
Non-Step-Indexed Separation Logic with

Invariants and Rust-Style Borrows

（不変条件と Rust流の借用を扱える
非 Step-Indexedな分離論理）

by

Yusuke Matsushita

松下祐介

A Doctoral Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 6, 2023

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and Technology

in Computer Science

Thesis Supervisor: Naoki Kobayashi 小林直樹
Professor of Computer Science

ABSTRACT

Today, computer software is playing a remarkable role, and improving its quality and ro-
bustness has become vital for the development and safety of society. For this purpose, software
science and engineering have developed mathematically rigorous methods, or formal methods.
Particularly fundamental is general-purpose program logic that can precisely and flexibly verify
programs, i.e., reason about the behavior of software described by programs.

A hard problem in program verification is sound and scalable reasoning aboutmutable state,
such as data stored in heap memory. The basic tool for this is ownership, the exclusive right to
update mutable state. For each fragment of mutable state, only the computational agent with
its ownership is allowed to update it, so that the latest information can be accurately captured.
Separation logic is a logic that can reason about ownership and verify programs with mutable
state in a modular way, which has been actively and fruitfully studied in this century. Modern
separation logics, going beyond naive ownership, support advanced mechanisms for reasoning
about mutable state under propositional sharing, i.e., sharing among multiple computational
agents based on contracts described by separation logic propositions, such as shared invariants
from Iris by Jung et al. (2015) and Rust-style borrows from RustBelt’s lifetime logic by Jung et
al. (2018). However, to soundly support such mechanisms for propositional sharing, existing
approaches weaken the access to the shared content by the later modality, which is ill-behaved,
and employ step-indexed program logic. This has fundamental problems especially in verifying
liveness properties such as program termination.

In this dissertation, we propose a novel, general framework, Nola, for achieving non-step-
indexed separation logic that supports advanced mechanisms for propositional sharing of mu-
table state such as invariants and borrows. Using our framework, one can verify programs
involving shared mutable state in non-step-indexed program logic that can guarantee liveness
properties, being free from the later modality. Our key idea is to isolate the syntactic data type
for the separation logic propositions to be shared from its semantic interpretation. Our proof
rules for propositional sharing are generalized over the choice of the proposition data type and
its interpretation, which one can freely instantiate for one’s purpose. The condition that the
interpretation of the syntax is well-defined restricts the class of propositions that a mechanism
for propositional sharing can store, which naturally avoids the paradox of later-free invariants.
Still, the framework allows one to freely nest the logical connectives for propositional sharing
to reason about nested shared variable references. Moreover, we have discovered a novel, gen-
eral technique for semantic alteration of the content propositions of the logic connectives for
propositional sharing. We have fully mechanized our framework on top of the Iris separation
logic framework in the Coq Proof Assistant, making it easy to combine it with existing develop-
ments. We have demonstrated the expressivity and verification power of our framework with
non-trivial examples, including verification of strong normalization of functional programs un-
der a hierarchical type system that supports higher-order reference types, and construction of
a general later-free mechanism that refines the approach of RustHornBelt by Matsushita et al.
(2022) to functional verification about borrows with RustHorn-style prophecies.

論文要旨

今日、コンピュータ・ソフトウェアは目覚ましい活躍をしており、その品質や堅牢性を高
めることは、社会の発展と安全のために不可欠となっている。このために、ソフトウェア
科学・工学は、数学的に厳格な諸手法、形式手法を発展させてきた。特に基盤となるのが、
正確かつ柔軟にプログラムを検証できる、すなわちプログラムで記述されたソフトウェア
の動作について推論できる、汎用的なプログラム論理である。
プログラム検証における難問が、ヒープメモリに格納されたデータに代表される可変状

態について、健全かつスケーラブルな推論をすることである。そのための基本的な道具が、
可変状態を更新するための独占的な権利、所有権である。可変状態の各断片について、そ
の所有権をもつ計算主体のみに更新を許すことで、最新の情報が正確に把握できる。分離
論理は所有権について推論し、可変状態を扱うプログラムをモジュラーな形で検証できる
論理であり、今世紀において活発に、実りの多い形で研究されてきた。現代的な分離論理
は、素朴な所有権にとどまらず、命題的共有、すなわち分離論理命題で記述された契約に
基づく複数の計算主体間の共有のもとにある可変状態について検証するための高度な仕組
みである、Jungら (2015)の Irisによる共有不変条件や Jungら (2018)の RustBeltのライフ
ライム論理による Rust流の借用などを提供している。しかし、そうした命題的共有のため
の仕組みを健全に扱うために、既存手法では、共有された中身へのアクセスを振る舞いの
悪い later様相によって弱め、step-indexed なプログラム論理を用いる。これは特に、プロ
グラムの停止性などの liveness性質を検証するうえで、根本的な問題を抱えている。
この学位論文では、不変条件や借用といった可変状態の命題的共有のための高度な仕組

みを扱える非 step-indexedな分離論理を実現するための、新しい汎用的なフレームワーク、
Nolaを提案する。私たちのフレームワークを使えば、later様相から解放されて、liveness

性質を保証できる非 step-indexedなプログラム論理のうえで、共有された可変状態を扱う
プログラムを検証することができる。私たちの鍵となるアイデアは、共有される分離論理
命題を表す構文的なデータ型とその意味論的な解釈を切り離すことである。私たちが提供
する命題的共有のための証明規則は、命題のデータ型とその解釈の選択について一般化さ
れており、これらは用途に応じて自由に具体化することができる。構文の解釈が有効な形
で定義されるという条件は、命題的共有の機構が格納できる命題のクラスを制限しており、
これにより later様相のない不変条件に関するパラドクスを自然に回避している。その一
方で、このフレームワークでは、命題的共有のための論理結合子を自由にネストして、特
にネストした共有可変参照について推論することができる。さらに私たちは、命題的共有
のための論理結合子の中身の命題を意味論的に変えるための、新しい汎用的な手法を発見
した。私たちはこのフレームワークを Coq定理証明支援系で Iris分離論理フレームワーク
の上で完全に機械化し、既存のコード資産と容易に組み合わせられるようにした。私たち
はこのフレームワークの表現力および検証能力を、高階参照型を扱える階層的な型システ
ムのもとでの関数型プログラムの強正規化性の検証、および松下ら (2022)の RustHornBelt

の手法を洗練させた、借用に関する RustHorn流の預言による機能検証のための later様相
のない一般的機構の構成を含む、非自明な例で実証した。

Acknowledgments

First of all, I would like to express my unreserved gratitude to my supervisor, Pro-
fessor Naoki Kobayashi. For more than five years since I was an undergraduate, he
has perseveringly and significantly nurtured my skills as a researcher, especially in
presentation and communication, while generously giving me the freedom, time and
environment to explore my own research interests. He is one of the world’s leading
software scientists, and his keen insight and enthusiasm for academic activities have
always inspired me. I feel very fortunate to have him as my supervisor.

I would like to express my sincere gratitude to Professor Takeshi Tsukada. He is
my only collaborator on the research project Nola, the main body of this dissertation,
and he has generously given his time and effort to help me push this project to a higher
level. He is also my close collaborator on my first research project, RustHorn. He
carefully guided me especially on how to write papers better, and also taught me the
joy of theoretical research. He often complimented me on my sense of research, which
greatly encouraged me.

I thank my collaborators in the RustHornBelt project, Professor Derek Dreyer, Pro-
fessor Jacques-Henri Jourdan, and Dr. Xavier Denis. Although the COVID pandemic
unfortunately made it a remote collaboration, the experience of working with them
greatly broadened my horizons and enhanced my skills to advance my research. In
particular, Derek has an extraordinary ability to capture the essence of things and com-
municate it to others, which I was fascinated by and learned a lot from. I am also
grateful to Professor Ralf Jung, one of the world’s leading pioneers in theoretical re-
search on Rust, who assisted and inspired me. I also appreciate the recent projects
Creusot, CreuSAT and RusSOL, respectively led by Dr. Xavier Denis, Mr. Sarek Høver-
stad Skotåm and Mr. Jonáš Fiala, which provided intriguing demonstrations of the ef-
fectiveness of RustHorn’s approach. Moreover, I thank the members of the Kobayashi
Lab, especially Mrs. Yukiko Kimura, Dr. Ken Sakayori, Dr. Ryosuke Sato, Dr. Minchao
Wu, Mr. Hiroyuki Katsura, and Mr. Takashi Nakayama. I had a great time interacting
with them and my graduate life got more colorful thanks to them.

I express my special thanks to my piano teacher, Mrs. Sonoko Hayashi. For about
six years, she energetically cultivated my understanding of classical music and showed
me how to convey the music with the body in piano performance. This has nurtured
my intellectual sensibilities beyond the realm of music, I believe. Also, I am grateful to
the Piano Society of the University of Tokyo, to which I belonged for about nine years
since I entered the university. I owe a lot to this club for my continuous engagement in
piano playing, and I had a memorable time with the people there. In addition, I thank
my ballroom dancing friends. Dancing and talking with them has helped keep mymind
and body healthy.

Finally, I would like to expressmy utmost gratitude tomy parents and grandparents.
They have always been there for me and supported me with great love. They raised me
and taught me the most important things in life. They also understood and supported
my decision to pursue a doctoral degree in the field of computer science. It is surely
thanks to them that I am what I am today.

Contents

1 Introduction 1
1.1 General Background . 1

1.1.1 Hoare Logic . 2
1.1.2 Partial vs. Total Correctness, or Safety vs. Liveness 3

1.2 Ownership and Separation Logic . 4
1.2.1 Hard Problem: Mutable State 4
1.2.2 Ownership . 5
1.2.3 Separation Logic . 7

1.3 Propositional Sharing . 11
1.3.1 Shared Invariants . 12

1.4 Problem: Later Modality and Step-Indexing 16
1.5 Our Solution: Nola . 19

1.5.1 Our Contributions . 21
1.5.2 Future Applications . 22
1.5.3 Dissertation Organization . 22

2 Technical Preliminaries on Iris 24
2.1 Iris’s Core Features . 24

2.1.1 Basic Features . 24
2.1.2 Around the Later Modality . 28

2.2 Resources . 29
2.2.1 Resource Algebra and Resource Ownership 30
2.2.2 Various Constructions of Resource Algebras 32
2.2.3 Example: Heap Resource Algebra 35

3 Overview of Our Framework 37
3.1 Preliminaries on Iris’s Invariants . 37

3.1.1 Fancy Update and Hoare Triples 37
3.1.2 Iris’s Invariants . 39
3.1.3 Model . 41

3.2 Nola’s Later-Free Invariants . 43
3.2.1 Extended Fancy Update and Hoare Triples 44
3.2.2 Nola’s Later-Free Invariants . 45
3.2.3 Model . 48

3.3 Example: Linked List Mutation . 48
3.3.1 Verification Target . 48
3.3.2 Problem with Iris’s Invariants 49
3.3.3 Solution: Nola’s Later-Free Invariants 51

3.4 Paradoxes and Expressivity . 53
3.4.1 Paradoxes of Later-Free Invariants 53
3.4.2 Expressivity . 56

v

4 Semantic Alteration by Derivability 60
4.1 Goal: Semantic Alteration . 60
4.2 First Step: Parameterization by Derivability 61
4.3 Our Key Achievement: General Derivability Construction 63
4.4 Advanced Model . 66

5 Case Study: Strong Normalization under a Stratified Type System 69
5.1 Our Target Type System . 69
5.2 Verifying Strong Normalization with Nola’s Invariants 73

6 Later-Free Rust-Style Borrows 78
6.1 Background . 78

6.1.1 Rust’s Borrows . 78
6.1.2 RustBelt’s Lifetime Logic . 80

6.2 Design . 80
6.3 Proof Rules . 82

6.3.1 Lifetimes . 82
6.3.2 Borrows . 85
6.3.3 Examples . 87

6.4 Semantic Alteration by Derivability . 91
6.5 Model . 93

6.5.1 Lifetime Mechanism . 93
6.5.2 Borrow Mechanism . 94

7 Later-Free Prophetic Borrows 97
7.1 Background — The Author’s Prior Work 97

7.1.1 RustHorn: Prophecies for Rust-Style Borrows 97
7.1.2 RustHornBelt: Semantic Foundation for Prophetic Borrows . . 102

7.2 Proof Rules of Nola’s Prophetic Borrows 103
7.2.1 Parametric Prophecies . 103
7.2.2 Prophetic Borrows . 104
7.2.3 Examples . 108

7.3 Semantic Alteration by Derivability . 109
7.4 Model . 111

7.4.1 Parametric Prophecies . 111
7.4.2 Prophetic Agreement . 113
7.4.3 Prophetic Borrows . 115

8 Our Coq Mechanization 119
8.1 Overview . 119
8.2 How to Use Our Coq Mechanization . 120
8.3 Case Study: Linked List Mutation . 122

9 Related Work 127
9.1 Invariants with Later-Free Rules . 127
9.2 Termination and Liveness Verification 128
9.3 Tackling Laters . 129

10 Conclusion 131

vi

Chapter 1

Introduction

First, Section 1.1 presents the general background of this dissertation. Next, Section 1.2
presents the basic approach tomutable state, ownership and separation logic. After that,
Section 1.3 presents the mechanisms for propositional sharing that modern separation
logics support to reason about shared mutable state. Section 1.4 discusses the prob-
lem of the later modality and step-indexing that existing approaches to propositional
sharing suffer from. Finally, Section 1.5 presents our solution to the problem, the Nola
framework. See § 1.5.3 for how this dissertation is organized after this chapter.

1.1 General Background

知者樂水
The wise enjoy water

Confucius, the Analects

Today, computer software is playing a remarkable role in our lives. In the cities,
traffic light systems are keeping traffic safe, credit cards are making payments only as
intended, MRI machines in hospitals are working safely, airplanes are flying accident-
free, and so on. With a laptop or smartphone, we are sending messages to friends,
searching directions from home to new places, and filing taxes online, all with privacy
protected. In the last few decades, human life has come to rely increasingly on software,
and this momentum is not about to stop. It has become vital to improve the quality and
robustness of software for the development and safety of society.

Software science and engineering are devoted to this purpose. Compared to the old-
est days when programmers directly typed machine language on punch cards, modern
software development is much more sophisticated, thanks to the achievements of these
fields. Nowadays, programmers can develop complex large-scale software in program-
ming languages with rich abstractions, can ascertain the correctness of programs by
type checking and unit testing, can manage the time evolution of huge code bases by a
version control system, and so forth.

Of special scientific interest are mathematically rigorous techniques for solving
problems in software development, or formal methods. The most widely used formal
methods in modern times are type systems. Types are labels attached to data, describing
its kind and attributes. Automatic checking on the types runs statically, which prevents
many bugs before the programs are executed. Beyond simple types like telling integers
from strings, modern programmers have come to use richer and stronger types, such
as those used in TypeScript and Rust. From a general perspective, programmers are
increasingly turning to formal methods as software grows in size and complexity far
beyond the grasp of a single person.

1

Particularly fundamental in this direction is the exploration of general-purpose pro-
gram logic that can precisely and flexibly verify programs, i.e., reason about the behav-
ior of software described by programs.

This dissertation aims to build expressive program logic for reasoning about mu-
table state with the power to verify liveness properties, including program termination
and total correctness.

1.1.1 Hoare Logic

Central among program logics is Hoare logic, which was invented over a half-century
ago by Hoare (1969) after the idea of Floyd (1967). Hoare logic and its variants have
been actively studied for a long time and have served as the scientific foundation for
more downstream, practical formal methods, such as type systems and automated ver-
ification platforms.

A key assertion of Hoare logic is the partial Hoare triple
{
𝜙
}
𝑒
{
𝜓
}
∈ Prop, where

𝑒 ∈ Expr is the expression (or program fragment) of interest, 𝜙 ∈ Prop is called the
precondition and 𝜓 : Val → Prop is called the postcondition. The partial Hoare triple{
𝜙
}
𝑒
{
𝜓
}
says that the expression 𝑒 can be safely executed under the premise 𝜙 and

whenever 𝑒 terminates with a return value 𝑣 ∈ Val, the condition𝜓 𝑣 is satisfied.

Example: Sum of Odd Numbers As a warmup example, let us think of the follow-
ing recursive function:

fun oddsum(𝑛)
{
if 𝑛 = 0 then 0 else 2 × 𝑛 − 1 + oddsum(𝑛 − 1)

}
. (1.1)

Roughly, the function oddsum(𝑛) adds up the odd numbers from 1 to 2𝑛 − 1. You may
expect that its return value is 𝑛2.

Indeed, we can verify the following partial Hoare triple assertion in Hoare logic:

∀𝑛.
{
𝑛 ∈ Z

}
oddsum(𝑛)

{
𝜆𝑣 . 𝑣 = 𝑛2

}
. (1.2)

This assertionmeans that, for any integer𝑛 ∈ Z, whenever the function call oddsum(𝑛)
terminates, its return value is equal to 𝑛2. The proof goes by finding the invariant
(post)condition1 𝜆𝑣 . 𝑣 = 𝑛2 on the execution of oddsum(𝑛) for any 𝑛 ∈ Z. The proof
that this is an invariant goes as follows. For the case 𝑛 = 0 we are done. Otherwise,
we can assume that the recursive call oddsum(𝑛 − 1) returns (𝑛 − 1)2 by the invariant,
and thus the return value of oddsum(𝑛) is (2𝑛 − 1) + (𝑛 − 1)2 = 𝑛2, which satisfies the
invariant. Technically, this kind of reasoning where we can use the proof goal as an
assumption is called coinduction.

Semantics of Hoare Logic Let us also see the semantics of Hoare logic for a better
understanding. The partial Hoare triple

{
𝜙
}
𝑒
{
𝜓
}
is modeled as an entailment:{

𝜙
}
𝑒
{
𝜓
}
≜ 𝜙→ pwp 𝑒

{
𝜓
}

(1.3)

The consequent of the entailment is the (partial) weakest precondition pwp 𝑒
{
𝜓
}
for

the expression 𝑒 and the postcondition𝜓 , defined as follows:

pwp 𝑒
{
𝜓
}
≜𝜈

(
∃𝑣 ∈ Val s.t. 𝑒 = 𝑣 . 𝜓 𝑣

)
∨(

(∃𝑒′. 𝑒 ↩→ 𝑒′) ∧ ∀𝑒′←↪ 𝑒. pwp 𝑒′
{
𝜓
}) (1.4)

1 The notion of the invariant here is related to but quite different from the shared invariant mechanism
for shared mutable state we explore in this dissertation (§ 1.3.1).

2

We write ↩→ for the reduction relation on expressions (and ←↪ for its inverse). The
first disjunct says that the expression has already been reduced to a value 𝑣 ∈ Val and
satisfies the postcondition𝜓 . The second disjunct says that the expression is reducible
(i.e., the execution is not stuck) and, for any expression 𝑒′ that 𝑒 can reduce to, the
weakest precondition pwp 𝑒′

{
𝜓
}
coinductively holds. Here, the definition uses the

greatest fixed point (marked by ≜𝜈) to model the coinductive reasoning of the partial
Hoare triple.

1.1.2 Partial vs. Total Correctness, or Safety vs. Liveness

Problem: Non-Termination A careful reader may have wondered about the case
𝑛 < 0. For the case, the execution of oddsum(𝑛) never terminates, with the argument
𝑛 decremented an infinite number of times.

Assertions like (1.2) hold because the partial Hoare triple
{
𝜙
}
𝑒
{
𝜓
}
considered

here does not guarantee termination. It only guarantees what holds if the execution
terminates. This type of guarantee is called the partial correctness.

For an extreme example, consider the following variant of oddsum:

fun oddsum′(𝑛)
{
2 × 𝑛 − 1 + oddsum′(𝑛 − 1)

}
This function oddsum′ is very similar to oddsum (1.1) but omits the part returning 0
for the case 𝑛 = 0. As a result, the function never terminates for any 𝑛 whatsoever.
Nonetheless, we can still prove the following for oddsum′ just like (1.2):

∀𝑛.
{
𝑛 ∈ Z

}
oddsum′(𝑛)

{
𝜆𝑣 . 𝑣 = 𝑛2

}
.

The proof goes in a similar way to (1.2), by establishing the invariant 𝜆𝑣 . 𝑣 = 𝑛2 for
oddsum′(𝑛). As seen in the examples above, the partial Hoare triple cannot prove the
absence of bugs of non-termination, which can be problematic in practice.

Total Hoare Triple The good news is that Hoare logic can also support the total
Hoare triple

[
𝜙
]
𝑒
[
𝜓
]
that guarantees the total correctness. The total correctnessmeans

the conjunction of the termination and the partial correctness. The wording partial vs.
total here can be understood by an analogy with partial vs. total functions. The total
Hoare triple

[
𝜙
]
𝑒
[
𝜓
]
says that, under the precondition 𝜙 , the execution of 𝑒 always

terminates with a return value 𝑣 satisfying the postcondition𝜓 𝑣 .
Now as we expect, neither ∀𝑛.

[
𝑛 ∈ Z

]
oddsum(𝑛)

[
𝜆𝑣 . 𝑣 = 𝑛2

]
nor ∀𝑛.

[
𝑛 ∈

Z
]
oddsum′(𝑛)

[
𝜆𝑣 . 𝑣 = 𝑛2

]
holds, while we can successfully prove the following in

Hoare logic:
∀𝑛.

[
𝑛 ∈ N

]
oddsum(𝑛)

[
𝜆𝑣 . 𝑣 = 𝑛2

]
. (1.5)

This assertionmeans that, for any natural number (i.e., non-negative integer)𝑛 ∈ N, the
function call oddsum(𝑛) always terminates with a return value equal to 𝑛2. The proof
of (1.5) simply goes by mathematical induction over 𝑛 ∈ N. Technically, the coinductive
reasoning we used for the partial Hoare triple does not work for the total Hoare triple,
and so we employ inductive reasoning here. As seen in this example, the total Hoare
triple gives stronger guarantees and thus is less likely to overlook bugs than the partial
Hoare triple.

Also, if we introduce a primitive expression ndnat that returns a non-deterministic
natural number, we can prove the following in Hoare logic:[

>
]
oddsum(ndnat)

[
𝜆𝑣 . ∃𝑛 ∈ N. 𝑣 = 𝑛2

]
The expression oddsum(ndnat) calls the function oddsum with a non-deterministic
natural number as the argument. This total Hoare triple asserts total correctness, saying

3

that execution of oddsum(ndnat) always terminateswith a square number as the return
value, regardless of the non-deterministic choice by ndnat. Remarkably, the number of
program steps that the expression oddsum(ndnat) takes is unbounded, because the
primitive ndnat can return an arbitrarily large natural number.

Semantically, the total Hoare triple
[
𝜙
]
𝑒
[
𝜓
]
is modeled as an entailment 𝜙→

twp 𝑒
[
𝜓
]
to the total weakest precondition twp 𝑒

[
𝜓
]
, which is defined as follows:

twp 𝑒
[
𝜓
]
≜𝜇

(
∃𝑣 ∈ Val s.t. 𝑒 = 𝑣 . 𝜓 𝑣

)
∨(

(∃𝑒′. 𝑒 ↩→ 𝑒′) ∧ ∀𝑒′←↪ 𝑒. twp 𝑒′
[
𝜓
]) (1.6)

This is quite similar to the definition of the partial weakest precondition pwp 𝑒
{
𝜓
}

(1.4). The only difference is that the definition uses the least fixed point (marked by≜𝜇)
to model the inductive reasoning of the total Hoare triple.

Safety vs. Liveness Properties From amore general perspective, partial correctness
is classified as a safety property and total correctness is classified as a liveness property.

Formally, they are defined as follows.

• A safety property only refers to the absence of ‘bad’ finite behaviors, i.e., behav-
iors observed from a finite number of execution steps.

• A liveness property can refer to the absence of ‘bad’ infinite behaviors, i.e., be-
haviors observed only from an infinite sequence of execution steps.

For a simple example, program termination is a liveness property (not safety), because
it refers to the absence of any infinite execution.

More roughly speaking, a safety property just states that a ‘bad’ event will never
happen in execution, whereas a liveness property states that a ‘good’ event will even-
tually happen. For example, program termination states that the event of termination
will eventually happen in execution.

Exploring program logic that can prove liveness properties is significant, especially
because bugs may be overlooked if we only consider safety properties as we saw in the
examples of oddsum and oddsum′.

1.2 Ownership and Separation Logic

∆ιαίρει ϰαὶ βασίλευε
Divide and rule

Philip II of Macedon

So far, we have set aside a hard problem: mutable state. After explaining its general
difficulties (§ 1.2.1), we introduce the basic tool for tackling it, ownership (§ 1.2.2), and
then illustrate separation logic, the program logic employing ownership to reason about
mutable state (§ 1.2.3).

1.2.1 Hard Problem: Mutable State

A hard problem in program verification is sound and scalable reasoning aboutmutable
state, i.e., state that can be updated as the program is executed.

A prime example of mutable state is mutable data or objects stored in heap mem-
ory. Managing and manipulating heap memory in a fine-grained way is often essential

4

for achieving tolerable time and space efficiency of computation, especially in system
software, or low-level software that other software relies on.

But such mutable state can drastically increase the number of possible situations
that we naively have to take into account, making it difficult to reasoning about the
behaviors of the programs. In fact, programmers often make a mistake in reasoning
about mutable state, especially around heap memory, which sometimes leads to serious
bugs and security problems.

Example: Dangling Pointer by Memory Reallocation To take a glance at the
hardship involving mutable state, consider the following C++ program:

vector<int> v {0, 1, 2}; int* p = &v[0];
v.push_back(3); *p = 7; printf("%d\n", v[0]); // 7 or 0?

Code 1.1: Dangling Pointer by Memory Reallocation

First, we create a vector (or heap-allocated, growable array) of integers vwith the initial
elements 0, 1, and 2.2 Second, we create the pointer p that has the memory location
(a.k.a. address) of the first element of the vector v. Third, we push a new element 3 to
the end of the vector v. Fourth, we write a new value 7 to the location the pointer p
points to. Finally, we print the first element of the vector v.

One may well expect that this program prints the new value 7 by the effect of the
memory write *p = 7. But in reality, the program prints the old value 0. Why? This is
because of memory reallocation performed behind the scenes.

When the vector v is initialized, it allocates the memory block of three memory
cells for its initial elements. The pointer p points to the first element of this memory
block. But when the new element is pushed, the vector v has to reallocate the memory
block to a new larger one, moving the elements to the new memory block. As a result,
the pointer p becomes a dangling pointer, i.e., a pointer that does not point to a valid
object, because the memory block has been deallocated (or freed) by the vector v. The
memory write *p = 7 does not have a valid effect on the vector v, making the program
print 0. What is worse, this even causes undefined behavior, because it is a memory
write to a dangling pointer. This is also an example of use-after-free, i.e., manipulation
of an object that has been deallocated.

Memory Unsafety in the Real World In fact, many of the software vulnerabilities
in the real world are due to memory unsafety. Google’s Project Zero team reported
that about 70% of the zero-day exploit cases that they collected from public sources
had memory-corruption issues as the root cause (Project Zero, 2019). Also, Google’s
Chromium reported that about 70% of their high-severity security bugs are memory
unsafety problems, with about 35% being caused by use-after-free (Chromium Projects,
2023), and Microsoft similarly reported that around 70% of their security bugs are due
to memory safety issues (Microsoft Security Response Center, 2019).3 The difficulties
in mutable state are a real threat to the security of software around us.

1.2.2 Ownership

Abasic known remedy to the difficulties inmutable state is the idea of ownership, whose
importance has been known for a long time (Dijkstra, 1965; Hogg et al., 1992). The
ownership of mutable state is the exclusive right to mutate (or update) the state, which
cannot be shared.
2 Here we use the initializer list syntax introduced in C++11.
3 It is an interesting coincidence that all these three different sources show a similar trend that about 70%
of the security issues are due to memory unsafety.

5

The principle of ownership is as follows: for eachmutable state, there may bemulti-
ple computational agents that can get access to the state, but only one of them can have
the ownership of the state at a time and thus can mutate the state. Notably, the compu-
tational agent with the ownership can safely have the up-to-date knowledge about the
state because all the mutations on the state are performed by the agent itself. On the
other hand, any other agent gives up such up-to-date knowledge because it does not
know what mutations are performed by the agent with the ownership.

Generally speaking, ownership helps one to safely manage mutable state in a mod-
ular, scalable way.

Managing Ownership Ownership can be managed both dynamically and statically.
A basic, familiar example of dynamic ownershipmanagement is themutex (short for

mutual exclusion) used for concurrent algorithms, proposed by Dijkstra (1965). At each
time in program execution, only one computational agent (or thread) can dynamically
acquire the lock of the mutex to get the ownership of the sharedmutable state associated
with the mutex. The mutex prevents the shared mutable state from being mutated by
multiple threads at the same time, which makes concurrent programming safer.

An important approach to static ownership management is ownership type systems,
or type systems that manage ownership. Roughly speaking, an ownership type system
handles static ‘locks’ on objects at compile time to ensure memory and thread safety (no
data race, no use-after-free, etc.) without runtime overhead. Various forms of owner-
ship type systems have been studied for decades (Wadler, 1990; Tofte and Talpin, 1997;
Gay and Aiken, 1998; Clarke et al., 1998; Grossman et al., 2002; Fluet et al., 2006; Clarke
et al., 2013; Bernardy et al., 2018; Arvidsson et al., 2023).

Rust Of particular note is the Rust programming language (Rust Team, 2023; Matsakis
and Klock, 2014), a modern system programming language released in 2015. While Rust
supports low-level memory control like C and C++, it also uses a strong ownership type
system, influenced by Cyclone (Grossman et al., 2002), to provide high-level guarantees
of memory and thread safety.

Despite the somewhat exotic nature of Rust’s ownership type system, its ability
to eliminate real-world bugs has made Rust widely adopted in the software industry.
For example, Google’s Android has recently adopted Rust, with about 21% of the new
native code of Android 13 being written in Rust, drastically reducing the number of
memory safety bugs (Stoep, 2022).

Revisiting the Example in Rust To see how an ownership type system prevents
memory safety bugs, we revisit the previous example Code 1.1.

We first translate the C++ code to Rust:

let mut v = vec![0, 1, 2]; let p = &mut v[0];
v.push(4); *p = 7; println!("{}", v[0]);

Code 1.2: Rust Version of Code 1.1

The code looks quite the same as C++.
But Rust’s compiler rejects this code, before executing the program or even gener-

ating the machine code. It omits an error message like the following:

error[E0499]: cannot borrow ‘v’ as mutable more than once at a time
| let p = &mut v[0];
| - first mutable borrow occurs here
| v.push(4);
| ^ second mutable borrow occurs here

6

| *p = 7;
| ------ first borrow later used here

Code 1.3: Error Message for Code 1.2

This is because the static ownership analysis (nicknamed borrow check) of Rust’s com-
piler correctly rejects this dangerous, memory-unsafe program. Let us see how the
ownership analysis goes.

When we first create the vector by let mut v = vec![0, 1, 2], the object v has
the ownership of the vector. When we take a pointer to the first element by let p =
&mut v[0], we allow the pointer (or mutable reference) p to temporarily get the owner-
ship of the whole vector, which is retained until and used for the memory write *p = 7.
Since the original owner v is expected to recover the ownership after p is deactivated,
this is an example of what is called a mutable borrow in Rust (thus it is referred to as
the ‘first mutable borrow’ above). On the other hand, pushing a new element to the
vector by v.push(4) requires the ownership of the vector since it mutates the vector.
Technically, functions like push get the ownership for mutation by a mutable borrow
(and so this is referred to as the ‘second mutable borrow’ above). But since the mutable
borrow p is still active, this would require two mutable borrows of the vector, or two
computational agents with the ownership of the vector, which breaks the principle of
ownership.

Note that Rust’s ownership type system does accept many memory-safe programs.
For example, consider the following variant of Code 1.2, with the third and fourth state-
ments swapped:

let mut v = vec![0, 1, 2]; let p = &mut v[0];
*p = 7; v.push(4); println!("{}", v[0]);

Now this is memory-safe because the vector is not mutated between the creation of p
and the write to p. Rust does accept this program. Because the mutable borrow to p is
deactivated before the mutation by push, the ownership is not overlapping.

1.2.3 Separation Logic

Separation logic (O’Hearn and Pym, 1999) is a logic for reasoning about ownership,
which can be used for verifying programs with mutable state (Ishtiaq and O’Hearn,
2001; O’Hearn et al., 2001; Reynolds, 2002).4

The core feature of separation logic is a logical connective called the separating
conjunction 𝑃 ∗ 𝑄 , which comes from the ‘multiplicative conjunction’ of linear logic
(Girard, 1987).5 Although the logical connective is commutative and associative

𝑃 ∗𝑄 = 𝑄 ∗ 𝑃 𝑃 ∗ (𝑄 ∗ 𝑅) = (𝑃 ∗𝑄) ∗ 𝑅,

it is not idempotent
𝑃 ≠ 𝑃 ∗ 𝑃

unlike the usual logical conjunction 𝑃 ∧𝑄 .
4 Historically, The logic was named ‘the logic of bunched implications’, because it features the ‘bunch’
structure by the separating conjunction ∗ and the separating ‘implication’ −∗. Some people use the term
‘separation logic’ for program logic that is built on the logic of bunched implications (i.e., uses the logic
of bunched implications for its assertion logic). In this dissertation, we use the term ‘separation logic’
for both base and program logic, which seems common nowadays.

5 This dissertation uses 𝑃,𝑄, 𝑅 for separation logic propositions,𝛷,𝛹 for separation logic predicates, and
𝜙,𝜓 for pure propositions or predicates in the basic logic.

7

Intuitively, a proposition 𝑃 ∈ iProp in separation logic6 asserts the ownerhip of
some fragment ofmutable state and some up-to-date knowledge about it. The separating
conjunction 𝑃 ∗ 𝑄 asserts the ownership and knowledge of two disjoint fragments of
mutable state respectively owned by 𝑃 and 𝑄 .

Separation logic has proved exceptionally useful for reasoning about mutable state
and has been an active and fruitful subject of research (Brookes and O’Hearn, 2016;
O’Hearn, 2019). In particular, the inventors of concurrent separation logic (O’Hearn,
2004; Brookes, 2004), separation logic applied to concurrent programs, were awarded
the Gödel Prize, the prestigious award in theoretical computer science (European As-
sociation for Theoretical Computer Science, 2016).

Basics: Separation Logic for Heap Memory The most common usage of separa-
tion logic is to reason about mutable state allocated in heap memory.

The key assertion for that is the points-to token ℓ ↦→ 𝑣 ∈ iProp, which has the
ownership of the memory cell at the location (or memory address) ℓ ∈ Loc and the
up-to-date knowledge that currently the value 𝑣 ∈ Val is stored in the memory cell.

Now we build Hoare logic (§ 1.1.1) that uses separation logic for the assertion logic,
employing the Hoare triple

{
𝑃
}
𝑒
{
𝛹
}
for 𝑃 ∈ iProp and𝛹 : Val → iProp.7 This Hoare

logic can reason about programs that manipulate heap memory.
Under the assertion ℓ ↦→ 𝑣 , we can safely read (a.k.a. load) from the location ℓ and

know that the value 𝑣 is obtained by the read:{
ℓ ↦→ 𝑣

}
!ℓ

{
𝜆𝑣 ′. 𝑣 ′ = 𝑣 ∗ ℓ ↦→ 𝑣

}
phoare-load

On the other hand, we can safely write (a.k.a. store) any new value 𝑤 ∈ Val to the
location ℓ as long as we update the assertion ℓ ↦→ 𝑣 to ℓ ↦→ 𝑤 :{

ℓ ↦→ 𝑣
}
ℓ←𝑤

{
𝜆_. ℓ ↦→ 𝑤

}
phoare-store

Also, we have the following useful rule for ignoring the ‘environment’ 𝑅 that is not
relevant to the execution of the expression 𝑒:{

𝑃
}
𝑒
{
𝛹
}{

𝑃 ∗ 𝑅
}
𝑒
{
𝜆𝑣 . 𝛹 𝑣 ∗ 𝑅

} phoare-frame

You can read this rule from the bottomup: to prove theHoare triple
{
𝑃 ∗𝑅

}
𝑒
{
𝜆𝑣 . 𝛹 𝑣 ∗

𝑅
}
, it suffices to prove the Hoare triple

{
𝑃
}
𝑒
{
𝛹
}
that ignores the unchanged ‘envi-

ronment’ 𝑅. This rule is called the frame rule, with the ‘environment’ 𝑅 called the
frame. This is named after the ‘frame problem’ in the context of artificial intelligence
(McCarthy and Hayes, 1981). The frame rule is a key to themodular, scalable reasoning
about mutable state in separation logic, because the rule allows one to reason about
each fragment 𝑒 of a program focusing only on the relevant parts of mutable state ma-
nipulated by 𝑒 .

Also, Hoare triples can be modified with entailment:

𝑃 ′ ⊨ 𝑃
{
𝑃
}
𝑒
{
𝛹
}
∀𝑣 .

(
𝛹 𝑣 ⊨ 𝛹′ 𝑣

){
𝑃 ′

}
𝑒
{
𝛹′

} phoare-⊨

6 The name iProp is originally given to the propositions of the Iris separation logic (Jung et al., 2015,
2018b). Because we use Iris throughout our formulation of the Nola framework, for consistency, we use
by extension the name iProp for the propositions of any kind of separation logic.

7 We use the metavariables 𝑃,𝑄 for propositions in separation logic iProp and𝛷,𝛹 for predicates of sep-
aration logic (i.e., functions to iProp) 𝐴1 → · · · 𝐴𝑛 → iProp, while we use 𝜙,𝜓 for pure propositions
Prop (or predicates 𝐴1 → · · · 𝐴𝑛 → Prop) in the base logic.

8

Semantics of Separation Logic We give the semantics to the basic separation logic
and Hoare logic we built above. First, the domain iProp of separation logic propositions
is defined as follows:

iProp ≜ Heap → Prop Heap ≜ Loc
fin
⇀ Val (1.7)

The domain Heap represents a heaplet, or fragment of heap memory. Each heaplet
𝐻 ∈ Heap owns the memory cells of a finite number of locations dom𝐻 and knows
that the value of the memory cell at each location ℓ ∈ dom𝐻 is currently 𝐻 [ℓ] ∈ Val.
Note that the global state of heap memory is also modeled as an element of Heap. Each
separation logic proposition 𝑃 ∈ iProp owns some heaplet 𝐻 ∈ Heap satisfying the
condition 𝑃 𝐻 asserted by 𝑃 .

The points-to token ℓ ↦→ 𝑣 , the key assertion about heap memory, is modeled as
follows:

ℓ ↦→ 𝑣 ≜ 𝜆𝐻 . ℓ ∈ dom𝐻 ∧ 𝐻 [ℓ] = 𝑣 .

It says that the heaplet 𝐻 of the assertion owns the memory cell at the location ℓ and
knows that the value of the cell is 𝑣 .

The separating conjunction 𝑃 ∗𝑄 ∈ iProp is modeled as follows:

𝑃 ∗𝑄 ≜ 𝜆𝐻 . ∃𝐻1, 𝐻2 s.t. 𝐻 = 𝐻1 + 𝐻2. 𝑃 𝐻1 ∧ 𝑄 𝐻2. (1.8)

The model of the separating conjunction says that the heaplet 𝐻 of 𝑃 ∗ 𝑄 can be de-
composed into two disjoint heaplets 𝐻1, 𝐻2 such that 𝑃 owns 𝐻1 and 𝑄 owns 𝐻2. Here,
we define the disjoint union 𝑓 + 𝑔 of partial maps 𝑓 , 𝑔 as the union 𝑓 ∪ 𝑔 that is defined
only if their domains are disjoint dom 𝑓 ∩ dom𝑔 = ∅.

A pure assertion 𝜙 ∈ Prop like 𝑣 ′ = 𝑣 can be embedded into iProp simply as 𝜆_. 𝜙 ,
ignoring the heaplet.

The entailment 𝑃 ⊨ 𝑄 in separation logic is modeled as follows, using universal
quantification over the heaplet 𝐻 :

𝑃 ⊨ 𝑄 ≜ ∀𝐻. 𝑃 𝐻→ 𝑄 𝐻.

Now we can model the Hoare triple
{
𝑃
}
𝑒
{
𝛹
}
as follows:{

𝑃
}
𝑒
{
𝛹
}
≜ ∀𝑅. 𝑃 ∗ 𝑅 ⊨ pwp 𝑒

{
𝜆𝑣 . 𝛹 𝑣 ∗ 𝑅

}
(1.9)

pwp 𝑒
{
𝛹
}
𝐻 ≜𝜈

(
∃𝑣 ∈ Val s.t. 𝑒 = 𝑣 . 𝛹 𝑣 𝐻

)
∨(

(∃(𝑒′, 𝐻 ′). (𝑒, 𝐻) ↩→ (𝑒′, 𝐻 ′)) ∧ ∀(𝑒′, 𝐻 ′)←↪ (𝑒, 𝐻). pwp 𝑒′
{
𝛹
}
𝐻 ′

)
.
(1.10)

The overall structure is quite analogous to the definition for the stateless setting (1.3)
and (1.4) (§ 1.1.1). The Hoare triple (1.9) is defined with universal quantification over
the ‘frame’ 𝑅 to admit the frame rule phoare-frame. The reduction of expressions now
takes into account the global state of heap memory, having the form (𝑒, 𝐻) ↩→ (𝑒′, 𝐻 ′).
The predicate pwp 𝑒

{
𝛹
}
𝐻 ∈ Prop (1.10) is defined quite like (1.4) but takes around

the global state of heap memory 𝐻 in the store-passing style.

Total Hoare Triple in Separation Logic We can also consider the total Hoare triple[
𝑃
]
𝑒
[
𝛹
]
instead of the partial one (§ 1.1.2). The total Hoare triple satisfies the rules

exactly like the partial Hoare triple:[
ℓ ↦→ 𝑣

]
!ℓ

[
𝜆𝑣 ′. 𝑣 ′ = 𝑣 ∗ ℓ ↦→ 𝑣

]
thoare-load[

ℓ ↦→ 𝑣
]
ℓ←𝑤

[
𝜆_. ℓ ↦→ 𝑤

]
thoare-store

9

[
𝑃
]
𝑒
[
𝛹
][

𝑃 ∗ 𝑅
]
𝑒
[
𝜆𝑣 . 𝛹 𝑣 ∗ 𝑅

] thoare-frame

𝑃 ′ ⊨ 𝑃
[
𝑃
]
𝑒
[
𝛹
]
∀𝑣 .

(
𝛹 𝑣 ⊨ 𝛹′ 𝑣

)[
𝑃 ′
]
𝑒
[
𝛹′

] thoare-⊨

The only difference is that the total Hoare triple guarantees the termination and thus
prohibits coinductive reasoning like the partial one. Note that the total Hoare triple
entails the partial one: [

𝑃
]
𝑒
[
𝛹
]{

𝑃
}
𝑒
{
𝛹
} thoare-phoare

The semantics can be constructed in a similar way to the partial setting. The total
Hoare triple can be modeled as[

𝑃
]
𝑒
[
𝛹
]
≜ ∀𝑅. 𝑃 ∗ 𝑅 ⊨ twp 𝑒

[
𝜆𝑣 . 𝛹 𝑣 ∗ 𝑅

]
,

just like the partial one (1.9). The total weakest precondition twp 𝑒
[
𝛹
]
𝐻 ∈ Prop is

modeled just like the partial one (1.10) but using the least fixed point ≜𝜇 instead of the
greatest fixed point ≜𝜈 .

Example: Singly Linked List For a non-trivial example, we verify an iterative mu-
tation of a singly linked list.

First, the separation logic assertion olistℓ 𝑛𝑠 ∈ iProp of owning a singly linked list
for integers 𝑛𝑠 ∈ List Z starting at the location ℓ ∈ Loc is defined as follows:

olistℓ [] ≜ ℓ ↦→ false

olistℓ (𝑛 : 𝑛𝑠) ≜ ℓ ↦→ true ∗ (ℓ + 1) ↦→ 𝑛 ∗ ∃ℓ ′. (ℓ + 2) ↦→ ℓ ′ ∗ olistℓ ′ 𝑛𝑠

Here, we use the existential quantifier in iProp, which is simply modeled as follows:

∃𝑎. 𝑃𝑎 ≜ 𝜆𝐻 . ∃𝑎. 𝑃𝑎 𝐻

The assertion olistℓ can be described as follows. First, the location ℓ stores the tag of
the list, being false for the nil case and true for the cons case. For the cons case for
𝑛 : 𝑛𝑠 , the second location ℓ + 1 stores the integer value 𝑛 and the third location ℓ + 2
stores the location ℓ ′ of the tail list.

Consider the following recursive function iterincr that increments every element
of a singly linked list:

iterincr(ℓ) ≜ if !ℓ then (ℓ + 1) ←!(ℓ + 1) + 1; iterincr(!(ℓ + 2))

We can prove the following total Hoare triple for any 𝑛𝑠 ∈ List Z:[
olistℓ 𝑛𝑠

]
iterincr(ℓ)

[
𝜆_. olistℓ (map (𝜆𝑛. 𝑛 + 1) 𝑛𝑠)

]
The proof goes simply by induction on the length of 𝑛𝑠 .

Concurrent Separation Logic Separation logic workswell for concurrent programs,
just like for sequential programs (O’Hearn, 2004; Brookes and O’Hearn, 2016). Separa-
tion logic for concurrent programs is sometimes called concurrent separation logic.

For example, if the language has the primitive fork { 𝑒 } for forking a thread that
executes the expression 𝑒 , we can add the following Hoare triple rules:{

𝑃
}
𝑒
{
𝜆_.>

}{
𝑃
}
fork { 𝑒 }

{
𝜆_.>

} phoare-fork

[
𝑃
]
𝑒
[
𝜆_.>

][
𝑃
]
fork { 𝑒 }

[
𝜆_.>

] thoare-fork

10

Here we write > ∈ iProp for the pure proposition 𝜆_.>. Combining these rules with
the frame rules phoare-frame, thoare-frame, we can derive the following:{

𝑃
}
𝑒
{
𝜆_.>

}{
𝑃 ∗ 𝑄

}
fork { 𝑒 }

{
𝜆_.> ∗ 𝑄

} [
𝑃
]
𝑒
[
𝜆_.>

][
𝑃 ∗ 𝑄

]
fork { 𝑒 }

[
𝜆_.> ∗ 𝑄

] (1.11)

At the high level, this reasoning is sound thanks to the separating conjunction ∗
clearly separating the parts 𝑃,𝑄 of mutable state to be owned by the two computational
agents, the child thread (owning 𝑃) and the parent thread (owning 𝑄). The semantics
for concurrent separation logic is somewhat trickier than the sequential setting, but it
has long been known (Brookes, 2004).

Shared Immutable State by Fractional Ownership Separation logic works per-
fectly when the parts of mutable state owned by different computational agents are
clearly disjoint with respect to the separating conjunction ∗. But naive separation logic
suffers in the situation where multiple computational agents share some parts of mu-
table state.

For shared immutable state, or state not mutated while shared, the situation is easy.
A standard approach to such immutable sharing is to use fractional ownerhip (Boy-
land, 2003; Bornat et al., 2005), a ‘fictional‘ form of ownership extended with fractional
quantities for splitting.

For heap memory, we can use the fractional points-to token ℓ
𝑞
↦→ 𝑣 , parameterized

with a fraction 𝑞 ∈ Q>0.8 The original points-to token ℓ ↦→ 𝑣 is defined as ℓ
1↦→ 𝑣 , using

1 for the full fraction. The fractional points-to token can be split andmerged according
to fractions:

ℓ
𝑞+𝑟
↦→ 𝑣 = ℓ

𝑞
↦→ 𝑣 ∗ ℓ

𝑟↦→ 𝑣 ↦→-fract

Also, the fraction of the points-to token cannot be more than 1:
𝑞 > 1

ℓ
𝑞
↦→ 𝑣 = ⊥

↦→-over1

Two fractional points-to tokens to one location are ensured to observe the exact same
value of the memory cell:

ℓ
𝑞
↦→ 𝑣 ∗ ℓ

𝑟↦→ 𝑣 ′ ⊨ 𝑣 = 𝑣 ′ ∗ ℓ
𝑞+𝑟
↦→ 𝑣 ↦→-agree

We can read from the memory with a fractional points-to token ℓ
𝑞
↦→ 𝑣 , using the

following rules that extend phoare-load and thoare-load:{
ℓ

𝑞
↦→ 𝑣

}
!ℓ

{
𝜆𝑣 ′. 𝑣 ′ = 𝑣 ∗ ℓ

𝑞
↦→ 𝑣

}
phoare-load∗[

ℓ
𝑞
↦→ 𝑣

]
!ℓ

[
𝜆𝑣 ′. 𝑣 ′ = 𝑣 ∗ ℓ

𝑞
↦→ 𝑣

]
thoare-load∗

On the other hand, we cannot write a new value to the memory just by updating
a fractional points-to token ℓ

𝑞
↦→ 𝑣 of 𝑞 < 1, because there can exist another points-to

token ℓ
𝑟↦→ 𝑣 , which is invalidated by that memory write.

1.3 Propositional Sharing

Sharing is caring

A saying in English

8 We write Q>0 for the set of positive rational numbers.

11

Challenge: Shared Mutable State The real challenge lies in shared mutable state,
i.e., state that can be mutated while shared. Programmers commonly use mechanisms
for shared mutable state.

For a simple example, functional languages such as MyCaml and Standard ML sup-
port a shared mutable reference ref T for a copyable reference to a mutable memory
cell that stores an object of type T.9 For a more advanced example, Rust supports a
shared reference to amutex-guarded object &Mutex<T>, which can be safely copied and
shared across threads. Any thread can acquire the lock of the mutex via the reference
to temporarily get the ownership of the content object of type T, being able to mutate
the object freely.

How can we reason about such shared mutable state?
At a high level, mutations of shared mutable state across multiple computational

agents generally follow some contract (or protocol) for any kind of correctness.
For example, the shared mutable reference type ref T expresses the contract that

always an object typed T is stored in the memory cell that the reference points to. The
contract for a shared reference to a mutex-guarded object in Rust &Mutex<T> is trickier:
the guarded object T can be taken out only after the lock is acquired, and any object of
type T should be stored back when the lock is released.10 The contracts in the examples
above are pretty rich and even parameterized over the type T.

Propositional Sharing In order to express and reason about such rich contracts,
modern separation logics like Iris (Jung et al., 2015, 2018b) have introduced advanced
mechanisms for propositional sharing, i.e., sharing of mutable state among multiple
computational agents based on contracts described by separation logic propositions.11

Separation logics that support propositional sharing have achieved a great success
in various challenging verification projects (Jung et al., 2018a; Timany et al., 2018; Hin-
richsen et al., 2020; Dang et al., 2020; Gregersen et al., 2021; Hinrichsen et al., 2022;
Matsushita et al., 2022; Jacobs et al., 2022; Timany et al., 2023). Notable among them
is RustBelt (Jung et al., 2018a). It established a semantic foundation for Rust’s owner-
ship type system and formally proved the memory and thread safety of well-typed Rust
programs for a realistic subset of Rust.

1.3.1 Shared Invariants

A central mechanism for propositional sharing is the (shared) invariant 𝑃 ∈ iProp
(Hobor et al., 2008; Buisse et al., 2011; Svendsen et al., 2013; Svendsen and Birkedal,
2014), whose modern usage was established by the Iris separation logic framework (Jung
et al., 2015, 2016; Krebbers et al., 2017a; Jung et al., 2018b).12 13 It is an assertion that
9 To be precise, ML-family languages like MyCaml and Standard ML use (rather exotic) postfix syntax
T ref for type constructors. But we use the prefix syntax ref T here for accessibility and consistency.

10 To be precise, Rust’s shared reference type &U is parameterized &'a U with the lifetime 'a, the time
period that the reference is valid. The type &'a Mutex<T> also asserts the contract that it acquires the
lock only during the lifetime 'a.

11 The term ‘propositional sharing’ was coined by us to emphasize the fact that we are interested in sharing
characterized by separation logic propositions. This concept is related to the terms higher-order ghost state
and second-order ghost state introduced by Jung et al. (2016).

12Actually, the invariant connective 𝑃
N has the namespace N ∈ Namespace parameter, but we omit it

for now.
13 This mechanism is sometimes referred to as the ‘impredicative invariant’. However, what the word
‘impredicative’ means here is unclear. Impredicativity usually refers to self-referential definition. But
Jung et al. (2018b, § 2.2) say as follows: “Notice that 𝑃

N is just another kind of proposition, and it
can be used anywhere that normal propositions can be used—including the pre- and postconditions of
Hoare triples, and invariants themselves, resulting in nested invariants. The latter property is sometimes
referred to as impredicativity.” Using Nola, one can construct an invariant connective invN P ∈ nProp

12

a separation logic proposition 𝑃 ∈ iProp is maintained as an ‘invariant’, or that the
situation described by 𝑃 is always kept during the computation.

Proof Rules Notably, the invariant 𝑃 is duplicable with respect to the separating
conjunction ∗:

𝑃 = 𝑃 ∗ 𝑃 iinv-dup

In general, a separation logic proposition 𝑃 is not duplicable (𝑃 ≠ 𝑃 ∗𝑃) when it asserts
exclusive ownership. This is the case especially when 𝑃 directly contains a points-to
token ℓ ↦→ 𝑣 , e.g., 𝑃 = (ℓ ↦→ true) ∨ (ℓ ↦→ false). On the other hand, the invariant 𝑃
is duplicable (iinv-dup) and thus can be shared among multiple computational agents,
especially among multiple threads (recall (1.11) in § 1.2.3).

To use invariants, Iris introduces the fancy update modality |⇛, amonadic modality
that represents a ‘logical step’ updating the inner state for invariants.14 The fancy
update |⇛ satisfies the following rules:

𝑃 ⊨ 𝑄
|⇛𝑃 ⊨ |⇛𝑄

|⇛-mono 𝑃 ⊨ |⇛𝑃 |⇛-intro

|⇛ |⇛𝑃 = |⇛𝑃 |⇛-idemp (|⇛𝑃) ∗ 𝑄 ⊨ |⇛(𝑃 ∗𝑄) |⇛-frame

Also, Hoare triples
{
𝑃
}
𝑒
{
𝛹
}
,
[
𝑃
]
𝑒
[
𝛹
]
are designed so that they absorb the fancy

update |⇛, meaning that the ‘logical step’ of the fancy update |⇛ can be performed
before and after any program execution step:{

𝑃
}
𝑒
{
𝛹
}{

|⇛𝑃
}
𝑒
{
𝛹
} |⇛-phoare

[
𝑃
]
𝑒
[
𝛹
][

|⇛𝑃
]
𝑒
[
𝛹
] |⇛-thoare{

𝑃
}
𝑒
{
𝜆𝑣 . |⇛𝛹 𝑣

}{
𝑃
}
𝑒
{
𝛹
} phoare-|⇛

[
𝑃
]
𝑒
[
𝜆𝑣 . |⇛𝛹 𝑣

][
𝑃
]
𝑒
[
𝛹
] thoare-|⇛

An invariant assertion 𝑃 ∈ iProp can be created by storing the separation logic
proposition 𝑃 ∈ iProp in the fancy update |⇛:

𝑃 ⊨ |⇛ 𝑃 iinv-alloc′

Roughly speaking, the fancy update manages an ‘imaginary’ memory of invariants that
stores a proposition 𝑃 ∈ iProp for each invariant (see (1.18) etc. in § 1.4). The rule iinv-
alloc′ ‘allocates’ a new memory cell that stores 𝑃 to get the invariant 𝑃 . Using this
rule, one can allocate an invariant in Hoare triples as follows, for example:{

𝑃 ∗ 𝑄
}
𝑒
{
𝛹
}{

𝑃 ∗ 𝑄
}
𝑒
{
𝛹
} [

𝑃 ∗ 𝑄
]
𝑒
[
𝛹
][

𝑃 ∗ 𝑄
]
𝑒
[
𝛹
]

Iris has the following rules for accessing the shared content 𝑃 of an invariant 𝑃 in
Hoare triples:15 {

(⊲ 𝑃) ∗ 𝑄
}
𝑒
{
𝜆𝑣 . (⊲ 𝑃) ∗ 𝛹 𝑣

}{
𝑃 ∗ 𝑄

}
𝑒
{
𝛹
} phoare-iinv

that can be freely nested and thus seems ‘impredicative’ in this sense. Butwe do not think such invariants
are impredicative, because Nola’s domain equations (see (1.20), § 1.5) are not self-referential. For clarity,
we avoid using the term ‘impredicative invariant’ in this dissertation.

14 For simplicity, we omit here the mask parameters E, E′ of the fancy update E |⇛E′ , which serve to
prohibit reentrancy to invariants in combination with the namespace N parameter of the invariant
𝑃
N . See § 3.2.2 for the details.

15We should actually take care of themask parameter E of Hoare triples, but we omit it here for simplicity.
Also for simplicity, we omit an important side condition that the expression 𝑒 should be atomic. See
§ 3.1 for the details.

13

[
(⊲ 𝑃) ∗ 𝑄

]
𝑒
[
𝜆𝑣 . (⊲ 𝑃) ∗ 𝛹 𝑣

][
𝑃 ∗ 𝑄

]
𝑒
[
𝛹
] thoare-iinv

The rules roughly say that the content 𝑃 of the invariant 𝑃 can be accessed in the
precondition as long as 𝑃 is restored in the postcondition. The content 𝑃 is weakened
by the later modality ⊲ 𝑃 , an ill-behaved modality, and we discuss the problems about
it later in § 1.4. But for now the reader can just ignore it. Iris has the following more
basic rule for accessing the content of an invariant in terms of the fancy update |⇛:

(⊲ 𝑃) ∗ 𝑄 ⊨ |⇛
(
(⊲ 𝑃) ∗ 𝑅

)
𝑃 ∗ 𝑄 ⊨ |⇛ 𝑅

iinv-acc

Examples Using the invariant, one can express, for example, a shared mutable refer-
ence storing a boolean at the location ℓ ∈ Loc by

ℓ : ref bool ≜ (ℓ ↦→ true) ∨ (ℓ ↦→ false) ,

meaning that it is always the case that “ℓ stores true or false”. Although this invariant
can be shared (iinv-dup), it also allows writing any boolean value 𝑏 ∈ B to the location
ℓ , because the following can be derived from phoare-iinv and phoare-store:16 17{

(ℓ ↦→ true) ∨ (ℓ ↦→ false)
}
ℓ←𝑏

{
𝜆_.>

}
.

Also, the invariant ensures that we can always read a boolean value from the location
ℓ , because the following can be derived from phoare-iinv and phoare-load:{

(ℓ ↦→ true) ∨ (ℓ ↦→ false)
}
!ℓ

{
𝜆𝑣 . 𝑣 = true ∨ 𝑣 = false

}
.

