RustHorn: CHC-based Verification for Rust Programs

YUSUKE MATSUSHITA, The University of Tokyo, Japan
TAKESHI TSUKADA, Chiba University, Japan
NAOKI KOBAYASHI, The University of Tokyo, Japan

Reduction to satisfiability of constrained Horn clauses (CHCs) is a widely studied approach to automated
program verification. Current CHC-based methods, however, do not work very well for pointer-manipulating
programs, especially those with dynamic memory allocation. This paper presents a novel reduction of pointer-
manipulating Rust programs into CHCs, which clears away pointers and memory states by leveraging Rust’s
guarantees on permission. We formalize our reduction for a simplified core of Rust and prove its soundness and
completeness. We have implemented a prototype verifier for a subset of Rust and confirmed the effectiveness
of our method.

CCS Concepts: » Theory of computation — Program verification; Type theory.
Additional Key Words and Phrases: Rust, permission, ownership, pointer, CHC, automated verification

ACM Reference Format:

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2021. RustHorn: CHC-based Verification for Rust
Programs. ACM Trans. Program. Lang. Syst. x, x, Article 1 (January 2021), 53 pages. https://doi.org/10.1145/
3462205

1 INTRODUCTION

Reduction to constrained Horn clauses (CHCs) is a widely studied approach to automated program
verification of functional correctness [6, 24].

Technically, a CHC is a Horn clause [32] equipped with constraints, i.e., a formula of the form
0 = A 1;, where each of the formulas ¢, {q, . . ., 4,—1 is either a constraint (e.g., a < b+ 1) or an
atomic formula of the form f (?), where f is a predicate variable and = to,...,t,_1 are terms. Each
free variable in a CHC is semantically universally quantified over some fixed sort (e.g., int, bool),
which we usually omit for brevity. To aid understanding, we extend the notion of CHCs to allow
disjunctions and existential quantifiers in the body (i.e., the right-hand side of the implication).
Any CHC in this extended form can easily be translated into a conjunction of standard CHCs. A
system of CHCs or a CHC system is a finite set of CHCs, which semantically means conjunction of
the component CHCs.

CHC solving is the process of deciding whether a given system of CHCs has a solution, i.e., a
valuation of predicate variables which makes all the CHCs in the system valid. We say that a
system of CHCs is satisfiable if it has a solution. A variety of program verification problems can be
naturally reduced to CHC solving [6, 24].

For example, let us consider the following C code that defines McCarthy’s 91 function.

Authors’ addresses: Yusuke Matsushita, The University of Tokyo, Tokyo, Japan, yskm24t@is.s.u-tokyo.ac.jp; Takeshi
Tsukada, Chiba University, Chiba, Japan, tsukada@math.s.chiba-u.ac.jp; Naoki Kobayashi, The University of Tokyo, Tokyo,
Japan, koba@is.s.u-tokyo.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0164-0925/2021/1-ART1 $15.00

https://doi.org/10.1145/3462205

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

HTTPS://ORCID.ORG/0000-0002-5208-3106
HTTPS://ORCID.ORG/0000-0002-2824-8708
HTTPS://ORCID.ORG/0000-0002-0537-060
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://orcid.org/0000-0002-5208-3106
https://orcid.org/0000-0002-2824-8708
https://orcid.org/0000-0002-2824-8708
https://orcid.org/0000-0002-0537-060
https://doi.org/10.1145/3462205

1:2 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

int mc91(int n) {
if (n > 100) return n - 10; else return mc91(mc91(n + 11));
}

Suppose we wish to verify that, for any n < 101, mc91(n) returns 91 if the computation terminates,
which is a kind of (partial) functional correctness of the function mc91.! The verified property is
equivalent to the satisfiability of the following system of CHCs (here, if ¢ then ¢ else ¥/ is sugar

for (p A) V (= A §)):*°
Mc91(n,r) < if n > 100 then r = n—10 else 3r". Mc91(n+11,r") A Mc91(r’,r)
r=91 & n <101 A Mc91(n,r)

The predicate Mc91(n, r) means that mc91(n) returns r (if it terminates). The first CHC in the system
above describes the specification of mc91 and the second one describes the required property of
mc91. We can verify the expected property by finding a solution to the system like below.

Mc91(n,r) ;&= r=91V (n>100 A r =n—10).

As observed in the example above, finding a solution to CHCs generated from a program with
loops and recursions is strongly related to finding the invariant on loops and recursions.

A CHC solver provides a common infrastructure for a variety of programming languages and
properties to be verified. There are efficient CHC solvers [13, 20, 31, 42] that can solve instances
obtained from actual programs. For example, the above CHC system on Mc91 can be solved instantly
by many CHC solvers, including Spacer [42] and Holce [13]. As a consequence, many modern
automated program verification tools [25, 27, 30, 39, 40, 66] reduce verification programs to CHCs
and use CHC solvers.

Current CHC-based methods, however, do not work very well for pointer-manipulating pro-
grams, especially those with dynamic memory allocation, as we see in §1.1. In this paper, we focus
on programs written in the Rust programming language, which provides strong guarantees on
permission or ownership of pointers. We present a novel reduction of Rust programs into CHCs,
which clears away explicit representation of pointers and memory states for smooth verification,
as we overview in §1.2.

1.1 Challenges in Verifying Pointer-Manipulating Programs

A standard CHC-based approach [25] for pointer-manipulating programs represents the memory
state as an array that maps each address to the data at the address, which is passed around as
an argument of each predicate (cf. the store-passing style). In particular, SeaHorn [25], a standard
CHC-based verification tool for C/C++, uses this array-based reduction.

For example, let us consider the following pointer-manipulating variation of the previous pro-
gram.

void mc91p(int n, intx r) {
if (n > 100) *xr = n - 10;

1 To be precise, int in C usually represents a 32-bit integer. However, in this paper, we just consider unbounded integers for
simplicity.
2 Note that this system can be straightforwardly transformed into the following system of standard CHCs.

Mc91(n,r) &< n>100 A r=n-10

Mc91(n,r) & —(n>100) A Mc91(n+11,r") A Mc91(¥',r)

r=91 < n <101 A Mc91(n,r)
3 Although some CHC-based verifiers use forward reduction, where the implication of each CHC goes in the direction of
program execution, in this paper we use backward reduction, where the implication goes in the opposite direction.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:3

else { int s; mc91p(n + 11, &s); mc91p(s, r); 1}
}
It is reduced into the following system of CHCs by the array-based approach.

Mc91p(n,r,h,h') & if n > 100 then h’ = h{r < n— 10}
else 3s’,h"”. Mc91p(n +11,s",h, k") A Mc91p(h”’'[s'],r, ", k)
R [r] =91 & n <101 A Mc91p(n,r,h k')

Here, h{r < v} denotes the array made from h by replacing the value at index r with v, and h[r]
denotes the value of the array h at index r. Unlike Mc91, the predicate Mc91p additionally takes
two arrays h and h’, which respectively represent the memory states before and after the call of
mc91p. The second argument r of Mc91p, representing the pointer argument r of mc91p, is an index
for the memory-state arrays. So the assignment *r = n - 10 is modeled in the then part of the
first CHC as b’ = h{r < n — 10}, obtained by updating the r-th element of the memory-state array.
In the else part, s’ represents &s. This CHC system has a simple solution

Mc9ip(n,r,h,h') &= h'[r] =91 V (n> 100 A h'[r] = n - 10),

which can be found by some array-supporting CHC solvers including Spacer [42] with the support
of arrays by the underlying SMT solvers [10, 67].

However, the array-based approach has some shortcomings. Let us consider, for example, the
following innocent-looking code (here, rand() is a non-deterministic function that can return any
integer value).

bool just_rec(intx ma) {
if (rand() > @) return true;
int a@ = xma; int b = rand(); just_rec(&b); return (a@ == *ma);

3

Depending on the return value of rand(), just_rec(ma) either (i) immediately returns true or
(ii) recursively calls itself and checks whether the target of ma remains unchanged through the
recursive call. Since the target object of ma is not modified through the call of just_rec, the return
value a@ == *ma is always true. A tricky point is that the function can modify the memory by
newly allocating the data of b.

Suppose we wish to verify that just_rec never returns false. The array-based reduction
generates a system of CHCs like the following.

FJustRec(ma,h,h’,r) < (K’ =h A r =true) V
(3b, mb. mb # ma A JustRec(mb, h{mb « b},h’,) A r = (h[ma] == h’[ma]))
r =true < JustRec(ma, h,h’,r)

Here, we have omitted the allocation for a@ for simplicity. We use ==, !=, >=, && to denote binary
operations that return a boolean value. An underscore °_’ denotes any fresh variable, which
semantically means that we don’t care the value.

Unfortunately, the CHC system above is not satisfiable, which causes a false alarm of unsafety.
This is because mb may not necessarily be completely fresh in this formulation. Although mb
is made different from the argument ma of the current call, it may coincide with ma of some
ancestor call. For example, we can derive contradiction from the CHCs above as follows; here,
[0 — m, 1 +— n] denotes the array that maps the address 0 to m and 1 to n (and any other address
to 0).

FJustRec(0, [0 — 5, 1+ 4], [0 +— 5, 1 +> 4], true) (. immediate return)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:4 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

. JustRec(1,[0+— 3, 1+ 4],[0+— 5, 1+ 4],true) (" setb =5, mb=0)
. JustRec(0,[0+— 3,1+ 0], [0+ 5, 1> 4],false) (. setb=4, mb=1)
.. false =true (" the required property)

The simplest remedy would be to model a memory allocation strategy more faithfully. For
example, one can also manage the stack pointer sp, which represents the maximum address index
that has been used for memory allocation so far.

JustRec, (ma, h, sp,h’,sp’,r) < (K" =h A sp’ =sp A r=true) Vv
(3b. JustRec, (sp+ L, h{sp+ 1« b}, sp+1,h",sp’,_) A r = (h[ma] == h’[ma]))
r =true < JustRec,(ma, h,sp,h’,sp’,r) A ma < sp
The resulting CHC system now has a solution, but it involves a quantifier.
JustRec, (ma, h, sp,h’, sp’,r) :&= r=true A ma<sp<sp’ AVi<sp hli]=H][i]

Here, we need a quantified invariant V i < sp. h[i] = h’[i], which states that the memory region of
{i | i < sp}, which has an unbounded size, remains unchanged.

Finding quantified invariants is known to be very difficult in general, despite active studies on it [2,
21, 28, 38, 44]. The quantified formula needed above is fairly simple, but for more realistic programs,
much more complex quantified formulas can be necessary to represent solutions. Therefore, current
array-supporting CHC solvers usually fail in finding quantified invariants for CHC outputs of the
existing method. Indeed, the Spacer CHC solver fails in solving even the above CHC system for
FJustRec,.

In order to avoid this kind of difficulty, many verification tools for pointer-manipulating programs
analyze pointer usage to refine the memory model [25, 26, 39]. For example, for the verification
problem of just_rec, SeaHorn generates CHCs without arrays, by successfully analyzing that no
effective destructive update happens, although SeaHorn usually uses the array-based reduction.
Still, such analyses are usually more or less ad-hoc and can easily fail for advanced pointer uses.*
Existing verifiers like SeaHorn target programming languages like C/C++ and Java, which do not
restrict aliasing of pointers, which causes the difficulties in program verification.

1.2 Our Approach: Leverage Rust’s Guarantees on Permission

Rust [47, 58] is a systems programming language that supports low-level efficient memory opera-
tions like C/C++ and at the same time provides high-level safety guarantees using a permission-based
type system. Despite its unique type system, Rust attains high productivity and has been widely
used in industry recently [18, 51, 53].

This paper proposes a novel approach to CHC-based automated verification of programs written
in Rust. Our method clears away explicit representation of pointers and memory states by leveraging
Rust’s permission guarantees.

Rust’s Permission Control. Before describing our approach, we briefly explain the permission
control mechanism of Rust. Various styles of permission/ownership/capability have been introduced
to control and reason about pointers in programming language design, program analysis and
verification [7-9, 14, 33, 68, 69]. The permission control mechanism of Rust’s type system, which
we focus on, inherits a lot from existing approaches but also has some unique features.

In Rust, whenever an alias (or pointer) accesses an object, it needs permission for that. There
are two types of permission in Rust: update permission, which allows both write and read access,
and read permission, which allows only read access. At a high level, Rust’s permission control

4 We examined SeaHorn in our experiments, which are reported in §5.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:5

mc _—
ma —_— °
a --
[5 | 6)
mb _— °
D b ———
| 3 g
® call (i) return (i) end of (1)

take_max take_max borrowing

Fig. 1. Values and aliases of a and b in executing inc_max(5, 3). Each row shows each alias/variable’s
timeline of the update permission. A solid line expresses possession of the update permission. A bullet shows
the time point when the borrowed update permission is given back. For example, b has the permission to
update its integer object during (i) and (iv), but temporarily loses it during (ii) and (iii) because the pointer mb,
created upon the function call of take_max(&a, 8&b), borrows b until the end of (iii).

guarantees that whenever an alias can read from an object (with update or read permission) any
other alias cannot write to the object (i.e., does not have update permission). In this paper, we
mainly focus only on update permission. For understanding our approach, it suffices to keep in
mind that at most one alias can have update permission to each object.

For flexible permission control, Rust supports an operation called borrowing. In short, it is a
temporary transfer of permission to a newly created pointer called a reference. A reference that
borrows update or read permission is called a mutable or immutable reference, respectively.” When
borrowing is performed, the deadline is determined. The reference can use its permission only until
this deadline.

As a simple example of Rust’s borrowing, let us consider the program below, which is also an
interesting target of verification. It is written in C to aid understanding for a wide range of readers;
the version in Rust is presented later in this subsection.

1intx take_max(int* ma, intx mb) {

2 if (*ma >= *mb) return ma; else return mb;

3 }

4 bool inc_max(int a, int b) {

5 { intx mc = take_max(&a, &b); // borrow a and b

6 *mc += 1; } // deadline of both borrows
7 return (a != b);
s }

Figure 1 illustrates which alias/variable has the permission to update the integer objects of a and b
during the execution of inc_max (5, 3).In inc_max, on line 5, the permission to update the integer
object of a is borrowed by a newly taken pointer, or mutable reference, &a, and we similarly perform
borrowing on b. For both borrows, the deadline is set to the end of the inner block (} in line 6).
Until the deadline, the two references have the update permission on the integer objects whereas
the lenders a and b temporarily lose all the permission. Now the function take_max is called with

> This terminology is standard but a bit confusing, since the word ‘mutable/immutable’ describes the property of the target

object of the reference, rather than the property of the reference itself. Another terminology is ‘unique/shared reference’,
which can be less confusing.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:6 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

arguments &a and &b. The function take_max takes two integer mutable references ma and mb and
returns the one with the larger target value. An interesting point is that the returned address is
determined by a dynamic condition. After the call, we get a mutable reference mc, which points to
the integer object of either a or b. The reference mc owns the update permission until the end of the
inner block; this property is inherited from ma and mb. In line 6, mc increments the integer object by
*mc += 1. Just after the deadline (in line 7), a and b retrieve the update permission to their integer
objects and thus can read from them. Here, we check if a != b holds. The property we want to
verify on this program is that inc_max returns true for any inputs a and b. It holds because, by
incrementing the larger side of a and b, the difference between a and b increases by one.

Rust achieves the permission control described above using an elaborate type system. In particular,
Rust uses the notion of lifetime to statically manage the deadline of each borrow. The type system
of Rust will be discussed more in depth in §2.

The Key Idea of Our Reduction. Although Rust’s permission-based type system cleverly ensures
memory safety, we wish to verify a more fine-grained property, functional correctness. For smooth
verification, we leverage Rust’s permission guarantees to reduce Rust programs into CHCs without
explicit representation of pointers and memory states. A naive approach would be to model each
pointer as the value of its target object. However, if we do so, the lender of a mutable borrow do not
know the value of the borrowed object just after the deadline. For example, if we took this naive
approach for the take_max/inc_max program, we would get CHCs of the following form.

TakeMax(a,b,r) < ifa>b then r=aelse r=»
IncMax(a,b,r) < 3c,c’. TakeMax(a,b,c) A ¢’ =c+1 Ar=(?!=7?)
r = true & IncMax(a,b,r).

The problem is, we do not know how to represent the values of a and b after the deadline of the
borrows. There is no way to fill the parts ? in the second CHC. So we need a better way to model
mutable references.

The key idea of our method is to represent a mutable reference ma as a pair (g, a,) consisting of
the values of the target object of *ma at two time points — the current value a and the value at the
deadline of the borrow a,. The trick is that we access some future information a., which is related to
the notion of prophecy variable [1, 36, 73].

For example, our approach reduces the previous verification problem to the following system of
CHCs.

TakeMax({a, as),{b,bo),r) < ifa>b
then bo=b A r={(a,a.) else a, =a A r={({b,b,)
IncMax(a, b,r) < 3Fa.,b.,c, co,c’. TakeMax({a, a,), (b, b.), {c, o))
Ac =c+1Aco=c Ar=(a'=h,)
r =true < IncMax(a,b,r).

The mutable reference ma is now represented as (a, a.), and similarly for mb and mc. In the then part
of the first CHC, we have the constraint b, = b, because now we throw away mb and thus the final
target value b, of mb is now set to the current target value b. The constraint r = (g, a,) corresponds
to return ma in the program. The same reasoning applies to the else part of the first CHC. In the
second CHC, the mutable reference mc is modeled as the pair {c, ¢,). After incrementing the value
of mc (expressed by ¢’ = ¢+ 1), the borrowed update permission of mc is released, which is expressed
by ¢, = ¢’. Now, the final check a != b is simply modeled as a, != b, because the new values of a
and b are available as a, and b,. The important point is that both the values a, and b, have been

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:7

determined at this point; one is determined in TakeMax (by either b, = b or a, = a), and the other
is determined in IncMax by ¢, = ¢’. For example, in evaluating inc_max(5, 3) (as in Figure 1), the
pointers ma and mb passed to take_max are modeled as (5, 6) and (3, 3) respectively. Although the
verified program uses pointer manipulation, the system of CHCs obtained by our reduction is free
of complex features like arrays, and thus can easily be solved by many CHC solvers.

Also, our reduction turns the verification problem on just_rec discussed in §1.1 into the
following system of pretty simple CHCs.

FJustRec({a, a.),r) < (a.=a A r =true) V
(3b, bo. JustRec({b,bs),) N as=a Ar=(a==a.))
r =true &= JustRec({a,ao),r).

This CHC system has a very simple solution JustRec(ma,r) :&= r = true, which can easily be
found by standard CHC solvers. Remarkably, unlike the array-based reduction discussed in §1.1, the
CHC system output by our reduction is free of arrays and its solution does not require quantifiers.

Our reduction can be flexibly applied to various features of Rust, such as reborrowing, nested
references, and recursive data types. Our approach can reduce a substantial subset of Rust to CHCs
in a fairly uniform manner. In §3.4, we present some advanced examples of our verification method.
Example 5 presented there features a Rust program that handles a mutable reference to a singly
linked list, where our reduction experimentally succeeded in automated verification of a fairly
challenging property.

Formalizing Our Reduction. Later in §2 and §3, we formalize (a subset of) Rust and our reduction.
Here we provide an informal overview of the formalization.

As a running example, we reuse the take_max/inc_max program discussed earlier. In Rust, the
program is written as follows. To aid understanding, we added some ghost annotations in cyan.

fn take_max<'a>(ma: &'a mut i32, mb: &'a mut i32)-> &'a mut i32 {
if *ma >= *mb { ma } else { mb }

}

fn inc_max(mut a: 132, mut b: i32) -> bool {
{ let mc = take_max<'1>(&'l mut a, &'l mut b); =*mc += 1; }('1)
al=b

3

The type 132 represents a (32-bit) integer. The type &'a mut 132 represents a mutable reference
to an integer that is governed under the lifetime 'a, which represents the deadline of a borrow.°
In Rust, the permission of each pointer is expressed in the type. The function take_max takes two
integer mutable references of some lifetime 'a and returns an integer mutable reference of the
lifetime 'a (the function is parametrized over 'a). In the function inc_max, we perform borrowing.
The time point at the end of the inner scope is named '1 here. We mutably borrow the integer
variables a and b under this lifetime '1, and pass them to the function take_max. The output mc
has the type &'1 mut i32.7

For formalization, we use a normalized program like below, where each function body is de-
composed into a set of simple instructions labeled by program points. This is also similar to an
intermediate representation used by the Rust compiler, which is called MIR (mid-level intermediate

% In the standard terminology of Rust, a lifetime often means a time range where a borrow is active. In this paper, however,
we use the term lifetime to refer to the time point when a borrow ends.

