
1

RustHorn: CHC-based Verification for Rust Programs

YUSUKE MATSUSHITA, The University of Tokyo, Japan

TAKESHI TSUKADA, Chiba University, Japan
NAOKI KOBAYASHI, The University of Tokyo, Japan

Reduction to satisfiability of constrained Horn clauses (CHCs) is a widely studied approach to automated

program verification. Current CHC-based methods, however, do not work very well for pointer-manipulating

programs, especially those with dynamic memory allocation. This paper presents a novel reduction of pointer-

manipulating Rust programs into CHCs, which clears away pointers and memory states by leveraging Rust’s

guarantees on permission. We formalize our reduction for a simplified core of Rust and prove its soundness and

completeness. We have implemented a prototype verifier for a subset of Rust and confirmed the effectiveness

of our method.

CCS Concepts: • Theory of computation→ Program verification; Type theory.

Additional Key Words and Phrases: Rust, permission, ownership, pointer, CHC, automated verification

ACM Reference Format:
Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2021. RustHorn: CHC-based Verification for Rust

Programs. ACM Trans. Program. Lang. Syst. x, x, Article 1 (January 2021), 53 pages. https://doi.org/10.1145/

3462205

1 INTRODUCTION
Reduction to constrained Horn clauses (CHCs) is a widely studied approach to automated program

verification of functional correctness [6, 24].

Technically, a CHC is a Horn clause [32] equipped with constraints, i.e., a formula of the form

𝜑 ⇐=
∧ ®𝜓 , where each of the formulas 𝜑,𝜓0, . . . ,𝜓𝑚−1 is either a constraint (e.g., 𝑎 < 𝑏 + 1) or an

atomic formula of the form 𝑓 (®𝑡), where 𝑓 is a predicate variable and ®𝑡 = 𝑡0, . . . , 𝑡𝑛−1 are terms. Each

free variable in a CHC is semantically universally quantified over some fixed sort (e.g., int, bool),
which we usually omit for brevity. To aid understanding, we extend the notion of CHCs to allow

disjunctions and existential quantifiers in the body (i.e., the right-hand side of the implication).

Any CHC in this extended form can easily be translated into a conjunction of standard CHCs. A

system of CHCs or a CHC system is a finite set of CHCs, which semantically means conjunction of

the component CHCs.

CHC solving is the process of deciding whether a given system of CHCs has a solution, i.e., a
valuation of predicate variables which makes all the CHCs in the system valid. We say that a

system of CHCs is satisfiable if it has a solution. A variety of program verification problems can be

naturally reduced to CHC solving [6, 24].

For example, let us consider the following C code that defines McCarthy’s 91 function.

Authors’ addresses: Yusuke Matsushita, The University of Tokyo, Tokyo, Japan, yskm24t@is.s.u-tokyo.ac.jp; Takeshi

Tsukada, Chiba University, Chiba, Japan, tsukada@math.s.chiba-u.ac.jp; Naoki Kobayashi, The University of Tokyo, Tokyo,

Japan, koba@is.s.u-tokyo.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0164-0925/2021/1-ART1 $15.00

https://doi.org/10.1145/3462205

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

HTTPS://ORCID.ORG/0000-0002-5208-3106
HTTPS://ORCID.ORG/0000-0002-2824-8708
HTTPS://ORCID.ORG/0000-0002-0537-060
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://orcid.org/0000-0002-5208-3106
https://orcid.org/0000-0002-2824-8708
https://orcid.org/0000-0002-2824-8708
https://orcid.org/0000-0002-0537-060
https://doi.org/10.1145/3462205

1:2 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

int mc91(int n) {

if (n > 100) return n - 10; else return mc91(mc91(n + 11));

}

Suppose we wish to verify that, for any 𝑛 ≤ 101, mc91(𝑛) returns 91 if the computation terminates,

which is a kind of (partial) functional correctness of the function mc91.1 The verified property is

equivalent to the satisfiability of the following system of CHCs (here, if 𝜑 then 𝜓 else 𝜓 ′ is sugar
for (𝜑 ∧ 𝜓) ∨ (¬𝜑 ∧ 𝜓 ′)):2 3

Mc91(𝑛, 𝑟) ⇐= if 𝑛 > 100 then 𝑟 = 𝑛 − 10 else ∃𝑟 ′. Mc91(𝑛 + 11, 𝑟 ′) ∧ Mc91(𝑟 ′, 𝑟)
𝑟 = 91 ⇐= 𝑛 ≤ 101 ∧ Mc91(𝑛, 𝑟)

The predicateMc91(𝑛, 𝑟) means that mc91(𝑛) returns 𝑟 (if it terminates). The first CHC in the system

above describes the specification of mc91 and the second one describes the required property of

mc91. We can verify the expected property by finding a solution to the system like below.

Mc91(𝑛, 𝑟) :⇐⇒ 𝑟 = 91 ∨ (𝑛 > 100 ∧ 𝑟 = 𝑛 − 10).
As observed in the example above, finding a solution to CHCs generated from a program with

loops and recursions is strongly related to finding the invariant on loops and recursions.

A CHC solver provides a common infrastructure for a variety of programming languages and

properties to be verified. There are efficient CHC solvers [13, 20, 31, 42] that can solve instances

obtained from actual programs. For example, the above CHC system onMc91 can be solved instantly
by many CHC solvers, including Spacer [42] and HoIce [13]. As a consequence, many modern

automated program verification tools [25, 27, 30, 39, 40, 66] reduce verification programs to CHCs

and use CHC solvers.

Current CHC-based methods, however, do not work very well for pointer-manipulating pro-

grams, especially those with dynamic memory allocation, as we see in §1.1. In this paper, we focus

on programs written in the Rust programming language, which provides strong guarantees on

permission or ownership of pointers. We present a novel reduction of Rust programs into CHCs,

which clears away explicit representation of pointers and memory states for smooth verification,

as we overview in §1.2.

1.1 Challenges in Verifying Pointer-Manipulating Programs
A standard CHC-based approach [25] for pointer-manipulating programs represents the memory

state as an array that maps each address to the data at the address, which is passed around as

an argument of each predicate (cf. the store-passing style). In particular, SeaHorn [25], a standard

CHC-based verification tool for C/C++, uses this array-based reduction.

For example, let us consider the following pointer-manipulating variation of the previous pro-

gram.

void mc91p(int n, int* r) {

if (n > 100) *r = n - 10;

1
To be precise, int in C usually represents a 32-bit integer. However, in this paper, we just consider unbounded integers for

simplicity.

2
Note that this system can be straightforwardly transformed into the following system of standard CHCs.

Mc91(𝑛, 𝑟) ⇐= 𝑛 > 100 ∧ 𝑟 = 𝑛 − 10

Mc91(𝑛, 𝑟) ⇐= ¬(𝑛 > 100) ∧ Mc91(𝑛 + 11, 𝑟 ′) ∧ Mc91(𝑟 ′, 𝑟)
𝑟 = 91 ⇐= 𝑛 ≤ 101 ∧ Mc91(𝑛, 𝑟)

3
Although some CHC-based verifiers use forward reduction, where the implication of each CHC goes in the direction of

program execution, in this paper we use backward reduction, where the implication goes in the opposite direction.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:3

else { int s; mc91p(n + 11, &s); mc91p(s, r); }

}

It is reduced into the following system of CHCs by the array-based approach.

Mc91p(𝑛, 𝑟, ℎ, ℎ′) ⇐= if 𝑛 > 100 then ℎ′ = ℎ{𝑟 ← 𝑛 − 10}
else ∃𝑠 ′, ℎ′′. Mc91p(𝑛 + 11, 𝑠 ′, ℎ, ℎ′′) ∧ Mc91p(ℎ′′[𝑠 ′], 𝑟 , ℎ′′, ℎ′)

ℎ′[𝑟] = 91 ⇐= 𝑛 ≤ 101 ∧ Mc91p(𝑛, 𝑟, ℎ, ℎ′)
Here, ℎ{𝑟 ← 𝑣} denotes the array made from ℎ by replacing the value at index 𝑟 with 𝑣 , and ℎ[𝑟]
denotes the value of the array ℎ at index 𝑟 . Unlike Mc91, the predicate Mc91p additionally takes

two arrays h and h′, which respectively represent the memory states before and after the call of

mc91p. The second argument 𝑟 ofMc91p, representing the pointer argument r of mc91p, is an index

for the memory-state arrays. So the assignment *r = n - 10 is modeled in the then part of the

first CHC as ℎ′ = ℎ{𝑟 ← 𝑛 − 10}, obtained by updating the 𝑟 -th element of the memory-state array.

In the else part, 𝑠 ′ represents &s. This CHC system has a simple solution

Mc91p(𝑛, 𝑟, ℎ, ℎ′) :⇐⇒ ℎ′[𝑟] = 91 ∨ (𝑛 > 100 ∧ ℎ′[𝑟] = 𝑛 − 10),
which can be found by some array-supporting CHC solvers including Spacer [42] with the support

of arrays by the underlying SMT solvers [10, 67].

However, the array-based approach has some shortcomings. Let us consider, for example, the

following innocent-looking code (here, rand() is a non-deterministic function that can return any

integer value).

bool just_rec(int* ma) {

if (rand() > 0) return true;

int a0 = *ma; int b = rand(); just_rec (&b); return (a0 == *ma);

}

Depending on the return value of rand(), just_rec(ma) either (i) immediately returns true or
(ii) recursively calls itself and checks whether the target of ma remains unchanged through the

recursive call. Since the target object of ma is not modified through the call of just_rec, the return
value a0 == *ma is always true. A tricky point is that the function can modify the memory by

newly allocating the data of b.
Suppose we wish to verify that just_rec never returns false. The array-based reduction

generates a system of CHCs like the following.

JustRec(ma, ℎ, ℎ′, 𝑟) ⇐= (ℎ′ = ℎ ∧ 𝑟 = true) ∨(
∃𝑏,mb. mb ≠ ma ∧ JustRec(mb, ℎ{mb← 𝑏}, ℎ′, _) ∧ 𝑟 = (ℎ[ma] == ℎ′[ma])

)
𝑟 = true ⇐= JustRec(ma, ℎ, ℎ′, 𝑟)

Here, we have omitted the allocation for a0 for simplicity. We use ==, !=, >=,&& to denote binary

operations that return a boolean value. An underscore ‘_’ denotes any fresh variable, which

semantically means that we don’t care the value.

Unfortunately, the CHC system above is not satisfiable, which causes a false alarm of unsafety.

This is because mb may not necessarily be completely fresh in this formulation. Although mb
is made different from the argument ma of the current call, it may coincide with ma of some

ancestor call. For example, we can derive contradiction from the CHCs above as follows; here,

[0 ↦→𝑚, 1 ↦→ 𝑛] denotes the array that maps the address 0 to𝑚 and 1 to 𝑛 (and any other address

to 0).

JustRec(0, [0 ↦→ 5, 1 ↦→ 4], [0 ↦→ 5, 1 ↦→ 4], true) (∵ immediate return)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:4 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

∴ JustRec(1, [0 ↦→ 3, 1 ↦→ 4], [0 ↦→ 5, 1 ↦→ 4], true) (∵ set 𝑏 = 5, mb = 0)
∴ JustRec(0, [0 ↦→ 3, 1 ↦→ 0], [0 ↦→ 5, 1 ↦→ 4], false) (∵ set 𝑏 = 4, mb = 1)
∴ false = true (∵ the required property)

The simplest remedy would be to model a memory allocation strategy more faithfully. For

example, one can also manage the stack pointer sp, which represents the maximum address index

that has been used for memory allocation so far.

JustRec+ (ma, ℎ, sp, ℎ′, sp′, 𝑟) ⇐= (ℎ′ = ℎ ∧ sp′ = sp ∧ 𝑟 = true) ∨
(∃𝑏. JustRec+ (sp + 1, ℎ{sp + 1← 𝑏}, sp + 1, ℎ′, sp′, _) ∧ 𝑟 = (ℎ[ma] == ℎ′[ma]))

𝑟 = true ⇐= JustRec+ (ma, ℎ, sp, ℎ′, sp′, 𝑟) ∧ ma ≤ sp

The resulting CHC system now has a solution, but it involves a quantifier.

JustRec+ (ma, ℎ, sp, ℎ′, sp′, 𝑟) :⇐⇒ 𝑟 = true ∧ ma ≤ sp ≤ sp′ ∧ ∀ 𝑖 ≤ sp. ℎ[𝑖] = ℎ′[𝑖]
Here, we need a quantified invariant ∀ 𝑖 ≤ sp. ℎ[𝑖] = ℎ′[𝑖], which states that the memory region of

{𝑖 | 𝑖 ≤ sp}, which has an unbounded size, remains unchanged.

Finding quantified invariants is known to be very difficult in general, despite active studies on it [2,

21, 28, 38, 44]. The quantified formula needed above is fairly simple, but for more realistic programs,

much more complex quantified formulas can be necessary to represent solutions. Therefore, current

array-supporting CHC solvers usually fail in finding quantified invariants for CHC outputs of the

existing method. Indeed, the Spacer CHC solver fails in solving even the above CHC system for

JustRec+.
In order to avoid this kind of difficulty, many verification tools for pointer-manipulating programs

analyze pointer usage to refine the memory model [25, 26, 39]. For example, for the verification

problem of just_rec, SeaHorn generates CHCs without arrays, by successfully analyzing that no

effective destructive update happens, although SeaHorn usually uses the array-based reduction.

Still, such analyses are usually more or less ad-hoc and can easily fail for advanced pointer uses.
4

Existing verifiers like SeaHorn target programming languages like C/C++ and Java, which do not

restrict aliasing of pointers, which causes the difficulties in program verification.

1.2 Our Approach: Leverage Rust’s Guarantees on Permission
Rust [47, 58] is a systems programming language that supports low-level efficient memory opera-

tions like C/C++ and at the same time provides high-level safety guarantees using a permission-based
type system. Despite its unique type system, Rust attains high productivity and has been widely

used in industry recently [18, 51, 53].

This paper proposes a novel approach to CHC-based automated verification of programs written

in Rust. Our method clears away explicit representation of pointers andmemory states by leveraging

Rust’s permission guarantees.

Rust’s Permission Control. Before describing our approach, we briefly explain the permission

control mechanism of Rust. Various styles of permission/ownership/capability have been introduced

to control and reason about pointers in programming language design, program analysis and

verification [7–9, 14, 33, 68, 69]. The permission control mechanism of Rust’s type system, which

we focus on, inherits a lot from existing approaches but also has some unique features.

In Rust, whenever an alias (or pointer) accesses an object, it needs permission for that. There

are two types of permission in Rust: update permission, which allows both write and read access,

and read permission, which allows only read access. At a high level, Rust’s permission control

4
We examined SeaHorn in our experiments, which are reported in §5.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:5

5 6

3

call
take_max

return
take_max

end of
borrowing

ma
a

mc

mb
b

(i) (ii) (iii) (iv)

Fig. 1. Values and aliases of 𝑎 and 𝑏 in executing inc_max(5, 3). Each row shows each alias/variable’s
timeline of the update permission. A solid line expresses possession of the update permission. A bullet shows
the time point when the borrowed update permission is given back. For example, b has the permission to
update its integer object during (i) and (iv), but temporarily loses it during (ii) and (iii) because the pointer mb,
created upon the function call of take_max(&a, &b), borrows b until the end of (iii).

guarantees that whenever an alias can read from an object (with update or read permission) any

other alias cannot write to the object (i.e., does not have update permission). In this paper, we

mainly focus only on update permission. For understanding our approach, it suffices to keep in

mind that at most one alias can have update permission to each object.

For flexible permission control, Rust supports an operation called borrowing. In short, it is a

temporary transfer of permission to a newly created pointer called a reference. A reference that

borrows update or read permission is called a mutable or immutable reference, respectively.5 When

borrowing is performed, the deadline is determined. The reference can use its permission only until

this deadline.

As a simple example of Rust’s borrowing, let us consider the program below, which is also an

interesting target of verification. It is written in C to aid understanding for a wide range of readers;

the version in Rust is presented later in this subsection.

1 int* take_max(int* ma, int* mb) {

2 if (*ma >= *mb) return ma; else return mb;

3 }

4 bool inc_max(int a, int b) {

5 { int* mc = take_max (&a, &b); // borrow a and b

6 *mc += 1; } // deadline of both borrows

7 return (a != b);

8 }

Figure 1 illustrates which alias/variable has the permission to update the integer objects of a and b
during the execution of inc_max(5, 3). In inc_max, on line 5, the permission to update the integer

object of a is borrowed by a newly taken pointer, or mutable reference, &a, and we similarly perform

borrowing on b. For both borrows, the deadline is set to the end of the inner block (} in line 6).

Until the deadline, the two references have the update permission on the integer objects whereas

the lenders a and b temporarily lose all the permission. Now the function take_max is called with

5
This terminology is standard but a bit confusing, since the word ‘mutable/immutable’ describes the property of the target

object of the reference, rather than the property of the reference itself. Another terminology is ‘unique/shared reference’,

which can be less confusing.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:6 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

arguments &a and &b. The function take_max takes two integer mutable references ma and mb and

returns the one with the larger target value. An interesting point is that the returned address is

determined by a dynamic condition. After the call, we get a mutable reference mc, which points to

the integer object of either a or b. The reference mc owns the update permission until the end of the

inner block; this property is inherited from ma and mb. In line 6, mc increments the integer object by

*mc += 1. Just after the deadline (in line 7), a and b retrieve the update permission to their integer

objects and thus can read from them. Here, we check if a != b holds. The property we want to

verify on this program is that inc_max returns true for any inputs a and b. It holds because, by
incrementing the larger side of a and b, the difference between a and b increases by one.