A reference to a boolean reference can be expressed in a similar way:

ℓ : ref (ref bool) ≜ ∃ℓ ′. (ℓ ↦→ ℓ ′) ∗ (ℓ ′ ↦→ true) ∨ (ℓ ′ ↦→ false) (1.12)

The key to expressing such nested reference types is the ability to nest the invariant
connective − . We can freely copy the inner reference ℓ ′ from this nested reference:{ (

ℓ : ref (ref bool)
) }

!ℓ
{
𝜆𝑣 . ∃ℓ ′ s.t. 𝑣 = ℓ ′. ⊲ (ℓ ′ ↦→ true) ∨ (ℓ ′ ↦→ false)

}
(1.13)

Also, we can freely mutate the inner reference of this nested reference to any location
ℓ ′′ satisfying the invariant ℓ ′′ : ref bool:{ (

ℓ : ref (ref bool)
)
∗ (ℓ ′′ ↦→ true) ∨ (ℓ ′′ ↦→ false)

}
ℓ←ℓ ′′

{
𝜆_.>

}
(1.14)

Note that the operations like (1.13) and (1.14) are not supported by the following variant
ℓ : ref (ownref bool) of (1.12), which removes the invariant connective for the inner
reference and thus does not nest invariants:

ℓ : ref (ownref bool) ≜ ∃ℓ ′. (ℓ ↦→ ℓ ′) ∗
(
(ℓ ′ ↦→ true) ∨ (ℓ ′ ↦→ false)

)
16We assume a simple memory model where the load and store operations are atomic.
17We can ignore the later modality ⊲ put on the content (ℓ ↦→ true) ∨ (ℓ ↦→ false), because the content is
classified as a timeless proposition (explained later in § 2.1.2). Simple propositions such as the points-to
token ℓ ↦→ 𝑣 and the disjunction of timeless propositions are timeless.

14

For a more interesting example, we model a shared reference to a mutex-guarded
object &Mutex<T> in Rust.18 We can model the type refmutex T for such a reference as
follows:

ℓ : refmutex T ≜
(
ℓ ↦→ false ∗ 𝑇 (ℓ + 1)

)
∨ ℓ ↦→ true (1.15)

Here, we model the type T as the separation logic predicate 𝑇 : Loc → iProp. The body
of the invariant is the disjunction of two cases, unlocked or locked. When the mutex
is unlocked, the tag at ℓ is set to false and the object 𝑇 is stored at the next location
ℓ + 1. When the mutex is locked, the tag is set to true. A thread can try to acquire the
lock with compare-and-swap cas, and when it succeeds, the ownership of the object 𝑇
is transferred to the thread:{

ℓ : refmutex T
}
cas(ℓ, false, true)

{
𝜆𝑣 . 𝑣 = false ∨

(
𝑣 = true ∗ ⊲𝑇 (ℓ + 1)

) }
.

Here, the compare-and-swap cas(ℓ, 𝑣,𝑤) is an atomic primitive operation that checks if
the current value stored at the location ℓ is 𝑣 , updates the value at ℓ to 𝑤 only if the
check succeeds, and returns whether the check has succeeded and the update has been
performed. This operation satisfies the following Hoare triple rules:{

ℓ ↦→ 𝑣
}
cas(ℓ, 𝑣,𝑤)

{
𝜆𝑢. 𝑢 = true ∗ ℓ ↦→ 𝑤

}
phoare-cas-true

𝑣 ′ ≠ 𝑣{
ℓ ↦→ 𝑣 ′

}
cas(ℓ, 𝑣,𝑤)

{
𝜆𝑢. 𝑢 = false ∗ ℓ ↦→ 𝑣

} phoare-cas-false

The thread can release the lock by storing back the ownership of the object 𝑇 and
setting the tag to false:{

ℓ : refmutex T ∗ ⊲𝑇 (ℓ + 1)
}
ℓ←false

{
𝜆_.>

}
.

Rust-Style Borrows Another key mechanism for propositional sharing is Rust-style
borrows.

The Rust programming language employs a powerful ownership type system, as in-
troduced in § 1.2.2. A key feature of Rust is the borrowing machinery. In Rust, the
ownership of an object of the type T can be temporarily borrowed to create a mutable
reference of the type &'a mut T, which can freely update the borrowed object dur-
ing the time period of the lifetime 'a. Various flexible operations are supported for
borrowing, including subdivision and reborrowing. Rust’s borrowing machinery can be
understood as a form of sharing between the borrowers and the lender, under a contract
described by ownership types T.

RustBelt’s lifetime logic (Jung et al., 2018a, § 5) semantically modeled Rust-style bor-
rows in the Iris separation logic as an advanced form of propositional sharing, which can
be roughly seen as an advanced version of Iris’s invariant mechanism. In particular, it
introduces an Iris proposition called full borrow &αfull𝑃 ∈ iProp, which is roughly an
advanced version of Iris’s invariant 𝑃 that can model Rust’s mutable reference type
&'a mut T. Using the lifetime logic, RustBelt (Jung et al., 2018a) established a seman-
tic foundation for Rust’s ownership type system, formally verifying the memory and
thread safety of well-typed Rust programs for a realistic subset of Rust. RustBelt’s life-
time logic has also been used by other research work (Dang et al., 2020; Yanovski et al.,
2021; Matsushita et al., 2022). Still, the lifetime logic also suffers from the later modality
⊲ in accessing the borrowed content, just like Iris’s invariant mechanism.

We explain Rust’s borrows and RustBelt’s lifetime logic in more detail later in § 6.1.
18 For simplicity, we think just of the case where the lifetime 'a of the reference &'a Mutex<T> is static
'static, i.e., lasts forever in the program execution. By introducing Rust-style borrows, we can model
a general situation where the lifetime may not be static. See also § 6.3.3.

15

1.4 Problem: Later Modality and Step-Indexing

Necessity is the mother of invention

A saying in English

LaterModality Existing approaches to propositional sharing presented in the previ-
ous section § 1.3 suffered from the later modality ⊲. In these approaches, access to con-
tents under propositional sharing is allowed only under this modality ⊲ (recall phoare-
iinv, thoare-iinv and iinv-acc in § 1.3.1).

First, the later modality ⊲ slightly weakens a proposition:

𝑃 ⊨ ⊲ 𝑃 ⊲ 𝑃 ⊭ 𝑃 .

Also, the modality is ill-behaved, in that it is not idempotent and does not commute
with the fancy update modality |⇛:

⊲ ⊲ 𝑃 ≠ ⊲ 𝑃 ⊲ |⇛𝑃 ⊭ |⇛⊲ 𝑃 |⇛⊲ 𝑃 ⊭ ⊲ |⇛𝑃 .

In particular, connectives for propositional sharing such as the invariant 𝑃 lose the
power to access the shared content when put under the later modality ⊲.19 One comes
across such connectives under the later modality when these connectives are nested,
which is essential to express especially nested reference types, as we saw in the example
of ref (ref bool) (1.12) (§ 1.3.1).

This calls for the ability to strip off the later modality ⊲ in program verification.

Paradox of a naive later-free invariant Onemight expect the following naive rule,
a variant of thoare-iinv without the later modality to hold instead:[

𝑃 ∗ 𝑄
]
𝑒
[
𝜆𝑣 . 𝑃 ∗ 𝛹 𝑣

][
𝑃 ∗ 𝑄

]
𝑒
[
𝛹
] thoare-iinv-naive ?

However, this naive rule—where the shared content 𝑃 can be an arbitrary separation
logic proposition—causes a paradox, wrongly proving a non-terminating program to
terminate.

As a background, it is well known that higher-order references can cause non-
termination, by the following folklore construction known as Landin’s knot (written
in OCaml):

let l : ref (unit -> unit) = ref (fun _ -> ()) in
l := (fun _ -> !l ()); !l ()

Code 1.4: Landin’s knot

We create a shared mutable reference to a closure l : ref (unit -> unit), with a be-
nign initial value fun _ -> (). Then we update the reference’s content into a closure
that calls the closure stored in the reference l itself. Finally, we call the closure stored
in the reference l, which causes an infinite loop.

Now let us consider the following expression landin corresponding to Code 1.4
expressed in the target language of our program logic:

landin ≜ let ℓ ≔ ref
(
fun () { }

)
in ℓ←fun () {!ℓ () }; !ℓ () (1.16)

19 The reason for this is described later in § 3.1.3.

16

The naive rule thoare-iinv-naive allows us to wrongly prove that landin terminates,
i.e., prove the following: [

>
]
landin

[
>
]

(1.17)

First, when the reference ℓ is initialized with the trivial function fun () { }, we can create
the following invariant 𝐽 :

𝐽 ≜ ∃ 𝑓 . ℓ ↦→ 𝑓 ∗
[
>
]
𝑓 ()

[
>
]
.

We can (wrongly) verify the safety
[
𝐽
]
ℓ ←𝑔

[
>
]
of storing the new function 𝑔 ≜

fun () {!ℓ () } by applying the naive rule thoare-iinv-naive. Here, the premise of the
rule is satisfied by proving

[
𝐽
]
𝑔()

[
>
]
, by applying thoare-iinv-naive to (wrongly)

prove
[
𝐽
]
!ℓ ()

[
>
]
.20 Finally, the last function call !ℓ () has been proved to terminate,

which is a contradiction.
The rule with the later modality ⊲ avoids this paradox, because the later modality

⊲ weakens the total Hoare triple
[
>
]
𝑓 ()

[
>
]
inside the invariant 𝐽 , which correctly

stops the assertion
[
𝐽
]
!ℓ ()

[
>
]
from being proved.

This paradox for the total Hoare triple is natural but seems new in the literature.
There is also a related known paradox found by Krebbers et al. (2017a, § 5), which is
about the fancy update |⇛. We discuss and analyze these paradoxes later in § 3.4.

Step-Indexing A standard remedy to this is to employ step-indexing (Nakano, 2000;
Appel and McAllester, 2001; Birkedal et al., 2012) in program logic, or let each execution
step of the program strip off one later modality.21 Step-indexing admits the following
Hoare triple rule for stripping one later modality ⊲ off of the precondition for each
(pure) reduction step 𝑒 ↩→ 𝑒′:

𝑒 ↩→ 𝑒′
{
𝑃
}
𝑒′
{
𝛹
}{

⊲ 𝑃
}
𝑒
{
𝛹
} step-phoare

In terms of the weakest precondition, we have the following rule:

𝑒 ↩→ 𝑒′ 𝑃 ⊨ pwp 𝑒′
{
𝛹
}

⊲ 𝑃 ⊨ pwp 𝑒
{
𝛹
} step-pwp

Such elimination of the later modality is admissible because, roughly speaking, the
weakest precondition is defined like the following (for simplicity, we ignore the state
mutation and the stuckness check altogether):

pwp 𝑒
{
𝛹
}

is roughly
(
∃𝑣 s.t. 𝑒 = 𝑣 . 𝛹 𝑣

)
∨

(
∀𝑒′←↪ 𝑒. ⊲ pwp 𝑒′

{
𝛹
})

Each recursive occurrence of pwp after a reduction 𝑒′ ←↪ 𝑒 is guarded by the later
modality ⊲, making the rules like step-phoare and step-pwp admissible.
20 Technically, this reasoning should work because the invariant 𝑃 is persistent and the Hoare triple is
defined via the persistence modality □ and the weakest precondition:

[
𝑃
]
𝑒
[
𝛹
]
≜ □

(
𝑃→ twp 𝑒

[
𝛹
])
.

In particular, we can get
[
>
]
𝑔()

[
>
]
from the persistent premises

[
𝐽
]
𝑔()

[
>
]
and 𝐽 .

21We use the term indexing for the act of stratifying the semantics of the (base) logic by indices (typically
natural numbers), whose increase is expressed by the later modality ⊲. On the other hand, we use the
term step-indexing for a design of program semantics such that execution steps are associated with the
indices of the base logic. Some people (including the Iris community) use the term step-indexing for
both, but we distinguish the two for clarity.

17

Step-Indexing Blocks Liveness Verification However, there are fundamental dif-
ficulties in using step-indexed program logic for verifying liveness properties, including
termination and total correctness (§ 1.1.2). This problem is well-known. For example,
Gäher et al. (2022, § 1.1) say as follows (citations reindexed):

However, Iris’s use of step-indexing (Appel and McAllester, 2001) means
that Iris-based approaches like ReLoC (Frumin et al., 2018) do not support
reasoning about liveness properties such as termination preservation.

Gäher et al. (2022) built Simuliris, a separation logic framework built on Iris. Simuliris
provides a relational program logic that targets fair-termination-sensitive contextual
refinement, which is a liveness property. Because step-indexing blocks reasoning about
liveness properties as the quote says, Simuliris is not step-indexed. In turn, Simuliris
gives up supporting the later-requiring mechanisms for propositional sharing, such as
Iris’s invariants.

The difficulties with liveness properties can be observed via the following Löb in-
duction rule that holds for the later modality:

⊲ 𝑃 ⊨ 𝑃

> ⊨ 𝑃
löb

It says that, when 𝑃 can be proved assuming ⊲ 𝑃 , 𝑃 holds without any assumption.
Semantically, this rule can be proved by induction over the internal indices for the
later modality ⊲.

At the high level, the rule admits coinductive reasoning under the weakening by
the later modality ⊲. It thus enables coinductive reasoning about loops and recursions
in programs for program logic with the ability to eliminate the later modality. But this
power is a double-edged sword. It generally makes the program logic ensure only safety
properties but not liveness properties.

We can actually prove a paradox for total program logic with the ability to elim-
inate the later modality ⊲. First, assume toward contradiction that the total weakest
precondition twp 𝑒

[
𝛹
]
admits the following later-eliminating rule like step-pwp:

𝑒 ↩→ 𝑒′ 𝑃 ⊨ twp 𝑒′
[
𝛹
]

⊲ 𝑃 ⊨ twp 𝑒
[
𝛹
] step-twp?

Also, suppose a loop expression loop satisfying loop ↩→ loop. Then combining step-
twp with Löb induction löb, we can prove the following:

loop ↩→ loop twp loop
[
𝜆_.⊥

]
⊨ twp loop

[
𝜆_.⊥

]
⊲ twp loop

[
𝜆_.⊥

]
⊨ twp loop

[
𝜆_.⊥

]
> ⊨ twp loop

[
𝜆_.⊥

] löb

step-twp

This means that the execution of loop terminates with the postcondition ⊥, which is
clearly a contradiction. Indeed, the total weakest precondition twp 𝑒

[
𝛹
]
in Iris is de-

fined in a non-step-indexed way with the least fixed point (like (1.6)).

Problems in Safety Verification The later modality ⊲ can be problematic even in
safety verification.

For example, in order to traverse a nested data structure modeled with 𝑘-fold nest-
ing of later-requiring propositional sharing, one should eliminate 𝑘 laters ⊲𝑘 , or even
worse, 𝑘 laters interleaved with the fancy update (⊲ |⇛)𝑘 . It is often the case that we
want to perform such a traversal in a logical step, without performing any physical step

18

of the program execution. Rules like step-phoare, stripping one later for one program
step, are not enough for this purpose.

Various workarounds have been proposed to tackle such problems with the later
modality (see § 9.3 for details), but they are often costly and ad hoc. We would be
better off if we did not need the later modality ⊲ for propositional sharing.

Later Modality from Indexed Semantics Existing approaches suffered from the
later modality ⊲ for the invariant mechanism because they used indexed semantics of
separation logic to model invariants. We explain the reason for this.

Naively, to manage invariants 𝑃 , we introduce an imaginary ‘memory’ of invari-
ants InvMem that maps each ‘invariant name’ 𝜄 ∈ InvName to a separation logic propo-
sition 𝑃 ∈ iProp, extending the traditional model of separation logic propositions that
just considers heap memory (1.7) (§ 1.2.3):

iProp ≜? Heap × InvMem → Prop InvMem ≜? InvName
fin
⇀ iProp (1.18)

Unfortunately, this definition is invalid. The domain equations of (1.18) are not solvable,
because they have circular dependencies between the separation logic propositions iProp
and the invariant memory InvMem.

Existing approaches like Iris solve this by indexing the semantics over some well-
ordered set I, which is typically the set of natural numbers 0, 1, 2, . . . ∈ N. The domain
equations for iProp and InvMem are modified as follows:

iProp ≜ Heap × InvMem
ne−→ P̃rop InvMem ≜ InvName

fin
⇀ ▶ iProp (1.19)

An indexed proposition 𝜙 ∈ P̃rop ≜ I
anti−−−→ Prop is a predicate over indices I that is

antitone, i.e., becomes more refined as the index increases.22 The indexed propositions
P̃rop support the later modality

⊲𝜙 ≜ 𝜆𝑖. ∀ 𝑗 < 𝑖 . 𝜙 𝑗,

which intuitively means that 𝜙 will hold in the ‘next’ index. The sets like InvName
and iProp are indexed. An indexed set 𝐴 is a set equipped with an indexed equality (=̃) :
𝐴 × 𝐴 → P̃rop, whose limit ∀𝑖 . (𝑎 =̃ 𝑎′) 𝑖 agrees with the genuine equality 𝑎 = 𝑎′.23
The later constructor ▶ on an indexed set weakens the indexed equality =̃ by the later
modality ⊲. Functions between indexed sets are required to be non-expansive (denoted
as

ne−→), i.e., respect the indexed equality =̃.
The ‘indexed’ domain equations of (1.19) are solvable, thanks to the guard of the

later constructor▶ (America and Rutten, 1989; Birkedal et al., 2010). At the same time,
this later constructor ▶ is the exact source of the later modality ⊲ the invariant mech-
anism suffers from in access rules like iinv-acc.

1.5 Our Solution: Nola

The day providential to itself. The hour. There is no later.

Cormac McCarthy, The Road

This dissertation proposes a novel general framework, Nola,24 providing separa-
tion logic with advanced mechanisms for propositional sharing such as invariants and
borrows without requiring the later modality ⊲ in access.
22 In this dissertation, we use tilde to mark indexed things.
23 The indexed set is also known as the ordered family of equivalence relations (OFE).
24 The name of our framework, Nola, has two origins. One is short for ‘No later’, since the framework

19

Our Key Idea Recall the observation about the semantics of separation logic pre-
sented just above. The later modality in existing approaches comes from the circular
domain equations (1.18) between the separation logic propositions iProp and the re-
sources for propositional sharing like InvMem.

Our key idea is that we do not need to directly use iProp in the resources like
InvMem. Instead, we use a syntactic data type nProp of propositions for propositional
sharing and separately build the semantic interpretation J K: nProp → iProp, interpret-
ing each syntactic proposition P ∈ nProp into a semantic proposition JPK ∈ iProp. For
example, we can build the model of separation logic with invariants as follows, without
indexing the semantics:

InvMem ≜ InvName
fin
⇀ nProp

iProp ≜ Heap × InvMem → Prop J K: nProp→ iProp
(1.20)

This semantics provides a new logic connective for an invariant inv P ∈ iProp that
takes syntactic data for a proposition P ∈ nProp instead of a semantic proposition 𝑃 ∈
iProp. The proof rules for using the invariant depend on the interpretation J K of the
syntactic propositions nProp. In particular, we have developed later-free versions of
shared invariants by Iris (Jung et al., 2015) and Rust-style borrows by RustBelt’s lifetime
logic (Jung et al., 2018a; Jung, 2020).

For example, Nola provides the following later-free proof rules for accessing an
invariant, improving on the original rules thoare-iinv and iinv-acc:[JPK ∗ 𝑄]

𝑒
[
𝜆𝑣 . JPK ∗ 𝛹 𝑣

] ′[
inv P ∗ 𝑄

]
𝑒
[
𝛹
] ′ thoare-inv

JPK ∗ 𝑄 ⊨ |⇛′
(JPK ∗ 𝑅)

inv P ∗ 𝑄 ⊨ |⇛′ 𝑅
inv-acc

We get the semantic interpretation JPK ∈ iProp of the syntactic proposition P ∈ nProp
of the invariant, instead of ⊲ 𝑃 in the original rules thoare-iinv and inv-acc. Here, we
use a new total Hoare triple

[
𝑃
]
𝑒
[
𝛹
] ′ and a new fancy update |⇛′ for Nola’s invariants.

Power of Parameterization Our framework supports a generalized setting, in that
the mechanisms for propositional sharing are parameterized over the choice of the syn-
tactic data type for propositions nProp and its interpretation J K: nProp → iProp. This
parameterization has the following advantages.

From a practical viewpoint, the parameterization brings customizability and exten-
sibility. The propositions one wants to store in mechanisms for propositional sharing,
such as invariants and borrows, depend on the goal of verification. Thanks to the pa-
rameterization, one can freely instantiate the parameters nProp and J K according to
one’s verification purpose. When one wants to support a new class of propositions to
be stored, one just needs to extend nProp and J K with that class.

From a theoretical viewpoint, the parameterization clarifies which logical connec-
tives can be safely stored in themechanisms for propositional sharing andwhich logical
connectives are problematic. In particular, we show that arbitrarily nesting of the in-
variant connective admits later-free proof rules, which is a new achievement (see § 9.1

makes the later modality unnecessary. The other is ‘NOLA’, a nickname for New Orleans, Louisiana.
This city was the site of ACM POPL 2020, the last top PL conference held before the COVID pandemic. I
attended the conference during my first year as a master’s student and had a great time interacting with
many fascinating people, having delicious seafood, listening to a street jazz band, and so on. I named
the framework after the city’s nickname partly out of nostalgia for the days there.

20

for comparison with existing work). On the other hand, we observe that (unguarded)
impredicative quantifiers cannot be directly stored in the mechanisms for propositional
sharing. We analyze the source of the paradox of Landin’s knot (1.17) (§ 1.4) and the
known paradox by Krebbers et al. (2017a, § 5) (explained in § 3.4.1) as a Hoare triple[
𝑃
]
𝑒
[
𝛹
]
or fancy update |⇛ stored in an invariant, which internally uses an impred-

icative quantifier (see § 3.4.2 for details).

Semantic Alteration The logic connectives for propositional sharing like inv P are
naively based on the syntactic agreement of propositions nProp. But we often want to
alter the content propositions P of these connectives in a semantic way. A traditional
approach tackled this by constructing a predicate for alteration syntactically, consid-
ering all the wanted proof rules upfront. But that is not quite acceptable. Remarkably,
we have found a novel, general construction of such a predicate one can obtain for free
once one builds semantics. The key idea is to parameterize the semantics of propositionsJ K: nProp→ iProp with an undecided predicate 𝛿 to be used for alteration.

Origin of Nola’s Core Idea The core idea of Nola, using syntax of separation logic
propositions for propositional sharing, was born through the author’s experience in the
prior work, RustHorn (Matsushita, 2019; Matsushita et al., 2020, 2021) and RustHorn-
Belt (Matsushita, 2021; Matsushita et al., 2022).

RustHorn proposed a new verification method for Rust programs, with a novel idea
of using prophecies to model Rust’s mutable borrows, and formally proved the correct-
ness of the method for a small core of Rust (see § 7.1.1 for details). The proof naturally
took advantage of the syntactic nature of Rust’s type system and did not require the
later modality at all.

Later, RustHornBelt extended RustBelt (Jung et al., 2018a) to get a modular, ex-
tensible proof of RustHorn’s method for a large subset of Rust, including APIs such
as Vec and Mutex, by semantically modeling Rust’s ownership types and RustHorn-
style functional specifications in the separation logic Iris (see § 7.1.2 for details). How-
ever, RustHornBelt’s proof suffered from the later modality for invariants and borrows,
which posed fundamental difficulties in supporting liveness properties.

The author was unsatisfied with the later modality in RustHornBelt’s proof, which
was not present in RustHorn’s proof. As a substitute for RustHornBelt’s approach,
the author once considered introducing a highly general ownership type system that
supports low-level verification like separation logic and building a syntactic soundness
proof of the type system, which would naturally avoid the later modality. However,
the author felt that a fully syntactic approach would not be scalable. Later on, after
consideration in this direction, the author came up with the core idea of Nola, i.e., to
use syntax for the separation logic propositions for propositional sharing and still do
low-level verification in semantic separation logic.

1.5.1 Our Contributions

Our contributions can be summarized as follows.

• We propose a novel, general framework, Nola, that provides advanced mecha-
nisms for propositional sharing with later-free proof rules in separation logic.
Its key idea is to isolate the syntactic data type nProp for the separation logic
propositions to be stored from its semantic interpretation J K: nProp → iProp.
Our proof rules for propositional sharing mechanisms are generalized over the
choice of nProp and J K.

21

For our framework Nola, we have developed later-free versions of propositional
sharing mechanisms for shared invariants by Iris (Jung et al., 2015, 2018b) (§ 3.2)
and Rust-style borrows by RustBelt’s lifetime logic (Jung et al., 2018a) (Chapter 6).

• We have discovered a novel, general technique for semantic alteration of the con-
tent propositions of the logic connectives for propositional sharing (Chapter 4).

• We have demonstrated the power of our Nola framework with non-trivial ex-
amples. We verified the strong normalization under a type system that supports
higher-order reference types (Chapter 5). Also, we constructed a new general
mechanism called prophetic borrows that refines RustHornBelt (Matsushita et al.,
2022)’s approach (Chapter 7).

• We have found a new paradox of later-free invariants, which significantly sim-
plifies the existing one by Krebbers et al. (2017a, § 5), showing that a later-free
invariant leads to a contradiction even in the absence of nested invariants or
impredicative quantifiers (§ 3.4.1).

We also analyze that the real source of the paradox is the fancy update modality
directly stored in the invariant, which is naturally avoided in this framework,
and arbitrarily nesting of invariants is not problematic at all.

• We have fully mechanized our framework on top of the Iris separation logic
framework in the Coq Proof Assistant (Coq Team, 2023), making it easy to com-
bine it with existing Iris developments. We have also mechanized the case studies
discussed in this dissertation.

1.5.2 Future Applications

Before diving into the technical details, we mention some possible future applications
of our work, Nola.

• By insights from our work, the invariant and borrow can possibly be safely inte-
grated into first-order25 separation-logic-based automated verification platforms
such as VeriFast (Jacobs et al., 2011) and Viper (Müller et al., 2016), being free
from the later modality and naturally supporting liveness verification.

• RustHornBelt (Matsushita et al., 2022), a semantic foundation for prophetic func-
tional Rust verifiers such as RustHorn (Matsushita et al., 2020) and Creusot (Denis
et al., 2022), can possibly be rebuilt on Nola to eliminate the need for the later
modality and support liveness verification.

• Simuliris (Gäher et al., 2022) can possibly be used to verify optimizations un-
der the guarantee of ownership types modeled with Nola’s invariant and bor-
row, especially unifying the approaches of Stacked Borrows (Jung et al., 2020a),
a memory model designed for Rust’s borrows, and RustBelt (Jung et al., 2018a),
a semantic foundation for Rust’s ownership types.

1.5.3 Dissertation Organization

The rest of this dissertation is organized as follows.

• Chapter 2 presents the technical preliminaries on the Iris separation logic frame-
work, introducing Iris’s core features and resource customization.

25 By ‘first-order’, we roughly mean that Hoare triples etc. are not supported as first-class formulas in the
logic. See § 3.4.2 for limitations in supporting higher-order features.

22

• Chapter 3 presents an overview of the design principle and usage of our frame-
work, Nola, focusing on the later-free shared invariant mechanism. We present
the interface of our invariant mechanism and show how to use them through
a verification example of iterative mutation of a shared mutable singly linked
list. We also present our new paradox of later-free invariants and discuss the
general expressivity of the framework and how our framework naturally avoids
paradoxes.

• Chapter 4 presents a novel, general technique for semantic alteration of the con-
tent propositions of the logical connectives for propositional sharing.

• Chapter 5 presents a case study of our framework, verifying strong normaliza-
tion (i.e., termination) of functional programs under a stratified type system that
supports higher-order references.

• Chapter 6 presents the later-free Rust-style borrowmechanism of our framework.
The mechanism allows non-step-indexed separation logic to support the features
of RustBelt’s lifetime logic (Jung et al., 2018a), which can model and reason about
Rust-style borrows in a general, semantic way.

• Chapter 7 presents the later-free prophetic borrow mechanism of our framework,
built on our borrowmechanism. Our prophetic borrowmechanism abstracts and
refines RustHornBelt (Matsushita et al., 2022)’s reasoning approach to functional
verification about Rust-style borrows with RustHorn-style prophecies.

• Chapter 8 reports on our mechanization of the Nola framework in the Coq Proof
Assistant.

• Chapter 9 discusses existing work related to this dissertation.

• Chapter 10 concludes the dissertation.

23

Chapter 2

Technical Preliminaries on Iris

下學而上達
Study below to reach up

Confucius, the Analects

This chapter presents the technical preliminaries on the Iris separation logic frame-
work. Readers can skip it when first reading this dissertation and return to relevant
parts to understand the details. Section 2.1 presents Iris’s core features and Section
2.2 presents resource customization. For a better understanding of Iris, we also rec-
ommend referring to a journal paper (Jung et al., 2018b), a lecture note (Birkedal and
Bizjak, 2023), a high-level introduction (Jung, 2020, Part I), the user reference (Iris Team,
2023a), and the Coq development (Iris Team, 2023b).

2.1 Iris’s Core Features

Now we present Iris’s core features. The set of Iris propositions, i.e., propositions in
the Iris separation logic, is iProp. We write 𝑃,𝑄, 𝑅 for metavariables of Iris propositions
ranging over iProp.

2.1.1 Basic Features

Entailment The entailment 𝑃 ⊨ 𝑄 on Iris propositions 𝑃,𝑄 ∈ iProp forms a partial
order:

𝑃 ⊨ 𝑃 ⊨-refl 𝑃 ⊨ 𝑄 𝑄 ⊨ 𝑅
𝑃 ⊨ 𝑅 ⊨-trans 𝑃 ⊨ 𝑄 𝑄 ⊨ 𝑃

𝑃 = 𝑄
⊨-antisym

Also, we write ⊨ 𝑃 for the entailment > ⊨ 𝑃 from the truth > ∈ iProp (introduced
just later) to an Iris proposition 𝑃 ∈ iProp, which is equivalent to > = 𝑃 .

Intuitionistic Connectives Iris propositions have all the connectives for intuition-
istic predicate logic: the truth >, falsefood ⊥, conjunction 𝑃 ∧ 𝑄 , disjunction 𝑃 ∨ 𝑄 ,
implication 𝑃→ 𝑄 , universal quantification ∀𝑎 ∈ 𝐴. 𝑃𝑎 , and existential quantification
∃𝑎 ∈ 𝐴. 𝑃𝑎 . The domain 𝐴 of (universal/existential) quantification can be a set of any
universe, including the set of Iris propositions iProp, meaning that quantification on
iProp is impredicative. Iris satisfies all proof rules of intuitionistic predicate logic.1 In
particular, the following rules hold:

𝑃 ⊨ > >-intro ⊥ ⊨ 𝑃 ⊥-elim
1 Technically, this is because these logical connectives are modeled based on Kripke semantics of intu-
itionistic predicate logic.

24

𝑅 ⊨ 𝑃 𝑅 ⊨ 𝑄
𝑅 ⊨ 𝑃 ∧𝑄 ∧-intro 𝑃 ∧𝑄 ⊨ 𝑃 ∧-eliml 𝑃 ∧𝑄 ⊨ 𝑄 ∧-elimr

𝑃 ⊨ 𝑃 ∨𝑄 ∨-introl 𝑄 ⊨ 𝑃 ∨𝑄 ∨-intror
𝑃 ⊨ 𝑅 𝑄 ⊨ 𝑅
𝑃 ∨𝑄 ⊨ 𝑅

∨-elim

𝑅 ∧ 𝑃 ⊨ 𝑄

𝑅 ⊨ 𝑃→𝑄
→-intro (𝑃→𝑄) ∧ 𝑃 ⊨ 𝑄 →-elim

∀𝑎 ∈ 𝐴.
(
𝑄 ⊨ 𝑃𝑎

)
𝑄 ⊨ ∀𝑎 ∈ 𝐴. 𝑃𝑎

∀-intro 𝑎0 ∈ 𝐴
(∀𝑎 ∈ 𝐴. 𝑃𝑎) ⊨ 𝑃𝑎0

∀-elim

𝑎0 ∈ 𝐴
𝑃𝑎0 ⊨ ∃𝑎 ∈ 𝐴. 𝑃𝑎

∃-intro
∀𝑎 ∈ 𝐴.

(
𝑃𝑎 ⊨ 𝑄

)
(∃𝑎 ∈ 𝐴. 𝑃𝑎) ⊨ 𝑄

∃-elim

Pure-Proposition Embedding Any pure proposition 𝜙 ∈ Prop can be embedded
into an Iris proposition ⌜𝜙⌝ ∈ iProp. Intuitionistic connectives commute with pure-
proposition embedding:

⌜>⌝ = > pure-> ⌜⊥⌝ = ⊥ pure-⊥

⌜𝜙 ∧𝜓⌝ = ⌜𝜙⌝ ∧ ⌜𝜓⌝ pure-∧ ⌜𝜙 ∨𝜓⌝ = ⌜𝜙⌝ ∨ ⌜𝜓⌝ pure-∨

⌜𝜙→𝜓⌝ = ⌜𝜙⌝→ ⌜𝜓⌝ pure-→

⌜∀𝑎 ∈ 𝐴. 𝜙𝑎⌝ = ∀𝑎 ∈ 𝐴. ⌜𝜙𝑎⌝ pure-∀ ⌜∃𝑎 ∈ 𝐴. 𝜙𝑎⌝ = ∃𝑎 ∈ 𝐴. ⌜𝜙𝑎⌝ pure-∃

We usually omit ⌜−⌝ and just write 𝜙 for ⌜𝜙⌝ in Iris propositions.

SeparatingConjunction The key logical connective in Iris is the separating conjunc-
tion 𝑃 ∗𝑄 . It asserts the ownership and knowledge of two disjoint fragments of mutable
state respectively owned by 𝑃 and𝑄 . The logical connective ismonotone, commutative,
associative, and unital by the truth >:

𝑃 ⊨ 𝑃 ′ 𝑄 ⊨ 𝑄 ′
𝑃 ∗𝑄 ⊨ 𝑃 ′ ∗𝑄 ′ ∗-mono

𝑃 ∗𝑄 = 𝑄 ∗ 𝑃 ∗-comm (𝑃 ∗𝑄) ∗ 𝑅 = 𝑃 ∗ (𝑄 ∗ 𝑅) ∗-assoc

𝑃 ∗ > = 𝑃 ∗-unit

The Iris separation logic is affine in the sense that it satisfies the following rule for
eliminating the separating conjunction, or technically left weakening (by ∗-unit):

𝑃 ∗𝑄 ⊨ 𝑃 ∗-elim

The affineness means that any fragment of ownership can be leaked at any time. Iris
adopts this design especially because Iris’s invariant mechanism makes it impossible
to ensure the absence of ownership leaks (Jung, 2020, § 6.2). We should substantially
modify the logic and the design of the invariant mechanism to ensure the absence of
ownership leaks (Bizjak et al., 2019).

Also note that the separating conjunction can be weakened into the usual conjunc-
tion (by ∗-elim):

𝑃 ∗𝑄 ⊨ 𝑃 ∧𝑄 ∗-∧

Separating Implication The separating implication (a.k.a. magic wand) 𝑃 −∗𝑄 is to
the separating conjunction ∗ what the usual implication→ is to the usual conjunction

25

∧. More formally, the separating implication −∗ is the right adjoint of the separating
conjunction ∗, satisfying the following rules analogous to→-intro and→-elim:

𝑅 ∗ 𝑃 ⊨ 𝑄

𝑅 ⊨ 𝑃 −∗𝑄 −∗-intro (𝑃 −∗𝑄) ∗ 𝑃 ⊨ 𝑄 −∗-elim

In other words, the separating implication 𝑃 −∗ 𝑄 is the weakest of the propositions 𝑅
satisfying the property 𝑅 ∗𝑃 ⊨ 𝑄 , i.e., what can turn into𝑄 when separately conjoined
with 𝑃 . Roughly speaking, 𝑃 −∗𝑄 is something like “𝑄 minus 𝑃”.

The separating implication −∗ is weaker than the usual implication→ by ∗-∧:

𝑃→𝑄 ⊨ 𝑃 −∗𝑄 →-−∗

The existence of the separating implication makes the separating conjunction pre-
serve the existential quantification, which is an instance of the ‘left adjoints preserve
colimits’ rule well-known in category theory:

𝑃 ∗ ∃𝑎 ∈ 𝐴.𝑄𝑎 = ∃𝑎 ∈ 𝐴. 𝑃 ∗𝑄𝑎 ∗-∃

Persistence Modality Iris has the persistence modality □ 𝑃 , which roughly means
that the assertion 𝑃 holds without any exclusive ownership. The key rule is the follow-
ing, strengthening the usual conjunction ∧ into the separating conjunction ∗when one
conjunct is under the persistence modality □:

□ 𝑃 ∧ 𝑄 = □ 𝑃 ∗ 𝑄 □-∧-∗

This roughly means that the ownership owned by a proposition under the persistence
modality □ 𝑃 is disjoint from any kind of ownership. Also, the persistence modality
forms a comonad, satisfying the following rules:

𝑃 ⊨ 𝑄
□ 𝑃 ⊨ □𝑄 □-mono □ 𝑃 ⊨ 𝑃 □-elim □ 𝑃 = □□ 𝑃 □-idemp

The persistence modality commutes with the conjunction ∧, disjunction ∨, univer-
sal quantification ∀, existential quantification ∃, pure-proposition embedding ⌜−⌝, and
separating conjunction ∗:

□ 𝑃 ∧ □𝑄 = □(𝑃 ∧𝑄) □-∧ □(𝑃 ∨𝑄) = □ 𝑃 ∨ □𝑄 □-∨

∀𝑎 ∈ 𝐴. □ 𝑃𝑎 = □(∀𝑎 ∈ 𝐴. 𝑃𝑎) □-∀ □(∃𝑎 ∈ 𝐴. 𝑃𝑎) = ∃𝑎 ∈ 𝐴. □ 𝑃𝑎 □-∃

□⌜𝜙⌝ = ⌜𝜙⌝ □-pure □ 𝑃 ∗ □𝑄 = □(𝑃 ∗𝑄) □-∗

Also, under the persistence modality □, the usual conjunction ∧ coincide with the sep-
arating conjunction ∗ and the separating implication −∗ coincide with the usual impli-
cation→:

□(𝑃 ∧𝑄) = □(𝑃 ∗𝑄) in-□-∧-∗ □(𝑃 −∗𝑄) = □(𝑃→𝑄) in-□-−∗-→

Parsistent Propositions We say a proposition 𝑃 is persitent if it is equal to □ 𝑃 , i.e.,
if we can introduce the persistence modality □ on 𝑃 :

𝑃 is persistent ≜ 𝑃 = □ 𝑃

It roughly means that the assertion 𝑃 holds without any exclusive ownership.

26

The usual conjunction ∧ coincides with the separating conjunction ∗ when one
conjunct is persistent by □-∧-∗:

𝑃 is persistent
𝑃 ∧𝑄 = 𝑃 ∗𝑄 persist-∧-∗

There are several consequences of persist-∧-∗. We can duplicate a persistent proposi-
tion 𝑃 into 𝑃 ∗ 𝑃 . Entailment can retain the premise when the conclusion is persistent.
The separating implication −∗ coincides with the usual implication→ when the input
is persistent.

𝑃 is persistent
𝑃 ⊨ 𝑃 ∗ 𝑃 persist-dup

𝑃 ⊨ 𝑄 𝑄 is persistent
𝑃 ⊨ 𝑃 ∗𝑄 persist-retain

𝑃 is persistent
𝑃 −∗𝑄 = 𝑃→𝑄

persist-−∗-→

Also, we can introduce the persistence modality □ on an entailment whose premise
is persistent, by □-mono:

𝑃 ⊨ 𝑄 𝑃 is persistent
𝑃 ⊨ □𝑄 persist-□-intro

The following rules for finding persistent propositions can be derived:

□ 𝑃 is persistent □-persist ⌜𝜙⌝ is persistent pure-persist

𝑃 and 𝑄 are persistent
𝑃 ∧𝑄 is persistent

∧-persist 𝑃 and 𝑄 are persistent
𝑃 ∨𝑄 is persistent

∨-persist

∀𝑎 ∈ 𝐴.
(
𝑃𝑎 is persistent

)
(∀𝑎 ∈ 𝐴. 𝑃𝑎) is persistent

∀-persist
∀𝑎 ∈ 𝐴.

(
𝑃𝑎 is persistent

)
(∃𝑎 ∈ 𝐴. 𝑃𝑎) is persistent

∃-persist

𝑃 and 𝑄 are persistent
𝑃 ∗𝑄 is persistent

∗-persist

Basic Update Iris has the basic update modality ¤|⇛𝑃 , which roughly means that the
assertion 𝑃 holds after internal update of the resources. The modality forms a monad:

𝑃 ⊨ 𝑄
¤|⇛𝑃 ⊨ ¤|⇛𝑄

¤|⇛-mono 𝑃 ⊨ ¤|⇛𝑃 ¤|⇛-intro ¤|⇛ ¤|⇛𝑃 = ¤|⇛𝑃 ¤|⇛-idemp

Also, the monad ¤|⇛ is strong with respect to the separating conjunction ∗:

(¤|⇛𝑃) ∗ 𝑄 ⊨ ¤|⇛(𝑃 ∗𝑄) ¤|⇛-frame

This can be understood as a primitive variant of the frame rule for the Hoare triple
(phoare-frame in § 1.2.3).

Also, the basic update modality on a pure proposition can be stripped off:

¤|⇛⌜𝜙⌝ = ⌜𝜙⌝ ¤|⇛-pure

This property is not satisfied by the fancy update |⇛ introduced later in § 3.1.
As explained later in § 2.2.1, the basic update works nicely with the resource owner-

ship proposition 𝑜 𝛾 .

27

2.1.2 Around the Later Modality

Later Modality The later modality ⊲ 𝑃 is an ill-behaved modality and our disserta-
tion is mainly about how to eliminate the need for it, as explained in § 1.4. The later
modality ⊲ 𝑃 originates from indexing of the semantics of the logic. Roughly speaking,
⊲ 𝑃 means that the assertion 𝑃 holds in the next index. The later modality is monotone
and weakens a proposition:

𝑃 ⊨ 𝑄
⊲ 𝑃 ⊨ ⊲𝑄

⊲-mono 𝑃 ⊨ ⊲ 𝑃 ⊲-intro

However, it is not idempotent:
⊲ ⊲ 𝑃 ≠ ⊲ 𝑃

Iris also has the following Löb induction rule, which generalizes löb introduced in
§ 1.4:

(⊲ 𝑃)→ 𝑃 = 𝑃 löb-gen

The later modality commutes with the truth, conjunction, disjunction, universal
quantification, inhabited existential quantification, separating conjunction, and persis-
tence modality:

⊲> = > ⊲->

(⊲ 𝑃) ∧ (⊲𝑄) = ⊲(𝑃 ∧𝑄) ⊲-∧ ⊲(𝑃 ∨𝑄) = (⊲ 𝑃) ∨ (⊲𝑄) ⊲-∨

∀𝑎 ∈ 𝐴. ⊲ 𝑃𝑎 = ⊲(∀𝑎 ∈ 𝐴. 𝑃𝑎) ⊲-∀ 𝐴 ≠ ∅
⊲(∃𝑎 ∈ 𝐴. 𝑃𝑎) = ∃𝑎 ∈ 𝐴. ⊲ 𝑃𝑎

⊲-∃

⊲(𝑃 ∗𝑄) = ⊲ 𝑃 ∗ ⊲𝑄 ⊲-∗ ⊲□ 𝑃 = □ ⊲ 𝑃 ⊲-□

However, it does not commute with the basic update modality ¤|⇛:

⊲ ¤|⇛𝑃 ⊭ ¤|⇛⊲ 𝑃 ¤|⇛⊲ 𝑃 ⊭ ⊲ ¤|⇛𝑃

Except-0 Modality The except-0 modality �𝑃 is defined as follows:

�𝑃 ≜ 𝑃 ∨ ⊲⊥

Roughly speaking, it means that 𝑃 holds for all indices except for the index 0, i.e., the
initial index.

The except-0 modality forms a monad:

𝑃 ⊨ 𝑄
�𝑃 ⊨ �𝑄 �-mono 𝑃 ⊨ �𝑃 �-intro ��𝑃 = �𝑃 �-idemp

The except-0 modality is stronger than the later modality. Also, the except-0 modal-
ity is absorbed by the later modality.

�𝑃 ⊨ ⊲ 𝑃 �-⊲ � ⊲ 𝑃 = ⊲ 𝑃 �-⊲-absorb

Timeless Propositions We say a proposition 𝑃 is timeless if ⊲ 𝑃 is equal to �𝑃 :

𝑃 is timeless ≜ ⊲ 𝑃 = �𝑃

It means in the indexed semantics that 𝑃 is constant over the indices.
The following rules for finding timeless propositions can be derived:

⌜𝜙⌝ is timeless pure-timeless

28

𝑃 and 𝑄 are timeless
𝑃 ∧𝑄 is timeless

∧-timeless 𝑃 and 𝑄 are timeless
𝑃 ∨𝑄 is timeless

∨-timeless

𝑄 is timeless
𝑃→𝑄 is timeless

→-timeless

∀𝑎 ∈ 𝐴.
(
𝑃𝑎 is timeless

)
(∀𝑎 ∈ 𝐴. 𝑃𝑎) is timeless

∀-timeless
∀𝑎 ∈ 𝐴.

(
𝑃𝑎 is timeless

)
(∃𝑎 ∈ 𝐴. 𝑃𝑎) is timeless

∃-timeless

𝑃 and 𝑄 are timeless
𝑃 ∗𝑄 is timeless

∗-timeless 𝑄 is timeless
𝑃 −∗𝑄 is timeless

−∗-timeless

𝑃 is timeless
□ 𝑃 is timeless

□-timeless

Unfortunately, the basic update ¤|⇛𝑃 is not timeless even if 𝑃 is timeless.

Guarded Recursion A mapping 𝑓 :𝐴 → 𝐵 between indexed sets 𝐴, 𝐵 is said to be
contractive if the indexed equality of inputs weakened by the later modality ⊲(𝑎 =̃ 𝑎′)
ensures the indexed equality of outputs 𝑓 𝑎 =̃ 𝑓 𝑎′. The later modality ⊲: iProp→ iProp
is a typical example of a contractive mapping. Contractiveness is significant because it
guarantees the existence of a unique fixed point.

Theorem 2.1 (Banach’s Fixed Point Theorem). Any contractive mapping 𝑓 :𝐴 → 𝐴
has a unique fixed point rec 𝑓 ∈ 𝐴, satisfying rec 𝑓 = 𝑓 (rec 𝑓).

Recursion whose self-reference is contractive is called guarded recursion. For a small
but tricky example, the following definition of the proposition lliar ∈ iProp is well-
defined (despite the similarity to the liar’s paradox), because it is guarded recursion
thanks to the guard by the later modality ⊲:

lliar ≜ (⊲ lliar)→ ⊥
Actually the proposition lliar thus defined is equal to the falsehood⊥, because (⊲⊥)→⊥
is equal to ⊥ by Löb induction löb-gen.

2.2 Resources

Separation logic can reason about ownership. In a traditional setting, separation logic is
just about ownership of heap memory cells, and the separation logic proposition iProp
is modeled as a predicate Heap→ Prop over a heaplet Heap ≜ Loc

fin
⇀ Val (1.7). But in

modern settings, we want to reason about ownership of various kinds of resources, not
just heap memory cells.

In Iris, resources are mathematically modeled as an intricate indexed algebra, nick-
named the camera.2 The carrier ⌞Ã⌟ of a camera Ã is an indexed set (a.k.a. ordered
family of equivalences). Because a camera is rather hard to understand due to indexing,
we instead present here a non-indexed, discrete version of the camera, called the resource
algebra, abbreviated as RA. Any resource algebra A can be seen as a camera. All the
resources for propositional sharing provided by our Nola framework are modeled as a
resource algebra.

We first present a general topic about the resource algebra and the resource own-
ership connective 𝑜 𝛾

A ∈ iProp (§ 2.2.1) and then present various constructions of re-
source algebras (§ 2.2.2). We also discuss the example of the heap resource algebraHeap
for reasoning about heap memory (§ 2.2.3).
2 The name camera used to be a nickname of CMRA, an acronym for “complete metric resource alge-
bra”. At that time, Iris’s camera required the completeness of the carrier. However, later versions of
Iris dropped the completeness requirement from its camera and still kept the nickname camera for
continuity.

29

2.2.1 Resource Algebra and Resource Ownership

Resource Algebra A resource algebra (RA) A consists of the carrier set ⌞A⌟, the
product operation ·A : ⌞A⌟ × ⌞A⌟ → ⌞A⌟, the core operation |−|A : ⌞A⌟ ⇀ ⌞A⌟,
the validity predicate ✓A : ⌞A⌟ → Prop, satisfying the following rules (we omit the
subscript A and use the metavariable 𝑜 for an element of ⌞A⌟):

𝑜 · 𝑜 ′ = 𝑜 ′ · 𝑜 ·-comm (𝑜 · 𝑜 ′) · 𝑜 ′′ = 𝑜 · (𝑜 ′ · 𝑜 ′′) ·-assoc
|𝑜 | is defined
|𝑜 | · 𝑜 = 𝑜

core-absorb
|𝑜 | is defined
| |𝑜 | | = |𝑜 | core-idemp

|𝑜 | is defined
∃𝑜 ′′. |𝑜 · 𝑜 ′ | = |𝑜 | · 𝑜 ′′ core-· ✓(𝑜 · 𝑜 ′)

✓𝑜
✓-·

The carrier set (a.k.a. underlying set) ⌞A⌟ is the set of resource representations con-
sidered by the resource algebra A.

The product 𝑜 · 𝑜 ′ is a binary operation over resources 𝑜, 𝑜 ′ ∈ ⌞A⌟, which corre-
sponds to the separating conjunction 𝑃 ∗ 𝑄 (see own-·-∗ shown later). The product is
required to be commutative (·-comm) and associative (·-assoc), to make the separating
conjunction ∗ commutative (∗-comm) and associative (∗-assoc). Note that the product
of a resource algebra is total, unlike the disjoint union of heaplets𝐻1+𝐻2 we considered
in the semantics of (1.8) (§ 1.2.3). This is because a resource algebra separately has the
validity predicate ✓.

The core |𝑜 | is a partial unary operation over resources 𝑜 ∈ ⌞A⌟, which corresponds
to the persistence modality □ 𝑃 (see own-core-persist shown later). The core |𝑜 | of a
resource 𝑜 is absorbed by 𝑜 (core-absorb). The core operation is idempotent (core-
idemp). The core |𝑜 · 𝑜 ′ | of a product 𝑜 · 𝑜 ′ includes the core |𝑜 | of an operand 𝑜 of the
product (core-·).

The validity predicate ✓𝑜 is a unary predicate over resources 𝑜 ∈ ⌞A⌟. A resource
owned by a separation logic proposition 𝑃 ∈ iProp is always valid (see own-✓ later). If
a product 𝑜 · 𝑜 ′ is valid, then an operand 𝑜 of it is also valid (✓-·).

We can derive the inclusion relation 𝑜 ≲A 𝑜 ′ on resources 𝑜, 𝑜 ′ ∈ ⌞A⌟, meaning
that 𝑜 is a part of 𝑜 ′:3

𝑜 ≲ 𝑜 ′ ≜ ∃𝑜?+. 𝑜 ′ = 𝑜 · 𝑜?+
Here, 𝑜?+ is either in ⌞A⌟ or undefined. The inclusion relation forms a pre-order, i.e., is
reflexive and transitive.

A unital resource algebra is a resource algebraA with the unit resource 𝜀A ∈ ⌞A⌟,
satisfying the following rules:

𝑜 · 𝜀 = 𝑜 ·-𝜀 |𝜀 | = 𝜀 core-𝜀 ✓𝜀 ✓-𝜀

The unit 𝜀 is the unit element of the product (·-𝜀). The core of the unit is the unit itself
(core-𝜀). The unit is valid (✓-𝜀). A resource algebra is not unital by default because we
want to support the notion of exclusive resources, introduced later.

Resource Update The resource update relation 𝑜 ⇝∈A 𝑂 ′ between a resource 𝑜 ∈
⌞A⌟ and a set of resources 𝑂 ′ ⊆ ⌞A⌟ is defined as follows:

𝑜 ⇝∈ 𝑂 ′ ≜ ∀𝑜?𝑓 s.t. ✓(𝑜 · 𝑜?𝑓) . ∃𝑜
′ ∈ 𝑂 ′. ✓(𝑜 ′ · 𝑜?𝑓)

Intuitively, it means that when we have a resource 𝑜 as a part of the ‘global’ resource
𝑜 ·? 𝑜?

𝑓
, we can update that part into a resource 𝑜 ′ in the set 𝑂 ′, without violating the

3 The product 𝑜1 · 𝑜?2 is defined as 𝑜1 · 𝑜?2 if 𝑜
?
2 is defined and as 𝑜1 if 𝑜?2 is not.

30

validity invariant✓of the global resource. Here, 𝑜?
𝑓
represents the frame, either in ⌞A⌟

or undefined.
As a special case, we write 𝑜 ⇝A 𝑜 ′ for 𝑜 ⇝A {𝑜 ′}.
The resource update corresponds to the basic update modality ¤|⇛𝑃 (see own-⇝∈

shown later).
We say a resource 𝑜 ∈ A is exclusive if the following holds:

𝑜 is exclusive ≜ ∀𝑜 ′ ∈ ⌞A⌟. ¬ ✓(𝑜 · 𝑜 ′)

Intuitively, it means that having the resource 𝑜 allows no frame. For an exclusive re-
source 𝑜 , we can update it into any valid resource 𝑜 ′:

𝑜 is exclusive ✓𝑜 ′

𝑜 ⇝ 𝑜 ′
exclus-⇝

Component Cameras The separation logic proposition iProp in Iris is parameterized
over the family of component cameras (Ã𝑖)𝑖∈𝐼 for some index set 𝐼 .4

Technically, the global camera G̃ for the Iris proposition iProp is defined as follows
given the list of component cameras:

G̃ ≜ ∏
𝑖∈𝐼

(
GhostName fin

⇀ Ã𝑖
)
.

It is the product of the finite map camera GhostName fin
⇀ Ã𝑖 to each component camera

Ã𝑖 . The product and finite map cameras are defined in a way analogous to the product
and finitemap RAs, which are explained later in § 2.2.2. The setGhostName is countably
infinite and its elements 𝛾 ∈ GhostName are called a ghost name.5

The Iris proposition iProp is semantically modeled as, roughly speaking, a mono-
tone predicate over the valid elements of the global camera G̃:

iProp is roughly
{
𝑜 ∈ G̃

�� ✓̃𝑜
} mono−−−−→ P̃rop.

The precise definition is a bit more subtle because a camera’s validity predicate ✓̃ is
indexed. The monotonicity of iProp means that, for any 𝑃 ∈ iProp, resource inclusion
𝑜 ≲ 𝑜 ′ implies the entailment 𝑃 𝑜 ⊨ 𝑃 𝑜 ′ on indexed propositions P̃rop; this monotonic-
ity makes the Iris separation logic affine (∗-elim, § 2.1.1).

Importantly, the component cameras Ã𝑖 can depend on the Iris propositions iProp
under the guard of the later constructor▶ (like (1.19) in § 1.4). This is essential to Iris’s
existing mechanisms for propositional sharing. For example, Iris’s existing camera for
the invariant iInv depends on ▶ iProp, as we see in § 3.1.3.

Resource Ownership Iris has the resource ownership connective 𝑜 𝛾

Ã
∈ iProp for

owning a resource 𝑜 ∈ Ã of a component camera Ã at a ghost name 𝛾 ∈ GhostName.
Here we think of the case when the component camera Ã is a resource algebraA.

Iris has the following rules for the resource ownership connective:

𝑜 · 𝑜 ′ 𝛾 = 𝑜 𝛾 ∗ 𝑜 ′
𝛾

own-·-∗ |𝑜 | = 𝑜

𝑜 𝛾 is persistent
own-core-persist

𝑜 𝛾 ⊨ ✓𝑜 own-✓
✓𝑜

⊨ ¤|⇛∃𝛾 . 𝑜 𝛾
own-alloc

4 In the Coq mechanization of Iris, the index set 𝐼 is restricted to a finite set.
5 The word ‘ghost’ comes from the term ‘ghost state’. The term ‘ghost state’ originally means a program
state that does not appear in the actual execution but is used for verification. By extension, the Iris
community uses the term ‘ghost state’ for any resources of separation logic.

31

𝑜 ⇝∈ 𝑂 ′

𝑜 𝛾 ⊨ ¤|⇛∃𝑜 ′ ∈ 𝑂 ′. 𝑜 ′
𝛾 own-⇝∈ 𝑜 ⇝ 𝑜 ′

𝑜 𝛾 ⊨ ¤|⇛ 𝑜 ′
𝛾 own-⇝

For resource ownership, the product · corresponds to the separating conjunction ∗
(own-·-∗). Ownership of a resource that is a core is persistent (own-core-persist).
Ownership ensures validity (own-✓). We can allocate a valid resource into a fresh
ghost name 𝛾 (own-alloc). We can update the resource of the ownership connective
with respect to the resource update relation (own-⇝∈ , own-⇝). Also, when the re-
source algebra A is unital, the ownership of the unit 𝜀 can be obtained for free:6

⊨ ¤|⇛ 𝜀 𝛾 own-𝜀

Also, the resource ownership is timeless for the resource algebra A:

A is a (discrete) resource algebra
𝑜 𝛾
A is timeless

own-ra-timeless

This does not hold for the resource ownership 𝑜 𝛾

Ã
of a non-discrete camera Ã.

2.2.2 Various Constructions of Resource Algebras

Now we present various constructions of resource algebras.

Exclusive RA The exclusive RA Ex𝐴 over a set 𝐴 is defined as follows:

⌞Ex𝐴⌟ 3 𝑜 F ex𝑎 (𝑎 ∈ 𝐴) | 𝑜 · 𝑜 ′ ≜
|𝑜 | is undefined ✓𝑜 ≜ 𝑜 ≠

The exclusive token ex𝑎 exclusively owns an element 𝑎 ∈ 𝐴. We also have the invalidity , returned by any product. The exclusive resource ex𝑎 is exclusive. So by exclus-⇝,
we can freely update the content of the exclusive resource: ex𝑎 ⇝ ex𝑎′.

Agreement RA The agreement RA Ag𝐴 over a set 𝐴 is defined as follows:7

⌞Ag𝐴⌟ 3 𝑜 F ag𝑎 (𝑎 ∈ 𝐴) |
ag𝑎 · ag𝑎′ ≜

{
ag𝑎 𝑎 = 𝑎′ otherwise

𝑜 · ≜ · 𝑜 ≜
|𝑜 | = 𝑜 ✓𝑜 ≜ 𝑜 ≠

We have the agreement witness ag𝑎, which is idempotent. We also have the invalidity , returned by the product of inconsistent witnesses. Agreement witnesses ag𝑎 and
ag𝑎′ can validly coexist only if 𝑎 = 𝑎′ holds.

Unit RA The unit RA Unit is an defined as follows:

⌞Unit⌟ ≜ 1 () · () ≜ () | () | ≜ () ✓() ≜ >

It is unital with the unit 𝜀Unit ≜ ().
6 One may well expect a stronger rule ⊨ 𝜀 𝛾 . The basic update ¤|⇛ is required here due to Iris’s technical
problems in avoiding axioms.

7 The actual agreement RA in Iris is unital, but we omit the unit for simplicity.

32

Fraction RA The fraction RA Frac is defined as follows:

⌞Frac⌟ ≜ Q>0 𝑞 · 𝑟 ≜ 𝑞 + 𝑟 |𝑞 | is undefined ✓𝑞 ≜ 𝑞 ≤ 1

The full fraction 1 is exclusive.