7 In Rust, we do not need to (and actually cannot) write annotations on local lifetimes, like ' 1 used above. The Rust compiler
performs a very clever inference on local lifetimes.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:8 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

representation) [54]. This representation is convenient for the formalization of the type system and
the reduction to CHCs.

fn take_max<'a>(ma: &'a mut i32, mb: &'a mut i32)-> &'a mut i32 {
if To: *ma >= xmb { T1: ma } else { T2: mb }

}

fn inc_max(mut a: i32, mut b: i32) -> bool {
{ I0: let ma = &'1 mut a; I1: let mb = &'l mut b;

I2: let mc = take_max<'l>(ma, mb); I3: *mc += 1; I4: }('l)

I5: a !=b

}

In the function take_max, we jump from T0 to either T1 or T2 depending on the condition *ma

>= *mb. In the function inc_max, the function call let mc = take_max(&mut a, &mut b); is
decomposed into three instructions, namely those at 10, I1 and I2. For convenience of explanation,
we set a program point I4 at the end of the inner scope.

Now we describe how Rust’s type system works. The type system of Rust gives some permission
to a pointer, which changes in the process of execution. As a result, the type system is flow-sensitive
and assigns a different type context to each program point. For example, the following is the
function inc_max with the type context assigned to each program point.

fn inc_max(mut a: i32, mut b: i32) -> bool {
{ I0: {a, b: i32} let ma = &'l mut a;
I1: {ma: &'l mut i32; a:["'1] i32; b: i32} let mb = &'l mut b;
I2: {ma, mb: &'l mut i32; a, b:['1] i32}
let mc = take_max<'l>(ma, mb);
I3: {mc: &'l mut i32; a, b:['1] i32} *mc += 1;
I4: {a, b:['1] i32} 3('D)
I5: {a, b: 132} a != b
3

The variable a temporarily loses the permission on its integer object until the deadline of the borrow
'1, which we say that a is frozen under the lifetime '1. A similar thing applies to b. The type
context has the information about which variables are frozen under which lifetime. (In the notation
used above, a:['1] 132 means that a is typed 132 but frozen under '1.) When we move from 14
to I5, the lifetime '1 comes and thus the variables a and b retrieve the permission.

Now we sketch the formalization of our reduction to CHCs. Our reduction of Rust programs
to CHCs is type-directed, in that it leverages the type assigned to each variable by Rust’s type
system to decide the model of the variable. For example, a reference of the type &mut 132 like ma is
modeled as a pair of the current and final integer values, whereas an integer variable like a, which
is essentially a pointer to an integer object, is modeled simply as its target value. In our formalized
reduction, for each program point, we introduce a predicate variable and generate a CHC that
models the instruction at the point. For example, the function take_max is reduced to the following
CHCs, where three predicate variables Ty, T; and T, represent the program points T, T1 and T2.

To({a, ac),{b,bo),r) < if a > b then Ti({a,a.), {b,bo),r) else T({a, ao), (b, bo),r)
Ti(ma,{(b,bo),r) < bo=b A r=ma

T,({a,ac), mb,r) & a,=a A r=mb

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:9

The predicate variable for each program point models the relation between the values of the local
variables in that point and the return value of the function the point belongs to. For example, the
predicate variable T; models the relation between the values of ma and mb (ma, (b, b,)) and the
return value of take_max (r). At T1, we release a mutable reference mb, which is modeled as (b, b,).
In order to ensure that what we took as the final value b, agrees with the actual final value, we add
the constraint b, = b here. The function inc_max is reduced to the following CHCs.

Iy(a,b,r) < I({a,a.),a.,b,r)

Li(ma,a,b,r) & L(ma, (b,bs),a,bo,r)

I,(ma, mb,a,b,r) < Ty(ma, mb, mc) A I3(mc,a,b,r)
L({c,co),a,b,r) — L({c+1,¢),ab,r)
L({c,co),a,b,r) < co=c A Is(a,b,r)

I(a,b,r) < r={(a'!=b)

At 10, we borrow a and obtain a mutable reference ma. Here, we take a fresh variable a, for the
final target value, i.e., the value of the borrowed integer object at the deadline of the borrow. We
model the mutable reference ma as (a, a,). Now we can simply model a as a, here, because the type
system ensures that a cannot be accessed, or is frozen, until the deadline of the borrow '1. At I3,
we perform a destructive update, incrementing the target integer of mc. Here, letting (c, ¢,) be the
value of mc at I3, we set mc’s value at I4 to {¢ + 1, ¢,). At I5, we can access a and b now because the
lifetime '1 is over. We can simply use the first argument a of I_5 for the value of a here, because it
was set to the final target value a, when we performed the borrow at I0.

Contributions. We have developed a novel method of reducing Rust programs to CHCs that
leverages permission guarantees provided by Rust’s type system, as introduced above. We have
formalized our reduction of Rust programs to CHCs on a newly formalized core language of Rust and
proved the soundness and completeness of this reduction. We have also implemented a prototype
automated verifier for the core of Rust based on the idea and confirmed the effectiveness of our
approach through preliminary experiments. The core language we support includes particularly
reborrow and recursive types. Our approach has succeeded in automated verification of some
non-trivial properties of programs with destructive update via pointers on recursive data types like
lists and trees.

This article is a revised and extended version of the same-titled paper published in the proceedings
of ESOP 2020 [49]. Compared with the conference version, in this article we have augmented
explanations, polished the formalization, added the proof of the main theorem, and expanded the
experiments.

Structure of the Rest of the Paper. In §2, we provide a formalized core of Rust. In §3, we formalize
our reduction from programs to CHCs and outline the proof of its soundness and completeness; we
also introduce advanced examples on our reduction and discuss extension of our method. In §4,
we give the complete proof of the soundness and completeness of our reduction. In §5, we report
on the implementation and the experimental results. In §6 we discuss related work and in §7 we
conclude the paper.

2 FORMALIZATION OF RUST: CALCULUS OF OWNERSHIP AND REFERENCE

Now we present our formalization of the core of Rust, which we call Calculus of Ownership and
Reference (COR). 1t is a typed procedural calculus with a lifetime-based permission control system
in the style of Rust. Its design is inspired by Agyst [34]-

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:10 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

The calculus is carefully designed to simplify our reduction of Rust programs into CHCs (pre-
sented in §3) and the proof of its soundness and completeness (given in §4). For simplicity, we
impose some restrictions in this calculus. Lifetime information, type information and data releases
should be explicitly annotated in the program. Each function body should be written as a set of
primitive commands connected with goto jumps. Also, each variable should be a pointer. Still, the
calculus covers various features of Rust, as we see later.

In §2.1 we introduce the syntax of this calculus. Then we present the type system in §2.2 and the
operational semantics in §2.3.

Notation. An arrow above a variable denotes a sequence (e.g., X = xo, . - ., Xp—1). It can be used in a

composite form; for example, ﬁ denotes xo: Tp, ..., xp—1: Tp—1. The empty sequence can be denoted
by €. Also, the length of a sequence can be specified with a superscript (e.g., ¥ = xq, ..., Xn_1).
We sometimes omit commas used as separators in a sequence.

The set operation A + B (or more generally ., A;) denotes the disjoint union, i.e., the union
AU B (or |J, Ay) defined only if the arguments are disjoint. The set operation A — B denotes the
proper set difference, i.e., the set difference A \ B that is defined only if A 2 B.

2.1 Syntax

The syntax of this calculus is as follows.

-

(program) Il ::= F (function definitions)

—
(function definition) F == fn f X {L:S} (name, signature, and labeled statements)
L —
(function signature) X == (& | ag<ap) (x: T) — U (lifetime params. and constraints, inputs, and return type)
(statement) S == I goto L (perform I and jump to L) | return x (return from a function with x)

| match #x { inj,*yo — goto Ly, inj;*y; — gotoL; } (conditionally branch by the tag)

(instruction) I = let y= mutbor, x (mutably (re)borrow) | drop X (release a variable and its target object)
immut x (weaken a mutable reference immutable) | swap(*x, *y) (swap target objects)

let ¥y = x (create a pointer) | let Y = *X (dereference a pointer)

lety = f{(a)(X) (callafunction) | introa (introduce a lifetime var.)

| let *l = COpY *X (copy the target object) | x as T (re-type a variable)
| Now & (eliminate a lifetime var.) | a < ﬁ (promise ordering on lifetime vars.)

let *1 = const (get a constant) | let *Y = kX 0p xx’ (get the integer operation result)

| let+y =rand() (getarandom integer) | let sy = inlelﬁ—T1 *X (create a variant)

| let#y = (xx,#x") (create apair) | let (+y, *y’) = *x (destruct a pair)
(type) T,U == PT (pointer type) | T + T’ (varianttype) | T X T’ (pair type) |
| X (type variable) | puX.T (equi-recursive type) | int (integer type) | unit (unit type)
(pointer kind) P ::= own (owning pointer) | R, (reference)
(veference kind) R ::= mut (mutable) | immut (immutable)
a, B,y (lifetime var.) X,Y (type var) X,y (data var.) f,g (function name) L (label)

(constant) const ::= n (integer) | () (unit) bool := unit + unit

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:11

(integer operator) Op = Op;.; | OPpool Opi = + | =1 OPpool 1= >= |==]|!=]|"--

We also use a meta-variable P for a non-mutable-reference pointer kind, i.e., own or immut,.

Program, Function and Statement. A program II is a sequence of function definitions F. For
simplicity, here we do not specify the entry function (i.e., the main function in Rust and C/C++).

A function definition F consists of the name f, the signature > and the body LS. A function is
parametrized over constrained lifetime parameters, but for simplicity our calculus does not support
polymorphism over types, like Agyst [34]. For simplicity, the input/output types of a function are
restricted to pointer types, i.e., types of the form P T. In a function signature, we simplify (& |) to
(a) and omit {|).

A label L is a program point that contains a statement S, which performs some simple command
and jumps to some label or return from the function. Later, this style with labels and unstructured
control flow simplifies the formalization of our reduction in §3.2. We require that the function body
contains the entry point label entry. Also, we require that every label in the function is syntactically
reachable from the label entry (i.e., reachable in the directed graph whose vertices are the labels
and whose edges are goto jumps); this restriction is for uniqueness of typing, as we see in §2.2.
There are three types of statements. A statement I; goto L performs the instruction I and jump
to the label L. A statement return x returns from the function with the variable x. A statement
match =x { inj *y — goto L } conditionally branches to a label L; by the tag of the variant #x and
take a pointer y; to the body of the variant.

Instruction. An instruction I performs a simple command. We have various types of instructions,
whose meanings are briefly explained above.

For most kinds of instructions, the inputs are consumed. Only for the copy instruction let xy =
copy *x and the operation instruction let xy = #x op *x;, the inputs are not consumed.

The swap instruction swap (#x, *y) takes pointers x and y and swaps the target objects of x and
y. An unusual design of this calculus is that it uses swap instead of assignment for the primitive
for destructive update. Assignment is a bit trickier than swap in terms of resource management,
because when some object is assigned to a variable, the old object of the variable is implicitly
released. We can still express assignment combining a number of instructions. For example, if we
have a pointer px to an integer and wish to assign its integer value to a mutable reference my, we
can do that by the following sequential execution: let #px” = copy *px; swap(xmy, xpx”); drop px’.

Pointer, Borrow and Lifetime. A pointer can be either an owning pointer or a reference. An owning
pointer models Rust’s box pointer Box<T>. It can freely update, read and release its target object.
As informally explained in §1.2, a mutable or immutable reference is a pointer that targets an object
owned by some owning pointer and has the update or read permission to the object under until
some lifetime. We use lifetime variables «, §, y to denote lifetimes. A lifetime variable can be either
(i) a lifetime parameter taken by a function or (ii) a local lifetime introduced within a function.

By the instruction let y = mutbor, x, we mutably borrow x under the lifetime « and obtain a
mutable reference y. Here, x can be either an (unfrozen) owning pointer or mutable reference (when
x is a mutable reference, this operation is called a reborrow). Also, by the instruction immut x, we
can weaken a mutable reference x into an immutable reference.

We have three lifetime-related ghost instructions. The instruction intro & introduces a local
lifetime a. The instruction now a sets a local lifetime « to the current moment and eliminates it.
The instruction @ < f promises that now « comes earlier than now f in the process of computation.

We can subdivide pointers in various ways. The instruction let (xy, *y’) = *x splits a pointer x

e
to a pair into pointers y, y’ to each element of the pair. The statement match #x { inj*y — gotoL }

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:12 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

turns a pointer x to a variant into a pointer y; to the body object of the variant, discarding the
permission to the tag of the variant. The instruction lety = #x takes a pointer to a pointer x
and returns a pointer y to the inner target object of x, which can also be regarded as a pointer
subdivision.

Type. In the calculus, various forms of types T are supported, whose meanings are briefly ex-
plained above. A pointer type has the form P T, where P is called the pointer kind. The type of an
owning pointer is own T, which corresponds to Rust’s Box<T> (or simply T). The types of a mutable
reference and an immutable reference are mut, T and immut, T, which correspond to &'a mut T
and &'a Tin Rust.

We say that a type is complete if it satisfies the following: every occurrence of a type variable
in T should be bound by the recursive binder y and guarded by a pointer constructor P inside
the binder. A type T that appears in a program (not just as a substructure of some type) should
be complete. For example, the singly linked integer list type pX. unit + int X own X is complete,
whereas pX. unit + int X X (without own) is not complete.

Remark 1 (Expressivity and Limitations). Although older versions of Rust determined lifetimes just
by lexical scopes, the current versions of Rust have a mechanism that overcomes that restriction,
which is called non-lexical lifetime [57]. The Rust borrow checker uses a flow sensitive analysis to
determine the lifetimes of references and allows many flexible borrow patterns. Our calculus can
the core behavior of non-lexical lifetimes. The point is that, even under non-lexical lifetimes, the
set of program points where a borrow is active forms a continuous range.

A major limitation of our calculus is that it does not support unsafe code blocks and also lacks
type traits and closures. How to overcome them is discussed later in §3.5. Another limitation of COR
is that, unlike Rust and Agyst, we do not have a primitive for directly modifying or borrowing a
substructure of a variable (e.g., the first element of a pair). Still, combining some operations, we
can modify or borrow a substructure by borrowing the whole variable first and then subdividing
pointers (e.g., let (xy, *y") = =x). Nevertheless, this borrow-and-subdivide strategy cannot fully
support some advanced borrow patterns like get_default in ‘Problem Case #3° of [57].

Example 1 (Program). The Rust program with take_max and inc_max presented in §1.2 is modeled
as follows in this calculus.
fn take-max (&) (ma: mut, int, mb: mut, int) — mut, int {
entry: let xord = ¥ma >= *mb;"! match xord { inj; *ou — goto L2, inj, *ou — goto L5 }

L2: drop ou;" drop mb:** return ma L5: drop ou;® drop ma;" return mb

}

fninc-max(oa: own int, ob: own int) — own bool {
entry: intro ' let ma = mutbor, oa:l? let mb = mutbor, ob;"3
let me = take-max{(a)(ma, mb);**
let 01 = 1;% let xoc’ = xmc + *0L drop oL;%” swap(mc, oc’);"® drop oc’;* drop me;H1°
now ;" let xor = *0a != xob;-"? drop oa;"" drop ob;"™ return or

}

The first letter of a variable name indicates the pointer kind (o for an owning pointer and m for a
mutable reference). We swapped the two branches of the match statement in take-max to make

8 Strictly speaking, this property is broken by recently adopted (implicit) two-phase borrows [56, 65]. However, by shallow
syntactical reordering, a program with two-phase borrows can be fit into usual borrow patterns.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:13

the order the same as if-else branching. We use shorthand for sequential execution; for example,
Lo: Ip;' Ij; goto Ly denotes for two labeled statements Ly: Ip; goto L; and L;: I;; goto Ly.

Here we have more program points than in the informal description of §1.2. Each time we release
a variable x we need an instruction drop x, which simplifies formalization. Also, we use ghost
instructions intro and now a to manage lifetimes.

2.2 Type System

The type system assigns a whole context (T, A) to each label (program point) of each function in
a program. A whole context is a pair of a data context T and a lifetime context A. A data context
manages the information on data variables and a lifetime context manages the information on
lifetime variables. These notions are explained in more detail soon.

Context. A data context T is a finite set of items of the form x:* T, where T should be a complete
pointer type and a (which we call activeness) is of the form either ‘actv’ (active; i.e., the permission is
not borrowed) or “ta’ (frozen until lifetime «; i.e., the permission is borrowed until). For simplicity,
we do not consider the situation where only the write permission of a variable is frozen. When a
variable x is tagged x:7*, we cannot read or update the target object of x through x. We usually
abbreviate x:*% T to x: T. A data context should not contain two items on the same variable.

A lifetime context A = (A, R) is a finite preordered set of lifetime variables, where A is the
underlying set and R is the preorder. We write |A| and <a to refer to A and R.

Finally, a whole context (T, A) is a pair of a data context I and a lifetime context A such that
every lifetime variable in T is contained in A.

Auxiliary Judgments. The subtyping judgment is of the form A,E + T < U, where = is a finite
set of assumptions of the form X < Y, which are used for coinductive reasoning on recursive types.
The common subtyping judgment A + T < U is defined as A,@ + T < U, where we have no
assumptions. The full subtyping judgment A, = + T < U is defined by the following rules.

X<YeE AZrT<U AErTL<UUKLT B<aa
AE+X<Y AZFrPT<PU AZE F muty T < mut, U AE + Ry T <RgT

AErT<UoTsUi AEFT<Up, T <U
AErT+Ti<Up+U AEFThxT<UxU

AZEvr pXT<T[pXT/X] AEr T[pX.T/X] < pX.T

X’,Y’ are fresh in =2 E+{X'<Y'} + T[X'/X] <U[Y']Y]
AEF pX.T<pY.U
XY arefreshinE E+{X'<Y,Y' <X’} + T[X'/X] < U[Y’/Y], U[Y’/Y] < T[X'/X]
AZF pX.T<pY.U

(SuBTYPE-REC-COVAR)

(SUBTYPE-REC-INVAR)
AERTLST, T <T”
AZ+T<LST”

We have two rules for judging pX.T < pY.U, SuBTYPE-REC-COVAR and SUBTYPE-REC-INVAR, which
admit coinductive reasoning of a simple form. The former SuBTYPE-REC-COVAR is provided for
the case where X appears covariantly in T. For example, the judgment pX. unit + immut, X <
pY. unit + immutg Y holds when a <a f holds. The latter SUBTYPE-REC-INVAR is provided for the
case where X appears invariantly in T (e.g., X is under a mutable reference). For example, the
judgment pX. unit + mut, X < pY. unit + mutg Y holds when both a <4 ffand § <s a hold.

AE+T<T

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:14 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

We also introduce the following copyability judgment T: copy.
T: copy T,T': copy T,T': copy

int: it: i te T:
icopy. unit:copy: - tmmitta 22 copy pX.T:copy T+T’:copy T XT’:copy

In short, T: copy means that the owning pointer own and mutable reference mutz constructors do
not occur in T except under the immutable reference constructor immut,.

Typing Judgment for Instructions. The instruction typing judgment is of the form I1, f, (T, A) + I:
(I”,A’). It means that, by running the instruction I in (I,) under the whole context (T, A), a
renewed whole context (IV, A’) is obtained. Below are the complete rules for the judgment. For
brevity, we omit IT and f here (except in Ay r) because they are always fixed. Also, we additionally
require that every variable can be used at most once in each instruction.

