized pure value for a function is a constant function on a predicate trans-
former pre. The cell value of a function is some function value 𝔣. For any lifetime pa-
rameters ®𝛼 , a function call 𝔣(®𝔟) on any inputs ®𝔟 typed −→𝜏 ®𝛼 should output an object typed
𝜏 ′®𝛼 under some lifetime 𝛽 and the predicate transformer pre, which is specified by the
refined typing judgment. The lifetime 𝛽 is ensured to be outlived by all the input types.
The refined typing judgment in the ownership and sharing predicates is under the later
modality for contractiveness over the input and output types −→𝜏 ®𝛼 , 𝜏 ′®𝛼 . We can strip off the
later modality at the physical step of the function call (Hoare-FnCall).

The function type satisfies the following contractiveness rule.

Contr-Fn
∀ 𝑖, ®𝛼. Nonex(𝜎 ®𝛼,𝑖) ∀ ®𝛼. Nonex(𝜎 ′®𝛼 )

Contr
(
𝜆𝜏 . ∀ ®𝛼. fn(−−→𝜎 ®𝛼 𝜏) � 𝜎 ′®𝛼 𝜏

)
For the function type ∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 , we also use the following shorthand. If the

sequence of lifetime parameters ®𝛼 is empty, we can omit the part ‘∀ ®𝛼. ’ of the function
type. If the subscript lifetime 𝛽 ®𝛼 is constantly ∞, we can omit it. Also, if the output
type 𝜏 ′®𝛼 is  1, we can omit the part ‘�𝜏 ′®𝛼 ’.
6.2 Specifying and Verifying Operations on Basic Types

We introduce refined typing rules on the judgments defined in §6.1 for the semantic
types defined in §5.2, §5.4 and §6.1.4.

Ths refined typing rules for the unique reference type are introduced later in §6.3.
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6.2.1 Value Types

Integer Type We have the following refined typing rules on the integer type int
(§5.2).

Rfn-Val-Int
` 𝑛 : int p p 𝜆post, () . post (𝑛)

Rfn-IntOp
𝔞: int, 𝔟: int ` 𝔞 iop 𝔟 : int p p 𝜆post, (𝑚,𝑛). post (𝑚 iop 𝑛)

Rfn-IntRel
𝔞: int, 𝔟: int ` 𝔞 irel 𝔟 : bool p p 𝜆post, (𝑚,𝑛) . post (𝑚 irelbool 𝑛)

Rfn-NdInt
` ndint : int p p 𝜆post, () . ∀𝑛. post (𝑛)

Copy-Int
int copy

Rfn-Val-Int, Rfn-IntOp, Rfn-IntRel, and Rfn-NdInt specify an expression on a constant
integer, an integer operation, an integer relation, and a non-deterministic integer (iop
can be +,−,× and irel can be ≤, <,=, for example). Copy-Int enables copying of an
integer.

Here, we elaborate the proof of Rfn-IntOp.

Proof of Rfn-IntOp. It suffices to prove that the following is a tautology.{
∃ 𝑣, 𝑣 ′.

⟨
𝜋. post (𝑣 𝜋 iop 𝑣 ′𝜋)

⟩
∗ [𝔞] ◀ int {𝑣 } ∗ [𝔟] ◀ int {𝑣 ′ }

}
𝔞 iop 𝔟

{
𝔠. ∃ 𝑤̂ .

⟨
𝜋. post (𝑤̂ 𝜋)

⟩
∗ [𝔠] ◀ int {𝑤̂ }

}
By the model of the integer type, the cell values 𝔞 and 𝔟 should be some integers 𝑚
and 𝑛. Also, the 𝜋-parametrized pure values 𝑣 and 𝑣 ′ should be const𝑚 and const𝑛.
So by Hoare-IntOp, we can execute 𝔞 iop 𝔟 and obtain a cell value 𝔠, which is equal
to the integer 𝑙 := 𝑚 iop 𝑛. We can set 𝑤̂ to const 𝑙 . Now we have [𝔠] ◀ int {𝑤̂ } by
the model of the integer type. We also get

⟨
𝜋. post (𝑤̂ 𝜋)

⟩
, because it is equivalent to⟨

𝜋. post (𝑣 𝜋 iop 𝑣 ′𝜋)
⟩
by ProphObs-Wkn.

Boolean Type We have the following rules on the boolean type bool (§5.2).

Rfn-Val-Bool
` bl: bool p p 𝜆post, () . post (bl)

Copy-Bool
bool copy

Rfn-If
∀ bl. 𝛼 p Δ; Γ ` 𝑒bl : 𝜏 p Δ′; Γ′ p prebl

𝛼 p Δ; 𝔞: bool, Γ ` if 𝔞 {𝑒tt } else {𝑒ff } : 𝜏 p Δ′; Γ′ p 𝜆post, (bl, ®𝑣) . prebl post (®𝑣)

Rfn-Val-Bool specifies a boolean-value expression. Copy-Bool enables copying of a
boolean value. Rfn-If specifies conditional branching by a boolean value; note that the
resulting predicate transformer is equivalent to the following.

𝜆post, (bl, ®𝑣). (bl = tt ⇒ prett post (®𝑣)) ∧ (bl = ff ⇒ preff post (®𝑣))

We can reinterpret a boolean value as an integer value.

Subty-Bool-Int
bool vacc int p 𝜆bl. if bl {1} else {0}
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Invalid-Data Type We have the following rules on the invalid-data type  𝑛 (§5.2).
Copy-Invalid 𝑛 copy

Subty-Invalid
𝜏 vacc  |𝜏 | p 𝜆𝑣 . ()

Copy-Int enables copying of invalid data. Subty-Invalid invalidates an object of any
type, turning the pure value into () regardless of the original pure value 𝑣 .

6.2.2 Basic Pointer Types

Box Pointer Type Now we introduce refined typing rules for the box pointer type
box𝜏 (§5.2).

By allocating a new memory block of the size 𝑛, we can create a box pointer to
uninitialized, invalid data of the size 𝑛.

Rfn-Alloc
` alloc𝑛 : box 𝑛 p p 𝜆post, () . post (())

We can free the memory block of a box pointer.
Rfn-Free
𝔞: box𝜏 ` free𝔞 p p 𝜆post (𝑣). post ()

We can temporarily take out a full plain reference from a box pointer. We may
change the target type when we put back a full reference, as long as the size of the
target type does not change.

Acc-BoxPtr-PlnRef
|𝜏 | = |𝜏 ′ |

𝔞: box𝜏/box𝜏 ′ ` 𝔞: &1 𝜏/&1 𝜏
′ p id; 𝜆𝑣,𝑤 .𝑤

It follows from the following lemma.
Raw-BoxPtr-PlnRef

|𝜏 | = |𝜏 ′ |
[𝔞] ◀ box𝜏 {𝑣 } ⇒
[𝔞] ◀ &1 𝜏 {𝑣 } ∗ ∀ 𝑣 ′.

(
[𝔞] ◀ &1 𝜏

′ {𝑣 ′ } −∗ [𝔞] ◀ box𝜏 ′ {𝑣 ′ }
)

We can also subdivide a plain reference to a box pointer.
Acc-Deref-PlnRef-BoxPtr

|𝜏 | = |𝜏 ′ |
𝔞 : &𝑞 box𝜏/&𝑞 box𝜏 ′ ` ∗𝔞 : &1 𝜏/&1 𝜏

′ p id; 𝜆𝑣,𝑤 .𝑤

It follows from the following lemma.
Raw-Subdiv-PlnRef-BoxPtr

|𝜏 | = |𝜏 ′ |
[𝔩] ◀ &𝑞 box𝜏 {𝑣 } ≡⇛▶⊲ ∅ ∃ 𝔟. 𝔩

𝑞↦→ 𝔟 ∗ [𝔟] ◀ &1 𝜏 {𝑣 } ∗
∀ 𝑣 ′, 𝑑 ′.

( ▷◀ 1 ∗ 𝔩
𝑞↦→ 𝔟 ∗ [𝔟] ◀ &1 𝜏 {𝑣 ′ } −∗ [𝔩] ◀ &𝑞 box𝜏 {𝑣 }

)
We use the cumulative time receipt

▷◀ 1 to swell the persistent time receipt of the new
target object (CumuTime-Swell-PersTime).

The box pointer type admits the following subtyping rule.
Subty-BoxPtr
⊲
(
𝜏 vacc 𝜏 ′ p 𝑓

)
box𝜏 vacc box𝜏 ′ p 𝑓

The subtyping assumption on the target types can be under the later modality. This is
important for proving subtyping on recursive types with self reference under the box
pointer type; see also Recursive Type of this section.

81



Shared Reference Type We introduce refined typing rules for the shared reference
type &𝛼

shr 𝜏 (§5.2).
We can create a shared reference by borrowing a full plain reference.

SWkn-ShrBor-PlnRef
𝔞: &1 𝜏 `# 𝔞: &𝛼

shr 𝜏, 𝔞 :
†𝛼 &1 𝜏 p 𝜆post, (𝑣) . post (𝑣, 𝑣)

It follows from the following lemma.

Raw-ShrBor-PlnRef
[𝔩] ◀ &1 𝜏 {𝑣 }𝑑+1 ≡⇛▶⊲ 𝑑

Nlft
[𝔩] ◀ &𝛼

shr 𝜏 {𝑣 }𝑑+1 ∗ [𝔩] ◀†𝛼 &1 𝜏 {𝑣 }

The ownership predicate under borrow is defined in §6.1.1.

Proof of Raw-ShrBor-PlnRef. The plain reference consists of a full points-to token 𝔩 1↦→ 𝔟̄
and a target object under the later modality ⊲

(
𝔟̄ ◀ 𝜏 {𝑣 }𝑑

)
.

We fully borrow the points-to token (FullBor-Intro). We split the full borrow
&𝛼

full

(
𝔩 1↦→ 𝔟̄

)
into∗𝑖 &𝛼

full

(
𝔩 + 𝑖 1↦→ 𝔟̄[𝑖]

)
(FullBor-Split) and turn them into fractured bor-

rows∗𝑖 &𝛼
frac

(
𝜆𝑞. 𝔩 + 𝑖 𝑞↦→ 𝔟̄[𝑖]

)
(FullBor-FracBor). We also get a view shift [†𝛼] ≡−∗Nlft

𝔩
𝑞↦→ 𝔟̄.
We also fully borrow the target object under later (FullBor-Intro). We can turn

the resulting full borrow &𝛼
full

(
𝔟̄ ◀ 𝜏 {𝑣 }𝑑

)
into the sharing predicate on the target

object 𝔟̄ ◁𝛼 𝜏 {𝑣 }𝑑 in 𝑑 logical steps by SemTy-Own-Shr on 𝜏 . We also get a view shift
[†𝛼] ≡−∗Nlft

⊲
(
𝔟̄ ◀ 𝜏 {𝑣 }𝑑

)
.

Combining the fractured borrows and the sharing predicate, we get a shared ref-
erence [𝔩] ◀ &𝛼

shr 𝜏 {𝑣 }𝑑+1. Combining the two view shifts with a trivial prophecy
equalizer PE(𝑣, 𝑣) (made by ProphEqz-ProphObs and ProphObs-Fact), we get a plain
reference under borrow 𝔩 ◀†𝛼 &1 𝜏 {𝑣 }𝑑+1.

We can create a shared reference also by borrowing a box pointer.

SWkn-ShrBor-BoxPtr
𝔞: box𝜏 `# 𝔞: &𝛼

shr 𝜏, 𝔞 :
†𝛼 box𝜏 p 𝜆post, (𝑣) . post (𝑣, 𝑣)

It follows from Raw-ShrBor-PlnRef and Raw-BoxPtr-PlnRef.
The shared reference type is copyable, unlike the box pointer type and the unique

reference type.

Copy-ShrRef
&𝛼
shr 𝜏 copy

We can temporarily take out a fractional plain reference from an shared reference if
the target type is copyable.

Acc-ShrRef-PlnRef
𝜏 copy 𝜏 ′ copy |𝜏 | = |𝜏 ′ |

𝛼 p 𝔞: &𝛼
shr 𝜏/&𝛼

shr 𝜏
′ ` 𝔞: 𝑞. &𝑞 𝜏/&𝑞 𝜏

′ p id; 𝜆𝑣,𝑤 .𝑤

It follows from the following lemma.

Raw-ShrRef-PlnRef
𝜏 copy 𝜏 ′ copy |𝜏 | = |𝜏 ′ |

[𝔞] ◀ &𝛼
shr 𝜏 {𝑣 } ∗ [𝛼]𝑞′ ⇛Nlft ∃𝑞.

[𝔞] ◀ &𝑞 𝜏 {𝑣 } ∗ ∀ 𝑣 ′.
(
[𝔞] ◀ &𝑞 𝜏

′ {𝑣 ′ } ≡−∗Nlft
[𝔞] ◀ &𝛼

shr 𝜏
′ {𝑣 ′ } ∗ [𝛼]𝑞′

)
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Proof of Raw-ShrRef-PlnRef. The cell value 𝔞 should be some address 𝔩 and the depth 𝑑
should be positive.

Let 𝔟̄ the target cell values of the shared reference. Out of the fractured borrows of
the shared reference, we can temporarily take out a fractional points-to token 𝔩

𝑞↦→ 𝔟̄ for
some fraction 𝑞 by FracBor-Access, using a fractional lifetime token [𝛼]𝑞′ . By 𝜏 copy,
we can turn the target sharing predicate under later ⊲

(
𝔟̄ ◁𝛼 𝜏 {𝑣 }𝑑−1

)
into the target

ownership predicate under later ⊲
(
𝔟̄ ◀ 𝜏 {𝑣 }𝑑−1

)
. Therefore we can construct a plain

reference of some fraction 𝑞, [𝔞] ◀ &𝑞 𝜏 {𝑣 }𝑑 .
Assume that we get back a plain reference [𝔞] ◀ &𝑞 𝜏

′ {𝑣 ′ }𝑑 ′ . We get back a frac-
tional points-to token of the fraction 𝑞, 𝔩 𝑞↦→ 𝔟̄′, and thus get back the lifetime token
[𝛼]𝑞′ . By 𝜏 ′ copy, the target ownership predicate under later ⊲

(
𝔟̄′ ◀ 𝜏 {𝑣 ′ }𝑑 ′−1

)
of the

plain reference can be turned into the target sharing predicate. So we can reconstruct
the shared reference [𝔞] ◀ &𝛼

shr 𝜏
′ {𝑣 ′ }𝑑 ′ .

Combining Acc-ShrRef-PlnRef and Rfn-Deref-PlnRef-Copy, we can derive the fol-
lowing dereference rule on a shared reference to a shared reference. The lifetime of the
resulting reference can be that of the inner shared reference 𝛽 .