Discardable Fraction RA The discardable fraction RA Dfrac is roughly the fraction
RA Frac with the power to discard a fraction. Formally, it is defined as follows:

⌞Dfrac⌟ 3 𝑜 F 𝑞 (𝑞 ∈ Q>0) | ★ | 𝑞 +★ 𝑞 · 𝑟 ≜ 𝑞 + 𝑟

★ · ★ ≜ ★ 𝑞 · ★ ≜ ★ · 𝑞 ≜ (𝑞 +★) · ★ ≜ ★ · (𝑞 +★) ≜ 𝑞 +★

𝑞 · (𝑟 +★) ≜ (𝑞 +★) · 𝑟 ≜ (𝑞 +★) · (𝑟 +★) ≜ (𝑞 + 𝑟) +★

|𝑞 | is undefined |★| ≜ |𝑞 +★| ≜ ★

✓𝑞 ≜ 𝑞 ≤ 1 ✓★ ≜ > ✓(𝑞 +★) ≜ 𝑞 < 1

The discard witness ★ persistently observes a discard of a fraction. The resource 𝑞 +★
is a combination of a fraction 𝑞 and a discard witness ★. The existence of the discard
witness★ ensures that the global fraction is less than 1 (by ✓(𝑞 +★) ≜ 𝑞 < 1). The full
fraction 1 is exclusive, just like in Frac.

The discardable fraction RA satisfies the following resource update rules:

𝑞 ⇝ ★ dfrac-discard ★⇝∈ {𝑞 | 𝑞 ∈ Q>0} dfrac-restore

We can always discard a fraction 𝑞 to get a discard witness ★ (dfrac-discard). Con-
versely, we can restore a fraction 𝑞 out of a discard witness ★ (dfrac-restore).

Powerset RA The powerset RA Pow𝐴 over a set 𝐴 is defined as follows:

⌞Pow𝐴⌟ 3 𝑆∗ F 𝑆 (𝑆 ∈ Pow𝐴) |
𝑆 · 𝑆 ′ ≜

{
𝑆 ∪ 𝑆 ′ 𝑆 ∩ 𝑆 ′ = ∅ otherwise

𝑆∗ · ≜ · 𝑆∗ ≜
|𝑆∗ | ≜ ∅ ✓𝑆∗ ≜ 𝑆∗ ≠

This RA is unital with the unit 𝜀 ≜ ∅. This RA equips the subsets of𝐴 with the disjoint
union, using the invalidity for the union of overlapping sets.

Similarly, we define the finite powerset RA FinPow𝐴 over a set 𝐴 by setting

⌞FinPow𝐴⌟ 3 𝑆∗ F 𝑆 (𝑆 ∈ Powfin𝐴) | ,
restricting 𝑆 to finite subsets of 𝐴, and setting other operations just like in Pow𝐴.

Sum RA The sum RA A + B of RAs A,B is defined as follows:8

⌞A + B⌟ 3 𝑜∗ F inl𝑜1 (𝑜1 ∈ ⌞A⌟) | inr𝑜2 (𝑜2 ∈ ⌞B⌟) |
inl𝑜1 · inl𝑜 ′1 ≜ inl (𝑜1 ·A 𝑜 ′1) inr𝑜2 · inr𝑜 ′2 ≜ inr (𝑜2 ·B 𝑜 ′2)

inl𝑜1 · inr𝑜2 ≜ inr𝑜2 · inl𝑜1 ≜ · 𝑜∗ ≜ 𝑜∗ · ≜
|inl𝑜1 | ≜ inl? |𝑜1 |A |inr𝑜2 | ≜ inr? |𝑜2 |B | | ≜
✓ inl𝑜1 ≜ ✓A 𝑜1 ✓ inr𝑜2 ≜ ✓B 𝑜2 ✓ ≜ ⊥

In this RA, we have a resource inl𝑜1 from the RA A and a resource inr𝑜2 from the RA
B. Combining resources from different RAs results in the invalidity . The injection
inl𝑜/inr𝑜 is exclusive if 𝑜 is exclusive.
8 The partial injection inl? 𝑜?/inr? 𝑜? is defined only if 𝑜? is defined.

33

Product RA The product RA A × B of RAs A,B is defined component-wise as fol-
lows:9

⌞A × B⌟ ≜ ⌞A⌟ × ⌞B⌟ (𝑜1, 𝑜2) · (𝑜 ′1, 𝑜 ′2) ≜ (𝑜1 ·A 𝑜 ′1, 𝑜2 ·B 𝑜 ′2)��(𝑜1, 𝑜2)�� ≜ (
|𝑜1 |A, |𝑜2 |B

)? ✓(𝑜1, 𝑜2) ≜ ✓A 𝑜1 ∧ ✓B 𝑜2

When bothA and B are unital, the productA×B is also unital with the unit (𝜀A, 𝜀B).
A resource update over the product RA can be built up component-wise:

𝑜1 ⇝∈ 𝑂 ′1 𝑜2 ⇝∈ 𝑂 ′2
(𝑜1, 𝑜2) ⇝∈ 𝑂 ′1 ×𝑂 ′2

×-⇝∈

Finite Map RA The finite map RA 𝐼
fin
⇀ A of an index set 𝐼 that is infinite and an RA

A is defined point-wise as follows:10

⌞𝐼 fin
⇀ A⌟ ≜ 𝐼

fin
⇀ ⌞A⌟ (𝑓 · 𝑔) 𝑖 ≜ 𝑓 𝑖 ·? 𝑔 𝑖

|𝑓 | 𝑖 ≜ |𝑓 𝑖 | ✓ 𝑓 ≜ ∀𝑖 ∈ dom 𝑓 . ✓(𝑓 𝑖)

The finite map RA is unital, with the empty finite map ∅ being the unit 𝜀
𝐼
fin
⇀A ≜ ∅.

The finite map RA satisfies the following resource update rules:

✓A 𝑜

∅⇝∈ {𝑖 ≔ 𝑜 | 𝑖 ∈ 𝐼 }
fin
⇀-alloc

∀𝑖 ∈ dom 𝑓 . 𝑓 𝑖 ⇝∈ 𝑂 ′𝑖
𝑓 ⇝∈

{
𝑔
�� dom𝑔 = dom 𝑓 ∧ ∀𝑖 ∈ dom 𝑓 . 𝑔 𝑖 ∈ 𝑂 ′𝑖

} fin
⇀-⇝∈

We write [𝑖 ≔ 𝑥] for a singleton finite map that only maps 𝑖 to 𝑥 . We can allocate
a singleton map [𝑖 ≔ 𝑜] of a valid resource 𝑜 for some index 𝑖 ∈ 𝐼 , thanks to the
infiniteness of 𝐼 and the domain finiteness of the global resource (fin⇀-alloc). Also, we
can update a finite map point-wise (fin⇀-⇝∈).

Option RA The option RAOptionA over a resource algebraA is defined as follows:

⌞OptionA⌟ ≜ Option ⌞A⌟

some𝑜 · some𝑜 ′ ≜ some(𝑜 ·A 𝑜 ′) 𝑜∗ · none ≜ none · 𝑜∗ ≜ 𝑜∗

|some𝑜 | ≜
{
some |𝑜 |A |𝑜 |A is defined
none otherwise

|none| ≜ none

✓(some𝑜) ≜ ✓A 𝑜 ✓none ≜ >

It is also unital by the unit 𝜀 ≜ none. The option RA OptionA can be understood as
an extension of A with the unit none.
9 The partial pair (𝑜?1, 𝑜

?
2)

? is defined only if both 𝑜?1 and 𝑜
?
2 are defined.

10 The partial product 𝑜?1 ·
? 𝑜?2 is defined as 𝑜?1 · 𝑜

?
2 if both 𝑜?1 and 𝑜

?
2 are defined, as 𝑜

?
1 if 𝑜

?
1 is defined and

𝑜?2 is not, as 𝑜
?
2 if 𝑜

?
2 is defined and 𝑜?1 is not, and is undefined otherwise. The core |𝑜? | is defined only if

𝑜? and |𝑜? | are defined.

34

Authoritative RA The authoritative RA AuthA over a unital resource algebra A
is defined as follows:

⌞AuthA⌟ ≜ ⌞Auth′A⌟ Auth′A ≜ Option(Ex ⌞A⌟) × A

𝑜∗ · 𝑜 ′∗ ≜ 𝑜∗ ·Auth′ A 𝑜 ′∗ |𝑜∗ | ≜ |𝑜∗ |Auth′ A ✓(none, 𝑜 𝑓) ≜ ✓A 𝑜 𝑓

✓(some𝑜+, 𝑜 𝑓) ≜ ∃𝑜𝑎 s.t. 𝑜+ = ex𝑜𝑎 . ✓A 𝑜𝑎 ∧ 𝑜 𝑓 ≲A 𝑜𝑎

It is also unital by the unit 𝜀Auth′ A . In the authoritative RA, we have the authoritative
token •𝑜 ≜ (some(ex𝑜), 𝜀) and the fragment token ◦𝑜 ≜ (none, 𝑜), satisfying the
following properties:

◦𝑜 · ◦𝑜 ′ = ◦(𝑜 · 𝑜 ′) ◦ 𝜀 = 𝜀 |◦𝑜 | = ◦|𝑜 |

¬ ✓ (•𝑜 · •𝑜 ′) ✓(◦𝑜) ≜ ✓A 𝑜

✓ (•𝑜𝑎 · ◦𝑜 𝑓) = ✓A 𝑜𝑎 ∧ 𝑜 𝑓 ≲A 𝑜𝑎 ✓-•-◦

Whenwe have both an authoritative token •𝑜𝑎 and a fragment token ◦𝑜 𝑓 , the fragment
𝑜 𝑓 is ensured to be a part of the resource 𝑜𝑎 owned by the authoritative token (✓-•-◦).

2.2.3 Example: Heap Resource Algebra

The heap resource algebra Heap for reasoning about heap memory can be defined as
follows:

Heap ≜ Auth
(
Loc

fin
⇀ Frac × AgVal

)
It is an authoritative RA over the finite map RA fin

⇀ from locations Loc to values under
fractional ownership Frac × AgVal.

To use the heap RA, we add it to the component cameras of Iris, which enables
using the resource ownership 𝑜 𝛾

Heap over the heap RA Heap (§ 2.2.1).
The fractional points-to token ℓ

𝑞
↦→ 𝑣 is modeled as follows:

ℓ
𝑞
↦→ 𝑣 ≜ ◦ [ℓ ≔ (𝑞, ag 𝑣)] 𝛾Heap

Heap

It owns a fragment resource ◦ of a singleton map from ℓ ∈ Loc to (𝑞, ag 𝑣), observing
the value 𝑣 ∈ Val with fractional ownership 𝑞 ∈ Q>0. Here, we assume that a ghost
name 𝛾Heap ∈ GhostName has been globally taken (by the rule heap-init introduced
later). We just write ℓ ↦→ 𝑣 for the full points-to token ℓ

1↦→ 𝑣 .
The exclusive heap token heap𝐻 for a heap 𝐻 ∈ Heap ≜ Loc

fin
⇀ Val is modeled as

follows:11
heap𝐻 ≜ •

(
map

(
𝜆𝑣 . (1, ag 𝑣)

)
𝐻
) 𝛾Heap

Heap

It owns an authoritative resource • of a finite map corresponding to the heap 𝐻 that
has a full-ownership resource (1, ag (𝐻 ℓ)) observing the value 𝐻 ℓ over the locations
ℓ ∈ dom𝐻 .

We take the global ghost name 𝛾Heap by the following rule:

⊨ ¤|⇛
(
∃ 𝛾Heap ∈ GhostName. heap∅

)
heap-init

After a basic update ¤|⇛, we get 𝛾Heap ∈ GhostName with the exclusive heap token
heap∅ initialized with the empty heap state ∅. We can prove this using own-alloc.

11 The map functionmap 𝑓 𝑎𝑠 for a function 𝑓 : 𝑋 → 𝐴 and a finite map 𝑎𝑠 : 𝑋 fin
⇀ 𝐵 returns the finite map

𝑏𝑠 : 𝑋 fin
⇀ 𝐵 such that dom𝑏𝑠 = dom𝑎𝑠 and 𝑏𝑠 𝑥 = 𝑓 (𝑎𝑠 𝑥) for all 𝑥 ∈ dom𝑎𝑠 .

35

We can prove the following rules for memory allocation, read and write:

heap𝐻 ⊨ ¤|⇛
(
∃ ℓ ∈ Loc. heap 𝐻 {ℓ ≔ 𝑣} ∗ ℓ ↦→ 𝑣

)
heap-alloc

heap𝐻 ∗ ℓ ↦→ 𝑣 ⊨ 𝐻 ℓ = 𝑣 heap-read

heap𝐻 ∗ ℓ ↦→ 𝑣 ⊨ ¤|⇛
(
heap 𝐻 {ℓ ≔ 𝑤} ∗ ℓ ↦→ 𝑤

)
heap-write

Here, we write 𝐻 {ℓ ≔ 𝑣} for 𝐻 with the value at the location ℓ updated to 𝑣 . These
rules hold thanks to own-⇝∈ and the relationship between the authoritative resource
• and the fragment resource ◦. We can use these rules to model Hoare triple rules for
memory allocation, read and write (thoare-alloc, thoare-load and thoare-store
in § 3.3.2).

We can also prove the following rules on the fractional points-to token, similar to
those presented in § 1.2.3:

ℓ
𝑞+𝑟
↦→ 𝑣 = ℓ

𝑞
↦→ 𝑣 ∗ ℓ

𝑟↦→ 𝑣 ↦→-fract

𝑞 > 1

ℓ
𝑞
↦→ 𝑣 = ⊥

↦→-over1 ℓ
𝑞
↦→ 𝑣 ∗ ℓ

𝑟↦→ 𝑣 ′ ⊨ 𝑣 = 𝑣 ′ ↦→-agree

The rule ↦→-fract can be proved using own-·-∗. The rules ↦→-over1 and ↦→-agree
can be proved using own-✓.

36

Chapter 3

Overview of Our Framework

Seeing is believing

A saying in English

This chapter presents an overview of the design principle and usage of our frame-
work, Nola, focusing on the later-free shared invariant mechanism.

This chapter is organized as follows. Section 3.1 reviews the invariants of Iris. Sec-
tion 3.2 presents Nola’s later-free invariant mechanism. Section 3.3 shows how to use
them through a verification example of iterative mutation of a shared mutable singly
linked list. Section 3.4 presents our new paradox of later-free invariants and discusses
how our framework naturally avoids paradoxes and the general expressivity of our
framework.

3.1 Preliminaries on Iris’s Invariants

Subsection 3.1.1 explains the fancy update E |⇛E′ 𝑃 , a core modality for using Iris’s in-
variants, and Iris’s Hoare triples, which are modeled using the fancy update. Subsection
3.1.2 explains Iris’s invariant mechanism. Subsection 3.1.3 presents the model for Iris’s
invariant mechanism.

3.1.1 Fancy Update and Hoare Triples

FancyUpdate A core logical connective for using Iris’s invariants is the fancy update
modality E |⇛E′ .1 Roughly speaking, the fancy update is the basic update modality
¤|⇛ (§ 2.1.1) enriched with the internal ‘memory’ for invariants. The fancy update is
parameterized by the masks E, E′ ⊆ InvName (omitted in § 1.3.1), representing the set
of available ‘invariant names’ before and after the update, respectively. We introduce
the shorthand |⇛E ≜ E |⇛E for the case the mask is unchanged. We usually use this
mask-unchanging fancy update |⇛E of the more general mask-changing one E |⇛E′ .

The fancy update forms an (indexed) monad:
𝑃 ⊨ 𝑄

E |⇛E′ 𝑃 ⊨ E |⇛E′ 𝑄
|⇛-mono 𝑃 ⊨ |⇛E 𝑃 |⇛-intro

E |⇛E′ E′ |⇛E′′ 𝑃 ⊨ E |⇛E′′ 𝑃 |⇛-trans

Also, the monad is strong with respect to the separating conjunction ∗, i.e., satisfies the
following frame rule:(

E |⇛E′ 𝑃
)
∗ 𝑄 ⊨ E |⇛E′ (𝑃 ∗𝑄) |⇛-frame

1 We do not use the standard notation where masks are written as superscripts for a mask-changing fancy
update, because we want to write the custom world satisfaction𝑊 as the superscript in the extended
fancy update E |⇛

𝑊
E′ , which the Nola framework introduces (§ 3.2.1).

37

The fancy update also satisfies the frame rule on masks:

E |⇛E′ 𝑃 ⊨ E+E′′ |⇛E′+E′′ 𝑃 |⇛-mask-frame

From this rule, we can derive the following monotonicity on the mask:

E ⊆ E′
|⇛E 𝑃 ⊨ |⇛E′ 𝑃

|⇛-mask-⊆

The basic update ¤|⇛ can turn into the fancy update |⇛E :

¤|⇛𝑃 ⊨ |⇛E 𝑃 ¤|⇛-|⇛

Also, the fancy update absorbs the except-0 modality:

� E |⇛E′ 𝑃 = E |⇛E′ 𝑃 �-|⇛ E |⇛E′ �𝑃 = E |⇛E′ 𝑃 |⇛-�

Unfortunately, the fancy update over a pure predicate |⇛E ⌜𝜙⌝ is not equal to ⌜𝜙⌝,
unlike the basic update ¤|⇛⌜𝜙⌝ (¤|⇛-pure). Still, the fancy update satisfies the following
weaker rule:

𝑄 ∗
(
𝑄 −∗ |⇛E ⌜𝜙⌝

)
⊨ |⇛E

(
⌜𝜙⌝ ∗ 𝑄

)
|⇛-pure-keep

Usually, by applying 𝑄 to 𝑄 −∗ |⇛E 𝑃 , we get only 𝑃 after the fancy update |⇛E , but
this rule |⇛-pure-keep lets us keep 𝑄 as well when 𝑃 is a pure proposition ⌜𝜙⌝.

Hoare Triples Iris’s Hoare triples
{
𝑃
}
𝑒
{
𝛹
}
E ,

[
𝑃
]
𝑒
[
𝛹
]
E are parameterized with

the mask E, because they are modeled with the fancy update |⇛E (see (3.5) and (3.6) in
§ 3.1.3 for more details).

Thanks to that, the Hoare triples absorb the fancy update:2{
𝑃
}
𝑒
{
𝛹
}
E{

|⇛E 𝑃
}
𝑒
{
𝛹
}
E

|⇛-phoare

[
𝑃
]
𝑒
[
𝛹
]
E[

|⇛E 𝑃
]
𝑒
[
𝛹
]
E

|⇛-thoare{
𝑃
}
𝑒
{
𝜆𝑣 . |⇛E𝛹 𝑣

}
E{

𝑃
}
𝑒
{
𝛹
}
E

phoare-|⇛
[
𝑃
]
𝑒
[
𝜆𝑣 . |⇛E𝛹 𝑣

]
E[

𝑃
]
𝑒
[
𝛹
]
E

thoare-|⇛

This intuitively means that the fancy update can be performed before and after any
computation step.

Also, the Hoare triples are monotone over the mask:{
𝑃
}
𝑒
{
𝛹
}
E E ⊆ E′{

𝑃
}
𝑒
{
𝛹
}
E′

phoare-mask-⊆
[
𝑃
]
𝑒
[
𝛹
]
E E ⊆ E′[

𝑃
]
𝑒
[
𝛹
]
E′

thoare-mask-⊆

Iris’s Hoare triples also satisfy the usual rules discussed in § 1.2.3. For example, they
satisfy the following frame rules:{

𝑃
}
𝑒
{
𝛹
}
E{

𝑃 ∗ 𝑅
}
𝑒
{
𝜆𝑣 . 𝛹 𝑣 ∗ 𝑅

}
E

phoare-frame[
𝑃
]
𝑒
[
𝛹
]
E[

𝑃 ∗ 𝑅
]
𝑒
[
𝜆𝑣 . 𝛹 𝑣 ∗ 𝑅

]
E

thoare-frame

2 The Hoare triples are actually persistent Iris propositions in iProp instead of pure propositions in Prop.
So rules with Hoare triple hypotheses are interpreted as an entailment ⊨ between Iris propositions. For
example, the rule |⇛-phoare is interpreted as

{
𝑃
}
𝑒
{
𝛹
}
E ⊨

{
|⇛E 𝑃

}
𝑒
{
𝛹
}
E .

38

Also, the total Hoare triple entails the partial one:[
𝑃
]
𝑒
[
𝛹
]
E{

𝑃
}
𝑒
{
𝛹
}
E

thoare-phoare

This language has the following rules for memory allocation, read and write:3[
>
]

ref 𝑣
[
𝜆𝑤. ∃ℓ ∈ Loc s.t. 𝑤 = ℓ . ℓ ↦→ 𝑣

]
∅ thoare-alloc[

ℓ
𝑞
↦→ 𝑣

]
!ℓ

[
𝜆𝑤. 𝑤 = 𝑣 ∗ ℓ

𝑞
↦→ 𝑣

]
∅ thoare-load[

ℓ ↦→ 𝑣
]
ℓ←𝑤

[
𝜆_. ℓ ↦→ 𝑤

]
∅ thoare-store

3.1.2 Iris’s Invariants

Iris’s invariant connective 𝑃
N ∈ iProp persistently asserts that the situation described

by the separation logic proposition 𝑃 ∈ iProp always holds, as explained in § 1.3.1.
Importantly, the proposition 𝑃 stored into Iris’s invariant 𝑃

N can be an arbitrary
Iris proposition, which can contain the invariant connective itself − N , enabling nested
invariants.

The namespace N ∈ Namespace of the invariant connective 𝑃
N (which we omit-

ted in § 1.3.1) represents a set of possible invariant names 𝜄 ∈ InvName given to the
invariant.4 The namespace is used for prohibiting reentrancy to invariants, as we will
see later in the invariant access rules (phoare-iinv etc.).

Proof Rules Notably, the invariant connective is persistent:

𝑃
N is persistent iinv-persist

In particular, the invariant connective is duplicable, since persistence entails duplica-
bility (persist-dup, § 2.1.1):

𝑃
N ⊨ 𝑃

N ∗ 𝑃
N iinv-dup

An invariant 𝑃
N can be allocated by storing the shared content ⊲ 𝑃 :

⊲ 𝑃 ⊨ |⇛∅ 𝑃
N iinv-alloc

Here, note the use of the fancy update |⇛∅.
Iris has the following rules for accessing the shared content 𝑃 of an invariant 𝑃

N

in the Hoare triples:{
(⊲ 𝑃) ∗ 𝑄

}
𝑒
{
𝜆𝑣 . (⊲ 𝑃) ∗ 𝛹 𝑣

}
E 𝑒 is atomic{

𝑃
N ∗ 𝑄

}
𝑒
{
𝛹
}
N+E

phoare-iinv[
(⊲ 𝑃) ∗ 𝑄

]
𝑒
[
𝜆𝑣 . (⊲ 𝑃) ∗ 𝛹 𝑣

]
E 𝑒 is atomic[

𝑃
N ∗ 𝑄

]
𝑒
[
𝛹
]
N+E

thoare-iinv

3 This dissertation uses Iris’s HeapLang, a simple imperative language with heap memory, for the target
low-level language. To be precise, it uses a slight variant of HeapLang with a primitive ndnat that takes
a non-deterministic natural number.

4 To be precise, a namespaceN ∈ Namespace ⊆ Pow InvName is a principal filter ↑𝜄 ⊆ InvName generated
from some invariant name 𝜄 ∈ InvName, where InvName is partially ordered by some prefix relation.
This ensures especially that the set N has an infinite number of elements.

39

The rules roughly say that the shared content 𝑃 of the invariant 𝑃
N can be accessed

in the precondition as long as 𝑃 is restored in the postcondition. The content 𝑃 is
weakened by the later modality ⊲ 𝑃 , which our Nola framework eliminates as explained
in § 3.2. We have the side condition that the expression 𝑒 is atomic, i.e., takes only one
computational step, for soundness in the presence of multiple threads accessing the
invariant. To prohibit reentrancy to invariants, the Hoare triple is parameterized with
the mask E, the set of ‘available’ invariant names 𝜄 ∈ InvName. Every time we access
an invariant 𝑃

N , its namespace N is consumed from the mask.5
We also have the following more basic rule for accessing the content of an invariant

in terms of the fancy update |⇛:

(⊲ 𝑃) ∗ 𝑄 ⊨ |⇛E
(
(⊲ 𝑃) ∗ 𝑅

)
𝑃
N ∗ 𝑄 ⊨ |⇛N+E 𝑅

iinv-acc

More generally, we have the following rule for accessing the invariant content in terms
of the mask-changing fancy update:

𝑃
N ⊨ N |⇛∅

(
(⊲ 𝑃) ∗

(
(⊲ 𝑃) −∗ ∅|⇛N >

))
iinv-acc-ch

By consuming the mask N , we can get the shared content ⊲ 𝑃 and the separating im-
plication (⊲ 𝑃) −∗ ∅|⇛N >. The separating implication lets us retrieve the mask N by
storing the content ⊲ 𝑃 back. From the rule iinv-acc-ch, we can derive the access rules
for the Hoare triples phoare-iinv, thoare-iinv, because the Hoare triples are defined
using the fancy update modality |⇛E .

Unfortunately, Iris’s invariant connective 𝑃
N is not timeless (§ 2.1.2), meaning that

a later ⊲ put on the connective cannot be freely stripped off. More precisely, an invariant
under the later modality ⊲ 𝑃

N does not have the power to access the shared content 𝑃 .
This is problematic for handling nested invariants since the access to Iris’s invariants
(iinv-acc etc.) is weakened by the later modality ⊲.

Adequacy of Hoare Triples We here mention the adequacy theorems for Iris’s
Hoare triples

{
𝑃
}
𝑒
{
𝛹
}
E and

[
𝑃
]
𝑒
[
𝛹
]
E . Recall that the Hoare triples are modeled

using the fancy update |⇛, which is designed to support Iris’s invariants (see also (3.5)
and (3.6) in § 3.1.3).

Iris has the following adequacy theorem for the partial Hoare triple:

Theorem 3.1 (Adequacy of the Partial Hoare Triple). If

∀𝛾Heap, 𝛾Inv. ⊨
{
>
}
𝑒
{
𝜙
}
InvName

holds for a pure postcondition 𝜙 : Val→ Prop,

• any execution of the program 𝑒 never gets stuck, and

• whenever the program 𝑒 terminates with a value 𝑣 ∈ Val, the postcondition 𝜙 𝑣 ∈
Prop holds.

The global mask InvName is chosen for simplicity (recall phoare-mask-⊆). The
premise is universally quantified over the ghost names 𝛾Heap, 𝛾Inv ∈ GhostName (§ 2.2.1)
for the heap and invariant mechanisms. Recall that the ghost name 𝛾Heap for heap is
taken when the exclusive heap token heap𝐻 is allocated (see heap-init, § 2.2.3). The
ghost name 𝛾Inv is similarly taken by Iris’s invariant mechanism.

Iris has the following termination adequacy theorem for the total Hoare triple:
5 We write𝐴+𝐵 for the disjoint union, i.e., the union𝐴∪𝐵 defined only if the sets are disjoint𝐴∩𝐵 = ∅.

40

Theorem 3.2 (Termination Adequacy of the Total Hoare Triple). If

∀𝛾Heap, 𝛾Inv. ⊨
[
>
]
𝑒
[
𝜆_.>

]
InvName

holds, then the program 𝑒 always terminates.

Since the total Hoare triple entails the partial one (thoare-phoare), we can com-
bine Theorem 3.1 and Theorem 3.2 to derive the following adequacy theorem for the
total Hoare triple.

Corollary 3.3 (Adequacy of the Total Hoare Triple). If

∀𝛾Heap, 𝛾Inv. ⊨
[
>
]
𝑒
[
𝜙
]
InvName

holds for a pure postcondition 𝜙 : Val→ Prop,

• any execution of the program 𝑒 never gets stuck, and

• the program 𝑒 always terminates with a value 𝑣 ∈ Val that satisfies the postcondi-
tion 𝜙 𝑣 ∈ Prop.

The adequacy theorem for the partial Hoare triple Theorem 3.1 comes from the
following adequacy theorem for the fancy update |⇛and later ⊲modalities Theorem 3.4.

Theorem 3.4 (Adequacy of the Fancy Update and Later Modalities). If

∀𝛾Inv. ⊨ (|⇛InvName ⊲)𝑛 ⌜𝜙⌝

holds for a pure proposition 𝜙 ∈ Prop and a natural number 𝑛 ∈ N, then 𝜙 holds.

Because the partial Hoare triple targets only a safety property, it can instantiate
the natural number 𝑛 of Theorem 3.4 using the length of finite execution traces to be
considered.

On the other hand, the adequacy theorem for the total Hoare triple Corollary 3.3
comes from the rule |⇛-pure-keep for the fancy update |⇛ and pure propositions.

3.1.3 Model

We present the model for Iris’s invariant mechanism.

Iris’s Invariant Camera To use Iris’s invariants, we add a camera iInv to the family
of component cameras for the Iris proposition iProp (§ 2.2.1). The camera is defined as
follows:

iInv ≜ Auth
(
InvName

fin
⇀ Ag (▶ iProp)

)
(3.1)

It is an authoritative camera Auth over the finite map camera fin
⇀ from invariant names

InvName to the agreement camera Ag over later-guarded propositions ▶ iProp.
Importantly, the camera iInv depends on the Iris proposition iProp, while iProp itself

depends on the component cameras. This circular dependency is valid thanks to the
guard of the later constructor ▶, coming from Iris’s indexed semantics. But this later
constructor ▶ is the exact source of the later modality ⊲ we suffer from (§ 1.4).

Note that the camera iInv corresponds to the ‘invariant memory‘ InvMem of the
rough model (1.19) we showed.

41

Iris’s Invariant Connective The invariant connective 𝑃
N is modeled as follows:6

𝑃
N ≜ ∃𝜄 ∈ N . ◦ [𝜄 ≔ ag(next 𝑃)] 𝛾iInv

iInv (3.2)

It uses the ghost name 𝛾iInv ∈ GhostName for the invariant. Such a ghost name is freshly
taken when a resource is allocated (recall own-alloc in § 2.2.1). The data constructor
next corresponds to the later constructor ▶ used in iInv. Due to this next, the agreement
obtained by this token is weakened by the later modality ⊲.

Iris’s World Satisfaction For reasoning about masks E ⊆ InvName, Iris adds to the
component cameras the resource algebrasDis, En for the disabled and enabled invariant
names, defined as follows:

Dis ≜ FinPow InvName En ≜ Pow InvName

Now the world satisfaction Wiinv for Iris’s invariants is defined as follows:

Wiinv ≜ ∃𝐼 . • ag (next 𝐼) 𝛾iInviInv ∗ ∗
𝜄∈dom 𝐼

((
(⊲ 𝐼 𝜄) ∗ {𝜄} 𝛾Dis

Dis

)
∨ {𝜄} 𝛾En

En

)
(3.3)

Here, 𝐼 : InvName
fin
⇀ iPropmanages the global information about the currently allocated

invariants, associating an invariant name 𝜄 ∈ dom 𝐼 ⊆ InvName with an Iris proposi-
tion 𝑃 ∈ iProp. We write ag (next 𝐼) for the finite map map

(
𝜆𝑃 . ag (next 𝑃)

)
𝐼 . The

definition uses the ghost names 𝛾Dis, 𝛾En for the disabled and enabled invariant names.
For each invariant 𝜄, the world satisfaction Wiinv stores either the proposition for

the closed or open state. When the invariant is closed, the world satisfaction stores the
shared content 𝐼 𝜄 under the later modality ⊲ and the exclusive witness {𝜄} 𝛾Dis

Dis . When
the invariant is open, the world satisfaction just stores the exclusive witness {𝜄} 𝛾En

En ,
which is taken from the mask E of the fancy update (see (3.4)).

Fancy Update Now the fancy update modality E |⇛E′ 𝑃 is modeled as follows, using
the world satisfaction Wiinv:

E |⇛E′ 𝑃 ≜ Wiinv ∗ E 𝛾En
En −∗ ¤|⇛�

(
Wiinv ∗ E′ 𝛾EnEn ∗ 𝑃

)
(3.4)

This model (3.4) can be understood by analogy with the state monad in functional pro-
gramming, where the world satisfactionWiinv is the ‘global mutable state’ managed by
the fancy update. The except-0 modality � used in the definition is just for supporting
the rules |⇛-� and �-|⇛.

Why the Later Modality Is Needed The later modality ⊲ is needed on the shared
content 𝐼 𝜄 in the world satisfaction Wiinv (3.3), by which Iris’s invariants suffer from
later-requiring proof rules like iinv-acc.

The reason for the later modality ⊲ in Wiinv can be explained as follows. The re-
source [𝜄 ≔ ag (next 𝑃)] in the invariant 𝑃

N (3.2) observes the agreement between
𝑃 and 𝐼 𝜄 of the world satisfaction Wiinv. But the agreement is weakened by the later
modality as ⊲ (𝑃 =̃ 𝐼 𝜄), due to the next constructor (or ▶ in iInv). This later-weakened
equality entails (⊲ 𝑃) =̃ ⊲(𝐼 𝜄) but not 𝑃 =̃ 𝐼 𝜄.

6 To be precise, the latest versions of Iris give to the invariant 𝑃
N a more advanced model, namely the

“accessor” that describes the behavior of invariants using mask-changing fancy updates. As shown later
in Chapter 4, we can also support this kind of model in the Nola style.

42

Remark 3.5 (Why the Invariant Loses the Power under a Later). The invariant assertion
𝑃
N under the later modality, ⊲ 𝑃

N , does not have the power to access the shared
content 𝑃 , as mentioned in § 1.4.

First, the invariant assertion 𝑃
N is not timeless because the camera iInv for Iris’s

invariant mechanism is not discrete (see own-ra-timeless, § 2.2.1).
Moreover, the later modality ⊲ on the invariant assertion weakens the agreement

between 𝑃 and 𝐼 𝜄 observed by the resource [𝜄 ≔ ag (next 𝑃)] in the invariant assertion
𝑃
N (3.2) into ⊲ ⊲ (𝑃 =̃ 𝐼 𝜄), instead of ⊲ (𝑃 =̃ 𝐼 𝜄). While this doubly later-weakened

equality ⊲ ⊲ (𝑃 =̃ 𝐼 𝜄) may still allow taking out the content (getting ⊲ ⊲ 𝑃 instead of ⊲ 𝑃),
it does not have the power to restore the content ⊲ 𝐼 𝜄 for the world satisfaction Wiinv.

Model of the Hoare triples For a better understanding, we also present the seman-
tics of the Hoare triples.

The partial Hoare triple
{
𝑃
}
𝑒
{
𝛹
}
E ∈ iProp is defined as the persistent implica-

tion □
(
𝑃 −∗ pwp 𝑒

{
𝛹
}
E
)
from the precondition 𝑃 to the partial weakest precondition

pwp 𝑒
{
𝛹
}
E ∈ iProp. The partial weakest precondition is roughly defined as follows,

omitting the stuckness check and concurrency altogether:

pwp 𝑒
{
𝛹
}
E ≜ roughly

(
∃𝑣 ∈ Val s.t. 𝑒 = 𝑣 . |⇛E𝛹 𝑣

)
∨(

∀𝐻. heap𝐻 −∗ E |⇛∅ ∀(𝑒′, 𝐻 ′) ←↪ (𝑒, 𝐻) . ⊲ ∅|⇛E
(
heap𝐻 ′ ∗ pwp 𝑒

{
𝛹
}
E
))
(3.5)

Here heap𝐻 ∈ iProp exclusively asserts that the global heap memory state is𝐻 ∈ Heap
(§ 2.2.3). Notably, the fancy update |⇛ is used in this definition. The frame rule phoare-
frame comes from the frame rule for the fancy update |⇛-frame.

Note that this definition (3.5) is step-indexed in that the later modality ⊲ guards
the self-reference to pwp after one step of reduction. Thanks to the guard by the later
modality ⊲, which is contractive, this is a guarded recursion and the solution to the equa-
tion (3.5) uniquely exists (recall Theorem 2.1, § 2.1.2). This can roughly be understood
as a coinductive definition, like (1.10) in § 1.2.3.

Similarly, the total Hoare triple
[
𝑃
]
𝑒
[
𝛹
]
E is defined as □

(
𝑃−∗twp 𝑒

[
𝛹
]
E
)
, where

the total weakest precondition pwp 𝑒
{
𝛹
}
E is roughly defined as follows:

twp 𝑒
[
𝛹
]
E ≜𝜇 roughly

(
∃𝑣 ∈ Val s.t. 𝑒 = 𝑣 . |⇛E𝛹 𝑣

)
∨(

∀𝐻. heap𝐻 −∗ E |⇛∅ ∀(𝑒′, 𝐻 ′) ←↪ (𝑒, 𝐻) . ∅|⇛E
(
heap𝐻 ′ ∗ twp 𝑒

[
𝛹
]
E
))
(3.6)

Unlike the partial weakest precondition (3.5), the total weakest precondition is defined
by the least fixed point and thus is not step-indexed, having no later modality ⊲ inside.

3.2 Nola’s Later-Free Invariants

Now we introduce Nola’s later-free invariant mechanism.

Key Idea First we present our key idea, which we roughly explained in § 1.5.
The source of the later modality ⊲ for Iris’s invariant mechanism was that the cam-

era iInv for the invariant depends on the Iris proposition iProp (3.1) (§ 3.1.3), while
iProp itself depends on the component cameras including iInv (§ 2.2.1), as explained by
a rough model (1.19) in § 1.4.

Nola eliminates this circular dependency by replacing iInv with a new resource al-
gebra InvnProp, which depends only on a syntactic data type of propositions nProp to

43

be shared in the invariant machinery. The resource algebra gives rise to a new invari-
ant token invN P , which takes a syntactic proposition P ∈ nProp instead of a semantic
one 𝑃 ∈ iProp. Separately we supply the semantic interpretation J K: nProp → iProp of
syntactic propositions P ∈ nProp into semantic Iris propositions JPK ∈ iProp. Nola’s
invariant mechanism works with an extended fancy update E |⇛

Winv J K
E′ enriched with a

new world satisfaction Winv J K, which is parameterized over the semantic interpreta-
tion J K of nProp. In this way, we can provide later-free proof rules.

Roughly speaking, the invariant mechanism of Nola is parameterized with:

• nProp, the syntactic data type of propositions to be shared by the invariant ma-
chinery; and

• J K: nProp→ iProp, the semantic interpretation of nProp.

But it is vital to understand more precise dependencies between the notions, which we
discuss later.

Subsection 3.2.1 presents the extended fancy update E |⇛𝑊
E′ and the extended Hoare

triples
{
𝑃
}
𝑒
{
𝛹
}𝑊
E ,

[
𝑃
]
𝑒
[
𝛹
]𝑊
E with a custom world satisfaction𝑊 . Subsection 3.2.2

presents Nola’s invariant mechanism. Subsection 3.2.3 presents the model for Nola’s
invariant mechanism.

3.2.1 Extended Fancy Update and Hoare Triples

For Nola’s later-free mechanisms for propositional sharing, we newly introduce the
extended fancy update modality E |⇛𝑊

E′ 𝑃 and the extened Hoare triples
{
𝑃
}
𝑒
{
𝛹
}𝑊
E ,[

𝑃
]
𝑒
[
𝛹
]𝑊
E with a custom world satisfaction𝑊 ∈ iProp.

Extended Fancy Update We introduce the extended fancy update modality E |⇛𝑊
E′ 𝑃

with a custom world satisfaction𝑊 ∈ iProp, defined as follows:

E |⇛𝑊
E′ 𝑃 ≜ 𝑊 −∗ E |⇛E′ (𝑊 ∗ 𝑃)

This can be understood by analogy with the state monad, where𝑊 is the global muta-
ble state. Recall that the original fancy update E |⇛E′ 𝑃 is modeled with the world sat-
isfaction Wiinv (3.4) (§ 3.1.3). The extended fancy update E |⇛𝑊

E′ adds𝑊 to that world
satisfaction. This new modality satisfies the proof rules like the original fancy update
(§ 3.1), such as the following:

𝑃 ⊨ 𝑄

E |⇛𝑊
E′ 𝑃 ⊨ E |⇛𝑊

E′ 𝑄
|⇛w-mono 𝑃 ⊨ |⇛𝑊

E 𝑃 |⇛w-intro

E |⇛𝑊
E′ E′ |⇛

𝑊
E′′ 𝑃 ⊨ E |⇛𝑊

E′′ 𝑃 |⇛w-trans(
E |⇛𝑊

E′ 𝑃
)
∗ 𝑄 ⊨ E |⇛𝑊

E′ (𝑃 ∗𝑄) |⇛w-frame

E |⇛𝑊
E′ 𝑃 ⊨ E+E′′ |⇛

𝑊
E′+E′′ 𝑃 |⇛w-mask-frame

� E |⇛𝑊
E′ 𝑃 = E |⇛𝑊

E′ 𝑃 �-|⇛w E |⇛𝑊
E′ �𝑃 = E |⇛𝑊

E′ 𝑃 |⇛w-�

We also have the following rule for expanding the world satisfaction:

𝑊 ′ = 𝑊 ∗ 𝑊+
E |⇛𝑊

E′ 𝑃 ⊨ E |⇛𝑊 ′
E′ 𝑃

|⇛w-expand

The premise𝑊 ′ ⊨ 𝑊 ∗ (𝑊 −∗𝑊 ′) says that𝑊 is a part of the world satisfaction𝑊 ′.
Note that the new modality with𝑊 = > agrees with the original fancy update:

E |⇛>E′ 𝑃 = E |⇛E′ 𝑃 |⇛w->

44

Extended Hoare Triples We also introduce extended Hoare triples
{
𝑃
}
𝑒
{
𝛹
}𝑊
E ,[

𝑃
]
𝑒
[
𝛹
]𝑊
E with a custom world satisfaction𝑊 ∈ iProp. They use the extended fancy

update |⇛𝑊 instead of |⇛ in their definition (recall (3.5) and (3.6)).
The extended Hoare triples absorb the extended fancy update |⇛𝑊 like |⇛-phoare

etc.: {
𝑃
}
𝑒
{
𝛹
}𝑊
E{

|⇛𝑊
E 𝑃

}
𝑒
{
𝛹
}𝑊
E

|⇛w-hoarew

[
𝑃
]
𝑒
[
𝛹
]𝑊
E[

|⇛𝑊
E 𝑃

]
𝑒
[
𝛹
]𝑊
E

|⇛w-thoarew

{
𝑃
}
𝑒
{
𝜆𝑣 . |⇛𝑊

E 𝛹 𝑣
}𝑊
E{

𝑃
}
𝑒
{
𝛹
}𝑊
E

hoarew-|⇛w

[
𝑃
]
𝑒
[
𝜆𝑣 . |⇛𝑊

E 𝛹 𝑣
]𝑊
E[

𝑃
]
𝑒
[
𝛹
]𝑊
E

thoarew-|⇛w

We also have the following rules for expanding the world satisfaction of Hoare triples,
like |⇛w-expand:

𝑊 ′ = 𝑊 ∗ 𝑊+
{
𝑃
}
𝑒
{
𝛹
}𝑊
E{

𝑃
}
𝑒
{
𝛹
}𝑊 ′

E

hoarew-expand

𝑊 ′ = 𝑊 ∗ 𝑊+
[
𝑃
]
𝑒
[
𝛹
]𝑊
E[

𝑃
]
𝑒
[
𝛹
]𝑊 ′

E

thoarew-expand

Note that the extended Hoare triples with𝑊 = > agree with the original Hoare triples:{
𝑃
}
𝑒
{
𝛹
}>
E =

{
𝑃
}
𝑒
{
𝛹
}
E hoarew->[

𝑃
]
𝑒
[
𝛹
]>
E =

[
𝑃
]
𝑒
[
𝛹
]
E thoarew->

Adequacy of Extended Hoare Triples The extended Hoare triples
{
𝑃
}
𝑒
{
𝛹
}𝑊
E ,[

𝑃
]
𝑒
[
𝛹
]𝑊
E with a custom world satisfaction𝑊 satisfy the following adequacy theo-

rems, which extend Theorem 3.1 and Theorem 3.2 in § 3.1.

Theorem 3.6 (Adequacy of the New Partial Hoare Triple). If

∀𝛾Heap, 𝛾Inv. ⊨ |⇛InvName

(
∃𝑊 . 𝑊 ∗

{
>
}
𝑒
{
𝜙
}𝑊
InvName

)
holds for a pure postcondition 𝜙 : Val→ Prop,

• any execution of the program 𝑒 never gets stuck, and

• whenever the program 𝑒 terminates with a value 𝑣 ∈ Val, the postcondition 𝜙 𝑣 ∈
Prop holds.

Theorem 3.7 (Termination Adequacy of the New Total Hoare Triple). If

∀𝛾Heap, 𝛾Inv. ⊨ |⇛InvName

(
∃𝑊 . 𝑊 ∗

[
>
]
𝑒
[
𝜆_.>

]𝑊
InvName

)
holds, then the program 𝑒 always terminates.

The premise is existentially quantified over the custom world satisfaction𝑊 and re-
quires to allocate𝑊 outside the target Hoare triple, or before the program 𝑒 is executed.

3.2.2 Nola’s Later-Free Invariants

Now we are ready to present Nola’s invariant mechanism.

45

Proof Rules To begin with, Nola introduces an invariant token invN P ∈ iProp for a
syntactic proposition P ∈ nProp. Importantly, the invariant token invN P is persistent:

invN P is persistent inv-persist

Nola’s invariant mechanism introduces a world satisfactionWinv J K ∈ iProp, which
depends on the semantic interpretation J K: nProp → iProp of syntactic propositions
P ∈ nProp. Nola’s invariants are used with the extended fancy update |⇛Winv J K with
this world satisfaction Winv J K.

We can allocate an invariant invN P by storing the interpretation JPK of the syntactic
proposition P : JPK ⊨ |⇛Winv J K

∅ invN P inv-alloc

This is very similar to the rule for Iris’s invariants iinv-alloc, but uses the extended
fancy update |⇛Winv J K instead of |⇛. Also, we store the interpretation JPK of the syn-
tactic proposition P . As a stronger version of inv-alloc, we also have the following
rule:

invN P −∗ JPK ⊨ |⇛Winv J K
∅ invN P inv-alloc-rec

This means that we can assume the invariant assertion invN P before we store JPK for
the invariant.

We can get access to the shared content JPK of an invariant invN P with respect to
the extended fancy update |⇛Winv J K as follows:

JPK ∗ 𝑄 ⊨ |⇛Winv J K
E

(JPK ∗ 𝑅)
invN P ∗ 𝑄 ⊨ |⇛Winv J K

N+E 𝑅
inv-acc

Notably, we have no later modality ⊲ here. Note that P ∈ nProp is a syntactic propo-
sition while 𝑄, 𝑅 ∈ iProp are semantic Iris propositions. More generally, we have the
following access rule for a mask-changing fancy update, just like iinv-acc-ch:

invN P ⊨ N |⇛
Winv J K
∅

(JPK ∗ (JPK −∗ ∅|⇛
Winv J K
N >

))
inv-acc-ch

The extended Hoare triples with Nola’s world satisfaction𝑊 = Winv J K satisfy the
following later-free access rules on Nola’s invariants, which can be derived from the
access rule over the fancy update inv-acc-ch:{ JPK ∗ 𝑄 }

𝑒
{
𝜆𝑣 . JPK ∗ 𝛹 𝑣

}Winv J K
E 𝑒 is atomic{

invN P ∗ 𝑄
}
𝑒
{
𝛹
}Winv J K
N+E

phoare-inv

[JPK ∗ 𝑄]
𝑒
[
𝜆𝑣 . JPK ∗ 𝛹 𝑣

]Winv J K
E 𝑒 is atomic[

invN P ∗ 𝑄
]
𝑒
[
𝛹
]Winv J K
N+E

thoare-inv

We also have the following rule for initializing the invariant machinery and acquir-
ing the world satisfaction Winv J K:

⊨ ¤|⇛
(
∃𝛾Inv. ∀J K. Winv J K) winv-alloc

It takes a fresh ghost name 𝛾Inv ∈ GhostName for Nola’s invariant mechanism. The
invariant token invN P and the world satisfaction Winv J K actually implicitly depend
on this ghost name 𝛾Inv. The key is the universal quantification over the interpreta-
tion J K here. Thanks to this, we can perform winv-alloc to get 𝛾Inv, construct the

46

interpretation J K depending on it, and finally get the world satisfaction by instanti-
ating ∀J K. Winv J K with that constructed J K. This creation of the world satisfaction
winv-alloc is essential to satisfy the premise of the adequacy theorems Theorem 3.6
and Theorem 3.7 for the extended Hoare triples with a custom world satisfaction.

Also, the new invariant token invN P is timeless:

invN P is timeless inv-timeless

Still, we usually do not care about this fact, because the accesses to Nola’s invariants
(inv-acc etc.) and other mechanisms for propositional sharing are no longer weakened
by the later modality ⊲.

Dependencies Notably, the resource algebra for Nola’s invariants InvnProp and the
invariant token invN P depend only on the syntactic data type nProp, not on the se-
mantic interpretation J K. What depends on the semantic interpretation J K is basically
limited to the extended fancy update E |⇛Winv J K

E′ , or its world satisfaction Winv J K.
The dependencies between the components from the Nola framework and its user

can be summarized as follows:

User

nProp →

Library

Inv nProp
iProp
inv

→

User

J K →

Library

Winv J K
proof rules

More precisely, the interactions between the user and the Nola framework can be
described as follows:

1. The user constructs the syntactic data type nProp for propositions to be shared
by the invariant mechanism.

2. TheNola framework provides the resource algebra InvnProp for the invariantmech-
anism.

3. The user adds InvnProp to the component cameras of the Iris proposition iProp
and takes the ghost name 𝛾Inv for the invariant mechanism.

4. The Nola framework provides the invariant token invN P ∈ iProp that stores a
syntactic proposition P ∈ nProp.

5. The user defines the semantic interpretation J K: nProp→ iProp. Importantly, this
can depend on the invariant token invN .

6. The Nola framework provides the world satisfaction Winv J K ∈ iProp for the in-
variant mechanism. The Nola framework also provides proof rules for the invari-
ant invN that involve the extended fancy update |⇛Winv J K of the world satisfac-
tion Winv J K.

Remarkably, we get the invariant token invN P before we construct the interpreta-
tion J K. The token invN P only knows the syntactic data P and not its interpretation.
The semantic interpretation J K is considered only by the world satisfaction Winv J K
of the fancy update |⇛Winv J K. This is the key to supporting nested invariants, as we see
later in § 3.3.3.

Note that the data type nProp should be constructed independently of iProp. This is
because iProp depends on the component cameras, which include the resource algebra
InvnProp that depends on nProp. In particular, we cannot set nProp ≜? iProp and J𝑃K ≜?
𝑃 . Indeed, that leads to a contradiction by the known paradox of later-free invariants
(§ 3.4.1).

47

3.2.3 Model

We present the model for Nola’s invariant mechanism. Themodel is fairly close to Iris’s
invariant mechanism.

Invariant Resource Algebra To begin with, the resource algebra InvnProp for Nola’s
invariants is defined as follows:

InvnProp ≜ Auth
(
GhostName fin

⇀ Ag nProp
)

This is very similar to the camera iInv for Iris’s invariant (3.1) (§ 3.1.3). The only dif-
ference is that the target of the agreement Ag is syntactic propositions nProp. Because
it does not depend on iProp, we do not need the later constructor ▶, which is the key
to supporting later-free proof rules.

Nola’s Invariant Connective The invariant token inv for nProp is modeled as fol-
lows:

invN P ≜ ∃𝜄 ∈ N . ◦ [𝜄 ≔ ag P] 𝛾Inv
InvnProp

We use the ghost name 𝛾Inv for Nola’s invariant mechanism, taken by the rule winv-
alloc. This is analogous to Iris’s invariant 𝑃

N (3.2) (§ 3.1.3).

Nola’s World Satisfaction The world satisfaction Winv J K for Nola’s invariant is
defined as follows:

Winv J K ≜ ∃I . • ag I 𝛾Inv
InvnProp

∗ ∗
𝜄∈dom I

((JI 𝜄 K ∗ {𝜄} 𝛾Dis

Dis

)
∨ {𝜄} 𝛾En

En

)
(3.7)

This is analogous to Iris’s world satisfactionWiinv (3.3) (§ 3.1.3). Nola’s world satisfac-
tion is existentially quantified over I : InvName

fin
⇀ nProp, a finite map to nProp instead

of iProp. We write ag I for the finite map 𝜆𝜄 ∈ dom I . ag (I 𝜄). Notably, Nola’s world
satisfactionWinv J K stores the semantic interpretation JI 𝜄K obtained by the parameterJ K for each closed invariant, instead of ⊲ 𝐼 𝜄 inWiinv. Nola’s world satisfactionWinv J K
does not need the later modality ⊲, because the agreement observed by Nola’s invari-
ant token invN is not weakened by the later modality ⊲. As a result, we can provide
later-free proof rules like inv-acc.

Given the model above, the soundness of the proof rules is straightforward.

Theorem 3.8. The proof rules for Nola’s invariants (e.g., inv-acc and winv-alloc) are
sound for every nProp and J K.
Proof. Straightforward. The proof goes like Iris’s later-requiring invariant, except that
we are free from the constructor next. To prove the rule winv-alloc, we initialize the
map I inside the world satisfaction Winv J K to the empty map ∅, which makes the
interpretation J K is irrelevant.
3.3 Example: Linked List Mutation

To see how to use Nola’s invariant mechanism, let us consider a simple example.

3.3.1 Verification Target

We verify termination of iterative mutation of a singly linked list, for an unbounded
number of elements, among unboundedly many threads.

48

Basic Iterative Mutation For iterative mutation, we first consider the following re-
cursive function iter𝑓 ,𝑐 (ℓ):

fun iter𝑓 ,𝑐 (ℓ)
{
if !𝑐 ≠ 0 then

(
𝑓 (ℓ); 𝑐←!𝑐 − 1; iter𝑓 ,𝑐 (!(ℓ + 1))

) }
(3.8)

The iteration function iter𝑓 ,𝑐 (ℓ) takes a pointer ℓ to the singly linked list to be mutated,
which changes in the course of recursion. The function is also parameterized by a mu-
tation function 𝑓 and a pointer to a counter 𝑐 . Then it checks whether the counter value
!𝑐 stored at 𝑐 is non-zero. Only in the case the value is zero does the function terminate
immediately. The function mutates the head element at ℓ by calling the mutation func-
tion 𝑓 . Then it decrements the counter value stored at 𝑐 by one. Finally, it recursively
calls the function iter𝑓 ,𝑐 on the tail list at !(ℓ + 1).

In summary, the iteration function iter𝑓 ,𝑐 (ℓ) calls the function 𝑓 over the first !𝑐
elements of the singly linked list. Wewant to verify that the iterativemutation iter𝑓 ,𝑐 (ℓ)
always terminates, assuming that the mutation by 𝑓 always terminates.

Here, the function 𝑓 should not perform invalid memory access for the termination
of iter𝑓 ,𝑐 (ℓ). In particular, if 𝑓 can bump up the counter value at 𝑐 , then the function
iter𝑓 ,𝑐 (ℓ) can possibly never terminate. Such constraints can be easily expressed in
separation logic.

With Non-Determinism We also want to perform the iterative mutation for an
unbounded number of elements. We consider the following function iternd

𝑓
(ℓ):

fun iternd𝑓 (ℓ)
{
let 𝑐 ≔ ref ndnat in iter𝑓 ,𝑐 (ℓ)

}
(3.9)

The function first takes a non-deterministic natural number ndnat and allocates a fresh
memory cell 𝑐 initialized with that number. Then it calls the iterative mutation function
iter𝑓 ,𝑐 (ℓ) using 𝑐 as the counter. Notably, the function iternd

𝑓
(ℓ) can perform mutation

by 𝑓 unboundedly many times, because ndnat can return any unboundedly large natural
number. Still, we want to verify that this unbounded iterative mutation iternd

𝑓
(ℓ) always

terminates.

With Concurrency Furthermore, we want to perform unbounded iterative muta-
tions concurrently with many threads. We consider the following recursive function
iterforks𝑓 ,𝑐′,ℓ ():

fun iterforks𝑓 ,𝑐′,ℓ ()
{
if !𝑐′ ≠ 0 then

(
fork { iternd𝑓 (ℓ) }; 𝑐

′←!𝑐′ − 1; iterforks𝑓 ,𝑐′,ℓ ()
) }

(3.10)
The function forks threads that perform the unbounded iterative mutation iternd

𝑓
(ℓ),

where the number of forked threads is specified by the counter at 𝑐′. We want to verify
that this concurrent iterative mutation iterforks𝑓 ,𝑐′,ℓ () always terminates, in the sense
that all the threads terminate.

We can even perform that with unboundedly many threads. We consider the fol-
lowing recursive function iterforksnd𝑓 ,ℓ ():

fun iterforksnd𝑓 ,ℓ ()
{
let 𝑐′ ≔ ref ndnat in iterforks𝑓 ,𝑐′,ℓ ()

}
(3.11)

It calls the function iterforks𝑓 ,𝑐′,ℓ () by a counter at 𝑐′ initialized with an unbounded
natural number ndnat. We want to verify that even iterforksnd𝑓 ,ℓ () always terminates.

3.3.2 Problem with Iris’s Invariants

Let us first try to verify the termination of these functions using Iris’s invariants.

49

Modeling the Singly Linked List What should be the assertion for the singly linked
list? In order to performmutation among multiple threads, the singly linked list should
be both sharable andmutable. Also, the singly linked list should be infinite, because the
number of elements to be mutated is unbounded. Infinite singly linked lists can be
constructed from cyclic references, because lists we consider are sharable.

For that, we can consider the following persistent Iris assertion ilistN 𝛷 ℓ ∈ iProp
for a shared mutable infinite list of the head location ℓ ∈ Loc, parameterized with the
invariant predicate𝛷 : Loc → iProp:

ilistN 𝛷 ℓ ≜ 𝛷 ℓ
N
∗ ∃ℓ ′ ∈ Loc. (ℓ + 1) ↦→ ℓ ′ ∗ ilistN 𝛷 ℓ ′

N
(3.12)

For the head, it persistently asserts the invariant 𝛷 ℓ
N
about the head location ℓ . For

the tail, it persistently asserts the invariant that ℓ + 1 always points to a some location
ℓ ′ ∈ Loc satisfying the list predicate ilistN 𝛷 ℓ ′ itself.

Note that the self-reference to ilistN𝛷 in (3.12) is guarded by Iris’s invariant connec-
tive − N . Technically, the connective − N is contractive because the next constructor
in its model (3.2) (§ 3.1.3) is contractive. So the equation (3.12) forms guarded recur-
sion and its solution uniquely exists (recall Theorem 2.1, § 2.1.2). This can roughly be
understood as a coinductive definition.

Also note that the infinite list assertion ilistN 𝛷 ℓ is an example of unboundedly
nested invariants (in this case, it is even infinitely nested).