Rust achieves the permission control described above using an elaborate type system. In particular,

Rust uses the notion of lifetime to statically manage the deadline of each borrow. The type system

of Rust will be discussed more in depth in §2.

The Key Idea of Our Reduction. Although Rust’s permission-based type system cleverly ensures

memory safety, we wish to verify a more fine-grained property, functional correctness. For smooth

verification, we leverage Rust’s permission guarantees to reduce Rust programs into CHCs without

explicit representation of pointers and memory states. A naive approach would be to model each

pointer as the value of its target object. However, if we do so, the lender of a mutable borrow do not

know the value of the borrowed object just after the deadline. For example, if we took this naive

approach for the take_max/inc_max program, we would get CHCs of the following form.

TakeMax (𝑎, 𝑏, 𝑟) ⇐= if 𝑎 ≥ 𝑏 then 𝑟 = 𝑎 else 𝑟 = 𝑏

IncMax (𝑎, 𝑏, 𝑟) ⇐= ∃𝑐, 𝑐 ′. TakeMax (𝑎, 𝑏, 𝑐) ∧ 𝑐 ′ = 𝑐 + 1 ∧ 𝑟 = (? != ?)
𝑟 = true ⇐= IncMax (𝑎, 𝑏, 𝑟).

The problem is, we do not know how to represent the values of a and b after the deadline of the
borrows. There is no way to fill the parts ? in the second CHC. So we need a better way to model

mutable references.

The key idea of our method is to represent a mutable reference ma as a pair ⟨𝑎, 𝑎◦⟩ consisting of

the values of the target object of *ma at two time points — the current value 𝑎 and the value at the
deadline of the borrow 𝑎◦. The trick is that we access some future information 𝑎◦, which is related to

the notion of prophecy variable [1, 36, 73].
For example, our approach reduces the previous verification problem to the following system of

CHCs.

TakeMax (⟨𝑎, 𝑎◦⟩, ⟨𝑏,𝑏◦⟩, 𝑟) ⇐= if 𝑎 ≥ 𝑏

then 𝑏◦ = 𝑏 ∧ 𝑟 = ⟨𝑎, 𝑎◦⟩ else 𝑎◦ = 𝑎 ∧ 𝑟 = ⟨𝑏,𝑏◦⟩
IncMax (𝑎, 𝑏, 𝑟) ⇐= ∃𝑎◦, 𝑏◦, 𝑐, 𝑐◦, 𝑐 ′. TakeMax (⟨𝑎, 𝑎◦⟩, ⟨𝑏, 𝑏◦⟩, ⟨𝑐, 𝑐◦⟩)

∧ 𝑐 ′ = 𝑐 + 1 ∧ 𝑐◦ = 𝑐 ′ ∧ 𝑟 = (𝑎◦ != 𝑏◦)
𝑟 = true ⇐= IncMax (𝑎, 𝑏, 𝑟).

The mutable reference ma is now represented as ⟨𝑎, 𝑎◦⟩, and similarly for mb and mc. In the then part

of the first CHC, we have the constraint 𝑏◦ = 𝑏, because now we throw away mb and thus the final

target value 𝑏◦ of mb is now set to the current target value 𝑏. The constraint 𝑟 = ⟨𝑎, 𝑎◦⟩ corresponds
to return ma in the program. The same reasoning applies to the else part of the first CHC. In the

second CHC, the mutable reference mc is modeled as the pair ⟨𝑐, 𝑐◦⟩. After incrementing the value

of mc (expressed by 𝑐 ′ = 𝑐 + 1), the borrowed update permission of mc is released, which is expressed

by 𝑐◦ = 𝑐 ′. Now, the final check a != b is simply modeled as 𝑎◦ != 𝑏◦, because the new values of a
and b are available as 𝑎◦ and 𝑏◦. The important point is that both the values 𝑎◦ and 𝑏◦ have been

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:7

determined at this point; one is determined in TakeMax (by either 𝑏◦ = 𝑏 or 𝑎◦ = 𝑎), and the other

is determined in IncMax by 𝑐◦ = 𝑐 ′. For example, in evaluating inc_max(5, 3) (as in Figure 1), the

pointers ma and mb passed to take_max are modeled as ⟨5, 6⟩ and ⟨3, 3⟩ respectively. Although the

verified program uses pointer manipulation, the system of CHCs obtained by our reduction is free

of complex features like arrays, and thus can easily be solved by many CHC solvers.

Also, our reduction turns the verification problem on just_rec discussed in §1.1 into the

following system of pretty simple CHCs.

JustRec(⟨𝑎, 𝑎◦⟩, 𝑟) ⇐= (𝑎◦ = 𝑎 ∧ 𝑟 = true) ∨
(∃𝑏,𝑏◦. JustRec(⟨𝑏, 𝑏◦⟩, _) ∧ 𝑎◦ = 𝑎 ∧ 𝑟 = (𝑎 == 𝑎◦))

𝑟 = true ⇐= JustRec(⟨𝑎, 𝑎◦⟩, 𝑟).
This CHC system has a very simple solution JustRec(ma, 𝑟) :⇐⇒ 𝑟 = true, which can easily be

found by standard CHC solvers. Remarkably, unlike the array-based reduction discussed in §1.1, the

CHC system output by our reduction is free of arrays and its solution does not require quantifiers.

Our reduction can be flexibly applied to various features of Rust, such as reborrowing, nested

references, and recursive data types. Our approach can reduce a substantial subset of Rust to CHCs

in a fairly uniform manner. In §3.4, we present some advanced examples of our verification method.

Example 5 presented there features a Rust program that handles a mutable reference to a singly

linked list, where our reduction experimentally succeeded in automated verification of a fairly

challenging property.

Formalizing Our Reduction. Later in §2 and §3, we formalize (a subset of) Rust and our reduction.

Here we provide an informal overview of the formalization.

As a running example, we reuse the take_max/inc_max program discussed earlier. In Rust, the

program is written as follows. To aid understanding, we added some ghost annotations in cyan.

fn take_max <'a>(ma: &'a mut i32 , mb: &'a mut i32)-> &'a mut i32 {

if *ma >= *mb { ma } else { mb }

}

fn inc_max(mut a: i32 , mut b: i32) -> bool {

{ let mc = take_max <'l>(&'l mut a, &'l mut b); *mc += 1; }('l)

a != b

}

The type i32 represents a (32-bit) integer. The type &'a mut i32 represents a mutable reference
to an integer that is governed under the lifetime 'a, which represents the deadline of a borrow.

6

In Rust, the permission of each pointer is expressed in the type. The function take_max takes two

integer mutable references of some lifetime 'a and returns an integer mutable reference of the

lifetime 'a (the function is parametrized over 'a). In the function inc_max, we perform borrowing.

The time point at the end of the inner scope is named 'l here. We mutably borrow the integer

variables a and b under this lifetime 'l, and pass them to the function take_max. The output mc
has the type &'l mut i32.7

For formalization, we use a normalized program like below, where each function body is de-

composed into a set of simple instructions labeled by program points. This is also similar to an

intermediate representation used by the Rust compiler, which is called MIR (mid-level intermediate

6
In the standard terminology of Rust, a lifetime often means a time range where a borrow is active. In this paper, however,

we use the term lifetime to refer to the time point when a borrow ends.

7
In Rust, we do not need to (and actually cannot) write annotations on local lifetimes, like 'l used above. The Rust compiler

performs a very clever inference on local lifetimes.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:8 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

representation) [54]. This representation is convenient for the formalization of the type system and

the reduction to CHCs.

fn take_max <'a>(ma: &'a mut i32 , mb: &'a mut i32)-> &'a mut i32 {

if T0: *ma >= *mb { T1: ma } else { T2: mb }

}

fn inc_max(mut a: i32 , mut b: i32) -> bool {

{ I0: let ma = &'l mut a; I1: let mb = &'l mut b;

I2: let mc = take_max <'l>(ma, mb); I3: *mc += 1; I4: }('l)

I5: a != b

}

In the function take_max, we jump from T0 to either T1 or T2 depending on the condition *ma
>= *mb. In the function inc_max, the function call let mc = take_max(&mut a, &mut b); is

decomposed into three instructions, namely those at I0, I1 and I2. For convenience of explanation,
we set a program point I4 at the end of the inner scope.

Now we describe how Rust’s type system works. The type system of Rust gives some permission
to a pointer, which changes in the process of execution. As a result, the type system is flow-sensitive
and assigns a different type context to each program point. For example, the following is the

function inc_max with the type context assigned to each program point.

fn inc_max(mut a: i32 , mut b: i32) -> bool {

{ I0: {a, b: i32} let ma = &'l mut a;

I1: {ma: &'l mut i32; a:['l] i32; b: i32} let mb = &'l mut b;

I2: {ma, mb: &'l mut i32; a, b:['l] i32}

let mc = take_max <'l>(ma, mb);

I3: {mc: &'l mut i32; a, b:['l] i32} *mc += 1;

I4: {a, b:['l] i32} }('l)

I5: {a, b: i32} a != b

}

The variable a temporarily loses the permission on its integer object until the deadline of the borrow

'l, which we say that a is frozen under the lifetime 'l. A similar thing applies to b. The type

context has the information about which variables are frozen under which lifetime. (In the notation

used above, a:['l] i32 means that a is typed i32 but frozen under 'l.) When we move from I4
to I5, the lifetime 'l comes and thus the variables a and b retrieve the permission.

Now we sketch the formalization of our reduction to CHCs. Our reduction of Rust programs

to CHCs is type-directed, in that it leverages the type assigned to each variable by Rust’s type

system to decide the model of the variable. For example, a reference of the type &mut i32 like ma is
modeled as a pair of the current and final integer values, whereas an integer variable like a, which
is essentially a pointer to an integer object, is modeled simply as its target value. In our formalized

reduction, for each program point, we introduce a predicate variable and generate a CHC that

models the instruction at the point. For example, the function take_max is reduced to the following
CHCs, where three predicate variables 𝑇0, 𝑇1 and 𝑇2 represent the program points T0, T1 and T2.

𝑇0 (⟨𝑎, 𝑎◦⟩, ⟨𝑏,𝑏◦⟩, 𝑟) ⇐= if 𝑎 ≥ 𝑏 then 𝑇1 (⟨𝑎, 𝑎◦⟩, ⟨𝑏, 𝑏◦⟩, 𝑟) else 𝑇2 (⟨𝑎, 𝑎◦⟩, ⟨𝑏, 𝑏◦⟩, 𝑟)
𝑇1 (ma, ⟨𝑏, 𝑏◦⟩, 𝑟) ⇐= 𝑏◦ = 𝑏 ∧ 𝑟 = ma

𝑇2 (⟨𝑎, 𝑎◦⟩,mb, 𝑟) ⇐= 𝑎◦ = 𝑎 ∧ 𝑟 = mb

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:9

The predicate variable for each program point models the relation between the values of the local

variables in that point and the return value of the function the point belongs to. For example, the

predicate variable 𝑇1 models the relation between the values of ma and mb (ma, ⟨𝑏, 𝑏◦⟩) and the

return value of take_max (𝑟). At T1, we release a mutable reference mb, which is modeled as ⟨𝑏,𝑏◦⟩.
In order to ensure that what we took as the final value 𝑏◦ agrees with the actual final value, we add

the constraint 𝑏◦ = 𝑏 here. The function inc_max is reduced to the following CHCs.

𝐼0 (𝑎, 𝑏, 𝑟) ⇐= 𝐼1 (⟨𝑎, 𝑎◦⟩, 𝑎◦, 𝑏, 𝑟)
𝐼1 (ma, 𝑎, 𝑏, 𝑟) ⇐= 𝐼2 (ma, ⟨𝑏,𝑏◦⟩, 𝑎, 𝑏◦, 𝑟)
𝐼2 (ma,mb, 𝑎, 𝑏, 𝑟) ⇐= 𝑇0 (ma,mb,mc) ∧ 𝐼3 (mc, 𝑎, 𝑏, 𝑟)
𝐼3 (⟨𝑐, 𝑐◦⟩, 𝑎, 𝑏, 𝑟) ⇐= 𝐼4 (⟨𝑐 + 1, 𝑐◦⟩, 𝑎, 𝑏, 𝑟)
𝐼4 (⟨𝑐, 𝑐◦⟩, 𝑎, 𝑏, 𝑟) ⇐= 𝑐◦ = 𝑐 ∧ 𝐼5 (𝑎, 𝑏, 𝑟)
𝐼5 (𝑎, 𝑏, 𝑟) ⇐= 𝑟 = (𝑎 != 𝑏)

At I0, we borrow a and obtain a mutable reference ma. Here, we take a fresh variable 𝑎◦ for the
final target value, i.e., the value of the borrowed integer object at the deadline of the borrow. We

model the mutable reference ma as ⟨𝑎, 𝑎◦⟩. Now we can simply model a as 𝑎◦ here, because the type
system ensures that a cannot be accessed, or is frozen, until the deadline of the borrow 'l. At I3,
we perform a destructive update, incrementing the target integer of mc. Here, letting ⟨𝑐, 𝑐◦⟩ be the
value of mc at I3, we set mc’s value at I4 to ⟨𝑐 + 1, 𝑐◦⟩. At I5, we can access a and b now because the

lifetime 'l is over. We can simply use the first argument 𝑎 of I_5 for the value of a here, because it

was set to the final target value 𝑎◦ when we performed the borrow at I0.

Contributions. We have developed a novel method of reducing Rust programs to CHCs that

leverages permission guarantees provided by Rust’s type system, as introduced above. We have

formalized our reduction of Rust programs to CHCs on a newly formalized core language of Rust and

proved the soundness and completeness of this reduction. We have also implemented a prototype

automated verifier for the core of Rust based on the idea and confirmed the effectiveness of our

approach through preliminary experiments. The core language we support includes particularly

reborrow and recursive types. Our approach has succeeded in automated verification of some

non-trivial properties of programs with destructive update via pointers on recursive data types like

lists and trees.

This article is a revised and extended version of the same-titled paper published in the proceedings

of ESOP 2020 [49]. Compared with the conference version, in this article we have augmented

explanations, polished the formalization, added the proof of the main theorem, and expanded the

experiments.

Structure of the Rest of the Paper. In §2, we provide a formalized core of Rust. In §3, we formalize

our reduction from programs to CHCs and outline the proof of its soundness and completeness; we

also introduce advanced examples on our reduction and discuss extension of our method. In §4,

we give the complete proof of the soundness and completeness of our reduction. In §5, we report

on the implementation and the experimental results. In §6 we discuss related work and in §7 we

conclude the paper.

2 FORMALIZATION OF RUST: CALCULUS OF OWNERSHIP AND REFERENCE
Now we present our formalization of the core of Rust, which we call Calculus of Ownership and
Reference (COR). It is a typed procedural calculus with a lifetime-based permission control system

in the style of Rust. Its design is inspired by 𝜆Rust [34].

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:10 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

The calculus is carefully designed to simplify our reduction of Rust programs into CHCs (pre-

sented in §3) and the proof of its soundness and completeness (given in §4). For simplicity, we

impose some restrictions in this calculus. Lifetime information, type information and data releases

should be explicitly annotated in the program. Each function body should be written as a set of

primitive commands connected with goto jumps. Also, each variable should be a pointer. Still, the

calculus covers various features of Rust, as we see later.

In §2.1 we introduce the syntax of this calculus. Then we present the type system in §2.2 and the

operational semantics in §2.3.

Notation. An arrow above a variable denotes a sequence (e.g., ®𝑥 = 𝑥0, . . . , 𝑥𝑛−1). It can be used in a

composite form; for example,

−−→
𝑥 :𝑇 denotes 𝑥0:𝑇0, . . . , 𝑥𝑛−1:𝑇𝑛−1. The empty sequence can be denoted

by 𝜖 . Also, the length of a sequence can be specified with a superscript (e.g., ®𝑥𝑁 = 𝑥0, . . . , 𝑥𝑁−1).

We sometimes omit commas used as separators in a sequence.

The set operation 𝐴 + 𝐵 (or more generally

∑
𝜆 𝐴𝜆) denotes the disjoint union, i.e., the union

𝐴 ∪ 𝐵 (or

⋃
𝜆 𝐴𝜆) defined only if the arguments are disjoint. The set operation 𝐴 − 𝐵 denotes the

proper set difference, i.e., the set difference 𝐴 \ 𝐵 that is defined only if 𝐴 ⊇ 𝐵.