Rfn-Deref-ShrRef-ShrRef
𝛼 p 𝔞: &𝛼

shr &
𝛽
shr 𝜏 ` ∗𝔞 : &𝛽

shr 𝜏 p p id

We can also subdivide a plain reference to an shared reference.

Acc-Deref-PlnRef-ShrRef
|𝜏 | = |𝜏 ′ | 𝜏 copy 𝜏 ′ copy

𝛼 p 𝔞 : &𝑞 &𝛼
shr 𝜏/&𝑞 &𝛼

shr 𝜏
′ ` ∗𝔞 : 𝑞′. &𝑞′ 𝜏/&𝑞′ 𝜏 ′ p id; 𝜆𝑣,𝑤 .𝑤

It can be proved using Raw-ShrRef-PlnRef. Note that we get a cumulative time receipt▷◀ 1 by the physical step of the load operation.
The shared reference type admits the following subtyping rule.

Subty-ShrRef
⊲
(
𝜏 vshr(𝛼 ) 𝜏 ′ p 𝑓

)
𝛽 v 𝛼

&𝛼
shr 𝜏 vacc &𝛽

shr 𝜏
′ p 𝑓

It modifies the target type of the shared reference type; the subtyping assumption on
the target type is discussed on the sharing access mode and can be under the later
modality like Subty-BoxPtr.

We can turn a box pointer into a shared reference under the access mode shr(𝛼).

Subty-Shr-BoxPtr-ShrRef
box𝜏 vshr(𝛼 ) &𝛼

shr 𝜏 p id

Combining this with Rfn-Deref-ShrRef-ShrRef, we can derive the following derefer-
ence rule.

Rfn-Deref-ShrRef-BoxPtr
𝛽 v 𝛼

𝛽 p 𝔞: &𝛼
shr box𝜏 ` ∗𝔞 : &𝛼

shr 𝜏 p p id

PlainReference Type We introduce refined typing rules for the plain reference type
&𝑞 𝜏 (§5.2). We read and update objects through plain references, using access rules like
Acc-BoxPtr-PlnRef and Acc-ShrRef-PlnRef.

By dereferencing a plain reference to a size-1 type 𝜏 , we can move out the target
object. If the target type is copyable, the plain reference can retain the target object.
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Rfn-Deref-PlnRef-Move
𝔞: &𝑞 𝜏 ` ∗𝔞 : 𝜏 p 𝔞: &𝑞  |𝜏 | p 𝜆post, (𝑣). post (𝑣, ())
Rfn-Deref-PlnRef-Copy

𝜏 copy

𝔞: &𝑞 𝜏 ` ∗𝔞 : 𝜏 p 𝔞: &𝑞 𝜏 p 𝜆post, (𝑣). post (𝑣, 𝑣)

We can strip off the later modality on the target object of a plain reference, using the
physical step of the load operation.

We can use the following rule when the target type 𝜏, 𝜏 ′ has the size 1.

Rfn-Store-PlnRef-Val
|𝜏 | = |𝜏 ′ | = 1

𝔞: &1 𝜏, 𝔟: 𝜏 ′ ` 𝔞 � 𝔟 p 𝔞: &1 𝜏
′ p 𝜆post, (𝑣,𝑤) . post (𝑤)

When the new target object 𝔟 has the depth 𝑑 , the updated plain reference 𝔞 should
have the depth 𝑑 + 1 and thus have the persistent time receipt

▷◁ (𝑑 + 1). We make▷◁ (𝑑 + 1) out of the persistent time receipt
▷◁ 𝑑 of 𝔟 and the cumulative time receipt

▷◀ 1
obtained by the physical step of the store operation, using CumuTime-Swell-PersTime.

We can also move or copy an object from a plain reference to a full plain reference.

Rfn-Store-PlnRef-PlnRef-Move
|𝜏 ′ | = |𝜏 |

𝔞: &1 𝜏
′, 𝔟: &𝑞 𝜏 p 𝔞 �∗

|𝜏 | 𝔟 p 𝔞: &1 𝜏, 𝔟: &𝑞  |𝜏 | p 𝜆post, (𝑤, 𝑣) . post (𝑣, ())
Rfn-Store-PlnRef-PlnRef-Copy

|𝜏 ′ | = |𝜏 | 𝜏 copy

𝔞: &1 𝜏
′, 𝔟: &𝑞 𝜏 p 𝔞 �∗

|𝜏 | 𝔟 p 𝔞: &1 𝜏, 𝔟: &𝑞 𝜏 p 𝜆post, (𝑤, 𝑣). post (𝑣, 𝑣)

The plain reference type satisfies the following structural subtyping rule.

Subty-PlnRef
𝜏 vown 𝜏 ′ p 𝑓

&𝑞 𝜏 vown &𝑞 𝜏
′ p 𝑓

6.2.3 Constructive Types

Pair Type We introduce refined typing rules for the pair type 𝜏 × 𝜏 ′ (§5.2).
When we have a plain reference to a pair, we can take out a plain reference to each

component of the pair.

Acc-PlnRef-Pair-L
|𝜏0 | = |𝜏 ′0 |

𝔞 : &𝑞 (𝜏0 × 𝜏1 )/&𝑞 (𝜏 ′0 × 𝜏1 ) ` 𝔞 : &𝑞 𝜏0/&𝑞 𝜏
′
0 p 𝜆𝑣 .𝑣 .0; 𝜆𝑣,𝑤 . (𝑤, 𝑣 .1)

Acc-PlnRef-Pair-R
𝔞 : &𝑞 (𝜏0 × 𝜏1 )/&𝑞 (𝜏0 × 𝜏 ′1 ) ` 𝔞.|𝜏0 | : &𝑞 𝜏1/&𝑞 𝜏

′
1 p 𝜆𝑣 .𝑣 .1; 𝜆𝑣,𝑤 . (𝑣 .0,𝑤)

We can also split a plain reference to a pair into plain references to each element of the
pair.

Rfn-Split-PlnRef-Pair-R
|𝜏0 | = |𝜏 ′0 |

∀𝔟. 𝛼 p Δ; 𝔞: &𝑞 𝜏0, 𝔟: &𝑞 𝜏1, Γ ` 𝐾 [𝔟] : 𝜏 p Δ′; 𝔞: &𝑞 𝜏
′
0, 𝔟: &𝑞 𝜏

′
1, Γ

′ p pre

𝛼 p Δ; 𝔞: &𝑞 (𝜏0 × 𝜏1), Γ ` 𝐾 [𝔞.|𝜏0 |] : 𝜏 p Δ′; 𝔞: &𝑞 (𝜏 ′0 × 𝜏 ′1), Γ′ p
𝜆post, ((𝑣0, 𝑣1), ®𝑤) . pre

(
𝜆 (𝑣 ′0, 𝑣 ′1, ®𝑤 ′). post ((𝑣 ′0, 𝑣 ′1), ®𝑤 ′)

)
(𝑣0, 𝑣1, ®𝑤)
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These rules follow from the following simple lemma.

Raw-Split-Merge-PlnRef-Pair
[𝔩] ◀ &𝑞 (𝜏0 × 𝜏1) {𝜆𝜋. (𝑣0 𝜋, 𝑣1 𝜋) }𝑑 ⇔ [𝔩] ◀ &𝑞 𝜏0 {𝑣0 }𝑑 ∗ [𝔩 + |𝜏0 |] ◀ &𝑞 𝜏1 {𝑣1 }𝑑

From a shared reference to a pair, we can take shared references to each component
of the pair.

Subty-Subdiv-ShrRef-Pair-L
&𝛼
shr(𝜏 × 𝜏

′) v &𝛼
shr 𝜏 p 𝜆𝑣 . 𝑣 .0

Rfn-Subdiv-ShrRef-Pair-R
𝔞 : &𝛼

shr(𝜏 × 𝜏
′) ` 𝔞.|𝜏 | : &𝛼

shr 𝜏
′ p p 𝜆post, (𝑣) . post (𝑣 .1)

We have the following structural rules on copyability and subtyping on the pair
type.

Copy-Pair
𝜏 copy 𝜏 ′ copy

𝜏 × 𝜏 ′ copy

Subty-Pair
𝜏0 vacc 𝜏 ′0 p 𝑓 𝜏1 vacc 𝜏 ′1 p 𝑔

𝜏0 × 𝜏1 vacc 𝜏 ′0 × 𝜏 ′1 p 𝑓 × 𝑔

Here, the function 𝑓 × 𝑔 is defined as follows.

𝑓 × 𝑔 := 𝜆 (𝑣,𝑤). (𝑓 𝑣, 𝑔𝑤)

We can also use the following subtyping rules for reinterpreting a nested pair in
terms of associativity.

Subty-Assoc-Pair-L
(𝜏 × 𝜏 ′) × 𝜏 ′′ ' 𝜏 × (𝜏 ′ × 𝜏 ′′) p 𝜆 ((𝑣, 𝑣 ′), 𝑣 ′′) . (𝑣, (𝑣 ′, 𝑣 ′′))

Subty-Assoc-Pair-R
𝜏 × (𝜏 ′ × 𝜏 ′′) × 𝜏 ′′ ' (𝜏 × 𝜏 ′) p 𝜆 (𝑣, (𝑣 ′, 𝑣 ′′)) . ((𝑣, 𝑣 ′), 𝑣 ′′)

Using these rules, we can simplify the address shift operation for data access, i.e., we
can write 𝑙 instead of 𝑒.𝑚.𝑛 where 𝑙 =𝑚 + 𝑛.

We have the following subtyping rule for splitting an invalid object.

Subty-Split-Invalid 𝑚+𝑛 vacc  𝑚 ×  𝑛 p const ((), ())
Variant Type We introduce refined typing rules for the variant type 𝜏 + 𝜏 ′ (§5.2).

We can convert between a plain reference to a variant and a plain reference to a
triple of the tag, body and invalid object.

Wkn-PlnRef-Vrnt-Triple
𝔞: &𝑞 (𝜏0 + 𝜏1) ` 𝔞: &𝑞

(
(int × 𝜏𝑖) ×  |𝜏0+𝜏1 | −1− |𝜏𝑖 |

)
p

𝜆post, (𝑣) . ∃𝑤 s.t. 𝑣 = inj𝑖 𝑤. post
(
((𝑖,𝑤), ())

)
Wkn-PlnRef-Triple-Vrnt
𝔞: &𝑞

(
(int × 𝜏𝑖) ×  |𝜏0+𝜏1 | −1− |𝜏𝑖 |

)
` 𝔞: &𝑞 (𝜏0 + 𝜏1) p

𝜆post,
(
((𝑛, 𝑣), ())

)
. 𝑛 = 𝑖 ∧ post (inj𝑖 𝑣)

In the rule Wkn-PlnRef-Vrnt-Triple, the predicate transformer requires the precondi-
tion ∃𝑤. 𝑣 = inj𝑖 𝑤 (i.e., the tag of 𝑣 is 𝑖) for any postcondition post, which ensures that
the cell value at the address 𝔞 is 𝑖 (by the definition of the variant type and ProphObs-
Sat). In the ruleWkn-PlnRef-Triple-Vrnt, we have the precondition that the tag num-
ber 𝑛 has the value 𝑖 . These rules allow us to read and update a variant object using the
rules for pairs.
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Also, we also have the following rule for subdividing a shared reference to a variant
into a shared reference to the body object.

Rfn-Subdiv-ShrRef-Vrnt
𝔞 : &𝛼

shr(𝜏0 + 𝜏1) ` 𝔞.1 : &𝛼
shr 𝜏𝑖 p p 𝜆post, (𝑣) . ∃𝑤 s.t. inj𝑖 𝑤 = 𝑣 . post (𝑤)

LikeWkn-PlnRef-Vrnt-Triple, the predicate transformer ensures the precondition ∃𝑤.
inj𝑖 𝑤 = 𝑣 for any postcondition post.

We have the following rule for conditional branching on the tag of a variant object.
Rfn-Case-Vrnt-Access

u(𝛽,Δ) p 𝔞 : 𝜏+/𝜏+ ` 𝑒 : 𝑞. &𝑓 𝑞 (𝜏0 + 𝜏1 )/&𝑓 𝑞 (𝜏0 + 𝜏1 ) p get; set
∀ 𝑖 . 𝛽 p Δ; 𝔞: 𝜏+, Γ ` 𝑒𝑖 : 𝜏 ′ p Δ′; Γ′ p pre𝑖

𝛽 p Δ; 𝔞: 𝜏+, Γ ` case ∗𝑒 of
{
0� 𝑒0, 1� 𝑒1

}
: 𝜏 ′ p Δ′; Γ′ p

𝜆post, (𝑣, ®𝑤) . ∀ 𝑖 . (∃ 𝑣 ′. inj𝑖 𝑣 ′ = get 𝑣) ⇒ pre𝑖 post (set 𝑣 (get 𝑣), ®𝑤)

The access judgment says that, by performing 𝑒 , we can access some plain reference
to a variant object inside 𝔞: 𝜏+ with the getter function get. We use a function on the
fraction variable 𝑓 , which is usually set to id or const 1. The value set 𝑣 (get 𝑣) is usually
equal to 𝑣 . If we go to the branch of 𝑖 (0 or 1), we get the information that the variant
sub-object 𝑣 has the tag 𝑖 as a postcondition.

We have the following structural rules on copyability and subtyping on the variant
type.

Copy-Vrnt
𝜏 copy 𝜏 ′ copy

𝜏 + 𝜏 ′ copy

Subty-Vrnt
𝜏0 vacc 𝜏 ′0 p 𝑓 𝜏1 vacc 𝜏 ′1 p 𝑔

𝜏0 + 𝜏1 vacc 𝜏 ′0 + 𝜏 ′1 p 𝑓 + 𝑔

Here, the function 𝑓 + 𝑔 is defined as follows.

𝑓 + 𝑔 := 𝜆𝑣 . case 𝑣 of
{
inj0𝑤0 � 𝑓 𝑤0, inj1𝑤1 � 𝑔𝑤1

}
Injection Type We introduce refined typing rules for the injection type in (𝜏, 𝑓 )
(§5.4).

We can subdivide a plain reference to an injection type by the following rule.
Wkn-Subdiv-PlnRef-InjTy
𝔞: &𝑞 in(𝜏, 𝑓 ) ` 𝔞: &𝑞 𝜏 p 𝜆post, (𝑣) . ∀𝑤 s.t. 𝑓 𝑤 = 𝑣 . post (𝑤)

Also, we can subdivide a shared reference to an injection type by the following rule.
Wkn-Subdiv-ShrRef-InjTy
𝔞: &𝛼

shr in(𝜏, 𝑓 ) ` 𝔞: &𝛼
shr 𝜏 p 𝜆post, (𝑣) . ∀𝑤 s.t. 𝑓 𝑤 = 𝑣 . post (𝑤)

The injection type satisfies the following structural copyability rule.
Copy-InjTy

𝜏 copy

in(𝜏, 𝑓 ) copy

We have the following subtyping rules between 𝜏 and the injection type in(𝜏, 𝑓 ).