For example, we can think of an invariant𝛷 = ∃𝑛 ∈ Z. ℓ ↦→ 3𝑛, stating that amulti-
ple of three is stored at ℓ . This invariant is retained by the mutation fun 𝑓 (ℓ)

{
faa ℓ 3

}
,

which adds three to the value stored at ℓ . Indeed, we can prove the following total Hoare
triple for any ℓ and 𝑛: [

∃𝑛 ∈ Z. ℓ ↦→ 3𝑛
N]

faa ℓ 3
[
𝜆_.>

]
N (3.13)

Here, the fetch-and-add faa ℓ 𝑛 is an atomic operation that adds 𝑛 to the number stored
at ℓ and returns the old value, satisfying the following Hoare triple rule:[

ℓ ↦→ 𝑘
]
faa ℓ 𝑛

[
𝜆𝑣 . 𝑣 = 𝑘 ∗ ℓ ↦→ (𝑘 + 𝑛)

]
∅ thoare-faa

Termination Proof Fails The assertion we target for the most basic iterative mu-
tation function iter𝑓 ,𝑐 (ℓ) (3.8) is the following total Hoare triple entailment for any
natural number 𝑛 ∈ N:

∀ℓ .
[
𝛷 ℓ

N]
𝑓 (ℓ)

[
𝜆_.>

]
N[

ilistN 𝛷 ℓ ∗ 𝑐 ↦→ 𝑛
]
iter𝑓 ,𝑐 (ℓ)

[
𝜆_. 𝑐 ↦→ 0

]
N .

(3.14)

We can satisfy the premise with any kind of mutation, e.g., the fetch-and-add of (3.13).
Unfortunately, the entailment (3.14) cannot be proved. Consider the step case𝑛 > 0.

We can perform the mutation 𝑓 (ℓ) using the premise
[
𝛷 ℓ

N]
𝑓 (ℓ)

[
𝜆_.>

]
N . We can

also perform the decrement 𝑐←!𝑐 − 1 by updating the given points-to token 𝑐 ↦→ 𝑛. The
problem occurs when we access the tail list !(ℓ + 1):[

ilistN 𝛷 ℓ
]
!(ℓ + 1)

[
𝜆𝑣 . ∃ℓ ′ ∈ Loc s.t. 𝑣 = ℓ ′. ⊲

(
ilistN 𝛷 ℓ ′

)]
N (3.15)

We have the later modality ⊲ on the tail list ilistN 𝛷 ℓ ′, due to the later modality ⊲
in the access rule thoare-iinv and the non-timelessness of the assertion ilistN 𝛷 ℓ ′,
stemming from the non-timelessness of invariants − N . Because we are working in
the total Hoare triple, we never have the chance to strip off this later modality ⊲, unlike
in the partial Hoare triple (recall the discussions in § 1.4). This later modality ⊲ blocks
us from verifying the recursive call iter𝑓 ,𝑐 (!(ℓ + 1)), because we need to obtain the
later-free ilistN 𝛷 ℓ ′.

50

3.3.3 Solution: Nola’s Later-Free Invariants

Using Nola’s invariants, we can provide the later-free access rule thoare-inv and thus
prove a later-free version of (3.14), making the verification work smoothly.

Here we present our solution in a high-level manner. See § 8.3 for how verification
goes in our Coq mechanization of Nola.

First Step: Determine the Syntax nProp For that, we first determine the syntactic
data type nProp. We should consider what propositions we want to store into Nola’s
invariants. For example, informally, the following fragment of Iris propositions can be
sufficient to describe the desired assertions:

𝑃,𝑄 F ∀𝑎 ∈ 𝐴. 𝑃𝑎 | ∃𝑎 ∈ 𝐴. 𝑃𝑎 | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃→𝑄 | 𝜙
| 𝑃 ∗𝑄 | 𝑃 −∗𝑄 | □ 𝑃 | ¤|⇛𝑃 | ⊲ 𝑃

| ℓ
𝑞
↦→ 𝑣 | 𝑃

N | ilistN 𝛷 ℓ

One can also add other logical connectives one wishes to use. (There is a limitation,
which we discuss in § 3.4.2.) In particular, we can freely add tokens like the points-to
token ℓ

𝑞
↦→ 𝑣 and 𝑃

N .
We express the above fragment formally as the following data type nProp for syn-

tactic logic formulas:

nProp 3 P , Q F

A

𝐴 Φ |

E

𝐴 Φ | P and Q | P or Q | P -> Q | 𝜙
| P * Q | P -* Q | pers P | bupd P | |> P

| ℓ
𝑞
|-> 𝑣 | invN P | ilistN Φ ℓ

(3.16)

To distinguish from Iris propositions, we use the typewriter fonts for the syntactic
propositions in nProp. For the universal and existential quantifiers A

𝐴 Φ ,

E

𝐴 Φ , we use
higher-order abstract syntax (HOAS), where 𝐴 is the domain set of the quantification
and Φ is a function 𝐴→ nProp. For the universe consistency, the set 𝐴 here should be
taken from a universe that does not include nProp.7

Second Step: Build the Semantics J K Now that we have decided the data type
nProp (3.16), we can add the resource algebra InvnProp to the component cameras of the
Iris propositions iProp (and take the ghost name 𝛾Inv by winv-alloc). This provides
the invariant token invN P ∈ iProp for P ∈ nProp.

Now we can construct the interpretation J K: nProp → iProp by straightforward
structural induction, interpreting each constructor of nProp as its intended meaning as
Iris propositions:

J A

𝐴 Φ K ≜ ∀𝑎 ∈ 𝐴. JΦ 𝑎K J E

𝐴 Φ K ≜ ∃𝑎 ∈ 𝐴. JΦ 𝑎KJP and QK ≜ JPK ∧ JQK JP or QK ≜ JPK ∨ JQK JP -> QK ≜ JPK→ JQK
J𝜙K ≜ 𝜙

JP * QK ≜ JPK ∗ JQK JP -* QK ≜ JPK −∗ JQK Jpers PK ≜ □ JPK
Jbupd PK ≜ ¤|⇛JPK J|> PK ≜ ⊲ JPK

Jℓ 𝑞
|-> 𝑣K ≜ ℓ

𝑞
↦→ 𝑣

7 This means that we cannot handle impredicative quantifiers like ∀P ∈ nProp in this way. We discuss
this problem in § 3.4.2.

51

JinvN PK ≜ invN P (3.17)

JilistN Φ ℓK ≜ invN (Φ ℓ) ∗ invN
(E

ℓ ′. (ℓ + 1) |-> ℓ ′ * ilistN Φ ℓ ′
)

(3.18)

The invariant constructor invN P of nProp is interpreted as the invariant token
invN P (3.17). The token depends only on the syntactic proposition P ∈ nProp, not its
interpretation JPK ∈ iProp. Remarkably, we can freely nest the invariant constructor
invN P , i.e., attain nested invariants.

The infinite singly linked list constructor ilistN Φ ℓ is interpreted as a proposition
(3.18) that is analogous to (3.12) but uses Nola’s invariant token invN P instead of Iris’s

𝑃
N . Here, we introduced the shorthand E

𝑎. P𝑎 ≜

E(𝜆𝑎. P𝑎) and ℓ |-> 𝑣 ≜ ℓ
1
|-> 𝑣 .

Note that the right-hand side of (3.18) does not contain a recursive call of J K. Al-
though the tail list ilistN Φ ℓ ′ ‘recursively’ occurs in the right-hand side, it is referred
to just as a syntactic formula, not as its semantics JilistN Φ ℓ ′K. In a sense, the ‘recur-
sive’ occurrence of ilistN is guarded by the invariant connective invN .

Also note that the infinite list assertion ilistN Φ ℓ ∈ nProp thus interpreted can
be regarded as an example of unboundedly nested invariants (or even infinitely nested).

Final Step: Verify with Nola’s Invariants Now that we have the semantics J K:
nProp → iProp, we can instantiate the world satisfaction Winv J K of Nola’s invariant
mechanism with the above-given interpretation J K: nProp→ iProp.

Now we can verify the termination of the iterative mutation iter𝑓 ,𝑐 (ℓ) (3.8) without
any difficulty. The following total Hoare triple entailment holds for any natural number
𝑛 ∈ N:

∀ℓ .
[
invN (Φ ℓ)

]
𝑓 (ℓ)

[
𝜆_.>

]Winv J K
N[JilistN 𝛷 ℓK ∗ 𝑐 ↦→ 𝑛

]
iter𝑓 ,𝑐 (ℓ)

[
𝜆_. 𝑐 ↦→ 0

]Winv J K
N

(3.19)

The proof of (3.19) simply goes by induction over 𝑛 ∈ N. The key to success is that we
can prove the following assertion for accessing the tail list at !(ℓ + 1), using thoare-
load and thoare-inv:[JilistN Φ ℓK] !(ℓ + 1)

[
𝜆𝑣 . ∃ℓ ′ ∈ Loc s.t. 𝑣 = ℓ ′. JilistN Φ ℓ ′K]Winv J K

N (3.20)

Unlike (3.15), we do not suffer from the later modality ⊲ on the tail list JilistN Φ ℓ ′K,
thanks to the later-free access rule thoare-inv.

We can satisfy the premise of (3.19) with any kind of mutation. For example, we
can consider the fetch-and-add like (3.13):[

invN
(E

𝑛. ℓ |-> 3𝑛
)]

faa ℓ 3
[
𝜆_.>

]Winv J K
N

Note that we can construct infinite singly linked lists ilistN Φ ℓ from cyclic ref-
erences, for example:

invN (Φ ℓ) ∗ (ℓ + 1) ↦→ ℓ ⊨ |⇛Winv J K
∅ JilistN Φ ℓK

invN (Φ ℓ) ∗ (ℓ + 1) ↦→ ℓ ′ ∗ invN (Φ ℓ ′) ∗ (ℓ ′ + 1) ↦→ ℓ ⊨ |⇛Winv J K
∅ JilistN Φ ℓK

We can prove them using the recursive allocation rule inv-alloc-rec. Also, we can
add an element to an infinite singly linked list:

invN (Φ ℓ) ∗ (ℓ + 1) ↦→ ℓ ′ ∗ JilistN Φ ℓ ′K ⊨ |⇛Winv J K
∅ JilistN Φ ℓK

52

Based on the termination of iter𝑓 ,𝑐 (ℓ) (3.19), we can easily verify the termination
of the other functions we considered. First, we can verify the termination of the un-
bounded iterative mutation by the function iternd

𝑓
(ℓ) (3.9):

∀ℓ .
[
invN (Φ ℓ)

]
𝑓 (ℓ)

[
𝜆_.>

]Winv J K
N[JilistN 𝛷 ℓK] iternd

𝑓
(ℓ)

[
𝜆_.>

]Winv J K
N

(3.21)

To prove this, we just combine (3.19) with thoare-alloc the following rule for taking
a non-deterministic natural number:[

>
]
ndnat

[
𝜆𝑣 . ∃𝑛 ∈ N. 𝑣 = 𝑛

]
∅ thoare-ndnat

We can also verify the termination of concurrent iterative mutation by the function
iterforks𝑓 ,𝑐′,ℓ () (3.10), proving the following for any natural number𝑚 ∈ N:

∀ℓ .
[
invN (Φ ℓ)

]
𝑓 (ℓ)

[
𝜆_.>

]Winv J K
N[JilistN 𝛷 ℓK ∗ 𝑐′ ↦→𝑚

]
iterforks𝑓 ,𝑐′,ℓ ()

[
𝜆_.>

]Winv J K
N

(3.22)

The proof goes by induction on𝑚 ∈ N, using (3.21) and the following rule for forking
a thread (similar to thoare-fork in § 1.2.3):[

𝑃
]
𝑒
[
𝜆_.>

]
E[

𝑃
]
fork { 𝑒 }

[
𝜆_.>

]
E

thoare-fork

Finally, we can verify the termination of concurrent iterative mutation among an
unbounded number of threads by the function iterforksnd𝑓 ,ℓ () (3.11):

∀ℓ .
[
invN (Φ ℓ)

]
𝑓 (ℓ)

[
𝜆_.>

]Winv J K
N[JilistN 𝛷 ℓK] iterforksnd𝑓 ,ℓ ()

[
𝜆_.>

]Winv J K
N

The proof goes by combining (3.22) with thoare-alloc and thoare-ndnat.

3.4 Paradoxes and Expressivity

As we have seen, Nola’s later-free invariant mechanism is parameterized by nProp, the
syntactic data type of propositions that can be stored into invariants, and its semanticsJ K: nProp → iProp. By enriching nProp and J K, we can express more Iris proposi-
tions in nProp and get the power to store them in Nola’s invariants. Still, the fact that
the data type nProp and its interpretation J K are well-defined imposes a limitation on
what can be expressed in nProp. On the other hand, that limitation naturally protects
the later-free invariant mechanism from paradoxes. This section clarifies the limit of
nProp’s expressivity by discussing the paradoxes of later-free invariants (§ 3.4.1) and
the definability of the interpretation J K (§ 3.4.2).
3.4.1 Paradoxes of Later-Free Invariants

Old Paradox There is a known paradox of later-free invariants by Krebbers et al.
(2017a, § 5).

They assume an invariant connective 𝑃 ∈ iProp (𝑃 ∈ iProp) that is persistent and
supports the following later-free rules for allocation and access:

𝑃 ⊨ |⇛• 𝑃 iinv-alloc′
𝑃 ∗ 𝑄 ⊨ |⇛∅

(
𝑃 ∗ 𝑅

)
𝑃 ∗ 𝑄 ⊨ |⇛• 𝑅

iinv-acc-nolater

53

Here they assume two types of masks, empty ∅ and full •.8 For the fancy update |⇛E ,
they assume the following rules:

𝑃 ⊨ 𝑄
|⇛E 𝑃 ⊨ |⇛E 𝑄

𝑃 ⊨ |⇛E 𝑃 |⇛E |⇛E 𝑃 = |⇛E 𝑃

(|⇛E 𝑃) ∗𝑄 ⊨ |⇛E (𝑃 ∗𝑄) |⇛∅ 𝑃 ⊨ |⇛• 𝑃
(3.23)

They also assume two tokens s 𝛾 , f 𝛾 ∈ iProp satisfying the following rules:

⊨ |⇛∅ ∃𝛾 . s 𝛾 s-new s 𝛾 ⊨ |⇛∅ f 𝛾 s-|⇛-f

s 𝛾 ∗ f 𝛾 ⊨ ⊥ s-f-⊥ f 𝛾 ⊨ f ∗ f 𝛾 f-dup

Intuitively, the token s 𝛾 exclusively asserts that 𝛾 is at the ‘start’ state and the token
f 𝛾 non-exclusively asserts that𝛾 is at the ‘finished’ state. The state is initially set to the
start state (s-new) and can change to the finished state (s-|⇛-f). The state and finished
states do not co-exist (s-f-⊥). A witness of the finished state can be duplicated (f-dup).

Under these assumptions, they prove the following, introducing the falsehood ⊥
under the fancy update |⇛•:

⊨ |⇛•⊥.
This contradicts the adequacy of the fancy update modality Theorem 3.4.

To prove this, they constructed the following invariant:

s 𝛾 ∨ (f 𝛾 ∗ □ big𝛾) where

big𝛾 ≜ ∃𝑃 ∈ iProp. □
(
𝑃 −∗ |⇛•⊥

)
∗ s 𝛾 ∨ (f 𝛾 ∗ □ 𝑃)

Unfortunately, this invariant is quite involved. The proposition stored in the invariant
contains an impredicative existential quantifier ∃ 𝑃 ∈ iProp, a fancy update modality
|⇛•, and an invariant connective − . We argue that the real source of the contradiction
is unclear from this paradox.

New Paradox Remarkably, we can significantly simplify the above paradox. We just
construct the following invariant:

s 𝛾 ∨ □ |⇛•⊥

Now the real source of the contradiction is pretty clear: the fancy update modality |⇛•
stored inside the invariant.

We clarify the statement of our new paradox.

Theorem 3.9 (New Paradox of Later-Free Invariants). Assume that there is a fancy
update modality |⇛E 𝑃 (E ∈ {∅, •}, 𝑃 ∈ iProp) satisfying the rules of (3.23). Also, assume
that there are two tokens s 𝛾 , f 𝛾 ∈ iProp satisfying s-new, s-|⇛-f, s-f-⊥ and

f 𝛾 is persistent f-persist

We define the bad proposition bad𝛾 ∈ iProp as follows:

bad𝛾 ≜ s 𝛾 ∨ □ |⇛•⊥.

Finally, assume that an invariant connective bad𝛾 ∈ iProp for the bad proposition satis-
fying the following rules:

bad𝛾 is persistent iinvbad-persist bad𝛾 ⊨ |⇛• bad𝛾 iinv-alloc′-bad

8 This amounts to fixing the invariant’s namespace N to the universal namespace InvName and inter-
preting the full mask • as the universal namespace InvName.

54

bad𝛾 ∗ 𝑄 ⊨ |⇛∅
(
bad𝛾 ∗ 𝑅

)
bad𝛾 ∗ 𝑄 ⊨ |⇛• 𝑅

iinv-acc-nolater-bad

Then we can prove the following:
⊨ |⇛•⊥.

Notably, the invariant connective that the paradox uses is limited to bad𝛾 for the
‘bad’ proposition bad𝛾 ≜ s 𝛾 ∨ □ |⇛•⊥, which just contains the fancy update |⇛•.
Compared to the original paradox, we slightly strengthen the assumption about the
token f 𝛾 , assuming that it is persistent f-persist, not just duplicable f-dup.

High-Level Idea of the New Paradox At the high level, the paradox is analogous
to the following variant of Landin’s knot Code 1.4 (§ 1.4):

let rbad : ref (option (unit -> bot)) = ref None in
rbad := Some (fun _ -> unwrap (!rbad) ());
unwrap (!rbad) ()

Code 3.1: Landin’s knot with ref (option (unit -> bot))

This program Code 3.1 employs a higher-order shared mutable reference rbad : ref
(option (unit -> bot)). Its body type is option (unit -> bot), whose element
is either None or Some f for a closure f : unit -> bot, whose execution is provably
non-terminating due to the empty type bot. The function unwrap unwraps Some a into
a, throwing an exception for None.

The program Code 3.1 goes as follows. First, the reference rbad is created with
the initial value None. Then the value stored in rbad is updated into Some (fun _
-> unwrap (!rbad) ()). This is well-typed, because unwrap (!rbad) has the type
unit -> bot. Finally, we call unwrap (!rbad) (), which causes an infinite loop. This
program is provably non-terminating (by checking that all unwraps succeed), because
the return type of this program is the empty type bot.

Let us connect the paradox to this variant of Landin’s knot Code 3.1. Roughly speak-
ing, the shared invariant connective − corresponds to the shared mutable reference
type ref, the fancy update modality |⇛• corresponds to the closure type ->, and the
contradiction ⊥ corresponds to the empty type bot. The first s 𝛾 and second disjuncts
□ |⇛•⊥ of the bad proposition bad𝛾 respectively correspond to None and Some f for
a divergent closure f : unit -> bot. At the high level, the contradiction □ |⇛•⊥ is
caused by an infinite loop of logical reasoning, caused by the transitivity of the fancy
update |⇛•.

Proof of the New Paradox With this high-level idea in mind, we can prove this new
paradox.

Proof of Theorem 3.9. First, combining s-new and iinv-alloc′-bad, we can prove the
following for creating the invariant bad𝛾 for the bad proposition bad𝛾 :

⊨ |⇛•
(
∃𝛾 . bad𝛾

)
(3.24)

Assuming the invariant bad𝛾 , a witness of the finished state f 𝛾 causes a contra-
diction under the fancy update:

bad𝛾 ∗ f 𝛾 ⊨ |⇛• ⊥ (3.25)

55

To prove (3.25), we first modify the right-hand side into |⇛• |⇛•⊥ by the transitivity
of the fancy update |⇛•. Then we get access to the content bad𝛾 with the later-free
invariant access rule iinv-acc-nolater-bad, turning the goal into the following:

bad𝛾 ∗ f 𝛾 ⊨ |⇛∅
(
bad𝛾 ∗ |⇛•⊥

)
.

We branch on the disjunction bad𝛾 ≜ s 𝛾 ∨ □ |⇛•⊥. The first disjunct s 𝛾 is immedi-
ately rejected by s-f-⊥, thanks to the finished-state witness f 𝛾 . For the second disjunct
□ |⇛•⊥, we introduce the empty-mask fancy update |⇛∅ and prove the following:

□ |⇛•⊥ ⊨ bad𝛾 ∗ |⇛•⊥ (3.26)

Note that the premise □ |⇛•⊥ is persistent. The first conjunct bad𝛾 is constructed by
choosing its second disjunct. The second conjunct |⇛•⊥ follows by eliminating the
persistence modality □ (□-elim, § 2.1.1).

By the persistence of bad𝛾 and f 𝛾 , we can introduce the persistence modality □
to the conclusion of (3.25) (persist-□-intro, § 2.1.1):

bad𝛾 ∗ f 𝛾 ⊨ □ |⇛•⊥ (3.27)

Then we can prove a contradiction only assuming the invariant bad𝛾 :

bad𝛾 ⊨ |⇛• ⊥ (3.28)

To prove (3.28), again we first modify the right-hand side into |⇛• |⇛•⊥ by the fancy
update’s transitivity. We also modify the left-hand side into bad𝛾 ∗ bad𝛾 by the per-
sistence and get access to the content bad𝛾 with the invariant access rule iinv-acc-
nolater-bad, turning the goal into the following:

bad𝛾 ∗ bad𝛾 ⊨ |⇛∅
(
bad𝛾 ∗ |⇛•⊥

)
.

Again we branch on the disjunction bad𝛾 ≜ s 𝛾 ∨ □ |⇛•⊥. For the second disjunct
□ |⇛•⊥, the proof is finished by (3.26). For the first disjunct s 𝛾 , we first turn this start-
state token into the finished-state witness f 𝛾 by s-|⇛-f with an empty-mask fancy
update |⇛∅. Then out of bad𝛾 and f 𝛾 , we get □ |⇛•⊥ by (3.27), which finishes the
proof.

Finally, we can prove the desired contradiction

⊨ |⇛• ⊥

simply by combining (3.24) and (3.28).

Note that the transitivity of the fancy update |⇛• is the key to this paradox. Iris’s
later-requiring invariant mechanism avoids this paradox because the fancy update un-
der the later modality ⊲ |⇛• is not transitive.

3.4.2 Expressivity

The fact that the data type for syntactic propositions nProp and its semantic interpreta-
tion J K: nProp→ iProp are ‘well-defined’ imposes a limitation onwhat can be expressed
in nProp. At the same time, that limitation naturally avoids the paradoxes of later-free
invariants like Theorem 3.9 we discussed in § 3.4.1. Our general observation is as fol-
lows: the soundness of Nola-style sharing is ensured by the absence of circularity in
the definitions of nProp and J K.

56

General design of nProp From the perspective of Nola’s invariant, the naive later-
free invariant of thoare-iinv-naive (§ 1.4) amounts to setting nProp ≔ iProp andJ K ≔ 𝜆𝑃 . 𝑃 . But unfortunately, setting nProp ≔ iProp indeed causes circularity because
iProp directly depends on nProp.

On the other hand, we can set nProp anything as long as no circularity occurs.
Sometimes nProp can contain quite semantic components. We already saw that any
pure proposition𝜙 ∈ Prop can be added to nProp (3.16). We can go further. For example,
supposewe have a certain basic state State∗, consisting of the heapmemory state Loc fin

⇀
Val etc. Then we can add to nProp any basic SL propositions 𝑃∗ ∈ State∗ → Prop, i.e.,
predicates over the basic state State∗. If the actual global state State for iProp is, say, the
product State∗ × Inv nProp of the basic state and the state for Nola’s invariant, we can
naturally interpret basic SL propositions by J𝑃∗K ≜ 𝜆 (𝑠, _) . 𝑃∗ 𝑠 .

How the Paradox Is Avoided First, let us discuss how the paradox Theorem 3.9 we
showed in § 3.4.2 is avoided by the Nola framework. In order to attain the counterpart
of the bad proposition invariant bad𝛾 in Nola, the data type nProp should contain a
bad proposition bad𝛾 to nProp, which is interpreted Jbad𝛾K ∈ iProp as follows:

Jbad𝛾K =? s 𝛾 ∨ □ |⇛Wiinv J K
• ⊥. (3.29)

We can define • as the universal set InvName. By creating an invariant invN bad𝛾 ∈
iProp, we could prove the contradiction ⊨ |⇛Wiinv J K

• ⊥.
But fortunately, it is impossible to define the semantic interpretation J K: nProp →

iProp so that Jbad𝛾K is interpreted as above (3.29). The right-hand side of (3.29) con-
tains the extended fancy update |⇛Wiinv J K

• , or more specifically Nola’s world satisfaction
Wiinv J K. This depends on the interpretation J K: nProp → iProp over the whole set of
propositions nProp, which includes even the left-hand side itself Jbad𝛾K. Because this
introduces a malignant cyclic definition, the equation (3.29) makes the interpretationJ K ill-defined.
FancyUpdate More specifically, the syntactic data type nProp of propositions cannot
express the extended fancy update modality E |⇛

Wiinv J K
E′ employed for Nola’s invariants.

This is because the modality directly contains Nola’sworld satisfactionWiinv J K, which
depends on the global interpretation J K.9 If the data type nProp should have a fancy
update constructor EfupdE′ P interpreted as

JEfupdE′ PK ≜? E |⇛
Winv J K
E′ JPK, (3.30)

then the interpretation J K would become ill-defined, because the right-hand side de-
pends on J K, which includes the left-hand side JEfupdE′ PK.
Hoare Triples For the same reason, nProp cannot express the new Hoare triples{
𝑃
}
𝑒
{
𝛹
}Winv J K
E ,

[
𝑃
]
𝑒
[
𝛹
]Winv J K
E with Nola’s world satisfactionWiinv J K, which in-

ternally use the extended fancy update E |⇛
Wiinv J K
E′ . The constructors phoareE P 𝑒 Ψ

and thoareE P 𝑒 Ψ ∈ nProp intepreted as follows would make the interpretation J K
ill-defined:

JphoareE P 𝑒 Ψ K ≜?
{ JPK } 𝑒 {𝜆𝑣 . JΨ 𝑣K }Winv J K

E

9 Note that nProp can express the basic update modality ¤|⇛ or the original fancy update E |⇛E′ for Iris’s
invariants without any difficulty.

57

JthoareE P 𝑒 Ψ K ≜?
[JPK] 𝑒 [𝜆𝑣 . JΨ 𝑣K]Winv J K

E .

Notably, the paradox of Landin’s knot (1.17) (§ 1.4) is avoided because the total Hoare
triple cannot be directly expressed in nProp.

Impredicative Quantifiers Also, the syntactic data type nProp of propositions can-
not generally express impredicative quantifiers such as E

X ∈ nProp. PX . For example,
suppose that nProp includes a formula E

X . X -> ⊥ interpreted as follows:

J E

X . X -> ⊥K ≜? ∃X ∈ nProp. JXK→⊥. (3.31)

Unfortunately, this breaks the well-definedness of J K, because the right-hand side con-
tains the interpretation JXK of any syntactic propositions X ∈ nPropwhatsoever, which
includes the left-hand side J E

X .¬XK.
We believe that this limitation is fundamental for avoiding paradoxes. A later-free

version of named propositions, another mechanism for storing a proposition (Dodds
et al., 2016), causes a paradox leading to ⊨ ¤|⇛⊥, if the named proposition connec-
tive allows an impredicative quantifier to be stored (Jung et al., 2018b, § 3.3). Also,
Nola’s world satisfactionWinv J K is constructed by an impredicative quantifier over I :
InvName

fin
⇀ nProp (see (3.7), § 3.2.3 for details):

Winv J K ≜ ∃I . · · · ∗ ∗
𝜄∈dom I

((JI 𝜄 K ∗ · · ·) ∨ · · ·)
Generally allowing impredicative quantifiers in nProp would allow constructing the
world satisfaction Winv J K in nProp, which would lead to our paradox Theorem 3.9
(§ 3.4.1).

Still, an impredicative quantifier is problematic onlywhen the body of the quantifier
refers to the semantics of the proposition bound by the quantifier. If the body refers only
to the syntactic data of the bounded proposition, then the quantifier can be safely added
to nProp. For example, it is safe to have a constructor E

X . invN X ∈ nProp interpreted
as follows: J E

X . invN XK ≜ ∃X ∈ nProp. invN X .

This is because the invariant connective invN X refers only to the syntactic data of
the shared proposition X . In other words, the invariant connective invN guards the
occurrence of X . Recall the infinite list assertion ilistN Φ ℓ in § 3.3.3, where the guard
by invN made the equation for the interpretation JilistNK (3.18) not recursive with
respect to J K.
Later Modality Recovers All Actually, we can recover the fancy update modality
and impredicative quantifiers in general under the guard of the later modality ⊲.

For example, we can safely add to nProp a logical connective |> EfupdE′ P , the com-
posite of the later modality |> and the fancy update modality EfupdE′ P , interpreted
as follows: J|> EfupdE′ PK ≜ ⊲ E |⇛

Winv J K
E′ JPK (3.32)

The equation (3.32) is a valid definition, unlike the interpretation of the fancy updateJEfupdE′ PK (3.30). This is because the occurrence of the global interpretation J K in
(3.32) is guarded by the later modality ⊲, which is a contractive mapping (recall Theo-
rem 2.1, § 2.1.2).

Similarly, we can also safely add the constructor |> phoareE P 𝑒 Φ for the partial
Hoare triple under the later modality, interpreted as follows:

J|> phoareE P 𝑒 Ψ K ≜ ⊲
{ JPK } 𝑒 {𝜆𝑣 . JΨ 𝑣K }Winv J K

E

58

This is indeed useful, because the later modality on the partial Hoare triple can be
stripped off during execution (recall step-phoare, § 1.4).

We can safely add the constructor |> thoareE P 𝑒 Φ for the total Hoare triple under
the later modality as well, but it is less useful because we have no chance to strip off
the later modality in verifying total Hoare triples (recall discussions in § 1.4).

We can also support general impredicative quantifiers under the later modality. For
example, we can safely add the constructor |> E

X . X -> ⊥, interpreted as follows:

J|> E

X . X -> ⊥K ≜ ⊲ ∃X ∈ nProp. JXK→⊥.
This is valid unlike (3.31), thanks to the guard of the later modality ⊲ on the reference
to the interpretation JXK.

Nola’s invariant mechanism arguably subsumes Iris’s invariant mechanism in ex-
pressivity, because the data type nProp can effectively express any kind of Iris proposi-
tions ⊲ 𝑃 under the later modality ⊲. While Iris’s invariant mechanism unconditionally
puts the later modality ⊲ to all propositions, Nola’s invariant mechanism calls for the
later modality only on ‘problematic’ propositions, such as the fancy update modality and
impredicative quantifiers, which can lead to paradoxes without the later modality.

AnotherWorkaround: Stratification We can also share propositions like the total
Hoare triple by stratifying the separation logic propositions. Such stratification has
long been known (Ahmed et al., 2002).

For example, we can consider two representations of separation logic propositions,
nProp0 and nProp1, and let nProp1 contain the total Hoare triple thoare0 P 𝑒 Ψ that
supports invariants on nProp0 (but not nProp1). We can enjoy invariants on both nProp0
and nProp1 by adding both Inv nProp0 and Inv nProp1 to the global camera G̃. The
interpretations can be constructed without circularity by constructing J K1 : nProp1 →
iProp after constructing J K0 : nProp0 → iProp:

Jthoare0 P 𝑒 Ψ K1 ≜
[JPK1] 𝑒 [JΨ K1] Winv J K0

This avoids the paradox of Landin’s knot (1.17) (§ 1.4), because the total Hoare triple
thoare0 P 𝑒 Ψ in the higher-order invariant over nProp1 can access only invariants
over nProp0 and not the higher-order invariant itself.

We can naturally consider more levels of stratification to achieve more expressivity.
Nola’s parameterization over nProp and J K allows for such stratification in general. We
revisit this technique later in § 5.2 for semantically modeling and verifying a stratified
type system § 5.1.

59

Chapter 4

Semantic Alteration by Derivability

柔能制剛
The soft can overcome the hard

The Three Strategies

Chapter 4 presents a novel, general technique for semantic alteration of the content
propositions of the logical connectives for propositional sharing (§ 4.1). The key idea
is to parameterize the semantics of propositions J K: nProp→ iProp with an undecided
derivability predicate 𝛿 to be used for semantic alteration (§ 4.2). Unlike a traditional
approach where such a derivability predicate 𝛿 should be syntactically constructed up-
front, we have found a general construction of the well-behaved derivability predicate
that one can obtain for free once one builds the parameterized semantics of judgments
(§ 4.3). Going further, we also present an advanced model of the invariant that allows
even the merger of invariants (§ 4.4).

This chapter focuses on the invariant mechanism presented in § 3.2.2. The applica-
tion of the derivability technique to the borrow machinery is later discussed in § 6.4.

4.1 Goal: Semantic Alteration

The direct model of the invariant connective invN P considered so far ((3.17), § 3.3.3)

JinvN PK ≜ invN P (4.1)

is not satisfactory because the inner formula P cannot be modified in a semantic way.

Examples For a simple example, we expect the following equality to hold

JinvN (P * Q)K = JinvN (Q * P)K (4.2)

because the separating conjunction is commutative. But this does not hold for the naive
model (4.1) because the ghost state of Nola’s invariant uses ‘syntactic’ agreement over
nProp, agnostic of its semantics J K.

We also expect the following entailment to hold

JinvN (P * Q)K ⊨ JinvN PK (4.3)

because P is a ‘part’ of the situation described by P * Q .
We also want semantic alteration to work for nested connectives. For example, we

expect the following equality to hold

JinvN′ invN (P * Q)K = JinvN′ invN (Q * P)K (4.4)

by applying (4.2) to the inner invariant.

60

Naive Model How can we support such semantic alteration of the content of an in-
variant? Naively, we want to define the interpretation of the invariant invN P as fol-
lows:

JinvN PK ≜? ∃ Q s.t. □
(JQK −∗ (JPK ∗ (JPK −∗ JQK))) . invN Q (4.5)

We existentially quantify the actual syntactic proposition Q ∈ nProp used for the inner
syntactic agreement of the invariant. Also, we assert the relationship between the ex-
posed proposition P ∈ nProp and the inner proposition Q . To express the fact that P is
a ‘part’ of Q (recall (4.3)), we use a semantic conversion

JQK −∗ (JPK ∗ (JPK −∗ JQK)), (4.6)

which splits JQK into JPK and the rest that turns back into JQK when combined withJPK. We put the semantic conversion under the persitence modality □ because we want
the proposition JinvN PK to be persistent:

JinvN PK is persistent

Note that we consider the separating implication (4.6) under the persistence modality
□ instead of the entailment

JQK ⊨ JPK ∗ (JPK −∗ JQK)
to allow the semantic conversion to dependent on resources.1

If the naive model of (4.5) should work, it would support the expected properties
such as (4.2), (4.3) and (4.4).

But unfortunately, this model does not work as a definition of the interpretation
function J K. This is because it has an ill-formed recursive call JQK, where Q is not
necessarily structurally smaller than invN P . We want to find a good substitute for the
semantic conversion (4.6) that can be used to define the interpretation of the invariantJinvN PK without causing an invalid recursive call.

4.2 First Step: Parameterization by Derivability

Parameterization by Derivability As the first step, we parameterize our proposi-
tion interpretation J K: nProp → iProp by a derivability predicate 𝛿 : Judg → iProp that
expresses the semantic conversion, where the syntactic data type for judgments Judg
here has the following form:

Judg 3 J F P ∝Q (4.7)

A judgment P ∝Q means that the proposition Q ∈ nProp is semantically a part of the
proposition P ∈ nProp.

The new proposition semantics J K𝛿 : nProp→ iProp parameterized with the deriv-
ability predicate 𝛿 is defined like the following:

Jℓ |-> 𝑣K𝛿 ≜ ℓ ↦→ 𝑣 JP * QK𝛿 ≜ JPK𝛿 ∗ JQK𝛿 .
1 For an interesting example of the power of resource-dependent semantic conversion, we can consider
the following semantic alteration on the borrower connective bor later introduced in § 6.3.2: α ⊑ β ∗ β ⊑
α ∗ JinvN (borα P)K ⊨ JinvN (borβ P)K. This modifies the lifetime of the borrower from α to β under
the mutual lifetime inclusion ⊑ between α and β.

Also, resource-dependent semantic conversion is the key to the advanced model of the invariant con-
nective (4.21) we present later in § 4.4.

61

JinvN PK𝛿 ≜ ∃ Q s.t. □ 𝛿 (Q ∝P). invN Q (4.8)

A basic token like the points-to token ℓ |-> 𝑣 simply ignores 𝛿 . A basic connective
like the separating conjunction * is defined by inheriting 𝛿 to its subformulas. The
derivability predicate 𝛿 is used only by the interpretation of the invariant connectiveJinvN PK𝛿 . Unlike (4.5), this new model of the invariant (4.8) uses 𝛿 (Q ∝P) for the
semantic conversion, which does not cause an invalid recursive call of J K. As a result,
this gives a totally valid definition of the proposition interpretation J K.

After defining the parameterized proposition interpretation J K𝛿 : nProp → iProp,
we can define the judgment interpretation J K+

𝛿
: Judg → iProp, again parameterized over

the derivability predicate 𝛿 : nProp→ iProp, as follows:2

JP ∝QK+𝛿 ≜ JPK𝛿 −∗ (JQK𝛿 ∗ (JQK𝛿 −∗ JPK𝛿)) . (4.9)

Sound Derivability We say a derivability predicate 𝛿 is sound if it satisfies, for any
P , Q ∈ nProp,

𝛿 (Q ∝P) ⊨ JQ ∝PK+𝛿 .
Suppose we have a derivability predicate 𝛿 : nProp→ iProp that is sound. Then the

enriched invariant JinvN PK𝛿 satisfies

JinvN PK𝛿 ⊨ ∃ Q s.t. □
(JQK𝛿 −∗ (JPK𝛿 ∗ (JPK𝛿 −∗ JQK𝛿))) . invN Q .

Combining this and inv-acc, we can derive the following proof rule for accessing an
enriched invariant, setting J K ≜ J Kder:

JPK ∗ 𝑄 ⊨ |⇛Winv J K
E

(JPK ∗ 𝑅)
JinvN PK ∗ 𝑄 ⊨ |⇛Winv J K

N+E 𝑅
inv-acc

Or more generally, we have the following rule like inv-acc-ch:

JinvN PK ⊨ N |⇛Winv J K
∅

(JPK ∗ (JPK −∗ ∅|⇛
Winv J K
N >

))
inv-acc-ch

Generalization We generalize this situation. We build a data type for judgments
Judg. A derivability predicate 𝛿 is any Iris predicate 𝛿 : Judg → iProp. We can build the
parameterized judgment interpretation J K+− : (Judg → iProp) → (Judg → iProp), the
interpretation of judgments Judg parameterized over the derivability predicate Judg →
iProp. We say a derivability predicate𝛿 is sound if it satisfies, for any judgment J ∈ Judg,

𝛿 J ⊨ JJK+𝛿 .
Challenge: Build a Useful Sound Derivability The next challenge is to build a
sound derivability predicate der: nProp→ iProp that is ‘useful’.

The idealistic situation would be that der is exactly the fixed point of the parame-
terized judgment interpretation J K+− : (Judg → iProp) → (Judg → iProp):

der J ≜ JJK+der. (4.10)

Unfortunately, this is not possible in general because the occurrence of der in J K+der is
neither monotone nor guarded. If der were to satisfy (4.10), the proposition interpre-
tation J Kder would satisfy the desirable equation (4.5). So we want a derivability pred-
icate der that, roughly speaking, under-approximates the expected semantics 𝜆J . JJK+

𝛿
as tightly as possible.
2 For a more radical approach, we can also set Judg to nProp itself, setting J K+

𝛿
≜ J K𝛿 , and use 𝛿

(
𝑃 −∗(

𝑄 ∗ (𝑄 −∗ 𝑃)
))

instead of 𝛿 (𝑃 ∝𝑄) in (4.8).

62

In a traditional approach, a ‘useful’ derivability predicate der should be syntacti-
cally constructed, considering all the wanted proof rules upfront. But that is not quite
acceptable. We want to get a useful derivability predicate der for free once we define
the judgment semantics J K+− : (Judg → iProp) → (Judg → iProp). How can we attain
this goal?

First Attempt: Universal Quantification As the first attempt, we can define the
derivability predicate der as follows:

der J ≜ ∀𝛿. JJK+𝛿 . (4.11)

Because we do not know 𝛿 in advance when we define der, we universally quantify a
derivability predicate 𝛿 for the semantics JJK+

𝛿
. By definition, this derivability predicate

der is always sound.
The der defined as (4.11) already behaves quite nicely. It supports semantic alter-

ation like (4.2) and (4.3) for J Kder, namely:

JinvN (P * Q)Kder = JinvN (Q * P)Kder JinvN (P * Q)Kder ⊨ JinvN PKder.
This is because der thus defined satisfies the transitivity

der (P ∝Q) ∗ der (Q ∝R) ⊨ der (P ∝R).

and because semantic judgments like the following hold for any 𝛿 :

⊨ J(P * Q) ∝(Q * P)K+𝛿 ⊨ J(P * Q) ∝PK+𝛿 (4.12)

The remaining problem is that we cannot use this definition of der to prove semantic
alteration on nested connective like (4.4). This is because alteration on invariants likeJinvN (P * Q)K𝛿 = JinvN (Q * P)K𝛿 does not hold for any derivability predicates 𝛿 :
Judg → iProp whatsoever. We should update the definition of der (4.11) so that we
appropriately restrict the range of the universally quantified derivability predicate 𝛿 .

4.3 Our Key Achievement: General Derivability Construction

General Derivability Construction Remarkably, we have found a novel general
way to construct a well-behaved derivability predicate der, regardless of the choice of
the judgment data type Judg and its interpretation J K+− . Our construction is as follows.

Definition 4.1 (General Derivability Construction). Given the judgment data type
Judg and its parameterized interpretation J K+− : (Judg → iProp) → (Judg → iProp),
we define the evolution relation between derivability predicates⇝: (Judg → iProp) ×
(Judg → iProp) → iProp, the set of good derivability predicates Deriv ⊆ (Judg →
iProp), and the best derivability predicate der: Judg → iProp as follows:

𝛿 ⇝ 𝛿 ′ ≜ □
(
∀J . 𝛿 J→ (JJK+𝛿 ′ ∧ 𝛿 ′ J)

)
(4.13)

𝛿 ∈ Deriv ≜𝜇 ∀J .
(
∀ 𝛿 ′ ∈ Deriv s.t. 𝛿 ⇝ 𝛿 ′. JJK+𝛿 ′) ⊨ 𝛿 J (4.14)

der J ≜𝜇 ∀ 𝛿 ∈ Deriv s.t. der⇝ 𝛿. JJK+𝛿 (4.15)

The domain of universal quantification in der (4.15) is restricted to the set of good
derivability predicates Deriv , improving on the previous definition (4.11). Again, the
idealistic situation would be that Deriv is the singleton set {der}, but generally we
cannot do so before we define der. Instead, we define Deriv as a set of derivability
predicates that behave pretty like der.

63

In the definition of der (4.15), the universally quantified derivability predicate 𝛿 is
associated with der using an evolution relation der ⇝ 𝛿 . The definition of Deriv (4.14)
also follows this pattern. The evolution relation 𝛿 ⇝ 𝛿 ′ (4.13) persistently asserts that
the former 𝛿 can be transformed into the judgment semantics by the latter 𝛿 ′, JJK+

𝛿 ′ ,
and also into the latter 𝛿 ′ itself.

A key trick is to use the least fixed point ≜𝜇 for defining both Deriv (4.14) and der
(4.15), carefully designing their definitions so that their self-reference is monotone, i.e.,
in a positive position. In the definition of der (4.15), it is crucial that the ‘association’
der ⇝ 𝛿 between the universal quantified derivability predicate 𝛿 and der is antitone
in der. Also, the definition of Deriv (4.14) should use the entailment ⊨ instead of the
equality = for the monotonicity of the self-reference to Deriv .

General Properties The set of good derivability predicates Deriv is designed so that
it contains the best derivability predicate der:

Lemma 4.2. der ∈ Deriv.

Proof. Clear by definition.

And importantly, we have designed the best derivability predicate der so that it is
sound, extending the idea of (4.11). The proof is a bit tricky, using strong induction.

Theorem 4.3 (Soundness of der). The best derivability predicate der is sound, that is,
der J ⊨ JJK+der holds for any J ∈ Judg.

Proof. By strong induction on the least fixed point structure ≜𝜇 of der (4.15), the goal
der J ⊨ JJK+der reduces to the following:(

∀ 𝛿 ∈ Deriv .
(
(𝜆J . JJK+der ∧ der J) ⇝ 𝛿

)
−∗ JJK+𝛿) ⊨ JJK+der.

First, we instantiate 𝛿 in the right-hand side with der, using der ∈ Deriv Lemma 4.2.
Then it suffices to supply the premise (𝜆J . JJK+der∧ der J) of the separating implication,
which holds by definition.

We have the following useful proof rules for proving a derivability 𝛿 J for a good
derivability predicate 𝛿 ∈ Deriv .

Lemma 4.4 (Utilities for Deriv). We have the following rules:(
∀ 𝛿 ∈ Deriv. JJK+𝛿) ⊨ ∀ 𝛿 ∈ Deriv. 𝛿 J deriv-intro(

∀ 𝛿 ∈ Deriv. JJ′K+𝛿 −∗ JJK+𝛿) ⊨ ∀ 𝛿 ∈ Deriv. 𝛿 J′ −∗ 𝛿 J deriv-map(
∀ 𝛿 ∈ Deriv. JJ′K+𝛿 ∗ JJ′′K+𝛿 −∗ JJK+𝛿) ⊨ ∀ 𝛿 ∈ Deriv. 𝛿 J′ ∗ 𝛿 J′′ −∗ 𝛿 J deriv-map2

Proof. deriv-intro holds by the definition of Deriv .
To prove deriv-map, we first apply the universally quantified entailment of Deriv

to 𝛿 J on the right-hand side, introducing 𝛿 ′ ∈ Deriv . We also instantiate the universal
quantifier of the left-hand side with 𝛿 ′. Now the goal is reduced to the following:(JJ ′K+𝛿 ′ −∗ JJK+𝛿 ′) ∗ (𝛿 ⇝ 𝛿 ′) ⊨ 𝛿 J ′ −∗ JJK+𝛿 ′ .
To prove the right-hand side, we use the premise 𝛿 ⇝ 𝛿 ′ to turn 𝛿 J into JJK+

𝛿 ′ and then
apply the first conjunct to JJK+

𝛿 ′ to get the goal JJ ′K+
𝛿 ′ .

The proof of deriv-map2 is similar to that of deriv-map.

64

Examples For the judgment data type Judg of (4.7) and the judgment semantics J K+−
of (4.9) we have specifically considered, we can derive the reflexivity (4.16) and tran-
sitivity (4.17) of any derivability predicate 𝛿 ∈ Deriv , by applying deriv-intro and
deriv-map2 respectively:

⊨ 𝛿 (P ∝P) (4.16)

𝛿 (P ∝Q) ∗ 𝛿 (Q ∝R) ⊨ 𝛿 (P ∝R) (4.17)

Thanks to the reflexivity (4.16), we can turn a direct invariant token invN P into the
enriched invariant JinvN PK𝛿 for any 𝛿 ∈ Deriv :

invN P ⊨ JinvN PK𝛿
Combining this with inv-alloc, we get the following rule for any 𝛿 ∈ Deriv :

JPK𝛿 ⊨ |⇛Winv J K𝛿
∅ JinvN PK𝛿 inv-alloc

Thanks to the transitivity (4.17), we can alter the content proposition of the enriched
invariant according to a derivability 𝛿 (P ∝Q) for any 𝛿 ∈ Deriv :

□ 𝛿 (P ∝Q) ∗ JinvN PK𝛿 ⊨ JinvN QK𝛿 inv-alter

Applying deriv-intro to the derivability 𝛿 (P ∝Q) in the premise of inv-alter, we
get the following strategy for proving a semantic alteration of an invariant:

□
(
∀𝛿 ′ ∈ Deriv . JJK+𝛿 ′) ∗ JinvN PK𝛿 ⊨ JinvN QK𝛿 (4.18)

Using (4.18), we can prove semantic alteration like (4.2) and (4.3) for the semantics J K𝛿
on any 𝛿 ∈ Deriv , thanks to the semantic judgments (4.12):

JinvN (P * Q)K𝛿 = JinvN (Q * P)K𝛿 (4.19)

JinvN (P * Q)K𝛿 ⊨ JinvN PK𝛿
Now, unlike the simpler model of (4.11), we have also achieved the power to prove
semantic alteration for nested invariants like (4.4) on any 𝛿 ∈ Deriv :

JinvN′ invN (P * Q)K𝛿 = JinvN′ invN (Q * P)K𝛿 (4.20)

To prove (4.20), we apply (4.18) and derive from (4.19) the following semantic judgment
for any 𝛿 ∈ Deriv :

⊨ JinvN (P * Q) ∝invN (Q * P)K+𝛿
Here, the key is to keep the universal quantification over good derivability predicates
𝛿 ∈ Deriv in (4.19).

Inductive Semantic Alteration Our approach to semantic alteration works also for
recursive propositions. Recall the infinite singly linked list proposition ilistN Φ ℓ
introduced in § 3.3.3. First, we update the interpretation of this proposition as follows,
modifying (3.18):

JilistN Φ ℓK𝛿 ≜ JinvN (Φ ℓ)K𝛿 ∗ JinvN (E

ℓ ′. (ℓ + 1) |-> ℓ ′ * ilistN Φ ℓ ′
)K𝛿 .

We can semantically alter the content predicate of this proposition according to a deriv-
ability for any 𝛿 ∈ Deriv , just like inv-alter:

□
(
∀ℓ . 𝛿 (Φ ℓ ∝Ψ ℓ) ∗ 𝛿 (Ψ ℓ ∝Φ ℓ)

)
∗ JilistN Φ ℓK𝛿 ⊨ JilistN Ψ ℓK𝛿
65

ilist-alter

The proof goes by induction over the least fixed point structure≜𝜇 of the set Deriv (4.14)
(Definition 4.1).

To facilitate such induction, we can use the technique of parameterized induction,
the dual of better-known parameterized coinduction (Winskel, 1989; Moss, 2001; Hur
et al., 2013).

Definition 4.5 (Parameterized Deriv). Given the judgment data type Judg and its pa-
rameterized interpretation J K+− : (Judg → iProp) → (Judg → iProp), we define the
set of good derivability predicates Deriv𝜙 ⊆ (Judg → iProp) parameterized over the
induction hypothesis 𝜙 : (Judg → iProp) → Prop as follows:

𝛿 ∈ Deriv𝜙 ≜𝜇 ∀J .
(
∀ 𝛿 ′ ∈ Deriv𝜙 s.t. 𝜙 𝛿 ′ and 𝛿 ⇝ 𝛿 ′. JJK+𝛿 ′) ⊨ 𝛿 J .

Now Deriv𝜙 is parameterized over the induction hypothesis 𝜙 . The original Deriv
corresponds to Deriv𝜆_.>. The set Deriv𝜙 is monotone over the induction hypothe-
sis parameter 𝜙 (deriv∗-mono). Also, we can accumulate the induction goal into the
induction hypothesis parameter (deriv∗-acc).

Lemma 4.6 (Modify𝜙 ofDeriv𝜙). For any pure predicates𝜙,𝜓 : (Judg→ iProp) → Prop,
the following rules hold:

∀𝛿. 𝜙 𝛿→ 𝜓 𝛿

Deriv𝜙 ⊆ Deriv𝜓
deriv∗-mono

∀ 𝛿 ∈ Deriv𝜙∧𝜓 . 𝜙 𝛿

∀ 𝛿 ∈ Deriv𝜓 . 𝜙 𝛿
deriv∗-acc

Here we write 𝜙 ∧𝜓 for the pointwise conjunction 𝜆𝛿. 𝜙 𝛿 ∧𝜓 𝛿 .

The utility proof rules of Lemma 4.4 are modified as follows.

Lemma 4.7 (Utilities for Deriv𝜙). For any 𝜙 : (Judg → iProp) → Prop, we have the
following rules:(

∀ 𝛿 ∈ Deriv𝜙 s.t. 𝜙 𝛿. JJK+𝛿) ⊨ ∀ 𝛿 ∈ Deriv𝜙 . 𝛿 J deriv∗-intro(
∀ 𝛿 ∈ Deriv𝜙 s.t. 𝜙 𝛿. JJ′K+𝛿 −∗ JJK+𝛿) ⊨ ∀ 𝛿 ∈ Deriv𝜙 . 𝛿 J′ −∗ 𝛿 J deriv∗-map(

∀ 𝛿 ∈ Deriv𝜙 s.t. 𝜙 𝛿. JJ′K+𝛿 ∗ JJ′′K+𝛿 −∗ JJK+𝛿) ⊨
∀ 𝛿 ∈ Deriv𝜙 . 𝛿 J′ ∗ 𝛿 J′′ −∗ 𝛿 J

deriv∗-map2

4.4 Advanced Model

Finally, as an advanced topic, we briefly discuss a further improvement on the model
of the invariant connective. This advanced model admits the following merger of in-
variants for any 𝛿 ∈ Deriv :

N +N ′ ⊆ N ′′JinvN PK𝛿 ∗ JinvN′ QK𝛿 ⊨ JinvN′′ (P * Q)K𝛿 inv-merge

Here, N and N ′ are disjoint namespaces and N ′′ is a namespace that includes both
namespaces.

66

Model For that, we update the judgment data type Judg into the following:

Judg 3 J F ∝N P

And define the interpretation of the invariant connective invN P as follows:

JinvN PK𝛿 ≜ □ 𝛿 (∝N P) (4.21)

Notably, the invariant token invN P does not appear at all in this definition.
Finally, we define the judgment interpretation J K+

𝛿
as follows:

J ∝N PK+𝛿 ≜ N |⇛
Winv J K𝛿
∅

(JPK𝛿 ∗ (JPK𝛿 −∗ ∅|⇛
Winv J K𝛿
N >

))
(4.22)

This model (4.22) is quite tricky, using mask-changing fancy updates in the style of
inv-acc-ch. We get the content JPK𝛿 by consuming the namespace N and recover
the namespace N by restoring JPK𝛿 . This advanced model (4.22) is very close to the
accessor-style model of the invariant used in the latest versions of Iris (Iris Team, 2023a).

This enriched model is designed so that the invariant access rules inv-acc and inv-
acc-ch hold.

The allocation rule inv-alloc holds for this enriched model of the invariant, be-
cause the following holds for any 𝛿 by inv-acc-ch:

invN P ⊨ J ∝N PK+𝛿
Here, we benefit a lot from the fact that the semantic conversion □ 𝛿 (∝N P) of the
invariant connective (4.21) is resource-dependent.

The merger rule inv-mergewe showed above follows from deriv-map2, combining
two accessors of the semantic judgments of the invariants.

How the Paradox Is Avoided As discussed in § 3.4.2, we cannot directly store the
fancy update |⇛ inside an invariant, because that leads to a contradiction by the paradox
Theorem 3.9 presented in § 3.4.1. But the advanced invariant model considered above
(4.21) seems to contain fancy updates through the judgment ∝N (4.22).3 This does not
lead to a contradiction, thanks to the indirection by the derivability predicate.

To see this, let us consider a syntactic proposition bad
𝛾
∗ ∈ nProp and a judgment

falsy ∈ Judg interpreted as follows, for a construction analogous to the paradox The-
orem 3.9:

Jbad𝛾∗K𝛿 ≜ s 𝛾 ∨ □ 𝛿 falsy

JfalsyK+𝛿 ≜ |⇛Winv J K𝛿
• ⊥

The proposition s 𝛾 represents the start state, just like Theorem 3.9. Here, we write •
for InvName. The judgment falsy represents the contradiction under the fancy update.
From the parameterized judgment semantics J K+, we get the best derivability predicate
der. We can create a Nola invariant inv• bad𝛾∗ just like (3.24) in the proof of Theorem 3.9:

⊨ |⇛Winv J Kder
•

(
∃𝛾 . inv• bad𝛾∗

)
3 For a more radical approach, extending the idea of Footnote 2, we can even set Judg to syntactic propo-
sitions nProp extended with the fancy update EfupdE′ P , Hoare triples, etc. (recall § 3.4.2), because the
judgment interpretation J K+

𝛿
: Judg → iProp can depend on the global proposition interpretation J K𝛿 :

nProp→ iProp and thus express Nola’s world satisfactions.

67

Accessing this invariant under the finished state f 𝛾 leads to a contradiction after
an extended fancy update |⇛Winv J Kder , like (3.25):

inv• bad𝛾∗ ∗ f 𝛾 ⊨ |⇛Winv J Kder
• ⊥ (4.23)

To cause the contradiction
⊨ |⇛Winv J Kder

• ⊥ (4.24)

like our paradox Theorem 3.9, the following entailment should hold, like (3.28):

inv• bad𝛾∗ ⊨ |⇛
Winv J Kder
• ⊥

To prove this, we would open the invariant inv• bad𝛾∗ to get the content Jbad𝛾∗Kder =
s 𝛾 ∨□ der falsy. The proof is indeed done for the casewhere the content is the second
disjunct, because der falsy implies JfalsyK+der = |⇛Winv J K𝛿

• ⊥ by the soundness of der
(Theorem 4.3). For the case where the content is the first disjunct s 𝛾 , the start state,
we would turn it into the finished state f 𝛾 to get a contradiction. But the entailment
(4.23) is insufficient. We need to close the invariant by making the second disjunct, and
for that we need to prove the following entailment stronger than (4.23):

inv• bad𝛾∗ ∗ f 𝛾 ⊨ der falsy (4.25)

Fortunately, the entailment (4.25) does not hold, thanks to the under-approximation by
the derivability predicate der. In this way, the contradiction (4.24) is avoided in our
situation, unlike the paradox Theorem 3.9.

68

Chapter 5

Case Study: Strong Normalization under a
Stratified Type System

Well-typed programs cannot “go wrong”

Robin Milner, A Theory of Type Polymorphism in Programming

This chapter presents a case study of our framework, verifying strong normalization
(i.e., termination) of functional programs under a stratified type system that supports
higher-order references. Section 5.1 presents our target type system. Section 5.2 ver-
ifies the strong normalization guarantee of this type system by constructing a logical
relation using Nola’s later-free invariants.

5.1 Our Target Type System

It is well known that unrestricted higher-order shared mutable references cause non-
termination by Landin’s knot Code 1.4 (§ 1.4). To ensure termination, we design a type
system that supports higher-order references but systematically avoids situations like
Landin’s knot. Our type system stratifies the set of types, annotating types with levels
𝑖 ∈ N.

Types Our types have the following syntax:

Typ𝑖 3 T𝑖 , U𝑖 , V𝑖 F nat | bool | unit | T𝑖 × U𝑖 | T𝑖 ∧ U𝑖
| ref𝑜𝑘 T𝑘 | T𝑖 →𝑗 U𝑖 (𝑗 ≤ 𝑖)

| rec X𝑗 . T𝑗 (𝑗 ≤ 𝑖) | A

X𝑘 . T𝑖 |

E

X𝑘 . T𝑖
| X𝑗 (either 𝑗 = 𝑖 and guarded or 𝑗 < 𝑖)

The data type Typ𝑖 for syntactic types is indexed by the level 𝑖 ∈ N. We can always
convert a type T𝑖 into a type T𝑗 of a higher level 𝑗 ≥ 𝑖 . We omit level annotations when
they are not relevant.