Aex f: the set of lifetime parameters of f

P=own,muts a¢ Ay for each lifetime variable y in PT, a <ay
(T+{x:PT}, A) + lety = mutbory, x: (T+ {y:mut, T, x:xf* PT}, A)

(TyPE-INST-MUTBOR)

if T is of the form own U, U: copy holds

TyPE-INST-D
(T+{x:T}, A) + dropx: (T,A) (Txre-INsT-DroOF)

(C+ {x:mut, T}, A) + immutx: (T + {x:immut, T}, A) (TyPE-INST-IMMUT)

x:mut, T, y:PT €T P = own, mutg
(T,A) + swap(xx,*y): (I, A)

(TYPE-INST-SWAP)

T+{x:T}, A) v letxy=x: (T+{y:ownT}, A) (TypPE-INST-OWN)

(C+{x:PP'T}, A) v lety=xx: (T+{y:(P-P')T}, A) (TYPE-INST-DEREF)

P-own =P own-P:=P Ry-Rp:= R; where R" = {inr:]u;ut Eft;ef\:vi:sen;Ut)
x:PTeT T: copy
(T,A) + letxy = copys*x: (T +{y:ownT}, A)
ArT<U

(T+{x:T},A) r xasU: T+ {x:U}, A)

(Type-INsT-COPY)

(TyPE-INST-AsS)

> ’ 7 ’. 7 ’
Yg=A(a' |a; < ap)(x"T") > U
for each j, a,; <a ap, foreachi, T, = T/ [a/a’] U=U'[a/a’]

(T+{x:T) A) F lety = g(@F): (T+ {y:U}, A)

(TypPE-INST-CALL)

(T, (AR)) v introa: (T, ({a} + A, {a} x ({a} + Aexf) +R)) (TyPE-INST-INTRO)

o ¢ Aexr R ={(f,y) eR|p + a} R’ has no element of the form (_, «)

(T, ({a} + A R)) + now a: ({thawy(x2T) | x2T €T}, (A R"))
(TypPE-INST-Now)

x:T (a=Ta)

ATy .
thawe (<" T) = {x:aT (otherwise)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:15

a, ﬂ e Aexf
(TypE-INST-LFTIN)
(I, (AR) + a < B: (T, (A ({(a. f)} UR)))
(T,A) + let+y = const: (T + {y: own Tpopst}, A) (TypE-INST-CONST)

Teonst: int if const = n and unit if const = ()

x:Pint, x:P’int €T
(T,A) + let*xy = #x opp #x’: (T + {y:ownT}, A)

(TypE-INsT-OP)

(T,A) F let+y =rand(): (T + {y:ownint}, A) (TyPE-INST-RAND)
T+ {x:ownT;}, A) + letxy = injiT"JrT1 sx: (T+{y:own(Th +Th)}, A) (TypE-INST-INY)

(T+{x:ownT, x":ownT’}, A) + letxy = (xx,%x"): (T + {y:own (T X T")}, A)
(TyPE-INST-PAIR)

(T+{x:P(TxXT"}, A) + let (xy,*y") = *x: (T+{y:PT, y":PT’}, A) (Type-INST-PAIRDESTR)

For most instructions, the input variables are consumed and thus do not appear in the output type
context. The typing rules above are defined so that an instruction has a unique type; more precisely,
for any (T, A) and I, there exists at most one whole context (I, A’) satisfying (I, A) + I: (I",A’).

The instruction let y = mutbor, x mutably borrows an (unfrozen) owning pointer or mutable
reference x: P T under the lifetime o (TypE-INST-MUTBOR). After the borrow, x gets frozen until a,
being registered to the type context as x:'* P T. We have a precondition that « is a local variable
that is outlived by any lifetime in x. Because « is local, the borrow ends within a function and the
created reference does not leak outside the function.

The instruction drop x removes x from the type context (Type-INsT-DROP). The precondition
on drop x says that when the dropped variable is an owning pointer its target type should be
copyable. This precondition does not weaken the expressivity because we can always satisfy this
precondition by repeating subdivision of pointers beforehand (by dereference lety = xx, pair
destruction let (xy, *y”) = *x and variant destruction match sx { - - - }). Thanks to the precondition,
we do not need nested releases of owning pointers in the operational semantics and can avoid
adding complicated constraints on mutable references in our reduction.

The instruction immut x weakens a mutable reference x into an immutable reference (TYPE-
InsT-IMMUT). Technically, this is a variant of drop x on a mutable reference x where we retain an
immutable reference.

The instruction swap(s*x, *y) destructively updates the targets of x and y, swapping the target
objects (TYPE-INsT-SwaP). To reduce the number of patterns to consider, we restrict x to a mutable
reference, whereas we let y be either an owning pointer or a mutable reference. We do not lose
expressivity by this; swap between two owning pointer variables can be performed by swapping
just the names of the two variables.

The instruction let *y = x consumes the variable x and allocates its object to get an owning
pointer y (TYPE-INST-OWN).

The instruction let y = *x dereferences a pointer to a pointer (TyPE-INST-DEREF). The kind of
the output pointer type is determined from the outer and inner pointer kinds P, P’ of the input, by
an auxiliary operation P - P’. The kind own is an identity on this operation. When we compose
reference pointer kinds R, - R}, the output is R//, where R” is the weakest of R and R’. Here, we can
just take the lifetime of the outer reference «, which is safe because when we performed a borrow
we ensured that the lifetime is outlived by any lifetimes in the target.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:16 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

The instruction let *y = copy *x copies the target object of x typed T and wraps it into an owning
variable typed own T (TyPE-INsT-CoPY). We have a precondition T: copy, which prevents us from
copying mutable references and owning pointers.

The instruction x as U modifies the type T of a variable x into another type U (TYPE-INST-AS).
We have a precondition A + T < U on subtyping.

The instruction let y = g{@)(X) calls a function g with lifetime arguments @ and data arguments
X. The inputs X are consumed by the function g and thus do not appear in the output type context.

The instruction intro @ introduces a new local lifetime « (TyPE-INST-INTRO). We promise that
the new local lifetime « is outlived by any lifetime parameters, because it will be eliminated in
the current function. The instruction now a eliminates the local lifetime o and reactivates every
variable frozen under « in the data context (TyPE-INST-Now). As a precondition, we check that
a is strictly the least element in the input local lifetime context, i.e., f < « does not hold for any
lifetime variable f§ other than a. The instruction < «a adds a promise on the elimination order of
local lifetimes (TyPE-INsT-LFTIN). This promise is registered to the lifetime context and can be used
for subtyping.

The instructions let xy = const, let xy = =x op*x’, and let *y = rand() respectively newly allocate
a constant, the result of an integer operation, or a non-deterministic integer to get an owning
pointer to the result y (TyPE-INST-CONST, TyPE-INST-OP, TYPE-INST-RAND). Note that the inputs
x,x" are not consumed for the instruction let xy = *x op *x".

The instructions let *y = injl.TJ’T' #x and let «y = (xx, *x”) respectively allocate a variant object or
a pair by consuming the input owning pointer(s) (TyPe-INsT-INJ, TYPE-INST-PAIR). The instruction
let (xy, *y”) = #x splits a pointer to a pair into pointers to each element of the pair, retaining the
pointer kind (Type-INsT-PAIRDESTR). For example, by splitting a mutable reference to a pair, we
get mutable references to each element of the pair.

Typing Judgment for Statements. The statement typing judgment is of the form IT, f, (I, A) + S:

e
{(L, (I'",;A”)) }. It means that the statement S in the function f in the program IT under the whole
context (I, A) jumps to a label L; with a whole context (T;, A}) or safely returns from the current
function call. The following are the rules for the judgment (we omit here IT and f, except in Xy).

X¢: the function signature of f

(TLA) + I: (I",A) Sp=(@l--y () > T
(LA) + I; gotoL: {(L, (I",A"))} ({x:T}, ({@}, R)) + returnx: @

x:P(To+Ty) €T for each i, (T},A}) = (T~ {x:P(Ty + 1)} + {y:: PT;}, A)

(T,A) + match =x {inj*y — goto L }: {(L, (T, A"))}
The rule for the instruction statement I; goto L simply uses the typing judgment for I. In the rule
for the return statement return x, we require that there remain no extra variables and no local
lifetimes. In the rule for the match statement, we check both branches. The input variable x of the
type P (Tp + T1) is consumed and in the inj; branch we get a new variable y; of the type P T;.

We use a meta-variable LCtx to denote a finite map from labels to whole contexts. The typing
judgment for statements is defined so that for any (I, A) and S, there exists at most one whole
context assignment LCtx such that (T, A) + S: LCtx holds. This uniqueness can easily be proved,
using the typing uniqueness on instructions.

Typing Judgment for Functions. The typing judgment for functions is IT + F: (T, Ap)LeLblp
where Lblr denotes the set of labels in F. In short, the judgment assigns a whole context to each

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:17

label in the function. The judgment is defined by the following rule.
L — N "
F =fn f (@lag<ap) (x:T) > U { : } 1-‘en’try = {x: T} Aentry = ({(X}, (Id{&}u{(aa, ab)})+)
for each Ly: S € LStmtp, for some LCtx C (I'r, Ar)rewbly 1L, f, (It,Ar) + S:LCtx
I+ F: (T, AL)LeLbls
LStmtp: the set of labeled statements in F

Id,4: the identity relation on A R*: the transitive closure of R

The initial whole context at entry is constructed from the function signature (the second and third
preconditions) and then the contexts for other labels are examined (the fourth precondition). The
whole context for each label can be determined in the order of the distance from the label entry
in the directed graph by the goto jumps. Therefore, a typing derivation on a function is unique.
That is, for any IT and F, there exists at most one whole context assignment (I'z, Az)LeLbl, Such
that IT + F: (rL’AL)LELbIF holds.

Typing Judgment for Programs. The typing judgment for programs is + IT: (T'r.1,Af.1)(f.L)eFnLblys
where FnLbl is the set of program points (f, L) in II (f can be any function in the program IT
and L can be any label in the function f). In short, the judgment assigns a whole context to each
program point in the program. The judgment is defined simply by the following rule.

for each F in II, IT + F: (rnameF,LsAnameF,L)LELblp

b IT: (Tp, AfL)(F.L) € Fnlbly
name F: the function name of F
For any program II, there exists at most one whole context assignment (T'¢,1, Af1)(f.L) € FnLbiy

such that + IT: (T'fr, Af1)(f,L) eFnLbl; holds. We say that a program IT is well typed when it has a
whole context assignment in this judgment.

Remark 2 (Soundness of the Type System). This type system is sound but to fully state the theorem
we must also formally describe the safety condition on concrete configurations. The safety condition
is introduced later in §4.2. The progress and preservation properties of the safety condition over
well-typed programs are then proved (Proposition 3 and Corollary 5).

2.3 Operational Semantics
The following are the basic concepts of the operational semantics.
(concrete configuration) C == [fy, Lo| F; [fi, L1] x1,F1; -+ 5 [fos Ln] %0, Fn | H
(heap memory) H = (a finite map from addresses (integers) to memory-cell values (integers))
(concrete stack frame) F = (a finite map from variables to addresses)

The configuration consists of stack frames and a heap memory. Each stack frame is accompanied
by [f, L], which indicates the program point (the function and the label). Each non-top stack frame
also has ‘x,’, which specifies the variable that will receive the return value of the function call of
the stack frame just above. We also use a meta-variable S for a sequence of non-top stack frames
[ﬁ: L] x, Fy; oo 5 [ﬁla Ly] xn, Fa.

We also define the type size |T|, which represents how many memory cells the type T takes at
the outermost level, as follows.

IPT| =1 |pX.T| = |T| |To+Ti| = 1+max{|To|,|T|}
IToxTi| = [Tl +|T| int] =1 |unit| =0

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:18 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

Although we do not define the type size for a type variable X, the definition above determines
the type size for every complete type (defined in §2.1), in which occurrences of type variables are
restricted.

The operational semantics is characterized by the one-step transition judgment Il + C — C’
and the termination judgment IT + C:end. We assume that the program IT is well-typed. The type
information we use here is quite limited; we use the type size to know how many memory cells are
required and also check whether the pointer kind of a variable is own or R. The following are the
complete rules for the two judgments. We omit IT here.

Sfr: the statement at (f, L) Ty (x): the type of the variable x at the program point (f, L)
x> dV = {(x,do), (x+1,dp),...,(x+ N - Ldn_1)}

Sg1 = lety = mutbor, x; goto L’ F(x) =a
FALIES|H — [f,L']F+{(y.a)}; S| H

Sfr =dropx; gotoL” Typ;(x) =ownT

= (STEP-DROP-OWN)
FIALIF+{(x,a)};S|H+(a—~dTl) — [f,L’/]F;S|H

SpL =dropx; gotoL” Tyg;(x) =R T
FAALIF+{(x,)} S|H — [f,.L']F; S |H

(STEP-DROP-REF)

S =1; gotol’ I=xasT,introa, nowa, a < f
F [fLLIF;S|H — [f,L/]F;S|H

Sfr = swap(xx, *y); goto L’ Tyf’L(x) =PT F(x)=a F(y)=b>b
FIALIE S |[H+ (@ dTh+ (b Tl — [£f,L]F S| H+ (a Tl + (b — dITl)

Sgr = let+y = x; goto L’
AL F+{(xa)}SITH = [f,L'[F+{(y.0)}; S |H+ (a > a)

Spr = lety ==x; gotoL” Ty, (x) =ownT
FIALIF+{(x,a)}; S[H+(a—a') — [f.L']F+{(y.a))}; S|H

(STEP-DEREF-OWN)

Spr =lety ==x; gotol” Ty (x) =R, T (ar—a’)CH
FIALF+{(x. @} S|H — [f,.L']F+{(y,a)}; S|H

(STEP-DEREF-REF)

Sr.L = let xy = copy *x; goto L’ Tyf’L(x) =PT (F(x)+— cim) CH
FIALIFS|H - [fL]F+{(y,a)}:S|H+(a dT)

Spr =lety = g(---)(¥); goto L’ X, =)(;'—7") —-U
F AL F+{(xa)}: S| H > [gentryl {(x.a)}: [f.L'] 5 F; S | H

(STEP-CALL)

Sy, = returnx

T O a) el FSH > gL F+((x.a)s|H CTerRerm)

SgL = returnx

F [f,L] {(x,a)} | H: end

(END-RETURN)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:19

n (const =n)

Sgr = let =y = const; gotoL’ d = {e (const = ()

~ (STEP-CONST)
FIALIES[H — [f.L']F+{(y.a)}; S|H+ (a > d)
Srp = letxy = *x op *x’; gotoL” (F(x) > m), (F(x") = n) CH
FALIESH — [f,L']F+{(y,0)}; S |H+ (b m{op)n)

(op): op as a binary operation on integers, where true and false are encoded as 1 and 0

Sfr = let xy = rand(); goto L’
FIALIESIH = [f,V]F+{(y,9)}; S|H+(a—n)

Spr = letxy = inj?”1 wx; gotoL’ N =max{|T;_;| — |T;|, 0}

F [LIF+{(x,a)}; S|H+ (a J|Ti|) - [f,L]F+{(y,a)}; S| H+ (a’ — i,Jm‘,EN)
(STEP-INY)

———
S¢,p = match #x {inj*y — gotoL" }
Typp(x) =own(To+T1) i€{0,1} N =max{|Ti-|-|Til. 0}

FIALIF+{(x,a);S|H+(a i)+ (a+1+|T| = eéN) — [f,LIJF+{(y;,a+1)};S|H
(STEP-MATCH-OWN)

——
Sfr = match #x {inj*y — goto L’ } Tyf’L(x) =R, (Ty+Ty) H(a)=1i€{0,1}

FIALIF+{(x, @)} S|H — [f.L]]F+{(y,a+1}; S| H
(STEP-MATCH-REF)

Spr = let xy = (xxo, *x1); gotoL” for each i, Tyij(xi) =ownT;

—
Ffo LI P+ {(x0, a0), (x1,a1) }: S | H+ Ty o1y (ai > ;')
— —
— [fLL1F+{(y,a)}; S| H+ (a’ — do/D! d; Ty

Spr = let (xy, y’) = =x; goto L’ Tyf’L(x) =P(TxT)
FIALF+{(x a9 SIH — [f,L']F+{(y,a),(y".a+|TD}; S|H

At each step, we remove invalidated variables from the concrete stack frame F, just as we did in
the type system.

On a function call, we add a new stack frame to the head of the stack (STEP-CALL). The initial
label is set to the entry point entry. When we return from a function, we remove the head stack
frame from the stack and continue computation if we have remaining stack frames (STEP-RETURN).
If the current stack frame is the only stack frame in the stack, the computation ends by the rule
END-RETURN (actually this is the only rule for the judgment IT + C:end).

In general, instructions of the form let xy = - - - allocate memory cells for the newly created
owning pointer y. For example, an instruction let y = n allocates a memory cell for the integer
data n (STEP-CONST).

Some operations behave differently for depending on whether the input is an owning pointer or a
reference. The instruction drop x deallocates the target object from the heap if x is an owning pointer
(STEP-DROP-OWN) but does not perform deallocation if x is a reference (STEP-DrROP-REF). The
instruction let y = *x performs deallocation of the target memory cell of x if x is an owning pointer
(STEP-DEREF-OWN) but does not otherwise (STEP-DEREF-REF). Similarly, the match statement

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:20 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

P —
match sx { inj *y — goto L’ } deallocates the memory cells for the index and the padding if x is an

ownership pointer (STEP-MATCcH-OWN) but does not otherwise (STEP-MATCH-REF).

When we create a variant object by the instruction let xy = injl.T"J'T1 «x (TypE-INST-INJ), we

allocate a padding by zeroes if T; has a smaller size than T;_; does, which makes the size of the
variant object 1 + max{Ty, T;} in total.

Example 2 (Execution in the Operational Semantics). The following is an execution sequence in
the operational semantics for the program presented in Example 1. The inputs to oa and ob are set
to 5 and 3. The symbols #, ¥, ¢, & represent some mutually distinct addresses.

[inc-max, entry] {(oa, #), (ob,)} | {(#,5), (¥,3)}
— [inc-max, L1] {(oa, #), (ob, ¥)} | {(#,5),(¥,3)}
—* [inc-max, L3] {(ma, 4), (mb, ¥), (0a, 4), (0b,)} | {(#,5), (¥,3)}
— [take-max, entry] {(ma, #), (mb, ¥)}; [inc-max, L4] mc, {(oa, #), (ob, ¥)} | {(#,5),(¥,3)}
— [take-max, L1] {(ord, +), (ma, #), (mb, ¥)}; [inc-max, L4] mc,{(oa, #), (ob, ¥)}
[{(4,5),(%.3),(+,1)}
—* [take-max, L3] {(ma, #), (mb, ¥)}; [inc-max, L4] mc, {(oa, #), (ob, ¥)} | {(#,5), (¥,3)}
— [take-max, L4] {(ma, #)}; [inc-max, L4] mc, {(o0a, #), (ob,)} | {(#,5),(¥,3)}
— [inc-max, L4] {(mc, #), (0a, #), (b, ¥)} | {(4,5), (¥,3)}
— [inc-max, L5] {(01, +), (mc, #), (0a,), (0b, ¥)} | {(4,5),(¥,3), (+, 1)}
=" [inc-max, L7] {(oc’, #), (mc, #), (0a, #), (0b, ¥)} | {(#,5), (¥,3), (+,6)}
—" [inc-max, L9] {(mc, #), (0a,+), (0b,)} | {(4,6), (¥,3)}
— [inc-max, L10] {(o0a, 4), (ob, ¥)} | {(#.,6), (¥,3)}
—* [inc-max, L14] {(ores, +)} | {(+,1)}

In the stack frames each variable just has the address data. Integer objects are all stored in the heap
memory.

3 OUR REDUCTION FROM RUST PROGRAMS TO CHCS

Now we formalize our reduction from Rust programs to CHCs, discussed in §1 as a reduction from
a program in our calculus COR to a CHC system, which is guaranteed to precisely characterize the
input-output relation of each function in the program. We first define the first-order multi-sorted
logic for CHCs in §3.1. We then formally describe our reduction in §3.2. We formalize its soundness
and completeness and outline the proof of that in §3.3 (we present the complete proof in §4). Also,
we examine effectiveness of our approach with advanced examples in §3.4 and discuss various
topics about our idea in §3.5.

3.1 Multi-sorted Logic for CHCs

To begin with, we introduce a first-order multi-sorted logic for CHCs.
Syntax. The following is the syntax of the logic.
CHO) @ == VX:d. ¢ &= Ay T :=Ae
(pattern formula) ¢ == f(P) (formula) @, == f(F)

(term) t == x | () (box) | (b to) (mut) | inj; ¢ | (to,t1) | const | topt’

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:21

(pattern) p,q == x | {p) | (P« po) | inj;p | (po,p1) | const

(value) 0, W == (0) | (04, 00) | inj;0 | (vg,01) | const
(sort) 0,7 u= Co | gg+o01 | ogXo1 | X | pX.o | int | unit
(container kind) C ::= box (box; (v)) | mut (mut; (v.,v.))
const ::= same as COR op ::= same as COR

X (sort variable) X,y (logic variable) f (predicate variable)
bool := unit + unit true = inj; () false := inj, ()

Also, a CHC system is defined as a pair (®, E) of a finite set of CHCs ® = {(13} and a finite map =
from a predicate variable to a tuple of sorts (denoted by =), specifying the sorts of the arguments
for the predicate variable. Unlike the informal description in §1, we explicitly specify the sort
information E. For simplicity, we often omit the universal quantifier Vx. of CHCs.

CHCs in this logic have a fairly restricted form, in comparison to informal CHCs used in §1. Every
formula ¢ should be of form f(f) and we do not have a category for constraints like a < b. Also, the
head of each CHC should be of form f(p), where p; is a pattern, consisting only of variables and
constructors, not having operators. Even in this restriction, we can express various predicates using
the idea of pattern matching. For example, the equality relation Eq on a sort ¢ can be introduced in
a CHC system by adding the following rule on Eq: V x: 0. Eq(x,x) <= T (precisely speaking, Eq
is the equality relation in the least solution of the CHC system). This restriction helps to simplify
our proof of the soundness and completeness later in §4.