Subty-Ty-InjTy
𝜏 vacc in(𝜏, 𝑓 ) p 𝑓

Subty-InjTy-Ty
𝑔 ◦ 𝑓 = id

in(𝜏, 𝑓 ) vacc 𝜏 p 𝑔

Combining the two rules, we can derive the following structural subtyping rule.
Subty-InjTy-InjTy

𝜏 vacc 𝜏 ′ p ℎ 𝑔 ◦ 𝑓 = id

in(𝜏, 𝑓 ) vacc in(𝜏 ′, 𝑓 ′) p 𝑓 ′ ◦ ℎ ◦ 𝑔

86



Recursive Type We introduce refined typing rules for the recursive type rec(𝜎, 𝑓 )
(§5.4).

We can prove subtyping on recursive types using Löb induction (Löb).

Example 6.1 (Subtyping on the List Type). For example, for the list type list𝜏 defined
in Example 5.1, we can derive the following subtyping rule.

𝜏 vacc 𝜏 ′ p 𝑓

list𝜏 vacc list𝜏 ′ p map 𝑓

We apply the value transformer 𝑓 to each element of the list by the function map 𝑓 .

Proof. Assume 𝜏 vacc 𝜏 ′ p 𝑓 . By Löb induction (Löb), we can also assume ⊲
(
list𝜏 vacc

list𝜏 ′ p map 𝑓
)
.

Unfolding list𝜏 by TyEq-List, by Subty-InjTy-InjTy, Subty-Vrnt, Subty-Pair and
Subty-BoxPtr, we have the following subtyping judgment.

list𝜏 vacc list𝜏 ′ p inList ◦ (id + 𝑓 ×map 𝑓 ) ◦ outList

The value transformer of this judgment is equal to map 𝑓 . Therefore, we obtain the
expected judgment.

6.2.4 Function Type

We introduce refined typing rules for the function type (§6.1.4). We also describe how
we can specify and verify thewhile loop, based on the technique for recursive functions.

We introduce the following shorthand for specifying a constant value 𝔞.

𝔞 : 𝜏 p 𝑣 := ` 𝔞 : 𝜏 p p 𝜆post, () . post (𝑣)

Function Type We can specify a non-recursive function by the following rule.

Rfn-Fn-Nonrec
∀ ®𝛼, ®𝔞, 𝛽 . □

(
𝛽 v (−→𝜏 ®𝛼 ) ⇒ 𝛽 p −−−→𝔞: 𝜏 ®𝛼 ` 𝑒 [−−→𝔞/𝑎] : 𝜏 ′®𝛼 p pre

)
fn( ®𝑎) {𝑒 } : ∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 p pre

If we want to set the pure value of the function to the predicate transformer pre, we just
need to specify the body expression 𝑒 (under arbitrary substitution) with the predicate
transformer pre, using the refined typing judgment.

Extending Rfn-Fn-Nonrec, we get the following rule for specifying a recursive func-
tion.

Rfn-Fn-Rec
𝜏+ = ∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼

∀ ®𝛼, 𝔟, ®𝔞, 𝛽 . □
(
𝛽 v (−→𝜏 ®𝛼 ) ⇒ 𝛽 p 𝔟: 𝜏+, −−−→𝔞: 𝜏 ®𝛼 ` 𝑒 [𝔟/𝑓 ,−−→𝔞/𝑎] : 𝜏 ′®𝛼 p pre

′ )
pre ¤⇒ 𝜆post,(®𝑣) . pre′post (pre, ®𝑣)

fn 𝑓 ( ®𝑎) {𝑒 } : 𝜏+ p pre

We want to prove that the function 𝔣 satisfies the predicate transformer pre. First, we
specify the body expression 𝑒 under arbitrary substitution with a predicate transformer
pre′. When we verify the substituted expression, we can use the assumption that 𝔣
satisfies pre, because we can use that assumption under later by Löb induction (Löb) and
strip off the later on the physical step of the function call (Hoare-FnCall). Therefore, it
suffices to prove that pre is stronger than pre′ with the function pure value set to pre,
i.e., 𝜆post,(®𝑣) . pre′post (pre, ®𝑣). If pre′ satisfies monotonicity condition on the function
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pure value, this is equivalent to the condition that pre is stronger than the greatest fixed
point of pre′ with a modified argument order 𝜆pre∗, post, (®𝑣).pre′post (pre∗, ®𝑣) (whose
existence is ensured by Tarski’s fixed point theorem).

We can specialize the lifetime parameters of the function type by the following
subtyping rule.

Subty-Fn-Lft
∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 v ∀ ®𝛽. fn(−→𝜏−→

𝛼 ′
®𝛽
) � 𝜏 ′−→

𝛼 ′
®𝛽

p id

Here, each of the old lifetime parameters 𝛼𝑖 is specialized into some lifetime 𝛼 ′®𝛽,𝑖 that
depends on the new lifetime parameters ®𝛽 . In particular, we can use an empty sequence
for ®𝛽 .

A function call is specified by the following rule (we can specialize the lifetime
parameters of the function beforehand by Subty-Fn-Lft).

Rfn-Fn-Call
𝛼 v (®𝜏)

𝛼 p 𝔟: fn(®𝜏)�𝜏 ′, −−→𝔞: 𝜏 ` 𝔟(®𝔞) : 𝜏 ′ p p 𝜆post, (pre, ®𝑣) . pre post (®𝑣)

We can use any lifetime arguments ®𝛽 for the function call. The precondition required
for the function call is the pure value of the function pre (predicate transformer) applied
to the postcondition on the output post and the arguments ®𝑣 . Note that we can derive
the following rule from Rfn-Fn-Call and Rfn-EvCtx.

Rfn-Fn-Call-Const
𝔣: fn(®𝜏)�𝜏 ′ 𝛼 v (®𝜏)

𝛼 p −−→𝔞: 𝜏 ` 𝔣(®𝔞) : 𝜏 ′ p p 𝜆post, (pre, ®𝑣) . pre post (®𝑣)

A function is copyable.
Copy-Fn
∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏 ′®𝛼 copy

The function type satisfies the following structural subtyping rule.
Subty-Fn-Ty

∀ 𝑖, ®𝛼. ⊲
(
𝜏 ′®𝛼,𝑖 vown 𝜏 ®𝛼,𝑖 p 𝑓𝑖

)
∀ ®𝛼. ⊲

(
𝜏+®𝛼 vown 𝜏+′®𝛼 p 𝑔

)
∀ ®𝛼. fn(−→𝜏 ®𝛼 ) � 𝜏+®𝛼 v ∀ ®𝛼. fn(

−→
𝜏 ′®𝛼 ) � 𝜏+′®𝛼 p 𝜆pre, post, (®𝑣) . pre (post ◦ 𝑔) (−→𝑓 𝑣)

We can modify the input and output objects of the function by subtyping. Like Subty-
BoxPtr, the assumption subtyping judgments on the input and output types are under
the later modality.

While Loop The while loop while 𝑒 {𝑒′ } is defined as follows.

while 𝑒 {𝑒′ } :=
(
fnwhile ()

{
if 𝑒 {𝑒′; while () }

} )
()

We have the following refined typing rule on the while loop.
Rfn-While

𝛼 p Δ; Γ ` 𝑒 : bool p Δ; Γ p pre 𝛼 p Δ; Γ ` 𝑒′ p Δ; Γ p pre′

pre+ ¤⇒ 𝜆post, (®𝑣) . pre
(
𝜆 (bl, ®𝑣 ′) . if bl {pre′ (pre+ post ) ( ®𝑣 ′) } else {pre+ post ( ®𝑣 ′) }

)
(®𝑣)

𝛼 p Δ; Γ ` while 𝑒 {𝑒′ } p Δ; Γ p pre+
Just like Rfn-Fn-Rec, we can use the predicate transformer pre+ if pre+ is stronger than
the predicate transformer of the while loop with the predicate transformer for the re-
cursive call set to pre+.

We can freely add new control flows to this refined type system like this.
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6.2.5 Vector Type

We introduce refined typing rules for the vector type vec𝜏 (§5.2).
We introduce the following function newvec for newly allocating an empty vector

of some capacity.

newvec := fn(𝑎)
{
let 𝑏 = alloc 3 in 𝑏 � alloc(𝑎 × |𝜏 |); 𝑏.1 � 𝑎; 𝑏.2 � 0; 𝑏

}
It satisfies the following specification.

Rfn-New-Vec
newvec : fn(int) � box vec𝜏 p 𝜆post, (𝑛). post nil

We introduce the following function for taking out of the reference to a vector 𝑎 a
reference to the 𝑖-th element of the vector.

idx𝜏vec := fn(𝑎, 𝑖)
(
(∗𝑎) .(𝑖 × |𝜏 |)

)
Note that this function does not have dynamic bounds checking on the index input 𝑖 .

The function idx𝜏vec satisfies the following specification for shared references.

Rfn-Idx-Vec-ShrRef
idx𝜏vec : ∀𝛼. fn(&𝛼

shr vec𝜏, int) � &𝛼
shr 𝜏 ` 𝜆post, (𝑣, 𝑖) . 0 ≤ 𝑖 < len 𝑣 ∧ post (𝑣 [𝑖])

We can safely perform idx𝜏vec without dynamic bounds checking, because the precondi-
tion ensures that the index 𝑖 is in the suitable range (the part 0 ≤ 𝑖 < len 𝑣).

Update operations on the vector type are performed through unique references and
discussed later in §6.3.6.

We have the following structural subtyping rule on the vector type.

Subty-Vec
⊲
(
𝜏 vacc 𝜏 ′ p 𝑓

)
vec𝜏 vacc vec𝜏 ′ p map 𝑓

Like Subty-BoxPtr, the subtyping assumption on the target types can be under the
later modality. We apply the value transformer 𝑓 to each element of the vector by the
function map 𝑓 . The function map: (𝑇→𝑈 ) → List𝑇 → List𝑈 is defined as follows.

map 𝑓 nil := nil map 𝑓 (𝑣 ::𝑤) := 𝑓 𝑣 :: map 𝑓 𝑤

6.3 Specifying and Verifying Operations on Unique References

Now we introduce refined typing rules on the unique reference type &𝛼
unq 𝜏 (§5.3). We

present detailed proofs on some of them, which contain interesting interactions of full
borrow and prophecy.

6.3.1 Unique Borrow and Reborrow

We can borrow a full plain reference to get a unique reference by the following rule.

Wkn-UnqBor-PlnRef
𝔞: &1 𝜏 ` 𝔞 : &𝛼

unq 𝜏, 𝔞 :
†𝛼 &1 𝜏 p 𝜆post, (𝑣). ∀ 𝑣◦. post ((𝑣, 𝑣◦), 𝑣◦)

We take a prophecy value 𝑣◦ for the unique borrow and set the values of the unique
reference and the borrowed plain reference to (𝑣, 𝑣◦) and 𝑣◦, respectively. When we
reclaim the plain reference after the lifetime 𝛼 ends (SWkn-End-LocalLft-Reclaim), it
is ensured that 𝑣◦ has been resolved to the new value of the plain reference.
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Wkn-UnqBor-PlnRef follows from the following lemma.

Raw-UnqBor-PlnRef
[𝔩] ◀ &1 𝜏 {𝑣 } ⇛Nlft+Nproph ∃ 𝑥 .
[𝔩] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) } ∗ [𝔩] ◀†𝛼 &1 𝜏 {𝜆𝜋.𝜋 𝑥 }

Proof of Raw-UnqBor-PlnRef. The plain reference is decomposed into (i) a full points-to
token 𝔩 1↦→ 𝔟̄, (ii) the target object under later ⊲ 𝔟̄ ◀ 𝜏 {𝑣 }𝑑 , and (iii) a persistent time
receipt

▷◁ (𝑑 + 1), for some target cell values 𝔟̄ and depth 𝑑 .
By ValObs-ProphCtrl-Intro, for a fresh prophecy variable 𝑥 satisfying 𝑥 .type =

b𝜏c, we get a value observer VO𝑥 (𝑣, 𝑑) and a prophecy control PC(𝑣, 𝑑). We name the
following proposition 𝑃 , which is a separating conjunction of a full points-to token,
a target object, a persistent time receipt and a prophecy control that is existentially
quantified over the list of cell values, target value and depth.

𝑃 := ∃ 𝔟̄′, 𝑣 ′, 𝑑 ′. 𝔩 1↦→ 𝔟̄′ ∗ 𝔟̄′ ◀ 𝜏 {𝑣 ′ }𝑑 ′ ∗

▷◁ (𝑑 ′+ 1) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

We make ⊲ 𝑃 consuming the full points-to token, the target object under later, and the
prophecy control, which is then turned by FullBor-Intro into a full borrow &𝛼

full 𝑃 and
a view shift [†𝛼] ≡−∗Nlft

⊲ 𝑃 . We turn the separating conjunction of the full borrow and
the value observer into a unique reference [𝔩] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) }.
Now let us construct the full plain reference under borrow [𝔩] ◀†𝛼 &1 𝜏 {𝜆𝜋.𝜋 𝑥 }

(defined in §6.1.1). Now assume we have [†𝛼]. Consuming the view shift [†𝛼] ≡−∗Nlft

⊲ 𝑃 , we get ⊲ 𝑃 . By consuming ⊲ 𝑃 , we get a new full reference [𝔩] ◀ &1 𝜏 {𝑣 ′ } and
a prophecy control under later ⊲ PC(𝑥, 𝑣 ′, 𝑑 ′). The latter can be transformed into a
prophecy equalizer under later ⊲ PE(𝜆𝜋.𝜋 𝑥, 𝑣 ′) by ProphCtrl-ProphEqz. Therefore,
we finally get [𝔩] ◀†𝛼 &1 𝜏 {𝜆𝜋.𝜋 𝑥 }.

Note that we can borrow only some component of a (possibly nested) pair by com-
bining Wkn-UnqBor-PlnRef and Rfn-Split-UnqRef-Pair-R.

We can uniquely borrow a box pointer in an indirect way by combiningAcc-BoxPtr-
PlnRef, Rfn-Acc-Same and Wkn-UnqBor-PlnRef. Still, we can also have the following
rule for uniquely borrowing a box pointer in a direct way.

Wkn-UnqBor-BoxPtr
𝔞: box𝜏 ` 𝔞 : &𝛼

unq 𝜏, 𝔞 :
†𝛼 box𝜏 p 𝜆post, (𝑣). ∀ 𝑣◦. post ((𝑣, 𝑣◦), 𝑣◦)

This rule follows from Raw-UnqBor-PlnRef and Raw-BoxPtr-PlnRef.
We can also create a unique reference by reborrowing from an existing unique ref-

erence.