As usual, our type system has the value types nat, bool, unit for the natural num-
bers, booleans and unit value as well as pair types T𝑖×U𝑖 . Our type system also supports
intersection types T𝑖 ∧ U𝑖 .

A key feature of our type system is the shared mutable reference type ref𝑜𝑘 T𝑘 . No-
tably, its body type T𝑘 can have any level 𝑘 ∈ N, regardless of the level 𝑖 of the reference
type. The subscript 𝑘 in ref𝑜𝑘 clarifies the level of the body type T𝑘 . The superscript
number 𝑜 ∈ Z is the offset of the location of the reference’s body from the reference’s
location value.

Another key feature of our type system is the function type (a.k.a. closure type)
T𝑖 →𝑗 U𝑖 ∈ Typ𝑖 . The arrow →𝑗 of the function type is annotated with the level 𝑗

69

for executing the function, which should be no higher than the level 𝑖 of the function
type (i.e., 𝑗 ≤ 𝑖). This level 𝑗 means that the references accessed during the function
execution is limited to those ref𝑜𝑘 V whose body type level 𝑘 is lower than 𝑗 (i.e., 𝑘 < 𝑗).
Also, the function type ensures that the function execution always terminates for any
argument value.

Our type system also supports recursive types rec X𝑗 . T𝑗 , universal types

A

X𝑘 . T𝑖 ,
and existential types

E

X𝑘 . T𝑖 . We write X𝑖 for a type variable of level 𝑖 . Any occurrence
of a type variable X𝑗 in a type Typ𝑖 of the level 𝑖 should be bound by a variable binder
(of a recursive, universal, or existential type) and also satisfy either of the following
constraints:

Guarded the type variable’s level 𝑗 equals the surrounding level 𝑖 (i.e., 𝑗 = 𝑖), and
the occurrence of the type variable is guarded by the reference type constructor
ref𝑜 ; or

Lower-level the type variable’s level 𝑗 is strictly lower than the surrounding level 𝑖
(i.e., 𝑗 < 𝑖).

For example, the type list𝑖 T𝑖 for the shared mutable infinite singly linked list of the
element type T𝑖 , corresponding to the separation logic predicates ilistN 𝛷 / ilistN Φ ℓ
in the verification example of § 3.3, can be expressed in our type system as follows:

list𝑖 T𝑖 ≜ rec X𝑖 . ref0𝑖 T𝑖 ∧ ref1𝑖 X𝑖 (5.1)

It is defined as the recursive type rec, whose body is the intersection ∧ of the reference
to the head ref0𝑖 T𝑖 and the reference to the tail ref1𝑖 X𝑖 , where the type variable X𝑖
recursively refers to the list type list𝑖 T𝑖 itself. Here, the recursive occurrence of the
variable X𝑖 is valid, because it is guarded by the reference type constructor ref1.

Subtyping Our type system has the subtyping judgment T𝑖 ≤ U𝑗 , saying that any
object of the type T𝑖 can always be retyped as U𝑗 . Notably, the levels of the two types
T𝑖 , U𝑗 can be different.

Subtyping is reflexive and transitive:

T ≤ T ≤-refl T ≤ U U ≤ V
T ≤ V

≤-trans

The pair type and intersection types satisfy the standard subtyping rules:

T ≤ T ′ U ≤ U ′

T × U ≤ T ′ × U ′
≤-× V ≤ T V ≤ U

V ≤ T ∧ U
≤-∧-intro

T ∧ U ≤ T ≤-∧-eliml T ∧ U ≤ U ≤-∧-elimr

The reference type satisfies the following subtyping rule:

T ≤ U U ≤ T 𝑖 ≤ 𝑗

ref𝑜𝑖 T ≤ ref𝑜𝑗 U
≤-ref

This rule says that, if the types T and U are a subtype of each other and the level 𝑖 is
no higher than the level 𝑗 , then a reference of the body type T and body level 𝑖 can be
retyped as a reference of the body type U and body level 𝑗 , keeping the offset 𝑜 .1

1 We also allow using the subtyping rule for the reference type ≤-ref coinductively. This means that we
can assume the final proof goal to prove the premises 𝑇 ≤ 𝑈 ,𝑈 ≤ 𝑇 of this rule.

We can use such coinductive reasoning for subtyping on recursive types whose self-reference is guarded
by the reference type. For example, we can prove list𝑖 T ≤ list𝑗 U under the premises T ≤ U , U ≤ T
and 𝑖 ≤ 𝑗 for the infinite singly linked list type list𝑖 T (5.1).

70

The function type satisfies the following subtyping rule:

T ′ ≤ T U ≤ U ′ 𝑖 ≤ 𝑗

T →𝑖 U ≤ T ′ →𝑗 U ′
≤-→

Note that the level of function execution can be relaxed (i.e., get higher).
We also have the following standard subtyping rules for recursive types, universal

types, and existential types:

rec X𝑗 . T𝑗 ≤ T𝑗

[
rec X𝑗 . T𝑗 / X𝑗

]
≤-rec-unfold

T𝑗

[
rec X𝑗 . T𝑗 / X𝑗

]
≤ rec X𝑗 . T𝑗 ≤-rec-fold

∀V𝑘 .
(
U ≤ T𝑖 [V𝑘/X𝑘]

)
U ≤ A

X𝑘 . T𝑖
≤- A-intro A

X𝑘 . T𝑖 ≤ T𝑖 [V𝑘/X𝑘] ≤-

A-elim

T𝑖 [V𝑘/X𝑘] ≤

E

X𝑘 . T𝑖 ≤-

E-intro
∀V𝑘 .

(
T𝑖 [V𝑘/X𝑘] ≤ U

)

E

X𝑘 . T𝑖 ≤ U
≤- E-elim

Typing Judgments Our type system uses the typing judgment of the form 𝛤 ` 𝑒 :𝑖 T .
The type context 𝛤 is a list 𝑥 : U of typed objects. The execution level 𝑖 ∈ N of the typing
judgment means that the references accessed during the execution of the program 𝑒 are
limited to those ref𝑜𝑗 V whose body type level 𝑗 is lower than 𝑖 (i.e., 𝑗 < 𝑖). Notably, our
typing judgment ensures strong normalization, i.e., ensures that the program 𝑒 always
terminates. In summary, our typing judgment 𝛤 ` 𝑒 :𝑖 T says that, under the type context
𝛤 , the program 𝑒 always terminates, without accessing references of levels no lower
than 𝑖 , and produces a value of the type T .

The objects in the type context can freely be reordered, discarded, and duplicated,
i.e., our type system is not substructural:

𝑥 : U ` 𝑒 :𝑖 T {𝑥 : U } ⊆ {𝑥 ′ : U ′}
𝑥 ′ : U ′ ` 𝑒 :𝑖 T

ty-⊆

The typing judgment is monotone over the execution level and can be modified
with respect to subtyping:

𝛤 ` 𝑒 :𝑖 T 𝑖 ≤ 𝑗

𝛤 ` 𝑒 :𝑗 T
ty-lev

𝑥 : U ` 𝑒 :𝑖 T U ′ ≤ U T ≤ T ′

𝑥 : U ′ ` 𝑒 :𝑖 T ′
ty-≤

We have standard rules for constants, pairs, and control flows:

𝑛 ∈ N
` 𝑛 :0 nat

ty-nat
𝑏 ∈ B
` 𝑏 :0 bool

ty-bool ` () :0 unit ty-unit

𝛤 ` 𝑒 :𝑖 T 𝛤 ` 𝑒′ :𝑖 U
𝛤 ` (𝑒, 𝑒′) :𝑖 T × U

ty-pair

𝛤 ` 𝑒 :𝑖 T × U
𝛤 ` 𝑒.1 :𝑖 T

ty-fst
𝛤 ` 𝑒 :𝑖 T × U
𝛤 ` 𝑒.2 :𝑖 U

ty-snd

𝛤 ` 𝑒 :𝑖 T 𝑥 : T , 𝛤 ` 𝑒′ :𝑖 U
𝛤 `

(
let𝑥 ≔ 𝑒 in 𝑒′

)
:𝑖 U

ty-let
𝛤 ` 𝑒 :𝑖 T 𝛤 ` 𝑒′ :𝑖 U

𝛤 ` (𝑒; 𝑒′) :𝑖 U
ty-seq

𝛤 ` 𝑒 :𝑖 bool 𝛤 ` 𝑒𝑡 :𝑖 T 𝛤 ` 𝑒𝑓 :𝑖 T

𝛤 `
(
if 𝑒 then 𝑒𝑡 else 𝑒𝑓

)
:𝑖 T

ty-if

Note that the level 𝑖 of the typing judgment is propagated to subexpressions.

71

We have the following rule for a non-deterministic natural number ndnat:

` ndnat:0 nat ty-ndnat

Our type system also supports concurrency by thread forking fork { 𝑒 }:
𝛤 ` 𝑒 :𝑖 T

𝛤 ` fork { 𝑒 } :𝑖 unit
ty-fork

Our type system provides the following typing rules for allocating, reading from,
and writing to a shared mutable reference ref:

𝛤 ` 𝑒 :𝑗 T 𝑖 < 𝑗

𝛤 ` ref 𝑒 :𝑗 ref0𝑖 T
ty-ref

𝛤 ` 𝑒 :𝑗 ref0𝑖 T 𝑖 < 𝑗

𝛤 ` !𝑒 :𝑗 T
ty-load

𝛤 ` 𝑒 :𝑗 ref0𝑖 T 𝛤 ` 𝑒′ :𝑗 T 𝑖 < 𝑗

𝛤 ` 𝑒←𝑒′ :𝑗 unit
ty-store

Importantly, the level 𝑗 of execution should be more than the body level 𝑖 of the refer-
ence type ref0𝑖 T . Similarly, our type system provides the following rule for the fetch-
and-add primitive faa:

𝛤 ` 𝑒 :𝑗 ref0𝑖 nat 𝛤 ` 𝑒′ :𝑗 nat 𝑖 < 𝑗

𝛤 ` faa 𝑒 𝑒′ :𝑗 nat
ty-faa

We also have the following rule for the reference offset operation:

𝛤 ` 𝑒 :𝑗 ref𝑜𝑖 T

𝛤 ` 𝑒 + 𝑜 ′ :𝑗 ref𝑜−𝑜
′

𝑖 T

The type system has the following standard rules for creating and calling a function:

𝑥 : T , 𝛤 ` 𝑒 :𝑖 U
𝛤 ` fun (𝑥) { 𝑒 } :0 T →𝑖 U

ty-fun
𝛤 ` 𝑒 :𝑖 T →𝑖 U 𝛤 ` 𝑒′ :𝑖 T

𝛤 ` 𝑒 (𝑒′) :𝑖 U
ty-call

Note that a function fun (𝑥) { 𝑒 } (or closure) can capture the type context 𝛤 .
Recall that our typing judgment ensures strong normalization. This means that we

should not support general recursion. Instead, we introduce combinators for recursions
that are guaranteed to terminate. For an interesting example, we introduce the following
higher-order function for function iteration fiter(𝑓) ((𝑛, 𝑥)), which applies the argument
function 𝑓 to the value 𝑥 iteratively 𝑛 times:

fun fiter(𝑓)
{
funself ((𝑛, 𝑥))

{
if 𝑛 ≠ 0 then self

((
𝑛 − 1, 𝑓 (𝑥)

))
else 𝑥

} }
Here, we write funself for a recursive function that binds itself to a variable self . We
can add the following typing rule for this function fiter:

𝛤 ` 𝑒 :𝑗 T →𝑖 T
𝛤 ` fiter 𝑒 :𝑗 nat × T →𝑖 T

ty-fiter

For example, for the shared mutable infinite list type list𝑖 T defined above (5.1),
our type system can derive the following typing judgment, assuming 𝑖 < 𝑗 :

𝑓 : ref0𝑖 T →𝑗 unit `
fiter

(
fun (ℓ) { 𝑓 (ℓ); !(ℓ + 1) }

)
:0 nat × list𝑖 T →𝑗 list𝑖 T .

The function fiter
(
fun (ℓ) { 𝑓 (ℓ); !(ℓ + 1) }

)
applies the function 𝑓 : ref0𝑖 T →𝑗 unit

to the first 𝑛-th elements of the singly linked list starting at ℓ . Notably, the function 𝑓
canmutate the list elements. Recall that our function type and typing judgment ensure
termination. Like in the verification example of § 3.3, this typing judgment verifies that
the iteration always terminates for any function 𝑓 that always terminates.

72

5.2 Verifying Strong Normalization with Nola’s Invariants

Now let us verify the termination guarantee of our type system.

Problem with Iris Invariants A standard technique to verify a type system is to
construct logical relations, i.e., semantic predicates parameterized over types. For local
reasoning about state mutation, it is common to construct such predicates in separation
logic. For example, RustBelt (Jung et al., 2018a) (reviewed in § 6.1.2) verified Rust’s
ownership type system by modeling Rust’s types as separation logic predicates in Iris.
Timany et al. (2023) illustrate how to construct logical relations for a simple type system
with references in Iris.

We would obtain the following by directly applying such logical relation construc-
tion to our type system, ignoring the levels altogether:2

J𝑣 : U ` 𝑒 : TK ≜
[∗ JUK 𝑣] 𝑒 [JTK]N JT ≤ UK ≜ ∀𝑣 . □

(JTK 𝑣 −∗ JUK 𝑣)
JnatK 𝑣 ≜ 𝑣 ∈ N JT × UK 𝑣 ≜ ∃𝑢,𝑢′ s.t. 𝑣 = (𝑢,𝑢′) . JTK𝑢 ∗ JUK𝑢′

Jref𝑜 TK 𝑣 ≜ ∃ℓ ∈ Loc s.t. 𝑣 = ℓ . ∃𝑤. (ℓ + 𝑜) ↦→ 𝑤 ∗ JTK𝑤 N
JT → UK 𝑣 ≜ ∀𝑢.

[JTK𝑢] 𝑣 𝑢 [JUK]N
Here, each type T is interpreted as an Iris predicate over values JTK: Val → iProp. The
interpretation J K: Typ→ Val → iProp is defined by induction over the structure of the
types Typ. The typing judgment is interpreted as a total Hoare triple, because our goal
is to verify total correctness, including the termination guarantee. To verify each typing
rule of the type system, we just need to prove its semantics version calculated from the
semantics J𝑣 : U ` 𝑒 : TK, JT ≤ UK.

This traditional approach works for most typing rules, except those for shared mu-
table references, such as ty-load. Accessing the content 𝑃 of an Iris invariant 𝑃

N

comes with the later modality ⊲ (recall thoare-iinv, § 3.1). But unfortunately, the total
Hoare triple

[
𝑃
]
𝑒
[
𝛹
]
E has no chance to strip off the later modality ⊲ unlike the partial

Hoare triple, as discussed in § 1.4. To complete verification, we replace Iris’s invariants
− N with Nola’s later-free invariants invN .

First Model with Nola’s Invariants Fortunately, Nola’s approach can naturally
take advantage of the syntactic hierarchy in our leveled types Typ𝑖 . Notably, we can
employ multiple instances of Nola’s invariant mechanisms.

First, we construct a syntactic proposition data type nProp𝑖 for each body type level
𝑖 ∈ N as follows:

nProp𝑖 3 P ∗𝑖 F ℓ ↦→ T𝑖 (ℓ ∈ Loc, T𝑖 ∈ Typ𝑖)

This is because the proposition to be stored in the invariant is limited to the form
∃𝑤. (ℓ ↦→ 𝑤) ∗ JT𝑖K𝑤 , which is parameterized by the location ℓ ∈ Loc and the type
T𝑖 ∈ Typ𝑖 .

Next, we add the resource algebra InvnProp𝑖 for the invariant mechanism of each

2 We model here the judgments 𝑣 : U ` 𝑒 : T and T ≤ U as a persistent separation logic proposition, which
can depend on persistent resources. Another possible design choice is to model the judgments as a pure
proposition, like J𝑣 : U ` 𝑒 : TK ≜ ⊨

[∗ JUK 𝑣] 𝑒 [JTK]N and JT ≤ UK ≜ ∀𝑣 . (JTK 𝑣 ⊨ JUK 𝑣) . By
choosing the former design, we have the ability to extend our type system with dynamically created
relations, such as lifetime inclusion α ⊑ β for Rust-style borrows (see § 6.5.1).

73

level 𝑖 ∈ N as the component RA of the global camera G̃:3

InvnProp0, InvnProp1, InvnProp2, . . .

To use Nola’s later-free invariant mechanism, we define the semantic interpretationJ K∗𝑖 : nProp𝑖 → iProp of the custom syntactic proposition nProp𝑖 as follows:

Jℓ ↦→ TK∗𝑖 ≜ ∃𝑤. ℓ ↦→ 𝑤 ∗ JTK𝑖 𝑤 (5.2)

where J K𝑖 : Typ𝑖 → Val → iProp is the semantic interpretation of our types T𝑖 ∈ Typ𝑖
of the level 𝑖 , which we discuss below.

The definition of the type semantics JTK𝑖 is straightforward in many cases:

JnatK𝑖 𝑣 ≜ 𝑣 ∈ N JboolK𝑖 𝑣 ≜ 𝑣 ∈ B JunitK𝑖 𝑣 ≜ 𝑣 = ()

JT × UK𝑖 𝑣 ≜ ∃𝑢,𝑢′ s.t. 𝑣 = (𝑢,𝑢′) . JTK𝑖 𝑢 ∗ JUK𝑖 𝑢′JT ∧ UK𝑖 𝑣 ≜ JTK𝑖 𝑣 ∗ JUK𝑖 𝑣
The semantics of the reference type ref𝑜𝑘 T is now defined as follows:

Jref𝑜𝑘 TK𝑖 𝑣 ≜ ∃ℓ ∈ Loc s.t. 𝑣 = ℓ . invN𝑘
(
(ℓ + 𝑜) ↦→ T

)
(5.3)

Here we write inv𝑘 for the invariant connective from the resource algebra InvnProp𝑘 of
the level 𝑘 . Recall that · · · ↦→ T will be interpreted by J K∗

𝑘
given by (5.2). Notably,

the interpretation of the reference type Jref𝑜𝑘 TK𝑖 does not depend on the interpretationJTK𝑘 of the body type. Thanks to this, the reference type’s body type level 𝑘 can be any
level, regardless of the surrounding level.

We can also interpret the recursive, universal, and existential types as follows:

Jrec X𝑗 . T𝑗K𝑖 𝑣 ≜ J T𝑗 [rec X𝑗 . T𝑗 / X𝑗] K𝑗 𝑣J A

X𝑘 . TK𝑖 𝑣 ≜ ∀V𝑘 . J T [V𝑘/X𝑘] K𝑖 𝑣 J E

X𝑘 . TK𝑖 𝑣 ≜ ∃V𝑘 . J T [V𝑘/X𝑘] K𝑖 𝑣
The variable substitution does not cause infinite loops in evaluating the interpretationJ K𝑖 , thanks to the guardedness condition on the occurrences of type variables X . If
X occurs in a type of a level 𝑗 strictly lower than 𝑖 , then it is interpreted under J K𝑗 ,
which is safe to call recursively. If X is guarded by the reference type, then it will not
be semantically interpreted, because the reference type’s interpretation (5.3) does not
depend on the body type’s interpretation.

The semantics of the function type T →𝑗 U requires a care, because it involves an
extended total Hoare triple with a custom world satisfaction:

JT →𝑗 UK𝑖 𝑣 ≜ ∀𝑢.
[JTK𝑖 𝑢] 𝑣 (𝑢) [JUK𝑖]∗𝑘< 𝑗 Winv𝑘 J K∗𝑘

N
(5.4)

The custom world satisfaction for the function type T →𝑗 U of the execution level 𝑗
is ∗𝑘< 𝑗 Winv𝑘 J K∗𝑘 , the separating conjunction of the world satisfactions Winv𝑘 J K∗𝑘
for the levels 𝑘 < 𝑗 . Here, we write Winv𝑘 for the world satisfaction predicate from
the RA InvnProp𝑘 of the level 𝑘 . This recursion equation (5.4) is well-formed, because
Winv𝑘 J K∗𝑘 depends on the type interpretation J K𝑘 and its level 𝑘 is strictly lower than
𝑖 thanks to the constraints 𝑘 < 𝑗 and 𝑗 ≤ 𝑖 .
3 Unfortunately, in the current Coq mechanization of Iris, only a finite number of component RAs are
allowed for the global camera. So we parameterized our proof with the maximum level 𝐿 ∈ N to be used.
This should not be a restriction because the levels used for one typing judgment are always bounded.

74

Now that we have completed the definition of the type interpretations J K𝑖 : Typ𝑖 →
Val → Prop, we can define the semantics of the typing judgment 𝛤 ` 𝑒 :𝑖 T and subtyp-
ing judgment T ≤ U as follows:

J𝑣 : U ` 𝑒 :𝑖 TK ≜
[∗ JUK 𝑣] 𝑒 [JTK]∗𝑘<𝑖 Winv𝑘 J K∗𝑘

NJT ≤ UK ≜ ∀𝑣 . □
(JTK 𝑣 −∗ JUK 𝑣)

For the total Hoare triple of the typing judgment, we use the custom world satisfaction
∗𝑘<𝑖 Winv𝑘 J K∗𝑘 , just like for the function type.

Final Model with Derivability We can prove most typing rules with the model in-
troduced above. But unfortunately, we cannot prove the subtyping rule for the reference
type ≤-ref, because the proposition of the invariant token invN cannot be directly
changed.

To solve this problem, we update the model of our type system by applying the
derivability technique of Chapter 4. To begin with, we set the syntactic data type for
judgments Judg as follows:

Judg 3 J F T𝑖 ¤≤ U𝑗 (T𝑖 ∈ Typ𝑖 ; U𝑗 ∈ Typ 𝑗 ; 𝑖, 𝑗 ∈ N)

We introduce a new syntactic subtyping judgment T𝑖 ¤≤ U𝑗 ∈ Judg.
Then we parameterize our type interpretation J K𝛿𝑖 : Typ𝑖 → Val → iProp with the

derivability predicate 𝛿 : Judg → iProp. For the most part, we just replace J K𝑖 with J K𝛿𝑖
in the above definitions:

JnatK𝛿𝑖 𝑣 ≜ 𝑣 ∈ N JboolK𝛿𝑖 𝑣 ≜ 𝑣 ∈ B JunitK𝛿𝑖 𝑣 ≜ 𝑣 = ()

JT × UK𝛿𝑖 𝑣 ≜ ∃𝑢,𝑢′ s.t. 𝑣 = (𝑢,𝑢′) . JTK𝛿𝑖 𝑢 ∗ JUK𝛿𝑖 𝑢′JT ∧ UK𝛿𝑖 𝑣 ≜ JTK𝛿𝑖 𝑣 ∗ JUK𝑖 𝑣Jrec X𝑗 . T𝑗K𝛿𝑖 𝑣 ≜ J T𝑗 [rec X𝑗 . T𝑗 / X𝑗] K𝛿𝑗 𝑣J A

X𝑘 . TK𝛿𝑖 𝑣 ≜ ∀V𝑘 . J T [V𝑘/X𝑘] K𝛿𝑖 𝑣 J E

X𝑘 . TK𝛿𝑖 𝑣 ≜ ∃V𝑘 . J T [V𝑘/X𝑘] K𝛿𝑖 𝑣
The function type’s interpretation (5.4) is also modified similarly, just replacing J K𝑖

with J K𝛿𝑖 :
JT →𝑗 UK𝛿𝑖 𝑣 ≜ ∀𝑢.

[JTK𝛿𝑖 𝑢] 𝑣 𝑢 [JUK𝛿𝑖]∗𝑘< 𝑗 Winv𝑘 J K𝛿∗𝑘
N

Here, J K𝛿∗𝑖 : nProp𝑖 → iProp is defined as follows, just by replacing J K𝑖 with J K𝛿𝑖 in (5.2):

Jℓ ↦→ T𝑖K𝛿∗𝑖 ≜ ∃𝑤. ℓ ↦→ 𝑤 ∗ JT𝑖K𝛿𝑖 𝑤
Most significantly, we modify the interpretation of the reference type ref𝑜𝑘 T from

(5.3) as follows, using the derivability predicate 𝛿 :

Jref𝑜𝑘 TK𝛿𝑖 𝑣 ≜ ∃U , 𝑘 ′≤ 𝑘. □𝛿 (T ¤≤ U) ∗ □𝛿 (U ¤≤ T) ∗ invN𝑘 ′
(
(ℓ +𝑜) ↦→ U

)
(5.5)

Notably, this interpretation (5.5) does not depend on the type semantics of the body
type level J K𝛿

𝑘
. The relation between the types T and U is described by the derivability

assertions 𝛿 (T ¤≤ U) and 𝛿 (U ≤ T), which do not directly depend on the type semantics.

75

Once we construct the parameterized type interpretation J K𝛿𝑖 , we can define the
parameterized judgment interpretation J K+

𝛿
: Judg → iProp as follows:

JT𝑖 ¤≤ U𝑗K+𝛿 ≜ ∀𝑣 .
(JT𝑖K𝛿𝑖 𝑣 −∗ JU𝑗K𝛿𝑗 𝑣)

This automatically gives the best derivability predicate der and the set of good deriv-
ability predicates Deriv by Definition 4.1 (§ 4.3). By deriv-intro and deriv-map2, we
can derive the reflexivity (5.6) and transitivity (5.7) of the derivability for a good deriv-
ability predicate 𝛿 ∈ Deriv :

⊨ 𝛿 (T ¤≤ T) (5.6)
𝛿 (T ¤≤ U) ∗ 𝛿 (U ¤≤ V) ⊨ 𝛿 (T ¤≤ V) (5.7)

We modify the semantics of the subtyping relation T ≤ U as follows:

JT ≤ UK ≜ ∀𝛿 ∈ Deriv, 𝑣 . □
(JTK𝛿 𝑣 −∗ JUK𝛿 𝑣)

Importantly, it is universally quantified over good derivability predicates 𝛿 ∈ Deriv .
Thanks to this, by deriv-intro (§ 4.3), we can turn JT ≤ UK into a derivability 𝛿 (T ¤≤ U)
for any good derivability predicate 𝛿 ∈ Deriv :

JT ≤ UK ⊨ □ 𝛿 (T ¤≤ U) (5.8)

We update the semantics of the typing judgment 𝛤 ` 𝑒 :𝑖 T as follows:

J𝑣 : U ` 𝑒 :𝑖 TK ≜
[∗ JUKder 𝑣] 𝑒 [JTKder]∗𝑘<𝑖 Winv𝑘 J Kder∗𝑘

N

For the typing judgment, we use the type semantics J Kder by the best derivability pred-
icate der. We use the predicate der because it satisfies the soundness by Theorem 4.3
(§ 4.3), which means the following in our setting:

der (T ¤≤ U) ⊨ ∀𝑣 . JTKder 𝑣 −∗ JUKder 𝑣 (5.9)

Soundness of Our Target Type System Finally, using the model above, we can
prove the soundness of our target type system.

Lemma 5.1 (Persistence of Type Semantics). For any type T ∈ Typ𝑖 of any level 𝑖 ∈ N,
any value 𝑣 , and any derivability predicate 𝛿 : Judg→ iProp, the Iris proposition JTK𝛿𝑖 𝑣 is
persistent.

Proof. Clear by construction.

Theorem 5.2 (Soundness of Typing Rules). The typing rules of our type system are
sound with respect to the above-defined semantics J K.
Proof. By straightforwardly checking each typing rule. We can copy typed objects 𝑣 :
𝑇 (i.e., duplicate J𝑇 Kder 𝑣) by the previous lemma Lemma 5.1.

For the typing rules that access references such as ty-load, we use Nola’s later-
free invariant access rule thoare-inv and the soundness (5.9) of the best derivability
predicate der.

For the reference subtyping rule ≤-ref, we turn the subtyping assumptions into
derivability assertions by (5.8) and combine themwith the derivability assertions inside
the reference type model (5.5) using the transitivity (5.7).4
4 In order to justify coinductive use of the reference subtyping rule ≤-ref, we slightly modify the seman-
tics of the subtyping judgment JT ≤ UK to update the domain for the derivability predicate 𝛿 fromDeriv
to its variant Deriv𝜙 parameterized with the induction hypothesis 𝜙 (Definition 4.5), where 𝜙 models
the set of coinductive hypotheses for the subtyping judgment T ≤ U .

76

Corollary 5.3 (Termination Adequacy). If the typing judgment ` 𝑒 :𝑖 T holds for some
level 𝑖 and type T, then the execution of the program 𝑒 always terminates.

Proof. By the previous theorem Theorem 5.2, the given typing judgment implies the

total Hoare triple
[
>
]
𝑒
[
𝜆_.>

]∗𝑘<𝑖 Winv𝑘 J K∗𝑘
N . This holds by the termination adequacy

of the extended total Hoare triple Theorem 3.7 (§ 3.2.1), allocating the custom world
satisfaction by performing the update of winv-alloc over the levels 𝑘 < 𝑖 .

77

Chapter 6

Later-Free Rust-Style Borrows

Neither a borrower nor a lender be

Polonius, Hamlet by William Shakespeare

This chapter presents the later-free Rust-style borrowmechanism of our framework.
The mechanism allows non-step-indexed separation logic to support the features of
RustBelt’s lifetime logic (Jung et al., 2018a), which can model and reason about Rust-
style borrows in a general, semantic way.

This chapter is organized as follows. Section 6.1 reviews Rust’s borrows and Rust-
Belt’s lifetime logic. Section 6.2 explains the design of our borrow mechanism. Section
6.3 presents our proof rules for lifetimes and borrows. Section 6.4 discusses the seman-
tic alteration by the derivability technique of Chapter 4. Section 6.5 briefly explains our
semantic model for the lifetime and borrow mechanisms.

6.1 Background

6.1.1 Rust’s Borrows

Rust is a programming language that uses a strong ownership type system, as introduced
in § 1.2.2. A key feature of Rust is the lifetime-based borrowing, which derives from an
idea in region-based ownership management (Tofte and Talpin, 1997; Gay and Aiken,
1998), especially of the Cyclone programming language (Grossman et al., 2002).1 Bor-
rows are very commonly used in Rust, as we briefly saw in the example Code 1.2 in
§ 1.2.2.

General Idea First, we give a general idea of a borrow in Rust.
Suppose an alias a : T to an object typed T. The alias has the full ownership of the

object as described by the ownership type T.
Then we can create amutable reference &mut a : &'a mut T to the object by tem-

porarily borrowing the ownership from a. The time period for which the borrowed
ownership is active is called the lifetime 'a and is statically managed by the type sys-
tem. The lifetime is determined at the time when the borrow is created.

Notably, there is no direct communication between the borrower (mutable reference)
&mut a : &'a mut T and the lender (original owner) a : T ever after the borrow is
created. While the lifetime 'a is ongoing, the borrower can freely mutate the object
1 Cyclone (Grossman et al., 2002) is a safe dialect of the C programming language that ensures memory
safety with a strong type system under a spirit similar to Rust. Cyclone’s type system manages owner-
ship based onmemory regions being aware of their lifetimes. Extending this idea, Rust directly considers
lifetimes of objects and borrows, around which one can see regions implicitly managed.

78

using the ownership, throw away any fragments of the ownership at any time, and
split up into multiple smaller borrowers.

Finally, at the time the lifetime 'a ends, the lender automatically retrieves the own-
ership of the whole object typed T, summing up all ownership fragments thrown away
by the borrowers during the borrowing.

Borrow Subdivision A key feature of the borrowing machinery is subdivision of a
borrower into multiple smaller borrowers, throwing away some ownership fragments.

For example, suppose a mutable reference to a vector v : &'a mut Vec<T>. We
can convert it into a mutable iterator v.iter_mut() : IterMut<'a, T>. Using it, we
can iterate over the vector and get themutable references to every element of the vector
v.iter_mut().collect() : Vec<&'a mut T>. At the same time, for the conversion
into a mutable iterator, we throw away the power to freely mutate the length and the
memory block address and capacity, or throws away the ownership of the fields for
that information.

Reborrowing Another key feature of the borrowing machinery is reborrowing. Sup-
pose a mutable reference a : &'a mut T that borrows an object o : T under the life-
time 'a. We can reborrow the ownership from this mutable reference under a shorter
lifetime 'b to create a new mutable reference b : &'b mut T. The reborrowed muta-
ble reference a recovers its ownership after the lifetime 'b of the reborrower b ends.
The hierarchy of reborrows can be unboundedly deep.

Reborrows are very commonly used in Rust, often implicitly. For example, when
we perform v.push(a) on a mutable reference to a vector v : &'a mut Vec<T>, the
push method implicitly reborrows the mutable reference v under a shorter lifetime 'b
that lives only during the method call.

Also, reborrows can happen with borrow subdivision. For example, suppose we
dereference a nested mutable reference b : &'b mut &'a mut T. Then we get *b :
&'b mut T that reborrows from the inner reference &'a mut T under a shorter lifetime
'b. We also throw away a fragment of b’s ownership, because we lose the power to mu-
tate what the outer reference b points to. Therefore, this dereference is a combination
of reborrowing and borrow subdivision.

Borrow as a Contract Rust-style borrows can be seen as a flexible contract between
the borrowers and the lender, allowing them to share the mutable state under the access
control by the lifetime. In Rust, the contracts are described by Rust’s ownership types T.
The mutable reference type &'a mut T expresses the contract that it gets access to the
object only while the lifetime 'a is ongoing and that an object typed T will be stored at
the time the lifetime 'a ends.

Automatic Lifetime Inference Note that the lifetimes of borrows are automatically
inferred by Rust’s compiler. In the earliest versions of Rust, lifetimes were limited to
lexical scopes, typically introduced by curly braces { ... }. But the latest versions
of Rust support non-lexical lifetimes (Matsakis, 2017, 2022), allowing lifetimes to be
much more flexible regions. Rust’s compiler automatically infers non-lexical lifetimes
by a clever static analysis of the program’s control-flow graph, similar to more clas-
sical live-variable analysis (Aho et al., 2006, § 9.2.5). Rust’s compiler is also carefully
engineered to provide user-friendly error messages when borrows are violating the
ownership principle, like Code 1.3 (§ 1.2.2).

79

6.1.2 RustBelt’s Lifetime Logic

Lifetime Logic RustBelt’s lifetime logic (Jung et al., 2018a, § 5; Jung, 2020, Chapter
11) semantically modeled Rust-style borrows presented above as an advanced form of
propositional sharing in the Iris separation logic.2

RustBelt’s lifetime logicmodels themutable reference &α mut T using a new propo-
sition called the full borrow &αfull𝑃 ∈ iProp, which can get access to the content 𝑃 ∈ iProp
while the lifetime α is ongoing.3 Roughly speaking, the full borrow&αfull𝑃 can be seen as
an advanced version of Iris’s invariant 𝑃 (§ 1.3.1, § 3.3.2). The full borrow connective
can be freely nested to model nested mutable reference types. Also, the lifetime logic
supports subdivision and reborrowing of the full borrow, modeling Rust’s borrowing
machinery.

RustBelt Using the lifetime logic, RustBelt (Jung et al., 2018a; Jung, 2020, Part II) es-
tablished a semantic foundation for Rust’s ownership type system. It formally verified
the memory and thread safety of well-typed Rust programs for a realistic subset of Rust
with various Rust APIs, including Rc, Arc, Cell, RefCell, Mutex, RwLock, and a new
Rust API GhostCell (Yanovski et al., 2021).

RustBelt’s approach is highly extensible in that we can extend the proof with a new
feature/API of Rust just by proving some new lemmas without touching the existing
proofs at all. Also, a real-world bug in Rust’s Mutex API was found in the course of
RustBelt’s verification (Jung, 2017).

RustBelt has also been extended to a relaxed memory model (Dang et al., 2020),
which led to the detection of a tricky real-world bug in Rust’s Arc API that is problem-
atic only under a relaxed memory model (Jourdan, 2018).

Also, RustBelt has been extended by RustHornBelt (Matsushita et al., 2022) to pro-
vide a semantic foundation for functional verification of Rust programs in the style
of RustHorn (Matsushita et al., 2020, 2021). We illustrate RustHorn’s approach later in
§ 7.1.1 and review RustHornBelt in § 7.1.2.

Problem: Later Modality The borrow mechanism of RustBelt’s lifetime logic suf-
fered from the later modality ⊲ just like the invariant mechanism. For example, we have
the following rule for getting access to the full borrow &αfull𝑃 :

[α]𝑞 ∗ &αfull𝑃 ⊨ |⇛Nlft

(
(⊲ 𝑃) ∗

(
(⊲ 𝑃) −∗ |⇛Nlft

(
[α]𝑞 ∗ &αfull𝑃

)))
LftL-bor-acc

What we get out of a full borrow is only ⊲ 𝑃 , the content proposition 𝑃 weakened by
the later modality, like the access rules phoare-iinv and iinv-acc for Iris’s invariants.

This is because RustBelt’s lifetime logic is achieved via indexed semantics, where
the reference to iProp in the resource fo borrows is guarded by the later constructor▶,
just like Iris’s invariants (recall (1.19) in § 1.4, or (3.1) in § 3.1.3).

6.2 Design

The overall structure of Nola’s borrow mechanism is analogous to Nola’s invariant
mechanism, presented in § 3.2.2. The resource algebra BornProp for Nola’s borrow
mechanism is parameterized over the syntactic data type for propositions nProp. Also,
the world satisfaction Wbor𝑀 J K is parameterized over the semantic interpretation J K:
2 Although it is called the lifetime ‘logic’, it is essentially just a library in Iris providing a set of separation
logic propositions and proof rules for them.

3 In mathematical expressions, we write lifetimes with Greek letters α, β, γ instead of single-quoted ASCII
names 'a, 'b, 'c.

80

nProp→ iProp of the syntactic propositions nProp (we explain the parameter𝑀 later).
The difference between Nola’s borrow mechanism and Nola’s invariant mechanism is
mainly in the ‘protocols’ used for propositional sharing.

Technical ComparisonwithRustBelt’s Lifetime Logic Whereas Nola’s invariant
mechanism is almost identical to Iris’s invariant mechanism (presented in § 3.1.2), our
borrow mechanism adopts designs different from RustBelt’s lifetime logic (Jung et al.,
2018a), for simplicity and exploring further possibilities. We can compare our borrow
mechanism with RustBelt’s lifetime logic as follows.

• Our borrow mechanism provides all the core functionalities of the full borrow
&αfull𝑃 in RustBelt’s lifetime logic, namely subdivision, reborrow, and merger.

• Aside from the borrower token borα P that corresponds to RustBelt’s full borrow
&αfull𝑃 , we introduce two new tokens, the lender token lendα P and the open bor-
rower token oborα P .
Roughly speaking, they correspond to the later-free version of subformulas ap-
pearing in proof rules of RustBelt’s lifetime logic:

lendα P ≈ †α −∗|⇛Nlft 𝑃 in LftL-borrow

oborα𝑞 P ≈ 𝑃 −∗ |⇛Nlft

(
[α]𝑞 ∗ &αfull𝑃

)
in LftL-bor-acc

or more generally ∀𝑄. 𝑄 ∗
(
†α ∗𝑄 −∗ |⇛∅ 𝑃

)
−∗ |⇛Nlft

(
[α]𝑞 ∗ &αfull𝑄

)
in LftL-bor-acc-strong

So conceptually, our introduction of the lender and open borrower tokens are not
significant changes.
However, modeling such notions as tokens brings technical advantages. First, our
tokens are timeless, while these subformulas of RustBelt’s lifetime logic are not.
More significantly, in the Nola framework, our tokens can easily be expressed
as nProp, as they do not depend on J K, while Nola’s counterparts of these sub-
formulas would contain the fancy update with the world satisfactionWbor𝑀 J K,
which is hard to express in nProp (recall § 3.4.2).

• Our borrow mechanism does not directly provide the counterparts of the atomic
borrows&α/Nat 𝑃 and its variant, the non-atomic borrow &α/𝑝.Nna 𝑃 , provided by Rust-
Belt’s lifetime logic.
These propositions intuitively provide the functionality of the full borrow &αfull𝑃
stored in the (atomic) invariant − N and its slight variant, the non-atomic in-
variant NaInv𝑝.N . RustBelt could not directly store full borrows in Iris’s atomic
and non-atomic invariants, because Iris’s invariants put the later modality ⊲ in
accessing the contents (e.g., iinv-acc). For example, if one simply constructs an
invariant &αfull𝑃

N
that stores the full borrow &αfull𝑃 , opening it gives ⊲&αfull𝑃 ,

which is useless just like the invariant under the later modality ⊲ 𝑃
N is useless

(recall Remark 3.5, § 3.1.3). As a workaround, RustBelt’s lifetime logic split the
borrow into the persistent part (called the indexed borrow) and the timeless part
(some token).
We do not need such a workaround, because Nola’s invariant mechanism is just
later-free. Once we build Nola’s borrowmechanismwith some syntactic proposi-
tion nProp, we can use it for the syntactic proposition for Nola’s invariant mech-
anism to enable storing Nola’s borrower token borα P in Nola’s later-free invari-
ants (see also the examples in § 6.3.3). Also, we can store Nola’s borrower token

81

in Iris’s invariants without problems, because the token is timeless unlike Rust-
Belt’s full borrow.

• For flexibility, our borrow mechanism does not assume anything on the expres-
sivity and structure of nProp. In particular, nProp may not even have the sepa-
rating conjunction ∗.
We slightly redesigned proof rules for this. For example, RustBelt’s lifetime logic
has the following rule to split &αfull(𝑃 ∗𝑄) into &αfull𝑃 and &αfull𝑄 :

&αfull(𝑃 ∗𝑄) ⊨ |⇛Nlft

(
&αfull𝑃 ∗ &αfull𝑄

)
LftL-bor-split

We do not directly adopt this rule, because nProp may not have the separat-
ing conjunction ∗. Instead, we made the borrow subdivision rule include this
kind of splitting (obor-subdiv, § 6.3.2), enriching RustBelt’s original rule (LftL-
bor-acc-strong). Similarly, RustBelt’s lifetime logic has the following rule that
merges &αfull𝑃 and &αfull𝑄 into &αfull(𝑃 ∗𝑄), the inverse of LftL-bor-split:

&αfull𝑃 ∗ &αfull𝑄 ⊨ |⇛Nlft &αfull(𝑃 ∗𝑄) LftL-bor-merge

Instead of adopting this rule directly (for the same reason with LftL-bor-split),
we introduced a proof rule that combines merger and subdivision of borrowers
(obor-merge-subdiv, § 6.3.2).

It is arguably non-trivial that the borrow mechanism can be developed not as-
suming anything about shared propositions nProp, especially since nProp has
fundamental limitations in expressing the fancy update modality and the im-
predicative quantifiers (recall § 3.4.2).

• Our lifetimemechanism is completely independent from our borrowmechanism.
Our proof rules work with the basic update modality ¤|⇛ that behaves nicely (e.g.,
¤|⇛-pure), while RustBelt’s proof rules depend on the fancy update modality |⇛Nlft

and even the later modality ⊲ (e.g., LftL-begin).

• For simplicity, we always require live lifetime tokens [α]𝑞 for modifying borrows,
unlike the rules LftL-bor-split and LftL-bor-merge. From our inspection, we
can always take live lifetime tokens for the modified borrows in verifying Rust
programs, so this requirement should not matter in verification.

6.3 Proof Rules

Now we present our proof rules for lifetimes and borrows.

6.3.1 Lifetimes

Technical Comparison with RustBelt’s Lifetime Logic Our proof rules for life-
times are almost the same as RustBelt’s lifetime logic.

But ours are cleaner in that they work with the basic update modality ¤|⇛, which be-
haves nicely (e.g., ¤|⇛-pure). RustBelt’s proof rules depend on the fancy update modality
|⇛ and even the later modality ⊲, such as the following rule LftL-begin for creating a
fresh lifetime α:

⊨ |⇛Nlft ∃α. [α]1 ∗ □
(
[α]1 −∗ Nlft

|⇛∅ ⊲ ∅|⇛Nlft †α
)

LftL-begin

82

Basics For lifetimes, we provide two tokens, the live [α]𝑞 and dead †α lifetime tokens,
just like RustBelt’s lifetime logic.

A live lifetime token [α]𝑞 ∈ iProp asserts with the fraction 𝑞 ∈ Q>0 that the lifetime
α ∈ Lft is alive.4 The live lifetime token is fractional and its fraction 𝑞 cannot exceed 1.

[α]𝑞+𝑟 = [α]𝑞 ∗ [α]𝑟 lft-live-fract
α ≠ ⊤ 𝑞 > 1
[α]𝑞 = ⊥ lft-live-over1

A dead lifetime token †𝛼 ∈ iProp persistently asserts that the lifetime α ∈ Lft is dead.

†α is persistent lft-dead-persist

The key property is that the live and dead lifetime tokens cannot coexist:

[α]𝑞 ∗ †α ⊨ ⊥ lft-live-dead-⊥

This rule enables access control by lifetimes.
We can always take a fresh live lifetime α, getting the witness [α]1:

⊨ ¤|⇛
(
∃ α ≠ ⊤. [α]1

)
lft-alloc

Then we can kill the lifetime α with the witness †α any time by consuming [α]1:
α ≠ ⊤

[α]1 ⊨ ¤|⇛ †α
lft-kill

In this way, a lifetime dynamically forms a time period.
Also, both live and dead lifetime tokens are timeless:

[α]𝑞 is timeless lft-live-timeless †α is timeless lft-dead-timeless

Static Lifetime and Lifetime Intersection We also provide the static lifetime and
lifetime intersection, just like RustBelt’s lifetime logic.

The static lifetime ⊤ ∈ Lft ('static in Rust) is a lifetime statically known to be alive
forever. For the static lifetime ⊤, the live lifetime token is free and the dead lifetime
token is prohibited:

⊨ [⊤]𝑞 lft-live-⊤ †⊤ = ⊥ lft-dead-⊤

The rule lft-kill has the side condition α ≠ ⊤ to prohibit killing the static lifetime ⊤
while allowing the live lifetime token [⊤]𝑞 unrestrictedly.

For convenience, we also provide the intersection operation ⊓: Lft × Lft → Lft over
lifetimes. The intersection lifetime α ⊓ β represents a lifetime that is alive only while
both α and β are alive. The intersection is commutative, associative, and unital with
the static lifetime ⊤:

α ⊓ β = β ⊓ α lft-⊓-comm (α ⊓ β) ⊓ γ = α ⊓ (β ⊓ γ) lft-⊓-assoc

α ⊓ ⊤ = α lft-⊓-⊤

Although actual Rust does not expose lifetime intersection to users, it is useful for
reasoning. The lifetime intersection satisfies the following rules for the live and dead
lifetime tokens:

[α ⊓ β]𝑞 = [α]𝑞 ∗ [β]𝑞 lft-live-⊓ †(α ⊓ β) = †α ∨ †β lft-dead-⊓

Note that the lifetime intersection is not idempotent α ⊓ α ≠ α to support the rule
lft-live-⊓ soundly.
4 For clarity, we use the name ‘live lifetime token’ instead of the name ‘lifetime token’ used by RustBelt.
Also, we adopt the notation †α instead of RustBelt’s [†α].

83

Eternal Lifetime Token Unlike RustBelt’s lifetime logic, we newly introduce the
eternal lifetime token ∞α ∈ iProp, which persistently asserts that the lifetime α is alive
forever. The token is also timeless.

∞α is persistent lft-etern-persist ∞α is timeless lft-etern-timeless

Under an eternal lifetime token, we can always get a live lifetime token [α]𝑞 of
some fraction 𝑞:

∞α ⊨ ¤|⇛
(
∃𝑞. [α]𝑞

)
lft-etern-live

We can make a lifetime eternal by consuming a live lifetime token [α]𝑞 :

[α]𝑞 ⊨ ¤|⇛ ∞α lft-eternalize

The lifetime token also interacts with the static lifetime and lifetime intersection:

⊨ ∞⊤ lft-etern-⊤ ∞(α ⊓ β) = ∞α ∗ ∞β lft-etern-⊓

Lifetime Inclusion Like RustBelt’s lifetime logic, we provide lifetime inclusion α ⊑
β ∈ iProp between lifetimes, which persistently states that the lifetime α lives no longer
than the lifetime β. Unlike RustBelt’s lifetime logic, our lifetime inclusion is timeless.

α ⊑ β is persistent lft-⊑-persist α ⊑ β is timeless lft-⊑-timeless

Under the inclusion α ⊑ β, from a live lifetime token [α]𝑞 for α, we can take out a
live lifetime token [β]𝑟 for β of some fraction 𝑟 :

α ⊑ β ∗ [α]𝑞 ⊨ ¤|⇛
(
∃𝑟 . [β]𝑟 ∗ ([β]𝑟 −∗ [α]𝑞)

)
lft-⊑-live-acc

Also, under the inclusion α ⊑ β, if β is dead, then α is also dead:

α ⊑ β ∗ †β ⊨ †α lft-⊑-dead

Lifetime inclusion is reflexive and transitive:

⊨ α ⊑ α lft-⊑-refl α ⊑ β ∗ β ⊑ γ ⊨ α ⊑ γ lft-⊑-trans

Lifetime inclusion also interacts with the static lifetime and lifetime intersection:

⊨ α ⊑ ⊤ lft-⊑-⊤

⊨ α ⊓ β ⊑ α lft-⊑-⊓-elim γ ⊑ α ∗ γ ⊑ β ⊨ γ ⊑ α ⊓ β lft-⊑-⊓-intro

Lifetime inclusion can also be dynamically created. First, a dead lifetime is included
by any lifetime, which dynamically happens by killing a lifetime lft-kill:

†α ⊨ α ⊑ β lft-dead-⊑

Also, an eternal lifetime includes any lifetime, which dynamically happens by eternal-
izing a lifetime lft-eternalize:

∞α ⊨ α ⊑ β lft-etern-⊑

84

6.3.2 Borrows

Overall Structure The overall structure of Nola’s borrow mechanism is analogous
to Nola’s invariant mechanism, presented in § 3.2.2.

The resource algebra BornProp for Nola’s borrow mechanism is parameterized over
the syntactic data type for propositions nProp, just like the resource algebra InvnProp for
invariants.

Also, Nola’s borrowmechanism provides aworld satisfactionWbor𝑀 J K parameter-
ized over the semantic interpretation J K: nProp → iProp of the syntactic propositions
nProp, just like the world satisfaction of Nola’s invariant mechanism Winv J K.

For flexibility, the world satisfaction for borrowsWbor𝑀 J K also takes an extra pa-
rameter 𝑀 : iProp→ iProp, the modality used for borrow subdivision (see obor-subdiv
presented later). We require𝑀 to be an update modality (a new notion we introduced),
which we describe below.

Update Modality We say a mapping 𝑀 : iProp → iProp is an update modality if it
satisfies the following properties:

𝑃 ⊨ 𝑄

𝑀 𝑃 ⊨ 𝑀𝑄
upd-mono ¤|⇛𝑃 ⊨ 𝑀 𝑃 ¤|⇛-upd

𝑀 (𝑀 𝑃) ⊨ 𝑀 𝑃 upd-idemp (𝑀 𝑃) ∗ 𝑄 ⊨ 𝑀 (𝑃 ∗𝑄) upd-frame

For example, the basic update modality ¤|⇛ is an update modality. Also, the fancy
update modality |⇛E and the extended fancy update modality |⇛𝑊

E (mask-unchanging)
are an update modality.

Extended Update Modality For an update modality 𝑀 : iProp → iProp, we define
the extended update modality 𝑀𝑊 : iProp→ iProp with a custom world satisfaction𝑊 ∈
iProp as follows:

𝑀𝑊 𝑃 ≜ 𝑊 −∗𝑀
(
𝑊 ∗ 𝑃

)
This generalizes the extended fancy update |⇛𝑊

E (§ 3.2.1) into any update modality 𝑀
instead of the fancy update |⇛E . The extended updatemodality𝑀𝑊 is always an update
modality.

The following properties hold for the extended update modality, just like the ex-
tended fancy update |⇛𝑊

E :

𝑀 > 𝑃 = 𝑀 𝑃 updw-> 𝑊 ′ = 𝑊 ∗ 𝑊+
𝑀𝑊 𝑃 ⊨ 𝑀𝑊 ′ 𝑃

updw-expand

By ¤|⇛-upd, the extended basic update modality implies the extended update modality:

¤|⇛𝑊
𝑃 ⊨ 𝑀𝑊 𝑃 ¤|⇛w-updw

Also, a double extension is equal to a single extension with a separating conjunction:(
𝑀𝑊)𝑊 ′

𝑃 = 𝑀𝑊 ∗𝑊 ′
𝑃 updw-updw

Basic Rules Now we are ready to present the proof rules for borrows.
First, the borrowmechanism features three tokens: the borrower token borα P , lender

token lendα P , and open borrower token oborα P .
The tokens are all timeless:

borα P is timeless bor-timeless lendα P is timeless lend-timeless

85

oborα P is timeless obor-timeless

By storing an interpretation of a proposition JPK, we can create a borrow of the
proposition P under any lifetime α, getting a borrower token borα P and a lender token
lendα P : JPK ⊨ ¤|⇛Wbor𝑀 J K (

borα P ∗ lendα P
)

bor-lend-new

Here, we use the extended basic update ¤|⇛Wbor𝑀 J K with the world satisfaction for the
borrow mechanism Wbor𝑀 J K.

A lender token lendα P can retrieve the borrowed content JPK after the lifetime α has
died:

†α ∗ lendα P ⊨ 𝑀Wbor𝑀 J K JPK lend-retrieve

Here, we use the extended update 𝑀Wbor𝑀 J K for the designated update modality 𝑀 of
the world satisfactionWbor𝑀 J K instead of the basic update ¤|⇛. The modality𝑀 is used
for borrow subdivision (see obor-subdiv presented later).

A borrower token borα P can open the borrow by storing a live lifetime token [α]𝑞 .
In return it gets the borrowed content JPK with the open borrower token oborα𝑞 P :

[α]𝑞 ∗ borα P ⊨ 𝑀Wbor𝑀 J K (
oborα𝑞 P ∗ JPK) bor-open

Notably, the borrowed content JPK is not weakened by the later modality ⊲, unlike
RustBelt’s lifetime logic (recall the access rule LftL-bor-acc of RustBelt’s lifetime logic
presented in § 6.1.2).

An opener borrower token can close the borrow by going the way back. It stores
the borrowed content JPK and recover the borrower token borα P and the live lifetime
token [α]𝑞 :

oborα𝑞 P ∗ JPK ⊨ ¤|⇛Wbor𝑀 J K (
[α]𝑞 ∗ borα P

)
obor-close

Converting Tokens We can also shorten a borrower token’s lifetime and prolong a
lender token’s lifetime using lifetime inclusion ⊑:

β ⊑ α ∗ borα P ⊨ borβ P bor-lft α ⊑ β ∗ lendα P ⊨ lendβ P lend-lft

We can also shorten an open borrower token’s lifetime, additionally storing a converter
for the live lifetime token [α]𝑞 −∗ [β]𝑟 :

β ⊑ α ∗ ([α]𝑞 −∗ [β]𝑟) ∗ oborα𝑞 P ⊨ oborβ𝑟 P obor-lft

Also, we can freely fake a borrower token borα P for any dead lifetime α:

†α ⊨ borα P bor-fake

Borrow Subdivision and Merger We can subdivide a borrow by the following rule:

β ⊑ α ∗ oborα𝑞 P ∗ ∗
𝑖
JQ 𝑖K ∗ (

†β ∗ ∗
𝑖
JQ 𝑖K −∗𝑀 JPK)

⊨ ¤|⇛Wbor𝑀 J K (
[α]𝑞 ∗ ∗

𝑖
borβ Q 𝑖

) obor-subdiv

It is a richer version of the borrow closing rule obor-close. This rule obor-subdiv
creates new subdivided borrowers borβ Q 𝑖 instead of recovering the original borrower
borα P . For that, it requires the contents ∗𝑖JQ 𝑖K of the new borrowers and the ‘con-
verter’

†β ∗ ∗
𝑖
JQ 𝑖K −∗𝑀 JPK
86

that turns the new borrowers’ contents∗𝑖JQ 𝑖K into the the original borrower’s contentJPK under the update modality 𝑀 with an assumption that the lifetime β has died. We
can designate a new lifetime β for the new borrowers as long as it is shorter than the
original lifetime α. Note that obor-close can be derived from obor-subdiv by setting
β = α and Q̄ = P .

We can also merge borrowers. For that, we provide the following rule for merging
and subdividing borrows, enriching the rule obor-subdiv:

∗
𝑗

(
β ⊑ α𝑗 ∗ oborα𝑗𝑞 𝑗

P𝑗
)
∗ ∗

𝑖
JQ 𝑖K ∗ (

†β ∗ ∗
𝑖
JQ 𝑖K −∗𝑀 (∗

𝑗
JP𝑗K))

⊨ ¤|⇛Wbor𝑀 J K (∗
𝑗
[α𝑗]𝑞 𝑗 ∗ ∗

𝑖
borβ Q 𝑖

)
obor-merge-subdiv

It simply allows multiple open borrowers oborα𝑗𝑞 𝑗
P𝑗 instead of just one open borrower

oborα𝑞 P in the rule obor-subdiv.

Reborrowing We can also reborrow a borrower by the following rule:

[α]𝑞 ∗ borα P ⊨ 𝑀Wbor𝑀 J K (
[α]𝑞 ∗ borα⊓β P ∗ (†β −∗ borα P)

)
bor-reborrow

This rules reborrows a borrower token borα P under the intersection lifetime α ⊓ β. It
creates a new borrower token borα⊓β P and a ‘promise’ †β−∗borα P to obtain the original
borrower token borα P back after the lifetime β has died. As a ‘catalyst’, the rule also
requires a live lifetime token [α]𝑞 of some fraction 𝑞. Note that the lifetime intersection
⊓: Lft × Lft → Lft serves a lot for expressing this rule.

Lender Splitting We can also split a lender token lendα P intomultiple lender tokens
∗𝑖 lendα Q 𝑖 by the following rule:

lendα P ∗
(JPK −∗𝑀 (∗

𝑖
JQ 𝑖K)) ⊨ ¤|⇛Wbor𝑀 J K (∗

𝑖
lendα Q 𝑖

)
lend-split

It additionally takes a converter JPK −∗𝑀 (∗𝑖JQ 𝑖K) from the original content JPK to the
new contents∗𝑖JQ 𝑖K under the update modality𝑀 .

Note that RustBelt’s lifetime logic does not support lender splitting.

World Satisfaction Allocation We have the following rule for initializing the bor-
row mechanism and acquiring the world satisfactionWbor𝑀 J K, analogous to the rule
winv-alloc for the invariant mechanism:

⊨ ¤|⇛
(
∃𝛾Bor. ∀J K, 𝑀. Wbor𝑀 J K) wbor-alloc.

It takes a fresh ghost name 𝛾Bor, by which the tokens borα P , lendα P , oborα P and the
world satisfactionWbor𝑀 J K are implicitly parameterized. Notably, the obtained world
satisfaction Wbor𝑀 J K is universally quantified over the semantic interpretation J K:
nProp→ iProp as well as the update modality𝑀 .