In this logic, we have two special data types, a box container, whose value is (t) and whose sort
is box o, and a mut container, whose value is (t., t,) and whose sort is mut o. In our reduction,
owning pointers and immutable references are modeled as a box container and mutable references
are modeled as a mut container.

Sort System. The sort-giving judgment A F t: o (the term t has the sort ¢ under A) is defined as
follows. Here, A is a finite map from variables to sorts.

Alx)=0 Atvto AV tytio A+ to;
Atv xio A + {t):boxo A+ {t, to):muto A F+ inj; t: 09+ 01
A + ty: 09, t1: 07 . . A+t t':int A+tc o~r1
A + n:int A+ ():unit
A+ (tg,t1): 00 X 01 Artop,t:o Art:T

o ~ t: the congruence on sorts induced by uX.o ~ o[pX.0/X]

We abbreviate @ + t:0 as + t:0.
We introduce the well-sortedness judgments for a CHC system + (&, E): well sorted, for a CHC
= + ®:well sorted and for a formula A, E + &: well sorted and give them the following rules.
foreach ® € ®, = + &: well sorted
F (®,E): well sorted

—
A={(x,0)} A2 + ¢:well sorted for each j, A,E r ¢;: well sorted

E F Vxio. ¢ = Ay: well sorted

E(f) = (0) foreach i, A v t;:0;
AE + f(%): well sorted

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:22 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

Semantics. An evaluation I is a finite map from variables to values. A predicate structure M is a
finite map from predicate variables to predicates on values of some fixed sorts.
We define the sort-giving judgment on an evaluation + I: A as follows.

for each i, + v;:0;
F {x o) {(x.0))

The interpretation of a term ¢ into a value over an evaluation I, denoted [[¢])1, is defined as
follows.

[l =1G) [®OI =Ml [t = [ele oy [inj; e = inj;[]
[Go,t) T == ([to]ln [t]D) [const]y = const [topt'Tr == [t Topl T¢I

[op]: the binary operation on integers corresponding to op

Although the definition is partial on op, the interpretation is defined for every well-sorted term
(e, []1 is defined if A + ¢: 0 holds for some A satisfying + I: A and some o), which follows from
straightforward induction.

The validity of a CHC M [@ and the validity of a formula M, I | ¢ are defined as follows.

e —
for eachIs.t. + I {x:6}, M,I1 E ¢ or M, 1 | ; for some i M(f)([t]lr) is true
MEVX3. ¢ &= Ay MIE f(7)
Finally, the validity of a CHC system M |= (®, E) is defined as follows.

for each (f, (3)) € E, M() is a predicate on values of sort &
domM = domE foreachd e ®&, M E @
M (®,E5)
We say that M is a solution to (®, E) if M = (®, E) holds. Every well-sorted CHC system (®, E)

has a least solution with respect to the point-wise ordering, which can be proved based on the

standard discussion [74]. We write the least solution of (®, E) as M'(elgsé).

3.2 Our Reduction from Programs to CHCs

Now we formalize our reduction of Rust programs to CHC systems. We define the CHC representation
(IT)) of a well-typed COR program I1, which is a CHC system that represents the input-output
relations of the functions in IT.

We assign a predicate variable f; to each program point (f, L) (e.g., each label L in each function
f). Roughly speaking, the predicate f; represents the input-output relation of the continuation
from the program point L in the function f, where the inputs are the values of the local variables at
(f,L) and the output is the return value of f.° For each f;, we add one or two CHCs to the resulting
CHC system, which represent the operation of the statement at (f, L). As explained in §1.2, in the
resulting CHCs, we represent a mutable reference as (v., v,), a pair of the current target value v,
and the final target value v,, and do not explicitly model addresses and memory states.

Roughly speaking, our CHC representation is designed so that its least solution MI(T?YSB

the following property: for any values g, w, the validity M'(T;‘;tl) = fentry (4, w) holds if and only if a
function call f(7) can return w in the program. Actually, since such values should be extracted
from the heap memory in the operational semantics, the actual definition is a bit more involved.

The formal description and the proof of this expected property are presented later in §3.3.

satisfies

 When a local variable contains a mutable reference the meaning of the ‘value’ can be subtle because of the final target
value in our model. Later in §4.2 and §4.3, we model each of the future target values as a syntactic variable in logic.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:23

Preliminaries. We introduce some preliminary definitions and notions.
The sort corresponding to the type T, (|T), is defined as follows. Note that the information on
lifetimes is all stripped off.

(PT) := box (T) (mute T) = mut (T)
(T+T) = (T)+(T') (TxT') = (T)h x (T')
xXp) =X (pX.T) = pX.(T) (int) := int (unit]) := unit

We assume some fixed linear order on data variables and enumerate the elements of a data context,
a stack frame, etc. in this order. Also, we fix a well-typed program IT as an implicit parameter.

The predicate signature of f;, denoted by =, is defined as ((|—T_|)>, (U)D), where {x:* T} is the
data context at (f, L) and U is the return type of f.

Our Reduction. Now we fully define our reduction.

In our reduction, for each program point (f, L), we generate a CHC or a pair of CHCs with the
head of the form fL(ﬁ res), which models the computation performed by the statement. Here, res
is a special variable that represents the result of the function (we put this variable at the last in the
fixed linear order). We add just one CHC for a statement of the form I; goto L or return x and we
add two CHCs for a match statement match sx { - - - } (recall that we do not allow here disjunction
in the body of each CHC, unlike informal description in §1).

For example, let us consider a labeled statement L1:let *y = 3; goto L2 in a function f, which
allocates an integer memory cell. The CHC we generate for the statement is as follows, letting X be
the local variables in L1 (we omit the universal quantifier).

fii(X, res) & fio(X, (3),res)

Here, (3) represents the value of y, i.e., the newly created owning pointer that has the integer data
3. This CHC can be read as a rewriting rule from left to right: the statement creates a new owning
pointer (3) and passes it with the carryover variables ¥ to the next statement at L2.

For another example, let us consider a labeled statement L3:let *z = mutbor, y; goto L4 in

f, which performs a mutable borrow. Assume that the data context at L3 is {x:* T, y:own T'},
—_—
which sets the data context at L4 to {x:* T, y:m ownT’, zzmut, T}. The CHC we generate for this
statement is as follows.
fis(X,(ys).res) &= fla(X, (Yo), (s Yo), res)

For convenience, we introduce the notation ¢, for the pattern formula f1(X, res), where X are
the local variables at (f, L). (Note that we reuse data variables X of COR as logic variables.) For
example, the CHC of the previous example can be written as follows.

Prsl{ya/yl = @rual{ye yo)/z (yo) /yl,
Now we define the CHC representation (|II]) of a well-typed program IT as follows.

(M) = ({@ | ®isin (L: SDrznamer, FisinIT, L: S € LStmtr }, (2 £0)fi st (£.L) € FrLbly)

Here, (L: S), is one CHC or a pair of CHCs we generate for the labeled statement L: S in f in
I1, which is defined by the following rules. For simplicity, we omit here universal quantifiers and
I1. For some statements, depending on the pointer kinds of the input variables, we generate fairly

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:24 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

different CHCs.
(L: lety = mutbor, x; gotoL']s
= { rol(x)/x] &= ¢ru (% X0 [y, (xo) /] (Tyf,.(x) = ownT)
el x)/x] &= pa [xe) [y, (xe.x0)/x] - (Typ,(x) = muty T)

(CHC-STMT-MUTBOR)
(L: drop x; goto L’) ¢
_ {‘Z’f,L & Orr (Typp(x) = PT) (CHc-STMT-DROP)
T dpelcox x] e= gpr (Typ, (x) = muty T)
(L: immut.x; goto L")y (CuC-STMT-IMMUT)
= Prol(xex)/x] &= ¢rrl(x)/x] (Typp(x) = mute T)
(L: swap(sx, ¥y); gotoL'Ds
oLl x0) /X, (y) (Y] = @rr[(Ysr X0} /%, (x2) /Y] (Tyfr(y) =ownT)
- {@f,L[<x*,xo)/x, Y Yo) /Y] = @ [(Yn x0) %, (X yo) [yl (Ty £ (y) = mute T)

(L: letxy =x; goto L')¢ = ¢rr &= ¢rr[(x)/y]

(L: lety = *x; gotoL') ¢

Prol{x)/x] &= ¢rr[x/y] (Tys(x) =ownPT)
Prol{xe))/x] &= ¢pu[(xe) /Y] (Ty s, (x) = immut, PT)
_ L[Xi0)) [x] &= @11 [{x) /Y] (Tyf’L(x) = immut, mutg T)
| Bral(xe), (o)) /x] &= B[(e Xo) Y] (Tyy(x) = mut, ownT)
@r.Ll(xex) [x] &= @1 [x:/y] (Tyf!L(x) = mut, immutg T)
PFLIC s, Xio)s (Xos, Xs0)) [X] &= Pp 1 [(Kews Xou) [y] - (Tyf (%) = muty mutg T)

(CHC-STMT-DEREF)
(L: let =y = copy »x; gotoL')y = ¢y &= Gy lx/y. x/x]
(L: I; goto L')s = ¢rr & ¢rr (I=xasT, introa, nowa, a < f)
(L:lety = g(---}(X); gotoL')y = ¢r1 & Gentry(X%,Yy) A ¢rr[y/yl (CHC-STMT-CALL)
(L: returnx))y = ¢rrlx/res] & T (CHC-STMT-RETURN)
(L: let xy = const; gotoL') s = ¢rr & @rr [{const)/y]

(L: letxy = %xg op *x1; goto L' = ¢r.rlpo/x0, p1/x1] &= @r.1[{Xox 0p X1:) /Y, po/x0, p1/x1]

(i) (Typ(x) = Pint)

where p; = {(xi*,xio> (TYf,L(xi) = mut, int)

(L: letsy =rand(); goto ') = ¢r. < ¢ [{y.)/y]

(L: letxy = inj" T xx; goto L)y = Gpel(x)/x] &= ¢ (inj;x.)/y]

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:25

(L: match #x {inj*y — gotoL }|)s
_ { (@rL[(inj; xa}/x] &= @pr [(x)/Yil)i=oa (Typr(x) =P (T +Th))

(@f.Ll€inj; xa, inj; xo1) /x] &= @pp [(X, Xo) [YiDizon (Typp (%) = mute(To + Th))
(CHC-STMT-MATCH)

(L: let =y = (ox,%x"); goto L) = @pr[(x)/x, (x0)/x"] = @1 [{(x, %)) /Y]

(L: let (xy, *y") = #x; gotoL'] s
Pl X)) /%] &= Gru) /y, (<) /Y] (Typp(x) =P (T xT"))

PrLl{(x, x0), (x0,x0)) /x] B ,
— ¢rr[{xe x0) [y, {x0, x0) Y]) —(:I:;a;T) TP)) SPLIT)
-OTMT-FAIR-OPLIT

The important rule is CHC-STMT-MUTBOR, the rule for a mutable (re)borrow. The first and second
cases respectively correspond to a borrow and a reborrow. In both cases, we take a fresh variable
X, that represents the value of the target object at the deadline of the (re)borrow. Letting x. be the
current target value, we model the created mutable reference as (x., x,), the pair of the current and
final target values. After the (re)borrow, the (current) target value of the lender is set to x,, which
is valid because the lender gets frozen in the type system. In the case of reborrow, letting (x., x.)
be the original value of the lender mutable reference, the new value of the lender is set to (x., x.),
where the lender’s own final target value is retained.

When a mutable reference x is released (the second case of CHC-STMT-DROP), the final target
value of x is set to the current target value x.. We use pattern matching here instead of equality,
unlike informal explanation in §1.2. A similar thing happens when we weaken a mutable reference
into an immutable reference (CHC-STMT-IMMUT).

The rule for dereference let y = *x CHC-STMT-DEREF is tricky. This instruction turns a pointer to
a pointer x into a pointer to the inner target object y. We have six cases here depending on the
type information, or the pointer kinds of the outer and inner pointers. Let us see each case more
immutable reference to a pointer is dereferenced into an immutable reference to the inner object. If
the inner pointer of x is a mutable reference, we discard the final target value. (iv) Dereference of a
mutable reference to an owning pointer can be regarded as a subdivision of the mutable reference.
(v) Dereference of a mutable reference to an immutable reference yields an immutable reference,
which weakens the update permission of the inner mutable reference into the read permission.
Therefore, we constrain the value of x in a manner similar to Cuc-StmT-IMmMmUT.!? (vi) Dereference
of a mutable reference to a mutable reference can be regarded as a subdivision of the outer mutable
reference, as in the fourth case. At the low level, the address of the outer mutable reference is fixed
to the current one by this dereference. Therefore, in our CHC representation, we fix the final target
value of the inner mutable reference to the current one x... A subtle point is that, for a mutable
reference to a mutable reference, we can destructively update the address of the inner mutable
reference (we can see an example of such update later in §5.2, in the function named swap_dec).

In the second case of CHc-STMT-MATCH and the second case of CHC-STmT-PAIR-SPLIT, we
perform subdivision of a mutable reference. Both the current and final target values are subdivided
by the operations. For CHC-STMT-PAIR-SPLIT, when the mutable reference x turns into y, x loses
the update permission to the tag of the variant.

10 We actually don’t need to support the case (v), because we can perform immut x before let y = *x.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:26 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

For a function call, the CHC body has a conjunction (Cuc-STmT-CALL). Recall that in the opera-
tional semantics we add one stack frame when we call a function. The conjunction in the CHC
body actually introduces a behavior analogous to the stack frame addition in an algorithm called
resolution, as seen in §4.1 and §4.3.

When we return from a function (CHc-STMT-RETURN), we set the return value res for the return
statement. Again, instead of writing res = x, we use pattern matching to constrain res to be equal
to x.

Example 3 (CHC Representation). We present below the CHC representation of the program
presented in Example 1, consisting of take-max and inc-max. We give variables the following fixed
linear order: oc’, 01, ma, mb, or, oa, ob.

take-maxentry ({ma., ma.), (mb,, mb,), res)

— take-maxyi({ma., ma,), (mb., mb,), {ma. >= mb,), res)
take-maxy;(ma, mb, (inj, ord.), res) <= take-maxy,(ma, mb, (ord,), res)
take-maxy;(ma, mb, (inj, ord.,), res) &= take-maxys(ma, mb, (ord,:), res)

take-max ,(ma, mb, ou,res) <= take-max 3(ma, mb, res)

take-max 3(ma, (mb,,mb,),res) <= take-max4(ma,res)
take-max 4(ma, ma) & T

take-max s(ma, mb, ou, res) <= take-max¢(ma, mb, res)

take-max ¢ ({ma.,ma.), mb,res) <= take-max;(mb, res)

take-max 7(mb, mb) < T

inc-maxentry (0G, 0b, res) < inc-max;(oq, ob, res)
inc-maxy({oa.), ob,res) < inc-maxy»({oa., 0a,), {0d,), ob, res)
inc-max,(ma, oa, {(ob,),res) < inc-max3(ma, (ob,, ob,), oa, (ob.), res)
inc-max3(ma, mb, oa, ob, res) <= take-maxentry(ma, mb, mc) A inc-maxi4(mc, og, ob, res)
inc-max4(mec, oa, ob, res) <= inc-maxs5({1), mc, oa, ob, res)
inc-maxs({0l.), {mcs, mco), 0a, ob, res) <= inc-max¢({mc. + 01.), {0l,), {(mc., mc,), oa, ob, res)
inc-max¢(oc’, 01, mc, oa, ob, res) <= inc-max7(oc’, mc, oa, ob, res)
inc-max_7({oc.), {mc., mc,), oa, ob, res) < inc-maxs({mc,), {oc., mc,), oa, ob, res)

inc-max g(oc’, mc, oa, ob,res) <= inc-maxq(mc, oa, ob, res)

inc-maxyo ({(mc,, mc,), oa, ob, res) <= inc-maxg9(0a, ob, res)
inc-maxp1o(0q, ob, res) < inc-maxy1(oq, ob, res)

inc-maxp11({oa.), {ob.),res) <= inc-max,({oa, != 0b.), {(0a.), {ob.), res)
inc-maxy12(or, oa, ob, res) <= inc-maxy3(or, ob, res)

inc-maxyq3(or, ob, res) <= inc-maxy4(or, res)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:27

inc-maxp4(or,or) < T

The essence of this CHC system is the same as what we informally presented in §1.2. Note that
here we use pattern matching to eliminate equalities, unlike the informal description.

3.3 Soundness and Completeness of Our Reduction

Now we formally state the soundness and completeness of our reduction and outline the proof of
it. The complete proof is presented in §4.

In order to formally state the soundness and completeness of our CHC representation with
respect to the actual behavior in the operational semantics, we first define the judgment to extract
structured values from the heap memory and also check the safety condition on the heap memory
based on ownership. Then, using that, we define the OS-based model fgs of a function f, which is
a predicate that describes the input-output relation of the function f with respect to its behavior in
the operational semantics. Here, for simplicity, f is restricted to what we call a simple function,
i.e., a function whose input/output types do not contain mutable references. Finally, we state the
soundness and completeness theorem and outline the proof of it.

Notation. We use {- - -} (instead of {- - -}) for multisets. A ® B (or more generally (P, A;) denotes
the multiset sum. For example, {|0, 1]} & {|1[} = {|0, 1, 1]} # {0, 1]}

Basic Extraction-Examination Judgment. We build a mechanism for extracting structured values
from the heap memory, which is a finite map from addresses to integers. Also, we formally describe
the safety condition on the heap memory with respect to the type information, which is designed
to ensure invariants on permission. Because we currently target only simple functions, we can
ignore mutable references and ignore frozen variables. (Later in §4, we extend the judgments to
actually handle them.)

We first introduce the notion of weak abstract configuration.

(weak abstract configuration) C == [f.L1F
(weak abstract stack frame) 7? ::= (a finite map from variables to values)

A weak abstract configuration is similar to a concrete configuration in the operational semantics,
but maps each variable to a value and gets rid of the heap memory. The configuration has only one
stack frame, since we target only the initial and final states of a function call. We also introduce
some auxiliary notions. An access mode D is an item either of the form update or read, representing
the permission on the memory access. A memory footprint M is a multiset of items of form a[D].

Now we introduce the two basic judgments for structurally extracting the value from the heap
memory, H +p a:PT » v | Mand H +p *a:T » v | M. The former structurally extracts
from the heap memory H the pointer object typed P T of the address a as a value v, yielding a
memory footprint M, under the access mode D. The latter is similar to the former but extracts the
object typed T stored at the address a. The two judgments are mutually inductively defined by the
following rules.

Hipp xaTro| M
Htp a:PTr» () | M
H(a)=a’ Htp a:PTro | M
Htp *a:PTw» o | M {a[D]]}
H(a)=ie€ {0,1} Htp *(a+1):T;» 0| M N =max{|T;—;| - |T;|,0}
Htp *a:To+ T » inj;o | M@ {a[D]} & {(a+1+|T;|+k)[D] |0 <k <N}

D-own := D D - immutg := read

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:28 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

H rp xa:Ty » vy | M() H +p *(a+ |T0|):T1 » U |M1
H tp xa: Ty X Ty » (vg,01) | Mo & M,

H+ T[pX.T/X H(a) =
p *aT[pX.T/X]»o| M (@) = n H rp *a:unit» () | 2
Htp xa:pX.Tro | M H +p *a:int » n | {a[D]|}
For example, the following judgments hold (#, ¥, + and # can be any addresses).

{(4,7),(#+1,5)} Fupdate #: own (int X int) » ((7,5)) | {|#[update], (# + 1) [update][}
{(v,9),(v+1,9),(4,3)} Fupdate ¥: own (immut, int X immut, int)
> ((3),(3)) | {{*[update], (* + 1)[update], + [read], * [read]}
Next, we introduce the judgment H + F:T » F | M for extracting values from a concrete stack
frame as a weak abstract stack frame, which is defined by the following rule.
foreachx:PT €T, H Fypdate F(x):PT » vy | My
H+ FTr» {(x00)]x} | P, M

Using this, we introduce the judgment IT + C » C | M for extracting values from a concrete
configuration as a weak abstract configuration, which is defined by the following rule.

Ht FElgp»F M
I+ [f,LIF|H» [fL]F IM
Tr,rr: the data context at the program point (f, L) in the program IT

We introduce the safety judgment on a memory footprint + M: ok. It is defined through an
auxiliary judgment ¢ M: ok as follows.

_—
for each a, +* M:ok Mé=0 M? = {la[update] [} M? = {a[read]}
F M:ok 2 M:ok ¢ M:ok 2 M:ok

M?¢: the multiset of items of the form a[-- -] in M

Finally, we introduce the basic extraction-examination judgment IT + C »° C.1t is the judgment
for extracting a weak abstract configuration from a concrete configuration and also examining the
safety and is defined by the following rule.