2.1 Syntax
The syntax of this calculus is as follows.

(program) 𝛱 ::= ®𝐹 (function definitions)

(function definition) 𝐹 ::= fn 𝑓 𝛴 { −−→𝐿: 𝑆 } (name, signature, and labeled statements)

(function signature) 𝛴 ::= ⟨ ®𝛼 | −−−−−→𝛼𝑎 ≤𝛼𝑏⟩ (
−−→
𝑥 :𝑇) → 𝑈 (lifetime params. and constraints, inputs, and return type)

(statement) 𝑆 ::= 𝐼 ; goto𝐿 (perform 𝐼 and jump to 𝐿) | return𝑥 (return from a function with 𝑥)

| match ∗𝑥 { inj
0
∗𝑦0→goto𝐿0, inj1∗𝑦1→goto𝐿1 } (conditionally branch by the tag)

(instruction) 𝐼 ::= let𝑦 = mutbor𝛼 𝑥 (mutably (re)borrow) | drop𝑥 (release a variable and its target object)

| immut𝑥 (weaken a mutable reference immutable) | swap(∗𝑥, ∗𝑦) (swap target objects)

| let ∗𝑦 = 𝑥 (create a pointer) | let𝑦 = ∗𝑥 (dereference a pointer)

| let ∗𝑦 = copy ∗𝑥 (copy the target object) | 𝑥 as 𝑇 (re-type a variable)

| let𝑦 = 𝑓 ⟨ ®𝛼⟩(®𝑥) (call a function) | intro𝛼 (introduce a lifetime var.)

| now𝛼 (eliminate a lifetime var.) | 𝛼 ≤ 𝛽 (promise ordering on lifetime vars.)

| let ∗𝑦 = const (get a constant) | let ∗𝑦 = ∗𝑥 op ∗𝑥 ′ (get the integer operation result)

| let ∗𝑦 = rand() (get a random integer) | let ∗𝑦 = inj𝑇0+𝑇1

𝑖
∗𝑥 (create a variant)

| let ∗𝑦 = (∗𝑥, ∗𝑥 ′) (create a pair) | let (∗𝑦, ∗𝑦 ′) = ∗𝑥 (destruct a pair)

(type) 𝑇,𝑈 ::= 𝑃 𝑇 (pointer type) | 𝑇 +𝑇 ′ (variant type) | 𝑇 ×𝑇 ′ (pair type) |
| 𝑋 (type variable) | 𝜇𝑋 .𝑇 (equi-recursive type) | int (integer type) | unit (unit type)

(pointer kind) 𝑃 ::= own (owning pointer) | 𝑅𝛼 (reference)

(reference kind) 𝑅 ::= mut (mutable) | immut (immutable)

𝛼, 𝛽,𝛾 (lifetime var.) 𝑋,𝑌 (type var.) 𝑥,𝑦 (data var.) 𝑓 , 𝑔 (function name) 𝐿 (label)

(constant) const ::= 𝑛 (integer) | () (unit) bool := unit + unit

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:11

(integer operator) op ::= opint | opbool opint ::= + | − | · · · opbool ::= >= | == | != | · · ·

We also use a meta-variable 𝑃 for a non-mutable-reference pointer kind, i.e., own or immut𝛼 .

Program, Function and Statement. A program Π is a sequence of function definitions ®𝐹 . For
simplicity, here we do not specify the entry function (i.e., the main function in Rust and C/C++).

A function definition 𝐹 consists of the name 𝑓 , the signature 𝛴 and the body

−−→
𝐿: 𝑆 . A function is

parametrized over constrained lifetime parameters, but for simplicity our calculus does not support

polymorphism over types, like 𝜆Rust [34]. For simplicity, the input/output types of a function are

restricted to pointer types, i.e., types of the form 𝑃 𝑇 . In a function signature, we simplify ⟨ ®𝛼 |⟩ to
⟨ ®𝛼⟩ and omit ⟨|⟩.
A label 𝐿 is a program point that contains a statement 𝑆 , which performs some simple command

and jumps to some label or return from the function. Later, this style with labels and unstructured

control flow simplifies the formalization of our reduction in §3.2. We require that the function body

contains the entry point label entry. Also, we require that every label in the function is syntactically

reachable from the label entry (i.e., reachable in the directed graph whose vertices are the labels

and whose edges are goto jumps); this restriction is for uniqueness of typing, as we see in §2.2.

There are three types of statements. A statement 𝐼 ; goto𝐿 performs the instruction 𝐼 and jump

to the label 𝐿. A statement return𝑥 returns from the function with the variable 𝑥 . A statement

match ∗𝑥 { −−−−−−−−−−−−−−→inj ∗𝑦 → goto𝐿 } conditionally branches to a label 𝐿𝑖 by the tag of the variant ∗𝑥 and

take a pointer 𝑦𝑖 to the body of the variant.

Instruction. An instruction 𝐼 performs a simple command. We have various types of instructions,

whose meanings are briefly explained above.

For most kinds of instructions, the inputs are consumed. Only for the copy instruction let ∗𝑦 =

copy ∗𝑥 and the operation instruction let ∗𝑦 = ∗𝑥0 op ∗𝑥1, the inputs are not consumed.

The swap instruction swap(∗𝑥, ∗𝑦) takes pointers 𝑥 and 𝑦 and swaps the target objects of 𝑥 and

𝑦. An unusual design of this calculus is that it uses swap instead of assignment for the primitive

for destructive update. Assignment is a bit trickier than swap in terms of resource management,

because when some object is assigned to a variable, the old object of the variable is implicitly

released. We can still express assignment combining a number of instructions. For example, if we

have a pointer px to an integer and wish to assign its integer value to a mutable reference my, we
can do that by the following sequential execution: let ∗px ′ = copy ∗px; swap(∗my, ∗px ′); drop px ′.

Pointer, Borrow and Lifetime. A pointer can be either an owning pointer or a reference. An owning
pointer models Rust’s box pointer Box<T>. It can freely update, read and release its target object.

As informally explained in §1.2, a mutable or immutable reference is a pointer that targets an object

owned by some owning pointer and has the update or read permission to the object under until

some lifetime. We use lifetime variables 𝛼, 𝛽,𝛾 to denote lifetimes. A lifetime variable can be either

(i) a lifetime parameter taken by a function or (ii) a local lifetime introduced within a function.

By the instruction let𝑦 = mutbor𝛼 𝑥 , we mutably borrow 𝑥 under the lifetime 𝛼 and obtain a

mutable reference𝑦. Here, 𝑥 can be either an (unfrozen) owning pointer or mutable reference (when

𝑥 is a mutable reference, this operation is called a reborrow). Also, by the instruction immut𝑥 , we
can weaken a mutable reference 𝑥 into an immutable reference.

We have three lifetime-related ghost instructions. The instruction intro𝛼 introduces a local

lifetime 𝛼 . The instruction now𝛼 sets a local lifetime 𝛼 to the current moment and eliminates it.

The instruction 𝛼 ≤ 𝛽 promises that now𝛼 comes earlier than now 𝛽 in the process of computation.

We can subdivide pointers in various ways. The instruction let (∗𝑦, ∗𝑦 ′) = ∗𝑥 splits a pointer 𝑥

to a pair into pointers 𝑦,𝑦 ′ to each element of the pair. The statement match ∗𝑥 { −−−−−−−−−−−−−−→inj ∗𝑦 → goto𝐿 }

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:12 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

turns a pointer 𝑥 to a variant into a pointer 𝑦𝑖 to the body object of the variant, discarding the

permission to the tag of the variant. The instruction let𝑦 = ∗𝑥 takes a pointer to a pointer 𝑥

and returns a pointer 𝑦 to the inner target object of 𝑥 , which can also be regarded as a pointer

subdivision.

Type. In the calculus, various forms of types 𝑇 are supported, whose meanings are briefly ex-

plained above. A pointer type has the form 𝑃 𝑇 , where 𝑃 is called the pointer kind. The type of an
owning pointer is own𝑇 , which corresponds to Rust’s Box<T> (or simply T). The types of a mutable

reference and an immutable reference are mut𝛼 𝑇 and immut𝛼 𝑇 , which correspond to &'a mut T
and &'a T in Rust.

We say that a type is complete if it satisfies the following: every occurrence of a type variable

in 𝑇 should be bound by the recursive binder 𝜇 and guarded by a pointer constructor 𝑃 inside

the binder. A type 𝑇 that appears in a program (not just as a substructure of some type) should

be complete. For example, the singly linked integer list type 𝜇𝑋 . unit + int × own𝑋 is complete,

whereas 𝜇𝑋 . unit + int × 𝑋 (without own) is not complete.

Remark 1 (Expressivity and Limitations). Although older versions of Rust determined lifetimes just

by lexical scopes, the current versions of Rust have a mechanism that overcomes that restriction,

which is called non-lexical lifetime [57]. The Rust borrow checker uses a flow sensitive analysis to

determine the lifetimes of references and allows many flexible borrow patterns. Our calculus can

the core behavior of non-lexical lifetimes. The point is that, even under non-lexical lifetimes, the

set of program points where a borrow is active forms a continuous range.
8

A major limitation of our calculus is that it does not support unsafe code blocks and also lacks

type traits and closures. How to overcome them is discussed later in §3.5. Another limitation of COR

is that, unlike Rust and 𝜆Rust, we do not have a primitive for directly modifying or borrowing a

substructure of a variable (e.g., the first element of a pair). Still, combining some operations, we

can modify or borrow a substructure by borrowing the whole variable first and then subdividing

pointers (e.g., let (∗𝑦, ∗𝑦 ′) = ∗𝑥). Nevertheless, this borrow-and-subdivide strategy cannot fully

support some advanced borrow patterns like get_default in ‘Problem Case #3’ of [57].

Example 1 (Program). The Rust programwith take_max and inc_max presented in §1.2 ismodeled

as follows in this calculus.

fn take-max ⟨𝛼⟩ (ma:mut𝛼 int, mb:mut𝛼 int) → mut𝛼 int {
entry: let ∗ord = ∗ma >= ∗mb;

L1 match ∗ord { inj
1
∗ou→ goto L2, inj

0
∗ou→ goto L5 }

L2: drop ou;
L3 dropmb;

L4 returnma L5: drop ou;
L6 dropma;

L7 returnmb
}

fn inc-max(oa: own int, ob: own int) → own bool {
entry: intro𝛼 ;

L1 letma = mutbor𝛼 oa;
L2 letmb = mutbor𝛼 ob;

L3

letmc = take-max⟨𝛼⟩(𝑚𝑎,𝑚𝑏);L4

let ∗o1 = 1;
L5 let ∗oc′ = ∗mc + ∗o1;

L6 drop o1;
L7 swap(mc, oc′);L8 drop oc′;L9 dropmc;L10

now𝛼 ;
L11 let ∗or = ∗oa != ∗ob;

L12 drop oa;
L13 drop ob;

L14 return or
}

The first letter of a variable name indicates the pointer kind (𝑜 for an owning pointer and𝑚 for a

mutable reference). We swapped the two branches of the match statement in take-max to make

8
Strictly speaking, this property is broken by recently adopted (implicit) two-phase borrows [56, 65]. However, by shallow

syntactical reordering, a program with two-phase borrows can be fit into usual borrow patterns.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:13

the order the same as if-else branching. We use shorthand for sequential execution; for example,

𝐿0: 𝐼0;
𝐿1 𝐼1; goto𝐿2 denotes for two labeled statements 𝐿0: 𝐼0; goto𝐿1 and 𝐿1: 𝐼1; goto𝐿2.

Here we have more program points than in the informal description of §1.2. Each time we release

a variable 𝑥 we need an instruction drop𝑥 , which simplifies formalization. Also, we use ghost

instructions intro𝛼 and now𝛼 to manage lifetimes.

2.2 Type System
The type system assigns a whole context (Γ,A) to each label (program point) of each function in

a program. A whole context is a pair of a data context Γ and a lifetime context A. A data context

manages the information on data variables and a lifetime context manages the information on

lifetime variables. These notions are explained in more detail soon.

Context. A data context Γ is a finite set of items of the form 𝑥 :
a𝑇 , where 𝑇 should be a complete

pointer type and a (which we call activeness) is of the form either ‘actv’ (active; i.e., the permission is

not borrowed) or ‘†𝛼 ’ (frozen until lifetime 𝛼 ; i.e., the permission is borrowed until 𝛼). For simplicity,

we do not consider the situation where only the write permission of a variable is frozen. When a

variable 𝑥 is tagged 𝑥 :
†𝛼
, we cannot read or update the target object of 𝑥 through 𝑥 . We usually

abbreviate 𝑥 :
actv𝑇 to 𝑥 :𝑇 . A data context should not contain two items on the same variable.

A lifetime context A = (𝐴, 𝑅) is a finite preordered set of lifetime variables, where 𝐴 is the

underlying set and 𝑅 is the preorder. We write |A| and ≤A to refer to 𝐴 and 𝑅.

Finally, a whole context (Γ,A) is a pair of a data context Γ and a lifetime context A such that

every lifetime variable in Γ is contained in A.

Auxiliary Judgments. The subtyping judgment is of the form A,Ξ ⊢ 𝑇 ≤ 𝑈 , where Ξ is a finite

set of assumptions of the form 𝑋 ≤ 𝑌 , which are used for coinductive reasoning on recursive types.

The common subtyping judgment A ⊢ 𝑇 ≤ 𝑈 is defined as A,∅ ⊢ 𝑇 ≤ 𝑈 , where we have no

assumptions. The full subtyping judgment A,Ξ ⊢ 𝑇 ≤ 𝑈 is defined by the following rules.

𝑋 ≤ 𝑌 ∈ Ξ
A,Ξ ⊢ 𝑋 ≤ 𝑌

A,Ξ ⊢ 𝑇 ≤ 𝑈

A,Ξ ⊢ 𝑃 𝑇 ≤ 𝑃 𝑈

A,Ξ ⊢ 𝑇 ≤ 𝑈 , 𝑈 ≤ 𝑇
A,Ξ ⊢ mut𝛼 𝑇 ≤ mut𝛼 𝑈

𝛽 ≤A 𝛼

A,Ξ ⊢ 𝑅𝛼 𝑇 ≤ 𝑅𝛽 𝑇

A,Ξ ⊢ 𝑇0 ≤ 𝑈0, 𝑇1 ≤ 𝑈1

A,Ξ ⊢ 𝑇0 +𝑇1 ≤ 𝑈0 +𝑈1

A,Ξ ⊢ 𝑇0 ≤ 𝑈0, 𝑇1 ≤ 𝑈1

A,Ξ ⊢ 𝑇0 ×𝑇1 ≤ 𝑈0 ×𝑈1

A,Ξ ⊢ 𝜇𝑋 .𝑇 ≤ 𝑇 [𝜇𝑋 .𝑇 /𝑋] A,Ξ ⊢ 𝑇 [𝜇𝑋 .𝑇 /𝑋] ≤ 𝜇𝑋 .𝑇

𝑋 ′, 𝑌 ′ are fresh in Ξ Ξ + {𝑋 ′≤𝑌 ′} ⊢ 𝑇 [𝑋 ′/𝑋] ≤ 𝑈 [𝑌 ′/𝑌]
A,Ξ ⊢ 𝜇𝑋 .𝑇 ≤ 𝜇𝑌 .𝑈

(Subtype-Rec-Covar)

𝑋 ′, 𝑌 ′ are fresh in Ξ Ξ + {𝑋 ′≤𝑌 ′, 𝑌 ′≤𝑋 ′} ⊢ 𝑇 [𝑋 ′/𝑋] ≤ 𝑈 [𝑌 ′/𝑌], 𝑈 [𝑌 ′/𝑌] ≤ 𝑇 [𝑋 ′/𝑋]
A,Ξ ⊢ 𝜇𝑋 .𝑇 ≤ 𝜇𝑌 .𝑈

(Subtype-Rec-Invar)

A,Ξ ⊢ 𝑇 ≤ 𝑇 A,Ξ ⊢ 𝑇 ≤ 𝑇 ′, 𝑇 ′ ≤ 𝑇 ′′
A,Ξ ⊢ 𝑇 ≤ 𝑇 ′′

We have two rules for judging 𝜇𝑋 .𝑇 ≤ 𝜇𝑌 .𝑈 , Subtype-Rec-Covar and Subtype-Rec-Invar, which

admit coinductive reasoning of a simple form. The former Subtype-Rec-Covar is provided for

the case where 𝑋 appears covariantly in 𝑇 . For example, the judgment 𝜇𝑋 . unit + immut𝛼 𝑋 ≤
𝜇𝑌 . unit + immut𝛽 𝑌 holds when 𝛼 ≤A 𝛽 holds. The latter Subtype-Rec-Invar is provided for the

case where 𝑋 appears invariantly in 𝑇 (e.g., 𝑋 is under a mutable reference). For example, the

judgment 𝜇𝑋 . unit +mut𝛼 𝑋 ≤ 𝜇𝑌 . unit +mut𝛽 𝑌 holds when both 𝛼 ≤A 𝛽 and 𝛽 ≤A 𝛼 hold.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:14 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

We also introduce the following copyability judgment 𝑇 : copy.

int: copy unit: copy immut𝛼 𝑇 : copy
𝑇 : copy

𝜇𝑋 .𝑇 : copy
𝑇,𝑇 ′: copy
𝑇 +𝑇 ′: copy

𝑇,𝑇 ′: copy
𝑇 ×𝑇 ′: copy

In short, 𝑇 : copy means that the owning pointer own and mutable reference mut𝛽 constructors do

not occur in 𝑇 except under the immutable reference constructor immut𝛼 .