Wkn-UnqBor-UnqRef
𝔞: &𝛽

unq 𝜏 ` 𝔞: &𝛼
unq 𝜏, 𝔞 :

†𝛼 &𝛽
unq 𝜏 p 𝜆post, ((𝑣, 𝑣 ′◦)) . ∀ 𝑣 ′◦. post ((𝑣, 𝑣◦), (𝑣◦, 𝑣 ′◦))

Like Wkn-UnqBor-BoxPtr, we take a prophecy value 𝑣◦ for this borrow. The unique
reference under borrow 𝔩 :†𝛼 &𝛽

unq 𝜏 takes the value (𝑣◦, 𝑣 ′◦), where the current-value
part is set to the new prophecy value 𝑣◦ and the prophecy-value part remains the same
as before the reborrow 𝑣 ′◦.

Wkn-UnqBor-UnqRef follows from the following lemma.

Raw-UnqBor-UnqRef
𝛼 v 𝛽

[𝔩] ◀ &𝛽
unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑦) } ⇛Nlft+Nproph ∃ 𝑥 .

[𝔩] ◀ &𝛼
unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) } ∗ [𝔩] ◀†𝛼 &𝛽

unq 𝜏 {𝜆𝜋. (𝜋 𝑥, 𝜋 𝑦) }
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Proof of Raw-UnqBor-UnqRef. We name the following proposition 𝑃 ′.

𝑃 ′ := ∃ 𝔟̄′′, 𝑣 ′′, 𝑑 ′′. 𝔩 1↦→ 𝔟̄′′ ∗ 𝔟̄′′ ◀ 𝜏 {𝑣 ′′ }𝑑 ′′ ∗

▷◁ (𝑑 ′′+ 1) ∗ PC(𝑦, 𝑣 ′′, 𝑑 ′′)

Out of the unique reference, we get a value observer VO𝑦 (𝑣, 𝑑), a full borrow &𝛽
full 𝑃

′

and a persistent time receipt

▷◁ (𝑑 + 1) for some depth 𝑑 .
The full borrow of the existing unique reference &𝛽

full 𝑃
′ is turned by FullBor-Rebor

into a new full borrow &𝛼
full 𝑃

′ and a view shift [𝛼] ≡−∗Nlft
&𝛽

full 𝑃
′. By ValObs-ProphCtrl-

Intro, for a fresh prophecy variable 𝑥 satisfying 𝑥 .type = b𝜏c, we get a value observer
VO𝑥 (𝑣, 𝑑) and a prophecy control PC(𝑥, 𝑣, 𝑑). We name the following proposition 𝑄 .

𝑄 := ∃ 𝑣 ′, 𝑑 ′. VO𝑦 (𝑣 ′, 𝑑 ′) ∗

▷◁ (𝑑 ′+ 1) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

We can create 𝑄 out of the value observer VO𝑦 (𝑣, 𝑑) of the existing unique reference,
the prophecy control we created PC(𝑥, 𝑣, 𝑑) and the persistent time receipt

▷◁ (𝑑 + 1).
Then 𝑄 is turned into a full borrow &𝛼

full𝑄 and a view shift [𝛼] ≡−∗Nlft
⊲𝑄 (FullBor-

Intro).
The two obtained view shifts are merged into [𝛼] ≡−∗Nlft

&𝛽
full 𝑃

′ ∗ ⊲𝑄 , which turns
into the following.

[𝛼] ≡−∗Nlft
∃ 𝑣 ′, 𝑑 ′. [𝔩] ◀ &𝛽

unq 𝜏 {𝜆𝜋. (𝑣 ′𝜋, 𝜋 𝑦) }𝑑 ′+1 ∗

▷◁ (𝑑 ′+ 1) ∗ ⊲ PC(𝑥, 𝑣 ′, 𝑑 ′)

By ProphCtrl-ProphEqz, we can turn a prophecy control under later ⊲ PC(𝑥, 𝑣 ′, 𝑑 ′) into
a prophecy equalizer under later ⊲ PE(𝜆𝜋.𝜋 𝑥, 𝑣 ′). Therefore, we get a unique reference
under borrow [𝔩] ◀†𝛼 &𝛽

unq 𝜏 .
The two obtained full borrows are merged by FullBor-Merge into &𝛼

full (𝑃 ′ ∗𝑄). We
temporarily access the content ⊲ (𝑃 ′ ∗ 𝑄) of the full borrow by FullBor-Subdiv, with
help of a fractional lifetime token on 𝛼 . The values 𝑣 ′′, 𝑑 ′′ inside 𝑃 ′ turn out to be equal
to 𝑣 ′, 𝑑 ′ inside 𝑄 by agreement of the prophecy control of 𝑃 ′ and the value observer of
𝑄 (ValObs-ProphCtrl-Agree). Out of ⊲ (𝑃 ′ ∗ 𝑄), aside from the value observer and the
prophecy control, we can take out ⊲ 𝑃 , where 𝑃 is defined as follows.

𝑃 := ∃ 𝔟̄′, 𝑣 ′, 𝑑 ′. 𝔩 1↦→ 𝔟̄′ ∗ 𝔟̄′ ◀ 𝜏 {𝑣 ′ }𝑑 ′ ∗

▷◁ (𝑑 ′+ 1) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

After we get back ⊲ 𝑃 , by simultaneously updating the arguments of the value observer
and the prophecy control (ValObs-ProphCtrl-Update) into the new internal values 𝑣 ′, 𝑑 ′
of 𝑃 , we can reconstruct ⊲ (𝑃 ′ ∗ 𝑄).

Therefore, by the power of FullBor-Subdiv, we finally get a new full borrow &𝛼
full 𝑃 .

Combining the it with the value observer that we createdVO𝑥 (𝑣, 𝑑), we get the expected
unique reference [𝔩] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) }.

6.3.2 Access on Unique References

We can temporarily take out a full plain reference from a unique reference.

Acc-UnqRef-PlnRef
𝛼 p 𝔞 : &𝛼

unq 𝜏/&𝛼
unq 𝜏 ` 𝔞 : &1 𝜏/&1 𝜏 p 𝜆 (𝑣, 𝑣◦) . 𝑣 ; 𝜆 (𝑣, 𝑣◦),𝑤 . (𝑤, 𝑣◦)

The prophecy value 𝑣◦ is retained through this access. Unlike Acc-BoxPtr-PlnRef, the
target type should be retained.

Acc-UnqRef-PlnRef follows from the following lemma.

Raw-UnqRef-PlnRef
[𝔩] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) } ∗ [𝛼]𝑞 ⇛Nlft [𝔩] ◀ &1 𝜏 {𝑣 } ∗
∀𝑤̂ .

(
[𝔩] ◀ &1 𝜏 {𝑤̂ } ≡−∗Nlft

[𝔩] ◀ &𝛼
unq 𝜏 {𝜆𝜋. (𝑤̂ 𝜋, 𝜋 𝑥) } ∗ [𝛼]𝑞

)
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Proof of Raw-UnqRef-PlnRef. We temporarily access the content of the full borrow of
the unique reference using a partial lifetime token on𝛼 (FullBor-Access). By agreement
of the value observer and the prophecy control (ValObs-ProphCtrl-Agree), the target
value inside the full borrow turns out to be 𝑣 . Therefore, we can take out the full plain
reference [𝔩] ◀ &1 𝜏 {𝑣 }.

Assume that we have got back [𝔩] ◀ &1 𝜏 {𝑤̂ }. We simultaneously update the ar-
guments of the value observer and the prophecy control (ValObs-ProphCtrl-Update)
into the new pure value 𝑤̂ and depth. The full plain reference has the persistent time
receipt we need for the full borrow and the unique reference itself. Therefore, we can
close the full borrow, getting back [𝛼]𝑞 , and reconstruct the unique reference with the
new target value [𝔩] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑤̂ 𝜋, 𝜋 𝑥) }.

We can also subdivide a plain reference to a unique reference.

Acc-Deref-PlnRef-UnqRef
𝛼 p 𝔞 : &𝑞 &𝛼

unq 𝜏/&𝑞 &𝛼
unq 𝜏 ` ∗𝔞 : &1 𝜏/&1 𝜏 p 𝜆 (𝑣, 𝑣◦) . 𝑣 ; 𝜆 (𝑣, 𝑣◦),𝑤 . (𝑤, 𝑣◦)

It can be proved using Raw-UnqRef-PlnRef.

Example 6.2 (Increment on a Unique Reference). For a simple example, we can incre-
ment the target integer of a unique reference.

𝛼 p 𝔞: &𝛼
unq int ` 𝔞 � ∗𝔞 + 1 p 𝔞: &𝛼

unq int p 𝜆post, ((𝑛, 𝑛◦)) . post ((𝑛 + 1, 𝑛◦))

Proof. Let (𝑛, 𝑛◦) be the original pure value of the unique reference.
For the load ∗𝔞, we temporarily get a plain reference by Acc-UnqRef-PlnRef and

acquire an integer value by Rfn-Deref-PlnRef-Copy. We increment the integer value
and bind it to some cell value 𝔟, which has the pure value 𝑛 + 1.

Then for the store 𝔞 � 𝔟, we temporarily get a full plain reference again by Acc-
UnqRef-PlnRef. Finally the pure value of the unique reference is updated into (𝑛 +
1, 𝑛◦).

6.3.3 Resolution of Unique References

When we release a unique reference, we can resolve its prophecy value into its current
value.

SWkn-UnqRef-Release
𝛽 v &𝛼

unq 𝜏

𝛽 p 𝔞: &𝛼
unq 𝜏 `# p 𝜆post, ((𝑣, 𝑣◦)) . 𝑣◦ = 𝑣 ⇒ post ()

We get the information 𝑣◦ = 𝑣 that the prophecy value 𝑣◦ is equal to the current value
𝑣 in the postcondition. Note that we need to ensure that both the lifetime 𝛼 and the
lifetime of the type 𝜏 are alive.

SWkn-UnqRef-Release follows from the following lemma.

Raw-UnqRef-Release
𝛽 v &𝛼

unq 𝜏

[𝔩] ◀ &𝛼
unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) }𝑑+1 ∗ [𝛽]𝑞 ≡⇛▶⊲ 𝑑

Nlft+Nproph
〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉 ∗ [𝛽]𝑞

Proof of Raw-UnqRef-Release. Out of the unique reference, we obtain a value observer
VO𝑥 (𝑣, 𝑑) (for some depth 𝑑) and a full borrow &𝛼

full 𝑃 , where 𝑃 is defined as follows.

𝑃 := ∃ 𝔟̄, 𝑣 ′, 𝑑 ′. 𝔩 1↦→ 𝔟̄ ∗ 𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑 ′ ∗

▷◁ (𝑑 ′+ 1) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

92



By FullBor-Access, we temporarily access ⊲ 𝑃 using a partial lifetime token on 𝛼 .
We open the internal values 𝔟̄, 𝑣 ′, 𝑑 ′ of 𝑃 . We get ⊲ PC(𝑥, 𝑣 ′, 𝑑 ′), whose later modality
can be removed because we also have the value observerVO𝑥 (𝑣, 𝑑) (ValObs-ProphCtrl-
Timeless). By agreement with the value observer (ValObs-ProphCtrl-Agree), we know
𝑣 ′ = 𝑣 and 𝑑 ′ = 𝑑 . We also get the target object 𝔟̄ ◀ 𝜏 {𝑣 }𝑑 .

From the target object, we temporarily take out a partial prophecy token [𝑌 ]𝑞 on
a dependency 𝑌 of the target value 𝑣 in 𝑑 logical steps, with help of a partial lifetime
token on 𝜏 (SemTy-Own-ProphToken). By ValObs-ProphCtrl-Resolve, consuming the
value observer and the prophecy control, with help of the partial prophecy token [𝑌 ]𝑞 ,
we get a prophecy observation 〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉 and also a new prophecy control. Using
the prophecy control, we can reconstruct ⊲ 𝑃 , which is put back to the full borrow
&𝛼

full 𝑃 . The prophecy observation 〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉 serves as the postcondition 𝑣◦ = 𝑣 for
the unique reference (𝑣, 𝑣◦).

Example 6.3 (Release of a Unique Reference after Increment). If we increment the target
value of a unique reference (𝑛, 𝑛◦) and release the unique reference after that, we get
the postcondition that the prophecy value 𝑛◦ is equal to 𝑛 + 1.

𝛼 p 𝔞: &𝛼
unq int ` 𝔞 � ∗𝔞 + 1;  p p 𝜆post, ((𝑛, 𝑛◦)) . 𝑛◦ = 𝑛 + 1 ⇒ post ()

Proof. From SWkn-UnqRef-Release and the refined typing judgment of Example 6.2.
We can use the super weakening judgment for SWkn-UnqRef-Release using the addi-
tional part ‘; ’ by Rfn-Seq.

Also, when we turn a unique reference into a shared reference, we can resolve the
prophecy value.

Rfn-UnqRef-ShrRef
𝛽 v &𝛼

unq 𝜏

𝛽 p 𝔞: &𝛼
unq 𝜏 `# 𝔞: &𝛼

shr 𝜏 p 𝜆post, ((𝑣, 𝑣◦)) . 𝑣◦ = 𝑣 ⇒ post (𝑣)

It follows from the following lemma.

Raw-UnqRef-ShrRef
𝛽 v &𝛼

unq 𝜏

[𝔞] ◀ &𝛼
unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) }𝑑+1 ∗ [𝛽]𝑞 ≡⇛▶⊲ 2𝑑

Nlft+Nproph

〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉 ∗ [𝔞] ◀ &𝛼
shr 𝜏 {𝑣 }𝑑+1 ∗ [𝛽]𝑞

Proof of Raw-UnqRef-ShrRef. Just like the proof of Raw-UnqRef-Release, we consume
the value observer and get a prophecy observation 〈𝜋. 𝜋 𝑥 = 𝑣 𝜋 〉, by temporarily
accessing the content of the full borrow and also temporarily accessing the partial
prophecy tokens of the target object spending 𝑑 logical steps.

We can freeze the inner values (the cell values 𝔟̄, pure value 𝑣 ′ and depth 𝑑 ′) of
the full borrow (FullBor-Freeze). Temporarily accessing the full borrow, we know
𝑣 ′ = 𝑣 and 𝑑 ′ = 𝑑 by agreement of ValObs-ProphCtrl-Agree. Splitting the full borrow
(FullBor-Split), we get full borrows of the full points-to token and the target ownership
predicate. The full borrow of the full points-to token is turned into a fractured borrow
of a fractional points-to token (FullBor-FracBor). The full borrow of the target owner-
ship predicate is turned into the sharing predicate on the target object in 𝑑 logical steps
by SemTy-Own-Shr. Therefore, we finally get the expected shared reference.
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6.3.4 Subdivision of Unique References

By consuming a unique reference to an object, we can take unique references to some
parts of the object. We call this operation subdivision of a unique reference.