OrCrC|M F M:ok
I+ CrokC

OS-based Model. Now we define the OS-based model fgs of each simple function f in a program
IT. 1t is the predicate that describes the input-output relation of the function f with respect to its
behavior in the operational semantics (abbreviated as OS). We say that a function is simple when it
does not take mutable references in the input and output types. The OS-based model fgs is defined

as the predicate on values of sorts m, (U] where X ¢ = (-)(96—7") — U, given by the following
rule.

OrC—---—C:end I+ C»k [f,entry]{(—x,—v)>} I+ C % [f,L1{(y, w)}
123 (@ w)

Soundness and Completeness Theorem. Finally, the soundness and completeness of our reduction
is simply stated as follows.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:29

THEOREM 1 (SOUNDNESS AND COMPLETENESS OF OUR REDUCTION). For any well-typed program

IT and any function f inII, M[(Tf;‘tb (fentry) is equivalent to fgs,

The complete proof of the theorem is presented in §4. We outline the proof below.

OuTLINE OF THE PrROOF. We first introduce a deduction algorithm on CHCs called SLDC resolu-
tion, which is a variant of SLD resolution [43]. We show that SLDC resolution is complete with
respect to the least model of the CHC system (Lemma 2).

Next, we extend the basic extraction-examination judgment to accept mutable references and
frozen variables. The key idea is to model the final target value a, of each mutable reference as
a syntactic variable in logic, which is semantically universally quantified. Roughly speaking, a
mutable reference is modeled as a pair of the current target value and a unique logic variable, and a
frozen variable is modeled as a value with some borrowed parts remaining to be logic variables.

Finally, we complete the proof by establishing a bisimulation between the operational semantics
and SLDC resolution under our CHC representation (Theorem 4). A key point is that, at the moment
we release a mutable reference, we specialize the logic variable for the mutable reference. O

3.4 Advanced Examples
Here we present two advanced examples of verifying pointer-manipulating Rust programs by our
reduction. For readability, we write CHCs again in an informal style like §1.

Example 4. Let us consider the following Rust program, which is a variant of just_rec in §1.1.

fn choose<'a>(ma: &'a mut i32, mb: &'a mut i32) -> &'a mut i32 {
if rand() { ma } else { mb }

3
fn linger_dec<'a>(ma: &'a mut i32) -> bool {
*ma -= 1; if rand() { return true; }
let mut b = rand(); let b0 = b;
{ let mb = &mut b; let r2 = linger_dec(choose(ma, mb)); 3}
r2 && bo >= b
3

Unlike just_rec, the function linger_dec can modify the local variable of an arbitrarily deep
ancestor. Each recursive call to 1inger_dec can introduce a new lifetime for mb, so arbitrarily many
layers of lifetimes can be yielded.

The Rust program above can be expressed in COR as follows.

fn choose (a) (ma: mut, int, mb: mut, int) — mut, int {
entry: gotoL1/L2 L1: drop mb; return ma L2: drop ma; return mb
h
fn linger-dec {(a) (ma: mut, int) — own bool {
entry: xma -= 1; goto L1/L2 L1: drop ma; let xotrue = true; return xotrue
L2: let xob = rand(); let xoby = copy *o0b; intro f; let mb = mutborﬁ ob;
let mc = choose(B)(ma, mb); let or’ = linger-dec(f)(mc);

now f; let xor” = xob, >= *o0b; let xor = xor’ && *or’’; drop(oby, ob, or’, or"’); return or

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:30 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

For brevity, we admitted here the following features: the non-deterministic branching statement
goto L/L’ (which jumps to either L or L’), the decrement instruction #x -= 1, the true-value taking
instruction let *y = true, the boolean conjunction instruction let xy = *x && *x’, and the multiple-
variable release instruction drop(X). These additional features can be expressed by composition of
original features. Also, we omitted some labels.

Suppose we wish to verify that linger_dec never returns false. If we use, like JustRec, in
§1.1, a predicate taking the memory states h, b’ and the stack pointer sp, we have to discover the
quantified invariant: Vi < sp. h[i] > h’[i]. In contrast, our approach reduces this verification

problem to the following CHCs.
Choose({a, as), (b,bo),r) < (bo=b A r={a,a.)) V (ac=a A r=<{b,bs))
LingerDec({a, ac),r) & (ao=a—-1 A r=true) Vv
(3b, bo, me, r’. Choose({a — 1, ao), (b, bo), mc) A LingerDec(mc,r’) A r= (r' && b >=b,))
r = true &= LingerDec({a, a.),r)
This can be solved by many CHC solvers since it has a very simple solution like below.

Choose({a, a.), (b, bo),r) 1= (bo=b A r={a,a.)) VvV (as=a A r={(b,b,))
LingerDec({a, a,),r) :&= r =true A a > a,

Example 5. Combined with recursive data types, our method turns out to be more powerful. Let
us consider the following Rust program that features a singly linked list.

enum List<T> { Cons(T, Box<List<T>>), Nil } use List::x;
fn take_some<'a>(mla: &'a mut List<i32>) -> &'a mut i32 {
match mla {
Cons(ma, mla2) => if rand() { ma } else { take_some(mla2) }
Nil => loop {2}

}
fn sum(la: &List<i32>) -> i32 {
match la { Cons(a, la2) => a + sum(la2), Nil => 0 }
}
fn inc_some(mut la: List<i32>) -> bool {
let n = sum(&la); let mb = take_some(&mut la);
*mb += 1; let m = sum(&la); m == n + 1

}

This program handles a singly linked list type List<T>, which is a common recursive data type. The
function take_some takes a mutable reference to an integer list and returns a mutable reference to
some element of the list. The function sum calculates the sum of the elements of a list. The function
inc_some increments some element of the input list using a mutable reference and checks that the
sum of the elements of the list has increased by 1.

The Rust program above can be expressed in COR as follows.
fn take-some () (mla: mut, list int) — mut, int {

entry: mla as mut, (int X own list int + unit); match «mla{inj, *xmala’ — L1, inj; xmu — L4}

L1: let (xma, *mla’) = *mala’; gotoL2/L3 L2: drop mla’; return ma

L3: drop ma; let ma’ = take-some({a)(mla’); return ma’ L4: goto L4

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:31

}

fnsum {a) (rla: immut, list int) — own bool {
entry: rla as immut,(int X own list int + unit); match =rla{ inj, *rala’ — L1, inj; *ru — L2}
L1: let (xra, xrla’) = xrala’; let on = sum{a)(rla’); let xor = xra + *on; drop(ra, on);

return or L2: drop ru; let %00 = 0; return 00

}

fn drop-list(ola: own list int) — own unit {-- -}

fn inc-some(ola: own list int) — own bool {
entry: intro «; let rla = immutbor, ola; let on = sum(a)(rla); now «;
intro B; let mla = mutborg ola; let mb = take-some(f)(mla); *mb += 1; drop mb; now f;
introy; let rla = immutbor, ola; let om = sum(y)(rla); nowy;
xon += 1; let or = xom == xon; let ou = drop-list(ola); drop(ou, om, on); return or

}

Here, list T is sugar for the recursive type pX. T Xown X +unit. We have omitted the implementation
of the function drop-list, which releases the data of a list of integers. Also, we have admitted the
no-op jump statement goto L, the immutable borrow instruction lety = immutbor, x and the

increment instruction *x += 1.
Suppose we wish to verify that inc_some never returns false. Our method reduces this verifi-

cation problem into the following system of CHCs.
TakeSome({a :: ld’, la,),r) < Fa.,la.. la, = a. :: la), A
((la,=1la" A r={(aa.)) V (ao=a A TakeSome({ld’,la.),r)))
TakeSome({nil, la,),r) <= TakeSome({nil, la,), r)
Sum({a:la’),r) < 3r'. Sum({la'y,r') A r=a+r’
Sum({(nil),r) &< r=0
IncSome(la,r) <= 3n,la, y, yo, m. Sum({lay,n) A TakeSome({la,las),(y,yo))
A Yo=y+1 A Sum({las),m) A r=(m==n+1)
r = true < IncSome(la,r)
Here, nil denotes the nil list and t :: u denotes the cons list made of the head t and the tail u. In
our formal logic introduced in §3.1, they are respectively expressed as inj,(x, (Ix)) and inj; (). An
important technique used above is subdivision of a mutable reference performed in the function

take_some. In the function take_some the mutable reference mla can be subdivided into mutable
references to the head and tail of the list, which is expressed in the first CHC by the constraint

la, = a, :: la).
We can give this CHC system a very simple solution, using an auxiliary recursive function sum
defined by sum(a :: la") := a+ sum(la’) and sum(nil) := 0.
TakeSome({la, la,), (b, b)) : &= b, — b = sum(la,) — sum(la)
Sum({la),r) = r =sum(la)
IncSome(la,r) :&= r = true.

The validity of the solution can be checked without induction about sum; specifically, we can check
the validity of each CHC just by unfolding sum at most once. Notably, we do not need auxiliary

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:32 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

notions like index access on lists to express the solution, which makes our approach scalable to
richer recursive data types like trees.

Notably, in our experiments reported in §5, the example presented above was fully automatically
and promptly verified by our prototype verifier RustHorn, using Holce [12, 13] as the back-end CHC
solver. Our verifier also successfully verified the variant of this example for trees instead of lists,
which indicates high scalability of our approach for recursive data types. Note still that the CHC
solver Holce adopts a rather heuristic approach to find solutions that handle recursive functions
over recursive data types (details are presented in [12]). For example, for the CHCs for inc_some,
Holce found the recursive function sum by analyzing the CHCs for the predicate variable Sum. It
remains to be seen how well our approach verifies Rust programs with mutable references and
recursive data types in general, given also that CHC solving techniques are still evolving.

3.5 Discussions

We discuss here various topics about our idea.

Combining Our Reduction with Various Verification Techniques. Our idea can also be expressed
as a reduction of a pointer-manipulating Rust program into a program of a stateless functional
programming language, which allows us to use various verification techniques not limited to CHCs.
Access to future information can be modeled using non-determinism. To model the target value a,
at the end of the mutable borrow, we just randomly guess the value with non-determinism. At the
time we actually release a mutable reference, we just check a' = a and cut off execution branches
that do not pass the check.

For example, take_max/inc_max in §1.2 and Example 1 can be reduced into the following OCaml
program.

let rec assume b = if b then () else assume b
let take_max (a, a') (b, b') =
if a >= b then (assume (b' = b); (a, a'))
else (assume (a' = a); (b, b"))
let inc_max a b =
let a' = Random.int(@) in let b' = Random.int (@) in
let (c, c¢') = take_max (a, a') (b, b') in
assume (c' = ¢ + 1); not (a' = b'")

let main a b assert (inc_max a b)

Here, the bindings let a' = Random.int(@) and let b' = Random.int(@) take the future tar-
get values with random guesses, and the assumption checks assume (b' = b), assume (a' = a)
and assume (c' = ¢ + 1) model the check of the random guesses. The original problem “Does
inc_max never return false?” on the Rust program is reduced to the problem “Does main never fail
at the assertion?” on the OCaml representation above. Notably, MoCHi [41], a higher-order model
checker for OCaml, successfully verified the safety property for the OCaml representation above.
It also successfully and instantly verified a similar OCaml representation of the Rust program of
linger_dec presented at Example 4.

This representation allows us to use various verification techniques for Rust programs, including
model checking (higher-order, temporal, bounded, etc.), semi-automated verification (e.g., in Boogie
[50]) and verification in proof assistants (e.g., Coq [16]). The verified properties can be not only
partial correctness but also total correctness and liveness. Also, our reduction can be used with
various bug finding techniques such as symbolic testing (because we get an equivalent representation
of the Rust program, as the theorem 1 states). Further investigation in these directions is needed.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:33

Verifying Higher-Order Programs. Rust supports closures, internally encoding them as the tuple
of the function pointer and the captured objects, creating a fresh internal type for each closure.
Our reduction can support such closures simply by desugaring them as the captured objects.

As an advanced feature, Rust support trait objects, which performs dynamic dispatch. Using a trait
object, Rust can use a boxed closure, which is required to get the full expressivity of higher-order
programming. If we use rich verification frameworks like higher-order CHCs [11], our reduction
can still model Rust programs that operate boxed closures, using some tricks. In order to model
a closure that captures mutable references, we can equip the model of a closure with the ‘drop
predicate’, which expresses the constraint that we should add when we release the closure. In
order to model a closure that updates objects it captures, we can equip the output of the closure
the updated version of the closure (using some recursive type). We need further investigation on
verifying Rust programs with boxed closures and trait objects.

Libraries with Unsafe Code. Although the subset discussed earlier is quite limited, we can easily
apply our reduction to some Rust libraries. For example, the vector (dynamically allocated array)
type Vec<T> [64] can simply be represented as a functional array. In particular, we can model Vec: :
index_mut(self: &mut Vec<T>, idx: usize)-> &mut T, a function that takes out a mutable
reference to some element of a vector out of a mutable reference to a vector. Also, we can support
mutable iterators on a vector. Similarly, we can also support data structures like a hash map
HashMap<K, V> [60]. We can also support some concurrency libraries like thread: : spawn [63].

However, Rust libraries like RefCell<T> [59] and Mutex<T> [62] impose challenges to our
method, because they introduce shared mutable states (or more technically, interior mutability). A
naive approach is to pass around the global memory state for such data types. Here, let us discuss
how to support RefCell<T>, which is a memory cell that attains dynamic permission control by
reference counting and allows us to build data structures with circular references. We can model
each instance of RefCell as an index and pass around the global array that maps each index of a
RefCell<T> instance to a pair of the body value and the reference counter. To take a mutable or
immutable reference from RefCell, we check and update the counter and take out the value from
the array. At the time we take a mutable reference (a, a,) from a RefCell<T>, the body value in
the global array should be updated into a.. This precisely models RefCell, but handling indices
and the global array can be costly. We can also think of separating the array into smaller parts by
methods like region-based type systems and pointer analysis.

Even when we find a model for some Rust library, verifying the implementation of the library itself
can be tough, since it usually relies a lot on unsafe code, which is Rust code without static permission
control. RustBelt [34] mechanically proved (in the Coq proof assistant) memory safety of well-
typed Rust programs supporting various Rust libraries, including those with interior mutability. We
discuss this work more in §6. Matsushita [48] discusses how to extend RustBelt to verify functional
correctness with respect to our reduction, but the proof is not mechanized yet.

One caveat about our verification method is that it loses completeness in the presence of memory
leaks. A memory leak [55] is an act to throw away an object without successful cleanup, such as
memory deallocation and lock release. Although a basic subset of Rust (including the features
supported in COR) does not allow memory leaks, advanced libraries in Rust can cause memory
leaks. For example, when we build a cyclic graph using interior mutability by RefCell [59] and
reference-counting garbage collection by Rc [61], we can cause a memory leak by isolating some
cycle. When a leaked object has a mutable reference, we can fail at determining the final target
value of it, which makes our method incomplete. Still, we don’t think this is a major problem,
because our method is still sound and in general program behaviors with memory leaks are very
hard to verify any way.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:34 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

4 PROOF OF THE SOUNDNESS AND COMPLETENESS OF OUR REDUCTION

In this section, we give the complete proof of Theorem 1 stated in §3.3, the soundness and com-
pleteness of our reduction.

Clearly the tricky point is that our model of a mutable reference (a, a.) has future information,
namely the final target value a,. Our proof gets around this by keeping all possibilities about the
future and narrowing them in the course of execution. A key ingredient is resolution, a deduction
algorithm over CHCs that can handle syntactic variables that are universally quantified over values.
This is nice for encoding future possibilities. Our proof goes by building a bisimulation between
execution in Rust and resolution over the CHCs obtained by our reduction, where the final target
value of each mutable reference is modeled by a syntactic variable in logic.

In §4.1, we introduce a special sort of resolution called SLDC resolution. In §4.2, we extend
the extraction-examination judgments introduced in §1 to model mutable references and frozen
variables. In §4.3, we complete the proof of Theorem 1, the soundness and completeness of our
reduction, by establishing a bisimulation between program execution and SLDC resolution (Theorem
4).

4.1 SLDC Resolution

We introduce a deduction algorithm on CHC systems, which we call SLDC resolution (Selective
Linear Definite clause Calculative resolution). It is a variant of SLD resolution [43] with calculative
steps. SLDC resolution is designed to be complete with respect to the logic (Lemma 2). Interpreting
each CHC as a deduction rule, resolution can generally be understood as a top-down construction
of a proof tree, and this idea is related to computation. As we see later, SLDC resolution is designed
to form bisimulation with execution in the operational semantics (Theorem 4).

SLDC resolution is described as a transition system on resolutive configurations ¥, which are of
the form (;V; | p. In a process of transition, it also uses resolutive pre-configurations K, which are of
the form ¢ | p. Recall that ¢ is a meta-variable for a pattern formula, which does not have integer
operators op; on the other hand, ¢ is a meta-variable for a usual formula, which can have operators.
The pattern p on the right side of a configuration/pre-configuration is used to track how variables
are instantiated. Later, SLDC resolution is associated with execution in the operational semantics;
the pattern formulas (E in a configuration/pre-configuration can be understood as a model of a
call stack, and the pattern p records the final return value. Resolutive (pre-)configurations that are
alpha-equivalent are considered identical.

The one-step transition relation judgment of SLDC resolution (®, Z) + K — K is defined by
the following non-deterministic transformation.

(1) K should have one or more pattern formulas on the left side. Let K = f(p), 5 | g. Take from @
any CHC @ whose head formula unifies with f(5). Namely, & is of the form V- - -. f(p")
A 1/;> and p’ unifies with 5. Take the most general unifier (6,0’) on p and p’, such that
pi 0 = p; 0" holds for each i. Here, 0 and 0" are finite maps from variables to patterns. Now
we have a pre-configuration K= W , (5_9) | q0.

(2) Now we calculate and specialize % until we remove all operators and all variables that appear
only once (which we call orphaned variables) in K. By that, we obtain a configuration K’
out of the pre-configuration K. Then we judge that (®,Z) + K — K’ holds.

More precisely, the calculation and specialization process repeats the following operations
(the order of the operations can actually be freely chosen).
e We replace a term of the form n op n’ with the integer taken by n [[op] n’.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:35

e An orphaned variable in the pre-configuration is replaced with any value of the suitable
sort.!!

e When in the pre-configuration there occurs a term of form x op t or t op x for some
variable x, we globally replace x with any integer n.'?

LEMMA 2 (CoMPLETENESS OF SLDC REsoLuTION). For any CHC system (®, E), for each predicate
variable f taking one or more arguments, the predicate given in the least solution Ml(egsé) (f) is

F3LPC on values of the appropriate sorts defined by the following rule.

equivalent to the predicate
(®,E) v+ f(G,x)|x—---—€|p punifiestow
F5LDC (5, w)

Here, ‘p unifies to w’ means that replacing variables in p with some values we obtain w.

ProoF. Similar to the proof of completeness of SLD resolution [43]. O

Example 6 (Resolution Sequence in SLDC Resolution). Below is an example resolution sequence
in SLDC resolution for the CHC system presented in Example 3, which represents the program
introduced in Example 1. It corresponds to the example execution in the operational semantics
presented in Example 2.

inc'maxentry(<5>> @hnr)lr

— inc-max1({5), 3),r) | r

—* inc-max3({5, ao), (3, bo), (o), {(bo), 1) | T

— take-maXentry ({5, @o), (3, bo), mc), inc-maxi4(me, (a.), (bo),7) |

— take-maxp1({inj; ()}, (5, ao), (3, bo), mc), inc-maxpq(me, (ao), (bo),7) | 7

—* take-max3({5, ao), (3, bo), mc), inc-max4(mc, (ao), (bo),7) | 1

— take-maxp4((5, ao), mc), inc-maxa(me, (ao), (3),r) | r

— inc-max4 ({5, do), {(a0), (3),r) | r

— inc-maxys((1), (5, ao), {ao), (3),r) | r

—* inc-max7({6), (5, a.), {a.), (3),r) | r

—* inc-maxy ({6, o), {a.), (3),7) | r

— inc-maxp10({6), (3),r) | r

=" inc-maxp1a({inj; 0),7) | 7

— €| (inj;())
In the third line (inc-max_3), the mutable references ma and mb are modeled respectively as (5, a.)
and (3, b,), where a, and b, are logic variables freshly taken for the borrows. Here, the frozen
variables oa and ob are respectively modeled as (a,) and (b,). In the seventh line (take-maxy4),
the mutable reference mb has been thrown away, and now b, is specialized to 3, which makes ob
modeled as a value (3) without a logic variable. In the twelfth line (inc-max_1¢), the variable a, has
now been specialized to 6. Note that each logic variable is specialized before the deadline of the
corresponding borrow and the timing is determined dynamically.