Typing Judgment for Instructions. The instruction typing judgment is of the form 𝛱, 𝑓 , (Γ,A) ⊢ 𝐼 :

(Γ′,A′). It means that, by running the instruction 𝐼 in (𝛱, 𝑓) under the whole context (Γ,A), a
renewed whole context (Γ′,A′) is obtained. Below are the complete rules for the judgment. For

brevity, we omit 𝛱 and 𝑓 here (except in 𝐴ex 𝑓) because they are always fixed. Also, we additionally

require that every variable can be used at most once in each instruction.

𝐴ex 𝑓 : the set of lifetime parameters of 𝑓

𝑃 = own,mut𝛽 𝛼 ∉ 𝐴ex 𝑓 for each lifetime variable 𝛾 in 𝑃 𝑇, 𝛼 ≤A 𝛾

(Γ + {𝑥 : 𝑃 𝑇 }, A) ⊢ let𝑦 = mutbor𝛼 𝑥 : (Γ + {𝑦:mut𝛼 𝑇, 𝑥 :
†𝛼 𝑃 𝑇 }, A)

(Type-Inst-Mutbor)

if 𝑇 is of the form own𝑈 , 𝑈 : copy holds

(Γ + {𝑥 :𝑇 }, A) ⊢ drop𝑥 : (Γ,A) (Type-Inst-Drop)

(Γ + {𝑥 :mut𝛼 𝑇 }, A) ⊢ immut𝑥 : (Γ + {𝑥 : immut𝛼 𝑇 }, A) (Type-Inst-Immut)

𝑥 :mut𝛼 𝑇, 𝑦: 𝑃 𝑇 ∈ Γ 𝑃 = own,mut𝛽
(Γ,A) ⊢ swap(∗𝑥, ∗𝑦) : (Γ,A) (Type-Inst-Swap)

(Γ + {𝑥 :𝑇 }, A) ⊢ let ∗𝑦 = 𝑥 : (Γ + {𝑦: own𝑇 }, A) (Type-Inst-Own)

(Γ + {𝑥 : 𝑃 𝑃 ′𝑇 }, A) ⊢ let𝑦 = ∗𝑥 : (Γ + {𝑦: (𝑃 · 𝑃 ′)𝑇 }, A) (Type-Inst-Deref)

𝑃 · own := 𝑃 own · 𝑃 := 𝑃 𝑅𝛼 · 𝑅′𝛽 := 𝑅′′𝛼 where 𝑅′′ =

{
mut (𝑅 = 𝑅′ = mut)
immut (otherwise)

𝑥 : 𝑃 𝑇 ∈ Γ 𝑇 : copy
(Γ,A) ⊢ let ∗𝑦 = copy ∗𝑥 : (Γ + {𝑦: own𝑇 }, A) (Type-Inst-Copy)

A ⊢ 𝑇 ≤ 𝑈

(Γ + {𝑥 :𝑇 }, A) ⊢ 𝑥 as 𝑈 : (Γ + {𝑥 :𝑈 }, A) (Type-Inst-As)

𝛴𝑔 = ⟨ ®𝛼 ′ |
−−−−−−→
𝛼 ′𝑎 ≤ 𝛼 ′

𝑏
⟩(
−−−−→
𝑥 ′:𝑇 ′) → 𝑈 ′

for each 𝑗, 𝛼𝑎 𝑗
≤A 𝛼𝑏 𝑗

for each 𝑖, 𝑇𝑖 = 𝑇 ′𝑖 [
−−−→
𝛼/𝛼 ′] 𝑈 = 𝑈 ′[

−−−→
𝛼/𝛼 ′]

(Γ + {−−→𝑥 :𝑇 }, A) ⊢ let𝑦 = 𝑔⟨ ®𝛼⟩(®𝑥) : (Γ + {𝑦:𝑈 }, A)
(Type-Inst-Call)

(Γ, (𝐴, 𝑅)) ⊢ intro𝛼 :

(
Γ, ({𝛼} +𝐴, {𝛼} × ({𝛼} +𝐴ex 𝑓) + 𝑅)

)
(Type-Inst-Intro)

𝛼 ∉ 𝐴ex 𝑓 𝑅′ = {(𝛽,𝛾) ∈ 𝑅 | 𝛽 ≠ 𝛼} 𝑅′ has no element of the form (_, 𝛼)
(Γ, ({𝛼} +𝐴, 𝑅)

)
⊢ now𝛼 :

(
{thaw𝛼 (𝑥 :

a𝑇) | 𝑥 :
a𝑇 ∈Γ}, (𝐴, 𝑅′)

)
(Type-Inst-Now)

thaw𝛼 (𝑥 :
a𝑇) :=

{
𝑥 :𝑇 (a = †𝛼)
𝑥 :

a𝑇 (otherwise)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:15

𝛼, 𝛽 ∉ 𝐴ex 𝑓

(Γ, (𝐴, 𝑅)) ⊢ 𝛼 ≤ 𝛽 :

(
Γ, (𝐴, ({(𝛼, 𝛽)} ∪ 𝑅)+)

) (Type-Inst-LftIn)

(Γ,A) ⊢ let ∗𝑦 = const : (Γ + {𝑦: own𝑇const}, A) (Type-Inst-Const)

𝑇const : int if const = 𝑛 and unit if const = ()

𝑥 : 𝑃 int, 𝑥 ′: 𝑃 ′ int ∈ Γ
(Γ,A) ⊢ let ∗𝑦 = ∗𝑥 op𝑇 ∗𝑥 ′ : (Γ + {𝑦: own𝑇 }, A) (Type-Inst-Op)

(Γ,A) ⊢ let ∗𝑦 = rand() : (Γ + {𝑦: own int}, A) (Type-Inst-Rand)

(Γ + {𝑥 : own𝑇𝑖 }, A) ⊢ let ∗𝑦 = inj𝑇0+𝑇1

𝑖
∗𝑥 : (Γ + {𝑦: own (𝑇0 +𝑇1)}, A) (Type-Inst-Inj)

(Γ + {𝑥 : own𝑇, 𝑥 ′: own𝑇 ′}, A) ⊢ let ∗𝑦 = (∗𝑥, ∗𝑥 ′) : (Γ + {𝑦: own (𝑇 ×𝑇 ′)}, A)
(Type-Inst-Pair)

(Γ + {𝑥 : 𝑃 (𝑇 ×𝑇 ′)}, A) ⊢ let (∗𝑦, ∗𝑦 ′) = ∗𝑥 : (Γ + {𝑦: 𝑃 𝑇, 𝑦 ′: 𝑃 𝑇 ′}, A) (Type-Inst-PairDestr)

For most instructions, the input variables are consumed and thus do not appear in the output type

context. The typing rules above are defined so that an instruction has a unique type; more precisely,

for any (Γ,A) and 𝐼 , there exists at most one whole context (Γ′,A′) satisfying (Γ,A) ⊢ 𝐼 : (Γ′,A′).
The instruction let𝑦 = mutbor𝛼 𝑥 mutably borrows an (unfrozen) owning pointer or mutable

reference 𝑥 : 𝑃 𝑇 under the lifetime 𝛼 (Type-Inst-Mutbor). After the borrow, 𝑥 gets frozen until 𝛼 ,

being registered to the type context as 𝑥 :
†𝛼 𝑃 𝑇 . We have a precondition that 𝛼 is a local variable

that is outlived by any lifetime in 𝑥 . Because 𝛼 is local, the borrow ends within a function and the

created reference does not leak outside the function.

The instruction drop𝑥 removes 𝑥 from the type context (Type-Inst-Drop). The precondition

on drop𝑥 says that when the dropped variable is an owning pointer its target type should be

copyable. This precondition does not weaken the expressivity because we can always satisfy this

precondition by repeating subdivision of pointers beforehand (by dereference let𝑦 = ∗𝑥 , pair
destruction let (∗𝑦, ∗𝑦 ′) = ∗𝑥 and variant destruction match ∗𝑥 { · · · }). Thanks to the precondition,

we do not need nested releases of owning pointers in the operational semantics and can avoid

adding complicated constraints on mutable references in our reduction.

The instruction immut𝑥 weakens a mutable reference 𝑥 into an immutable reference (Type-

Inst-Immut). Technically, this is a variant of drop𝑥 on a mutable reference 𝑥 where we retain an

immutable reference.

The instruction swap(∗𝑥, ∗𝑦) destructively updates the targets of 𝑥 and 𝑦, swapping the target

objects (Type-Inst-Swap). To reduce the number of patterns to consider, we restrict 𝑥 to a mutable

reference, whereas we let 𝑦 be either an owning pointer or a mutable reference. We do not lose

expressivity by this; swap between two owning pointer variables can be performed by swapping

just the names of the two variables.

The instruction let ∗𝑦 = 𝑥 consumes the variable 𝑥 and allocates its object to get an owning

pointer 𝑦 (Type-Inst-Own).

The instruction let𝑦 = ∗𝑥 dereferences a pointer to a pointer (Type-Inst-Deref). The kind of

the output pointer type is determined from the outer and inner pointer kinds 𝑃, 𝑃 ′ of the input, by
an auxiliary operation 𝑃 · 𝑃 ′. The kind own is an identity on this operation. When we compose

reference pointer kinds 𝑅𝛼 ·𝑅′𝛽 , the output is 𝑅
′′
𝛼 , where 𝑅

′′
is the weakest of 𝑅 and 𝑅′. Here, we can

just take the lifetime of the outer reference 𝛼 , which is safe because when we performed a borrow

we ensured that the lifetime is outlived by any lifetimes in the target.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:16 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

The instruction let ∗𝑦 = copy ∗𝑥 copies the target object of 𝑥 typed𝑇 and wraps it into an owning

variable typed own𝑇 (Type-Inst-Copy). We have a precondition 𝑇 : copy, which prevents us from

copying mutable references and owning pointers.

The instruction 𝑥 as 𝑈 modifies the type 𝑇 of a variable 𝑥 into another type𝑈 (Type-Inst-As).

We have a precondition A ⊢ 𝑇 ≤ 𝑈 on subtyping.

The instruction let𝑦 = 𝑔⟨ ®𝛼⟩(®𝑥) calls a function 𝑔 with lifetime arguments ®𝛼 and data arguments

®𝑥 . The inputs ®𝑥 are consumed by the function 𝑔 and thus do not appear in the output type context.

The instruction intro𝛼 introduces a new local lifetime 𝛼 (Type-Inst-Intro). We promise that

the new local lifetime 𝛼 is outlived by any lifetime parameters, because it will be eliminated in

the current function. The instruction now𝛼 eliminates the local lifetime 𝛼 and reactivates every

variable frozen under 𝛼 in the data context (Type-Inst-Now). As a precondition, we check that

𝛼 is strictly the least element in the input local lifetime context, i.e., 𝛽 ≤ 𝛼 does not hold for any

lifetime variable 𝛽 other than 𝛼 . The instruction 𝛽 ≤ 𝛼 adds a promise on the elimination order of

local lifetimes (Type-Inst-LftIn). This promise is registered to the lifetime context and can be used

for subtyping.

The instructions let ∗𝑦 = const, let ∗𝑦 = ∗𝑥 op ∗𝑥 ′, and let ∗𝑦 = rand() respectively newly allocate
a constant, the result of an integer operation, or a non-deterministic integer to get an owning

pointer to the result 𝑦 (Type-Inst-Const, Type-Inst-Op, Type-Inst-Rand). Note that the inputs

𝑥, 𝑥 ′ are not consumed for the instruction let ∗𝑦 = ∗𝑥 op ∗𝑥 ′.
The instructions let ∗𝑦 = inj𝑇+𝑇

′
𝑖 ∗𝑥 and let ∗𝑦 = (∗𝑥, ∗𝑥 ′) respectively allocate a variant object or

a pair by consuming the input owning pointer(s) (Type-Inst-Inj, Type-Inst-Pair). The instruction

let (∗𝑦, ∗𝑦 ′) = ∗𝑥 splits a pointer to a pair into pointers to each element of the pair, retaining the

pointer kind (Type-Inst-PairDestr). For example, by splitting a mutable reference to a pair, we

get mutable references to each element of the pair.

Typing Judgment for Statements. The statement typing judgment is of the form 𝛱, 𝑓 , (Γ,A) ⊢ 𝑆 :

{
−−−−−−−−−−→
(𝐿, (Γ′,A′))}. It means that the statement 𝑆 in the function 𝑓 in the program 𝛱 under the whole

context (Γ,A) jumps to a label 𝐿𝑖 with a whole context (Γ′𝑖 ,A′𝑖) or safely returns from the current

function call. The following are the rules for the judgment (we omit here 𝛱 and 𝑓 , except in 𝛴𝑓).

𝛴𝑓 : the function signature of 𝑓

(Γ,A) ⊢ 𝐼 : (Γ′,A′)
(Γ,A) ⊢ 𝐼 ; goto𝐿 : {(𝐿, (Γ′,A′))}

𝛴𝑓 = ⟨ ®𝛼 | · · ·⟩ (· · ·) → 𝑇

({𝑥 :𝑇 }, ({ ®𝛼}, 𝑅)) ⊢ return𝑥 :∅

𝑥 : 𝑃 (𝑇0 +𝑇1) ∈ Γ for each 𝑖, (Γ′𝑖 ,A′𝑖) = (Γ − {𝑥 : 𝑃 (𝑇0 +𝑇1)} + {𝑦𝑖 : 𝑃 𝑇𝑖 }, A)

(Γ,A) ⊢ match ∗𝑥 { −−−−−−−−−−−−−−→inj ∗𝑦 → goto𝐿 }: {
−−−−−−−−−−→
(𝐿, (Γ′,A′))}

The rule for the instruction statement 𝐼 ; goto𝐿 simply uses the typing judgment for 𝐼 . In the rule

for the return statement return𝑥 , we require that there remain no extra variables and no local

lifetimes. In the rule for the match statement, we check both branches. The input variable 𝑥 of the

type 𝑃 (𝑇0 +𝑇1) is consumed and in the inj𝑖 branch we get a new variable 𝑦𝑖 of the type 𝑃 𝑇𝑖 .

We use a meta-variable LCtx to denote a finite map from labels to whole contexts. The typing

judgment for statements is defined so that for any (Γ,A) and 𝑆 , there exists at most one whole

context assignment LCtx such that (Γ,A) ⊢ 𝑆 : LCtx holds. This uniqueness can easily be proved,

using the typing uniqueness on instructions.

Typing Judgment for Functions. The typing judgment for functions is 𝛱 ⊢ 𝐹 : (Γ𝐿,A𝐿)𝐿∈Lbl𝐹 ,
where Lbl𝐹 denotes the set of labels in 𝐹 . In short, the judgment assigns a whole context to each

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:17

label in the function. The judgment is defined by the following rule.

𝐹 = fn 𝑓 ⟨ ®𝛼 | −−−−−→𝛼𝑎 ≤𝛼𝑏⟩ (
−−→
𝑥 :𝑇) → 𝑈 {· · ·} Γentry = {

−−→
𝑥 :𝑇 } Aentry =

(
{ ®𝛼},

(
Id{ ®𝛼 }∪{

−−−−−−→
(𝛼𝑎, 𝛼𝑏)}

)+)
for each 𝐿0: 𝑆 ∈ LStmt𝐹 , for some LCtx ⊆ (Γ𝐿,A𝐿)𝐿∈Lbl𝐹 , 𝛱, 𝑓 , (Γ𝐿,A𝐿) ⊢ 𝑆 : LCtx

𝛱 ⊢ 𝐹 : (Γ𝐿,A𝐿)𝐿∈Lbl𝐹
LStmt𝐹 : the set of labeled statements in 𝐹

Id𝐴: the identity relation on 𝐴 𝑅+: the transitive closure of 𝑅

The initial whole context at entry is constructed from the function signature (the second and third

preconditions) and then the contexts for other labels are examined (the fourth precondition). The

whole context for each label can be determined in the order of the distance from the label entry
in the directed graph by the goto jumps. Therefore, a typing derivation on a function is unique.

That is, for any 𝛱 and 𝐹 , there exists at most one whole context assignment (Γ𝐿,A𝐿)𝐿∈Lbl𝐹 such

that 𝛱 ⊢ 𝐹 : (Γ𝐿,A𝐿)𝐿∈Lbl𝐹 holds.

Typing Judgment for Programs. The typing judgment for programs is ⊢ 𝛱 : (Γ𝑓 ,𝐿,A𝑓 ,𝐿) (𝑓 ,𝐿) ∈FnLbl𝛱 ,
where FnLbl𝛱 is the set of program points (𝑓 , 𝐿) in 𝛱 (𝑓 can be any function in the program 𝛱

and 𝐿 can be any label in the function 𝑓). In short, the judgment assigns a whole context to each

program point in the program. The judgment is defined simply by the following rule.

for each 𝐹 in 𝛱, 𝛱 ⊢ 𝐹 : (Γname 𝐹, 𝐿,Aname 𝐹, 𝐿)𝐿∈Lbl𝐹
⊢ 𝛱 : (Γ𝑓 ,𝐿,A𝑓 ,𝐿) (𝑓 ,𝐿) ∈ FnLbl𝛱
name 𝐹 : the function name of 𝐹

For any program 𝛱 , there exists at most one whole context assignment (Γ𝑓 ,𝐿,A𝑓 ,𝐿) (𝑓 ,𝐿) ∈ FnLbl𝛱
such that ⊢ 𝛱 : (Γ𝑓 ,𝐿,A𝑓 ,𝐿) (𝑓 ,𝐿) ∈ FnLbl𝛱 holds. We say that a program 𝛱 is well typed when it has a

whole context assignment in this judgment.