A unique reference to a box pointer can be dereferenced into a unique reference
without changing the pure value. In this simple case, we can just reuse the prophecy
variable of the original unique reference.

Rfn-Deref-UnqRef-BoxPtr
𝛼 p 𝔞: &𝛼

unq box𝜏 ` ∗𝔞 : &𝛼
unq 𝜏 p p id

It follows from the following lemma.

Raw-Deref-UnqRef-BoxPtr
[𝔩] ◀ &𝛼

unq box𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) }𝑑+1 ∗ [𝛼]𝑞 ≡⇛▶⊲ NLft ∃ 𝔩′.

𝔩 1↦→ 𝔩′ ∗
(
𝔩 1↦→ 𝔩′ ∗

▷◀ 1 ⇛Nlft [𝔩′] ◀ &𝛼
unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑥) }𝑑 ∗ [𝛼]𝑞

)
Proof of Raw-Deref-UnqRef-BoxPtr. Thegiven unique reference has a full borrow&𝛼

full 𝑃 ,
where 𝑃 can be written as follows.

𝑃 := ∃ 𝔩′, 𝑣 ′, 𝑑 ′. 𝔩 1↦→ 𝔩′ ∗ [𝔩′] ◀ box𝜏 {𝑣 ′ }𝑑 ′+1 ∗

▷◁ (𝑑 ′+ 2) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′+ 1)

We temporarily access the content ⊲ 𝑃 of the full borrow by FullBor-Subdiv, with
help of a fractional lifetime token on𝛼 . In one logical step, we strip off the latermodality
and get 𝑃 . We open the variables 𝔩′, 𝑣 ′, 𝑑 ′ inside 𝑃 . By agreement (ValObs-ProphCtrl-
Agree), we know 𝑣 ′ = 𝑣 and 𝑑 ′ = 𝑑 − 1. We temporarily take out 𝔩 1↦→ 𝔩′.

Assume that we have retrieved 𝔩 1↦→𝔩′ and also obtained a cumulative time receipt

▷◀ 1.
From the target box pointer [𝔩′] ◀ box𝜏 {𝑣 ′ }𝑑 ′+1, we can take out the full points-to to-
ken to the inner target 𝔩′ 1↦→𝔟̄ and the inner target object under later ⊲ 𝔟̄ ◀ box𝜏 {𝑣 ′ }𝑑 ′+1,
for some 𝔟̄. We also update the depth of the value observer and prophecy control from
𝑑 into 𝑑 − 1 (ValObs-ProphCtrl-Update). Now we can take out ⊲𝑄 , where we define 𝑄
as follows.

𝑄 := ∃ 𝔟̄, 𝑣 ′, 𝑑 ′. 𝔩′ 1↦→ 𝔟̄ ∗ ⊲
(
𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑 ′

)
∗

▷◁ (𝑑 ′+ 1) ∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

After we get back ⊲𝑄 , we can reconstruct ⊲ 𝑃 in the following way. We update the
pure value and depth of the value observer and prophecy control into 𝑣 ′ and 𝑑 ′ + 1,
based on the variables 𝑣 ′, 𝑑 ′ inside 𝑄 . We bump up the persistent time receipt

▷◁ (𝑑 ′+ 1)
of𝑄 into the persistent time receipt

▷◁ (𝑑 ′+2) required by 𝑃 using

▷◀ 1 (CumuTime-Swell-
PersTime).

Therefore, by the power of FullBor-Subdiv, we get the full borrow &𝛼
full𝑄 . Combin-

ing it with the value observer VO𝑥 (𝑣, 𝑑), we finally get the expected unique reference
[𝔩′] ◀ &𝛼

unq 𝜏 {𝑣 }𝑑+1.

A unique reference to a pair can be subdivided into unique references to the ele-
ments of the pair.

Rfn-Split-UnqRef-Pair-R
𝛼 p 𝔞: &𝛼

unq(𝜏0 × 𝜏1) ` 𝔞.|𝜏0 | : &𝛼
unq 𝜏1 p 𝔞: &

𝛼
unq 𝜏0 p

𝜆post, ((𝑣, 𝑣◦)) . post ((𝑣 .1, 𝑣◦.1), (𝑣 .0, 𝑣◦.0))

In order to take two unique references of the addresses 𝔞 and 𝔞.|𝜏 |, we use a slightly
tricky way here.

Rfn-Split-UnqRef-Pair-R follows from the following lemma.

Raw-Split-UnqRef-Pair
[𝔩] ◀ &𝛼

unq(𝜏0 × 𝜏1) {𝜆𝜋. ((𝑣 𝜋), 𝜋 𝑥) }𝑑 ∗ [𝛼]𝑞 ⇛Nlft+Nproph ∃𝑦0, 𝑦1.
〈𝜋. 𝜋 𝑥 = (𝜋 𝑦0, 𝜋 𝑦1) 〉 ∗ ∗𝑖

(
[𝔩 + 𝑖 · |𝜏0 |] ◀ &𝛼

unq 𝜏𝑖 {𝜆𝜋. ((𝑣 𝜋) .𝑖, 𝜋 𝑦𝑖) }𝑑
)
∗ [𝛼]𝑞

94



We take new prophecy variables 𝑦0, 𝑦1 for the new unique references and resolve the
original prophecy variable 𝑥 into 𝜆𝜋. (𝜋 𝑦0, 𝜋 𝑦1).

Proof of Raw-Split-UnqRef-Pair. Thegiven unique reference consists of a value observer
VO𝑥 (𝜆𝜋. (𝑣 𝜋), 𝑑−1) and a full borrow &𝛼

full 𝑃 , where we define 𝑃 as follows.

𝑃 := ∃ 𝔟̄0, 𝔟̄1, 𝑣
′, 𝑑 ′.

∗𝑖

(
𝔩 + 𝑖 · |𝜏0 | 1↦→ 𝔟̄𝑖 ∗ 𝔟̄𝑖 ◀ 𝜏𝑖 { (.𝑖) ◦ 𝑣 ′ }𝑑 ′

)
∗

▷◁ (𝑑 ′+ 1) ∗ PC(𝑥, 𝜆𝜋. (𝑣 ′𝜋), 𝑑 ′)

We temporarily access the content ⊲ 𝑃 of the full borrow using FullBor-Subdiv. We
open the variables 𝔟̄0, 𝔟̄1, 𝑣 ′, 𝑑 ′ inside 𝑃 . By agreement (ValObs-ProphCtrl-Agree), we
know 𝑣 ′ = 𝑣 and 𝑑 ′ = 𝑑−1.

For each 𝑖 , taking a fresh prophecy variable𝑦𝑖 , we create a value observerVO𝑦𝑖 ((.𝑖)◦
𝑣, 𝑑−1) and a prophecy control PC(𝑦𝑖 , (.𝑖) ◦ 𝑣, 𝑑−1) (ValObs-ProphCtrl-Intro). Now, by
ValObs-ProphCtrl-Preresolve, consuming the value observer and prophecy control of
the given unique reference, with help of the prophecy tokens [𝑦𝑖]1 (taken by ValObs-
ProphCtrl-ProphToken), we acquire the prophecy observation 〈𝜋. 𝜋 𝑥 = (𝜋 𝑦0, 𝜋 𝑦1) 〉
and the following proposition 𝑅.

𝑅 := ∀ 𝑣 ′, 𝑑 ′. PE
(
𝜆𝜋. (𝜋 𝑦0, 𝜋 𝑦1), 𝑣 ′

)
−∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

Using the remaining parts of ⊲ 𝑃 and the prophecy controls we created, we get ⊲ (𝑄0 ∗
𝑄1), where 𝑄𝑖 is defined as follows for 𝑖 = 0, 1.

𝑄𝑖 := ∃ 𝔟̄𝑖 , 𝑣
′
𝑖 , 𝑑

′
𝑖 . 𝔩 + 𝑖 · |𝜏0 | 1↦→ 𝔟̄𝑖 ∗ 𝔟̄𝑖 ◀ 𝜏𝑖 {𝑣 ′𝑖 }𝑑 ′

𝑖
∗

▷◁ (𝑑 ′𝑖 + 1) ∗ PC(𝑦𝑖 , 𝑣 ′𝑖 , 𝑑 ′𝑖 )

Assume that we have retrieved ⊲ (𝑄0 ∗ 𝑄1). We can reconstruct ⊲ 𝑃 in the follow-
ing way. We open the variables 𝔟̄𝑖 , 𝑣 ′𝑖 , 𝑑

′
𝑖 inside 𝑄𝑖 for 𝑖 = 0, 1. For each 𝑖 , we turn

the prophecy control on 𝑦𝑖 (under later) ⊲ PC(𝑦𝑖 , 𝑣 ′𝑖 , 𝑑 ′𝑖 ) owned by ⊲𝑄𝑖 into a prophecy
equalizer ⊲ PE(𝜆𝜋.𝜋 𝑦𝑖 , 𝑣 ′𝑖 ) by ProphCtrl-ProphEqz. We then merge the two prophecy
equalizers into ⊲ PE(𝜆𝜋. (𝜋 𝑦0, 𝜋 𝑦1), 𝜆𝜋. (𝑣 ′0 𝜋, 𝑣 ′1 𝜋)) by ProphEqz-Transform. By apply-
ing it to 𝑅, we get the prophecy control on 𝑥 , ⊲ PC(𝑥, 𝜆𝜋. (𝑣 ′0 𝜋, 𝑣 ′1 𝜋), 𝑑 ′), letting 𝑑 ′ be
max{𝑑 ′0, 𝑑 ′1}. Therefore, separatingly conjoining this with the remaining parts of𝑄0, 𝑄1,
we can reconstruct ⊲ 𝑃 .

Therefore, by the power of FullBor-Subdiv, we get the full borrow &𝛼
full(𝑄0 ∗ 𝑄1),

which can be split into &𝛼
full𝑄0 and &𝛼

full𝑄1 (FullBor-Split). Combining the full borrows
with the value observers we have created, we finally get the expected unique references.

A unique reference to a variant can be subdivided into a unique reference to the
body of the variant.

Rfn-Subdiv-UnqRef-Vrnt
𝛼 p 𝔞: &𝛼

unq(𝜏0 + 𝜏1) ` 𝔞.1: &𝛼
unq 𝜏𝑖 p p

𝜆post, ((𝑣, 𝑣◦)) . ∃𝑤 s.t. inj𝑖 𝑤 = 𝑣 . ∀𝑤◦ s.t. inj𝑖 𝑤◦ = 𝑣◦. post ((𝑤,𝑤◦))

It follows from the following lemma.

Raw-Subdiv-UnqRef-Vrnt
[𝔩] ◀ &𝛼

unq(𝜏0 + 𝜏1) {𝜆𝜋. (inj𝑖 (𝑣 𝜋), 𝜋 𝑥) }𝑑 ∗ [𝛼]𝑞 ⇛Nlft+Nproph ∃𝑦.
〈𝜋. 𝜋 𝑥 = inj𝑖 (𝜋 𝑦) 〉 ∗ [𝔩 + 1] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑦) }𝑑 ∗ [𝛼]𝑞

We take a new prophecy variable𝑦 for the new unique reference and resolve the original
prophecy variable 𝑥 into 𝜆𝜋. inj𝑖 (𝜋 𝑦).
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Proof of Raw-Subdiv-UnqRef-Vrnt. Similar to the proof of Raw-Split-UnqRef-Pair. Note
that we use the injectivity of inj𝑖 when we apply ProphEqz-Transform.

Also, a unique reference to an injection type can be subdivided as follows, in a
similar way to Rfn-Subdiv-UnqRef-Vrnt.

Wkn-Subdiv-UnqRef-InjTy
𝛼 p 𝔞: &𝛼

unq in(𝜏, 𝑓 ) ` 𝔞: &𝛼
unq 𝜏 p

𝜆post, ((𝑣, 𝑣◦)) . ∀𝑤 s.t. 𝑓 𝑤 = 𝑣 . ∀𝑤◦ s.t. 𝑓 𝑤◦ = 𝑣◦. post ((𝑤,𝑤◦))

Note that we can use universal quantification instead of existential quantification in the
part ‘∀𝑤 s.t. 𝑓 𝑤 = 𝑣 . ’, unlike Rfn-Subdiv-UnqRef-Vrnt. It follows from the following
lemma.

Raw-Subdiv-UnqRef-InjTy
[𝔩] ◀ &𝛼

unq in(𝜏, 𝑓 ) {𝜆𝜋. (𝑓 (𝑣 𝜋), 𝜋 𝑥) }𝑑 ∗ [𝛼]𝑞 ⇛Nlft+Nproph ∃𝑦.
〈𝜋. 𝜋 𝑥 = 𝑓 (𝜋 𝑦) 〉 ∗ [𝔩] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑦) }𝑑 ∗ [𝛼]𝑞

Proof of Raw-Subdiv-UnqRef-InjTy. Just analogous to the proof of Raw-Subdiv-UnqRef-
Vrnt. Note that the function 𝑓 is injective.

The rule Wkn-Subdiv-UnqRef-InjTy is useful for modifying a unique reference to a
recursive type.

A unique reference to a unique reference (which we call a double unique reference)
can be dereferenced into a unique reference.

Rfn-Deref-UnqRef-UnqRef
𝛼 u 𝛽 p 𝔞: &𝛼

unq &
𝛽
unq 𝜏 ` ∗𝔞 : &𝛼u𝛽

unq 𝜏 p p

𝜆post, ( ((𝑣, 𝑣◦), (𝑣◦, 𝑣◦◦)) ) . 𝑣◦◦ = 𝑣◦ ⇒ post ((𝑣, 𝑣◦))

Wehandle prophecy values in an interestingway. The current and prophecy values 𝑣, 𝑣◦
of the resulting unique reference are the current values of the current and prophecy
values of the given double unique reference, respectively. We get the postcondition
𝑣◦◦ = 𝑣

◦ that the prophecy values 𝑣◦, 𝑣◦◦ of the current and prophecy values are equal.
Raw-Deref-UnqRef-UnqRef follows from the following lemma.

Raw-Deref-UnqRef-UnqRef
[𝔩] ◀ &𝛼

unq &
𝛽
unq 𝜏 {𝜆𝜋. ((𝑣 𝜋, 𝜋 𝑦), 𝜋 𝑥) }𝑑+1 ∗ [𝛼 u 𝛽]𝑞 ≡⇛▶⊲ Nlft+Nproph ∃ 𝔩′, 𝑧.