11 We need this rule for the random value instruction let xy = rand() in establishing the bisimulation of Theorem 4.
12 We add this rule for the completeness lemma Lemma 2. Actually we do not need this rule for resolution of a CHC
representation (|IT)).

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:36 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

4.2 Extending the Basic Extraction-Examination Judgment

We extend the basic extraction-examination judgment IT + C »°¢ C defined in §3.3 to accept
mutable references and frozen variable. The key idea is to model the final target value a, of each
mutable reference as a logic variable, which is semantically universally quantified. To model each
variable, we now use a value with logic variables, i.e., a pattern p. A mutable reference is modeled as
a pair of the current target pattern and a logic variable uniquely assigned to the mutable reference.
Each mutably borrowed part of a frozen variable is set to the logic variable of the mutable reference
that borrows that part.

The new extraction-examination judgment is of the form IT + C >°k C, where C is an abstract
configuration, which is an extension of a weak abstract configuration with logic variables. To
formally describe this judgment, we introduce new judgments for collecting the global information
on lifetime variables.

The safety judgment on a concrete configuration IT + C:ok is defined as 3C. IT + C »° C.
Later we prove the progress and preservation properties for this safety condition for a well-typed
program, which can be regarded as the proof of soundness of the type system.

Taking Global and Dynamic Information on Lifetime Variables. First, for a well-typed program IT
and a concrete configuration C, we construct the global lifetime context A c, which is the lifetime
context for all the stack frames in C. A local lifetime « in the i-th stack frame (indexed from the
bottom) is named o’. It also has the global elimination order, which is constructed based on the
promises in each function call (i.e., the lifetime context given by the type system for each stack
frame) and the hierarchy of stack frames (i.e., the property that i > j implies &' < /). We also add
to the global lifetime context the lifetime parameters in the base stack frame. Formally, A ¢ is
defined as follows.

Anc = ({a' 1L ae A} (. f) i (@f) e <y+{(d . B) iz) ac A, feAy})
where C := [fo, Ly] Fn; [fae1, Lu—1] Xn—1, Fn—1; - =+ [fo. Lo] x0, Fo A; = Ang,
Abyy = |Ap| = Aex T fioy Ly (e the set of local lifetimes) A = |Ag|
<i = {(@h) | (@) € <a, . f €A}

Aprr: the lifetime context assigned to (f, L) in IT by the type system

Also, for each stack frame, indexed i, we define the lifetime substitution O c ;. It maps each
lifetime variable in the stack frame to the corresponding lifetime variable in the global lifetime
context Ay c. For each local lifetime « in the stack frame, we just add the tag a'. For each lifetime
parameter, we should find the lifetime variable assigned to it. Therefore, formally, O c; is defined
as follows.!?

. ﬁ \
Oncin = {(@a™) | ae A} +{(Bu1, yinOmci)} Omco = {(a.a’) | a € A}
Where C:= [ﬁl’ Ln] Fn; [ﬁl—l’Ln—l] Xn-1, Fn—1§ e [ﬁ), L()] X0, Fo Ai = AH,ﬁ,Li
Ai’+1 = |Ai1| = Aex 1, fiy1,Lins AE) = |Ay]
—
ZH,ﬁH,LHl = <:Bi+1 | o >(:) —_

the function call for each stack frame indexed i < nis letx; = fiyq T ()

13 For simplicity, we assume that for each non-top stack frame we can uniquely determine the label of the function call
statement performed for creating the frame, which allows us to determine y;;7. We can always satisfy this by inserting a
fresh no-op labeled statement just after the function call.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:37

Extracting Rich Information from the Heap Memory. First, we define an abstract configuration C
and an abstract stack frame 7 as follows.

(abstract configuration) C = [ﬁ), Lo] Fo; [ﬁ, Ll] x1, Frs -0 [fn» Ln] Xn> Fn

(abstract stack frame) F ::= (a finite map from variables to patterns)

They correspond to a concrete configuration C and a concrete stack frame F, but map each data
variable to a pattern, which may contain logic variables. The use of the logic variables here is related
to the notion of prophecy variables [1, 36, 73].

We also introduce some auxiliary notions. A logic variable summary X is a finite multiset of
items of the form described below.

(item of a logic variable summary)
u= Tgax[*a:T] (the ‘giver’ on x, which promises to store an object typed T at the address a before the lifetime c)
| 1%x[*a:T] (the ‘taker’ on x, which expects to obtain an object typed T at the address a at the lifetime o)

A logic variable summary records how logic variables are used in extracting patterns from a concrete
configuration. An extended memory footprint M is a finite multiset of items of the form described
below.

(item of an extended memory footprint) ::= a [updatea] (update access to the address a under the activeness a)

| a[read,] (read access to the address a allowed until the lifetime a)

The activeness a has been introduced for data contexts in §2.2; it is of the form actv (active) or
1B (borrowed until the lifetime f). An extended memory footprint records the memory access
employed in extracting the data from a concrete configuration. An extended access mode D is an
item of the form either update or read,.

Now we introduce the two basic extraction judgments, H I-"D a:PTep| X, M and H I—}) *a:

Tep|X, M. The former structurally extracts from the heap memory H the pointer object typed
PT of the address a as a pattern p, yielding a logic variable summary X and the extended memory
footprint M, under the activeness a and the extended access mode D. The latter is similar to the
former but extracts the object typed T stored at the address a. They are defined by the following
rules.

H I—Bp *a:T v p | X,M
H I-}) a:PT > (p) |X,M

D-own =D update - immutg := readg read, -immutg := read,

H 2 *a:T>p|z\’,M

update

a:mutg T » (p,x) | X @ {Tpx[*a:T]}, M

(EXTRACT-MUT-UPDATE)

a
H l_upda’te

H +2 *a:T>p|X,M

ready

H g amutgTe P, Q| X, M

rea

(EXTRACT-MUT-READ)

ray . Jal[update?] (@:update)
alD7] = {a[readﬁ] (D = readp)
H+ g’ sa:Tex | {|*x[*a:T][}, 2 (EXTRACT-TAKE-VARIABLE)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:38 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

H(a)=a’ H i a:PT>p| X, M
H +e xa:PT>p | X, M@ {la[D]}

H(a)=i€{0,1} H I—‘Iﬁ) x(a+1):Tj>p | X,M N = max{|T\—;| — |T;|, 0}

H L sa:Ty+ Ty > inj; p | X, M {a[D2]} ® {(a+1+|T;| +k)[D2] | 0 < k < N|}

H l—aD *aZTo > po | X(),M() H l—;) *(a+ |T0|)ZT1 > P1 | XI,Ml
H I—E xa: To X Ty » (PO,PI) | Xo @ Xy, Mo D M1

H I—aD xa: T[pX.T/X] > p | X, M

H I—aﬁ *a:,uX.Tl>p|(\’,M

H(a) = n - H +2 xa:unit> () | 2,0
H I—% xa:int > n | @,{a[D?]|} b
The two judgments are extensions of the judgments H +p a:PT » v | MandH +p *a:Tw» o | M
introduced in §3.3.

For the judgment H I—aD a:PTwp| X, M, we have two rules for extracting the data of a mutable
reference, namely EXTRACT-MUT-UPDATE and EXTRACT-MUT-READ. The former is the one used for
update access; in this case, we use a logic variable x at the second argument of the mut container
and record the variable into the logic variable summary. The latter is the one used for read access;
in this case, we do not care about the second argument of the mut container.

Also, for the judgment H I—% wa:T>p | X, M, we can stop exploring the heap memory and
just return a logic variable using the rule ExTRACT-TAKE-VARIABLE. Although we impose here no
special restriction on using this rule, the use of the rule is recorded in the logic variable summary
X as the ‘taker’ item |* x[xa: T]. Later, in the safety condition on the logic variable summary,
we require that the giver and the taker correspond one to one with some agreement conditions
(SAFE-SUMMARY-CORRESPOND).

Next, we introduce the judgment for extracting the data of a concrete stack frame into an abstract
stack frame, H,©® + F:T»> F | X, M. Here, © is a substitution on lifetime variables associated with
the stack frame (soon later, O7 ¢ ; is assigned to ©). It is defined by the following rule.

foreachx2T €T, H Fﬁpdate F(x): TO > py | Xy, M,

H,0 + F:T»> {(x,px) | x} | P, X, @xMx

It is an extension of the judgment H + F:T » ¥ | M introduced in §3.3. Since the logic variable
summary records the information of lifetime variables in types, we apply the lifetime substitution
O to the type T of each variable.
Now we define the judgment for extracting values from the concrete configuration as an abstract
configuration, IT + C»> C | X, M, by the following rule.
C = [fo. Lol Fo; [f1, Ll x1, Fi5 -+ 5 [f, Ln] X, Fr [H
for each i, H,®m,c;i v Fi: T pp, » Fi X,-,M,—

I+ C> [foLol Fos [fisLal w0, Fis -+ 5 [Ll 00 T | €D, X @D, M
It is an extension of the judgment IT + C » C | M introduced in §3.3.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:39

Examining the Safety. Now we define safety conditions.
First, we introduce the safety judgment on a logic variable summary A + X: ok. It uses the global
lifetime context A. It is defined by the following rules, using an auxiliary judgment A +* X:ok.

for each x, A +* X:ok X*=0
A+ X:ok A ¥ X:ok
X* = Tax[*a:T], Px[*a:T]} ArT<T,T'<T a<af
A ¥ X:ok

(SAFE-SUMMARY-CORRESPOND)

X7*: the multiset of the items of the form T...x[---] or | "x[---] in X

For each logic variable x such that X* # @, we require that the logic variable summary X has exactly
one giver and one taker of x, that they agree on the address and the type (up to equivalence), and
that the lifetime of the giver is no later than the lifetime of the taker (SAFE-SUMMARY-CORRESPOND).

Next, we introduce the safety judgment on an extended memory footprint A + M:ok. It is
defined by the following rules, using an auxiliary judgment A +¢ M:ok.

~ A~ A~ ~ _—
for each a, A +* M:ok Mé=9 M@ = {la[update®™] |} M = {la[readg][}
A+ M:ok A 2 M:ok A 7 M:ok A % M:ok
Ma = {|a[update+“] al[readg||} foreachi, f; <a @
’ 7 - (SAFE-FOOTPRINT-UPDATE-READ)
A ¢ M:ok

M the multiset of items of the form a- - - |

This judgment is an extension of M: ok introduced in §3.3. We now have to deal with frozen
access. Since a mutable (re)borrow completely masks the lender with a logic variable, even if we
have a[update®"] that comes form a mutable reference, we do not have any other items of the
form a[- - -], which keeps the situation simple. When we have shared references that comes from
some lender, we need to see agreement between the frozen update access and the borrowed read
access, which is performed by the rule SAFE-FOOTPRINT-UPDATE-READ.

Finally, we define the extended extraction-examination judgment IT + C »° C by the following
rule.

II + C>C|X,M AH,C F X:ok AH,C F M:Ok
I+ CrokC

Safety Condition on a Concrete Configuration. The safety judgment on a concrete configuration,
IT + C:ok, is defined simply as AC. IT + C»°¢ C.
For any well-typed program, we have the progress property on the safety condition.

PROPOSITION 3 (SAFETY ON A CONCRETE CONFIGURATION ENSURES PROGRESS). For any IT and C,
if IT + C:ok holds and I1 + C:end does not hold, then there exists some C’ satisfying I + C — C’.

Proor. It can be easily proved by a straightforward case analysis. The safety condition simply
ensures that the data stored in the heap memory has the expected forms. O

The preservation property on the safety condition also holds. It is later shown (Corollary 5) as a
corollary of the bisimulation theorem (Theorem 4).

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:40 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

4.3 Bisimulation Between Execution and SLDC Resolution

Now we define the judgment, or relation, IT + C »°k ¢ which links the world of the operational
semantics and the world of SLDC resolution. We prove that the relation forms a bisimulation
between execution in the operational semantics and SLDC resolution in our CHC representation
(Theorem 4). Using this bisimulation, we complete the proof of Theorem 1, the soundness and
completeness of our reduction. A key point is that, at the moment we release a mutable reference
modeled as (p, x.), we specialize the logic variable x, into the current target pattern p.

The judgment IT + C »° %, which translates a concrete configuration C into a logic configura-
tion XK, is defined as follows.

—_— _ —_—
I+ CrkC C = [fo, Ln]l {(xn, pn) }5 [fn-15 Ln-1] Yn, {(n—1, pu-1) }5 - - - [fo, Lol y1, {(x0, po) }
I+ Cookc fur, (P 2n)s fum1L,ms (zn Puts Za1). -+ fory (21.70.20) | 20
Here, K is designed as a resolutive configuration for our CHC representation of the program
(II). For simplicity, we assumed here that the arguments of the predicate f;;, are in the order
of yi+1,?§, res for each i < n. The variables z, ..., z, are fresh logic variables that are mutually

distinct.
The relation IT + C »°k K forms a bisimulation between execution in the operational semantics
and SLDC resolution in our CHC representation.

THEOREM 4 (BISIMULATION BETWEEN EXECUTION AND SLDC ResoruTioN UNDER OUR CHC
REPRESENTATION). Assume that IT + C »°% K holds. For any C’ satisfying II + C — C/, there
exists K’ such that (II)) + K — K’ and IT + C’ »° K’ hold. Likewise, for any K"’ satisfying
(II) + K — K, there exists C’ such thatIT + C — C’ andIT + C’ »°* K’ hold.

Proor. Taking a close look at each type of statements, we can find a correspondence between a
transition on concrete configurations and the transition on resolutive configurations under our
CHC representation. Therefore, we can choose K’ based on C” and choose C’ based on K’ (we do
not explicitly describe this choice here). The question is whether IT + C’ »°¢ K” really holds. Let
C’ the abstract configuration associated with %’. The property IT + C’ »°¢ K’ can be broken into
(i) whether the extraction judgment IT + C' > C’ | X/, M’ holds, (ii) whether the safety condition
on the logic variable summary X’ holds, and (iii) whether the safety condition on the extended
memory footprint M’ holds. We can show IT + C’ »°¢ K’ under the assumptions by some case
analyses. Below we give more detailed illustrations for some types of transitions.

Manipulation of Owning Pointers. Some transitions manipulates the target objects of some owning
pointers. For example, the instruction let sy = (xx, *x’) moves the memory sequences of x and
x' to allocate the two at one consecutive memory region. Also, the swap instruction swap(x, y)
destructively can update the target object of an ownership pointer.

In order to handle such operations, the type system and the extraction judgments give an
important guarantee: the manipulated memory cells should always be accessed with the active
update permission. The safety judgment on the extended memory footprint A + M: ok ensures
that, when there is an active update access on an address, there is no other access on the address.
Therefore, we can ensure that the transition updates only the expected part of the heap memory in
the expected way and does not affect other unrelated memory cells. Note especially that the swap
operation does not change the logic variable summary and the extended memory footprint.

Manipulation of Mutable References and Logic Variables. When a mutable reference is released,
weakened (to an immutable reference), or subdivided by the transition, logic variables in the
resolutive configuration and the abstract configuration are updated.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:41

When a mutable reference modeled as a pattern (p, x) is released or weakened, the logic variable
x is resolved into the pattern p. The lender of the target object of the mutable reference, which
is still frozen under some lifetime in the type system, retrieves frozen update access to the object
through extraction judgments. The safety on the logic variable summary provides an important
guarantee: for each logic variable x concerned, there exist exactly one giver T, x [*a: T] and one
taker | x [#a’: T’], which agree on the address and types (a=a’ and T < T’ A T’ < 7).

When a mutable reference is subdivided, the situation is a bit more involved. For example, when
we perform match on a mutable reference to a variant (inj; p, x), x is resolved into inj; x; with a
newly taken logic variable x,, and we get a new mutable reference (p, x).

We can check that, after each type of manipulation on mutable references and logic variables,
IT + C’ »°K K’ holds.

Retyping. The retyping instruction x as T’ can change the type of an active data variable x from
the original type T to a new type T',if A, + T < T’ holds under the local lifetime context A,. By
induction over the type T and the memory extraction for x, we can prove the following properties,
under the global lifetime context A, which extends the local lifetime context A,. (i) Every update
on the extended memory footprint has the following form: an item a[read,] turns into a[readg]
for f satisfying f <a « under the (global) lifetime context A. (ii) Every update on the logic variable
summary has the following form: an item T, x [+a: T] turns into Tgx[*a: T'] for g and T satisfying
f <a aand A:T < T’, T’ < T. Importantly, the type information in the logic variable summary
remains unchanged up to type equivalence, because the mutable reference type mut, T is invariant
over the body type T.

Elimination of a Local Lifetime Variable. When a local lifetime « is eliminated with the instruction
now «, all the frozen variables in the data context tagged with T« get reactivated. The type system
ensures that there remains no reference associated with the lifetime «. Therefore, the extended
memory footprint has no item of form a[read,], which ensures the safety condition on the extended
memory footprint after the lifetime elimination. O

Using this bisimulation, we can show preservation of the safety condition on concrete configura-
tions (although this is not directly linked to the proof of Theorem 1).

COROLLARY 5 (SAFETY ON A CONCRETE CONFIGURATION IS PRESERVED BY TRANSITION). For any
II,Cand C', ifII + C:ok andII + C — C’ hold, then IT + C’: ok holds.

Proor. It follows from Theorem 4, because the judgment IT + C: ok is equivalent to 3K. IT +
Crok K. O

Before completing the proof of Theorem 1, we show a few simple lemmas.

LEMMA 6 (EQUIVALENCE BETWEEN THE BASIC AND EXTENDED EXTRACTION-EXAMINATION JUDG-
MENTS). For any simple function f in a program II, for any concrete configuration C of form
[f, L] F | H, satisfying either L = entry or + C:end, the following equivalence holds.

OrCr¥C e I+ Cr*C

Proor. It can be proved by straightforward induction. O

LEmMA 7 (UNIQUENESS ON THE BAsic EXTRACTION-EXAMINATION JUDGMENTS). For any IT and C,
there exists at most one C such that IT + C »°% C holds.

Proor. Clear from the definition.]

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:42 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

LEMMA 8 (CONSTRUCTION OF A CONCRETE CONFIGURATION FROM A WEAK ABSTRACT CONFIGU-
RATION). For any program Il and any weak abstract configuration C= [f.L] 7, if the function f is
simple, the label L is entry or a label associated with a return statement, and F maps each variable to
a value of the suitable sort, then there exists a concrete configuration C such that IT + C »°% C holds.

Proor. By straightforward construction. O
Now we complete the proof of Theorem 1, the soundness and completeness of our reduction.
Proor oF THEOREM 1. We show each direction of the implication.

Necessity (fl(;S (0, w) implies Ml(T;‘ISB (fentry) (@, w)). There exists a sequence of concrete configura-

tions Cy, . . ., Cy, such that the following judgments hold.

ok ok
IT+Cy— -+ — Cyend IT + Co »% [f,entry] {(x,v)} T+ Cy»®™ [f, L] {(y,w)}
By Lemma 6, by setting Ko = fentry (3, 2) | z and K’ = f1(w, 2) | z, the following judgments hold.
II + C() >Ok(](0 II + Cn >Ok(](l

By Theorem 4, we have a sequence of resolutive configuration K, . . ., %, such that the following
judgments hold.

(I Fr Ko — - > K, IIFr C,e*%K,

By Lemma 6 and Lemma 7, we have K, = K’. Because IT + C,:end holds, in the CHC represen-
tation (II|) there is only one CHC whose head has f; and the CHC has the form fi (y,y) & T.

Thus IT + K’ — € | w holds. Therefore, by Lemma 2, we have M[(TIaYStI) () (@, w).
Sufficiency (M](TESB (fentry) (0, w) implies fgs(z_f, w)). By Lemma 2, there exists a sequence of reso-
lutive configurations Ky, . . ., K,+1 such that the following properties hold.

(II) » Ko = -+ = K (}(O=f;>ntry(5>z) | z Ko =€|w

By the definition of the CHC representation (|II]), we can find that K, is of the form f1.(w, z) | z,
where the statement at the label L is a return statement. By Lemma 8, we can construct a concrete
configuration Cy such that IT + Cy >k J¢ holds. By Theorem 4, we also have a sequence of
concrete configurations Cy, . . ., C, such that the following judgments hold.

IT+Cy—Cy— > Cpend I+ Cpe™K,
Thus we also have the following judgments.
MrCor® (o)} TTr Cu {(yw)}
Therefore, flgs(z_f, w) holds.

5 IMPLEMENTATION AND EVALUATION

We implemented a verification tool for Rust programs based on our reduction, RustHorn, and
conducted preliminary evaluation experiments with small benchmarks, where we successfully
confirmed the effectiveness of our approach. In this section we report on that.