Remark 2 (Soundness of the Type System). This type system is sound but to fully state the theorem

wemust also formally describe the safety condition on concrete configurations. The safety condition

is introduced later in §4.2. The progress and preservation properties of the safety condition over

well-typed programs are then proved (Proposition 3 and Corollary 5).

2.3 Operational Semantics
The following are the basic concepts of the operational semantics.

(concrete configuration) C ::= [𝑓0, 𝐿0] F; [𝑓1, 𝐿1] 𝑥1, F1; · · · ; [𝑓𝑛, 𝐿𝑛] 𝑥𝑛, F𝑛 | H
(heap memory) H ::= (a finite map from addresses (integers) to memory-cell values (integers))

(concrete stack frame) F ::= (a finite map from variables to addresses)

The configuration consists of stack frames and a heap memory. Each stack frame is accompanied

by [𝑓 , 𝐿], which indicates the program point (the function and the label). Each non-top stack frame

also has ‘𝑥,’, which specifies the variable that will receive the return value of the function call of

the stack frame just above. We also use a meta-variable S for a sequence of non-top stack frames

[𝑓1, 𝐿1] 𝑥1, F1; · · · ; [𝑓𝑛, 𝐿𝑛] 𝑥𝑛, F𝑛 .
We also define the type size |𝑇 |, which represents how many memory cells the type 𝑇 takes at

the outermost level, as follows.

|𝑃 𝑇 | := 1 |𝜇𝑋 .𝑇 | := |𝑇 | |𝑇0 +𝑇1 | := 1 +max{|𝑇0 |, |𝑇1 |}
|𝑇0 ×𝑇1 | := |𝑇0 | + |𝑇1 | |int| := 1 |unit| = 0

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:18 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

Although we do not define the type size for a type variable 𝑋 , the definition above determines

the type size for every complete type (defined in §2.1), in which occurrences of type variables are

restricted.

The operational semantics is characterized by the one-step transition judgment 𝛱 ⊢ C→ C′

and the termination judgment 𝛱 ⊢ C: end. We assume that the program 𝛱 is well-typed. The type

information we use here is quite limited; we use the type size to know how many memory cells are

required and also check whether the pointer kind of a variable is own or 𝑅. The following are the

complete rules for the two judgments. We omit 𝛱 here.

𝑆 𝑓 ,𝐿 : the statement at (𝑓 , 𝐿) Ty𝑓 ,𝐿 (𝑥): the type of the variable 𝑥 at the program point (𝑓 , 𝐿)
𝑥 ↦→ ®𝑑𝑁 := {(𝑥, 𝑑0), (𝑥 + 1, 𝑑1), . . . , (𝑥 + 𝑁 − 1, 𝑑𝑁−1)}

𝑆 𝑓 ,𝐿 = let𝑦 = mutbor𝛼 𝑥 ; goto𝐿′ F(𝑥) = 𝑎

⊢ [𝑓 , 𝐿] F; S | H → [𝑓 , 𝐿′] F + {(𝑦, 𝑎)}; S | H

𝑆 𝑓 ,𝐿 = drop𝑥 ; goto𝐿′ Ty𝑓 ,𝐿 (𝑥) = own𝑇

⊢ [𝑓 , 𝐿] F + {(𝑥, 𝑎)}; S | H + (𝑎 ↦→ ®𝑑 |𝑇 |) → [𝑓 , 𝐿′] F; S | H
(Step-Drop-Own)

𝑆 𝑓 ,𝐿 = drop𝑥 ; goto𝐿′ Ty𝑓 ,𝐿 (𝑥) = 𝑅𝛼 𝑇

⊢ [𝑓 , 𝐿] F + {(𝑥, _)}; S | H → [𝑓 , 𝐿′] F; S | H (Step-Drop-Ref)

𝑆 𝑓 ,𝐿 = 𝐼 ; goto𝐿′ 𝐼 = 𝑥 as 𝑇, intro𝛼, now𝛼, 𝛼 ≤ 𝛽

⊢ [𝑓 , 𝐿] F; S | H → [𝑓 , 𝐿′] F; S | H

𝑆 𝑓 ,𝐿 = swap(∗𝑥, ∗𝑦); goto𝐿′ Ty𝑓 ,𝐿 (𝑥) = 𝑃 𝑇 F(𝑥) = 𝑎 F(𝑦) = 𝑏

⊢ [𝑓 , 𝐿] F; S | H + (𝑎 ↦→ ®𝑑 |𝑇 |) + (𝑏 ↦→ ®𝑒 |𝑇 |) → [𝑓 , 𝐿′] F; S | H + (𝑎 ↦→ ®𝑒 |𝑇 |) + (𝑏 ↦→ ®𝑑 |𝑇 |)

𝑆 𝑓 ,𝐿 = let ∗𝑦 = 𝑥 ; goto𝐿′

⊢ [𝑓 , 𝐿] F + {(𝑥, 𝑎′)}; S | H → [𝑓 , 𝐿′] F + {(𝑦, 𝑎)}; S | H + (𝑎 ↦→ 𝑎′)

𝑆 𝑓 ,𝐿 = let𝑦 = ∗𝑥 ; goto𝐿′ Ty𝑓 ,𝐿 (𝑥) = own𝑇

⊢ [𝑓 , 𝐿] F + {(𝑥, 𝑎)}; S | H + (𝑎 ↦→ 𝑎′) → [𝑓 , 𝐿′] F + {(𝑦, 𝑎′)}; S | H (Step-Deref-Own)

𝑆 𝑓 ,𝐿 = let𝑦 = ∗𝑥 ; goto𝐿′ Ty𝑓 ,𝐿 (𝑥) = 𝑅𝛼 𝑇 (𝑎 ↦→ 𝑎′) ⊆ H

⊢ [𝑓 , 𝐿] F + {(𝑥, 𝑎)}; S | H → [𝑓 , 𝐿′] F + {(𝑦, 𝑎′)}; S | H (Step-Deref-Ref)

𝑆 𝑓 ,𝐿 = let ∗𝑦 = copy ∗𝑥 ; goto𝐿′ Ty𝑓 ,𝐿 (𝑥) = 𝑃 𝑇 (F(𝑥) ↦→ ®𝑑 |𝑇 |) ⊆ H

⊢ [𝑓 , 𝐿] F; S | H → [𝑓 , 𝐿′] F + {(𝑦, 𝑎)}; S | H + (𝑎 ↦→ ®𝑑 |𝑇 |)

𝑆 𝑓 ,𝐿 = let𝑦 = 𝑔⟨· · ·⟩(®𝑥); goto𝐿′ 𝛴𝑔 = ⟨· · ·⟩(
−−−→
𝑥 ′:𝑇) → 𝑈

⊢ [𝑓 , 𝐿] F + {
−−−−→
(𝑥, 𝑎)}; S | H → [𝑔, entry] {

−−−−→
(𝑥 ′, 𝑎)}; [𝑓 , 𝐿′] 𝑦, F; S | H

(Step-Call)

𝑆 𝑓 ,𝐿 = return𝑥

⊢ [𝑓 , 𝐿] {(𝑥, 𝑎)}; [𝑔, 𝐿′] 𝑥 ′, F′; S | H → [𝑔, 𝐿′] F′ + {(𝑥 ′, 𝑎)}; S | H (Step-Return)

𝑆 𝑓 ,𝐿 = return𝑥

⊢ [𝑓 , 𝐿] {(𝑥, 𝑎)} | H: end
(End-Return)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:19

𝑆 𝑓 ,𝐿 = let ∗𝑦 = const; goto𝐿′ ®𝑑 =

{
𝑛 (const = 𝑛)
𝜖 (const = ())

⊢ [𝑓 , 𝐿] F; S | H → [𝑓 , 𝐿′] F + {(𝑦, 𝑎)}; S | H + (𝑎 ↦→ ®𝑑)
(Step-Const)

𝑆 𝑓 ,𝐿 = let ∗𝑦 = ∗𝑥 op ∗𝑥 ′; goto𝐿′ (F(𝑥) ↦→𝑚), (F(𝑥 ′) ↦→ 𝑛) ⊆ H
⊢ [𝑓 , 𝐿] F; S | H → [𝑓 , 𝐿′] F + {(𝑦,𝑏)}; S | H + (𝑏 ↦→𝑚 ⟨op⟩ 𝑛)

⟨op⟩: op as a binary operation on integers, where true and false are encoded as 1 and 0

𝑆 𝑓 ,𝐿 = let ∗𝑦 = rand(); goto𝐿′

⊢ [𝑓 , 𝐿] F; S | H → [𝑓 , 𝐿′] F + {(𝑦, 𝑎)}; S | H + (𝑎 ↦→ 𝑛)

𝑆 𝑓 ,𝐿 = let ∗𝑦 = inj𝑇0+𝑇1

𝑖
∗𝑥 ; goto𝐿′ 𝑁 = max{|𝑇1−𝑖 | − |𝑇𝑖 |, 0}

⊢ [𝑓 , 𝐿] F + {(𝑥, 𝑎)}; S | H + (𝑎 ↦→ ®𝑑 |𝑇𝑖 |) → [𝑓 , 𝐿′] F + {(𝑦, 𝑎′)}; S | H + (𝑎′ ↦→ 𝑖, ®𝑑 |𝑇𝑖 |, ®𝑒𝑁)
(Step-Inj)

𝑆 𝑓 ,𝐿 = match ∗𝑥 {
−−−−−−−−−−−−−−→
inj ∗𝑦 → goto𝐿′ }

Ty𝑓 ,𝐿 (𝑥) = own (𝑇0 +𝑇1) 𝑖 ∈ {0, 1} 𝑁 = max{|𝑇1−𝑖 | − |𝑇𝑖 |, 0}
⊢ [𝑓 , 𝐿] F + {(𝑥, 𝑎)}; S | H + (𝑎 ↦→ 𝑖) + (𝑎 + 1 + |𝑇𝑖 | ↦→ ®𝑒𝑁) → [𝑓 , 𝐿′

𝑖
] F + {(𝑦𝑖 , 𝑎 + 1)}; S | H

(Step-Match-Own)

𝑆 𝑓 ,𝐿 = match ∗𝑥 { −−−−−−−−−−−−−−→inj ∗𝑦 → goto𝐿′ } Ty𝑓 ,𝐿 (𝑥) = 𝑅𝛼 (𝑇0 +𝑇1) H(𝑎) = 𝑖 ∈ {0, 1}
⊢ [𝑓 , 𝐿] F + {(𝑥, 𝑎)}; S | H → [𝑓 , 𝐿′

𝑖
] F + {(𝑦𝑖 , 𝑎 + 1)}; S | H

(Step-Match-Ref)

𝑆 𝑓 ,𝐿 = let ∗𝑦 = (∗𝑥0, ∗𝑥1); goto𝐿′ for each 𝑖, Ty𝑓 ,𝐿 (𝑥𝑖) = own𝑇𝑖

⊢ [𝑓 , 𝐿] F + {(𝑥0, 𝑎0), (𝑥1, 𝑎1)}; S | H +∑𝑖∈{0,1} (𝑎𝑖 ↦→
−→
𝑑𝑖
|𝑇𝑖 |)

→ [𝑓 , 𝐿′] F + {(𝑦, 𝑎′)}; S | H + (𝑎′ ↦→ −→𝑑0

|𝑇0 |,
−→
𝑑1

|𝑇1 |)

𝑆 𝑓 ,𝐿 = let (∗𝑦, ∗𝑦 ′) = ∗𝑥 ; goto𝐿′ Ty𝑓 ,𝐿 (𝑥) = 𝑃 (𝑇 ×𝑇 ′)
⊢ [𝑓 , 𝐿] F + {(𝑥, 𝑎)}; S | H → [𝑓 , 𝐿′] F + {(𝑦, 𝑎), (𝑦 ′, 𝑎 + |𝑇 |)}; S | H

At each step, we remove invalidated variables from the concrete stack frame F, just as we did in

the type system.

On a function call, we add a new stack frame to the head of the stack (Step-Call). The initial

label is set to the entry point entry. When we return from a function, we remove the head stack

frame from the stack and continue computation if we have remaining stack frames (Step-Return).

If the current stack frame is the only stack frame in the stack, the computation ends by the rule

End-Return (actually this is the only rule for the judgment 𝛱 ⊢ C: end).
In general, instructions of the form let ∗𝑦 = · · · allocate memory cells for the newly created

owning pointer 𝑦. For example, an instruction let ∗𝑦 = 𝑛 allocates a memory cell for the integer

data 𝑛 (Step-Const).

Some operations behave differently for depending on whether the input is an owning pointer or a

reference. The instruction drop𝑥 deallocates the target object from the heap if 𝑥 is an owning pointer

(Step-Drop-Own) but does not perform deallocation if 𝑥 is a reference (Step-Drop-Ref). The

instruction let𝑦 = ∗𝑥 performs deallocation of the target memory cell of 𝑥 if 𝑥 is an owning pointer

(Step-Deref-Own) but does not otherwise (Step-Deref-Ref). Similarly, the match statement

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:20 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

match ∗𝑥 { −−−−−−−−−−−−−−→inj ∗𝑦 → goto𝐿′ } deallocates the memory cells for the index and the padding if 𝑥 is an

ownership pointer (Step-Match-Own) but does not otherwise (Step-Match-Ref).

When we create a variant object by the instruction let ∗𝑦 = inj𝑇0+𝑇1

𝑖
∗𝑥 (Type-Inst-Inj), we

allocate a padding by zeroes if 𝑇𝑖 has a smaller size than 𝑇1−𝑖 does, which makes the size of the

variant object 1 +max{𝑇0,𝑇1} in total.

Example 2 (Execution in the Operational Semantics). The following is an execution sequence in

the operational semantics for the program presented in Example 1. The inputs to oa and ob are set

to 5 and 3. The symbols ♠, r, q, ♣ represent some mutually distinct addresses.

[inc-max, entry] {(oa, ♠), (ob, r)} | {(♠, 5), (r, 3)}
→ [inc-max, L1] {(oa, ♠), (ob, r)} | {(♠, 5), (r, 3)}
→+ [inc-max, L3] {(ma, ♠), (mb, r), (oa, ♠), (ob, r)} | {(♠, 5), (r, 3)}
→ [take-max, entry] {(ma, ♠), (mb, r)}; [inc-max, L4]mc, {(oa, ♠), (ob, r)} | {(♠, 5), (r, 3)}
→ [take-max, L1] {(ord, q), (ma, ♠), (mb, r)}; [inc-max, L4]mc,{(oa, ♠), (ob, r)}
| {(♠, 5), (r, 3), (q, 1)}

→+ [take-max, L3] {(ma, ♠), (mb, r)}; [inc-max, L4]mc, {(oa, ♠), (ob, r)} | {(♠, 5), (r, 3)}
→ [take-max, L4] {(ma, ♠)}; [inc-max, L4]mc, {(oa, ♠), (ob, r)} | {(♠, 5), (r, 3)}
→ [inc-max, L4] {(mc, ♠), (oa, ♠), (ob, r)} | {(♠, 5), (r, 3)}
→ [inc-max, L5] {(o1, q), (mc, ♠), (oa, ♠), (ob, r)} | {(♠, 5), (r, 3), (q, 1)}
→+ [inc-max, L7] {(oc′, ♣), (mc, ♠), (oa, ♠), (ob, r)} | {(♠, 5), (r, 3), (♣, 6)}
→+ [inc-max, L9] {(mc, ♠), (oa, ♠), (ob, r)} | {(♠, 6), (r, 3)}
→ [inc-max, L10] {(oa, ♠), (ob, r)} | {(♠, 6), (r, 3)}
→+ [inc-max, L14] {(ores, q)} | {(q, 1)}

In the stack frames each variable just has the address data. Integer objects are all stored in the heap

memory.

3 OUR REDUCTION FROM RUST PROGRAMS TO CHCS
Now we formalize our reduction from Rust programs to CHCs, discussed in §1 as a reduction from

a program in our calculus COR to a CHC system, which is guaranteed to precisely characterize the

input-output relation of each function in the program. We first define the first-order multi-sorted

logic for CHCs in §3.1. We then formally describe our reduction in §3.2. We formalize its soundness

and completeness and outline the proof of that in §3.3 (we present the complete proof in §4). Also,

we examine effectiveness of our approach with advanced examples in §3.4 and discuss various

topics about our idea in §3.5.

3.1 Multi-sorted Logic for CHCs
To begin with, we introduce a first-order multi-sorted logic for CHCs.

Syntax. The following is the syntax of the logic.