𝔩 1↦→ 𝔩′ ∗ 〈𝜋. 𝜋 𝑥 = (𝜋 𝑧, 𝜋 𝑦) 〉 ∗(
𝔩 1↦→ 𝔩′ ∗

▷◀ 1 ⇛Nlft [𝔩′] ◀ &𝛼u𝛽
unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑧) }𝑑 ∗ [𝛼 u 𝛽]𝑞

)
Proof of Raw-Deref-UnqRef-UnqRef. The given double unique reference is decomposed
into the value observer VO𝑥 (𝜆𝜋. (𝑣 𝜋, 𝜋 𝑦), 𝑑) and the full borrow that can be written as
follows.

&𝛼
full

(
∃ 𝔩′, 𝑣 ′, 𝑦, 𝑑 ′. 𝔩 1↦→ 𝔩′ ∗ [𝔩′] ◀ &𝛽

unq 𝜏 {𝜆𝜋. (𝑣 ′𝜋, 𝜋 𝑦) }𝑑 ′+1 ∗

▷◁ (𝑑 ′+ 2) ∗ PC(𝑦, 𝑣 ′, 𝑑 ′+ 1)
)

We freeze the inner variables 𝔩′, 𝑦 of the full borrow (FullBor-Freeze) and split the full
borrow (by FullBor-Split) into the following two.

&𝛼
full

(
∃ 𝑣 ′, 𝑑 ′. 𝔩 1↦→ 𝔩′ ∗ VO𝑦 (𝑣 ′, 𝑑 ′) ∗ PC(𝑥, 𝜆𝜋. (𝑣 ′𝜋, 𝜋 𝑦), 𝑑 ′+ 1) ∗

▷◁ (𝑑 ′+ 2)
)

&𝛼
full &

𝛽
full

(
∃ 𝔟̄, 𝑣 ′, 𝑑 ′. 𝔩 1↦→ 𝔟̄ ∗ 𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑 ′ ∗

▷◁ (𝑑 ′+ 1) ∗ PC(𝑦, 𝑣 ′, 𝑑 ′)
)
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We unnest the latter in one logical step (FullBor-Unnest) and then merge it with the
former (FullBor-Merge) to get the full borrow &𝛼u𝛽

full 𝑃 , where we define 𝑃 as follows.

𝑃 := ∃ 𝔟̄, 𝑣 ′, 𝑑 ′. 𝔩 1↦→ 𝔩′ ∗ 𝔩′ 1↦→ 𝔟̄ ∗ 𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑 ′ ∗

▷◁ (𝑑 ′+ 2)
VO𝑦 (𝑣 ′, 𝑑 ′) ∗ PC(𝑦, 𝑣 ′, 𝑑 ′) ∗ PC(𝑥, 𝜆𝜋. (𝑣 ′𝜋, 𝜋 𝑦), 𝑑 ′+ 1)

Weaccess the content ⊲ 𝑃 of this full borrow by FullBor-Subdiv. We can temporarily
take out the points-to token 𝔩 1↦→ 𝔩′.

Assume we have retrieved 𝔩 1↦→𝔩′ and also obtained a cumulative time receipt

▷◀ 1. By
agreement of the value observer and prophecy control on 𝑥 (ValObs-ProphCtrl-Agree),
we know that 𝑑 is positive. Taking a fresh prophecy variable 𝑧, we create a value ob-
server VO𝑧 (𝑣, 𝑑 − 1) and a prophecy control PC(𝑧, 𝑣, 𝑑 − 1). By ValObs-ProphCtrl-
Preresolve, consuming the value observer and prophecy control of the given dou-
ble unique reference, with help of prophecy tokens [𝑦]1 and [𝑧]1 (taken by ValObs-
ProphCtrl-ProphToken), we obtain the prophecy observation 〈𝜋. 𝜋 𝑥 = (𝜋 𝑧, 𝜋 𝑦) 〉 and
the following proposition 𝑅.

𝑅 := ∀ 𝑣 ′, 𝑑 ′. PE
(
𝜆𝜋. (𝜋 𝑧, 𝜋 𝑦), 𝑣 ′

)
−∗ PC(𝑥, 𝑣 ′, 𝑑 ′)

From the remaining parts of ⊲ 𝑃 and the created prophecy control PC(𝑧, 𝑣, 𝑑 − 1), we
can take out ⊲𝑄 , where we define 𝑄 as follows.

𝑄 := ∃ 𝔟̄, 𝑣 ′, 𝑑 ′. 𝔩′ 1↦→ 𝔟̄ ∗ 𝔟̄ ◀ 𝜏 {𝑣 ′ }𝑑 ′ ∗

▷◁ (𝑑 ′+ 1) ∗ PC(𝑧, 𝑣 ′, 𝑑 ′)

When we get back ⊲𝑄 , we can reconstruct ⊲ 𝑃 in the following way. We open the
variables 𝔟̄, 𝑣 ′, 𝑑 ′ of𝑄 . We turn the prophecy control on 𝑧 (under later) ⊲ PC(𝑧, 𝑣 ′, 𝑑 ′) of
⊲𝑄 into the prophecy equalizer ⊲ PE(𝜆𝜋.𝜋 𝑧, 𝑣 ′) (ProphCtrl-ProphEqz) and then turn it
into ⊲ PE(𝜆𝜋. (𝜋 𝑧, 𝜋 𝑦), 𝜆𝜋. (𝑣 ′𝜋, 𝜋 𝑦)) (ProphEqz-Transform); applying it to 𝑅, we get
the prophecy control on 𝑥 , ⊲ PC(𝑥, 𝑣, 𝑑 + 2). We update the arguments of the value
observer and prophecy control on 𝑦 into 𝑣 ′ and 𝑑 ′ (ValObs-ProphCtrl-Update). We
bump up the persistent time receipt

▷◁ (𝑑 ′ + 1) of 𝑄 into

▷◁ (𝑑 ′ + 2) required by 𝑃 by
consuming

▷◀ 1 (CumuTime-Swell-PersTime).
Therefore, by the power of FullBor-Subdiv, we get the full borrow &𝛼u𝛽

full 𝑄 . Com-
bining it with the value observer that we created VO𝑧 (𝑣, 𝑑 − 1), we finally get the ex-
pected unique reference &𝛼u𝛽

unq 𝜏 {𝜆𝜋. (𝑣 𝜋, 𝜋 𝑧) }𝑑 .

6.3.5 Subtyping on Unique References

We have the following structural subtyping rule on the unique reference type under
the access mode own.

Subty-Own-UnqRef
⊲
(
𝜏 vown 𝜏 ′ p id

)
⊲
(
𝜏 ′ vown 𝜏 p id

)
𝛽 v 𝛼

&𝛼
unq 𝜏 vown &𝛽

unq 𝜏
′ p id

Again, the subtyping assumptions on the target types can be under the later modality.

Proof. From FullBor-Iff and FullBor-Mono-Lft.

Using the later modality in the assumption of Subty-Own-UnqRef, with Löb induc-
tion (Löb), we can prove subtyping rules (under the access mode own) for recursive
types with self reference under the unique reference type.
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Example 6.4 (Subtyping for Recursion Under Unique References). For example, we can
derive the following subtyping rule on the typemnat𝛼 (defined in Example 5.2), a Peano
number type with self reference under the unique reference type.

𝛼 v 𝛽 𝛽 v 𝛼
mnat𝛼 vown mnat𝛽 p id

Proof. Assume 𝛼 v 𝛽 and 𝛽 v 𝛼 . We prove both 𝑃 := mnat𝛼 vown mnat𝛽 p id and
𝑄 := mnat𝛽 vown mnat𝛼 p id. By Löb induction (Löb), we can also assume ⊲(𝑃 ∧𝑄),
which entails ⊲ 𝑃 and ⊲𝑄 .

By Subty-Own-UnqRef, we can prove 𝑃 from ⊲ 𝑃 , ⊲𝑄 and 𝛽 v 𝛼 . Similarly we can
prove 𝑄 . Therefore, we have proved both 𝑃 and 𝑄 .

Under the sharing access mode, we have the following more liberated subtyping
rule on the unique reference type.

Subty-Shr-UnqRef
⊲
(
𝜏 vshr(𝛼u𝛽 ) 𝜏 ′ p 𝑓

)
𝛼 ′ v 𝛼

&𝛼
unq 𝜏 vshr(𝛽 ) &𝛼 ′

unq 𝜏
′ p 𝜆 (𝑣, 𝑣◦) . (𝑓 𝑣, 𝑔 𝑣◦)

We can modify the prophecy part 𝑣◦ using any function 𝑔, which follows from Dep-
Construct (see the model of the unique reference in §5.3).

Also, a unique reference can be transformed into a shared reference under the shar-
ing access mode.

Subty-Shr-UnqRef-ShrRef
&𝛽
unq 𝜏 vshr(𝛼 ) &𝛼u𝛽

shr 𝜏 p 𝜆 (𝑣, 𝑣◦).𝑣

Combining this with Rfn-Deref-ShrRef-ShrRef, we can derive the following derefer-
ence rule.

Rfn-Deref-ShrRef-UnqRef
𝛽 v 𝛼

𝛽 p 𝔞: &𝛼
shr &

𝛼 ′
unq 𝜏 ` ∗𝔞 : &𝛼u𝛼 ′

shr 𝜏 p p 𝜆post, ((𝑣, 𝑣◦)) . post (𝑣)

6.3.6 Manipulating Vectors via Unique References

Now we introduce refined typing rules for combination of the vector type vec𝜏 (§5.2)
and the unique reference type &𝛼

unq 𝜏 .
A function that takes a unique reference to a vector, updates the vector, and just re-

leases the unique reference can be verified using Raw-UnqRef-PlnRef and Raw-UnqRef-
Release. Although we need to work on the model of the vector type, we need no other
rules on unique references.

For example, we can introduce the following function pop𝜏vec that takes a unique
reference to a vector 𝑎 and moves out the last element from the vector making an new
box pointer.

pop𝜏vec := fn(𝑎)
{
let 𝑏 = alloc |𝜏 | in

let 𝑙 = ∗(𝑎.2) − 1 in 𝑎.2 � 𝑙 ; 𝑏 �∗
|𝜏 | (∗𝑎) .(𝑙 × |𝜏 |); 𝑏

}
This function satisfies the following specification.

Rfn-Pop-Vec
pop𝜏vec : ∀𝛼. fn(&𝛼

unq vec𝜏) � box 𝜏 p
𝜆post, ((𝑣, 𝑣◦)) . ∃ 𝑣 ′, 𝑣 ′′ s.t. 𝑣 ′ ++ [𝑣 ′′] = 𝑣 . 𝑣◦ = 𝑣 ′ ⇒ post (𝑣 ′′)
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Note that the precondition requires that the vector is non-empty. In order to prove this
specification, we simply take out a full plain reference from the input unique reference
by Raw-UnqRef-PlnRef, verify the operations based on the model of the type, and then
resolve the prophecy value by Raw-UnqRef-Release.

Also, we can introduce the following function push𝜏vec that takes a unique reference
to a vector 𝑎 and an ownership 𝑏 and pushes the target object of 𝑏 to the end of the
vector.

push𝜏vec := fn(𝑎,𝑏)
{
let 𝑐 = ∗(𝑎.1) in let 𝑙 = ∗(𝑎.2) in

if 𝑐 = 𝑙
{
let 𝑎′ = alloc ((𝑐 + 1) × |𝜏 |) in 𝑎′ �∗

𝑐× |𝜏 | ∗𝑎; 𝑎 � 𝑎′; 𝑎.1 � 𝑐 + 1
}
;

(∗𝑎).(𝑙 × |𝜏 |) �∗
|𝜏 | 𝑏; free𝑏; 𝑎.2 � 𝑙 + 1

}
If we have no room in the capacity 𝑐 = 𝑙 , we increment the capacity size and reallocate
the memory block. We move the target object to the end address of the vector, free
the memory block of 𝑏, and increment the length of the vector. The function push𝜏vec
satisfies the following specification.

Rfn-Push-Vec
push𝜏vec : ∀𝛼. fn(&𝛼

unq vec𝜏, box𝜏) p 𝜆post, ((𝑣, 𝑣◦), 𝑣 ′). 𝑣◦ = 𝑣 ++ [𝑣 ′] ⇒ post ()

Again, the rules we need about the unique reference are just Raw-UnqRef-PlnRef and
Raw-UnqRef-Release, although we need to work on the big expression of push𝜏vec and
the model of the vector type.

We can also subdivide a unique reference to a vector into unique references to each
element of the vector, which requires some new lemma on unique references. We can
introduce the following lemma for that subdivision.

Raw-Split-UnqRef-Vec

𝔩 ◀ &𝛼
unq vec𝜏 {𝜆𝜋. ([

−→̂
𝑣 𝜋], 𝜋 𝑥) }𝑑+1 ∗ [𝛼]𝑞 ≡⇛▶⊲ Nlft+Nproph ∃ 𝔩′, ®𝑦.

𝔩 1↦→ 𝔩′ ∗ 〈𝜋. 𝜋 𝑥 = [−→𝜋 𝑦] 〉 ∗(
𝔩 1↦→ 𝔩′ ∗

▷◀ 1 ⇛Nlft ∗𝑖

(
[𝔩′ + 𝑖 · |𝜏 |] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑣𝑖 𝜋, 𝜋 𝑦𝑖) }𝑑
)
∗ [𝛼]𝑞

)
Proof. Similar to Raw-Deref-UnqRef-BoxPtr and Raw-Split-UnqRef-Pair.

Combining Raw-Split-UnqRef-Vec and Raw-UnqRef-Release, we can prove the fol-
lowing lemma for taking out of a unique reference to a vector a unique reference to a
specific element of the vector. The prophecy variables of the remaining unique refer-
ences are resolved.

Raw-Vec-Idx-UnqRef
®̂𝑣 = 𝑣0, . . . , 𝑣𝑛−1 0 ≤ 𝑖 < 𝑛 𝛽 v &𝛼

unq vec𝜏

𝔩 ◀ &𝛼
unq vec𝜏 {𝜆𝜋. ([

−→̂
𝑣 𝜋, 𝜋 𝑥]) }𝑑+1 ∗ [𝛼]𝑞 ≡⇛▶⊲ Nlft+Nproph ∃ 𝔩′. 𝔩 1↦→ 𝔩′ ∗(

𝔩 1↦→ 𝔩′ ∗

▷◀ 1 ≡≡−∗▶⊲ 𝑑
Nlft

∃𝑦.
〈𝜋. 𝜋 𝑥 = [−→̂𝑣 𝜋] {𝑖 � 𝜋 𝑦 }〉 ∗ [𝔩′ + 𝑖 · |𝜏 |] ◀ &𝛼

unq 𝜏 {𝜆𝜋. (𝑣𝑖 𝜋, 𝜋 𝑦) }𝑑 ∗ [𝛼]𝑞
)

Note that we can obtain 𝛽 v 𝛼 out of 𝛽 v &𝛼
unq vec𝜏 in two logical steps. This lemma

leads to the following refined typing rule for the function idx𝜏vec (defined in §6.2.5).