5.1 Implementation of RustHorn

We implemented a prototype CHC-based verification tool RustHorn, which reduces Rust programs
to CHCs by our method proposed in this paper. It is available at https://github.com/hopv/rust-horn.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://github.com/hopv/rust-horn

RustHorn: CHC-based Verification for Rust Programs 1:43

It is written in Rust by ~2,500 lines of code. The tool supports the core features of Rust, including
recursions and recursive types.

RustHorn analyzes the MIR (Mid-level Intermediate Representation) [54] of a Rust program, which
is provided by the Rust compiler, and then generates CHCs by applying our reduction. The use of
MIR enables our tool to support a broad range of Rust programs, with various kinds of syntax sugar.
(An obstacle is that the implementation depends on a nightly version of the Rust compiler because
the Rust compiler’s internal representation is unstable.) RustHorn relies on the Rust compiler’s
borrow check and simply ignores the lifetime information, which is valid thanks to the nature of
our method.

We briefly explain here MIR and RustHorn’s algorithm. MIR models each Rust function as
a set of simple instructions (called a statement) labeled with program points, like our calculus
COR. In MIR, some sequentially executed instructions are packed into what is called a basic block.
For efficiency, RustHorn introduces a predicate variable for each basic block rather than for each
program point. RustHorn analyzes the set of local variables at the head of each basic block. Then
for each basic block, it models the initial environment by symbolic values and performs a kind of
symbolic execution to analyze the final environment of the block. In particular, in a MIR statement,
we can directly access a (possibly deep) substructure of a local variable (called a place), which is
not supported in COR but can easily be modeled in our reduction. Depending on the action taken
at the end of the block (which is expressed by what is called a terminator), it adds some CHCs to
the output. Before we jump to another basic block or return from the function, we clean up the
local variables that will not be used any more and add the equality constraint on the final target
value of each mutable reference contained in the variables.

This algorithm performs a more advanced reduction than our formalized reduction presented
in §3. We believe that our soundness and completeness proof presented in §2 and §4 justifies the
core idea of this advanced reduction, but direct proof on the advanced reduction remains to be a

challenge.

5.2 Benchmarks and Experiments

In order to measure the performance of RustHorn and the existing CHC-based verifier for C,
SeaHorn [25], we conducted preliminary experiments using the benchmarks listed in Table 1.
Each benchmark program has one assertion to be verified, and is provided both in Rust and C.
Most benchmark instances consist of a pair of safe and an unsafe programs that only differ from
each other in the asserted property. We also wrote LOC (in Rust, skipping blank and comment
lines) of each benchmark in the table. The column Loop? shows whether the verified program has
loops (which include recursions, exclude vacuous loops like 1oop {}). The column Mut? shows
whether the verified program uses mutable references. The benchmarks and experimental results
are available at https://doi.org/10.5281/zenodo.4710723.

We conducted experiments on a commodity laptop (2.6GHz Intel Core i7 MacBook Pro with
16GB RAM). First we reduced each benchmark program into CHCs in the SMT-LIB 2 format using
RustHorn and SeaHorn (version 10.0.0-rc0-86a31cf1) [25]. The time for the reduction was quite
short (at most ~0.3 second for each program). After that, we measured the time of CHC solving by
Spacer [42] in Z3 (version 4.8.10) [75] and Holce (version 1.8.3)* [12, 13] for the generated CHCs.
Holce does not accept SeaHorn’s outputs, because SeaHorn uses a different format and employs
arrays for pointers. We have also prepared modified versions of some of the CHCs generated by
SeaHorn, obtained by adding constraints on address freshness to improve accuracy of the model
and reduce false alarms. Still, we could not make the modified versions for the benchmarks in the

14 We used Z3 version 4.7.1 for the backend SMT solver of Holce, in order to deal well with recursive data types.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.5281/zenodo.4710723

1:44 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

RustHorn SeaHorn w/Spacer
Group Instance Safe? LOC Loop? Mut? | w/Spacer _ w/Holce as is modified
01 safe 12 yes no <0.1 0.1 <0.1
04-recursive safe 14 yes no 0.5 timeout 0.8
simple 05-recursive unsafe 26 yes no <0.1 <0.1 <0.1
06-1oop safe 10 yes no timeout 0.1 timeout
hhk2008 safe 20 yes no timeout 47.9 <0.1
unique-scalar unsafe 9 no yes <0.1 0.3 <0.1
1 safe 46 no no 0.2 <0.1 <0.1
unsafe 0.2 <0.1 <0.1
2 safe 15 es no timeout 0.1 <0.1
unsafe ¥y <0.1 0.1 <0.1
bme 3 safe 35 es o 0.1 <0.1 <0.1
unsafe ¥y <0.1 <0.1 <0.1
. _ safe 0.1 <0.1 <0.1
diamond-1 unsafe 55 no no <01 <01 <01
: _ safe 0.2 <0.1 <0.1
diamond-2 unsafe 40 no no 01 <01 <01
ackermann safe 17 yes no <0.1 0.1 <0.1
ackermann-same safe 26 yes no timeout timeout timeout
compress safe 12 no yes <0.1 0.1 false alarm
prusti borrows-align safe 14 no yes <0.1 0.1 <0.1
safe <0.1 0.1 <0.1
account unsafe 18 MO VeS| o] 0.2 <0.1
restore safe 14 no yes <0.1 0.3 false alarm
safe <0.1 0.2 false alarm <0.1
base unsafe 1> PO YeS | o) 0.2 <0.1 <01
safe <0.1 0.2 false alarm
inc-max base3 unsafe 22 no yes <0.1 0.2 <0.1
- safe 0.1 timeout | false alarm timeout
repeat unsafe 22 yes yes <0.1 0.5 <0.1 <0.1
safe 0.2 timeout | false alarm
repeat3 unsafe 2% VS yes | g3 14 <0.1
safe 0.1 0.5 false alarm <0.1
base unsafe 23 yes yes 0.1 timeout <0.1 0.1
safe 0.1 timeout | false alarm <0.1
d base3 unsafe 27 yes yes 0.4 14.2 <0.1 0.1
swap-dec exact safe 24 es es 0.1 0.6 false alarm 0.2
unsafe y y <0.1 timeout <0.1 <0.1
safe timeout timeout | false alarm 0.2
exact3 unsafe yes yes 0.1 2.2 <0.1 <0.1
safe 0.4 0.8 false alarm <0.1
base unsafe 24 yes yes 1.2 timeout <0.1 0.1
safe 1.8 timeout | false alarm <0.1
oed base3 unsafe 3% YeS VeS| g 39.0 <0.1 0.2
swapz-dec exact safe 25 es es 1.0 1.0 false alarm 0.2
unsafe y ¥ <0.1 timeout <0.1 <0.1
safe timeout timeout | false alarm 1.3
exact3 unsafe >° yes yes <0.1 6.2 <0.1 <0.1
s safe <0.1 0.2 <0.1
just-rec base unsafe 14 yes yes <01 02 <01
safe <0.1 0.2 false alarm
base unsafe 10 YeS VeS| o] 0.2 <0.1
safe <0.1 0.3 false alarm
Linger—d base3 unsafe 2% YeS YeS | g 319 <0.1
inger-dec exact safe 16 es es <0.1 0.3 false alarm
unsafe b ¥y <0.1 03 <0.1
safe <0.1 0.4 false alarm
exact3 unsafe 30 yes yes <01 13 <0.1
safe tool error 0.3 false alarm
append unsafe 27 yes Y€ | tool error 0.3 0.1
s safe tool error 0.3 false alarm
lists inc-all unsafe 39 yes Y& | tool error 0.4 <0.1
Lo safe tool error 0.3 timeout
inc-some unsafe 32 yes Y& | tool error 0.6 0.1
S safe tool error timeout timeout
inc-some2 unsafe 3% yes Y& | tool error 0.7 0.3
safe tool error 0.4 false alarm
append unsafe 3° yes Y& | tool error 0.3 <0.1
A safe tool error timeout timeout
trees inc-all unsafe 30 yes Y& | tool error 0.2 0.1
A safe tool error 0.4 timeout
inc-some unsafe 34 yes Y& | tool error 0.7 0.1
S safe tool error tool error timeout
inc-some2 unsafe 36 yes Y& | tool error 0.9 timeout

Table 1. Benchmarks and experimental results on RustHorn and SeaHorn, with Spacer and Holce.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:45

groups linger-dec, lists and trees because address freshness check is quite hard to model. For
inc-max/base3 and inc-max/repeat3 we could not make the modified versions because SeaHorn
wrongly omitted all the memory manipulation in the CHC outputs for them, probably by inaccurate
pointer analyses.

Below we explain our benchmarks more in detail.

The benchmarks in the groups simple and bmc were taken from those of SeaHorn (https:
//github.com/seahorn/seahorn/tree/master/test). They are originally provided in C and the Rust
versions were written by us. The benchmarks in SeaHorn were chosen based upon the following
criteria: they (i) consist only of features supported by the core of Rust (covered by RustHorn), (ii)
follow Rust’s permission discipline, and (iii) are small enough to be amenable for manual translation
from C to Rust. We omitted SeaHorn tests that use arrays (such as simple/02_array) and function
pointers (such as devirt/devirt_02), in light of (i). For an example of (ii), the following SeaHorn
test dsa/test-1 was not included, because here the two pointers a and b can simultaneously point
at the same object y with update permission.

void f(int* x, intx y){ *x = 1; *y = 2; }
void g(int* p, intx q, intx r, int*x s) { f(p, q); f(r, s); }
int main(){
int x, y, w, z; int*x a = &x; intx b = &y; if (nd()) a = b;
g(a, b, &w, &z); return x +y + w + z;

}

Also, in light of (iii), we omitted large SeaHorn tests, such as bmc/cdaudio_simpl1. The following
benchmark simple/hhk2008 is a SeaHorn test that was adopted in our experiments. The key
challenge of this program is to find out an invariant on the while loop.

int main() {
int a = rand(), b = rand();
if (!(a <= 1000000 && @ <= b && b <= 1000000)) return 0;

int res = a, cnt = b;
while (cnt > @) { cnt = ¢cnt - 1; res = res + 1; }
assert(res == a + b); return 0;

b

The benchmarks in the group prusti were taken from tests of Prusti [3], a semi-automated
verification tool for Rust (available at https://github.com/viperproject/prusti-dev). We chose several
small, interesting benchmarks from Prusti’s tests. For example, restore features a mutable reference
to a randomly chosen object.

struct T { val: i32 }

fn main() {
let mut x = T { val: 11 }; let mut y = T { val: 22 };
let z = if rand() { &mut x } else { &mut y };

z.val += 33; x.val += 44; y.val += 44,
assert!(x.val == 88 || x.val == 55);
assert!(y.val == 66 || y.val == 99);

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://github.com/seahorn/seahorn/tree/master/test
https://github.com/seahorn/seahorn/tree/master/test
https://github.com/viperproject/prusti-dev

1:46 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

The benchmarks in the remaining seven groups were made by us featuring various use cases of
mutable references. The benchmarks in the groups inc-max, just-rec and linger-dec are based
on the examples in §1 and §3.4.

The group swap-dec consists of benchmark programs that perform repeated and involved
updates via mutable references to a mutable reference to an integer. For example, below is the safe
program of the instance swap-dec/base, with some details modified for readability. The verified
property is that the function test always returns true whenever it terminates.

fn may_swap<T>(mx: &mut T, my: &mut T) {
if rand() { swap(mx, my); }

}

fn swap_dec<'a>(mma: &mut &'a mut i32, mmb: &mut &'a mut i32) {
may_swap (mma, mmb); if rand() { return; }
**mma -= 1; x*xmmb -= 2; swap_dec(mma, mmb);

3

fn test(mut a: i32, mut b: 1i32) {
let a@ = a; let mut ma = &mut a; let mut mb = &mut b;
swap_dec (&mut ma, &mut mb); assert(a@ >= a);

b

The group swap2-dec is an advanced variant of swap-dec. It features a mutable reference to a mu-
table reference to a mutable reference to an integer. For example, the safe program of swap2-dec/base
is as follows (may_swap is the same as above).

fn swap2_dec<'a>(mmma: &mut &'a mut &'a mut i32,
mmmb: &mut &'a mut &'a mut i32) {

may_swap (mmma, mmmb); may_swap (*mmma, *mmmb) ;
if rand() { return; }
*xxmmma -= 1; ***xmmmb -= 2; swap2_dec(mmma, mmmb);

}

fn test(mut a: i32, mut b: i32) {
let a0 = a; let mut ma = &mut a; let mut mb = &mut b;
let mut mma = &mut ma; let mut mmb = &mut mb;
swap2_dec (&mut mma, &mut mmb); assert(a@ >= a);

3

The instances labeled repeat in the group inc-max repeat the operation of the function inc_max
n times, for some random number n. The instances labeled exact in the groups swap-dec,

swap2-dec and linger-dec not only observe the decrease but also check the amount of the
decrease. For example, in the safe program of swap-dec/exact, the last check is a@ >= a && a@
- a <= 2 * n, which has the condition a@ - a <= 2 * n unlike swap-dec/base.

The groups lists and trees feature destructive updates on recursive data structures (singly
linked lists and binary trees) via mutable references. The instance 1ists/inc-some has appeared
as Example 5. The safe program of the instance lists/append is as follows.

enum List<T> { Cons(T, Box<List<T>>), Nil } use List::x;

fn append(mla: &mut List<i32>, 1lb: List<i32>) { match mla {
Cons(_, mla2) => { append(mla2, 1lb); 3}
Nil => { *mla = 1lb; }

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:47

T3
fn sum(la: &List<i32>) -> 132 {
match la { Cons(a, la2) => a + sum(la2), Nil => 0 }
}
fn test(la: List<i32>, 1lb: List<i32>) {
let m = sum(&la); let n = sum(&lb);
append (&mut la, 1lb); let r = sum(&la); assert(r == m + n);
}

The safe program of the instance lists/inc-all is as follows (List and sum are the same as
above).

fn inc_all<'a>(mla: &'a mut List<i32>) { match mla {
Cons(ma, mla2) => { *ma += 1; inc_all(mla2); 3}, Nil => {}

T3
fn length(la: &List<i32>) -> i32 {

match la { Cons(a, la2) => 1 + length(la2), Nil => 0 }
3
fn test(mut la: List<i32>) {

let n = sum(&la); let 1 = length(&la);

inc_all (&mut la); let r = sum(&la); assert(r == n + 1);

}

The instance lists/inc-some2 is an advanced variant of inc-some of Example 5. Its program
with the safe property is presented below (List and sum are the same as above). The function test
takes mutable references to some two elements of the input list and performs increment on them.

fn take_some_rest<'a>(mla: &'a mut List<i32>) ->
(&'a mut i32, &'a mut List<i32>) { match mla {
Cons(ma, mla2) => { if rand() { (ma, mla2) }
else { take_some_rest(mla2) } }
Nil => take_some_rest(mla)
3
fn test(mut la: List<i32>) {
let n = sum(&la); let (mb, mla2) = take_some_rest(&mut la);
let (mc, _) = take_some_rest(mla2);
*mb += 1; xmc += 1; let r = sum(&la); assert(r == n + 2);

}

Benchmarks in the group trees are analogous to those in the group lists but designed for binary
trees instead of lists.

5.3 [Experimental Results

Table 1 shows the results of the experiments. The columns for RustHorn and SeaHorn show the time
for verification (in seconds) in the case the verification was successful. In the case the verification
failed, the columns show one of the following failure labels. The label timeout means timeout over
the time limit of 180 seconds. The label false alarm means a report of unsafety for a safe program.
The label tool error means an error of the backend CHC solver; Spacer was unstable for recursive
types in general and Holce was unstable in some situations.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:48 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

RustHorn, combined with either Spacer or Holce, successfully verified all programs that were
successfully verified by SeaHorn (without our modification). Also, RustHorn successfully verified
various interesting programs that SeaHorn could not verify. The verification time of RustHorn
largely matched that of SeaHorn. Although the benchmark set used for the experiments is small
and more or less contrived, we believe that the experimental results already indicate effectiveness
of our verification method. Experiments on larger, more realistic benchmark programs are left to
future work.

The combination of RustHorn and Holce succeeded in verifying many programs with recursive
data types (lists and trees), including lists/inc-some and trees/inc-some. Still, it failed at
some benchmarks such as lists/inc-some2 and trees/inc-all. This is because Holce, unlike
Spacer, can find models defined with primitive recursive functions for recursive data types, as
discussed in Example 5 in §3.4.

SeaHorn, without our modification, issued false alarms for many programs in the last seven
benchmark groups, from inc-max to trees. This is due to SeaHorn’s imprecise modeling of pointers
and memory states, where freshness of pointer addresses is not fully specified. For our modified CHC
outputs of SeaHorn, false alarms were not observed but verification timed out for one benchmark
(although one timeout was observed), but we could not make modified versions for many of
the benchmarks. For the last four groups from just-rec to trees, unboundedly many memory
cells can be allocated, which imposes a fundamental challenge for the array-based reduction as
discussed in §1.1. SeaHorn succeeded in verification for just-rec by analyzing absence of effective
destructive updates and generating CHCs without arrays, but for all other benchmarks of the safe
property SeaHorn failed because of imprecise representation. RustHorn succeeded in verifying
most benchmark programs in these groups.

For the benchmarks in the groups swap-dec and swap2-dec, RustHorn performed somewhat in-
efficiently compared to SeaHorn with our modification. This is presumably because the benchmarks
in the groups feature nested mutable references, which are modeled as a big value in our reduction.
The group swap-dec features a mutable reference to a mutable reference to an integer, which
is modeled as a pair of pairs of integers, which has four integers in total. The group swap2-dec
features a mutable reference to a mutable reference to a mutable reference to an integer (threefold!),
which is modeled as a value that has eight integers in total. For SeaHorn, the benchmarks in
swap-dec and swap2-dec are quite easy because only a limited number of addresses (up to six
addresses) are used in each program. This indicates a disadvantage of our approach compared to
the array-based approach. Still, we believe that in real-world Rust programs we do not use such
nested mutable references so often.

6 RELATED WORK

CHC-based Verification of Pointer-Manipulating Programs. SeaHorn [25] is a representative ex-
isting tool for CHC-based verification of pointer-manipulating programs. It basically represents
the heap memory as an array. Although some pointer analyses [26] are used to optimize the array
representation of the heap memory, their approach suffers from some pointer use cases that our
approach can handle, as is examined by our experiments reported in §5. Still, their approach is sig-
nificant in the context of automated verification, given that many real-world pointer-manipulating
programs do not fit within Rust’s permission control.

Another approach is taken by JayHorn [38, 39], which automatically verifies Java programs
(possibly using object pointers) by reduction to CHCs. It represents store invariants using special
predicates pull and push. Although this allows faster reasoning about the heap memory than the
array-based approach, it can suffer from more false alarms. We conducted a small experiment for
JayHorn (0.6-alpha) on some of the benchmarks of §5.2. JayHorn reported ‘UNKNOWN’ (instead of

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:49

‘SAFE’ or ‘UNSAFE’) for even simple programs such as the programs of the instance unique-scalar
in simple and the instance basic in inc-max.

Verification for Rust. Whereas we have presented the first CHC-based (fully automated) verifica-
tion method specially designed for Rust, there are a number of studies on other types of verification
for Rust.

RustBelt by Jung et al. [34] formally verified safety properties for Rust libraries with unsafe
internal implementation, using manual reasoning in the higher-order separation logic Iris [35, 37],
based upon higher-order concurrent separation logic, built on the Coq Proof Assistant [16]. They
presented a formalized core of Rust, Apyst, which affected the language design of our calculus COR.
Thanks to the power of Iris, their verification method is highly extensible for various Rust libraries
with unsafe code, including those with interior mutability. Still, they verify only the safety property
and do not cover functional correctness. Also, the automation of the verification in their approach
is not well discussed.

Ullrich [72] translated a subset of Rust into a purely functional programming language to
manually verify functional correctness of some tricky Rust programs using the Lean Theorem
Prover [17]. Although this method eliminates pointers to get simple models like our approach, the
applicability of this method is quite limited, because it deals with mutable references by simple
static tracking of addresses based on lenses [22]. This method thus does not support even basic use
cases such as dynamic selection of mutable references (e.g., take_max in §1.2) [71], which can be
easily handled by our method. On the other hand, our approach covers arbitrary pointer operations
supported in the safe core of Rust, as discussed in §3.