(CHC) 𝛷 ::= ∀−−→𝑥 :𝜎. 𝜑 ⇐=
∧ ®𝜓 ⊤ :=

∧
𝜖

(pattern formula) 𝜑 ::= 𝑓 (®𝑝) (formula) 𝜑,𝜓 ::= 𝑓 (®𝑡)

(term) 𝑡 ::= 𝑥 | ⟨𝑡⟩ (box) | ⟨𝑡∗, 𝑡◦⟩ (mut) | inj𝑖 𝑡 | (𝑡0, 𝑡1) | const | 𝑡 op 𝑡 ′

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:21

(pattern) 𝑝, 𝑞 ::= 𝑥 | ⟨𝑝⟩ | ⟨𝑝∗, 𝑝◦⟩ | inj𝑖 𝑝 | (𝑝0, 𝑝1) | const

(value) 𝑣,𝑤 ::= ⟨𝑣⟩ | ⟨𝑣∗, 𝑣◦⟩ | inj𝑖 𝑣 | (𝑣0, 𝑣1) | const

(sort) 𝜎, 𝜏 ::= 𝐶 𝜎 | 𝜎0 + 𝜎1 | 𝜎0 × 𝜎1 | 𝑋 | 𝜇𝑋 .𝜎 | int | unit

(container kind) 𝐶 ::= box (box; ⟨𝑣⟩) | mut (mut; ⟨𝑣∗, 𝑣◦ ⟩)

const ::= same as COR op ::= same as COR

𝑋 (sort variable) 𝑥,𝑦 (logic variable) 𝑓 (predicate variable)

bool := unit + unit true := inj
1
() false := inj

0
()

Also, a CHC system is defined as a pair (Φ,Ξ) of a finite set of CHCs Φ = { ®𝛷} and a finite map Ξ
from a predicate variable to a tuple of sorts (denoted by 𝛯), specifying the sorts of the arguments

for the predicate variable. Unlike the informal description in §1, we explicitly specify the sort

information Ξ. For simplicity, we often omit the universal quantifier ∀®𝑥 . of CHCs.
CHCs in this logic have a fairly restricted form, in comparison to informal CHCs used in §1. Every

formula 𝜙 should be of form 𝑓 (®𝑡) and we do not have a category for constraints like 𝑎 < 𝑏. Also, the

head of each CHC should be of form 𝑓 (®𝑝), where 𝑝𝑖 is a pattern, consisting only of variables and

constructors, not having operators. Even in this restriction, we can express various predicates using

the idea of pattern matching. For example, the equality relation Eq on a sort 𝜎 can be introduced in

a CHC system by adding the following rule on Eq: ∀𝑥 :𝜎. Eq(𝑥, 𝑥) ⇐= ⊤ (precisely speaking, Eq
is the equality relation in the least solution of the CHC system). This restriction helps to simplify

our proof of the soundness and completeness later in §4.

In this logic, we have two special data types, a box container, whose value is ⟨𝑡⟩ and whose sort

is box𝜎 , and a mut container, whose value is ⟨𝑡∗, 𝑡◦⟩ and whose sort is mut𝜎 . In our reduction,

owning pointers and immutable references are modeled as a box container and mutable references

are modeled as a mut container.

Sort System. The sort-giving judgment ∆ ⊢ 𝑡 :𝜎 (the term 𝑡 has the sort 𝜎 under ∆) is defined as

follows. Here, ∆ is a finite map from variables to sorts.

∆(𝑥) = 𝜎

∆ ⊢ 𝑥 :𝜎

∆ ⊢ 𝑡 :𝜎
∆ ⊢ ⟨𝑡⟩: box𝜎

∆ ⊢ 𝑡∗, 𝑡◦:𝜎
∆ ⊢ ⟨𝑡∗, 𝑡◦⟩:mut𝜎

∆ ⊢ 𝑡 :𝜎𝑖
∆ ⊢ inj𝑖 𝑡 :𝜎0 + 𝜎1

∆ ⊢ 𝑡0:𝜎0, 𝑡1:𝜎1

∆ ⊢ (𝑡0, 𝑡1):𝜎0 × 𝜎1

∆ ⊢ 𝑛: int ∆ ⊢ (): unit ∆ ⊢ 𝑡, 𝑡 ′: int
∆ ⊢ 𝑡 op𝜎 𝑡 ′:𝜎

∆ ⊢ 𝑡 :𝜎 𝜎 ∼ 𝜏
∆ ⊢ 𝑡 :𝜏

𝜎 ∼ 𝜏 : the congruence on sorts induced by 𝜇𝑋 .𝜎 ∼ 𝜎 [𝜇𝑋 .𝜎/𝑋]

We abbreviate ∅ ⊢ 𝑡 :𝜎 as ⊢ 𝑡 :𝜎 .
We introduce the well-sortedness judgments for a CHC system ⊢ (Φ,Ξ):well sorted, for a CHC

Ξ ⊢ Φ:well sorted and for a formula ∆,Ξ ⊢ 𝛷 :well sorted and give them the following rules.

for each𝛷 ∈ Φ, Ξ ⊢ 𝛷 :well sorted
⊢ (Φ,Ξ):well sorted

∆ = {
−−−−→
(𝑥, 𝜎)} ∆,Ξ ⊢ 𝜑 :well sorted for each 𝑗, ∆,Ξ ⊢ 𝜓 𝑗 :well sorted

Ξ ⊢ ∀−−→𝑥 :𝜎. 𝜑 ⇐=
∧ ®𝜓 : well sorted

Ξ(𝑓) = (®𝜎) for each 𝑖, ∆ ⊢ 𝑡𝑖 :𝜎𝑖
∆,Ξ ⊢ 𝑓 (®𝑡):well sorted

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:22 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

Semantics. An evaluation I is a finite map from variables to values. A predicate structure M is a

finite map from predicate variables to predicates on values of some fixed sorts.

We define the sort-giving judgment on an evaluation ⊢ I: ∆ as follows.

for each 𝑖, ⊢ 𝑣𝑖 :𝜎𝑖

⊢ {
−−−−→
(𝑥, 𝑣)}: {

−−−−→
(𝑥, 𝜎)}

The interpretation of a term 𝑡 into a value over an evaluation I, denoted ⟦𝑡⟧I, is defined as

follows.

⟦𝑥⟧I := I(𝑥) ⟦⟨𝑡⟩⟧I := ⟨⟦𝑡⟧I⟩ ⟦⟨𝑡∗, 𝑡◦⟩⟧I := ⟨⟦𝑡∗⟧I, ⟦𝑡◦⟧I⟩ ⟦inj𝑖 𝑡⟧I := inj𝑖⟦𝑡⟧I

⟦(𝑡0, 𝑡1)⟧I := (⟦𝑡0⟧I, ⟦𝑡1⟧I) ⟦const⟧I := const ⟦𝑡 op 𝑡 ′⟧I := ⟦𝑡⟧I ⟦op⟧ ⟦𝑡 ′⟧I

⟦op⟧: the binary operation on integers corresponding to op

Although the definition is partial on op, the interpretation is defined for every well-sorted term

(i.e., ⟦𝑡⟧I is defined if ∆ ⊢ 𝑡 :𝜎 holds for some ∆ satisfying ⊢ I: ∆ and some 𝜎), which follows from

straightforward induction.

The validity of a CHC M |= 𝛷 and the validity of a formula M, I |= 𝜑 are defined as follows.

for each I s.t. ⊢ I: {−−→𝑥 :𝜎}, M, I |= 𝜑 or M, I /|= 𝜓𝑖 for some 𝑖

M |= ∀−−→𝑥 :𝜎. 𝜑 ⇐=
∧ ®𝜓 M(𝑓) (

−−−→
⟦𝑡⟧I) is true

M, I |= 𝑓 (®𝑡)
Finally, the validity of a CHC system M |= (Φ,Ξ) is defined as follows.

for each (𝑓 , (®𝜎)) ∈ Ξ, M(𝑓) is a predicate on values of sort ®𝜎
dom M = dom Ξ for each𝛷 ∈ Φ, M |= 𝛷

M |= (Φ,Ξ)
We say that M is a solution to (Φ,Ξ) if M |= (Φ,Ξ) holds. Every well-sorted CHC system (Φ,Ξ)

has a least solution with respect to the point-wise ordering, which can be proved based on the

standard discussion [74]. We write the least solution of (Φ,Ξ) as Mleast
(Φ,Ξ) .

3.2 Our Reduction from Programs to CHCs
Nowwe formalize our reduction of Rust programs to CHC systems.We define theCHC representation
(|𝛱 |) of a well-typed COR program 𝛱 , which is a CHC system that represents the input-output

relations of the functions in 𝛱 .

We assign a predicate variable 𝑓𝐿 to each program point (𝑓 , 𝐿) (e.g., each label 𝐿 in each function

𝑓). Roughly speaking, the predicate 𝑓𝐿 represents the input-output relation of the continuation

from the program point 𝐿 in the function 𝑓 , where the inputs are the values of the local variables at

(𝑓 , 𝐿) and the output is the return value of 𝑓 .9 For each 𝑓𝐿 , we add one or two CHCs to the resulting

CHC system, which represent the operation of the statement at (𝑓 , 𝐿). As explained in §1.2, in the

resulting CHCs, we represent a mutable reference as ⟨𝑣∗, 𝑣◦⟩, a pair of the current target value 𝑣∗
and the final target value 𝑣◦, and do not explicitly model addresses and memory states.

Roughly speaking, our CHC representation is designed so that its least solution Mleast
(|𝛱 |) satisfies

the following property: for any values ®𝑣,𝑤 , the validity Mleast
(|𝛱 |) |= 𝑓entry (®𝑣,𝑤) holds if and only if a

function call 𝑓 (®𝑣) can return 𝑤 in the program. Actually, since such values should be extracted

from the heap memory in the operational semantics, the actual definition is a bit more involved.

The formal description and the proof of this expected property are presented later in §3.3.

9
When a local variable contains a mutable reference the meaning of the ‘value’ can be subtle because of the final target

value in our model. Later in §4.2 and §4.3, we model each of the future target values as a syntactic variable in logic.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:23

Preliminaries. We introduce some preliminary definitions and notions.

The sort corresponding to the type 𝑇 , (|𝑇 |), is defined as follows. Note that the information on

lifetimes is all stripped off.

(|𝑃 𝑇 |) := box (|𝑇 |) (|mut𝛼 𝑇 |) := mut (|𝑇 |)
(|𝑇 +𝑇 ′ |) := (|𝑇 |) + (|𝑇 ′ |) (|𝑇 ×𝑇 ′ |) := (|𝑇 |) × (|𝑇 ′ |)

(|𝑋 |) := 𝑋 (|𝜇𝑋 .𝑇 |) = 𝜇𝑋 .(|𝑇 |) (|int|) := int (|unit|) := unit

We assume some fixed linear order on data variables and enumerate the elements of a data context,

a stack frame, etc. in this order. Also, we fix a well-typed program 𝛱 as an implicit parameter.

The predicate signature of 𝑓𝐿 , denoted by 𝛯𝑓 ,𝐿 , is defined as (
−−→
(|𝑇 |), (|𝑈 |)), where {−−−→𝑥 :

a𝑇 } is the
data context at (𝑓 , 𝐿) and𝑈 is the return type of 𝑓 .

Our Reduction. Now we fully define our reduction.

In our reduction, for each program point (𝑓 , 𝐿), we generate a CHC or a pair of CHCs with the

head of the form 𝑓𝐿 (®𝑝, res), which models the computation performed by the statement. Here, res
is a special variable that represents the result of the function (we put this variable at the last in the

fixed linear order). We add just one CHC for a statement of the form 𝐼 ; goto𝐿 or return𝑥 and we

add two CHCs for a match statement match ∗𝑥 { · · · } (recall that we do not allow here disjunction

in the body of each CHC, unlike informal description in §1).

For example, let us consider a labeled statement L1: let ∗𝑦 = 3; goto L2 in a function 𝑓 , which

allocates an integer memory cell. The CHC we generate for the statement is as follows, letting ®𝑥 be

the local variables in L1 (we omit the universal quantifier).

𝑓L1 (®𝑥, res) ⇐= 𝑓L2 (®𝑥, ⟨3⟩, res)
Here, ⟨3⟩ represents the value of 𝑦, i.e., the newly created owning pointer that has the integer data

3. This CHC can be read as a rewriting rule from left to right: the statement creates a new owning

pointer ⟨3⟩ and passes it with the carryover variables ®𝑥 to the next statement at L2.
For another example, let us consider a labeled statement L3: let ∗𝑧 = mutbor𝛼 𝑦; goto L4 in

𝑓 , which performs a mutable borrow. Assume that the data context at L3 is {−−−→𝑥 :
a𝑇, 𝑦: own𝑇 ′},

which sets the data context at L4 to {−−−→𝑥 :
a𝑇, 𝑦:

†𝛼 own𝑇 ′, 𝑧:mut𝛼 𝑇 }. The CHC we generate for this

statement is as follows.

𝑓L3 (®𝑥, ⟨𝑦∗⟩, res) ⇐= 𝑓L4 (®𝑥, ⟨𝑦◦⟩, ⟨𝑦∗, 𝑦◦⟩, res)
For convenience, we introduce the notation 𝜑 𝑓 ,𝐿 for the pattern formula 𝑓𝐿 (®𝑥, res), where ®𝑥 are

the local variables at (𝑓 , 𝐿). (Note that we reuse data variables ®𝑥 of COR as logic variables.) For

example, the CHC of the previous example can be written as follows.

𝜑 𝑓 ,L3 [⟨𝑦∗⟩/𝑦] ⇐= 𝜑 𝑓 ,L4 [⟨𝑦∗, 𝑦◦⟩/𝑧, ⟨𝑦◦⟩/𝑦],
Now we define the CHC representation (|𝛱 |) of a well-typed program 𝛱 as follows.

(|𝛱 |) :=
(
{𝛷 | 𝛷 is in (|𝐿: 𝑆 |)𝛱,name 𝐹 , 𝐹 is in 𝛱 , 𝐿: 𝑆 ∈ LStmt𝐹 }, (𝛯𝛱,𝑓 ,𝐿)𝑓𝐿 s.t. (𝑓 ,𝐿) ∈ FnLbl𝛱

)
Here, (|𝐿: 𝑆 |)𝛱,𝑓 is one CHC or a pair of CHCs we generate for the labeled statement 𝐿: 𝑆 in 𝑓 in

𝛱 , which is defined by the following rules. For simplicity, we omit here universal quantifiers and

𝛱 . For some statements, depending on the pointer kinds of the input variables, we generate fairly

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:24 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

different CHCs.

(|𝐿: let𝑦 = mutbor𝛼 𝑥 ; goto𝐿′ |)𝑓

:=

{
𝜑 𝑓 ,𝐿 [⟨𝑥∗⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗, 𝑥◦⟩/𝑦, ⟨𝑥◦⟩/𝑥] (Ty𝑓 ,𝐿 (𝑥) = own𝑇)
𝜑 𝑓 ,𝐿 [⟨𝑥∗, 𝑥 ′◦⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗, 𝑥◦⟩/𝑦, ⟨𝑥◦, 𝑥 ′◦⟩/𝑥] (Ty𝑓 ,𝐿 (𝑥) = mut𝛼 𝑇)

(Chc-Stmt-Mutbor)

(|𝐿: drop𝑥 ; goto𝐿′ |)𝑓

:=

{
𝜑 𝑓 ,𝐿 ⇐= 𝜑 𝑓 ,𝐿′ (Ty𝑓 ,𝐿 (𝑥) = 𝑃 𝑇)
𝜑 𝑓 ,𝐿 [⟨𝑥∗, 𝑥∗⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ (Ty𝑓 ,𝐿 (𝑥) = mut𝛼 𝑇)

(Chc-Stmt-Drop)

(|𝐿: immut𝑥 ; goto𝐿′ |)𝑓
:= 𝜑 𝑓 ,𝐿 [⟨𝑥∗, 𝑥∗⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗⟩/𝑥] (Ty𝑓 ,𝐿 (𝑥) = mut𝛼 𝑇)

(Chc-Stmt-Immut)

(|𝐿: swap(∗𝑥, ∗𝑦); goto𝐿′ |)𝑓

:=

{
𝜑 𝑓 ,𝐿 [⟨𝑥∗, 𝑥◦⟩/𝑥, ⟨𝑦∗⟩/𝑦] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑦∗, 𝑥◦⟩/𝑥, ⟨𝑥∗⟩/𝑦] (Ty𝑓 ,𝐿 (𝑦) = own𝑇)
𝜑 𝑓 ,𝐿 [⟨𝑥∗, 𝑥◦⟩/𝑥, ⟨𝑦∗, 𝑦◦⟩/𝑦] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑦∗, 𝑥◦⟩/𝑥, ⟨𝑥∗, 𝑦◦⟩/𝑦] (Ty𝑓 ,𝐿 (𝑦) = mut𝛼 𝑇)

(|𝐿: let ∗𝑦 = 𝑥 ; goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥⟩/𝑦]

(|𝐿: let𝑦 = ∗𝑥 ; goto𝐿′ |)𝑓

:=

𝜑 𝑓 ,𝐿 [⟨𝑥∗⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [𝑥∗/𝑦] (Ty𝑓 ,𝐿 (𝑥) = own 𝑃 𝑇)
𝜑 𝑓 ,𝐿 [⟨⟨𝑥∗∗⟩⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗∗⟩/𝑦] (Ty𝑓 ,𝐿 (𝑥) = immut𝛼 𝑃 𝑇)
𝜑 𝑓 ,𝐿 [⟨⟨𝑥∗∗, 𝑥∗◦⟩⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗∗⟩/𝑦] (Ty𝑓 ,𝐿 (𝑥) = immut𝛼 mut𝛽 𝑇)
𝜑 𝑓 ,𝐿 [⟨⟨𝑥∗∗⟩, ⟨𝑥◦∗⟩⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗∗, 𝑥◦∗⟩/𝑦] (Ty𝑓 ,𝐿 (𝑥) = mut𝛼 own𝑇)
𝜑 𝑓 ,𝐿 [⟨𝑥∗, 𝑥∗⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [𝑥∗/𝑦] (Ty𝑓 ,𝐿 (𝑥) = mut𝛼 immut𝛽 𝑇)
𝜑 𝑓 ,𝐿 [⟨⟨𝑥∗∗, 𝑥∗◦⟩, ⟨𝑥◦∗, 𝑥∗◦⟩⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗∗, 𝑥◦∗⟩/𝑦] (Ty𝑓 ,𝐿 (𝑥) = mut𝛼 mut𝛽 𝑇)