Rfn-Idx-Vec-UnqRef
idx𝜏vec : ∀𝛼. fn(&𝛼

unq vec𝜏, int) � &𝛼
unq 𝜏 p

𝜆post, ((𝑣, 𝑣◦), 𝑖) . 0 ≤ 𝑖 < len 𝑣 ∧ ∀𝑤◦. 𝑣◦ = 𝑣 {𝑖 �𝑤◦} ⇒ post ((𝑣 [𝑖],𝑤◦))

The precondition ensures that the index 𝑖 is within the bound of the current list 𝑣 (0 ≤
𝑖 < len 𝑣). We take a prophecy value 𝑤◦ for the newly taken unique reference to the
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𝑖-th element. The new unique reference has the value (𝑣 [𝑖],𝑤◦). We set the prophecy
value 𝑣◦ on the vector to the current value 𝑣 with the 𝑖-th element updated to𝑤◦.

We can also write a following higher-order function that inputs a reference 𝑎 to a
vector and a function 𝑓 and calls 𝑓 on a reference to each element of the vector.

iter𝜏vec := fn(𝑎, 𝑓 )
{
let 𝑎′ = ∗𝑎 in for 𝑖 � 0 .. ∗(𝑎.2)

{
𝑓 (𝑎′.(𝑖 × |𝜏 |))

} }
Using Raw-Split-UnqRef-Vec and Raw-UnqRef-Release, we can prove the following re-
fined typing rule on this function.

Rfn-Iter-Vec-UnqRef
iter𝜏vec : ∀𝛼. fn

(
&𝛼
unq vec𝜏, fn(&𝛼

unq 𝜏)
)
p 𝜆post, ((𝑣, 𝑣◦), pre) .

len 𝑣◦ = len 𝑣 ⇒ foldr
(
𝜆𝑤, post′, (()) . pre post′ (𝑤)

)
(zip 𝑣 𝑣◦) post (())

By Raw-Split-UnqRef-Vec, we get the postcondition len 𝑣◦ = len 𝑣 and have the unique
references (𝑣 [𝑖], 𝑣◦ [𝑖]) (for 0 ≤ 𝑖 < len 𝑣). In order to compose the predicate transform-
ers on the unique reference, we use here foldr: (𝑇 →𝑈 →𝑈 ) → List𝑇 → 𝑈 → 𝑈 and
zip: List𝑇 → List𝑇 → List(𝑇 ×𝑇 ), which are defined as follows.

foldr 𝑓 nil𝑎 := 𝑎 foldr 𝑓 (𝑣 ::𝑤) 𝑎 := 𝑓 𝑣 (foldr 𝑓 𝑤 𝑎)

zip nil𝑤 = zip 𝑣 nil := nil zip (𝑣 :: 𝑣 ′) (𝑤 ::𝑤 ′) := (𝑣,𝑤) :: zip 𝑣 ′𝑤 ′

6.4 Examples of Verification by the Refined Type System

In this section, we verify some Rust programs using the refined typing rules introduced
in the previous sections, §6.1, §6.2 and §6.3.
Example 6.5 (Dynamic Decision of the Address of a Unique Reference). The verifica-
tion problem Example 1.9 verified by RustHorn can also be verified in our refined type
system.

The function take_max can be formalized as the following function take max.

take max := fn(𝑎,𝑏)
{
if ∗𝑎 ≥ ∗𝑏 { ; 𝑎} else { ; 𝑏 } }

It takes two unique references to an integer 𝑎, 𝑏 and returns the one with the greater
value, releasing the other. The point is that the returned unique reference (𝑎 or 𝑏)
is determined by a dynamic condition ∗𝑎 ≥ ∗𝑏. This function satisfies the following
specification.

take max : ∀𝛼. fn(&𝛼
unq int, &

𝛼
unq int) � &𝛼

unq int p 𝜆post, ((𝑛, 𝑛◦), (𝑚,𝑚◦)) .(
𝑛 ≥ 𝑚 ⇒ 𝑚◦ =𝑚 ⇒ post ((𝑛, 𝑛◦))

)
∧

(
𝑛 < 𝑚 ⇒ 𝑛◦ = 𝑛 ⇒ post ((𝑚,𝑚◦))

)
It follows from Acc-UnqRef-PlnRef, Rfn-Deref-PlnRef-Copy, Rfn-IntRel, Rfn-If, and
SWkn-UnqRef-Release.

The test function test can be formalized as the following function inc max.

inc max := fn(𝑎,𝑏)
{
let 𝑎′ = alloc𝑎 in let 𝑏′ = alloc𝑏 in 𝑎′ � 𝑎; 𝑏′ � 𝑏;

let 𝑐′ = take max(𝑎′, 𝑏′) in 𝑐′ � ∗𝑐′ + 1;  ; let 𝑟 = ∗𝑎′ ≠ ∗𝑏′ in free𝑎′; free𝑏′; 𝑟
}

It allocates two integer values 𝑎, 𝑏, uniquely borrows the box pointers, increments the
target of the unique reference with the larger value taken by take max, and checks that
the two integer values have become different. We can verify that this function always
return tt, i.e., the following specification holds.

inc max : fn(int, int) � bool p 𝜆post, (𝑚,𝑛) . post (tt)
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The verification goes as follows. By Rfn-Alloc, Rfn-Intro-LocalLft, Wkn-UnqBor-
BoxPtr, Rfn-Fn-Call, SWkn-UnqRef-Release, SWkn-End-LocalLft-Reclaim, and Rfn-
Free, we first obtain the following predicate transformer.

𝜆post, (𝑛,𝑚) . ∀𝑛◦,𝑚◦.
(
𝑛 ≥ 𝑚 ⇒ 𝑚◦ =𝑚 ⇒ 𝑛◦ = 𝑛 + 1 ⇒ post (𝑛◦ ≠𝑚◦)

)
∧(

𝑛 < 𝑚 ⇒ 𝑛◦ = 𝑛 ⇒ 𝑚◦ =𝑚 + 1 ⇒ post (𝑛◦ ≠𝑚◦)
)

Now we can easily check that this is equivalent to 𝜆post, (𝑚,𝑛). post (tt).
Example 6.6 (Update of a List via a Unique Reference). The verification problem Exam-
ple 1.10 verified by RustHorn can also be verified in our refined type system.

First, the function sum can be formalized as the following function sumlist.

sumlist := fn self (𝑎)
{
case ∗𝑎 of

{
0 � 0, 1 � let 𝑎′ = 𝑎.1 in ∗𝑎′ + self (∗(𝑎′.1))} }

It satisfies the following specification using the function sum : ListZ→ Z.

sumlist : ∀𝛼. fn(&𝛼
shr list int) � int p 𝜆post, (𝑣) . post (sum 𝑣)

We elaborate its proof here.

Proof. We use Rfn-Fn-Rec. We can assume that self is modeled as the predicate trans-
former 𝜆post, (𝑣). post (sum 𝑣). The variable 𝑎 has the type &𝛼

shr list int. We know that
the lifetime 𝛼 is alive during the function call. Let 𝑣 : ListZ the pure value of 𝑎. By
Subty-Ty-InjTy, we transform 𝑎 into the type &𝛼

shr( 0 + int × box list int) and the value
outList 𝑣 : Unit + Z × ListZ. By Acc-ShrRef-PlnRef and Rfn-Case-Vrnt-Access, we tem-
porarily access the tag of 𝑎.

Let us discuss the case 0. By the effect of Rfn-Case-Vrnt-Access, we know 𝑣 = nil.
Since sumnil = 0 holds and we return 0 here, the postcondition is satisfied.

Let us discuss the case 1. We know that 𝑣 is of the form 𝑛 :: 𝑤 . By Rfn-Subdiv-
ShrRef-Vrnt, the variable 𝑎′ defined as 𝑎.1 has the type &𝛼

shr( int × box list int) and the
value (𝑛,𝑤). By Subty-Subdiv-ShrRef-Pair-L, 𝑎′ can be used as a shared reference of
the type &𝛼

shr int and the value 𝑛. By Acc-ShrRef-PlnRef and Rfn-Deref-PlnRef-Copy,
we get an integer of the value 𝑛 from ∗𝑎′. By Rfn-Subdiv-ShrRef-Pair-R and Rfn-Deref-
ShrRef-BoxPtr, ∗(𝑎′.1) is a shared reference the type &𝛼

shr list int and the value 𝑤 . By
passing it to self , we get an integer of the value sum𝑤 . By Hoare-IntOp, we finally get
the value 𝑛 + sum𝑤 , which is equal to sum(𝑛 ::𝑤), i.e., sum 𝑣 . So the postcondition is
satisfied.

The function take_some can be formalized as the following function take some.

take some := fn self (𝑎)
{
case ∗𝑎 of

{
0 � self (𝑎),
1 � let 𝑎′ = 𝑎.1 in let 𝑎′′ = ∗(𝑎′.1) in if ndint ≥ 0 { ; 𝑎′ } else { ; self (𝑎′′) }} }

We can prove that it satisfies the following specification, which is enough for verifica-
tion of the test function test.

take some: ∀𝛼. fn(&𝛼
unq list int) → &𝛼

unq int p

𝜆post, ((𝑣, 𝑣◦)) . ∀𝑛, 𝑛◦.
(
𝑛◦ = 𝑛 + 1 ⇒ sum 𝑣◦ = sum 𝑣 + 1

)
⇒ post ((𝑛, 𝑛◦))

The predicate transformer means that we get the postcondition 𝑛◦ = 𝑛 + 1 ⇒ sum 𝑣◦ =
sum 𝑣 + 1 on the result (𝑛, 𝑛◦).
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Proof. We use Rfn-Fn-Rec. We can assume that self satisfies the expected specification.
The variable 𝑎 has the type &𝛼

unq list int. Let (𝑣, 𝑣◦) be the pure value of 𝑎. We update
the type of 𝑎 into &𝛼

unq( 0 + int× box list int) by Subty-Ty-InjTy and temporarily access
the tag by Acc-UnqRef-PlnRef and Rfn-Case-Vrnt-Access. In the case 0, we revert the
type of 𝑎, and the postcondition is trivially satisfied by the recursive call on self .

Let us discuss the case 1. We know that 𝑣 has the form 𝑛 :: 𝑣 ′. By Rfn-Subdiv-
UnqRef-Vrnt, the variable 𝑎′ = 𝑎.1 has the type &𝛼

unq( int × box list int) and the value
((𝑛,𝑤), (𝑛◦,𝑤◦)) for some 𝑛◦,𝑤◦. By Rfn-Split-UnqRef-Pair-R, we split 𝑎′ into two
unique references, (i) 𝑎′.1, which has the type &𝛼

unq box list int and the value (𝑤,𝑤◦) and
(ii) 𝑎′, which has the type &𝛼

unq int and the value (𝑛, 𝑛◦). Then by Rfn-Deref-UnqRef-
BoxPtr, we subdivide the former into the variable 𝑎′′ = ∗(𝑎′.1), which has the type
&𝛼
unq list int and the value (𝑤,𝑤◦). Now by Rfn-Val-Bool, it suffices to verify the then

case and the else case.
In the then case, we release 𝑎′′ by SWkn-UnqRef-Release and get the postcondition

𝑤◦ = 𝑤 . We return 𝑎′, which has the value (𝑛, 𝑛◦). When 𝑛◦ = 𝑛 + 1 holds, we have
sum 𝑣◦ = sum(𝑛◦ ::𝑤◦) = 𝑛◦ + sum𝑤◦ = 𝑛 + 1 + sum𝑤 = sum(𝑛 ::𝑤) + 1 = sum 𝑣 + 1.
Therefore, the postcondition is satisfied.

In the else case, we release 𝑎′ by SWkn-UnqRef-Release and get the postcondition
𝑛◦ = 𝑛. We recursively call self with 𝑎′′. Let (𝑚,𝑚0) be the finally returned value.
Assume that𝑚◦ =𝑚+1 holds. By the assumption on self , we know sum𝑤◦ = sum𝑤+1.
Therefore, we have sum 𝑣◦ = sum(𝑛◦ ::𝑤◦) = 𝑛◦ + sum𝑤◦ = 𝑛 + sum𝑤 + 1 = sum(𝑛 ::
𝑤) + 1 = sum 𝑣 + 1. Therefore, the postcondition is satisfied.

The test function test can be formalized as the following function test take some
(we omit the structural deallocation of the list).

test take some := fn(𝑎)
{
let 𝑛 = sumlist(𝑎) in

let 𝑏 = take some(𝑎) in 𝑏 � ∗𝑏 + 1;  ; sumlist(𝑎) = 𝑛 + 1
}

It satisfies the following specification.

test take some : box list int → bool p 𝜆post, (𝑣) . post (tt)

It can be proved using the specifications on sumlist and take some, as well as Wkn-
UnqBor-BoxPtr and SWkn-UnqRef-Release.

Example 6.7 (Splitting a Unique Reference to a List). The following function splits the
unique reference to a list 𝑎 into a box pointer to a list of unique references to each
element of the list.

split𝜏list := fn self (𝑎)
{
let 𝑏 = alloc 3 in case ∗𝑎 of

{
0 � 𝑏 � 0; 𝑏,
1 � let 𝑎′ = 𝑎.1 in

(
𝑏 � 1; 𝑏.2 � self (∗(𝑎′.|𝜏 |)); 𝑏.1 � 𝑎′

)
; 𝑏} }

We can derive the following specification on this function.

split𝜏list : ∀𝛼. fn(&
𝛼
unq list𝜏) � box list&𝛼

unq 𝜏 p

𝜆post, ((𝑣, 𝑣◦)) . len 𝑣◦ = len 𝑣 ⇒ post (zip 𝑣 𝑣◦)

Proof. We use Rfn-Fn-Rec. We can assume that self satisfies the expected specification.
After the allocation alloc 3, 𝑏 is typed box 3 by Rfn-Alloc. We convert the type of

the unique reference 𝑎 into &𝛼
unq( 0 + 𝜏 × box list𝜏) by Wkn-Subdiv-UnqRef-InjTy. We

perform the case operation using Rfn-Case-Vrnt-Access.
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Let us discuss the case where the tag is 0. We convert the type of the unique refer-
ence 𝑎 back to &𝛼

unq list𝜏 by Wkn-Subdiv-UnqRef-InjTy. We know that the current tar-
get value of 𝑎 is nil by the effect of Rfn-Case-Vrnt-Access. By Acc-BoxPtr-PlnRef and
Subty-Split-Invalid, we can temporarily take out a full plain reference &1(( 1× 0)× 2)
out of𝑏. By Rfn-Store-PlnRef-PlnRef-Copy andWkn-PlnRef-Triple-Vrnt, we can store
inj0() to the box pointer 𝑏, which is turned into nil by Subty-Ty-InjTy. Then we release
the unique reference 𝑎 by SWkn-UnqRef-Release, which resolves the prophecy value
of 𝑎 into nil. Since len nil = nil and zip nil nil = nil hold, the specification is satisfied in
this case.