There are a series of studies [3, 19, 29] of methods of semi-automated verification of Rust programs
using Viper [52], a verification platform based on separation logic with fractional permission. This
approach can deal with advanced features such as unsafe code [29] and type traits [19] to some
extent. In particular, Prusti by Astrauskas et al. [3] conducted semi-automated verification (manually
providing pre/post-conditions and loop invariants) on many realistic examples. Also, they use
special machinery called a pledge to model mutable borrows, which enables operations like Vec
: :index_mut. Still, this approach does not support some basic operations on mutable references,
such as split of mutable references, unlike our RustHorn. We suppose that Viper’s reasoning based
on fractional permission does not naturally match Rust’s lifetime-based permission control. On the
other hand, our reduction of RustHorn is specially designed for Rust. As we discussed in §3.5, our
reduction of Rust programs to CHCs can be applied to semi-automated verification where users
can declare pre/post-conditions and loop invariants. This extension of our approach can work more
nicely than their Viper-based approaches for a wide class of Rust programs.

There are also approaches based on bounded model checking [4, 46, 70] for verification of Rust
programs with unsafe code. Our reduction can be applied to bounded model checking as discussed
in §3.5.

Verification using Permission/Ownership. The notion of permission/ownership has been applied to
a wide range of verification. It has been used for detecting race conditions in concurrent programs
[8, 69] and analyzing the safety of memory allocation [68]. Separation logic based on permission is
also studied well [7, 37, 52]. A simple notion of permission has also been used in some verification
tools [5, 15, 23]. However, existing studies on permission-based verification are mostly based on
fractional or counting permission, which is quite different from Rust’s permission control.

Prophecy Variables. Our idea of considering a future value to represent a mutable reference is
related to the notion of prophecy variables [1, 36, 73]. In particular, Jung et al. [36] presented a new
program logic that supports prophecy variables on the separation logic Iris [37].

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:50 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

7 CONCLUSION

We proposed a novel method for CHC-based automated verification of Rust programs. The key
idea is to model a mutable reference as a pair of the current target value and the target value at the
end of the borrow. We formalized the method for a core language of Rust and proved its soundness
and completeness. We implemented a prototype verification tool for a subset of Rust and confirmed
the effectiveness of our approach through an experiment.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Numbers JP15H05706, JP16K16004, JP20H05703
and JP21J20459. We are grateful to the anonymous reviewers for insightful and helpful comments.

REFERENCES

[1] Martin Abadi and Leslie Lamport. 1991. The Existence of Refinement Mappings. Theor. Comput. Sci. 82, 2 (1991),
253-284. https://doi.org/10.1016/0304-3975(91)90224-P
[2] Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, and Natasha Sharygina. 2012. Lazy Abstraction
with Interpolants for Arrays. In Logic for Programming, Artificial Intelligence, and Reasoning - 18th International
Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7180),
Nikolaj Bjerner and Andrei Voronkov (Eds.). Springer, 46-61. https://doi.org/10.1007/978-3-642-28717-6_7
[3] Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J. Summers. 2018. Leveraging Rust Types for Modular
Specification and Verification. (2018). https://doi.org/10.3929/ethz-b-000311092
[4] Marek S. Baranowski, Shaobo He, and Zvonimir Rakamaric. 2018. Verifying Rust Programs with SMACK, See [45],
528-535. https://doi.org/10.1007/978-3-030-01090-4_32
[5] Mike Barnett, Manuel Fahndrich, K. Rustan M. Leino, Peter Miiller, Wolfram Schulte, and Herman Venter. 2011.
Specification and Verification: The Spec# Experience. Commun. ACM 54, 6 (2011), 81-91. https://doi.org/10.1145/
1953122.1953145
[6] Nikolaj Bjerner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. 2015. Horn Clause Solvers for
Program Verification. In Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His
75th Birthday (Lecture Notes in Computer Science, Vol. 9300), Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz,
Bernd Finkbeiner, and Wolfram Schulte (Eds.). Springer, 24-51. https://doi.org/10.1007/978-3-319-23534-9_2
[7] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission Accounting in
Separation Logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005, Jens Palsberg and Martin Abadi (Eds.). ACM, 259-270.
https://doi.org/10.1145/1040305.1040327
[8] Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. 2002. Ownership Types for Safe Programming: Preventing
Data Races and Deadlocks. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2002, Seattle, Washington, USA, November 4-8, 2002., Mamdouh Ibrahim
and Satoshi Matsuoka (Eds.). ACM, 211-230. https://doi.org/10.1145/582419.582440
John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis, 10th International Symposium,
SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2694), Radhia
Cousot (Ed.). Springer, 55-72. https://doi.org/10.1007/3-540-44898-5_4
[10] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s Decidable About Arrays?. In Verification, Model
Checking, and Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 3855), E. Allen Emerson and Kedar S. Namjoshi (Eds.). Springer,
427-442. https://doi.org/10.1007/11609773_28
[11] Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay. 2018. Higher-Order Constrained Horn Clauses for
Verification. PACMPL 2, POPL (2018), 11:1-11:28. https://doi.org/10.1145/3158099
[12] Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato. 2018. ICE-Based Refinement Type Discovery
for Higher-Order Functional Programs. In Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10805),
Dirk Beyer and Marieke Huisman (Eds.). Springer, 365-384. https://doi.org/10.1007/978-3-319-89960-2_20
[13] Adrien Champion, Naoki Kobayashi, and Ryosuke Sato. 2018. Holce: An ICE-Based Non-linear Horn Clause Solver.
In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December
2-6, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 146-156. https:

[

—

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1007/978-3-642-28717-6_7
https://doi.org/10.3929/ethz-b-000311092
https://doi.org/10.1007/978-3-030-01090-4_32
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/582419.582440
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/11609773_28
https://doi.org/10.1145/3158099
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-030-02768-1_8

RustHorn: CHC-based Verification for Rust Programs 1:51

[14]

[15]

[16]
[17

—

[18]

[19]
[20

—

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

//doi.org/10.1007/978-3-030-02768-1_8

David G. Clarke, John Potter, and James Noble. 1998. Ownership Types for Flexible Alias Protection. In Proceedings of
the 1998 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages & Applications (OOPSLA °98),
Vancouver, British Columbia, Canada, October 18-22, 1998., Bjern N. Freeman-Benson and Craig Chambers (Eds.). ACM,
48-64. https://doi.org/10.1145/286936.286947

Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas Santen, Wolfram
Schulte, and Stephan Tobies. 2009. VCC: A Practical System for Verifying Concurrent C. In Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture
Notes in Computer Science, Vol. 5674), Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.).
Springer, 23-42. https://doi.org/10.1007/978-3-642-03359-9_2

Coq Team. 2021. The Coq Proof Assistant. https://coq.inria.fr/

Leonardo Mendonga de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The
Lean Theorem Prover (System Description). In Automated Deduction - CADE-25 - 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9195),
Amy P. Felty and Aart Middeldorp (Eds.). Springer, 378-388. https://doi.org/10.1007/978-3-319-21401-6_26
Dropbox. 2020. Rewriting the Heart of Our Sync Engine - Dropbox. https://dropbox.tech/infrastructure/rewriting-the-
heart-of-our-sync-engine

Matthias Erdin. 2019. Verification of Rust Generics, Typestates, and Traits. Master’s thesis. ETH Zirich.

Grigory Fedyukovich, Samuel J. Kaufman, and Rastislav Bodik. 2017. Sampling Invariants from Frequency Distributions.
In 2017 Formal Methods in Computer Aided Design, EMCAD 2017, Vienna, Austria, October 2-6, 2017, Daryl Stewart and
Georg Weissenbacher (Eds.). IEEE, 100-107. https://doi.org/10.23919/FMCAD.2017.8102247

Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti Gupta. 2019. Quantified Invariants via Syntax-
Guided Synthesis. In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA,
FJuly 15-18, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.).
Springer, 259-277. https://doi.org/10.1007/978-3-030-25540-4_14

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007. Combinators
for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans. Program. Lang.
Syst. 29,3 (2007), 17. https://doi.org/10.1145/1232420.1232424

Léon Gondelman. 2016. Un systéme de types pragmatique pour la vérification déductive des programmes. (A Pragmatic
Type System for Deductive Verification). Ph.D. Dissertation. University of Paris-Saclay, France. https://tel.archives-
ouvertes.fr/tel-01533090

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. 2012. Synthesizing Software
Verifiers from Proof Rules. In ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 405-416. https:
//doi.org/10.1145/2254064.2254112

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. 2015. The SeaHorn Verification Framework.
In Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel Kroening and Corina S. Pasareanu (Eds.).
Springer, 343-361. https://doi.org/10.1007/978-3-319-21690-4_20

Arie Gurfinkel and Jorge A. Navas. 2017. A Context-Sensitive Memory Model for Verification of C/C++ Programs. In
Static Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August 30 - September 1, 2017, Proceedings
(Lecture Notes in Computer Science, Vol. 10422), Francesco Ranzato (Ed.). Springer, 148-168. https://doi.org/10.1007/978-
3-319-66706-5_8

Arie Gurfinkel, Sharon Shoham, and Yuri Meshman. 2016. SMT-Based Verification of Parameterized Systems. In
Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.). ACM, 338-348.
https://doi.org/10.1145/2950290.2950330

Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. 2018. Quantifiers on Demand, See [45], 248-266. https://doi.org/10.
1007/978-3-030-01090-4_15

Florian Hahn. 2016. Rust2Viper: Building a Static Verifier for Rust. Master’s thesis. ETH Ziirich. https://doi.org/10.3929/
ethz-a-010669150

Jochen Hoenicke, Rupak Majumdar, and Andreas Podelski. 2017. Thread Modularity at Many Levels: A Pearl in
Compositional Verification. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 473-485.
https://doi.org/10.1145/3009837

Hossein Hojjat and Philipp Riimmer. 2018. The ELbarica Horn Solver. In 2018 Formal Methods in Computer Aided
Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, Nikolaj Bjorner and Arie Gurfinkel (Eds.). IEEE,

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1145/286936.286947
https://doi.org/10.1007/978-3-642-03359-9_2
https://coq.inria.fr/
https://doi.org/10.1007/978-3-319-21401-6_26
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://doi.org/10.23919/FMCAD.2017.8102247
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1145/1232420.1232424
https://tel.archives-ouvertes.fr/tel-01533090
https://tel.archives-ouvertes.fr/tel-01533090
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1145/2950290.2950330
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.3929/ethz-a-010669150
https://doi.org/10.3929/ethz-a-010669150
https://doi.org/10.1145/3009837

1:52 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

1-7. https://doi.org/10.23919/FMCAD.2018.8603013

Alfred Horn. 1951. On Sentences Which are True of Direct Unions of Algebras. The Journal of Symbolic Logic 16, 1
(1951), 14-21. http://www.jstor.org/stable/2268661

Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling Wang. 2002. Cyclone:
A Safe Dialect of C. In Proceedings of the General Track: 2002 USENIX Annual Technical Conference, June 10-15, 2002,
Monterey, California, USA, Carla Schlatter Ellis (Ed.). USENIX, 275-288. http://www.usenix.org/publications/library/
proceedings/usenix02/jim.html

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: Securing the Foundations of
the Rust Programming Language. PACMPL 2, POPL (2018), 66:1-66:34. https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from
the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart
Jacobs. 2020. The Future is Ours: Prophecy Variables in Separation Logic. PACMPL 4, POPL (2020), 45:1-45:32.
https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.
Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
Sriram K. Rajamani and David Walker (Eds.). ACM, 637-650. https://doi.org/10.1145/2676726.2676980

Temesghen Kahsai, Rody Kersten, Philipp Riimmer, and Martin Schéf. 2017. Quantified Heap Invariants for Object-
Oriented Programs. In LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Maun, Botswana, May 7-12, 2017 (EPiC Series in Computing, Vol. 46), Thomas Eiter and David Sands (Eds.).
EasyChair, 368-384.

Temesghen Kahsai, Philipp Ritmmer, Huascar Sanchez, and Martin Schéf. 2016. JayHorn: A Framework for Verifying
Java programs. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan
(Eds.). Springer, 352-358. https://doi.org/10.1007/978-3-319-41528-4_19

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEus: Analyzing Safety of Smart Contracts. In
25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society.

Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. 2011. Predicate Abstraction and CEGAR for Higher-Order Model
Checking. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 222-233. https:
//doi.org/10.1145/1993498.1993525

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2014. SMT-based Model Checking for Recursive Programs.
In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8559), Armin Biere and
Roderick Bloem (Eds.). Springer, 17-34. https://doi.org/10.1007/978-3-319-08867-9_2

Robert A. Kowalski. 1974. Predicate Logic as Programming Language. In Information Processing, Proceedings of the 6th
IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974, Jack L. Rosenfeld (Ed.). North-Holland, 569-574.

Shuvendu K. Lahiri and Randal E. Bryant. 2004. Constructing Quantified Invariants via Predicate Abstraction. In
Verification, Model Checking, and Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice, Italy, January
11-13, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 2937), Bernhard Steffen and Giorgio Levi (Eds.). Springer,
267-281. https://doi.org/10.1007/978-3-540-24622-0_22

Shuvendu K. Lahiri and Chao Wang (Eds.). 2018. Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings. Lecture Notes in Computer Science,
Vol. 11138. Springer. https://doi.org/10.1007/978-3-030-01090-4

Marcus Lindner, Jorge Aparicius, and Per Lindgren. 2018. No Panic! Verification of Rust Programs by Symbolic
Execution. In 16th IEEE International Conference on Industrial Informatics, INDIN 2018, Porto, Portugal, July 18-20, 2018.
IEEE, 108-114. https://doi.org/10.1109/INDIN.2018.8471992

Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language. In Proceedings of the 2014 ACM SIGAda annual
conference on High integrity language technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014, Michael Feldman
and S. Tucker Taft (Eds.). ACM, 103-104. https://doi.org/10.1145/2663171.2663188

Yusuke Matsushita. 2021. Extensible Functional-Correctness Verification of Rust Programs by the Technique of Prophecy.
Master’s thesis. University of Tokyo. http://www.kb.is.s.u-tokyo.ac.jp/~yskm24t/papers/master-thesis.pdf

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2020. RustHorn: CHC-Based Verification for Rust Programs.
In Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the

[32

—

[33

[t

[34

[l

[35

—

[36

—

[37

—

[38

—

[39

—

[40

[t

(41

—

[42

—

[43

[t

[44

=

[45

—

[46

—

[47

—

[48

—

[49

—

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.23919/FMCAD.2018.8603013
http://www.jstor.org/stable/2268661
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-540-24622-0_22
https://doi.org/10.1007/978-3-030-01090-4
https://doi.org/10.1109/INDIN.2018.8471992
https://doi.org/10.1145/2663171.2663188
http://www.kb.is.s.u-tokyo.ac.jp/~yskm24t/papers/master-thesis.pdf

RustHorn: CHC-based Verification for Rust Programs 1:53

European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12075), Peter Miiller (Ed.). Springer, 484-514. https://doi.org/10.1007/978-3-
030-44914-8_18

[50] Microsoft. 2021. Boogie: An Intermediate Verification Language. https://www.microsoft.com/en-us/research/project/

[t

boogie-an-intermediate-verification-language/

Mozilla. 2021. Rust language — Mozilla Research. https://research.mozilla.org/rust/

Peter Miiller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-
Based Reasoning. In Verification, Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI
2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara
Jobstmann and K. Rustan M. Leino (Eds.). Springer, 41-62. https://doi.org/10.1007/978-3-662-49122-5_2

npm. 2019. Rust Case Study: Community Makes Rust an Easy Choice for npm. https://www.rust-lang.org/static/pdfs/Rust-
npm-Whitepaper.pdf

[54] Rust Community. 2021. The MIR (Mid-level IR). https://rustc-dev-guide.rust-lang.org/mir/index.html

[55] Rust Community. 2021. Reference Cycles Can Leak Memory - The Rust Programming Language. https://doc.rust-

[51
[52

—

[53

—

lang.org/book/ch15-06-reference-cycles.html
] Rust Community. 2021. RFC 2025: Nested Method Calls. https://rust-lang.github.io/rfcs/2025-nested-method-calls.html
] Rust Community. 2021. RFC 2094: Non-lexical Lifetimes. https://rust-lang.github.io/rfcs/2094-nll.html
[58] Rust Community. 2021. Rust Programming Language. https://www.rust-lang.org/
] Rust Community. 2021. std::cell:RefCell - Rust. https://doc.rust-lang.org/std/cell/struct.RefCell. html
] Rust Community. 2021. std::collections::HashMap - Rust. https://doc.rust-lang.org/std/collections/struct. HashMap.
html
] Rust Community. 2021. std::rc::Rc - Rust. https://doc.rust-lang.org/std/rc/struct.Re.html
] Rust Community. 2021. std::sync:Mutex - Rust. https://doc.rust-lang.org/std/sync/struct. Mutex.html
[63] Rust Community. 2021. std::thread::spawn - Rust. https://doc.rust-lang.org/std/thread/fn.spawn.html
] Rust Community. 2021. std::vec:Vec - Rust. https://doc.rust-lang.org/std/vec/struct.Vec.html
] Rust Community. 2021. Two-phase borrows. https://rust-lang.github.io/rustc-guide/borrow_check/two_phase_
borrows.html
[66] Ryosuke Sato, Naoki Iwayama, and Naoki Kobayashi. 2019. Combining Higher-Order Model Checking with Refinement
Type Inference. In Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM@POPL 2019, Cascais, Portugal, January 14-15, 2019, Manuel V. Hermenegildo and Atsushi Igarashi (Eds.). ACM,
47-53. https://doi.org/10.1145/3294032.3294081
[67] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. 2001. A Decision Procedure for an Extensional
Theory of Arrays. In 16th Annual IEEE Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19,
2001, Proceedings. IEEE Computer Society, 29-37. https://doi.org/10.1109/LICS.2001.932480
Kohei Suenaga and Naoki Kobayashi. 2009. Fractional Ownerships for Safe Memory Deallocation. In Programming
Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings (Lecture Notes
in Computer Science, Vol. 5904), Zhenjiang Hu (Ed.). Springer, 128-143. https://doi.org/10.1007/978-3-642-10672-9_11
[69] Tachio Terauchi. 2008. Checking Race Freedom via Linear Programming. In Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and
Saman P. Amarasinghe (Eds.). ACM, 1-10. https://doi.org/10.1145/1375581.1375583
[70] John Toman, Stuart Pernsteiner, and Emina Torlak. 2015. crusT: A Bounded Verifier for Rust. In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, Myra B.
Cohen, Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 75-80. https://doi.org/10.1109/ASE.2015.77
Sebastian Ullrich. 2016. Electrolysis Reference. http://kha.github.io/electrolysis/
Sebastian Ullrich. 2016. Simple Verification of Rust Programs via Functional Purification. Master’s thesis. Karlsruhe
Institute of Technology.
[73] Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph.D. Dissertation. University of Cambridge, UK.
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
[74] Maarten H. van Emden and Robert A. Kowalski. 1976. The Semantics of Predicate Logic as a Programming Language.
J. ACM 23, 4 (1976), 733-742. https://doi.org/10.1145/321978.321991
[75] Z3 Team. 2021. The Z3 Theorem Prover. https://github.com/Z3Prover/z3

(68

=

[71
[72

—

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-44914-8_18
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://research.mozilla.org/rust/
https://doi.org/10.1007/978-3-662-49122-5_2
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doc.rust-lang.org/book/ch15-06-reference-cycles.html
https://doc.rust-lang.org/book/ch15-06-reference-cycles.html
https://rust-lang.github.io/rfcs/2025-nested-method-calls.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://www.rust-lang.org/
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/thread/fn.spawn.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://rust-lang.github.io/rustc-guide/borrow_check/two_phase_borrows.html
https://rust-lang.github.io/rustc-guide/borrow_check/two_phase_borrows.html
https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1109/LICS.2001.932480
https://doi.org/10.1007/978-3-642-10672-9_11
https://doi.org/10.1145/1375581.1375583
https://doi.org/10.1109/ASE.2015.77
http://kha.github.io/electrolysis/
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1145/321978.321991
https://github.com/Z3Prover/z3

	Abstract
	1 Introduction
	1.1 Challenges in Verifying Pointer-Manipulating Programs
	1.2 Our Approach: Leverage Rust's Guarantees on Permission

	2 Formalization of Rust: Calculus of Ownership and Reference
	2.1 Syntax
	2.2 Type System
	2.3 Operational Semantics

	3 Our Reduction from Rust Programs to CHCs
	3.1 Multi-sorted Logic for CHCs
	3.2 Our Reduction from Programs to CHCs
	3.3 Soundness and Completeness of Our Reduction
	3.4 Advanced Examples
	3.5 Discussions

	4 Proof of the Soundness and Completeness of Our Reduction
	4.1 SLDC Resolution
	4.2 Extending the Basic Extraction-Examination Judgment
	4.3 Bisimulation Between Execution and SLDC Resolution

	5 Implementation and Evaluation
	5.1 Implementation of RustHorn
	5.2 Benchmarks and Experiments
	5.3 Experimental Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