6.3.3 Examples

Let us instantiate our borrow mechanism with nProp of Chapter 3 extended with a
borrower connective borα P interpreted as the borrower token:

Jborα PK ≜ borα P

87

Mutable Reference to a Pair For a simple example, a mutable reference to a pair
ℓ : &α mut (T, U) can be expressed as follows, modeling the types T, U as predicates
T , U : Loc → nProp and assuming that the size of T is 𝑘 :

borα
(
T ℓ * U (ℓ + 𝑘)

)
For example, when T is an integer type int, then we can set T ℓ ≜ ∃𝑛 ∈ Z. ℓ ↦→ 𝑛 and
𝑘 = 1.

We can split the mutable reference ℓ : &α mut (T, U) into the mutable references
to the first component ℓ : &α mut T and the second component (ℓ + 𝑘) : &α mut U:

[α]𝑞 ∗ borα
(
T ℓ * U (ℓ + 𝑘)

)
⊨ 𝑀Wbor𝑀 J K (

[α]𝑞 ∗ borα T ℓ ∗ borα U (ℓ + 𝑘)
)

We can prove this using obor-subdiv.
Conversely, we can also merge ℓ : &α mut T and (ℓ + 𝑘) : &α mut U into ℓ : &α

mut (T, U):

[α]𝑞 ∗ borα T ℓ ∗ borα U (ℓ + 𝑘) ⊨ 𝑀Wbor𝑀 J K (
[α]𝑞 ∗ borα

(
T ℓ * U (ℓ + 𝑘)

))
We can prove this using obor-merge-subdiv.

Nested Mutable Reference For a more advanced example, a nested mutable refer-
ence ℓ : &α mut &β mut T can be expressed as follows, modeling the type T as a pred-
icate T : Loc → nProp:

borα
(E

ℓ ′. ℓ |-> ℓ ′ * borβ (T ℓ ′)
)
.

The location value ℓ ′ of the inner mutable reference is existentially quantified inside
the borrower token to allow mutation.

For a small but non-trivial example, let us consider the dereference of the nested
mutable reference !ℓ : &(α ⊓ β) mut T. As described in § 6.1.1, this reborrows the inner
borrow &β mut T under a shorter lifetime α⊓β. Also, it subdivides the outer borrow &α
mut &β mut T, throwing away the power to mutate the location of the outer borrow.

Using our borrow mechanism, we can verify this dereference of the nested mutable
reference under the total Hoare triple:[

[α ⊓ β]𝑞 ∗ borα
(E

ℓ ′. ℓ |-> ℓ ′ * borβ (T ℓ ′)
)]

!ℓ
[
𝜆𝑣 . ∃ℓ ′ s.t. 𝑣 = ℓ ′. [α ⊓ β]𝑞 ∗ borα⊓β(T ℓ ′)

]Wbor ¤|⇛ J K (6.1)

For simplicity, we use the basic update 𝑀 = ¤|⇛ for the world satisfaction. Importantly,
in the total Hoare triple of (6.1), the resulting inner borrow is free of the later modality
⊲, enabling accessing further inside the borrow. Therefore, our later-free borrowmech-
anism enables liveness verification of nested borrows, as we observed for our later-free
invariant mechanism in the singly linked list example § 3.3.3.

The verification of this dereference goes as follows.

Proof of (6.1). For convenience, we name the content proposition of the outer borrower
token refbor ≜ E

ℓ ′. ℓ |-> ℓ ′ * borβ (T ℓ ′). Note that the live lifetime token [α ⊓ β]𝑞
is equal to [α]𝑞 ∗ [β]𝑞 by lft-live-⊓.

By bor-open, we open the outer borrower borα refbor storing [α]𝑞 , getting an
open borrower token oborα𝑞 refbor and the content

JrefborK = ∃ℓ ′. ℓ ↦→ ℓ ′ ∗ borβ (T ℓ ′) .

88

We destruct the existential quantifier to get the location ℓ ′ ∈ Loc. We perform the
dereference !ℓ using the points-to token ℓ ↦→ ℓ ′.

Then we reborrow the inner borrow borβ (T ℓ ′) under the lifetime α to get the target
mutable reference borα⊓β (T ℓ ′) as well as the promise

†α −∗ borβ (T ℓ ′) .

We use the live lifetime token [β]𝑞 as a catalyst for this.
Finally, we should recover the lifetime token [α]. For that, we subdivide the open

borrower token oborα𝑞 refbor, getting no borrows, i.e., setting Q̄ to the empty list. For
that, we should construct the converter

†α −∗ ¤|⇛ JrefborK.
We can create this from the points-to token ℓ ↦→ ℓ ′ and the promise †α −∗ borβ (T ℓ ′)
obtained by the reborrow. The assumption †α of the converter can be used to feed the
promise to get the wanted borrower token borβ (T ℓ ′) for JrefborK.
SharedReference to aMutex-GuardedObject We can alsomodel the shared refer-
ence type to a mutex-guarded object &α Mutex<T> in Rust. The reference &α Mutex<T>
can get access to the content object T by acquiring the mutex lock. Also, the reference
can be freely shared among multiple threads.

Unlike the model (1.15) in § 1.3.1, we now consider the lifetime α, which limits the
time period when the shared reference can get access to the object. After the lifetime
α ends, the lender retrieves the full ownership of the object.

By combining Nola’s invariants with Nola’s borrows, we can express a shared ref-
erence to a mutex-guarded object ℓ : &α Mutex<T> as follows:

invN
(
borα

((
ℓ |-> false * T (ℓ + 1)

)
or ℓ |-> true

))
(6.2)

Here, we modeled the Rust type T as a predicate T : Loc → nProp. We simply store
the borrower token inside the invariant. This direct approach was not possible with
Iris’s invariants and RustBelt’s borrows, due to the problems around the later modality
⊲, and thus RustBelt introduced a special borrow called the atomic borrow &α/Nat 𝑃 as a
workaround for that (recall the discussion in § 6.2).

To be precise, we should be able to shorten the lifetime α of the reference type &α
Mutex<T>. The current model (6.2) does not support that, because the lifetime α is fixed
inside the invariant connective. For that, we slightly relax the model as follows:

∃α′. α ⊑ α′ ∗ invN
(
borα

′
((

ℓ |-> false * T (ℓ + 1)
)
or ℓ |-> true

))
(6.3)

Here, the lifetime α′ represents the ‘actual’ lifetime of the borrow.
Furthermore, if we want to make sure that the lender retrieves the content T (ℓ +1)

after the lifetime α′ ends regardless of the flag at ℓ , we modify the model (6.3) so that
the content T (ℓ + 1) is under the borrow:

∃α′. α ⊑ α′ ∗ invN
(
borα

′
((

ℓ |-> false * borα
′ (T (ℓ + 1))

)
or ℓ |-> true

))
(6.4)

This model can be seen as a Nola version of RustBelt’s model for the shared reference
type to a mutex-guarded object &α Mutex<T> (Jung, 2020, § 13.2). Let us name this Iris
assertion (6.4) as refmutexα,Nℓ T .

By storing the content JT (ℓ +1)Kwith the ownership of the flag set to false, we can
create the shared reference to the mutex-guarded object refmutexα,Nℓ T with a promise

89

to retrieve the content JT (ℓ + 1)K with the ownership of the flag after the lifetime α
ends:

[α]𝑞 ∗ JT (ℓ + 1)K ∗ ℓ ↦→ 𝑏 ⊨ |⇛Winv J K ∗ Wbor ¤|⇛ J K
N(

[α]𝑞 ∗ refmutexα,Nℓ T ∗ lendα
(
T (ℓ + 1) * E

𝑏. ℓ |-> 𝑏
))

Here, we use the custom world satisfaction Winv J K ∗ Wbor ¤|⇛ J K, which consists of
the world satisfactions for Nola’s invariant and borrow mechanisms. To prove this, we
first create the lender lendα

(
T (ℓ + 1) * E

𝑏. ℓ |-> 𝑏
)
and the borrower by bor-lend-

new, storing JT (ℓ + 1)K and ℓ ↦→ 𝑏. Then we split the borrower into the component
borrowers borα (T (ℓ + 1)) and borα (E𝑏. ℓ |-> 𝑏) by bor-open and obor-subdiv (with
the help of the live lifetime token [α]𝑞). Then we apply bor-open and obor-subdiv
again to turn the second borrower borα (E𝑏. ℓ |-> 𝑏) into

borα
((

ℓ |-> false * borα(T (ℓ + 1))
)
or ℓ |-> true

)
,

by storing the first borrower borα (T (ℓ + 1)) for the new content. Finally, we store the
resulting enriched borrower token to create the invariant for refmutexα,Nℓ T by inv-
alloc. The promise is created from the lender tokens for the inner and outer borrows,
using lend-retrieve.

With a shared reference to the mutex-guarded object refmutexα,Nℓ T , a thread can
try to acquire the mutex lock with compare-and-swap cas, and when it succeeds, the
content JT (ℓ + 1)K is transferred to the thread:[

[α]𝑞 ∗ refmutexα,Nℓ T
]

cas(ℓ, false, true)[
𝜆𝑣 . [α]𝑞 ∗

(
𝑣 = false ∨

(
𝑣 = true ∗ JT (ℓ + 1)K))]Winv J K ∗ Wbor ¤|⇛ J K

N

Again, we use the custom world satisfactionWinv J K ∗ Wbor ¤|⇛ J K for Nola’s invariant
and borrow mechanisms. We use a live lifetime token [α]𝑞 , observing that the lifetime
α is alive, to get access to the content of the borrows.

Also, under refmutexα,Nℓ T , the thread can release the lock by storing back the con-
tent JT (ℓ + 1)K:[

[α]𝑞 ∗ refmutexα,Nℓ T ∗ JT (ℓ + 1)K] ℓ←false
[
𝜆_. [α]𝑞

]Winv J K ∗ Wbor ¤|⇛ J K
N

Notably, the access to this shared reference is completely free of the later modality
⊲, enabling further access to the content even under the total Hoare triple.

Usual SharedReference Using Nola’s borrows and invariants, we can express usual
shared reference types in Rust like &α int and &α (int, bool)without difficulty. For
this, we can introduce the shared points-to token ℓ

α↦→ 𝑣 ∈ iProp, defined as follows:

ℓ
α↦→ 𝑣 ≜ ∃α′. α ⊑ α′ ∗ invN

(E

𝑞. borα
′ (

ℓ
𝑞
|-> 𝑣

))
(6.5)

Here we choose some namespaceN for the shared points-to token. This is an invariant
that stores a borrower token borα

′ (
ℓ

𝑞
|-> 𝑣

)
over a fractional points-to token ℓ

𝑞
|-> 𝑣

of some fraction 𝑞. Notably, the shared points-to token ℓ
α↦→ 𝑣 is persistent, unlike the

usual points-to token ℓ
𝑞
↦→ 𝑣 .

We can model an integer shared reference ℓ : &α int as follows using the shared
points-to token:

∃ 𝑛 ∈ Z. ℓ
α↦→ 𝑛

90

Similarly, we can model a shared reference to a pair of an integer and a boolean ℓ : &α
(int, bool) as follows:

∃ 𝑛 ∈ Z, 𝑏 ∈ B. ℓ
α↦→ 𝑛 ∗ (ℓ + 1) α↦→ 𝑏

By storing a fractional points-to token ℓ
𝑞
↦→ 𝑣 , we can create a shared points-to

token ℓ
α↦→ 𝑣 and a lender token lendα (ℓ

𝑞
|-> 𝑣):

ℓ
𝑞
↦→ 𝑣 ⊨ |⇛Winv J K ∗ Wbor ¤|⇛ J K

∅
(
ℓ
α↦→ 𝑣 ∗ lendα (ℓ

𝑞
|-> 𝑣)

)
We first borrow ℓ

𝑞
|-> 𝑣 by bor-lend-new to create a borrower token borα (ℓ

𝑞
|-> 𝑣)

and a lender token lendα (ℓ
𝑞
|-> 𝑣). Then we store the borrower token to create the

invariant for the shared points-to token ℓ
α↦→ 𝑣 by inv-alloc.

Under the shared points-to token ℓ
α↦→ 𝑣 , we can always take out a borrower token

for a points-to token ℓ
𝑞′

|-> 𝑣 of some fraction 𝑞′:

[α]𝑟 ∗ ℓ
α↦→ 𝑣 ⊨ ¤|⇛Winv J K ∗ Wbor ¤|⇛ J K

N
(
[α]𝑟 ∗ ∃𝑞′. borα (ℓ

𝑞′

|-> 𝑣)
)

To prove this, we first get access to the invariant’s content by inv-acc, which gives
a borrower token borα

′ (
ℓ

𝑞
|-> 𝑣

)
for some 𝑞 and some lifetime α′ that is no shorter

than α. Then we subdivide this borrow by bor-open and obor-subdiv to create two

borrower tokens borα
′ (

ℓ
𝑞/2
|-> 𝑣

)
, borα

′ (
ℓ

𝑞/2
|-> 𝑣

)
for the half 𝑞/2 of the original fraction

𝑞. We can restore the invariant’s content using one of the two borrower tokens and can
output the other.

Using a borrower token borα (ℓ
𝑞
|-> 𝑣) over a fractional points-to token, we can read

from the location ℓ :5[
[α]𝑟 ∗ borα (ℓ

𝑞
|-> 𝑣)

]
!ℓ

[
𝜆𝑣 ′. 𝑣 ′ = 𝑣 ∗ [α]𝑟

]Winv J K ∗ Wbor ¤|⇛ J K
N

Extending the idea of the shared points-to token (6.5), we can generally express the
fractured borrower token fborα T for any fractional predicate T : Q → nProp instead of
just the points-to predicate 𝜆𝑞. ℓ

𝑞
↦→ 𝑣 , just like the fractured borrow &αfrac𝛷 provided by

RustBelt’s lifetime logic.

6.4 Semantic Alteration by Derivability

We can support semantic alteration of the proposition P of the borrower, lender and
open borrower connectives by the general derivability construction presented in Chap-
ter 4.

First, we add to the judgment data type Judg the following constructor:

Judg 3 J F · · · | P⇒ Q

The judgment P⇒ Q simply means that the proposition P can be converted into the
proposition Q .

Next, we construct the interpretation J K𝛿 : nProp → iProp parameterized with the
derivability predicate 𝛿 : Judg → iProp (§ 4.2). The syntactic borrower, lender and open
borrower assertions borα P , lendα P , oborα P ∈ nProp can be interpreted as follows:

Jborα PK𝛿 ≜ ∃Q . 𝛿 (P⇒ Q) ∗ 𝛿 (Q⇒ P) ∗ borα Q

5 Although we consider here an atomic read, we can also similarly perform a non-atomic read !naℓ using

the borrower token borα (ℓ
𝑞
|-> 𝑣).

91

Jlendα PK𝛿 ≜ ∃Q . 𝛿 (Q⇒ P) ∗ lendα Q

Joborα𝑞 PK𝛿 ≜ ∃Q . 𝛿 (P⇒ Q) ∗ oborα𝑞 Q

Unlike the model of the invariant (4.8) (§ 4.3), we do not need the persistence modality
□ on the derivability assertions 𝛿 (P⇒ Q) and 𝛿 (Q⇒ P), because the borrower, lender
and open borrower assertions are not persistent.

Now we can define the semantics J K+
𝛿
: Judg → iProp of judgments Judg parameter-

ized with the derivability predicate 𝛿 : Judg → iProp. For the judgment P⇒Q , we define
the semantics as follows:

JP⇒ QK+𝛿 ≜ JPK𝛿 −∗ ¤|⇛ JQK𝛿 .
Now we automatically get the best derivability predicate der ∈ Judg → iProp and the
set of good derivability predicates Deriv ⊆ Judg → iProp by Definition 4.1 (§ 4.3).

Now the borrower, lender and open borrower connectives support the following
rules for semantic alteration by derivability, which hold for any good derivability pred-
icate 𝛿 ∈ Deriv , in a similar way to inv-alter (§ 4.3):

𝛿 (P⇒ Q) ∗ 𝛿 (Q⇒ P) ∗ Jborα PK𝛿 ⊨ Jborα QK𝛿 bor-alter

𝛿 (P⇒ Q) ∗ Jlendα PK𝛿 ⊨ Jlendα QK𝛿 lend-alter

𝛿 (Q⇒ P) ∗ Joborα𝑞 PK𝛿 ⊨ Joborα𝑞 QK𝛿 obor-alter

For a simple example, using bor-alter we can prove

Jborα(P ∗ Q)K𝛿 = Jborα(Q ∗ P)K𝛿
for any 𝛿 ∈ Deriv , just like (4.19).

Also, the following basic conversion rules hold for any 𝛿 :

β ⊑ α ∗ Jborα PK𝛿 ⊨ Jborα PK𝛿 bor-lft

α ⊑ β ∗ Jlendα PK𝛿 ⊨ Jlendβ PK𝛿 lend-lft

β ⊑ α ∗ ([α]𝑞 −∗ [β]𝑟) ∗ Joborα𝑞 PK𝛿 ⊨ Joborβ𝑟 PK𝛿 obor-lft

†α ⊨ Jborα PK𝛿 bor-fake

These semantically alterable connectives satisfy the following proof rules for ma-
nipulating borrows, just like those presented in § 6.3.2. Here, we consider the interpre-
tation J K ≜ J Kder by the best derivability predicate der. These rules are easily derived
from the original rules in § 6.3.2, especially using the soundness of der (Theorem 4.3).

JPK ⊨ ¤|⇛Wbor𝑀 J K (Jborα PK ∗ Jlendα PK) bor-lend-new

†α ∗ Jlendα PK ⊨ 𝑀Wbor𝑀 J K JPK lend-retrieve

[α]𝑞 ∗ Jborα PK ⊨ 𝑀Wbor𝑀 J K (Joborα𝑞 PK ∗ JPK) bor-open

Joborα𝑞 PK ∗ JPK ⊨ ¤|⇛Wbor𝑀 J K (
[α]𝑞 ∗ Jborα PK) obor-close

β ⊑ α ∗ Joborα𝑞 PK ∗ ∗
𝑖
JQ 𝑖K ∗ (

†β ∗ ∗
𝑖
JQ 𝑖K −∗𝑀 JPK)

⊨ ¤|⇛Wbor𝑀 J K (
[α]𝑞 ∗ ∗

𝑖
Jborβ Q 𝑖K) obor-subdiv

92

∗
𝑗

(
β ⊑ α𝑗 ∗ Joborα𝑗𝑞 𝑗

P𝑗K) ∗ ∗
𝑖
JQ 𝑖K ∗ (

†β ∗ ∗
𝑖
JQ 𝑖K −∗𝑀 (∗

𝑗
JP𝑗K))

⊨ ¤|⇛Wbor𝑀 J K (∗
𝑗
[α𝑗]𝑞 𝑗 ∗ ∗

𝑖
Jborβ Q 𝑖K)

obor-merge-subdiv

[α]𝑞 ∗ Jborα PK ⊨ 𝑀Wbor𝑀 J K (
[α]𝑞 ∗ Jborα⊓β PK ∗ (†β −∗ Jborα PK))

bor-reborrow

Jlendα PK ∗ (JPK −∗𝑀 (∗
𝑖
JQ 𝑖K)) ⊨ ¤|⇛Wbor𝑀 J K (∗

𝑖
Jlendα Q 𝑖K) lend-split

6.5 Model

Finally, we briefly explain the model of the lifetime and borrow mechanisms. Although
we inherit the high-level ideas (e.g., each borrower having the state closed, open, or
reborrowing) from RustBelt’s lifetime logic, our model is substantially different from
theirs. In particular, thanks to being free of the problem of step-indexing, we have a
much more direct model of borrows, while RustBelt needed to use an external ‘Box’
library. Also, our ghost state for borrows behaves independently of the ghost state for
lifetimes, unlike RustBelt. Now we dive into the details.

6.5.1 Lifetime Mechanism

Lifetime The lifetime α, β ∈ Lft is modeled as a finite multiset of ghost names, just
like RustBelt’s lifetime logic:

Lft ≜ Multisetfin GhostName.

We use the finite multiset to support the static lifetime and lifetime intersection. The
static lifetime is defined as the empty multiset ⊤ ≜ ∅ and the lifetime intersection is
defined as the multiset sum (adding the multiplicities) α ⊓ β ≜ α] β.

We also introduce pure lifetime inclusion ¤⊑: Lft×Lft → Prop, which is a pure relation
defined as reverse multiset inclusion α ¤⊑ β ≜ α ⊇ β.

Resource Algebra The resource algebra Lft for lifetimes is defined as follows:

Lft ≜ Dfrac + Unit.

It is the sum RA of the discardable fraction RA Dfrac and the unit RA Unit (§ 2.2.2),
respectivelymodeling the live and dead state of an atomic lifetime𝛾 ∈ GhostName. This
is similar to RustBelt’s lifetime logic, but we use the discardable fraction RA instead of
the fraction RA to support the eternal lifetime token∞α we newly introduced.

Propositions Now the live [α]𝑞 , dead †α and eternal∞α lifetime tokens are modeled
as follows:

[α]𝑞 ≜ ∗
𝛾 ∈α

inl𝑞
𝛾

Lft †α ≜ ∃ 𝛾 ∈ α. inr () 𝛾Lft

∞α ≜ ∗
𝛾 ∈α

inl★
𝛾
Lft

For the live lifetime token [α]𝑞 , we use inl𝑞, a fraction resource 𝑞 ∈ Q>0 in the left-
hand summand of Lft. For the dead lifetime token †α, we use inr (), the resource in
the right-hand summand. For the eternal lifetime token ∞α, we use inl★, the discard

93

witness in the left-hand summand. We use the resource update dfrac-restore (§ 2.2.2)
to prove the rule lft-etern-live. The iterative separating conjunction∗𝛾 ∈α takes into
account the multiplicity of each ghost name 𝛾 in the multiset α, which is important for
the rule lft-live-⊓.

The lifetime inclusion α ⊑ β ∈ iProp is modeled as follows:

α ⊑ β ≜ †α ∨
(
∃γ s.t. α ⊓ γ ¤⊑ β. ∞γ

)
It is either a dead lifetime token †α (to support lft-dead-⊑) or an eternal lifetime token
∞γ for some γ that satisfies the pure lifetime inclusion α⊓γ ¤⊑ β ∈ Prop (to support lft-
etern-⊑). This model of lifetime inclusion differs from that of RustBelt’s lifetime logic,
which modeled lifetime inclusion based on the rules lft-⊑-live-acc and lft-⊑-dead.
We adopted a more direct model here, especially to make lifetime inclusion timeless
(lft-⊑-timeless).

6.5.2 Borrow Mechanism

Resource Algebra The resource algebra for the borrowmechanism BornProp is defined
as follows:

BornProp ≜ Auth
(
DepoId

fin
⇀ DeponProp

)
DeponProp ≜ Ag (Lft × N) × BorrnProp × LendnProp

BorrnProp ≜ BorrId
fin
⇀ Ex

(
nProp × BorrMode

)
BorrMode 3 𝑏 F closed | open𝑞 | reborrowβ

LendnProp ≜ LendId
fin
⇀ Ex nProp

The resource algebra BornProp is the authoritative RA (§ 2.2.2) over a finite map RA to
deposits DeponProp, to which borrowers BorrnProp and lenders LendnProp are linked.

Each deposit is identified with a deposit id 𝑖 ∈ DepoId and associated with a fixed
lifetime α ∈ Lft and a fixed depth 𝑑 ∈ N in the hierarchy of reborrows. When a deposit
reborrows from another deposit, the former’s depth should be strictly larger than the
latter’s.

Each borrower is identified with a borrower id 𝑗 ∈ BorrId and associated with the
proposition nProp and the mode BorrMode, which is closed, open with a live lifetime
token [α]𝑞 stored, or reborrowing under the lifetime β. The idea of using these three
modes comes from RustBelt’s lifetime logic.

Each lender is identified with a lender id 𝑘 ∈ LendId and associated just with the
proposition nProp.

The structure of resources is quite different fromwhat RustBelt’s lifetime logic used.
In RustBelt’s lifetime logic, borrows are managed per lifetime. This makes lifetimes
tightly coupled with borrows. Also, their proof around reborrows depends on a subtle
property about lifetimes: from any non-empty set of lifetimes, a lifetime that is mini-
mal with respect to pure lifetime inclusion ¤⊑ can be taken. Our proof is more robust,
just using the acyclicity ensured by the depth information, not assuming any special
structures about lifetimes.

Tokens The lender token lendα P is modeled as follows:

lendα P ≜ ∃𝑖, α′, 𝑑, 𝑘 . α′ ⊑ α ∗ ◦
[
𝑖 ≔

(
ag (α′, 𝑑), ∅, [𝑘 ≔ ex P]

)] 𝛾Bor

94

It is existentially quantified over the deposit id 𝑖 , the deposit’s lifetime α′ and depth 𝑑 ,
and the lender id 𝑘 . Lifetime inclusion α′ ⊑ α ensures that †α entails †α′ (lft-⊑-dead)
for the rule lend-retrieve.

The open borrower token oborα𝑞 P is modeled as follows:

oborα𝑞 P ≜ ∃𝑖, α′, 𝑑, 𝑗, 𝑟 . α ⊑ α′ ∗
(
[α′]𝑟 −∗ [α]𝑞

)
∗ [α′]𝑟/2 ∗

◦
[
𝑖 ≔

(
ag (α′, 𝑑), [𝑗 ≔ ex (P , open𝑟/2)], ∅

)] 𝛾Bor

It is existentially quantified over the deposit id 𝑖 , the deposit’s lifetime α′ and depth 𝑑 ,
the borrower id 𝑗 , and the fraction 𝑟 ∈ Q>0. The open borrower token stores only the
half token [α′]𝑟/2 to the deposit, retaining the other half token [α′]𝑟/2.

The borrower token borα P is modeled as follows:

borα P ≜ †α ∨ ∃𝑖, α′, 𝑑, 𝑗 . α ⊑ α′ ∗(
◦
[
𝑖 ≔

(
ag (α′, 𝑑), [𝑗 ≔ ex (P , closed)], ∅

)] 𝛾Bor
∨

∃β. †β ∗ ◦
[
𝑖 ≔

(
ag (α′, 𝑑), [𝑗 ≔ ex (P , reborrowβ)], ∅

)] 𝛾Bor
)

The first disjunct †α is just for the rule bor-fake. The main part is existentially quan-
tified over the deposit id 𝑖 , the deposit’s lifetime α′ and depth 𝑑 , and the borrower id
𝑗 . There are two cases: the borrower is either closed closed or reborrowed reborrowβ
under a dead lifetime β.

World Satisfaction The borrower world satisfaction Wborr(P ,𝑏)α,𝑑 J K for the deposit’s
lifetime α ∈ Lft and depth 𝑑 ∈ N, the proposition P ∈ nProp, the borrower mode
𝑏 ∈ BorrMode, and the interpretation J K: nProp→ iProp is defined as follows:

Wborr(P ,𝑏)α,𝑑 J K ≜


JPK 𝑏 = closed

[α]𝑞 𝑏 = open𝑞
∃𝑑 ′ > 𝑑. lend′α⊓β

𝑑 ′ P 𝑏 = reborrowβ

For the closed state, it just stores the interpretation of the borrowed proposition JPK.
For the open state with the fraction 𝑞, it stores the live lifetime token [α]𝑞 . For the
reborrow state under the lifetime β, it stores lend′α⊓β

𝑑 ′ P for some 𝑑 ′ > 𝑑 , where the
modified lender token lend′α𝑑 P is defined as follows:

lend′α𝑑 P ≜ ∃𝑖, 𝑘 . ◦
[
𝑖 ≔

(
ag (α, 𝑑), [𝑘 ≔ ex P], ∅

)] 𝛾Bor

When a reborrower reborrowβ opens the borrow again under the premise that †β, it
retrieves the content using the lender token lend′α⊓β

𝑑 ′ P .
The set of the deposit states Depo is defined as follows:

Depo ≜ (Lft × N) ×
(
BorrId

fin
⇀ nProp × BorrMode

)
×

(
LendId

fin
⇀ nProp

)
The deposit world satisfactionWdepo𝐷𝑀 J K for the deposit state𝐷 ∈ Depo, the update

modality 𝑀 : iProp → iProp and the interpretation J K: nProp → iProp is defined as
follows:

Wdepo((α,𝑑),𝐵𝑠,𝐿𝑠)𝑀 J K ≜
(
†α ∗ 𝑀

(∗
𝑘∈dom𝐿𝑠

J𝐿𝑠 𝑘K)) ∨(∗
𝑗∈dom𝐵𝑠

Wborr𝐵𝑠 𝑗α,𝑑 J K ∗ (
†α ∗ ∗

𝑗∈dom𝐵𝑠
J(𝐵𝑠 𝑗) .1K −∗𝑀 (∗

𝑘∈dom𝐿𝑠
J𝐿𝑠 𝑘K)))

95

The first disjunct is the case where the lifetime of the deposit has been dead and the
lenders have been retrieved. The second disjunct is the case where the deposit is alive.
The disjunct stores the world satisfactionWborr𝐵𝑠 𝑗α,𝑑 J K for each borrower. Also, it owns
the ‘converter’ from the borrowers’ propositions ∗𝑗∈dom𝐵𝑠 J(𝐵𝑠 𝑗) .1K to the lenders’
propositions ∗𝑘∈dom𝐿𝑠 J𝐿𝑠 𝑘K with the update by 𝑀 assuming †α. This converter is
used when a lender is retrieved (lend-retrieve).

We define the authoritative token depos𝐷𝑠 ∈ iProp for a finite map 𝐷𝑠 : DepoId fin
⇀

Depo as follows:

depos𝐷𝑠 ≜

• map
(
𝜆
(
(α, 𝑑), 𝐵𝑠, 𝐿𝑠

)
.
(
ag (α, 𝑑), map (ex) 𝐵𝑠, map (ex) 𝐿𝑠

))
𝐷𝑠

𝛾Bor

Finally, the world satisfaction Wbor𝑀 J K for the borrow mechanism is defined as
follows:

Wbor𝑀 J K ≜ ∃𝐷𝑠. depos𝐷𝑠 ∗ ∗
𝑖∈dom𝐷𝑠

Wdepo𝐷𝑠 𝑖
𝑀 J K

96

Chapter 7

Later-Free Prophetic Borrows

The best way to predict the future is to invent it

Alan Kay, at a 1971 meeting of PARC

This chapter presents the later-free prophetic borrow mechanism of our framework,
built on our later-free borrow mechanism presented in Chapter 6. Our prophetic bor-
row mechanism abstracts and refines RustHornBelt (Matsushita et al., 2022)’s reason-
ing approach to functional verification about Rust-style borrows with prophecies in the
style of RustHorn (Matsushita et al., 2020, 2021).

This is an interesting and usefulmetatheory on its own, providing general later-free
proof rules for reasoning in the style of RustHornBelt but without directlymanipulating
the mechanism for prophetic agreement. From another perspective, this provides a case
study of the expressivity of our framework, building a richer mechanism on a more
basic one.

This chapter is organized as follows. Section 7.1 reviews the author’s prior work,
RustHorn and RustBelt, as the background of Nola’s prophetic borrows. Section 7.2
presents the proof rules of our prophetic borrows. Section 7.3 discusses semantic alter-
ation by the derivability technique of Chapter 4. Section 7.4 explains the model of our
prophetic borrows.

7.1 Background — The Author’s Prior Work

In this section, we review the author’s prior work, RustHorn and RustBelt, as the back-
ground of Nola’s prophetic borrows.

7.1.1 RustHorn: Prophecies for Rust-Style Borrows

The work RustHorn was originally the author’s senior thesis (Matsushita, 2019) and
then published in the conference proceedings of ESOP 2020 (Matsushita et al., 2020)
and in a journal ACM TOPLAS (Matsushita et al., 2021). The core contributions of
RustHorn, including the idea, the formalization, and the implementation and evalua-
tion, are the author’s.

RustHorn proposed the novel idea of using prophecies to model Rust-style (mutable)
borrows and reason functionally about them. Using RustHorn’s idea, mutable borrows
can be naturally and uniformly translated into first-class values without state infor-
mation, significantly simplifying the verification. Remarkably, this approach supports
advanced borrowing patterns like reborrows and nested borrows.

The work RustHorn itself demonstrated the effectiveness of this idea in the context
of fully automated verification. RustHorn also presented a paper proof of the transla-

97

tion’s correctness (soundness and completeness) over a simplified core calculus mod-
eling Rust. Notably, RustHorn’s idea gave rise to Creusot (Denis et al., 2022), a leading
semi-automated Rust verifier at present.

Hereafter in this subsection, we explain the work RustHorn and its idea in more
detail.

Challenge: Functional Reasoning about Rust-Style Borrows Rust’s borrowing
machinery is powerful and useful for managing ownership, especially because borrow-
ers can freely throw away ownership fragments at any time without direct communica-
tion with their lender, as discussed in § 6.1.1.

But the borrowing machinery of Rust’s type system provides only rough informa-
tion about mutable state under a borrow, in that the only guarantee about the borrowed
object returned to the lender after the lifetime ends is that the object satisfies the own-
ership type T. Although this is effective for guaranteeing memory and thread safety,
we often want to go further to verify functional correctness, which takes into account
the input and output values of computation. Regarding a borrow, the lender should be
able to know the exact value of the borrowed object at the end of the lifetime, reflect-
ing mutations by the borrower. But this is not obvious exactly due to the advantage
of Rust’s borrowing: there is no direct communication between the borrowers and the
lender. How can we functionally reason about mutation by Rust-style borrows?

RustHorn’s Solution: Prophecies The author’s prior work, RustHorn (Matsushita,
2019; Matsushita et al., 2020, 2021) solved this challenge naturally and uniformly. The
key device is a prophecy variable (or prophecy in short) (Abadi and Lamport, 1988;
Vafeiadis, 2008; Jung et al., 2020b), which peeks into some information about the fu-
ture ahead of time in program verification.

RustHorn’s idea can be roughly explained as follows. When a borrow starts, we
introduce a prophecy variable 𝑥 that represents the future value of the borrowed ob-
ject at the end of the lifetime, i.e., the final value of the borrowed object during the
borrow. We let the borrower and the lender share this prophecy variable 𝑥 . We model
a borrower as the borrowed object’s current value 𝑎 and the prophecy 𝑥 for its final
value. When the borrower mutates the borrowed object, we update the object’s value
𝑎 accordingly. When a borrower throws away the ownership, we resolve the prophecy
𝑥 into the object’s value 𝑎 of the borrowed object at that point. For an advanced case
where a borrower is subdivided, we create new prophecies 𝑦1, . . . , 𝑦𝑛 for the new bor-
rowers and partially resolve the old prophecy 𝑥 into an appropriate value that depends
on the new prophecies 𝑦1, . . . , 𝑦𝑛 . When the lifetime ends, we can model the object
returned to the lender as the value of the prophecy 𝑥 , which has been resolved into the
final value of the borrowed object.

In a typical setting, a prophecy variable is modeled by non-determinism, branching
over all possibilities of the future value 𝑥 . When the prophecy 𝑥 is resolved into a
value 𝑎, we assume the equality 𝑥 = 𝑎, i.e., cut off all branches of non-determinism that
do not satisfy the equality 𝑥 = 𝑎. With this approach, the behavior of a Rust program
with mutable borrows can be reduced to the behavior of a stateless functional program,
making functional verification much easier and more efficient.

HowRustHorn-Style Prophecies Are Used RustHorn demonstrated the effective-
ness of this prophecy-based approach explained above in the context of CHC-based
verification, i.e., fully automated functional verification by reduction to constrained
Horn clauses (Bjørner et al., 2015).

98

Later, Creusot (Denis et al., 2022) embodied RustHorn’s approach in the context
of SMT-driven semi-automated verification, i.e., verification by manual annotations of
loop invariants etc. and automated SMT solving. Creusot translates Rust programswith
annotations into stateless functional programs and verifies them in the Why3 platform
(Filliâtre and Paskevich, 2013). Remarkably, using Creusot, a performative SAT solver
written in Rust was verified functionally correct (Skotåm, 2022).

Moreover, RusSOL (Fiala et al., 2023) used RustHorn-style functional specifications
to automatically synthesize Rust programs that satisfy Rust’s ownership principles and
the given specifications.

A combination of RustHorn’s approach with fractional ownership has also been
explored (Nakayama et al., 2024).

Simple Example: Choice fromMutable Borrows For a simple example, consider
the following Rust program that features a choice from twomutable borrows depending
on dynamic information:1 2

fn max_mut<α>(p : &α mut int, q : &α mut int) -> &α mut int {
if *p >= *q { p } else { q }

}
fn test() {
let mut m : int = rand_int(); let mut n : int = rand_int();
let r : &mut int = max_mut(&mut m, &mut n); *r += 7;
assert!(7 <= abs(m - n));

}

Code 7.1: Simple Verification Problem on Choice from Mutable Borrows

The function max_mut takes two integer mutable references p, q : &α mut int and
returns the one that stores the larger value. The tricky thing is that the address of
the returned reference depends on dynamic information about values. The goal is to
verify the assertion of the test function test, which goes as follows. First, we create
integer variables m, n initialized randomly. Next, we mutably borrow the two and call
the function max_mut to get amutable reference r to the larger one. Then, we increment
the value stored at r by 7. Finally, we assert that the difference between m and n is no
less than 7. This assertion is always true because we have incremented the larger of m
and n by 7.

Wewant to verify Code 7.1 without any explicit model of heapmemory. RustHorn’s
prophecies let us do this. We model an integer mutable reference p as a pair (𝑚, 𝑥) ∈ Z2

of the current value 𝑚 ∈ Z and the prophetic final value 𝑥 ∈ Z at the address. Then
the function max_mut is modeled as the following input-output relation (postcondition)
MaxMut : Z2 → Z2 → Z2 → Prop:3

MaxMut (𝑚, 𝑥) (𝑛,𝑦) 𝑟 ≜(
𝑚 ≥ 𝑛 ∧ 𝑟 = (𝑚,𝑥) ∧ 𝑦 = 𝑛

)
∨

(
(𝑚 < 𝑛 ∧ 𝑟 = (𝑛,𝑦) ∧ 𝑥 =𝑚)

) (7.1)

In the case p is returned, the other mutable reference q : &α mut int throws away
the ownership and thus resolves its prophecy 𝑦 into 𝑛. A similar thing goes for the case
q is returned.
1 For simplicity, we suppose an unbounded integer type int instead of a bounded integer type like i32.
2 The function rand_int non-deterministically outputs a random integer.
3 To aid understanding, we present the direct definition of input-output relations, unlike RustHorn’s
paper. The work RustHorn itself represented Rust programs as constrained Horn clauses (CHCs), giving
constraints on predicate variables for the input-output relations. The least solution to RustHorn’s CHCs
amounts to the direct input-output relations we present here.

99

Now the verification condition of the test function test can be expressed as follows,
using MaxMut defined by (7.1):

∀𝑚,𝑛. ∀𝑥,𝑦. ∀𝑜, 𝑧 s.t. MaxMut (𝑚, 𝑥) (𝑛,𝑦) (𝑜, 𝑧) .
𝑧 = 𝑜 + 7→ 7 ≤ |𝑚 − 𝑛 |

(7.2)

Because themutable reference r loses ownership after performing themutation *r +=
7, its prophecy 𝑧 is resolved into the value 𝑜 + 7, where 𝑜 is the value stored at r before
the mutation. We can easily verify that the verification condition (7.2) is satisfied by
case analysis on the cases𝑚 ≥ 𝑛 and𝑚 < 𝑛.

Advanced Example: Subdividing aMutable Borrow over a List For an advanced
example, let us consider the following Rust program that features a mutable borrow
over a list and its subdivision:4 5

enum List { Nil, Cons(int, Box<List>) } use List::*;
fn take_some<α>(p : &α mut List) -> &α mut int {
match p { Nil => loop {},

Cons(q, r) => if rand_bool() { q } else { take_some(r) }
}

}
fn sum(p : &List) -> int {
match p { Nil => 0, Cons(n, q) => n + sum(q) }

}
fn test() {
let mut l : List = rand_list(); let s : int = sum(&l);
let p : &mut int = take_some(&mut l); *p += 1;
assert!(sum(&l) == s + 1);

}

Code 7.2: Advanced Verification Problem on Subdividing a Mutable Borrow over a List

The recursive data type List represents a singly linked list of integers. The function
take_some takes a mutable reference p : &α mut List to a list and returns a mutable
reference &α mut int to some integer element in the list (or loops infinitely). Impor-
tantly, this function subdivides a mutable borrow over the list into a mutable borrow
over an element. Also, this function is recursive, making the verification more chal-
lenging. The helper function sum just computes the sum of the elements of the list
p : &List. We want to verify the assertion of the test function test, which goes as
follows. First, it takes a random list l and remembers the sum s of its elements. Next,
it mutably borrows the list l and subdivides it into a mutable borrow p over some el-
ement using the function take_some. Then, it increments the value stored at p by 1.
Finally, it asserts that the sum of the elements of the list l has been incremented by 1,
i.e., has become s + 1.

Notably, using RustHorn’s idea, we can naturally model and verify Code 7.2. The
input-output relation of the function take_some can be expressed as the least solution
for the predicate variable TakeSome : (List Z)2 → Z2 → Prop to the following con-
straints, which are technically CHCs (constrained Horn clauses):

TakeSome ([], 𝑥𝑠) 𝑟 ⇐ ⊥ (7.3)
TakeSome (𝑛 : 𝑛𝑠, 𝑥 : 𝑥𝑠) 𝑟 ⇐ 𝑟 = (𝑛, 𝑥) ∧ 𝑥𝑠 = 𝑛𝑠 (7.4)

4 The part use List::*; just allows writing Nil and Cons instead of List::Nil and List::Cons.
5 The functions rand_bool and rand_list output a random boolean and a random list, respectively.

100

TakeSome (𝑛 : 𝑛𝑠, 𝑥 : 𝑥𝑠) 𝑟 ⇐ 𝑥 = 𝑛 ∧ TakeSome (𝑛𝑠, 𝑥𝑠) 𝑟 (7.5)

The relation⇐ simplymeans the logical implication from the right to the left. Variables
like 𝑟 are universally quantified. Like MaxMut above (7.1), for the predicate TakeSome,
the input and output mutable references are modeled as the pair of the current value
and the prophecy for the final value. The constraint (7.3) represents the case when *p
is the empty list Nil. The constraints (7.4) and (7.5) represent the case when *p is non-
empty. First, the prophecy of the input reference is partially resolved into a cons value
𝑥 : 𝑥𝑠 . In the branch where the mutable reference to the head element is returned, as
described by (7.4), the prophecy of the tail list 𝑥𝑠 is resolved into the current tail 𝑛𝑠 and
the return value is the cons of the current head 𝑛 and the prophecy of the head 𝑥 . In
the branch where take_some is recursively called on the tail of the list, as described by
(7.5), the prophecy of the head is resolved into the current head 𝑛 and the recursive call
takes the pair of the current tail and the prophecy of the tail.

The verification condition of the test function test can be expressed as follows,
using the least solution TakeSome𝜇 to the constraints (7.3), (7.4) and (7.5):

∀𝑛𝑠. ∀𝑥𝑠. ∀𝑚,𝑦 s.t. TakeSome𝜇 (𝑛𝑠, 𝑥𝑠) (𝑚,𝑦) .
𝑦 =𝑚 + 1→ sum𝑥𝑠 = sum𝑛𝑠 + 1

(7.6)

Here, sum: List Z → Z is the function that computes the sum of the elements of an
integer list. The verification condition (7.6) can be easily verified because the predicate

𝜆 (𝑛𝑠, 𝑥𝑠). 𝜆 (𝑚,𝑦) . 𝑦 =𝑚 + 1→ sum𝑥𝑠 = sum𝑛𝑠 + 1 (7.7)

is a solution for TakeSome to the constraints (7.3), (7.4) and (7.5), which by definition
is implied by the least solution TakeSome𝜇 . In other words, the condition (7.7) found
from (7.6) is an inductive invariant for the recursive constraints (7.3), (7.4) and (7.5).

Remarkably, in RustHorn’s experimental evaluation (Matsushita et al., 2020, § 4.3),
the verification of the Rust code corresponding to Code 7.2 was completed instantly
(taking less than a second) in a fully automated way, using HoIce (Champion et al.,
2018) as the backend CHC solver.

Modeling anAdvancedAPI:Mutable Iterator Using RustHorn’s idea, we can also
precisely model advanced Rust APIs with mutable borrows. For an interesting example,
here we consider the mutable iterator IterMut<α,T> over a vector. Its core behavior
boils down to the following two methods:

fn iter_mut<α,T>(v : &α mut Vec<T>) -> IterMut<α,T>
fn next<α,T>(it : &mut IterMut<α,T>) -> Option<&α mut T>

Code 7.3: Core Methods of Rust’s Mutable Iterator

The method iter_mut converts a mutable reference to a vector v : &α mut Vec<T>
into a mutable iterator IterMut<α,T>. A mutable iterator IterMut<α,T> has the own-
ership of some subsequence of a vector borrowed under the lifetime α. The key oper-
ation on the mutable iterator is next, which performs one step of iteration. When the
subsequence owned by the iterator is not empty, themethod removes the subsequence’s
head element from the subsequence and returns a mutable reference to it. When the
subsequence is empty, the method returns None to tell the end of the iteration. Also
note that the input it of the method next is an example of a nested mutable reference,
since it is a mutable reference to a mutable iterator.

Using RustHorn’s idea, we can naturally model the mutable iterator IterMut<α,T>
and its methods iter_mut and next.6 Suppose an object of the type T is modeled as a
6 This functional representation of the API was first explicitly proposed and formalized by the work
RustHornBelt (Matsushita, 2021; Matsushita et al., 2022), introduced later in § 7.1.2.

101

value in a set 𝐴. A vector Vec<T> is modeled as a list [𝑎1, . . . , 𝑎𝑛] ∈ List 𝐴. We model a
mutable iterator IterMut<α,T> as a list of pairs

[
(𝑎1, 𝑥1), . . . , (𝑎𝑛, 𝑥𝑛)

]
∈ List 𝐴2 such

that the 𝑖-th element (𝑎𝑖 , 𝑥𝑖) represents a mutable reference to the 𝑖-th element of the
subsequence, modeled as the pair of the current value and prophecy.

The method iter_mut<α,T> can be modeled as the following input-output relation
IterMut : (List 𝐴)2 → List 𝐴2 → Prop:

IterMut (𝑎𝑠, 𝑥𝑠) 𝑎𝑥𝑠 ≜ |𝑥𝑠 | = |𝑎𝑠 | ∧ 𝑎𝑥𝑠 = zip𝑎𝑠 𝑥𝑠.

We partially resolve the prophecy for the final vector value 𝑥𝑠 , fixing its length |𝑥𝑠 | =
|𝑎𝑠 |. The output list𝑎𝑥𝑠 is the zipped list zip𝑎𝑠 𝑥𝑠 of the current values𝑎𝑠 and prophecies
𝑥𝑠 (for example, zip [𝑎1, 𝑎2, 𝑎3] [𝑥1, 𝑥2, 𝑥3] =

[
(𝑎1, 𝑥1), (𝑎2, 𝑥2), (𝑎3, 𝑥3)

]
).

Once we model the mutable iterator in this way, the method next<α,T> can be
modeled straightforwardly as the following input-output relation Next :

(
List 𝐴2)2 →

Option 𝐴2 → Prop:

Next (𝑎𝑥 : 𝑎𝑥𝑠, 𝑎𝑥𝑠′) 𝑜𝑎𝑥 ≜ 𝑎𝑥𝑠′ = 𝑎𝑥𝑠 ∧ 𝑜𝑎𝑥 = some𝑎𝑥

Next ([], 𝑎𝑥𝑠′) 𝑜𝑎𝑥 ≜ 𝑎𝑥𝑠′ = [] ∧ 𝑜𝑎𝑥 = none.

7.1.2 RustHornBelt: Semantic Foundation for Prophetic Borrows

The work RustHornBelt was originally the author’s master’s thesis (Matsushita, 2021)
and then published in the conference proceedings of ACM PLDI 2022 (Matsushita et al.,
2022) winning the distinguished paper award. Key technical ideas of this work, includ-
ing the machinery of parametric prophecies, and a large part of the Coq mechanization
are the author’s. Theworkwas born through the author’s internship in the RustBelt/Iris
team led by Derek Dreyer at the Max Planck Institute for Software Systems (MPI-SWS).

RustHornBelt extended RustBelt (Jung et al., 2018a) to provide a semantic founda-
tion for RustHorn-style prophetic verification. Its central scientific contribution is a
new technique, nicknamed parametric prophecies, to reason about prophecies flexibly
in separation logic.

In this subsection, we explain the work RustHornBelt in more detail. We also dis-
cuss the problems of its approach, which we tackle by Nola’s later-free prophetic bor-
rows.

Challenge: Verify RustHorn-Style Prophecies Generally As discussed above in
§ 7.1.1, RustHorn’s prophetic approach to functional verification can naturally reason
about various patterns of mutable borrows, including reborrows and nested borrows.
However, proving the soundness of RustHorn’s approach in general is challenging.
Rust-style borrows and prophecies are even separately challenging to reason about,
and RustHorn’s approach combines them together in a highly non-trivial way.

The work RustHorn (Matsushita et al., 2021) presented a paper proof of the correct-
ness of its prophetic translation. However, their proof only covered a simplified core
calculus modeling Rust and depended on a subtle syntactic bisimulation argument. It
was not clear how to extend their proof in general, especially in the presence of various
Rust APIs.

RustHornBelt: RustBelt Extended for Prophetic Borrows The work RustHorn-
Belt (Matsushita, 2021; Matsushita et al., 2022) extended RustBelt (Jung et al., 2018a) (re-
viewed in § 6.1.2) to provide a semantic foundation for functional verification of Rust
programs in the style of RustHorn, beyond the memory and thread safety check of
Rust’s ownership type system. More specifically, RustHornBelt verified the soundness

102

of RustHorn-style functional specifications over a large subset of Rust with various Rust
APIs, including Vec, SmallVec, IterMut, Cell, spawn/join, and Mutex. For some of
these APIs, the work RustHornBelt also newly proposed RustHorn-style specifications
themselves.

The key aspect is that RustHornBelt semantically modeled various Rust APIs in the
separation logic Iris, inheriting RustBelt’s approach. This enables verifying the sound-
ness of the ownership type interface and the RustHorn-style functional specification of
each API separately in a modular way. Also, the definitions and proofs of RustHornBelt
are fully mechanized in the Coq proof assistant.

As the central scientific contribution, RustHornBelt invented a new technique, nick-
named parametric prophecies, to reason about prophecies flexibly in separation logic.
This machinery is explained more in detail later in § 7.2.1. By combining RustBelt’s
lifetime logic and the machinery of parametric prophecies, RustHornBelt successfully
modeled and reasoned about prophetic borrows, i.e., Rust-style mutable borrows inter-
acting with RustHorn-style prophecies.

Problem #1: Later Modality Still, RustHornBelt suffered from the later modality ⊲,
which comes from RustBelt’s lifetime logic.

The later modality blocks RustHornBelt from proving that RustHorn-style reduc-
tion preserves infinite behaviors of programs, which is essential to justify RustHorn-
style reduction in verifying liveness properties.

Also, even for safety verification, RustHornBelt encountered a problem of strip-
ping off a statically unbounded number of later modalities. RustHornBelt found a
workaround for this issue, using a technique nicknamed flexible step-indexing. But
that substantially complicated the proof and the semantic model of Rust’s types (Mat-
sushita et al., 2022, § 3.5) (we explain this later in § 9.3).

Problem #2: Lack of Abstraction Also, RustHornBelt’s proofs about mutable bor-
rows directly manipulated an involved model of mutable borrows in an ad hoc way. As
a result, their proofs are often complicated and hard to reuse. This is especially the
case for their proofs about reborrowing. We need a good abstraction of RustHornBelt’s
reasoning about mutable borrows.

7.2 Proof Rules of Nola’s Prophetic Borrows

Now we present the proof rules of Nola’s later-free prophetic borrows. We first in-
troduce the basic part, parametric prophecies (§ 7.2.1). Then we explain Nola’s later-
free prophetic borrows (§ 7.2.2). Finally, we present some examples of using Nola’s
prophetic borrows (§ 7.2.3).

7.2.1 Parametric Prophecies

We inherit from RustHornBelt the machinery of parametric prophecies to reason about
prophecies flexibly in separation logic. Here we present the key definitions and proof
rules. Its model is explained later in § 7.4.1.

Prophecy Variables First, we consider the set of prophecy variables (or prophecies
in short) PrVar𝐴 parameterized over any set 𝐴 ∈ U of some universe U. We use the
metavariables 𝑥,𝑦, 𝑧 for prophecy variables.

103

Prophecy Assignment A prophecy assignment 𝜋 ∈ PrAsn assigns to each prophecy
variable 𝑥 ∈ PrVar𝐴 of any set𝐴 ∈ U a concrete value 𝜋 𝑥 ∈ 𝐴. A prophecy assignment
represents one possible future about the prophecy variables.

Clairvoyant Monad The clairvoyant monad Clair 𝐴 for a set 𝐴 is simply the reader
monad over prophecy assignments: Clair 𝐴 ≜ PrAsn→ 𝐴. We call a value 𝑎 ∈ Clair 𝐴
of the clairvoyant monad (i.e., a value parameterized over the prophecy assignment) a
clairvoyant value. We mark clairvoyant values with a circumflex .̂

Prophecy Observation The key Iris proposition for parametric prophecies is the
prophecy observation

〈
𝜙
〉
∈ iProp, which persistently asserts that all futures 𝜋 ∈ PrAsn

that are currently possible satisfy the condition 𝜙 𝜋 , specified by a clairvoyant pure asser-
tion 𝜙 ∈ Clair Prop = PrAsn→ Prop.〈

𝜙
〉
is persistent proph-obs-persist

The prophecy observation is monotone over the clairvoyant pure proposition. Also,
we can combine two prophecy observations to get a prophecy observation for the con-
junction assertion.

∀𝜋. 𝜙 𝜋→𝜓 𝜋〈
𝜙
〉
⊨

〈
𝜓
〉 proph-obs-mono〈

𝜙
〉
∗
〈
𝜓
〉
=

〈
𝜆𝜋 . 𝜙 𝜋 ∧𝜓 𝜋

〉
proph-obs-∗

The following is thekey rule for the adequacy of the prophecy observation
〈
𝜙
〉
,

associating its clairvoyant assertion 𝜙 with the ‘reality’:7〈
𝜙
〉
⊨ ∃𝜋0. 𝜙 𝜋0 proph-obs-sat

It states that the prophecy observation
〈
𝜙
〉
ensures that there exists at least one possible

future 𝜋0 ∈ PrAsn that satisfies the clairvoyant pure assertion 𝜙 𝜋0. As a special case,
if the clairvoyant assertion of the prophecy observation is constant over the prophecy
assignment 𝜆_. 𝜙 , then we directly get the assertion 𝜙 by proph-obs-sat:8〈

𝜆_. 𝜙
〉
⊨ 𝜙 proph-obs-const

For example, if we have two prophetic observations
〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉
and

〈
𝜆𝜋 . 𝜋 𝑥 =

𝑎′
〉
for a prophecy variable 𝑥 , we can combine the two to get the observation

〈
𝜆_. 𝑎 =

𝑎′
〉
(by proph-obs-∗ and proph-obs-mono) and get the equality 𝑎 = 𝑎′ by proph-obs-

const.

7.2.2 Prophetic Borrows

Now we introduce our mechanism of prophetic borrows. Our prophetic borrow mech-
anism is built on our borrow mechanism presented in § 6.3.2, inheriting the overall
structure.
7 Our rule proph-obs-sat is improved from the original rule of RustHornBelt (Matsushita et al., 2022,
§ 3.2), where the entailment was weakened by a fancy update |⇛Nproph . We updated the resource algebra
for prophecies Proph to include the invariant for this rule into the validity predicate ✓, as we see later
in § 7.4.1.

8 Actually, we can also derive proph-obs-sat from proph-obs-const, because the prophecy observation〈
𝜙
〉
entails

〈
𝜆_. ∃𝜋0 . 𝜙 𝜋0

〉
by proph-obs-mono. In this sense, the two rules for adequacy of parametric

prophecies proph-obs-sat and proph-obs-const are equivalent.

104

Again, the resource algebra PbornProp for the prophetic borrow mechanism is pa-
rameterized over the syntactic data type for propositions nProp. Also, Nola’s prophetic
borrow mechanism provides a world satisfaction Wpbor𝑀 J K parameterized over the
semantic interpretation J K: nProp → iProp as well as the update modality 𝑀 used for
borrow subdivision.

Basic Rules The prophetic borrow mechanism features the prophetic version of the
borrower, lender, and open borrower tokens: borα𝑎,𝑥 Φ , lend

α
𝑎 Φ , and obor

α
𝑞,𝑥 Φ . Their func-

tionalities are analogous to the corresonding tokens borα P , lendα P , oborα P of our
borrow mechanism (§ 6.3.2), but they are enriched with the prophecies.

The prophetic borrower token borα𝑎,𝑥 Φ newly takes a current value 𝑎 ∈ 𝐴 and a
prophecy 𝑥 ∈ PrVar𝐴, for an implicitly specified domain 𝐴 ∈ U. Also, the prophetic
borrower token takes a syntactic predicate Φ :𝐴 → nProp instead of just a proposition
P ∈ nProp. Similarly, the prophetic open borrower token oborα𝑞,𝑥 Φ takes a prophecy
𝑥 ∈ PrVar𝐴 and a predicate Φ :𝐴 → nProp for 𝐴 ∈ U. The prophetic lender lendα𝑎 Φ
takes a predicate Φ :𝐴 → nProp and a clairvoyant value 𝑎 for 𝐴 ∈ U. The clairvoyant
value of the lender is typically set to the value of a prophecy 𝜆𝜋 . 𝜋 𝑥 .

The tokens are all timeless:

borα𝑎,𝑥 Φ is timeless pbor-timeless lendα𝑎 Φ is timeless plend-timeless

oborα𝑞,𝑥 Φ is timeless pobor-timeless

By storing JΦ 𝑎K, we can create a prophetic borrower borα𝑎,𝑥 Φ and a prophetic lender
lendα𝜆𝜋. 𝜋 𝑥 Φ for some freshly taken prophecy variable 𝑥 :

JΦ 𝑎K ⊨ ¤|⇛Wpbor𝑀 J K (
∃𝑥 . borα𝑎,𝑥 Φ ∗ lendα𝜆𝜋. 𝜋 𝑥 Φ

)
pbor-plend-new

After the lifetime α has died, the prophetic lender lendα𝑎 Φ can retrieve the borrowed
content, like lend-retrieve:

†α ∗ lendα𝑎 Φ ⊨ 𝑀Wpbor𝑀 J K (
∃ 𝑎′ s.t.

〈
𝜆𝜋 . 𝑎 𝜋 = 𝑎′

〉
. JΦ 𝑎′K) plend-retrieve

Notably, the value 𝑎′ of the content JΦ 𝑎′K is ensured to be equal to the lender’s clair-
voyant value 𝑎 𝜋 by the prophecy observation

〈
𝜆𝜋 . 𝑎 𝜋 = 𝑎′

〉
.