Let us discuss the case where the tag is 1. We convert the type of the unique
reference 𝑎 back to &𝛼

unq list𝜏 . We know that the pure value of 𝑎 is of the form (𝑣 ::
𝑤,𝑤 ′

◦). By Raw-Subdiv-UnqRef-Vrnt, the unique reference 𝑎.1 named 𝑎′ has the type
&𝛼
unq(𝜏 × box list𝜏) and the pure value ((𝑣,𝑤), (𝑣◦,𝑤◦)), where 𝑤 ′

◦ has been resolved
into 𝑣◦ ::𝑤◦. Inside the parenthesis, we access 𝑏 by Acc-BoxPtr-PlnRef and Subty-Split-
Invalid. By Rfn-Split-UnqRef-Pair-R and Rfn-Deref-UnqRef-BoxPtr, we can take out
the unique reference ∗(𝑎′.|𝜏 |), which has the pure value (𝑤,𝑤◦). By passing it to self ,
which satisfies the expected specification by the assumption, we get the postcondition
len𝑤◦ = len𝑤 and acquire as the returned object a box pointer of the type box list&𝛼

unq 𝜏
and the pure value zip𝑤 𝑤◦, which is stored to 𝑏.2. Now we have len(𝑣◦ :: 𝑤◦) =
1 + len𝑤◦ = 1 + len𝑤 = len(𝑣 :: 𝑤). We still have a unique reference 𝑎′ of the type
&𝛼
unq 𝜏 and the pure value (𝑣, 𝑣◦), which is stored to 𝑏.1. ByWkn-PlnRef-Triple-Vrnt, 𝑏

finally has the type box list&𝛼
unq 𝜏 and the pure value (𝑣, 𝑣◦) :: zip𝑤 𝑤◦, which is equal

to zip (𝑣 ::𝑤) (𝑣◦ ::𝑤◦). So in this case the specification is satisfied, which concludes the
proof.

Example 6.8 (Iterative Update of Vector by Increment). The following function incr
increments the target integer of the unique reference 𝑎 and then release 𝑎.

incr := fn(𝑎)
{
𝑎 � ∗𝑎 + 1;  }

It satisfies the following specification, which follows from the specification of Exam-
ple 6.3.

incr : ∀𝛼. fn(&𝛼
unq int) p 𝜆post, ((𝑛, 𝑛◦)) . 𝑛◦ = 𝑛 + 1 ⇒ post ()

Combining this and Rfn-Iter-Vec-UnqRef, we can derive the following specifica-
tion.

𝛼 p 𝔞: &𝛼
unq int ` iterintvec(𝔞, incr) p p 𝜆post, ((𝑣, 𝑣◦)) . 𝑣◦ = map (𝜆𝑛.𝑛+1) 𝑣 ⇒ post ()

6.5 Related Work

RustHorn As explained in §1.3, the idea of using prophecy formodeling unique refer-
ences comes from RustHorn (Matsushita et al., 2020a,b). They also presented the proof
of soundness and completeness of the prophecy-based reduction from Rust programs to
CHCs.

As a basis for the soundness and completeness proof, they made a core calculus of
Rust dubbed Calculus of Ownership and Reference (COR), which models some basic
features of Rust. In COR, a function consists of a set of very simple statements, each of
which is associated with a program point and finally either jumps to another program
point or returns from the function. Because of this design of COR, their translation
of COR programs into CHCs is rather simple; a statement of each program point in a
program is translated into one CHC (or two CHCs, for conditional branching).
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As explained in § 3.1, their soundness and completeness proof is based on con-
struction of bisimulation between the execution on the COR side and some deduction
algorithm (called SLDC resolution) on the CHC side. On this construction, they asso-
ciate each object in COR with a multiset of ownership tokens on memory cells of the
heap memory and manage the safety invariant on the multiset of ownership tokens
over all the objects at each program point, which has a flavor of separation logic but
is performed rather in an ad-hoc way. A prophecy variable of each unique reference
is represented as syntactic logic variables in CHCs, which can later be specialized in
the deduction algorithm. Their proof depends heavily on syntactic structures, which
requires careful design of the calculus COR, the reduction from COR to CHCs, and the
deduction on CHCs. Because of the syntactic nature, it is unclear how we can extend
their proof to other features and libraries of Rust, although they conjectured that their
prophecy-based approach is applicable to a wide class of features and libraries.

Unlike RustHorn, the functional-correctness proof of our thesis is highly extensible,
thanks to the power of the higher-order separation logic Iris and the lifetime logic. We
support function types, concurrency and vector types, which are not supported by the
formalization of RustHorn. Also, we can flexibly add new typing rules and libraries,
whose correctness can be checked separately.

Still, for the logic model we can make using the refined type system we give the
proof of soundness (with the adequacy theoremsTheorem 6.1 andTheorem 4.1) but not
the proof of completeness, whereas RustHorn proves both soundness and completeness
of the reduction. We believe that we can in theory prove completeness of our logic
model by appropriately restricting the range of programs, in a way that enforces res-
olution of the prophecy variable of every unique reference. Still, in order to attain an
extensible proof of completeness of the logic model, we probably need to design a new
program logic.

RustBelt Our semantic approach to program verification comes from RustBelt (Jung
et al., 2018a). RustBelt verified safety of the core type system and some basic libraries of
Rust, but it did not verify functional correctness. In particular, RustBelt models unique
reference as a kind of invariant saying that some object of the type is stored at the target
address and does not track precise information about the object.

We extended their approach for verification of functional correctness of basic opera-
tions and libraries in Rust using the prophecy-based reduction of RustHorn. We refined
semantic types with pure values parametrized over 𝜋 , the assignment on prophecy
variables, in order to handle prophecy information.

Still, the verification platform of this thesis does not support libraries with interior
mutability. RustBelt verified safety of various libraries with interior mutability, includ-
ing Cell, RefCell, Mutex and RwLock, using the power of invariants provided by Iris.
We can rather easily incorporate their safety proofs into RustHornBelt. However, in
order to verify more precise information about functional correctness, we need more
machinery. This point is discussed more in depth in Chapter 7.

Semantic Soundness Proof There are some existing studies on semantic soundness
proof (i.e., soundness proof based on logical relations) for a substructural type sys-
tem, including those by Morrisett et al. (2005); Ahmed et al. (2005); Krishnaswami et al.
(2012); Jung et al. (2018a); Dang et al. (2020), although semantic approaches remain
rather rare compared to syntactic approaches. However, we are not aware of any exist-
ing study that presents semantic soundness proof for a substructural type system that
takes into account functional correctness, not only memory and thread safety.
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Other Studies on Verification of Rust Programs There are a number of studies
on automated low-level verification of Rust programs. Toman et al. (2015) developed
a bounded model checker crust for automatically detecting violation of Rust’s own-
ership invariants by a Rust library with unsafe code within some bounds. The tool ex-
haustively generates tests on client use of a Rust library, imposing some upper bound
on the number of library method calls, and passes the tests to SMBC, an existing SMT-
based bounded model checker for the C programming language. They successfully re-
discovered some real-world bugs of the standard Rust library that had been fixed at that
time but been missed for a long time. Lindner et al. (2018) performed automated verifi-
cation on Rust using symbolic execution in KLEE on the LLVM bitcode extracted from
a Rust program. They particularly focused on the property that the program does not
cause abortion, for example by out-of-bounds access or division by zero. Baranowski
et al. (2018) performed automated verification on Rust programs using the SMACK ver-
ifier. In order to reuse SMACK’s existing verification tools for C, theymodeled common
Rust libraries as special C code tailored to SMACK.

There are also a number of existing studies on verification of Rust programs that
exploit the guarantees by Rust’s ownership principle. Ullrich (2016) developed a tool
for automatically translating Rust programs of some subset into the purely functional
language of the Lean Theorem Prover and verified functional correctness of some Rust
programs in Lean using that translation. The basic idea of his translation is to model
a Rust function that inputs and consumes a unique reference (e.g., Vec::push) as a
function that inputs the target value of the unique reference and outputs the new target
value of the unique reference. The translation also supports one-to-one subdivision
of unique references like Vec::index_mut through functional lenses. However, the
translation still cannot handle various common usages of unique references, including
split of a unique reference (e.g., &mut (T, U) into &mut T and &mut U), unlike the
prophecy-based approach of RustHorn and RustHornBelt. Hahn (2016) and Astrauskas
et al. (2019) performed semi-automated verification of Rust programs with annotations
for verification on top of Viper (Müller et al., 2016), a verification platform that employs
a separation logic with fractional permission. In particular, Astrauskas et al. (2019)
supported one-to-one subdivision of unique references like Vec::index_mut using an
assertion called a pledge, which is modeled in Viper’s separation logic using a magic
wand. Also, Viper’s separation logic is much simpler than Iris and can possibly be more
suited for automation. Still, their encoding does not support general use cases of unique
references, including split of a unique reference, unlike RustHorn and RustHornBelt.
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Chapter 7

Conclusion and Future Work

We proposed a novel extensible logical foundation to specify and verify functional cor-
rectness of Rust programs, using a prophecy-based clean logic model in the style of
RustHorn and taking a semantic approach in Iris in the style of RustBelt, under the
project name RustHornBelt. We designed a new type system with a logic model for
Rust, which is highly flexible and supports various features that were not supported by
RustHorn. As a basis for that, we also presented a new flexible platform of prophecy
in Iris, which manages information about prophecy only in the ghost state and allows
an operation that we call dependent resolution. We also presented a new technique for
spending many logical steps at a time in Iris.

We believe that this work serves as a significant step for extensible and scalable
verification of Rust programs, but we still have a lot of work to do in this direction.

Mechanization in Coq We plan to mechanize the results of this thesis in the Coq
Proof Assistant in the near future. We already have a large size of Coq code that we
can utilize. The separation logic Iris is mechanized in Coq with great support of tactics
and proof modes. The lifetime logic is mechanized on top of the Coq library of Iris.
Also, we can reuse some parts of the implementation of RustBelt. Still, since we handle
information about functional correctness involving prophecy in RustHornBelt, we need
to develop useful lemmas and tactics for verifying typing rules and libraries efficiently.
In particular, it is great if we can verify involved libraries (e.g., Vec and HashMap) in
a scalable way. We can possibly adopt some methods from a recently emerging study
by Sammler et al. (2020b), which works on automated and verification of functional
correctness of C programs with an extensible and reliable foundation built in Coq and
Iris.

Semi-Automated Verification of Rust Programs Although this thesis presents a
logical foundation to give clean logical models to basic operations and libraries of Rust
by the technique of prophecy, we have yet to design and implement a semi-automated
verification platform for Rust programs that can perform scalable verification of Rust
programs using the clean models given by our foundation. We expect that we can
achieve such a scalable verification platform for Rust on top of existing semi-automated
verification platforms for functional programming languages such as F* (Swamy et al.,
2016) and Why3 (Filliâtre and Paskevich, 2013).

Interior Mutability In the verification platform of this thesis, we omitted support
of libraries with interior mutability like Cell and RefCell. We can prove memory
and thread safety of such libraries using atomic and non-atomic invariants asserting
we have some object of the expect type inside the cell-like object, which is the proof
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technique used by RustBelt.1 However, if we further want to prove functional correct-
ness, we need to track more precise information about the value of the inner object of
the cell-like object.

With interior mutability, we need to handle almost general imperative program-
ming, although we have solid memory and thread safety. The situation is similar for
example to verification of OCaml programs with reference cells, where memory safety
is ensured by the type system and the garbage collection.

In principle, we can precisely encode a Rust program using interior mutability by
carrying around a global array which maps the id of each cell-like object to its inner
value in the store-passing style, but this is not very scalable for involved programs. One
idea is to use region types (Fluet et al., 2006) to separate out some groups of cell-like
objects that we manipulate, but we have yet to tailor this technique to Rust.

Concurrency In the verification platform of this thesis, we supported only the struc-
tured concurrent execution 𝑒 pp 𝑒′ for concurrency.

To support more features of concurrency, we can use the proof techniques of Rust-
Belt, which verified safety of various features for concurrency in Rust including threads,
channels, mutexes Mutex<T> and read-write locks RwLock<T>. Still, in order to verify
functional correctness of concurrent programs, we need other techniques.

One idea is to use prophecy also for concurrency. For example, when we create a
channel to get a sender and a receiver, we can prophesy the list of values of the objects
that will pass through the channel.2 When the sender sends an object, it can resolve the
head of the prophecy list and subdivide the prophecy list into its tail. When the receiver
receives an object, we know the value of the object from the prophesied list. When we
clone the sender, we split the prophecy list in a non-deterministic way. We believe that
we can formalize this prophecy-based encoding of a channel using our formulation
of prophecy (Chapter 3). Still, this encoding is not very precise. For example, in this
encoding, we cannot detect dead locks or discuss interaction between multiple senders.

Another idea is to incorporate the rely-guarantee reasoning (Vafeiadis and Parkin-
son, 2007; Feng et al., 2007) for more fine-grained verification on concurrency, but we
have yet to tailor this to RustHornBelt.

Termination-Sensitive Verification The verification platform of this thesis does
not support termination-sensitive verification. Using time credits (Atkey, 2011; Mével
et al., 2019), we can verify a specific upper bound on the execution time of a program,
which can probably be incorporated into RustHornBelt. However, when a function
takes an unbounded but finite number of physical steps (e.g., repeat a loop 𝑛 times for
a random natural number 𝑛), it is hard to verify its termination in Iris, particularly be-
cause Iris uses finite step indexing. We may be able to overcome this situation by using
recently emerging Transfinite Iris (Spies et al., 2020) instead of Iris for the underlying
separation logic. However, as discussed in §4.3, whether we can use Transfinite Iris for
RustHornBelt remains unclear because a number of good properties of Iris are lost in
Transfinite Iris.

1 To support types like Cell in the presence of concurrency, we need to introduce Rust’s Send and
Sync traits, which manage what kind of object can be passed between thread. RustBelt models these traits
respectively as the condition that the ownership or sharing predicate of the type does not depend on the
thread id.

2 This idea is similar to sequence prophecies used by Jung et al. (2020b).
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12, 2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 442–451. https://doi.org/

10.1145/3209108.3209174

Dan R. Ghica and Alex I. Smith. 2014. Bounded Linear Types in a Resource Semiring. In
Programming Languages and Systems - 23rd European Symposium on Programming,
ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture Notes in
Computer Science, Vol. 8410), Zhong Shao (Ed.). Springer, 331–350. https://doi.

org/10.1007/978-3-642-54833-8_18
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