(Chc-Stmt-Deref)

(|𝐿: let ∗𝑦 = copy ∗𝑥 ; goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 ⇐= 𝜑 𝑓 ,𝐿′ [𝑥/𝑦, 𝑥/𝑥]

(|𝐿: 𝐼 ; goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 ⇐= 𝜑 𝑓 ,𝐿′ (𝐼 = 𝑥 as 𝑇, intro𝛼, now𝛼, 𝛼 ≤ 𝛽)

(|𝐿: let𝑦 = 𝑔⟨· · ·⟩(®𝑥); goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 ⇐= 𝑔entry (®𝑥,𝑦) ∧ 𝜑 𝑓 ,𝐿′ [𝑦/𝑦] (Chc-Stmt-Call)

(|𝐿: return𝑥 |)𝑓 := 𝜑 𝑓 ,𝐿 [𝑥/res] ⇐= ⊤ (Chc-Stmt-Return)

(|𝐿: let ∗𝑦 = const; goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 ⇐= 𝜑 𝑓 ,𝐿′ [⟨const⟩/𝑦]

(|𝐿: let ∗𝑦 = ∗𝑥0 op ∗𝑥1; goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 [𝑝0/𝑥0, 𝑝1/𝑥1] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥0∗ op 𝑥1∗⟩/𝑦, 𝑝0/𝑥0, 𝑝1/𝑥1]

where 𝑝𝑖 :=

{
⟨𝑥𝑖∗⟩ (Ty𝑓 ,𝐿 (𝑥𝑖) = 𝑃 int)
⟨𝑥𝑖∗, 𝑥𝑖◦⟩ (Ty𝑓 ,𝐿 (𝑥𝑖) = mut𝛼 int)

(|𝐿: let ∗𝑦 = rand(); goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑦∗⟩/𝑦]

(|𝐿: let ∗𝑦 = inj𝑇0+𝑇1

𝑖
∗𝑥 ; goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 [⟨𝑥∗⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨inj𝑖 𝑥∗⟩/𝑦]

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:25

(|𝐿: match ∗𝑥 {
−−−−−−−−−−−−−−→
inj ∗𝑦 → goto𝐿′ }|)𝑓

:=

{
(𝜑 𝑓 ,𝐿 [⟨inj𝑖 𝑥∗!⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′

𝑖
[⟨𝑥∗!⟩/𝑦𝑖])𝑖=0,1 (Ty𝑓 ,𝐿 (𝑥) = 𝑃 (𝑇0 +𝑇1))

(𝜑 𝑓 ,𝐿 [⟨inj𝑖 𝑥∗!, inj𝑖 𝑥◦!⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′
𝑖
[⟨𝑥∗!, 𝑥◦!⟩/𝑦𝑖])𝑖=0,1 (Ty𝑓 ,𝐿 (𝑥) = mut𝛼 (𝑇0 +𝑇1))

(Chc-Stmt-Match)

(|𝐿: let ∗𝑦 = (∗𝑥, ∗𝑥 ′); goto𝐿′ |)𝑓 := 𝜑 𝑓 ,𝐿 [⟨𝑥∗⟩/𝑥, ⟨𝑥 ′∗⟩/𝑥 ′] ⇐= 𝜑 𝑓 ,𝐿′ [⟨(𝑥∗, 𝑥 ′∗)⟩/𝑦]

(|𝐿: let (∗𝑦, ∗𝑦 ′) = ∗𝑥 ; goto𝐿′ |)𝑓

:=

𝜑 𝑓 ,𝐿 [⟨(𝑥∗, 𝑥 ′∗)⟩/𝑥] ⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗⟩/𝑦, ⟨𝑥 ′∗⟩/𝑦 ′] (Ty𝑓 ,𝐿 (𝑥) = 𝑃 (𝑇 ×𝑇 ′))

𝜑 𝑓 ,𝐿 [⟨(𝑥∗, 𝑥 ′∗), (𝑥◦, 𝑥 ′◦)⟩/𝑥]
⇐= 𝜑 𝑓 ,𝐿′ [⟨𝑥∗, 𝑥◦⟩/𝑦, ⟨𝑥 ′∗, 𝑥 ′◦⟩/𝑦 ′]

(Ty𝑓 ,𝐿 (𝑥) = mut𝛼 (𝑇 ×𝑇 ′))
(CHC-Stmt-Pair-Split)

The important rule is Chc-Stmt-Mutbor, the rule for a mutable (re)borrow. The first and second

cases respectively correspond to a borrow and a reborrow. In both cases, we take a fresh variable

𝑥◦ that represents the value of the target object at the deadline of the (re)borrow. Letting 𝑥∗ be the
current target value, we model the created mutable reference as ⟨𝑥∗, 𝑥◦⟩, the pair of the current and
final target values. After the (re)borrow, the (current) target value of the lender is set to 𝑥◦, which
is valid because the lender gets frozen in the type system. In the case of reborrow, letting ⟨𝑥∗, 𝑥 ′◦⟩
be the original value of the lender mutable reference, the new value of the lender is set to ⟨𝑥◦, 𝑥 ′◦⟩,
where the lender’s own final target value is retained.

When a mutable reference 𝑥 is released (the second case of Chc-Stmt-Drop), the final target

value of 𝑥 is set to the current target value 𝑥∗. We use pattern matching here instead of equality,

unlike informal explanation in §1.2. A similar thing happens when we weaken a mutable reference

into an immutable reference (Chc-Stmt-Immut).

The rule for dereference let𝑦 = ∗𝑥 Chc-Stmt-Deref is tricky. This instruction turns a pointer to

a pointer 𝑥 into a pointer to the inner target object 𝑦. We have six cases here depending on the

type information, or the pointer kinds of the outer and inner pointers. Let us see each case more

closely. (i) An owning pointer to a pointer is simply dereferenced into the inner pointer. (ii, iii) An

immutable reference to a pointer is dereferenced into an immutable reference to the inner object. If

the inner pointer of 𝑥 is a mutable reference, we discard the final target value. (iv) Dereference of a

mutable reference to an owning pointer can be regarded as a subdivision of the mutable reference.

(v) Dereference of a mutable reference to an immutable reference yields an immutable reference,

which weakens the update permission of the inner mutable reference into the read permission.

Therefore, we constrain the value of 𝑥 in a manner similar to Chc-Stmt-Immut.
10
(vi) Dereference

of a mutable reference to a mutable reference can be regarded as a subdivision of the outer mutable

reference, as in the fourth case. At the low level, the address of the outer mutable reference is fixed

to the current one by this dereference. Therefore, in our CHC representation, we fix the final target

value of the inner mutable reference to the current one 𝑥∗◦. A subtle point is that, for a mutable

reference to a mutable reference, we can destructively update the address of the inner mutable

reference (we can see an example of such update later in §5.2, in the function named swap_dec).
In the second case of Chc-Stmt-Match and the second case of CHC-Stmt-Pair-Split, we

perform subdivision of a mutable reference. Both the current and final target values are subdivided

by the operations. For CHC-Stmt-Pair-Split, when the mutable reference 𝑥 turns into 𝑦, 𝑥 loses

the update permission to the tag of the variant.

10
We actually don’t need to support the case (v), because we can perform immut𝑥 before let 𝑦 = ∗𝑥 .

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:26 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

For a function call, the CHC body has a conjunction (Chc-Stmt-Call). Recall that in the opera-

tional semantics we add one stack frame when we call a function. The conjunction in the CHC

body actually introduces a behavior analogous to the stack frame addition in an algorithm called

resolution, as seen in §4.1 and §4.3.

When we return from a function (Chc-Stmt-Return), we set the return value res for the return
statement. Again, instead of writing res = 𝑥 , we use pattern matching to constrain res to be equal

to 𝑥 .

Example 3 (CHC Representation). We present below the CHC representation of the program

presented in Example 1, consisting of take-max and inc-max. We give variables the following fixed

linear order: oc′, o1,ma,mb, or, oa, ob.

take-maxentry (⟨ma∗,ma◦⟩, ⟨mb∗,mb◦⟩, res)
⇐= take-maxL1 (⟨ma∗,ma◦⟩, ⟨mb∗,mb◦⟩, ⟨ma∗ >=mb∗⟩, res)

take-maxL1 (ma,mb, ⟨inj
1
ord∗!⟩, res) ⇐= take-maxL2 (ma,mb, ⟨ord∗!⟩, res)

take-maxL1 (ma,mb, ⟨inj
0
ord∗!⟩, res) ⇐= take-maxL5 (ma,mb, ⟨ord∗!⟩, res)

take-maxL2 (ma,mb, ou, res) ⇐= take-maxL3 (ma,mb, res)

take-maxL3 (ma, ⟨mb∗,mb∗⟩, res) ⇐= take-maxL4 (ma, res)

take-maxL4 (ma,ma) ⇐= ⊤

take-maxL5 (ma,mb, ou, res) ⇐= take-maxL6 (ma,mb, res)

take-maxL6 (⟨ma∗,ma∗⟩,mb, res) ⇐= take-maxL7 (mb, res)

take-maxL7 (mb,mb) ⇐= ⊤

inc-maxentry (oa, ob, res) ⇐= inc-maxL1 (oa, ob, res)

inc-maxL1 (⟨oa∗⟩, ob, res) ⇐= inc-maxL2 (⟨oa∗, oa◦⟩, ⟨oa◦⟩, ob, res)

inc-maxL2 (ma, oa, ⟨ob∗⟩, res) ⇐= inc-maxL3 (ma, ⟨ob∗, ob◦⟩, oa, ⟨ob◦⟩, res)

inc-maxL3 (ma,mb, oa, ob, res) ⇐= take-maxentry (ma,mb,mc) ∧ inc-maxL4 (mc, oa, ob, res)

inc-maxL4 (mc, oa, ob, res) ⇐= inc-maxL5 (⟨1⟩,mc, oa, ob, res)

inc-maxL5 (⟨o1∗⟩, ⟨mc∗,mc◦⟩, oa, ob, res) ⇐= inc-maxL6 (⟨mc∗ + o1∗⟩, ⟨o1∗⟩, ⟨mc∗,mc◦⟩, oa, ob, res)

inc-maxL6 (oc′, o1,mc, oa, ob, res) ⇐= inc-maxL7 (oc′,mc, oa, ob, res)

inc-maxL7 (⟨oc′∗⟩, ⟨mc∗,mc◦⟩, oa, ob, res) ⇐= inc-maxL8 (⟨mc∗⟩, ⟨oc′∗,mc◦⟩, oa, ob, res)

inc-maxL8 (oc′,mc, oa, ob, res) ⇐= inc-maxL9 (mc, oa, ob, res)

inc-maxL9 (⟨mc∗,mc∗⟩, oa, ob, res) ⇐= inc-maxL10 (oa, ob, res)

inc-maxL10 (oa, ob, res) ⇐= inc-maxL11 (oa, ob, res)

inc-maxL11 (⟨oa∗⟩, ⟨ob∗⟩, res) ⇐= inc-maxL12 (⟨oa∗ != ob∗⟩, ⟨oa∗⟩, ⟨ob∗⟩, res)

inc-maxL12 (or, oa, ob, res) ⇐= inc-maxL13 (or, ob, res)

inc-maxL13 (or, ob, res) ⇐= inc-maxL14 (or, res)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:27

inc-maxL14 (or, or) ⇐= ⊤
The essence of this CHC system is the same as what we informally presented in §1.2. Note that

here we use pattern matching to eliminate equalities, unlike the informal description.

3.3 Soundness and Completeness of Our Reduction
Now we formally state the soundness and completeness of our reduction and outline the proof of

it. The complete proof is presented in §4.

In order to formally state the soundness and completeness of our CHC representation with

respect to the actual behavior in the operational semantics, we first define the judgment to extract

structured values from the heap memory and also check the safety condition on the heap memory

based on ownership. Then, using that, we define the OS-based model 𝑓 OS
𝛱

of a function 𝑓 , which is

a predicate that describes the input-output relation of the function 𝑓 with respect to its behavior in

the operational semantics. Here, for simplicity, 𝑓 is restricted to what we call a simple function,
i.e., a function whose input/output types do not contain mutable references. Finally, we state the

soundness and completeness theorem and outline the proof of it.

Notation. We use {|· · ·|} (instead of {· · ·}) for multisets.𝐴⊕𝐵 (or more generally

⊕
𝜆 𝐴𝜆) denotes

the multiset sum. For example, {|0, 1|} ⊕ {|1|} = {|0, 1, 1|} ≠ {|0, 1|}.

Basic Extraction-Examination Judgment. We build a mechanism for extracting structured values
from the heap memory, which is a finite map from addresses to integers. Also, we formally describe

the safety condition on the heap memory with respect to the type information, which is designed

to ensure invariants on permission. Because we currently target only simple functions, we can
ignore mutable references and ignore frozen variables. (Later in §4, we extend the judgments to

actually handle them.)

We first introduce the notion of weak abstract configuration.

(weak abstract configuration)
ˇC ::= [𝑓 , 𝐿] F

(weak abstract stack frame)
ˇF ::= (a finite map from variables to values)

A weak abstract configuration is similar to a concrete configuration in the operational semantics,

but maps each variable to a value and gets rid of the heap memory. The configuration has only one

stack frame, since we target only the initial and final states of a function call. We also introduce

some auxiliary notions. An access mode 𝐷 is an item either of the form update or read, representing
the permission on the memory access. A memory footprintM is a multiset of items of form 𝑎[𝐷].
Now we introduce the two basic judgments for structurally extracting the value from the heap

memory, H ⊢𝐷 𝑎: 𝑃 𝑇 ▶ 𝑣 | M and H ⊢𝐷 ∗𝑎:𝑇 ▶ 𝑣 | M. The former structurally extracts

from the heap memory H the pointer object typed 𝑃 𝑇 of the address 𝑎 as a value 𝑣 , yielding a

memory footprintM, under the access mode 𝐷 . The latter is similar to the former but extracts the

object typed 𝑇 stored at the address 𝑎. The two judgments are mutually inductively defined by the

following rules.

H ⊢𝐷 ·𝑃 ∗𝑎:𝑇 ▶ 𝑣 | M
H ⊢𝐷 𝑎: 𝑃 𝑇 ▶ ⟨𝑣⟩ | M

𝐷 · own := 𝐷 𝐷 · immut𝛽 := read

H(𝑎) = 𝑎′ H ⊢𝐷 𝑎′: 𝑃 𝑇 ▶ 𝑣 | M
H ⊢𝐷 ∗𝑎: 𝑃 𝑇 ▶ 𝑣 | M ⊕ {|𝑎[𝐷] |}

H(𝑎) = 𝑖 ∈ {0, 1} H ⊢𝐷 ∗(𝑎 + 1):𝑇𝑖 ▶ 𝑣 | M 𝑁 = max{|𝑇1−𝑖 | − |𝑇𝑖 |, 0}
H ⊢𝐷 ∗𝑎:𝑇0 +𝑇1 ▶ inj𝑖 𝑣 | M ⊕ {|𝑎[𝐷] |} ⊕ {|(𝑎 + 1 + |𝑇𝑖 | + 𝑘) [𝐷] | 0 ≤ 𝑘 < 𝑁 |}

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:28 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

H ⊢𝐷 ∗𝑎:𝑇0 ▶ 𝑣0 | M0 H ⊢𝐷 ∗(𝑎 + |𝑇0 |):𝑇1 ▶ 𝑣1 | M1

H ⊢𝐷 ∗𝑎:𝑇0 ×𝑇1 ▶ (𝑣0, 𝑣1) | M0 ⊕M1

H ⊢𝐷 ∗𝑎:𝑇 [𝜇𝑋 .𝑇 /𝑋] ▶ 𝑣 | M
H ⊢𝐷 ∗𝑎: 𝜇𝑋 .𝑇 ▶ 𝑣 | M

H(𝑎) = 𝑛

H ⊢𝐷 ∗𝑎: int ▶ 𝑛 | {|𝑎[𝐷] |} H ⊢𝐷 ∗𝑎: unit ▶ () | ∅

For example, the following judgments hold (♠, r, q and ♣ can be any addresses).