A prophetic borrower borα𝑎,𝑥 Φ can open the borrow by storing a live lifetime token
[α]𝑞 , like bor-open:

[α]𝑞 ∗ borα𝑎,𝑥 Φ ⊨ 𝑀Wpbor𝑀 J K (
oborα𝑞,𝑥 Φ ∗ JΦ 𝑎K) pbor-open

We get a prophetic open borrower token oborα𝑞,𝑥 Φ and the borrowed content JΦ 𝑎K.
Importantly, the borrowed content JΦ 𝑎K has the current value 𝑎 and is not weakened
by the later modality ⊲.

A prophetic open borrower can close a borrow by storing the content back, like
obor-close:

oborα𝑞,𝑥 Φ ∗ JΦ 𝑎′K ⊨ ¤|⇛Wpbor𝑀 J K (
[α]𝑞 ∗ borα𝑎′,𝑥 Φ

)
pobor-close

Notably, the open borrower token can specify any value 𝑎′ ∈ 𝐴 for the content JΦ 𝑎′K,
which is not necessarily equal to the original value before opening the borrow by pbor-
open. The obtained borrower token borα𝑎′,𝑥 Φ has this new value 𝑎′.

When a prophetic borrower throws away its ownership, it can resolve the prophecy
𝑥 into the current value 𝑎, which is a new rule for prophetic borrowing:

[α]𝑞 ∗ borα𝑎,𝑥 Φ ⊨ 𝑀Wpbor𝑀 J K (
[α]𝑞 ∗

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉)
pbor-resolve

By the prophecy resolution, we narrow the ‘possible futures’ (or prophecy assignments)
𝜋 to only those that assign the value 𝑎 to the prophecy variable 𝑥 . This new information
about the possible futures is asserted by the prophecy observation

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉
.

105

Converting Tokens We have the following rules for modifying the lifetime of to-
kens, just like bor-lft, lend-lft and obor-lft:

β ⊑ α ∗ borα𝑎,𝑥 Φ ⊨ borβ𝑎,𝑥 Φ pbor-lft

α ⊑ β ∗ lendα𝑎 Φ ⊨ lendβ𝑎 Φ plend-lft

β ⊑ α ∗ ([α]𝑞 −∗ [β]𝑟) ∗ oborα𝑞,𝑥 Φ ⊨ oborβ𝑟,𝑥 Φ pobor-lft

Also, we can ‘fake’ a prophetic borrower token borα𝑎,𝑥 Φ when the lifetime α is dead,
just like bor-fake:

†α ⊨ borα𝑎,𝑥 Φ pbor-fake

Borrow Subdivision and Merger We have the following rule for subdividing a
prophetic borrower without changing the prophecy 𝑥 , just like obor-subdiv:

β ⊑ α ∗ oborα𝑞,𝑥 Φ ∗ JΦ 𝑎K ∗ (
∀𝑎′. †β ∗ JΨ 𝑎′K −∗𝑀 JΦ 𝑎′K)
⊨ ¤|⇛Wpbor𝑀 J K [α]𝑞 ∗ borβ𝑎,𝑥 Ψ

pobor-nsubdiv

This takes a ‘converter’ ∀𝑎′. †β ∗ JΨ 𝑎′K −∗ 𝑀 JΦ 𝑎′K, which turns the new contentJΨ 𝑎′K into the old content JΦ 𝑎′K for any final value 𝑎′ with the update modality 𝑀 ,
under the assumption that the lifetime β is dead.

We have the following advanced rule for subdividing a prophetic borrower into
smaller ones with new prophecies, a substantially enriched version of obor-subdiv:

β ⊑ α ∗ oborα𝑞,𝑥 Φ ∗ ∗
𝑖
JΨ𝑖 𝑏𝑖K ∗ (

∀𝑏′. †β ∗ ∗
𝑖
JΨ𝑖 𝑏′𝑖 K −∗𝑀 JΦ (𝑓 (𝑏′))K)

⊨ ¤|⇛Wpbor𝑀 J K (
[α]𝑞 ∗ ∃ 𝑦̄ s.t.

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦)

〉
. ∗

𝑖
borβ

𝑦𝑖 ,𝑏𝑖
Ψ𝑖

)
pobor-subdiv

The prophecies 𝑦̄ for the new borrowers are freshly taken. The rule takes a conversion
function 𝑓 :

∏
𝑖 𝐵𝑖 → 𝐴, which maps the final values of the new borrowers’s contents

𝑏′ into the final value of the old borrower’s content 𝑓 (𝑏′). The converter

∀𝑏′. †β ∗ ∗
𝑖
JΨ𝑖 𝑏′𝑖 K −∗𝑀 JΦ (𝑓 (𝑏′))K

is simply universally quantified over the final values 𝑏′ of the new borrowers’ contents
(just like in pobor-nsubdiv) and uses the value 𝑓 (𝑏′) for the old borrower’s content. By
this borrow subdivision, the old prophecy 𝑥 is partially resolved into the value 𝑓 (𝜋 𝑦),
which depends on the new prophecies’ values 𝜋 𝑦𝑖 . This is asserted by the prophecy
observation

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦)

〉
. Note that we can derive the simple resolution rule

pbor-resolvewe presented from this rule pobor-subdiv and the borrow opening rule
pbor-open.

We also have the following rule for merging and subdividing prophetic borrowers,
obtained by extending pobor-subdiv, just like obor-merge-subdiv is obtained from
obor-subdiv:

∗
𝑗

(
β ⊑ α𝑗 ∗ obor

α𝑗
𝑞 𝑗 ,𝑥 𝑗
Φ 𝑗

)
∗ ∗

𝑖
JΨ𝑖 𝑏𝑖K ∗(

∀𝑏′. †β ∗ ∗
𝑖
JΨ𝑖 𝑏′𝑖 K −∗𝑀 (∗

𝑗
JΦ 𝑗 (𝑓𝑗 (𝑏′))K))

⊨ ¤|⇛Wpbor𝑀 J K (
[α]𝑞 ∗ ∃ 𝑦̄ s.t.

〈
𝜆𝜋 . ∀ 𝑗 . 𝜋 𝑥 𝑗 = 𝑓𝑗 (𝜋 𝑦)

〉
. ∗

𝑖
borβ

𝑦𝑖 ,𝑏𝑖
Ψ𝑖

)
106

pobor-merge-subdiv

This rule simply allows taking multiple open borrowers oborα𝑗𝑞 𝑗 ,𝑥 𝑗
Φ 𝑗 instead of only one

oborα𝑞,𝑥 Φ as in pobor-subdiv. We also take conversion functions 𝑓𝑗 and get a prophecy
observation

〈
𝜆𝜋 . ∀ 𝑗 . 𝜋 𝑥 𝑗 = 𝑓𝑗 (𝜋 𝑦)

〉
.

Reborrowing Reborrowing is much trickier for prophetic borrows than for ordinary
borrows. The rule bor-reborrow for an ordinary borrow reborrowed borα P to create
a reborrower borα⊓β P and a promise to return the original borrower †β −∗ borα P . But
for prophetic borrowing, we should take a new prophecy for the reborrower, and the
effect of the reborrower’s mutation should be communicated to the original borrower
via that prophecy.

To handle this difficulty, we newly designed a proof rule for prophetic reborrowing,
which directly targets the situationwhere a borrower borβ

𝑏,𝑦
Ψ to be reborrowed is taken

from some outer borrower oborα𝑞,𝑥 Φ :

oborα𝑞,𝑥 Φ ∗ [β]𝑟 ∗ borβ
𝑏,𝑦
Ψ ∗

(
∀𝑏′. †α ∗ borβ

𝑏′,𝑦 Ψ −∗𝑀 JΦ (𝑓 𝑏′)K)
⊨ 𝑀Wpbor𝑀 J K (

[α]𝑞 ∗ [β]𝑟 ∗ ∃ 𝑦′ s.t.
〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦′)

〉
. borα⊓β

𝑏,𝑦′ Ψ
)

pobor-pbor-reborrow

We reborrow the inner borrower borβ
𝑏,𝑦
Ψ to create a new borrower borα⊓β

𝑏,𝑦′ Ψ with a
freshly taken prophecy 𝑦′. We take a conversion function 𝑓 : 𝐵 → 𝐴 that takes the final
version of the ‘current’ value of the inner borrower borβ

𝑏′,𝑦 Ψ and returns the final value
of the outer borrower’s content JΦ (𝑓 𝑏′)K. Accordingly, the rule takes the converter

∀𝑏′. †α ∗ borβ
𝑏′,𝑦 Ψ −∗𝑀 JΦ (𝑓 𝑏′)K.

Because the value 𝑏′ here is determined by the mutation of the reborrower borα⊓β
𝑏,𝑦′ Ψ ,

the value of the outer borrower’s prophecy 𝑥 is partially resolved to the value 𝑓 (𝜋 𝑦′)
calculated from the new prophecy’s value 𝜋 𝑦′, resulting in the prophecy observation〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦′)

〉
.

Lender Splitting We can also split a prophetic lender token lendα𝑎 Φ into multiple
lender tokens∗𝑖 lendα𝑏𝑖 Ψ 𝑖 by the following rule, like lend-split:(
∀ 𝑎′ s.t.

〈
𝜆𝜋 . 𝑎 𝜋 = 𝑎′

〉
. JΦ 𝑎′K −∗𝑀 (∗

𝑖

(
∃ 𝑏′ s.t.

〈
𝜆𝜋 . 𝑏𝑖 𝜋 = 𝑏′

〉
. JΨ 𝑖 𝑏′K))) ∗

lendα𝑎 Φ ⊨ ¤|⇛
Wbor𝑀 J K (∗

𝑖
lendα

𝑏𝑖
Ψ 𝑖

)
plend-split

The converter for this rule handles prophetic observations.

World Satisfaction Allocation We also have the rule for allocating the world sat-
isfactionWpbor𝑀 J K, just like wbor-alloc:

⊨ ¤|⇛
(
∃𝛾Bor. ∀J K, 𝑀. Wpbor𝑀 J K) wpbor-alloc

It takes a fresh ghost name 𝛾Bor for our borrow machinery § 6.3.2, because our prophetic
borrow machinery is built on top of our borrow machinery, as we see in § 7.4.3.

107

7.2.3 Examples

Now we present some examples of using our prophetic borrow mechanism.
To begin with, we instantiate our prophecy borrowmechanism with nProp of (3.16)

(§ 3.3.3) extended with a prophetic borrower connective borα𝑎,𝑥 Φ interpreted as the
prophetic borrower token, just like § 6.3.3:

Jborα𝑎,𝑥 Φ K ≜ borα𝑎,𝑥 Φ

Mutable Reference to a Pair For a simple example, a mutable reference to a pair
ℓ : &α mut (T, U) can be expressed as follows:

borα(𝑎,𝑏),𝑥
(
𝜆 (𝑎′, 𝑏′) . Φ ℓ 𝑎′ * Ψ (ℓ + 𝑘) 𝑏′

)
Here, we modeled the types T, U as predicates Φ : Loc → 𝐴 → nProp and Ψ : Loc →
𝐵 → nProp, and assumed that the size of T is 𝑘 . We assume that the mutable reference
has the current value (𝑎,𝑏) ∈ 𝐴 × 𝐵 and the prophecy 𝑥 ∈ PrVar𝐴×𝐵 . For example,
when T is an integer type int, then we can set 𝐴 = Z, Φ ℓ 𝑛 ≜ ℓ ↦→ 𝑛, and 𝑘 = 1.

We can split the mutable reference ℓ : &α mut (T, U) into the mutable references
to ℓ : &α mut T and (ℓ + 𝑘) : &α mut U as follows:

[α]𝑞 ∗ borα(𝑎,𝑏),𝑥
(
𝜆 (𝑎′, 𝑏′). Φ ℓ 𝑎′ * Ψ (ℓ + 𝑘) 𝑏′

)
⊨ 𝑀Wbor𝑀 J K(

[α]𝑞 ∗ ∃ 𝑦, 𝑧 s.t.
〈
𝜆𝜋 . 𝜋 𝑥 = (𝜋 𝑦, 𝜋 𝑧)

〉
. borα𝑎,𝑦 Φ ℓ ∗ borα𝑏,𝑧 Ψ (ℓ + 𝑘)

)
We can prove this using pobor-subdiv. Importantly, we get the prophecy observation〈
𝜆𝜋 . 𝜋 𝑥 = (𝜋 𝑦, 𝜋 𝑧)

〉
that partially resolves the original prophecy 𝑥 into the pair of

the new prophecies’s values (𝜋 𝑦, 𝜋 𝑧).
Conversely, we can also merge ℓ : &α mut T and (ℓ + 𝑘) : &α mut U into ℓ : &α

mut (T, U) as follows:

[α]𝑞 ∗ borα𝑎,𝑦 Φ ℓ ∗ borα𝑏,𝑧 Ψ (ℓ + 𝑘) ⊨ 𝑀Wbor𝑀 J K(
[α]𝑞 ∗ ∃ 𝑥 s.t.

〈
𝜆𝜋 . (𝜋 𝑦, 𝜋 𝑧) = 𝜋 𝑥

〉
. borα(𝑎,𝑏),𝑥

(
𝜆 (𝑎′, 𝑏′) . Φ ℓ 𝑎′ * Ψ (ℓ + 𝑘) 𝑏′

))
We can prove this using pobor-merge-subdiv. By the rule, we get two prophecy ob-
servations

〈
𝜆𝜋 . 𝜋 𝑦 = (𝜋 𝑥) .1

〉
and

〈
𝜆𝜋 . 𝜋 𝑧 = (𝜋 𝑥).2

〉
, whose combination gives〈

𝜆𝜋 . (𝜋 𝑦, 𝜋 𝑧) = 𝜋 𝑥
〉
.

Nested Mutable Reference For a more advanced example, a nested mutable refer-
ence ℓ : &α mut &β mut T can be expressed as follows, modeling the type T as a pred-
icate Φ : Loc → 𝐴→ nProp:

borα(𝑎,𝑦),𝑥
(
𝜆 (𝑎′, 𝑦′) . E

ℓ ′. ℓ |-> ℓ ′ * borβ𝑎′,𝑦′ (Φ ℓ
′)
)
.

The current value of the outer borrow is (𝑎,𝑦) ∈ 𝐴 × PrVar𝐴, the pair of the current
value 𝑎 and prophecy 𝑦 of the inner borrow.

Like in § 6.3.3, let us consider the dereference of the nested mutable reference !ℓ :
&(α ⊓ β) mut T. We can verify the following total Hoare triple for this dereference:[
[α ⊓ β]𝑞 ∗ borα(𝑎,𝑦),𝑥

(
𝜆 (𝑎′, 𝑦′) . E

ℓ ′. ℓ |-> ℓ ′ * borβ𝑎′,𝑦′ (Φ ℓ
′)
)]

!ℓ[
𝜆𝑣 . [α ⊓ β]𝑞 ∗ ∃ ℓ ′ s.t. 𝑣 = ℓ ′, 𝑦′ s.t.

〈
𝜆𝜋 . 𝜋 𝑥 = (𝜋 𝑦′, 𝑦)

〉
. borα⊓β𝑎,𝑦′ (Φ ℓ

′)
]Wbor ¤|⇛ J K

(7.8)

108

This significantly extends the total Hoare triple (6.1) for ordinary borrows. The re-
borrowed reference borα⊓β𝑎,𝑦′ (Φ ℓ ′) inherits the current value 𝑎 and uses a newly taken
prophecy𝑦′. For the prophecy 𝑥 of the outer borrow, the second component is resolved
to the prophecy 𝑦 of the inner borrow, and the first component is partially resolved to
the value 𝜋 𝑦′ of the newly taken prophecy 𝑦′, resulting in the prophecy observation〈
𝜆𝜋 . 𝜋 𝑥 = (𝜋 𝑦′, 𝑦)

〉
. Also note that the resulting inner borrow is free of the later

modality ⊲, enabling accessing further inside the borrow. Our later-free prophetic bor-
row mechanism thus enables prophetic liveness verification of nested borrows.

The prophetic verification of this dereference goes as follows.

Proof of (7.8). For convenience, we name the content predicate of the outer borrower
token refpbor (𝑎′, 𝑦′) ≜ E

ℓ ′. ℓ |-> ℓ ′ * borβ𝑎′,𝑦′ (Φ ℓ ′).
By pbor-open, we open the outer borrower borα(𝑎,𝑦),𝑥 refpbor, getting an open bor-

rower token oborα𝑞,𝑥 refpbor and the content

Jrefpbor (𝑎,𝑦)K = ∃ℓ ′. ℓ ↦→ ℓ ′ ∗ borβ𝑎,𝑦′ (Φ ℓ
′).

We destruct the existential quantifier to get the location ℓ ′ ∈ Loc. We perform the
dereference !ℓ using the points-to token ℓ ↦→ ℓ ′.

Then we apply the rule pobor-pbor-reborrow for prophetic reborrowing, storing
the open borrower token oborα𝑞,𝑥 refpbor for the outer reference, the borrower token
borβ𝑎′,𝑦′ (Φ ℓ ′) for the inner reference, and the following converter:

∀𝑎′. †α ∗ borβ𝑎′,𝑦′ (Φ ℓ
′) −∗𝑀 Jrefpbor (𝑎′, 𝑦′)K.

This converter can easily be constructed from the points-to token ℓ ↦→ ℓ ′. Finally, we
get the reborrower borα⊓β𝑎,𝑦′ (Φ ℓ ′) and the prophecy observation

〈
𝜆𝜋 . 𝜋 𝑥 = (𝜋 𝑦′, 𝑦)

〉
for a newly taken prophecy 𝑦′.

Remark 7.1 (Nested Prophecies). Here we consider a prophecy 𝑥 ∈ PrVar𝐴×PrVar𝐴 for
a value that further contains a prophecy PrVar𝐴. Such nested prophecies are key to the
simplicity of our approach. RustHornBelt did not support such nested prophecies and
instead employed unnested prophecies like PrVar𝐴×𝐴 for nested mutable references.
Due to this, RustHornBelt suffered from the problem of managing dependent prophe-
cies. We avoid that problem by using nested prophecies.

7.3 Semantic Alteration by Derivability

We can support semantic alteration of the predicate Φ of the prophetic borrower, lender
and open borrower connectives by the general derivability construction presented in
Chapter 4, just like for ordinary borrows (§ 6.4).

Like in § 6.4, we add to the judgment data type Judg the following constructor:

Judg 3 J F · · · | Φ⇒ Ψ (Φ , Ψ : 𝐴→ nProp; 𝐴 ∈ U)

The judgment Φ⇒ Ψ means that Φ 𝑎 can be converted into Ψ 𝑎 for any value 𝑎 ∈ 𝐴.
Next, we construct the interpretation J K𝛿 : nProp → iProp parameterized with the

derivability predicate 𝛿 : Judg → iProp (§ 4.2). The syntactic prophetic borrower, lender
and open borrower assertions borα𝑎,𝑥 Φ , lendα𝑎 Φ , obor

α
𝑞,𝑥 Φ are interpreted as follows:

Jborα𝑎,𝑥 Φ K𝛿 ≜ ∃Ψ . 𝛿 (Φ⇒ Ψ) ∗ 𝛿 (Ψ⇒ Φ) ∗ borα𝑎,𝑥 ΨJlendα𝑎 Φ K𝛿 ≜ ∃Ψ . 𝛿 (Φ⇒ Ψ) ∗ lendα𝑎 Ψ

109

Joborα𝑞,𝑥 Φ K𝛿 ≜ ∃Ψ . 𝛿 (Φ⇒ Ψ) ∗ oborα𝑞,𝑥 Ψ

Now we can define the semantics J K+
𝛿
: Judg → iProp of judgments Judg parame-

terized with the derivability predicate 𝛿 : Judg → iProp. For the judgment Φ⇒ Ψ , we
define the semantics as follows:

JΦ⇒ Ψ K+𝛿 ≜ ∀𝑎. JΦ 𝑎K𝛿 −∗ ¤|⇛ JΨ 𝑎K𝛿 .
Now we automatically obtain the best derivability predicate der ∈ Judg → iProp and
the set of good derivability predicates Deriv ⊆ Judg → iProp by Definition 4.1 (§ 4.3).

Now the prophetic borrower, lender and open borrower connectives satisfy the fol-
lowing rules for semantic alteration by derivability, which hold for any good derivabil-
ity predicate 𝛿 ∈ Deriv , just like bor-alter, lend-alter and obor-alter:

𝛿 (Φ⇒ Ψ) ∗ 𝛿 (Ψ⇒ Φ) ∗ Jborα𝑎,𝑥 Φ K𝛿 ⊨ Jborα𝑎,𝑥 Ψ K𝛿 pbor-alter

𝛿 (Φ⇒ Ψ) ∗ Jlendα𝑎 Φ K𝛿 ⊨ Jlendα𝑎 Ψ K𝛿 plend-alter

𝛿 (Ψ⇒ Φ) ∗ Joborα𝑞,𝑥 Φ K𝛿 ⊨ Joborα𝑞,𝑥 Ψ K𝛿 pobor-alter

For a simple example, using pbor-alter we can prove

J borα𝑎,𝑥 (
𝜆𝑎′. Φ 𝑎′ ∗ Ψ 𝑎′

) K𝛿 = J borα𝑎,𝑥 (
𝜆𝑎′. Ψ 𝑎′ ∗ Φ 𝑎′

) K𝛿
for any 𝛿 ∈ Deriv , just like (4.19).

Also, the following basic conversion rules hold for any 𝛿 :

β ⊑ α ∗ Jborα𝑎,𝑥 Φ K𝛿 ⊨ Jborβ𝑎,𝑥 Φ K𝛿 pbor-lft

α ⊑ β ∗ Jlendα𝑎 Φ K𝛿 ⊨ Jlendβ𝑎 Φ K𝛿 plend-lft

β ⊑ α ∗ ([α]𝑞 −∗ [β]𝑟) ∗ Joborα𝑞,𝑥 Φ K𝛿 ⊨ Joborβ𝑟,𝑥 Φ K𝛿 pobor-lft

†α ⊨ Jborα𝑎,𝑥 Φ K𝛿 pbor-fake

These semantically alterable connectives satisfy the following proof rules for ma-
nipulating prophetic borrows, just like those presented in § 7.2.2. Here, we consider
the interpretation J K ≜ J Kder by the best derivability predicate der. These rules are
easily derived from the original rules in § 7.2.2, especially using the soundness of der
(Theorem 4.3).

JΦ 𝑎K ⊨ ¤|⇛Wpbor𝑀 J K (Jborα𝑎,𝑥 Φ K ∗ Jlendα𝑎 Φ K) pbor-plend-new

†α ∗ Jlendα𝑎 Φ K ⊨ 𝑀Wpbor𝑀 J K (
∃ 𝑎 s.t.

〈
𝜆𝜋 . 𝑎 𝜋 = 𝑎

〉
. JΦ 𝑎K) plend-retrieve

[α]𝑞 ∗ Jborα𝑎,𝑥 Φ K ⊨ 𝑀Wpbor𝑀 J K (Joborα𝑞,𝑥 Φ K ∗ JΦ 𝑎K) pbor-open

Joborα𝑞,𝑥 Φ K ∗ JΦ 𝑎′K ⊨ ¤|⇛Wpbor𝑀 J K (
[α]𝑞 ∗ Jborα𝑎′,𝑥 Φ K) pobor-close

[α]𝑞 ∗ Jborα𝑎,𝑥 Φ K ∗ ⊨ 𝑀Wpbor𝑀 J K (
[α]𝑞 ∗

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉)
pbor-resolve

β ⊑ α ∗ Joborα𝑞,𝑥 Φ K ∗ JΦ 𝑎K ∗ (
∀𝑎′. †β ∗ JΨ 𝑎′K −∗𝑀 JΦ 𝑎′K)
⊨ ¤|⇛Wpbor𝑀 J K [α]𝑞 ∗ Jborβ𝑎,𝑥 Ψ K

pobor-nsubdiv

β ⊑ α ∗ Joborα𝑞,𝑥 Φ K ∗ ∗
𝑖
JΨ𝑖 𝑏𝑖K ∗ (

∀𝑏′. †β ∗ ∗
𝑖
JΨ𝑖 𝑏′𝑖 K −∗𝑀 JΦ (𝑓 (𝑏′))K)

⊨ ¤|⇛Wpbor𝑀 J K (
[β]𝑞 ∗ ∃ 𝑦̄ s.t.

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦)

〉
. ∗

𝑖
Jborβ

𝑦𝑖 ,𝑏𝑖
Ψ𝑖K)

pobor-subdiv

110

∗
𝑗

(
β ⊑ α𝑗 ∗ Joborα𝑗𝑞 𝑗 ,𝑥 𝑗

Φ 𝑗K) ∗ ∗
𝑖
JΨ𝑖 𝑏𝑖K ∗(

∀𝑏′. †β ∗ ∗
𝑖
JΨ𝑖 𝑏′𝑖 K −∗𝑀 (∗

𝑗
JΦ 𝑗 (𝑓𝑗 (𝑏′))K))

⊨ ¤|⇛Wpbor𝑀 J K (
[β]𝑞 ∗ ∃ 𝑦̄ s.t.

〈
𝜆𝜋 . ∀ 𝑗 . 𝜋 𝑥 𝑗 = 𝑓𝑗 (𝜋 𝑦)

〉
. ∗

𝑖
Jborβ

𝑦𝑖 ,𝑏𝑖
Ψ𝑖K)

pobor-merge-subdiv

Joborα𝑞,𝑥 Φ K ∗ [β]𝑟 ∗ Jborβ𝑏,𝑦 Ψ K ∗ (
∀𝑏′. †α ∗ Jborβ

𝑏′,𝑦 Ψ K −∗𝑀 JΦ (𝑓 𝑏′)K)
⊨ 𝑀Wpbor𝑀 J K (

[α]𝑞 ∗ [β]𝑟 ∗ ∃ 𝑦′ s.t.
〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦′)

〉
. Jborα⊓β

𝑏,𝑦′ Ψ K)
pobor-pbor-reborrow(

∀ 𝑎′ s.t.
〈
𝜆𝜋 . 𝑎 𝜋 = 𝑎′

〉
. JΦ 𝑎′K −∗𝑀 (∗

𝑖

(
∃ 𝑏′ s.t.

〈
𝜆𝜋 . 𝑏𝑖 𝜋 = 𝑏′

〉
. JΨ 𝑖 𝑏′K))) ∗

Jlendα𝑎 Φ K ⊨ ¤|⇛Wbor𝑀 J K (∗
𝑖
Jlendα

𝑏𝑖
Ψ 𝑖K)

plend-split

7.4 Model

Now we present the model of our later-free prophetic borrow mechanism. The overall
structure inherits RustHornBelt’s model. The prophetic borrow mechanism is built on
the mechanism of parametric prophecies (§ 7.4.1) as well as the prophetic agreement
mechanism (§ 7.4.2), which is hidden from users of prophetic borrows. Finally, we in-
stantiate our later-free borrow mechanism (Chapter 6) with a custom data type for
syntactic propositions to achieve the later-free prophetic borrow mechanism (§ 7.4.3).

7.4.1 Parametric Prophecies

First, we introduce our model of parametric prophecies. This is based on RustHorn-
Belt’s model, but we have made improvements to simplify the model and make proof
rules like proph-obs-sat work with the basic update ¤|⇛ instead of the fancy update
|⇛Nproph .

ProphecyVariables andClairvoyant Values The set of prophecy variables PrVar𝐴
is defined as an infinite set for non-empty 𝐴 and as the empty set for 𝐴 = ∅. The sets
PrVar𝐴 are disjoint for different 𝐴s. We define PrVar ≜ ∪𝐴∈UPrVar𝐴.

We define the relation 𝑎 ⊥ 𝑋 between a clairvoyant value 𝑎 ∈ Clair 𝐴 and a set of
prophecies 𝑋 ⊆ PrVar as follows:

𝑎 ⊥ 𝑋 ≜ ∀𝜋, 𝜋 ′. (∀𝑥 ∉ 𝑋 . 𝜋 𝑥 = 𝜋 ′ 𝑥)→ 𝑎 𝜋 = 𝑎 𝜋 ′.

This means that the clairvoyant value 𝑎 does not depend on the value of any prophecies
in the set 𝑋 .

Prophecy Log A prophecy log 𝐿 ∈ ProphLog is a list of items of form 𝑥 ≔ 𝑎, assigning
a clairvoyant value 𝑎 ∈ Clair 𝐴 to a prophecy 𝑥 ∈ PrVar𝐴 for 𝐴 ∈ U. A prophecy log
represents a list of past prophecy resolutions.

The domain dom𝐿 ⊆ PrVar of a prophecy log 𝐿 ∈ ProphLog is defined as follows:

dom [] ≜ ∅ dom
(
(𝑥 ≔ 𝑎) : 𝐿

)
≜ {𝑥} ∪ dom𝐿

It means the set of prophecies that appear in the prophecy log.

111

The validity ✓𝐿 of a prophecy log 𝐿 ∈ ProphLog is defined as follows:

✓ [] ≜ > ✓
(
(𝑥 ≔ 𝑎) : 𝐿

)
≜ 𝑥 ∉ dom𝐿 ∧ 𝑎 ⊥

(
{𝑥} ∪ dom𝐿

)
∧ ✓𝐿

The validity means that every prophecy appears at most once and that each assigned
clairvoyant value 𝑎 does not depend on the value of the prophecies {𝑥} ∪ dom𝐿 that
have appeared so far.

The relation ‘𝜋 satisfies 𝐿’ 𝜋 ≺ 𝐿 for a prophecy assignment 𝜋 ∈ PrAsn and a
prophecy log 𝐿 ∈ ProphLog is defined as follows:

𝜋 ≺ 𝐿 ≜ ∀(𝑥 ≔ 𝑎) ∈ 𝐿. 𝜋 𝑥 = 𝑎.

Resource Algebra The resource algebra Proph for the parametric prophecies is de-
fined as follows:

Proph′ ≜ PrVar
fin
⇀

(
Unit + Ag (⋃

𝐴∈U
Clair 𝐴

))
⌞Proph⌟ ≜ ⌞Proph′⌟ 𝑜 ·Proph 𝑜 ′ ≜ 𝑜 ·Proph′ 𝑜 ′ |𝑜 |Proph ≜ |𝑜 |Proph′

✓Proph 𝑜 ≜ ✓Proph′ 𝑜 ∧ ∃𝐿 s.t. ✓𝐿. 𝑜 ⇝ 𝐿

𝑜 ⇝ 𝐿 ≜
(
∀𝑥 s.t. 𝑜 𝑥 = inl () . 𝑥 ∉ dom𝐿

)
∧(

∀𝑥, 𝑎 s.t. 𝑜 𝑥 = inr (ag𝑎) . (𝑥 ≔ 𝑎) ∈ 𝐿
)

The RA Proph is based on the base RA Proph′, inheriting the carrier set, product
and core operation.

The base RA Proph′ is the finite map RA fin
⇀ from prophecy variables PrVar to the

sum RA + (§ 2.2.2). The sum RA switches between the unit RA Unit, representing the
unresolved state, and the agreement RA Ag

(⋃
𝑎∈𝐴 Clair 𝐴

)
, representing the resolved

state with the clairvoyant value 𝑎 ∈ Clair 𝐴 of any domain 𝑎 ∈ 𝐴.
The validity ✓Proph 𝑜 requires aside from the original validity ✓Proph′ 𝑜 that there

exists a valid prophecy log 𝐿 satisfying 𝑜 ⇝ 𝐿. The relation 𝑜 ⇝ 𝐿 means that the
exclusive resource inl () ensures that the prophecy has not been resolved in 𝐿 and an
agreement resource inr (ag𝑎) ensures that the prophecy has been resolved to the clair-
voyant value 𝑎 in 𝐿. The condition ∃𝐿 s.t. ✓𝐿. 𝑜 ⇝ 𝐿 in the resource validity ✓Proph 𝑜
works as an invariant for the rule proph-obs-sat.

In the original model of RustHornBelt, the RA for prophecies Proph was modeled
as an authoritative RA AuthProph′′, where the base RA Proph′′ corresponds to our
Proph′. The original model expressed the invariant for the rule proph-obs-sat as an
Iris proposition outside the RA, which was put into an Iris invariant − Nproph . As a
result, proof rules like proph-obs-sat worked only with the fancy update |⇛Nproph , not
with the basic update ¤|⇛.

Propositions The prophecy token [𝑥] ∈ iProp for 𝑥 ∈ PrVar𝐴 is defined as follows:9

[𝑥] ≜ [𝑥 ≔ inl ()] 𝛾Proph

Here, 𝛾Proph is the ghost name for parametric prophecies.
9 For simplicity, we do not make the prophecy token fractional [𝑥]𝑞 , because fractional prophecy tokens
are not used for modeling the prophetic borrow mechanism. To use fractional prophecy tokens, we fix
Unit into Frac in the definition of Proph′ (and slightly modify 𝑜 ⇝ 𝐿 accordingly).

112

We have the following rule for allocating a prophecy token [𝑥]𝑞 taking a fresh
prophecy variable 𝑥 ∈ PrVar𝐴:

𝐴 ≠ ∅
⊨ ¤|⇛

(
∃ 𝑥 ∈ PrVar𝐴 . [𝑥]

) proph-alloc

The prophecy observation
〈
𝜙
〉
is modeled as follows:〈

𝜙
〉
≜ ∃𝐿 s.t. (∀𝜋 ≺ 𝐿. 𝜙 𝜋) . ∗

(𝑥≔𝑎) ∈ 𝐿
𝑥 ≔ inr (ag𝑎) 𝛾Proph

It owns the agreement resource [𝑥 ≔ inr (ag𝑎)] 𝛾Proph for each past resolution 𝑥 ≔
𝑎 recorded in the prophecy log 𝐿 and also asserts that any prophecy assignment 𝜋
satisfying 𝐿 satisfies the clairvoyant assertion 𝜙 . The prophecy observation satisfies
the rules presented in § 7.2.1.

We have the following rule for resolving a prophecy 𝑥 to a value 𝑓 (𝜋 𝑦) that depend
on unresolved prophecies 𝑦̄:10

[𝑥] ∗ ∗ [𝑦] ⊨ ¤|⇛ (∗ [𝑦] ∗ 〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦)

〉)
proph-resolve

We consume the prophecy token [𝑥] and get the prophecy observation
〈
𝜆𝜋 . 𝜋 𝑥 =

𝑓 (𝜋 𝑦)
〉
, using the prophecy tokens of the dependencies∗ [𝑦] as a catalyst. This rule

can be proved using the rule own-⇝ (§ 2.2.1). To prove the resource update⇝, we add
a new item 𝑥 ≔ 𝜆𝜋 . 𝑓 (𝜋 𝑦) to the head of the prophecy log 𝐿 of the validity predicate
✓Proph.

Note that the side condition that the dependencies 𝑦̄ have not been resolved is essen-
tial to the rule proph-resolve. Omitting it causes a paradox immediately. For example,
suppose we own two prophecy tokens [𝑥], [𝑦] for integer prophecies 𝑥,𝑦 ∈ PrVarZ. If
we had a variant of proph-resolve that does not require the dependency prophecy to-
kens, then we could consume [𝑥] to get the prophecy observation

〈
𝜆𝜋 . 𝜋 𝑥 = 𝜋 𝑦

〉
and

consume [𝑦] to get the prophecy observation
〈
𝜆𝜋 . 𝜋 𝑦 = 𝜋 𝑥 + 1

〉
. Combining the two

by proph-obs-∗ and modifying the result by proph-obs-mono, we get
〈
𝜆_.⊥

〉
, which

causes a contradiction by the adequacy of the prophecy observation proph-obs-const.

7.4.2 Prophetic Agreement

We introduce the mechanism of prophetic agreement, which is hidden from users of
prophetic borrows. The idea of prophetic agreement comes from RustHornBelt, but
our model is simpler.

ResourceAlgebra The resource algebra PrAg for the prophetic agreement is defined
as follows:

PrAg ≜ Frac × Ag
(⋃
𝐴∈U

𝐴
)

It is the product RA of the fractional RA Frac and the agreement RA Ag over a value∑
𝐴∈U𝐴 of some domain 𝐴 ∈ U (§ 2.2.2).

10 If we allow fractional prophecy tokens, then we can generalize [𝑦𝑖] into any fraction [𝑦𝑖]𝑞 in this rule
proph-resolve.

113

Value Observer We introduce an Iris proposition called the value observer vo𝛾 𝑎 ∈
iProp for a ghost name 𝛾 ∈ GhostName and a value 𝑎 ∈ 𝐴 of some domain𝐴 ∈ U, which
is defined as follows:

vo𝛾 𝑎 ≜
(
1/2, ag𝑎

) 𝛾

PrAg

It simply has the half ownership of the value 𝑎 for the ghost name 𝛾 .
The value observer satisfies the following rules:

⊨ ¤|⇛
(
∃𝛾 . vo𝛾 𝑎 ∗ vo𝛾 𝑎

)
vo2-alloc

vo𝛾 𝑎 ∗ vo𝛾 𝑎′ ⊨ 𝑎 = 𝑎′ vo2-agree

vo𝛾 𝑎 ∗ vo𝛾 𝑎 ⊨ ¤|⇛
(
vo𝛾 𝑎′ ∗ vo𝛾 𝑎′

)
vo2-update

vo𝛾 𝑎 ∗ vo𝛾 𝑎 ∗ vo𝛾 𝑎 ⊨ ⊥ vo3-⊥

We can always allocate two value observers of a fresh ghost name 𝛾 (vo2-alloc). Two
value observers of the same ghost name agree on the value (vo2-agree). We can update
the value of the two value observers of the same ghost name (vo2-update). There
should not exist three value observers of the same ghost name (vo3-⊥).

Prophecy Controller Based on the value observer, we introduce an Iris proposition
called the prophecy controller pc𝛾𝑥 𝑎 of a ghost name 𝛾 ∈ GhostName, a value 𝑎 ∈ 𝐴, and
a prophecy 𝑥 ∈ PrVar𝐴 for some domain 𝐴 ∈ U, which is defined as follows:

pc𝛾𝑥 𝑎 ≜
(
[𝑥] ∗ vo𝛾 𝑎

)
∨

(〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉
∗ ∃𝑎′. vo𝛾 𝑎′ ∗ vo𝛾 𝑎′

)
(7.9)

The first disjunct represents the case where the prophecy 𝑥 has not been resolved yet.
It exclusively asserts that the prophecy 𝑥 is unresolved (by the prophecy token [𝑥])
and asserts with half ownership that the value assigned to the ghost name 𝛾 is 𝑎 (by
the value observer vo𝛾 𝑎). The second disjunct represents the case where the prophecy
𝑥 has been resolved. It asserts that the value of the prophecy 𝜋 𝑥 should be 𝑎 (by the
prophecy observation

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉
) and also owns two value observers for the ghost

name vo𝛾 𝑎′ ∗ vo𝛾 𝑎′.
This model (7.9) of the prophecy controller is much simpler than RustHornBelt’s

model, which used an involved proposition called the ‘prophecy equalizer’ to han-
dle dependent prophecies. We can use this simple model because we consider nested
prophecies in our prophetic borrow mechanism (Remark 7.1, § 7.2.3).

Proof Rules We can create a prophecy controller pc𝛾𝑥 𝑎 from a value observer vo𝛾 𝑎
and a prophecy token [𝑥]:

vo𝛾 𝑎 ∗ [𝑥] ⊨ pc𝛾𝑥 𝑎 vo-proph-pc

So combining this with proph-alloc and vo2-alloc, we can create a value observer
and a prophecy controller:11

⊨ ¤|⇛
(
∃𝑥, 𝛾 . vo𝛾 𝑎 ∗ pc𝛾𝑥 𝑎

)
vo-pc-alloc

Also, a prophecy controller decomposes into a value observer and a prophecy token
under a value observer, because the second disjunct of (7.9) is rejected by the rule vo3-
⊥:

vo𝛾 𝑎 ∗ pc𝛾𝑥 𝑎 ⊨ vo𝛾 𝑎 ∗ vo𝛾 𝑎 ∗ [𝑥] vo-pc-proph
11We do not need the side condition 𝐴 ≠ ∅ for the implicit domain 𝐴 ∈ U, because the value 𝑎 ∈ 𝐴
ensures the non-emptiness of 𝐴.

114

The value observer and the prophecy controller of the same ghost name agree on
the value, by vo2-agree:

vo𝛾 𝑎 ∗ pc𝛾𝑥 𝑎
′ ⊨ 𝑎 = 𝑎′ vo-pc-agree

We can update the value of the value observer and the prophecy controller of the same
ghost name, by vo2-update:

vo𝛾 𝑎 ∗ pc𝛾𝑥 𝑎 ⊨ ¤|⇛
(
vo𝛾 𝑎′ ∗ pc𝛾𝑥 𝑎

′) vo-pc-update

When we have a value observer vo𝛾 𝑎 and a prophecy controller pc𝛾𝑥 𝑎, we can re-
solve the prophecy 𝑥 to the value 𝑎, by getting rid of the value observer vo𝛾 𝑎:

vo𝛾 𝑎 ∗ pc𝛾𝑥 𝑎 ⊨ ¤|⇛
(〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉
∗ pc𝛾𝑥 𝑎

)
vo-pc-resolve

To prove this, we switch from the first disjunct to the second disjunct in the prophecy
controller (7.9).

Enriching vo-pc-resolve, we can also partially resolve the prophecy𝑥 of a prophecy
controller by the following rule:

vo𝛾 𝑎 ∗ pc𝛾𝑥 𝑎 ∗ ∗ [𝑦] ⊨ ¤|⇛(∗ [𝑦] ∗ 〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦)

〉
∗

(
∀ 𝑏′ s.t.

〈
𝜆𝜋 . ∀𝑖 . 𝜋 𝑦𝑖 = 𝑏′𝑖

〉
. pc𝛾𝑥 (𝑓 (𝑏′))

))
vo-pc-preresolve

We partially resolve the prophecy 𝑥 into a value 𝑓 (𝜋 𝑦) that depends on unresolved
prophecies 𝑦̄, which can be proved by proph-resolve. We get the ‘promise’ to get the
prophecy controller pc𝛾𝑥 (𝑓 (𝑏′)) for any values 𝑏′ that the dependent prophecies are
resolved to. This promise can be constructed from the two value observers vo𝛾 𝑎 ∗
vo𝛾 𝑎 and the prophecy observation

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦)

〉
. This rule is used for proving

prophetic borrow subdivision (pobor-subdiv, pobor-merge-subdiv) of our prophetic
borrow mechanism (§ 7.2.2).

Also, by consuming a prophecy observer pc𝛾𝑥 𝑎, we can get a prophecy observation〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉
:

pc𝛾𝑥 𝑎 ⊨ ¤|⇛
〈
𝜆𝜋 . 𝜋 𝑥 = 𝑎

〉
pc-resolve

If the prophecy controller is the first disjunct of (7.9), we resolve the prophecy by con-
suming its prophecy token. Otherwise, we just have the prophecy observation inside
the second disjunct.

7.4.3 Prophetic Borrows

Now we instantiate our later-free borrows Chapter 6 to achieve later-free prophetic
borrows.

Custom Syntactic Propositions First, the custom data type of syntactic propositions
nProppbor passed to the borrow mechanism is constructed as follows, based on the data
type nProp passed to the prophetic borrow mechanism by the user:

nProppbor 3 P ∗ F xbor
𝛾
𝑥 Φ (𝛾 ∈ GhostName; 𝑥 ∈ PrVar𝐴; Φ :𝐴→ nProp; 𝐴 ∈ U)

| xlend𝑎 Φ (𝑎 ∈ Clair 𝐴; Φ :𝐴→ nProp; 𝐴 ∈ U)

| xrebor𝛾𝑜 ,𝛾𝑖 ,𝛾+𝑥 𝑓 (𝛾𝑜 , 𝛾𝑖 , 𝛾+ ∈ GhostName; 𝑥 ∈ PrVar𝐴; 𝑓 : 𝐵 → 𝐴; 𝐴, 𝐵 ∈ U)

The constructor xbor𝛾𝑥 Φ is used for modeling prophetic borrowers. The constructor
xlend𝑎 Φ is used for modeling prophetic lenders. The constructor xrebor𝛾,𝛾

′,𝛾+
𝑥 𝑓 is used

115

for an intermediate borrow used for proving the prophetic reborrowing rule pobor-
pbor-reborrow. The function 𝑓 : 𝐵 → 𝐴 is a parameter of this rule. Note that the user
of prophetic borrows does not need to know this data type nProppbor. In particular,
the user does not need to directly manipulate the involved intermediate borrow by
xrebor

𝛾,𝛾 ′,𝛾+
𝑥 𝑓 .

Now the resource algebra PbornProp for our prophetic borrows is defined as follows,
instantiating the resource algebra Bor− for the later-free borrowswith this custom data
type nProppbor:

PbornProp ≜ BornProppbor

Intepretation of Custom Syntactic Propositions Given the interpretation J K:
nProp→ iProp of the base syntactic propositions nProp from the user, we can construct
the interpretation for our custom syntactic propositions J Kpbor : nProppbor → iProp as
follows:

Jxbor𝛾𝑥 Φ Kpbor ≜ ∃𝑎. pc𝛾𝑥 𝑎 ∗ JΦ 𝑎K (7.10)

Jxlend𝑎 Φ Kpbor ≜ ∃ 𝑎′ s.t.
〈
𝜆𝜋 . 𝑎 𝜋 = 𝑎′

〉
. JΦ 𝑎′K (7.11)

Jxrebor𝛾𝑜 ,𝛾𝑖 ,𝛾+𝑥 𝑓 Kpbor ≜ ∃𝑏. pc𝛾𝑜𝑥 (𝑓 𝑏) ∗ vo𝛾𝑖 𝑏 ∗ vo𝛾+ 𝑏 (7.12)

The world satisfaction for our prophetic borrows Wpbor𝑀 J K for the intepretationJ K: nProp→ iProp is defined as follows, instantiating theworld satisfaction for borrows
Wbor𝑀 − with this custom interpretation J Kpbor:

Wpbor𝑀 J K ≜ Wbor𝑀 J Kpbor
Prophetic Lender The prophetic lender token lendα𝑎 Φ is modeled as follows, using
the original lender token lendα:

lendα𝑎 Φ ≜ lendα
(
xlend𝑎 Φ

)
.

By the interpretation (7.11), this lends ∃ 𝑎′ s.t.
〈
𝜆𝜋 . 𝑎 𝜋 = 𝑎′

〉
. JΦ 𝑎′K, the contentJΦ 𝑎′K of the final value 𝑎′ that is linked with the clairvoyant value 𝑎′ by the prophecy

observation
〈
𝜆𝜋 . 𝑎 𝜋 = 𝑎′

〉
.

The rules plend-lft, plend-retrieve, plend-split for prophetic borrowers are
immediately derived from the rules lend-lft, lend-retrieve, lend-split for original
lenders.

Prophetic Borrower The prophetic borrower token borα𝑎,𝑥 Φ is modeled as follows,
using the original borrower token borα:

borα𝑎,𝑥 Φ ≜ †α ∨ ∃𝛾 . vo𝛾 𝑎 ∗ borα
(
xbor

𝛾
𝑥 Φ

)
.

The first disjunct †α is just for the rule pbor-fake. The main part owns the value
observer vo𝛾 𝑎 outside the borrow and by (7.10) borrows

∃𝑎′. pc𝛾𝑥 𝑎
′ ∗ JΦ 𝑎′K,

the content JΦ 𝑎′K and the prophecy controller pc𝛾𝑥 𝑎′ for the content’s value 𝑎′ and the
prophecy 𝑥 .

When the prophetic borrower opens the borrow (pbor-open), it knows that the
value 𝑎′ of the content is equal to the value observer’s value 𝑎 by the rule vo-pc-agree.

116

Prophetic Open Borrower The prophetic open borrower token oborα𝑞,𝑥 Φ is modeled
as follows, using the original open borrower token oborα:

oborα𝑞,𝑥 Φ ≜ ∃𝛾 . oborα𝑞
(
xbor

𝛾
𝑥 Φ

)
∗ ∃𝑎. vo𝛾 𝑎 ∗ pc𝛾𝑥 𝑎.

It owns the open borrower token oborα𝑞
(
xbor

𝛾
𝑥 Φ

)
with the value observer and the

prophecy controller.
When it closes the borrow with an updated value (pobor-close), it updates the

value of the value observer and the prophecy controller by vo-pc-update.
For prophetic borrow subdivision (pobor-subdiv, pobor-merge-subdiv), it par-

tially resolves the prophecy 𝑥 by vo-pc-preresolve. The converter for ordinary borrow
subdivision (obor-subdiv, obor-merge-subdiv) can be constructed using the promise
for the prophecy controller ∀ 𝑎′ s.t.

〈
𝜆𝜋 . 𝑓 (𝜋 𝑦) = 𝑎′

〉
. pc𝛾𝑥 𝑎′ provided by the rule

vo-pc-preresolve.

Proof of Prophetic Reborrowing Nowwe are ready to prove the rule for prophetic
reborrowing pobor-pbor-reborrow. The proof is tricky, using an intermediate bor-
row over xrebor𝛾𝑜 ,𝛾𝑖 ,𝛾+𝑥 𝑓 . A key advantage of our prophetic borrows is that the tricky
proof of prophetic reborrowing is encapsulated as a reusable proof rule pobor-pbor-
reborrow for the user.

Proof of pobor-pbor-reborrow. First, we decompose the inner prophetic borrower
token borβ

𝑏,𝑦
Ψ into the ordinary borrower token borβ𝑦

(
xbor

𝛾𝑖
𝑦 Ψ

)
and the value observer

vo𝛾𝑖 𝑏 for the inner ghost name 𝛾𝑖 .
Then we reborrow the inner ordinary borrower token (bor-reborrow) under the

outer lifetime α to get the reborrower

borα⊓β𝑦

(
xbor

𝛾𝑖
𝑦 Ψ

)
(7.13)

and the promise to get the inner ordinary borrower

†α −∗ borβ𝑦
(
xbor

𝛾𝑖
𝑦 Ψ

)
(7.14)

Next, we decompose the outer prophetic open borrower token oborα𝑞,𝑥 Φ into the
ordinary open borrower token oborα𝑞

(
xbor

𝛾𝑜
𝑥 Ψ

)
, the value observer vo𝛾𝑜 𝑎 and the

prophecy controller pc𝛾𝑜𝑥 𝑎 for the outer ghost name 𝛾𝑜 . By vo-pc-update, we update
the value of the outer value observer and the outer prophecy controller to 𝑓 𝑏.

We also allocate two auxiliary value observers vo𝛾+ 𝑏, vo𝛾+ 𝑏 for a fresh ghost name
𝛾+ by vo2-alloc.

Then we subdivide the outer ordinary open borrower token oborα𝑞
(
xbor

𝛾𝑜
𝑥 Ψ

)
by

obor-subdiv to create the following intermediate borrow:

borα⊓β
(
xrebor

𝛾𝑜 ,𝛾𝑖 ,𝛾+
𝑥 𝑓

)
(7.15)

We can get the resource Jxrebor𝛾𝑜 ,𝛾𝑖 ,𝛾+𝑥 𝑓 K (7.12) out of the outer prophecy controller
pc𝛾𝑜𝑥 (𝑓 𝑏), the inner value observer vo𝛾𝑖 𝑏, and one of the auxiliary value observers
vo𝛾+ 𝑏. We can construct the converter for this subdivision by combining the promise
(7.14) supplied by the ordinary reborrow and the converter

∀𝑏′. †α ∗ borβ
𝑏′,𝑦 Ψ −∗𝑀 JΦ (𝑓 𝑏′)K

supplied to this rule pobor-pbor-reborrow. We also get a live lifetime token [α]𝑞 for
the outer lifetime.

117

After that, we open the obtained intermediate borrower (7.15). We get the open
borrower token oborα⊓β𝑠

(
xrebor

𝛾𝑜 ,𝛾𝑖 ,𝛾+
𝑥 𝑓

)
for some fraction 𝑠 ∈ Q>0. Also, we recover

the outer prophecy controller pc𝛾𝑜𝑥 (𝑓 𝑏), the inner value observer vo𝛾𝑖 𝑏 and the auxil-
iary value observer vo𝛾+ 𝑏. Here, we used the agreement vo2-agree of auxiliary value
observers to see that the value existentially quantified in the content Jxrebor𝛾𝑜 ,𝛾𝑖 ,𝛾+𝑥 𝑓 K
is equal to 𝑏.12

We also open the reborrower (7.13) of the inner borrow to get the inner prophecy
controller pc𝛾𝑖 𝑏, the content JΨ 𝑏K, and an open borrower token borα⊓β𝑦

(
xbor

𝛾𝑖
𝑦 Ψ

)
for

some fraction 𝑠′ ∈ Q>0.
Moreover, we allocate a new couple of a value observer vo𝛾 ′𝑖 𝑏 and a prophecy con-

troller pc𝛾
′
𝑖
𝑦′ 𝑏 for a fresh prophecy 𝑦′ and a fresh ghost name 𝛾 ′𝑖 by vo-pc-alloc. Then

by vo-pc-preresolve, we partially resolve the prophecy 𝑥 of the outer prophecy con-
troller pc𝛾𝑜𝑥 (𝑓 𝑏) to get the desired prophecy observation

〈
𝜆𝜋 . 𝜋 𝑥 = 𝑓 (𝜋 𝑦′)

〉
and the

promise to get the outer prophecy controller:

∀ 𝑏′ s.t.
〈
𝜆𝜋 . 𝜋 𝑦′ = 𝑏′

〉
. pc𝛾𝑜𝑥 (𝑓 𝑏′) (7.16)

Finally, we merge and subdivide the two open borrower tokens by obor-merge-
subdiv to get the following ordinary borrower token for the output prophetic borrower
token:

borα⊓β
(
xbor

𝛾 ′𝑖
𝑦′ Ψ

)
We construct Jxbor𝛾 ′𝑖𝑦′ Ψ K (7.10) by the content JΨ 𝑏K and the prophecy controller pc𝛾 ′𝑖𝑦′ 𝑏.

We construct the converter for this merger-subdivision out of the promise to get
the outer prophecy controller (7.16), the inner value observer vo𝛾𝑖 𝑏 and prophecy con-
troller pc𝛾𝑖𝑦 𝑏, and the auxiliary value observers vo𝛾+ 𝑏, vo𝛾+ 𝑏. To feed the promise (7.16)
with the prophecy observation

〈
𝜆𝜋 . 𝜋 𝑦′ = 𝑏′

〉
, we consume the prophecy controller

pc
𝛾 ′𝑖
𝑦′ 𝑏
′ from the output borrower’s final content by the rule pc-resolve. Also, we up-

date the value of the inner value observer vo𝛾𝑖 𝑏 and prophecy controller pc𝛾𝑖𝑦 𝑏 to the
final value 𝑏′ of the output reborrower by vo-pc-update. For this update, it is essen-
tial that both the inner value observer and prophecy controller are stored inside this
converter; the merger of the reborrower (7.13) and the intermediate borrow (7.15) has
made it possible to store both inside the converter.

Combining the resulting new borrower token borα⊓β
(
xbor

𝛾 ′𝑖
𝑦′ Ψ

)
and the value ob-

server vo𝛾 ′𝑖 𝑏, we get the desired output prophetic borrower token borα⊓β
𝑏,𝑦′ Ψ .

12 If the conversion function 𝑓 is injective, then we can omit these auxiliary value observers, because
the agreement between the outer value observer and prophecy controller gives the equality 𝑓 𝑏 = 𝑓 𝑏′

(where𝑏′ is the value existentially quantified in Jxrebor𝛾𝑜 ,𝛾𝑖 ,𝛾+𝑥 𝑓 K), which implies𝑏 = 𝑏′ if 𝑓 is injective.
RustHornBelt’s original reborrow proofs did not use the auxiliary value observers because the conver-
sion functions 𝑓 they considered were injective. Although the injectivity is a reasonable assumption,
we chose not to assume it for the rule pobor-pbor-reborrow aiming at more generality.

118

Chapter 8

Our Coq Mechanization

On mechanical slavery, on the slavery of the machine,
the future of the world depends.

Oscar Wilde, The Soul of Man Under Socialism

This chapter reports on our mechanization of the Nola framework in the Coq Proof
Assistant. Section 8.1 gives an overview of our Coq mechanization of Nola. Section 8.2
illustrates how to use our Coq mechanization in more detail. Section 8.3 revisits the
case study of linked list mutation in § 3.3, elaborating how verification goes in our Coq
mechanization of Nola.

8.1 Overview

Availability The source code of ourmechanization of the Nola framework is publicly
available at the GitHub repository https://github.com/hopv/nola. In particular,
the version for this dissertation is provided in the branch phd-thesis.

Architecture Our Coq development is built on top of the Coq development of the
Iris separation logic framework (Iris Team, 2023b), which provides various useful defi-
nitions, lemmas, class instances and proof tactics for interactive proof (Krebbers et al.,
2017b, 2018). Also, our development depends on the std++ library (std++ Team, 2023),
a general-purpose Coq library on which Iris also depends.

Our Core Achievements We have mechanized the later-free mechanisms for two
central types of propositional sharing, invariants (§ 3.2) and borrows (Chapter 6). Our
mechanisms are parameterized over the choice of the data type for propositions nProp
and the semantic interpretation J K: nProp→ iProp.

We have also mechanized a general library for the derivability technique presented
in Chapter 4, which can be used for semantically altering the content propositions of
the logical connectives for propositional sharing.

ExtendedWeakest Precondition Predicates For program verification in the style
of Nola, we have developed a new general Iris library for the extended Hoare triples{
𝑃
}
𝑒
{
𝛹
}𝑊
E ,

[
𝑃
]
𝑒
[
𝛹
]𝑊
E and, more fundamentally, the extended weakest precondition

predicates pwp 𝑒
{
𝛹
}𝑊
E , twp 𝑒

[
𝛹
]𝑊
E , which enjoys a custom world satisfaction 𝑊 ∈

iProp (§ 3.2.1).
Because Iris’s existing library for the weakest precondition predicates is huge and

well-developed, we have reused that library as much as possible, not re-implementing
the whole library with the extended fancy update modality E |⇛𝑊

E′ .

119

https://github.com/hopv/nola

To attain this goal, we have repurposed the state interpretation, an Iris predicate
over the global mutable state of the target low-level language, such as the heapmemory
state 𝐻 . Iris’s weakest precondition predicate library is parameterized over the choice
of the target language and its semantic characterization given by the class irisGS_gen,
which includes the state interpretation state_interp.

Hence, we have defined our extendedweakest precondition predicates as Iris’s orig-
inal weakest precondition predicates instantiated with the semantic language charac-
terization irisGS_genwhose state interpretation state_interp is set to 𝜆𝜎. 𝑊 ∗ 𝛷 𝜎 ,
the separating conjunction of the custom world satisfaction𝑊 and the originally in-
tended state interpretation𝛷 .1

This design choice enables reusing the existing lemmas and class instances from
Iris’s library for the weakest precondition predicates. We also newly developed lem-
mas and class instances regarding the customworld satisfaction𝑊 , such as eliminating
the extended fancy update (like hoarew-|⇛w) and expanding the custom world satis-
faction (like hoarew-expand).

For Nola-style verification, one should prepare lemmas, instances and tactics for
the extended weakest precondition predicates on a specific target language (e.g., Iris’s
HeapLang). This can be done by slightly enriching the existing lemmas, instances and
tactics for the original weakest precondition predicates with the custom world satis-
faction parameter𝑊 .

Examples and Paradoxes Using these general libraries, we have mechanized the
verification examples discussed in this dissertation, including the iteration over shared
mutable lists (§ 3.3.3), strong normalization of the stratified type system (Chapter 5),
and the mechanism of prophetic borrows (Chapter 7). To encode variable binding for
second-order quantifiers and recursive propositions/types, we have adopted typed de
Bruijn indexing, with non-trivial efforts regarding variable substitution. We have also
used the derivability technique of Chapter 4 for semantic alteration.

We have alsomechanized the paradox of the later-eliminating total weakest precon-
dition ((1.17), § 1.4) and the new simple paradox of later-free invariants (Theorem 3.9,
§ 3.4.1).

Axioms Remarkably, our Coq development is free of axioms except for the functional
extensionality axiom.

We do not depend on any of AxiomK, the uniqueness of identity proofs (UIP) axiom,
and the proof irrelevance axiom, which are known to be inconsistent with homotopy
or cubical type theories. Although we have used dependent types in a non-trivial way,
especially for typed de Bruijn indexing, we managed to avoid these axioms.

8.2 How to Use Our Coq Mechanization

Here we illustrate how to use our Coq mechanization of Nola.

1 To be precise, the weakest precondition predicates pwp 𝑒
{
𝛹
}∗𝑊
E , twp 𝑒

[
𝛹
]∗𝑊
E thus defined by ‘hack-

ing’ the state interpretation (we mark them with ∗ here) do not change the fancy update modality put
on the postcondition for the disjunct of the value case ((3.5), (3.6) in § 3.2.1). As a result, the absorp-
tion rules like |⇛w-hoarew and hoarew-|⇛w hold only for non-value expressions. This is a minor
issue, as we usually do not consider the weakest preconditions for values. Also, the genuine extended
weakest precondition predicates pwp 𝑒

{
𝛹
}𝑊
E , twp 𝑒

[
𝛹
]𝑊
E can be obtained by putting the extended

fancy update modality |⇛𝑊
E on the postcondition of our ‘hacking’ version: pwp 𝑒

{
𝜆𝑣 . |⇛𝑊

E 𝛹 𝑣
}∗𝑊
E ,

twp 𝑒
[
𝜆𝑣 . |⇛𝑊

E 𝛹 𝑣
]∗𝑊
E .

120

Installation In the GitHub repository https://github.com/hopv/nola, we pub-
lish our Coq source code for Nola as a package coq-nola of opam, the standard package
manager for OCaml. Nola’s package depends on the Coq proof assistant (written by
OCaml) and the Iris framework (written by Coq). You can install the dependencies for
Nola and build it using opam. For that, you first register to your opam the repositories
for Coq and Iris:

opam repo add coq-released https://coq.inria.fr/opam/released
opam repo add iris-dev https://gitlab.mpi-sws.org/iris/opam.git

Then you can install to your opam the Nola package, automatically installing the de-
pendencies:

opam install PATH-TO-NOLA

Source Code Nola’s source code consists of three parts. The path nola.iris con-
tains Nola’s core libraries built on the Iris framework. The path nola.util contains
general-purpose utilities, extending the functionalities of the std++ library. The path
nola.examples contains the verification examples for Nola, including those discussed
in this dissertation. You can use our Coq mechanization of Nola for your verification
projects by importing relevant modules in these paths.

Quick Guide: How to Use Nola’s Invariant Nowwe present a quick guide on how
to use Nola’s invariant.

First you import the inv module in nola.iris, e.g. by adding the following line:

From nola.iris Require Import inv.

Then you should prepare some data type nProp of syntactic separation logic propo-
sitions (typeset as nProp in the dissertation).

Then add to the context the ghost state type class ninvGS nProp Σ for Nola’s in-
variant.2 A simple way is to add the following line inside the section where you use
Nola’s invariant:

Context `{!ninvGS nProp Σ}.

Now you get the invariant token inv_tok N P : iProp Σ (typeset as invN P in the
dissertation):

inv_tok `{!ninvGS nProp Σ} : namespace → nProp → iProp Σ

You also get the world satisfaction inv_wsat intp : iProp Σ (typeset asWinv in the
dissertation) for the invariant, parameterized over the semantic interpretation intp
: nProp → iProp Σ:

inv_wsat `{!ninvGS nProp Σ} : (nProp → iProp Σ) → iProp Σ

Now you should construct the semantic interpretation intp : nProp → iProp Σ
of your syntactic propositions nProp (typeset as J K: nProp→ iProp in the dissertation),
which typically depends on inv_tok to support nested invariants.

Then you can use proof rules on Nola’s invariant machinery for the fancy update
extended with the world satisfaction inv_wsat intp. For example, we provide the
following rules corresponding to inv-alloc and inv-acc-ch:

Lemma inv_tok_alloc {intp} P N :
intp P =[inv_wsat intp]=* inv_tok N P.

2 We add the prefix n for Nola because the name invGS is already used in Iris for its original invariant.

121

https://github.com/hopv/nola

Lemma inv_tok_acc {intp N E P} :
↑N ⊆ E → inv_tok N P =[inv_wsat intp]{E,E\↑N}=*

intp P * (intp P =[inv_wsat intp]{E\↑N,E}=* True).

To verify programs, you need proof rules and tactics that work with the extended
Hoare triples on the target language. In nola.examples.heap_lang, we provide such
things for Iris’s HeapLang, a simple ML-like language with heap memory operations.

8.3 Case Study: Linked List Mutation

Here we revisit the case study of linked list mutation in § 3.3, elaborating how verifi-
cation goes in our Coq mechanization of Nola.

The Coq source code for this part is in the file nola/examples/minilogic.v.

Construct the Syntax nProp To begin with, let us construct the data type nProp
for the syntactic representation of separation logic propositions. We can express nProp
of (3.16) in Coq as the following inductive data type:

Inductive nProp : Type :=
| all {A : Type} (Φ : A → nProp) | ex {A : Type} (Φ : A → nProp)
| and (P Q : nProp) | or (P Q : nProp) | imp (P Q : nProp)
| pure (ϕ : Prop)
| sep (P Q : nProp) | wand (P Q : nProp) | pers (P : nProp)
| bupd (P : nProp) | later (P : nProp)
| pointsto (q : frac) (l : loc) (v : val)
| inv (N : namespace) (P : nProp)
| ilist (N : namespace) (Φ : loc → nProp) (l : loc).

Code 8.1: (3.16)’s nProp in Coq

Note again that we use higher-order abstract syntax for (first-order) quantifiers all
and ex. Technically, in Coq, the type of types Type is implicitly parameterized over
the universe level u. Coq’s type system assigns a universal level to each Type for the
universe consistency. By that, the domain type A : Type of the quantifiers lives in a
universe level strictly smaller than that of nProp, which makes the type nProp well-
formed.

Construct the Semantics J K Now we construct the semantic interpretation intp
: nProp → iProp Σ of the data type nProp.

First, we need to add some constraints on the global camera Σ for Iris proposi-
tions iProp Σ. We require ninvGS nProp Σ to use Nola’s invariant. Also, we require
heapGS_gen HasNoLc Σ for the heap memory state of Iris’s HeapLang, especially to
use the points-to token l ↦→{q} v : iProp Σ.3 A simple way is to directly add these
constraints to the context:

Context `{!ninvGS nProp Σ, !heapGS_gen HasNoLc Σ}.

Now we can construct the semantic interpretation intp : nProp → iProp Σ by
structural induction over the inductive data type nProp:
3 The flag HasNoLc says that we do not use the later credit machinery (Spies et al., 2022) for Iris’s original
invariant mechanism and fancy update modality. The default of current Iris is to use the later credit
with the flag HasLc (heapGS Σ is an alias of heapGS_gen HasLc Σ, invGS Σ is an alias of invGS_gen
HasLc Σ, etc.). However, the later credit is unsuitable for verifying liveness properties (see also § 9.1),
and so we use the flag HasNoLc for this case study targeting total correctness.

122

Fixpoint intp (P : nProp) : iProp Σ := match P with
| all Φ =>

A

x, intp (Φ x) | ex Φ =>

E

x, intp (Φ x)
| and P Q => intp P ∧ intp Q | or P Q => intp P ∨ intp Q
| imp P Q => intp P → intp Q | pure ϕ => ⌜ϕ⌝
| sep P Q => intp P * intp Q | wand P Q => intp P -* intp Q
| pers P => □ intp P | bupd P => |==> intp P | later P => ⊲ intp P
| pointsto q l v => l ↦→{#q} v
| inv N P => inv_tok N P
| ilist N Φ l => inv_tok N (Φ l) * inv_tok N

(ex (λ l' : loc, sep (pointsto 1 (l +l 1) (#l')) (ilist N Φ
l')))

end.

Code 8.2: Interpretation intp for Code 8.1’s nProp

The most part is straightforward. Here we comment on some points.
For the quantifiers all and ex in higher-order abstract syntax, the recursion is

well-formed, passing Coq’s termination checker, because Φ x is structurally smaller
than all Φ and ex Φ for any x.

The invariant connective inv N P is just interpreted as Nola’s invariant inv_tok
N P (just as (3.17)). The infinite list connective ilist N Φ l is interpreted as the con-
junction of the invariants for the head and the tail, without any recursive call to intp
(just as (3.18)). Note again that the body P of Nola’s invariant inv_tok N P is a syn-
tactic proposition nProp, not a semantic one iProp Σ.

Verification Goal: Termination of Linked List Mutation The primary target
function of our verification is the following function iter corresponding to (3.8), coded
in Iris’s HeapLang with heavy syntax sugar:4

Definition iter : val := rec: "self" "f" "c" "l" :=
if: !"c" = #0 then #() else

"f" "l";; "c" <- !"c" - #1;; "self" "f" "c" (!("l" +l #1)).

Code 8.3: (3.8)’s iter in Coq

The function is shallow-embedded into Coq, where the variables are bound by Coq’s
strings like "l". The hash # is used just for annotating literals. Roughly speaking, the
function iter applies the function f to the first !"c" elements of the list starting at l,
decrementing the counter c.

Now our primary verification goal, corresponding to (3.19), can be described as
follows:

Lemma twp_iter {N Φ c l} {f : val} {n : nat} :
(

A

l0 : loc,
[[{ inv_tok N (Φ l0) }]][inv_wsat intp]
f #l0 @ ↑N

[[{ RET #(); True }]]) -*
[[{ c ↦→ #n * intp (ilist N Φ l) }]][inv_wsat intp]

iter f #c #l @ ↑N
[[{ RET #(); c ↦→ #0 }]].

Code 8.4: Verification goal of (3.19) in Coq

4 Exploiting Coq’s rich power, Iris’s HeapLang introduces custom notations such as the recursive function
rec: ... := ... and the if expression if: ... then ... else, using the colon : for disambiguation
from Coq’s native syntax.

123

Here we use the notation [[{ P }]][W] e @ E [[{ RET #(); Q }]]5 for the ex-
tended total Hoare triple with a customworld satisfaction W : iProp Σ (corresponding
to

[
𝑃
]
𝑒
[
𝛹
]𝑊
𝐸
), a feature newly introduced by our Coq mechanization.

HowVerificationGoes inCoq Nowwe explain howwe can verify the goal Code 8.4
using our Coq mechanization of the Nola framework. At a high level, the verification
goes straightforwardly by induction over the natural number n : nat, as explained
in § 3.3.3. In Coq, this is completed with the help of Iris Proof Mode (Krebbers et al.,
2017b), which provides various proof tactics for interactive theorem proving in Iris.
Here, we give a rough idea of that.

First, we start the proof by Proof and introduce the hypothesis Hf on the function
f by iIntros:

Proof.
iIntros "#Hf".

This magically turns the goal into the following (reformatted for readability):

"Hf" :

A

l0 : loc,
[[{ inv_tok N (Φ l0) }]][inv_wsat intp]

f #l0 @ ↑N
[[{ RET #(); True }]]

--------------------------------------□
[[{ c ↦→ #n * intp (ilist N Φ l) }]][inv_wsat intp]
iter f #c #l @ ↑N

[[{ RET #(); c ↦→ #0 }]]

Iris Proof Mode prints the hypotheses and goal of Iris separation logic in a readable
way. Above ---□ are persistent hypotheses, and at the bottom is the goal.

Then we introduce the hypotheses of the goal Hoare triple. We can use the follow-
ing tactic (we omit the details).

iIntros (Ψ) "!> [c↦→ #[ihd itl]] HΨ".

Then the goal turns into the following:

"Hf" :

A

l0 : loc,
[[{ inv_tok N (Φ l0) }]][inv_wsat intp]

f #l0 @ ↑N
[[{ RET #(); True }]]

"ihd" : inv_tok N (Φ l)
"itl" : inv_tok N (ex (λ l' : loc,

sep (pointsto 1 (l +l 1) #l') (ilist N Φ l')))
--------------------------------------□
"c↦→" : c ↦→ #n
"HΨ" : c ↦→ #0 -* Ψ #()
--------------------------------------*
WP[inv_wsat intp] iter f #c #l @ ↑N [{ v, Ψ v }]

Here, Ψ is the postcondition parameter and HΨ is the spatial hypothesis on Ψ. The points-
to token on the counter c ↦→ #n is named c↦→. The invariants on the head and the tail
are named ihd and itl. The goal is an extended total weakest precondition WP[W]

e @ E [{v, Ψ v}] (corresponding to twp 𝑒
[
𝛹
]𝑊
𝐸
), a feature newly introduced by our

Coq mechanization.
Now we perform the induction over n : nat by the following tactic:

5 The part RET #() requires that the expression e : expr should return the unit value #().

124

iInduction n as [|m] "IH" forall (l) "ihd itl".

We get two subgoals, for the base case n = 0 and the induction step n = S m. We
generalize the goal over the location value l and the hypotheses ihd and itl.

The base case is trivial and can be solved by the following tactics:

{ wp_rec. wp_pures. wp_load. wp_pures. by iApply "HΨ". }

For the induction step, c ↦→ turns into c ↦→ #(S m) and we have the following induc-
tive hypothesis IH:

"IH" :

A

l0 : loc,
c ↦→ #m -* (c ↦→ #0 -* Ψ #()) -*
□ inv_tok N (Φ l0) -*
□ inv_tok N (ex (λ l' : loc,

sep (pointsto 1 (l0 +l 1) #l') (ilist N Φ l'))) -*
WP[inv_wsat intp] iter f #c #l0 @ ↑N [{ v, Ψ v }]

We first perform the case branching if: !"c" = #0 by the following tactics:

wp_rec. wp_pures. wp_load. wp_pures.

The goal turns into the following:

WP[inv_wsat intp]
f #l;; #c <- !#c - #1;; iter f #c (!(#l +l #1)) @ ↑N

[{ v, Ψ v }]

We can discharge the function call f #l;; by the following tactics, using the hy-
pothesis Hf on the function f:

wp_apply "Hf"; [done|]. iIntros "_". wp_pures.

Then we can discharge the counter decrement #c <- !#c - #1;; by the following
tactics:

wp_load. wp_op. have -> : (S m - 1)%Z = m by lia. wp_store.

This also updates c ↦→ to c ↦→ #m. In general, spatial hypotheses can be updated ac-
cording to the state mutation in Iris Proof Mode.

Now we have reached the core challenge: the dereference of the list into the tail.
We first perform the following tactics.

wp_op. wp_bind (! _)%E.

This turns the goal into the following nested weakest precondition predicate:

WP[inv_wsat intp] !#(l +l 1) @ ↑N
[{ v, WP[inv_wsat intp] iter f #c v @ ↑N [{ v, Ψ v }] }]

Now we open the invariant for the tail:

iMod (inv_tok_acc with "itl") as
"/=[(%l' & ↦→l' & #ithd & #ittl) cl]"; [done|].

This turns the contexts and goal into the following:

...
"itlhd" : inv_tok N (Φ l')
"itltl" : inv_tok N (ex (λ l'' : loc,

sep (pointsto 1 (l' +l 1) #l'') (ilist N Φ l'')))
--------------------------------------□
...

125

" ↦→l'" : (l +l 1) ↦→ #l'
"cl" : (

E

l' : loc, (l +l 1) ↦→ #l' * inv_tok N (Φ l') *
inv_tok N (ex (λ l'' : loc,

sep (pointsto 1 (l' +l 1) #l'') (ilist N Φ l''))))
=[inv_wsat intp]{↑N\↑N,↑N}=* True

--------------------------------------*
WP[inv_wsat intp] !#(l +l 1) @ ↑N\↑N
[{ v, |=[inv_wsat intp]{↑N\↑N,↑N}=>
WP[inv_wsat intp] iter f #c v @ ↑N [{ v, Ψ v }] }]

We have deposited the namespace N to open the invariant. Now we can perform the
dereference using ↦→l'.

To recover the namespace N, we close the invariant using cl and the hypotheses
↦→l', itlhd and itltl. These can be done by the following tactics:

wp_load. iModIntro. iMod ("cl" with "[↦→l']") as "_".
{ iExists _. iFrame "↦→l'". by iSplit. } iModIntro.

Now the goal is simply as follows:

WP[inv_wsat intp] iter f #c #l' @ ↑N [{ v, Ψ v }]

This can be proved just by applying the inductive hypothesis IH.

by iApply ("IH" with "c↦→ HΨ").
Qed.

Finally, we have reached the end of the proof, Qed!

126

Chapter 9

Related Work

If I have seen further it is by standing on þe sholders of Giants.

Isaac Newton, Letter to Robert Hooke

9.1 Invariants with Later-Free Rules

There are some existing logics (Swamy et al., 2020; Svendsen and Birkedal, 2014; Svend-
sen et al., 2013; Spies et al., 2022) that provide later-free proof rules for shared invariants.
None of them has been applied to liveness verification, unlike Nola. But one may won-
der if they could possibly be extended to liveness verification. As discussed below, all of
them either use step-indexed program logic (which cannot support liveness verification)
or restrict nesting of invariants, whereas our Nola framework supports the invariant
mechanism that works in non-step-indexed program logic and supports genuine nesting.

SteelCore (Swamy et al., 2020) (or its interface Steel (Fromherz et al., 2021)) is an F★-
based verification framework employing (nested) invariants with later-free proof rules.
However, the program logic of SteelCore is actually step-indexed. Indeed, as discussed
by Swamy et al. (2020, § 4.4), they are using “monotonic state” modeled by Ahman et al.
(2017), which “has a ‘later’ modality in disguise”. Due to this, it is unclear whether their
approach extends to liveness verification. Moreover, there is no known formal proof of
the soundness of SteelCore’s logic.

iCAP (Svendsen and Birkedal, 2014) and HOCAP (Svendsen et al., 2013) are other
logics with invariants with later-free proof rules. The soundness of their later-free rules
does not seem to rely on step-indexing, so these logics may possibly be applicable to
liveness verification.1 Still, they do not support genuine nesting of invariants. iCAP does
not allow any kind of nesting of the invariant connective. HOCAP allows nesting in
a certain form, but it prohibits nesting invariants of overlapping region types 𝑡 . This
condition is essential to the soundness of their logic, because such nesting introduces
“self-referential region assertions”, which generally “do not admit modular stability
proofs” (Svendsen et al., 2013, § 2.2). Unlike theirs, our Nola framework allows genuine
nesting of invariants (e.g., infinite singly linked lists ilist in § 3.3.3).

The later credit £𝑛 (Spies et al., 2022), recently introduced to Iris, is known to al-
low for the “prepaid invariant” 𝑃

N
pre that supports a seemingly later-free access rule

InvPreOpen for a partial Hoare triple (Spies et al., 2022, § 6.1). Still, the program logic
is step-indexed even under the later credit machinery. The later credit depends on a
1 The program logic of HOCAP is actually step-indexed. But according to their paper (Svendsen et al.,
2013, § 4), this indexing is for supporting nested Hoare triples (i.e., Hoare triples

{
𝑃
}
𝑒
{
𝛹
}
such that

the precondition 𝑃 and postcondition 𝛹 can contain Hoare triple connectives). It may be possible to
construct a variant of HOCAP that does not support nested Hoare triples but employs non-step-indexed
program logic that can reason about liveness properties.

127

new, later-eliminating fancy update |⇛le that contains laters ⊲ inside it, just hiding step-
indexing. Indeed, Spies et al. (2022, § 5.2) admit that this new fancy update |⇛le does
not satisfy “interaction rules with Iris’s ‘plainly modality’■ 𝑃”. These ‘plainly’-related
rules (more specifically, |⇛-pure-keep in § 3.1) are vital to proving the termination ad-
equacy theorem for Iris’s total weakest precondition twp 𝑒

[
𝛹
]
(like Theorem 3.2 in

§ 3.1). Therefore, the total weakest precondition works only with the original fancy
update |⇛ and not with |⇛le.

Also, it is unclear whether the above approaches could lead to a later-free version
of the borrows of RustBelt’s lifetime logic (Jung et al., 2018a), which is far more com-
plicated than invariants.

9.2 Termination and Liveness Verification

Our Nola framework provides later-free mechanisms, such as invariants and borrows,
that work in non-step-indexed program logic, which can verify liveness properties, in-
cluding termination and total correctness.

Transfinite Indexing There actually exists one approach to verifying liveness prop-
erties in non-step-indexed program logic. The approach is transfinite indexing (Spies
et al., 2021b), where the indices I are ordinal numbers, in constract to the standard finite
indexing, where the indices I are natural numbers 0, 1, 2, . . . ∈ N. Recently, Transfi-
nite Iris (Spies et al., 2021a), a variant of Iris that uses transfinite indexing, has been
developed.

However, Transfinite Iris suffers from several limitations. First, in the step-indexed
total Hoare triple of Transfinite Iris, as a trade-off of the power to eliminate the later
modality ⊲ for each program step, one should explicitly bound the number of program
steps with an ordinal number 𝛼 using a time credit $𝛼 (Atkey, 2010; Mével et al., 2019).
When we eliminate the later modality from the precondition, we should decrease the
ordinal of the time credit by a proof rule like this:[

$𝛽 ∗ 𝑃
]
𝑒
[
𝛹
]∗

𝛽 < 𝛼[
$𝛼 ∗ ⊲ 𝑃

]
𝑒
[
𝛹
]

We cannot remove this time credit and have the proof rule step-twp (§ 1.4), because
Löb induction löb holds also in transfinite indexing and thus the rule step-twp leads
to a contradiction as discussed in § 1.4. Second, liveness properties supported by Trans-
finite Iris of Spies et al. (2021a) are limited to fairly simple ones: termination and
termination-preserving refinements for sequential, non-concurrent programs. In partic-
ular, it is an open problem how to construct in Transfinite Iris program logics for more
complex liveness properties, such as Simuliris (Gäher et al., 2022) and Fairness Logic
(Lee et al., 2023). Third, the mechanization of Transfinite Iris heavily depends on Coq’s
universe polymorphism, an experimental feature, to reason about ordinals. Finally, in
Transfinite Iris, the later modality ⊲ loses the commutativity laws with the separating
conjunction ∗ and the existential quantifier ∃, which hold under finite indexing as we
saw in § 3.1 (⊲-∗, ⊲-∃):

⊲ (𝑃 ∗𝑄) = (⊲ 𝑃) ∗ (⊲𝑄) 𝐴 ≠ ∅
⊲ (∃𝑎 ∈ 𝐴. 𝑃𝑎) = ∃𝑎 ∈ 𝐴. ⊲ 𝑃𝑎

Many Iris developments, including RustBelt’s lifetime logic (Jung et al., 2018a), critically
rely on these laws and thus stop working in Transfinite Iris. In particular, it is an open
problem how to construct the borrow mechanism in Transfinite Iris.

128

Nevertheless, transfinite indexing satisfies the following existential property, unlike
finite indexing: for any set 𝐴 whose cardinality is not ‘too large’ and any predicate𝛷 :
𝐴→ iProp, if ⊨ ∃𝑎 ∈ 𝐴.𝛷 𝑎 holds, then there exists some 𝑎0 ∈ 𝐴 satisfying ⊨ 𝛷 𝑎0. The
existential property is a primary selling point of Transfinite Iris (Spies et al., 2021a),
which can be used to prove the adequacy theorem of some program logics for liveness
verification built in Transfinite Iris. The existential property can also help other tasks
like handling angelic non-determinism (Guéneau et al., 2023). Our Nola framework can
also be ported to Transfinite Iris, if one ever wants to use the existential property.

Bounded Termination-Preserving Refinements Tassarotti et al. (2017) built on
Iris step-indexed program logic that is able to verify termination-preserving refine-
ments, which may seem like a liveness property. However, what the logic can prove
is actually a safety property due to its strong restriction: the source program can use
only bounded non-determinism and stuttering. The program cannot, for example, take
a non-deterministic natural number. Also, their approach generally does not work for
non-relational termination verification.

Extending the idea of Tassarotti et al. (2017), Timany et al. (2024) built Trillium, step-
indexed program logic that can show intensional termination-preserving refinements
between traces of the program and the specificationmodel. Like Tassarotti et al. (2017)’s
logic, what Trillium directly shows is a safety property, imposing a strong restriction
between the program and the model. Also, to prove a liveness property of the program,
besides proving the termination-preserving refinement in Trillium, one needs to prove
a liveness property of the model separately, which is not always trivial.

Rich Liveness Properties Various separation logics that can verify rich liveness
properties have been studied.

LiLi (Liang and Feng, 2016, 2018) is an early concurrent program logic for verifying
liveness properties such as deadlock freedom. TaDA Live (D’Osualdo et al., 2021), based
on da Rocha Pinto et al. (2016)’s logic, provides a rich interface for liveness verification
of fine-grained concurrent programs. Simuliris (Gäher et al., 2022) is an Iris-based logic
that can prove fair termination preservation of various concurrent program optimiza-
tions, including advanced Rust-inspired examples from Stacked Borrows (Jung et al.,
2020a). Fairness Logic (Lee et al., 2023) is a logic based on Simuliris for reasoning about
various kinds of fairness properties.

However, propositional sharing in these logics has been little studied. In particu-
lar, although Simuliris and Fairness Logic are Iris-based, they cannot use Iris’s later-
requiring invariants because their program logics cannot be step-indexed.

Using our Nola framework, one can use propositional sharing with these rich pro-
gram logics for liveness verification. Exploring such direction is left for future work.

9.3 Tackling Laters

As discussed in § 1.4, the later modality ⊲ is ill-behaved in that it is not idempotent and
does not commute with the fancy update modality |⇛E . This is problematic even in
safety verification.

For example, in order to traverse a nested data structure modeled with 𝑘-fold nest-
ing of later-requiring propositional sharing, one should eliminate 𝑘 laters ⊲𝑘 , or even
worse, 𝑘 laters interleavedwith the fancy update (⊲ |⇛)𝑘 . Rules like step-phoare, strip-
ping one later for one program step, are not enough for this purpose.

Various workarounds have been proposed to tackle such problems with the later
modality.

129

RustBelt’s Delayed Sharing One early example is from RustBelt (Jung et al., 2018a),
a semantic foundation for Rust’s type system. Conversion from amutable reference &α
mut T to a shared reference &α T naively requires traversing over the whole structure
of a Rust object typed T. And when the object has the depth 𝑑 , 𝑑 laters ⊲𝑑 should be
eliminated. But that is not doable because an object can have an unbounded depth (e.g.,
a singly linked list).

They tackled this by a workaround called delayed sharing (Jung, 2020, Chapter 12):
they give up traversal in one go and instead perform conversion to a shared reference
on demand, i.e., only when each subobject gets accessed. Although it works, this sub-
stantially complicates the model of shared references.

Flexible Step-Indexing by RustHornBelt Another example is from RustHornBelt
(Matsushita et al., 2022), a successor of RustBelt for RustHorn-style functional Rust
program verification, introduced in § 7.1.2 To reason about mutable references &α mut
T, they needed to traverse the whole object T (more specifically, take tokens out of the
entire object), where delaying like delayed sharing does not work.

They tackled this by tweaking Iris’s weakest precondition to strip off increasingly
many laters for each program step, e.g., 𝑘 laters ⊲𝑘 at the 𝑘-th step. They lower-bound
the number of past program steps by a time receipt

▷◁ 𝑛 (Mével et al., 2019) and keep
track of object depths. This technique, nicknamed flexible step-indexing, generally
helps reason about nested data structures, being applied to other recent projects (Hin-
richsen et al., 2022; Gondelman et al., 2023). But using it requires cumbersome book-
keeping of program step counts and object depths.

Later Credits One recent progress is the later credit £𝑛 (Spies et al., 2022), which
owns the right to eliminate 𝑛 laters under the later elimination update |⇛le:

£𝑛 ∗ ⊲𝑛 𝑃 ⊨ |⇛le 𝑃 .

The later elimination update |⇛le is modeled as a fancy update |⇛ with hidden laters
inside corresponding to the consumed later credits.

Still, even with later credits, it seems hard to traverse nested data structures un-
boundedly many times (e.g., RustHornBelt’s case), which require an unbounded number
of later credits.

WithNola Using our Nola framework, one can use later-free mechanisms for propo-
sitional sharing, eliminating the need for these techniques to tackle the later modality.
Also, we can still apply these techniques even if we use the later modality to support
advanced features as discussed in § 3.4.2.

130

Chapter 10

Conclusion

ゆく河の流れは絶えずしてしかももとの水にあらず
The river always flows and its water never stays the same

Kamo no Chōmei, Hōjōki

This dissertation proposed a novel general framework, Nola, which provides sep-
aration logic with later-free mechanisms for propositional sharing, such as invariants
and borrows, which can be used for verifying programs with shared mutable state in
non-step-indexed program logic.

We expect that our framework greatly opens the possibilities for verifying programs
with shared mutable state, as discussed in § 1.5.2. The invariant and borrow can pos-
sibly be safely integrated into separation-logic-based automated verification platforms
such as Viper (Müller et al., 2016), being free from the later modality and naturally
supporting liveness verification. RustHornBelt (Matsushita et al., 2022), a semantic
foundation for functional Rust verifiers such as RustHorn (Matsushita et al., 2020) and
Creusot (Denis et al., 2022), can possibly be rebuilt on Nola to support liveness verifi-
cation. Also, Simuliris (Gäher et al., 2022) can possibly be used to verify optimizations
under the guarantee of ownership types modeled with Nola’s invariant and borrow.
We leave further investigation of these directions to future work.

From another perspective, we expect that our approach can be used even outside
the context of separation logic. Our key idea, the isolation of the proposition syntax
from its interpretation, may well find applications in other contexts. Also, our tech-
nique for semantic alteration (Chapter 4), especially the construction of the derivabil-
ity predicate, can work in any logic, not only separation logic. We leave the scientific
exploration of these possibilities as an interesting topic for future work.

131

Bibliography

Martín Abadi and Leslie Lamport. 1988. The Existence of Refinement Mappings. In
Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS ’88),
Edinburgh, Scotland, UK, July 5-8, 1988. IEEE Computer Society, 165–175. https:
//doi.org/10.1109/LICS.1988.5115

Danel Ahman, Cédric Fournet, Catalin Hritcu, Kenji Maillard, Aseem Rastogi, and
Nikhil Swamy. 2017. Recalling a Witness: Foundations and Applications of Mono-
tonic State. CoRR abs/1707.02466 (2017). arXiv:1707.02466 http://arxiv.org/ab
s/1707.02466

Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. 2002. A Stratified Semantics
of General References Embeddable in Higher-Order Logic. In 17th IEEE Symposium
on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,
Proceedings. IEEE Computer Society, 75. https://doi.org/10.1109/LICS.2002.
1029818

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA.

Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations in
a Category of Complete Metric Spaces. J. Comput. Syst. Sci. 39, 3 (1989), 343–375.
https://doi.org/10.1016/0022-0000(89)90027-5

AndrewW. Appel and David A.McAllester. 2001. An IndexedModel of Recursive Types
for Foundational Proof-Carrying Code. ACM Trans. Program. Lang. Syst. 23, 5 (2001),
657–683. https://doi.org/10.1145/504709.504712

Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou, James Noble,
Matthew J. Parkinson, and Tobias Wrigstad. 2023. Reference Capabilities for Flexible
Memory Management. Proc. ACM Program. Lang. 7, OOPSLA2 (2023), 1363–1393.
https://doi.org/10.1145/3622846

Robert Atkey. 2010. Amortised Resource Analysis with Separation Logic. In Pro-
gramming Languages and Systems, 19th European Symposium on Programming, ESOP
2010, Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings (Lecture Notes in
Computer Science, Vol. 6012), Andrew D. Gordon (Ed.). Springer, 85–103. https:
//doi.org/10.1007/978-3-642-11957-6_6

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and
Arnaud Spiwack. 2018. Linear Haskell: practical linearity in a higher-order poly-
morphic language. Proc. ACM Program. Lang. 2, POPL (2018), 5:1–5:29. https:
//doi.org/10.1145/3158093

132

https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
http://arxiv.org/abs/1707.02466
http://arxiv.org/abs/1707.02466
https://doi.org/10.1109/LICS.2002.1029818
https://doi.org/10.1109/LICS.2002.1029818
https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3622846
https://doi.org/10.1007/978-3-642-11957-6_6
https://doi.org/10.1007/978-3-642-11957-6_6
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3158093

Lars Birkedal and Aleš Bizjak. 2023. Lecture Notes on Iris: Higher-Order Concurrent
Separation Logic. https://iris-project.org/tutorial-pdfs/iris-lecture-n
otes.pdf

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring.
2012. First Steps in Synthetic Guarded Domain Theory: Step-indexing in the Topos
of Trees. Log. Methods Comput. Sci. 8, 4 (2012). https://doi.org/10.2168/LMCS
-8(4:1)2012

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The Category-Theoretic
Solution of Recursive Metric-Space Equations. Theor. Comput. Sci. 411, 47 (2010),
4102–4122. https://doi.org/10.1016/j.tcs.2010.07.010

Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: Managing
Obligations in Higher-Order Concurrent Separation Logic. Proc. ACM Program. Lang.
3, POPL (2019), 65:1–65:30. https://doi.org/10.1145/3290378

Nikolaj S. Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko.
2015. Horn Clause Solvers for Program Verification. In Fields of Logic and Com-
putation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday
(Lecture Notes in Computer Science, Vol. 9300), Lev D. Beklemishev, Andreas Blass,
Nachum Dershowitz, Bernd Finkbeiner, and Wolfram Schulte (Eds.). Springer, 24–
51. https://doi.org/10.1007/978-3-319-23534-9_2

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson.
2005. Permission Accounting in Separation Logic. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005, Jens Palsberg and Martín Abadi
(Eds.). ACM, 259–270. https://doi.org/10.1145/1040305.1040327

John Boyland. 2003. Checking Interferencewith Fractional Permissions. In Static Analy-
sis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 2694), Radhia Cousot (Ed.). Springer,
55–72. https://doi.org/10.1007/3-540-44898-5_4

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent Separation Logic. ACM
SIGLOG News 3, 3 (2016), 47–65. https://doi.org/10.1145/2984450.2984457

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR
2004 - Concurrency Theory, 15th International Conference, London, UK, August 31 -
September 3, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 3170), Philippa
Gardner and Nobuko Yoshida (Eds.). Springer, 16–34. https://doi.org/10.1007/
978-3-540-28644-8_2

Alexandre Buisse, Lars Birkedal, and Kristian Støvring. 2011. Step-Indexed Kripke
Model of Separation Logic for Storable Locks. In Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh, PA,
USA, May 25-28, 2011 (Electronic Notes in Theoretical Computer Science, Vol. 276),
Michael W. Mislove and Joël Ouaknine (Eds.). Elsevier, 121–143. https://doi.
org/10.1016/j.entcs.2011.09.018

Adrien Champion, Naoki Kobayashi, and Ryosuke Sato. 2018. HoIce: An ICE-Based
Non-linear Horn Clause Solver. In Programming Languages and Systems - 16th Asian
Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018, Proceedings
(Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 146–
156. https://doi.org/10.1007/978-3-030-02768-1_8

133

https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1145/3290378
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1016/j.entcs.2011.09.018
https://doi.org/10.1016/j.entcs.2011.09.018
https://doi.org/10.1007/978-3-030-02768-1_8

Chromium Projects. 2023. Memory safety - Chromium Security. https://www.chromi
um.org/Home/chromium-security/memory-safety/

Dave Clarke, James Noble, and TobiasWrigstad (Eds.). 2013. Aliasing in Object-Oriented
Programming: Types, Analysis and Verification. Lecture Notes in Computer Science,
Vol. 7850. Springer. https://doi.org/10.1007/978-3-642-36946-9

DavidG. Clarke, John Potter, and JamesNoble. 1998. Ownership Types for Flexible Alias
Protection. In Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications, OOPSLA 1998, Vancouver, British
Columbia, Canada, October 18-22, 1998, Bjørn N. Freeman-Benson and Craig Cham-
bers (Eds.). ACM, 48–64. https://doi.org/10.1145/286936.286947

Coq Team. 2023. The Coq Proof Assistant. https://coq.inria.fr/

Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Suther-
land. 2016. Modular Termination Verification for Non-blocking Concurrency. In
Programming Languages and Systems - 25th European Symposium on Programming,
ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lec-
ture Notes in Computer Science, Vol. 9632), Peter Thiemann (Ed.). Springer, 176–201.
https://doi.org/10.1007/978-3-662-49498-1_8

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020.
RustBelt Meets Relaxed Memory. Proc. ACM Program. Lang. 4, POPL (2020), 34:1–
34:29. https://doi.org/10.1145/3371102

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry
for the Deductive Verification of Rust Programs. In Formal Methods and Software
Engineering - 23rd International Conference on Formal Engineering Methods, ICFEM
2022, Madrid, Spain, October 24-27, 2022, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 13478), Adrián Riesco and Min Zhang (Eds.). Springer, 90–105. https:
//doi.org/10.1007/978-3-031-17244-1_6

Edsger W. Dijkstra. 1965. Solution of a problem in concurrent programming control.
Commun. ACM 8, 9 (1965), 569. https://doi.org/10.1145/365559.365617

Mike Dodds, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svendsen, and Lars
Birkedal. 2016. Verifying Custom Synchronization Constructs Using Higher-Order
Separation Logic. ACM Trans. Program. Lang. Syst. 38, 2 (2016), 4:1–4:72. https:
//doi.org/10.1145/2818638

Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner. 2021.
TaDA Live: Compositional Reasoning for Termination of Fine-grained Concurrent
Programs. ACM Trans. Program. Lang. Syst. 43, 4 (2021), 16:1–16:134. https://do
i.org/10.1145/3477082

European Association for Theoretical Computer Science. 2016. 2016 Gödel Prize. http
s://eatcs.org/index.php/component/content/article/1-news/2280-201
6-godel-prize

Jonás Fiala, Shachar Itzhaky, Peter Müller, Nadia Polikarpova, and Ilya Sergey. 2023.
Leveraging Rust Types for Program Synthesis. Proc. ACM Program. Lang. 7, PLDI
(2023), 1414–1437. https://doi.org/10.1145/3591278

134

https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://doi.org/10.1007/978-3-642-36946-9
https://doi.org/10.1145/286936.286947
https://coq.inria.fr/
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1145/3371102
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1145/365559.365617
https://doi.org/10.1145/2818638
https://doi.org/10.1145/2818638
https://doi.org/10.1145/3477082
https://doi.org/10.1145/3477082
https://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize
https://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize
https://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize
https://doi.org/10.1145/3591278

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where Programs Meet
Provers. In Programming Languages and Systems - 22nd European Symposium on Pro-
gramming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture
Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.).
Springer, 125–128. https://doi.org/10.1007/978-3-642-37036-6_8

Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium on
Applied Mathematics 19 (1967), 19–32. http://laser.cs.umass.edu/courses/c
s521-621.Spr06/papers/Floyd.pdf

Matthew Fluet, Greg Morrisett, and Amal J. Ahmed. 2006. Linear Regions Are All
You Need. In Programming Languages and Systems, 15th European Symposium on
Programming, ESOP 2006, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings
(Lecture Notes in Computer Science, Vol. 3924), Peter Sestoft (Ed.). Springer, 7–21. ht
tps://doi.org/10.1007/11693024_2

Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martínez,
Denis Merigoux, and Tahina Ramananandro. 2021. Steel: Proof-Oriented Program-
ming in a Dependently Typed Concurrent Separation Logic. Proc. ACM Program.
Lang. 5, ICFP (2021), 1–30. https://doi.org/10.1145/3473590

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A Mechanised Re-
lational Logic for Fine-Grained Concurrency. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-
12, 2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 442–451. https://doi.org/
10.1145/3209108.3209174

Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert
Krebbers, Jeehoon Kang, and Derek Dreyer. 2022. Simuliris: A Separation Logic
Framework for Verifying Concurrent Program Optimizations. Proc. ACM Program.
Lang. 6, POPL (2022), 1–31. https://doi.org/10.1145/3498689

David Gay and Alexander Aiken. 1998. Memory Management with Explicit Regions.
In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design
and Implementation (PLDI), Montreal, Canada, June 17-19, 1998, Jack W. Davidson,
Keith D. Cooper, and A. Michael Berman (Eds.). ACM, 313–323. https://doi.or
g/10.1145/277650.277748

Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102. https:
//doi.org/10.1016/0304-3975(87)90045-4

Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars
Birkedal. 2023. Verifying Reliable Network Components in a Distributed Separation
LogicwithDependent Separation Protocols. Proc. ACMProgram. Lang. 7, ICFP (2023),
847–877. https://doi.org/10.1145/3607859

Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. 2021.
Mechanized Logical Relations for Termination-Insensitive Noninterference. Proc.
ACM Program. Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434291

Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang,
and James Cheney. 2002. Region-Based Memory Management in Cyclone. In Pro-
ceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design and

135

https://doi.org/10.1007/978-3-642-37036-6_8
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
https://doi.org/10.1007/11693024_2
https://doi.org/10.1007/11693024_2
https://doi.org/10.1145/3473590
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1145/3498689
https://doi.org/10.1145/277650.277748
https://doi.org/10.1145/277650.277748
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/3607859
https://doi.org/10.1145/3434291

Implementation (PLDI), Berlin, Germany, June 17-19, 2002, Jens Knoop and Laurie J.
Hendren (Eds.). ACM, 282–293. https://doi.org/10.1145/512529.512563

Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and
Derek Dreyer. 2023. Melocoton: A Program Logic for Verified Interoperability Be-
tween OCaml and C. Proc. ACM Program. Lang. 7, OOPSLA2, Article 247 (oct 2023),
29 pages. https://doi.org/10.1145/3622823

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris:
Session-Type Based Reasoning in Separation Logic. Proc. ACM Program. Lang. 4,
POPL (2020), 6:1–6:30. https://doi.org/10.1145/3371074

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0:
Asynchronous Session-Type Based Reasoning in Separation Logic. Log. Methods
Comput. Sci. 18, 2 (2022). https://doi.org/10.46298/lmcs-18(2:16)2022

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM
12, 10 (1969), 576–580. https://doi.org/10.1145/363235.363259

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle Se-
mantics for Concurrent Separation Logic. In Programming Languages and Systems,
17th European Symposium on Programming, ESOP 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4960),
Sophia Drossopoulou (Ed.). Springer, 353–367. https://doi.org/10.1007/978-3
-540-78739-6_27

JohnHogg, Doug Lea, AlanCameronWills, Dennis de Champeaux, and Richard C. Holt.
1992. The Geneva convention on the treatment of object aliasing. OOPS Messenger
3, 2 (1992), 11–16. https://doi.org/10.1145/130943.130947

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The Power of
Parameterization in Coinductive Proof. In The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January
23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 193–206. https:
//doi.org/10.1145/2429069.2429093

Iris Team. 2023a. The Iris 4.1 Reference. https://plv.mpi-sws.org/iris/appendix
-4.1.pdf

Iris Team. 2023b. Iris Coq Development. https://gitlab.mpi-sws.org/iris/iris

Samin S. Ishtiaq and Peter W. O’Hearn. 2001. BI as an Assertion Language for Mutable
Data Structures. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, London, UK, January 17-19, 2001,
Chris Hankin and Dave Schmidt (Eds.). ACM, 14–26. https://doi.org/10.1145/
360204.375719

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and
Frank Piessens. 2011. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and
Java. In NASA Formal Methods - Third International Symposium, NFM 2011, Pasadena,
CA, USA, April 18-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6617),
Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi
(Eds.). Springer, 41–55. https://doi.org/10.1007/978-3-642-20398-5_4

136

https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/3622823
https://doi.org/10.1145/3371074
https://doi.org/10.46298/lmcs-18(2:16)2022
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1145/130943.130947
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2429069.2429093
https://plv.mpi-sws.org/iris/appendix-4.1.pdf
https://plv.mpi-sws.org/iris/appendix-4.1.pdf
https://gitlab.mpi-sws.org/iris/iris
https://doi.org/10.1145/360204.375719
https://doi.org/10.1145/360204.375719
https://doi.org/10.1007/978-3-642-20398-5_4

Koen Jacobs, Dominique Devriese, and Amin Timany. 2022. Purity of An ST Monad:
Full Abstraction by Semantically Typed Back-Translation. Proc. ACM Program. Lang.
6, OOPSLA1 (2022), 1–27. https://doi.org/10.1145/3527326

Jacques-Henri Jourdan. 2018. Insufficient synchronization in Arc::get_mut— Rust Issue
#51780. https://github.com/rust-lang/rust/issues/51780

Ralf Jung. 2017. MutexGuard<Cell<i32>>must not be Sync—Rust Issue #41622. https:
//github.com/rust-lang/rust/issues/41622

Ralf Jung. 2020. Understanding and Evolving the Rust Programming Language. Ph. D.
Dissertation. Saarland University, Saarbrücken, Germany. https://publikatione
n.sulb.uni-saarland.de/handle/20.500.11880/29647

Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2020a. Stacked borrows:
an aliasing model for Rust. Proc. ACM Program. Lang. 4, POPL (2020), 41:1–41:32.
https://doi.org/10.1145/3371109

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, andDerekDreyer. 2018a. RustBelt:
Securing the Foundations of the Rust Programming Language. Proc. ACM Program.
Lang. 2, POPL (2018), 66:1–66:34. https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-Order
Ghost State. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques Gar-
rigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 256–269. https://doi.org/
10.1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and
Derek Dreyer. 2018b. Iris from the Ground Up: A Modular Foundation for Higher-
Order Concurrent Separation Logic. J. Funct. Program. 28 (2018), e20. https:
//doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany,
Derek Dreyer, and Bart Jacobs. 2020b. The Future is Ours: Prophecy Variables in
Separation Logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1–45:32. https:
//doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 637–
650. https://doi.org/10.1145/2676726.2676980

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver
Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A Gen-
eral, Extensible Modal Framework for Interactive Proofs in Separation Logic. Proc.
ACM Program. Lang. 2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/3236
772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and
Lars Birkedal. 2017a. The Essence of Higher-Order Concurrent Separation Logic. In
Programming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes

137

https://doi.org/10.1145/3527326
https://github.com/rust-lang/rust/issues/51780
https://github.com/rust-lang/rust/issues/41622
https://github.com/rust-lang/rust/issues/41622
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3236772

in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer, 696–723. https:
//doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive proofs in
higher-order concurrent separation logic. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, Jan-
uary 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205–217.
https://doi.org/10.1145/3009837.3009855

Dongjae Lee, Minki Cho, Jinwoo Kim, Soonwon Moon, Youngju Song, and Chung-Kil
Hur. 2023. Fair Operational Semantics. Proc. ACM Program. Lang. 7, PLDI (2023),
811–834. https://doi.org/10.1145/3591253

Hongjin Liang and Xinyu Feng. 2016. A Program Logic for Concurrent Objects under
Fair Scheduling. In Proceedings of the 43rd Annual ACMSIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 385–399. https:
//doi.org/10.1145/2837614.2837635

Hongjin Liang and Xinyu Feng. 2018. Progress of Concurrent Objects with Partial
Methods. Proc. ACM Program. Lang. 2, POPL (2018), 20:1–20:31. https://doi.or
g/10.1145/3158108

Niko Matsakis. 2017. 2094-nll — The Rust RFC Book. https://rust-lang.github.i
o/rfcs/2094-nll.html

Niko Matsakis. 2022. Non-lexical lifetimes (NLL) fully stable. https://blog.rust-l
ang.org/2022/08/05/nll-by-default.html

Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust language. In Proceedings of
the 2014 ACM SIGAda annual conference on High integrity language technology, HILT
2014, Portland, Oregon, USA, October 18-21, 2014, Michael B. Feldman and S. Tucker
Taft (Eds.). ACM, 103–104. https://doi.org/10.1145/2663171.2663188

Yusuke Matsushita. 2019. CHC-based Program Verification Exploiting Ownership Types.
Senior Thesis. University of Tokyo.

YusukeMatsushita. 2021. Extensible Functional-Correctness Verification of Rust Programs
by the Technique of Prophecy. Master’s thesis. University of Tokyo.

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. 2022.
RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs
with Unsafe Code. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, San Diego, CA, USA, June 13 - 17,
2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 841–856. https://doi.org/10.114
5/3519939.3523704

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2020. RustHorn: CHC-
Based Verification for Rust Programs. In Programming Languages and Systems - 29th
European Symposium on Programming, ESOP 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075), Peter Müller
(Ed.). Springer, 484–514. https://doi.org/10.1007/978-3-030-44914-8_18

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2021. RustHorn: CHC-
based Verification for Rust Programs. ACM Trans. Program. Lang. Syst. 43, 4 (2021),
15:1–15:54. https://doi.org/10.1145/3462205

138

https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3591253
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3158108
https://doi.org/10.1145/3158108
https://rust-lang.github.io/rfcs/2094-nll.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://blog.rust-lang.org/2022/08/05/nll-by-default.html
https://blog.rust-lang.org/2022/08/05/nll-by-default.html
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1145/3462205

J. McCarthy and P.J. Hayes. 1981. Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In Readings in Artificial Intelligence, Bonnie Lynn Webber and
Nils J. Nilsson (Eds.). Morgan Kaufmann, 431–450. https://doi.org/10.1016/B9
78-0-934613-03-3.50033-7

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time
Receipts in Iris. In Programming Languages and Systems - 28th European Symposium
on Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 11423), Luís Caires (Ed.). Springer,
3–29. https://doi.org/10.1007/978-3-030-17184-1_1

Microsoft Security Response Center. 2019. We need a safer systems programming lan-
guage. https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-syste
ms-programming-language/

Lawrence S. Moss. 2001. Parametric corecursion. Theor. Comput. Sci. 260, 1-2 (2001),
139–163. https://doi.org/10.1016/S0304-3975(00)00126-2

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification
Infrastructure for Permission-Based Reasoning. In Verification, Model Checking, and
Abstract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL,
USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583),
Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer, 41–62. https://doi.
org/10.1007/978-3-662-49122-5_2

Hiroshi Nakano. 2000. A Modality for Recursion. In 15th Annual IEEE Symposium on
Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000. IEEE
Computer Society, 255–266. https://doi.org/10.1109/LICS.2000.855774

Takashi Nakayama, Yusuke Matsushita, Ken Sakayori, Ryosuke Sato, and Naoki
Kobayashi. 2024. Borrowable Fractional Ownership Types for Verification. In Ver-
ification, Model Checking, and Abstract Interpretation - 25th International Conference,
VMCAI 2024, London, United Kingdom, January 15-16, 2024, Proceedings, Part II (Lec-
ture Notes in Computer Science, Vol. 14500), RaynaDimitrova, Ori Lahav, and Sebastian
Wolff (Eds.). Springer, 224–246. https://doi.org/10.1007/978-3-031-50521-8
_11

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR
2004 - Concurrency Theory, 15th International Conference, London, UK, August 31 -
September 3, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 3170), Philippa
Gardner and Nobuko Yoshida (Eds.). Springer, 49–67. https://doi.org/10.1007/
978-3-540-28644-8_4

Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95. https:
//doi.org/10.1145/3211968

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. Bull.
Symb. Log. 5, 2 (1999), 215–244. https://doi.org/10.2307/421090

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about
Programs that Alter Data Structures. In Computer Science Logic, 15th International
Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-
13, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2142), Laurent Fribourg
(Ed.). Springer, 1–19. https://doi.org/10.1007/3-540-44802-0_1

139

https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.1007/978-3-030-17184-1_1
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://doi.org/10.1016/S0304-3975(00)00126-2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1007/978-3-031-50521-8_11
https://doi.org/10.1007/978-3-031-50521-8_11
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968
https://doi.org/10.2307/421090
https://doi.org/10.1007/3-540-44802-0_1

Project Zero. 2019. 0day “In the Wild”. https://googleprojectzero.blogspot.com
/p/0day.html

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures.
In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002,
Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74. https://doi.
org/10.1109/LICS.2002.1029817

Rust Team. 2023. Rust Programming Language. http://www.rust-lang.org/

Sarek Høverstad Skotåm. 2022. CreuSAT: Using Rust and Creusot to create the world’s
fastest deductively verified SAT solver. Master’s thesis. University of Oslo. https:
//www.duo.uio.no/handle/10852/96757

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers,
Derek Dreyer, and Lars Birkedal. 2021a. Transfinite Iris: Resolving an Existential
Dilemma of Step-Indexed Separation Logic. In PLDI ’21: 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM,
80–95. https://doi.org/10.1145/3453483.3454031

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars
Birkedal, and Derek Dreyer. 2022. Later Credits: Resourceful Reasoning for the
Later Modality. Proc. ACM Program. Lang. 6, ICFP (2022), 283–311. https:
//doi.org/10.1145/3547631

Simon Spies, Neel Krishnaswami, and Derek Dreyer. 2021b. Transfinite Step-indexing
for Termination. Proc. ACM Program. Lang. 5, POPL (2021), 1–29. https://doi.or
g/10.1145/3434294

std++ Team. 2023. Coq-std++. https://gitlab.mpi-sws.org/iris/stdpp

Jeffrey Vander Stoep. 2022. Memory Safe Languages in Android 13 - Google Online Secu-
rity Blog. https://security.googleblog.com/2022/12/memory-safe-languag
es-in-android-13.html

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predi-
cates. In Programming Languages and Systems - 23rd European Symposium on Pro-
gramming, ESOP 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings
(Lecture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.). Springer, 149–168.
https://doi.org/10.1007/978-3-642-54833-8_9

Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. 2013. Modular Reason-
ing about Separation of Concurrent Data Structures. In Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome,
Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7792),
Matthias Felleisen and Philippa Gardner (Eds.). Springer, 169–188. https://doi.
org/10.1007/978-3-642-37036-6_11

Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and
Guido Martínez. 2020. SteelCore: An Extensible Concurrent Separation Logic for
Effectful Dependently Typed Programs. Proc. ACM Program. Lang. 4, ICFP (2020),
121:1–121:30. https://doi.org/10.1145/3409003

140

https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.blogspot.com/p/0day.html
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
http://www.rust-lang.org/
https://www.duo.uio.no/handle/10852/96757
https://www.duo.uio.no/handle/10852/96757
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3434294
https://doi.org/10.1145/3434294
https://gitlab.mpi-sws.org/iris/stdpp
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1145/3409003

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Con-
current Termination-Preserving Refinement. In Programming Languages and Systems
- 26th European Symposium on Programming, ESOP 2017, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Swe-
den, April 22-29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201),
Hongseok Yang (Ed.). Springer, 909–936. https://doi.org/10.1007/978-3-662
-54434-1_34

Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kastberg Hinrich-
sen, Léon Gondelman, Abel Nieto, and Lars Birkedal. 2024. Trillium: Higher-Order
Concurrent and Distributed Separation Logic for Intensional Refinement. Proc. ACM
Program. Lang. 8, POPL (2024), 241–272. https://doi.org/10.1145/3632851

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2023. A Logical
Approach to Type Soundness. (2023).

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A
Logical Relation for Monadic Encapsulation of State: Proving Contextual Equiva-
lences in the Presence of runST. Proc. ACM Program. Lang. 2, POPL (2018), 64:1–
64:28. https://doi.org/10.1145/3158152

Mads Tofte and Jean-Pierre Talpin. 1997. Region-based Memory Management. Inf.
Comput. 132, 2 (1997), 109–176. https://doi.org/10.1006/INCO.1996.2613

Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph. D. Disserta-
tion. University of Cambridge, UK. https://ethos.bl.uk/OrderDetails.do?ui
n=uk.bl.ethos.612221

Philip Wadler. 1990. Linear Types can Change the World!. In Programming concepts
and methods: Proceedings of the IFIP Working Group 2.2, 2.3 Working Conference on
Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April, 1990, Manfred
Broy and Cliff B. Jones (Eds.). North-Holland, 561.

GlynnWinskel. 1989. A Note on Model Checking the Modal nu-Calculus. In Automata,
Languages and Programming, 16th International Colloquium, ICALP89, Stresa, Italy,
July 11-15, 1989, Proceedings (Lecture Notes in Computer Science, Vol. 372), Giorgio
Ausiello, Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca (Eds.).
Springer, 761–772. https://doi.org/10.1007/BFB0035797

Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021. GhostCell: Sep-
arating Permissions from Data in Rust. Proc. ACM Program. Lang. 5, ICFP (2021),
1–30. https://doi.org/10.1145/3473597

141

https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3632851
https://doi.org/10.1145/3158152
https://doi.org/10.1006/INCO.1996.2613
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1007/BFB0035797
https://doi.org/10.1145/3473597

	Introduction
	General Background
	Hoare Logic
	Partial vs. Total Correctness, or Safety vs. Liveness

	Ownership and Separation Logic
	Hard Problem: Mutable State
	Ownership
	Separation Logic

	Propositional Sharing
	Shared Invariants

	Problem: Later Modality and Step-Indexing
	Our Solution: Nola
	Our Contributions
	Future Applications
	Dissertation Organization

	Technical Preliminaries on Iris
	Iris's Core Features
	Basic Features
	Around the Later Modality

	Resources
	Resource Algebra and Resource Ownership
	Various Constructions of Resource Algebras
	Example: Heap Resource Algebra

	Overview of Our Framework
	Preliminaries on Iris's Invariants
	Fancy Update and Hoare Triples
	Iris's Invariants
	Model

	Nola's Later-Free Invariants
	Extended Fancy Update and Hoare Triples
	Nola's Later-Free Invariants
	Model

	Example: Linked List Mutation
	Verification Target
	Problem with Iris's Invariants
	Solution: Nola's Later-Free Invariants

	Paradoxes and Expressivity
	Paradoxes of Later-Free Invariants
	Expressivity

	Semantic Alteration by Derivability
	Goal: Semantic Alteration
	First Step: Parameterization by Derivability
	Our Key Achievement: General Derivability Construction
	Advanced Model

	Case Study: Strong Normalization under a Stratified Type System
	Our Target Type System
	Verifying Strong Normalization with Nola's Invariants

	Later-Free Rust-Style Borrows
	Background
	Rust's Borrows
	RustBelt's Lifetime Logic

	Design
	Proof Rules
	Lifetimes
	Borrows
	Examples

	Semantic Alteration by Derivability
	Model
	Lifetime Mechanism
	Borrow Mechanism

	Later-Free Prophetic Borrows
	Background — The Author's Prior Work
	RustHorn: Prophecies for Rust-Style Borrows
	RustHornBelt: Semantic Foundation for Prophetic Borrows

	Proof Rules of Nola's Prophetic Borrows
	Parametric Prophecies
	Prophetic Borrows
	Examples

	Semantic Alteration by Derivability
	Model
	Parametric Prophecies
	Prophetic Agreement
	Prophetic Borrows

	Our Coq Mechanization
	Overview
	How to Use Our Coq Mechanization
	Case Study: Linked List Mutation

	Related Work
	Invariants with Later-Free Rules
	Termination and Liveness Verification
	Tackling Laters

	Conclusion