{(♠, 7), (♠ + 1, 5)} ⊢update ♠: own (int × int) ▶ ⟨(7, 5)⟩ | {|♠[update], (♠ + 1) [update] |}
{(r, q), (r + 1, q), (q, 3)} ⊢update r: own (immut𝛼 int × immut𝛼 int)

▶ ⟨⟨3⟩, ⟨3⟩⟩ | {|r[update], (r + 1) [update], q[read], q[read] |}

Next, we introduce the judgment H ⊢ F: Γ ▶ ˇF | M for extracting values from a concrete stack

frame as a weak abstract stack frame, which is defined by the following rule.

for each 𝑥 : 𝑃 𝑇 ∈ Γ, H ⊢update F(𝑥): 𝑃 𝑇 ▶ 𝑣𝑥 | M𝑥

H ⊢ F: Γ ▶ {(𝑥, 𝑣𝑥) | 𝑥} |
⊕

𝑥M𝑥

Using this, we introduce the judgment 𝛱 ⊢ C ▶ ˇC | M for extracting values from a concrete

configuration as a weak abstract configuration, which is defined by the following rule.

H ⊢ F: Γ𝛱,𝑓 ,𝐿 ▶ ˇF | M
𝛱 ⊢ [𝑓 , 𝐿] F | H ▶ [𝑓 , 𝐿] ˇF | M

Γ𝛱,𝑓 ,𝐿 : the data context at the program point (𝑓 , 𝐿) in the program 𝛱

We introduce the safety judgment on a memory footprint ⊢ M: ok. It is defined through an

auxiliary judgment ⊢𝑎 M: ok as follows.

for each 𝑎, ⊢𝑎 M: ok
⊢ M: ok

M𝑎 = ∅
⊢𝑎 M: ok

M𝑎 = {|𝑎[update] |}
⊢𝑎 M: ok

M𝑎 = {|
−−−−−−→
𝑎[read] |}

⊢𝑎 M: ok
M𝑎

: the multiset of items of the form 𝑎[· · ·] inM

Finally, we introduce the basic extraction-examination judgment 𝛱 ⊢ C ▶ok ˇC. It is the judgment

for extracting a weak abstract configuration from a concrete configuration and also examining the

safety and is defined by the following rule.

𝛱 ⊢ C ▶ ˇC | M ⊢ M: ok

𝛱 ⊢ C ▶ok ˇC

OS-based Model. Now we define the OS-based model 𝑓 OS
𝛱

of each simple function 𝑓 in a program

𝛱 . It is the predicate that describes the input-output relation of the function 𝑓 with respect to its

behavior in the operational semantics (abbreviated as OS). We say that a function is simple when it

does not take mutable references in the input and output types. The OS-based model 𝑓 OS
𝛱

is defined

as the predicate on values of sorts

−−→
(|𝑇 |), (|𝑈 |) where 𝛴𝛱,𝑓 = ⟨· · ·⟩(−−→𝑥 :𝑇) → 𝑈 , given by the following

rule.

𝛱 ⊢ C→ · · · → C′: end 𝛱 ⊢ C ▶ok [𝑓 , entry]{
−−−−→
(𝑥, 𝑣)} 𝛱 ⊢ C′ ▶ok [𝑓 , 𝐿]{(𝑦,𝑤)}

𝑓 OS𝛱 (®𝑣,𝑤)

Soundness and Completeness Theorem. Finally, the soundness and completeness of our reduction

is simply stated as follows.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:29

Theorem 1 (Soundness and Completeness of Our Reduction). For any well-typed program
𝛱 and any function 𝑓 in 𝛱 , Mleast

(|𝛱 |) (𝑓entry) is equivalent to 𝑓
OS
𝛱

.

The complete proof of the theorem is presented in §4. We outline the proof below.

Outline of the Proof. We first introduce a deduction algorithm on CHCs called SLDC resolu-
tion, which is a variant of SLD resolution [43]. We show that SLDC resolution is complete with

respect to the least model of the CHC system (Lemma 2).

Next, we extend the basic extraction-examination judgment to accept mutable references and

frozen variables. The key idea is to model the final target value 𝑎◦ of each mutable reference as

a syntactic variable in logic, which is semantically universally quantified. Roughly speaking, a

mutable reference is modeled as a pair of the current target value and a unique logic variable, and a

frozen variable is modeled as a value with some borrowed parts remaining to be logic variables.

Finally, we complete the proof by establishing a bisimulation between the operational semantics

and SLDC resolution under our CHC representation (Theorem 4). A key point is that, at the moment

we release a mutable reference, we specialize the logic variable for the mutable reference. □

3.4 Advanced Examples
Here we present two advanced examples of verifying pointer-manipulating Rust programs by our

reduction. For readability, we write CHCs again in an informal style like §1.

Example 4. Let us consider the following Rust program, which is a variant of just_rec in §1.1.

fn choose <'a>(ma: &'a mut i32 , mb: &'a mut i32) -> &'a mut i32 {

if rand() { ma } else { mb }

}

fn linger_dec <'a>(ma: &'a mut i32) -> bool {

*ma -= 1; if rand() { return true; }

let mut b = rand(); let b0 = b;

{ let mb = &mut b; let r2 = linger_dec(choose(ma, mb)); }

r2 && b0 >= b

}

Unlike just_rec, the function linger_dec can modify the local variable of an arbitrarily deep

ancestor. Each recursive call to linger_dec can introduce a new lifetime for mb, so arbitrarily many

layers of lifetimes can be yielded.

The Rust program above can be expressed in COR as follows.

fn choose ⟨𝛼⟩ (ma:mut𝛼 int, mb:mut𝛼 int) → mut𝛼 int {
entry: goto L1/L2 L1: dropmb; returnma L2: dropma; returnmb

}

fn linger-dec ⟨𝛼⟩ (ma:mut𝛼 int) → own bool {
entry: ∗ma -= 1; goto L1/L2 L1: dropma; let ∗otrue = true; return ∗otrue
L2: let ∗ob = rand(); let ∗ob0 = copy ∗ob; intro 𝛽 ; letmb = mutbor𝛽 ob;

letmc = choose⟨𝛽⟩(ma,mb); let or ′ = linger-dec⟨𝛽⟩(mc);
now 𝛽 ; let ∗or ′′ = ∗ob0 >= ∗ob; let ∗or = ∗or ′ && ∗or ′′; drop(ob0, ob, or ′, or ′′); return or

}

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:30 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

For brevity, we admitted here the following features: the non-deterministic branching statement

goto𝐿/𝐿′ (which jumps to either 𝐿 or 𝐿′), the decrement instruction ∗𝑥 -= 1, the true-value taking

instruction let ∗𝑦 = true, the boolean conjunction instruction let ∗𝑦 = ∗𝑥 && ∗𝑥 ′, and the multiple-

variable release instruction drop(®𝑥). These additional features can be expressed by composition of

original features. Also, we omitted some labels.

Suppose we wish to verify that linger_dec never returns false. If we use, like JustRec+ in
§1.1, a predicate taking the memory states ℎ,ℎ′ and the stack pointer sp, we have to discover the

quantified invariant: ∀ 𝑖 ≤ sp. ℎ[𝑖] ≥ ℎ′[𝑖]. In contrast, our approach reduces this verification

problem to the following CHCs.

Choose(⟨𝑎, 𝑎◦⟩, ⟨𝑏,𝑏◦⟩, 𝑟) ⇐= (𝑏◦ = 𝑏 ∧ 𝑟 = ⟨𝑎, 𝑎◦⟩) ∨ (𝑎◦ = 𝑎 ∧ 𝑟 = ⟨𝑏,𝑏◦⟩)
LingerDec(⟨𝑎, 𝑎◦⟩, 𝑟) ⇐= (𝑎◦ = 𝑎 − 1 ∧ 𝑟 = true) ∨

(∃𝑏, 𝑏◦,mc, 𝑟 ′.Choose(⟨𝑎 − 1, 𝑎◦⟩, ⟨𝑏, 𝑏◦⟩,mc) ∧ LingerDec(mc, 𝑟 ′) ∧ 𝑟 = (𝑟 ′ && 𝑏 >= 𝑏◦))
𝑟 = true ⇐= LingerDec(⟨𝑎, 𝑎◦⟩, 𝑟)
This can be solved by many CHC solvers since it has a very simple solution like below.

Choose(⟨𝑎, 𝑎◦⟩, ⟨𝑏,𝑏◦⟩, 𝑟) :⇐⇒ (𝑏◦ = 𝑏 ∧ 𝑟 = ⟨𝑎, 𝑎◦⟩) ∨ (𝑎◦ = 𝑎 ∧ 𝑟 = ⟨𝑏,𝑏◦⟩)
LingerDec(⟨𝑎, 𝑎◦⟩, 𝑟) :⇐⇒ 𝑟 = true ∧ 𝑎 ≥ 𝑎◦

Example 5. Combined with recursive data types, our method turns out to be more powerful. Let

us consider the following Rust program that features a singly linked list.

enum List <T> { Cons(T, Box <List <T>>), Nil } use List ::*;

fn take_some <'a>(mla: &'a mut List <i32 >) -> &'a mut i32 {

match mla {

Cons(ma, mla2) => if rand() { ma } else { take_some(mla2) }

Nil => loop {}

}

}

fn sum(la: &List <i32 >) -> i32 {

match la { Cons(a, la2) => a + sum(la2), Nil => 0 }

}

fn inc_some(mut la: List <i32 >) -> bool {

let n = sum(&la); let mb = take_some (&mut la);

*mb += 1; let m = sum(&la); m == n + 1

}

This program handles a singly linked list type List<T>, which is a common recursive data type. The

function take_some takes a mutable reference to an integer list and returns a mutable reference to

some element of the list. The function sum calculates the sum of the elements of a list. The function

inc_some increments some element of the input list using a mutable reference and checks that the

sum of the elements of the list has increased by 1.
The Rust program above can be expressed in COR as follows.

fn take-some ⟨𝛼⟩ (mla:mut𝛼 list int) → mut𝛼 int {
entry: mla as mut𝛼 (int × own list int + unit); match ∗mla { inj

0
∗mala′→ L1, inj

1
∗mu→ L4 }

L1: let (∗ma, ∗mla′) = ∗mala′; goto L2/L3 L2: dropmla′; returnma
L3: dropma; letma′ = take-some⟨𝛼⟩(mla′); returnma′ L4: goto L4

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:31

}
fn sum ⟨𝛼⟩ (rla: immut𝛼 list int) → own bool {
entry: rla as immut𝛼 (int × own list int + unit); match ∗rla { inj

0
∗rala′→ L1, inj

1
∗ru→ L2 }

L1: let (∗ra, ∗rla′) = ∗rala′; let on = sum⟨𝛼⟩(rla′); let ∗or = ∗ra + ∗on; drop(ra, on);
return or L2: drop ru; let ∗o0 = 0; return o0

}
fn drop-list(ola: own list int) → own unit {· · ·}
fn inc-some(ola: own list int) → own bool {
entry: intro𝛼 ; let rla = immutbor𝛼 ola; let on = sum⟨𝛼⟩(rla); now𝛼 ;

intro 𝛽 ; letmla = mutbor𝛽 ola; letmb = take-some⟨𝛽⟩(mla); ∗mb += 1; dropmb; now 𝛽 ;

intro𝛾 ; let rla = immutbor𝛾 ola; let om = sum⟨𝛾⟩(rla); now𝛾 ;

∗on += 1; let or = ∗om == ∗on; let ou = drop-list(ola); drop(ou, om, on); return or
}
Here, list𝑇 is sugar for the recursive type 𝜇𝑋 .𝑇 ×own𝑋 +unit. We have omitted the implementation

of the function drop-list, which releases the data of a list of integers. Also, we have admitted the

no-op jump statement goto𝐿, the immutable borrow instruction let𝑦 = immutbor𝛼 𝑥 and the

increment instruction ∗𝑥 += 1.

Suppose we wish to verify that inc_some never returns false. Our method reduces this verifi-

cation problem into the following system of CHCs.

TakeSome(⟨𝑎 :: la′, la◦⟩, 𝑟) ⇐= ∃𝑎◦, la′◦. la◦ = 𝑎◦ :: la′◦ ∧(
(la′◦ = la′ ∧ 𝑟 = ⟨𝑎, 𝑎◦⟩) ∨ (𝑎◦ = 𝑎 ∧ TakeSome(⟨la′, la′◦⟩, 𝑟))

)
TakeSome(⟨nil, la◦⟩, 𝑟) ⇐= TakeSome(⟨nil, la◦⟩, 𝑟)
Sum(⟨𝑎 :: la′⟩, 𝑟) ⇐= ∃𝑟 ′. Sum(⟨la′⟩, 𝑟 ′) ∧ 𝑟 = 𝑎 + 𝑟 ′

Sum(⟨nil⟩, 𝑟) ⇐= 𝑟 = 0

IncSome(la, 𝑟) ⇐= ∃𝑛, la◦, 𝑦,𝑦◦,𝑚. Sum(⟨la⟩, 𝑛) ∧ TakeSome(⟨la, la◦⟩, ⟨𝑦,𝑦◦⟩)
∧ 𝑦◦ = 𝑦 + 1 ∧ Sum(⟨la◦⟩,𝑚) ∧ 𝑟 = (𝑚 == 𝑛+1)

𝑟 = true ⇐= IncSome(la, 𝑟)
Here, nil denotes the nil list and 𝑡 :: 𝑢 denotes the cons list made of the head 𝑡 and the tail 𝑢. In

our formal logic introduced in §3.1, they are respectively expressed as inj
0
(𝑥, ⟨lx⟩) and inj

1
(). An

important technique used above is subdivision of a mutable reference performed in the function

take_some. In the function take_some the mutable reference mla can be subdivided into mutable

references to the head and tail of the list, which is expressed in the first CHC by the constraint

la◦ = 𝑎◦ :: la′◦.
We can give this CHC system a very simple solution, using an auxiliary recursive function sum

defined by sum(𝑎 :: la′) := 𝑎 + sum(la′) and sum(nil) := 0.

TakeSome(⟨la, la◦⟩, ⟨𝑏,𝑏◦⟩) :⇐⇒ 𝑏◦ − 𝑏 = sum(la◦) − sum(la)
Sum(⟨la⟩, 𝑟) :⇐⇒ 𝑟 = sum(la)

IncSome(la, 𝑟) :⇐⇒ 𝑟 = true.

The validity of the solution can be checked without induction about sum; specifically, we can check

the validity of each CHC just by unfolding sum at most once. Notably, we do not need auxiliary

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:32 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

notions like index access on lists to express the solution, which makes our approach scalable to

richer recursive data types like trees.
Notably, in our experiments reported in §5, the example presented above was fully automatically

and promptly verified by our prototype verifier RustHorn, using HoIce [12, 13] as the back-end CHC

solver. Our verifier also successfully verified the variant of this example for trees instead of lists,

which indicates high scalability of our approach for recursive data types. Note still that the CHC

solver HoIce adopts a rather heuristic approach to find solutions that handle recursive functions

over recursive data types (details are presented in [12]). For example, for the CHCs for inc_some,
HoIce found the recursive function sum by analyzing the CHCs for the predicate variable Sum. It

remains to be seen how well our approach verifies Rust programs with mutable references and

recursive data types in general, given also that CHC solving techniques are still evolving.

3.5 Discussions
We discuss here various topics about our idea.

Combining Our Reduction with Various Verification Techniques. Our idea can also be expressed

as a reduction of a pointer-manipulating Rust program into a program of a stateless functional
programming language, which allows us to use various verification techniques not limited to CHCs.

Access to future information can be modeled using non-determinism. To model the target value 𝑎◦
at the end of the mutable borrow, we just randomly guess the value with non-determinism. At the

time we actually release a mutable reference, we just check a' = a and cut off execution branches

that do not pass the check.

For example, take_max/inc_max in §1.2 and Example 1 can be reduced into the following OCaml

program.

let rec assume b = if b then () else assume b

let take_max (a, a') (b, b') =

if a >= b then (assume (b' = b); (a, a'))

else (assume (a' = a); (b, b'))

let inc_max a b =

let a' = Random.int(0) in let b' = Random.int(0) in
let (c, c') = take_max (a, a') (b, b') in
assume (c' = c + 1); not (a' = b')

let main a b = assert (inc_max a b)

Here, the bindings let a' = Random.int(0) and let b' = Random.int(0) take the future tar-

get values with random guesses, and the assumption checks assume (b' = b), assume (a' = a)
and assume (c' = c + 1) model the check of the random guesses. The original problem “Does

inc_max never return false?” on the Rust program is reduced to the problem “Does main never fail
at the assertion?” on the OCaml representation above. Notably, MoCHi [41], a higher-order model

checker for OCaml, successfully verified the safety property for the OCaml representation above.

It also successfully and instantly verified a similar OCaml representation of the Rust program of

linger_dec presented at Example 4.

This representation allows us to use various verification techniques for Rust programs, including

model checking (higher-order, temporal, bounded, etc.), semi-automated verification (e.g., in Boogie

[50]) and verification in proof assistants (e.g., Coq [16]). The verified properties can be not only

partial correctness but also total correctness and liveness. Also, our reduction can be used with

various bug finding techniques such as symbolic testing (because we get an equivalent representation
of the Rust program, as the theorem 1 states). Further investigation in these directions is needed.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:33

Verifying Higher-Order Programs. Rust supports closures, internally encoding them as the tuple

of the function pointer and the captured objects, creating a fresh internal type for each closure.

Our reduction can support such closures simply by desugaring them as the captured objects.

As an advanced feature, Rust support trait objects, which performs dynamic dispatch. Using a trait
object, Rust can use a boxed closure, which is required to get the full expressivity of higher-order

programming. If we use rich verification frameworks like higher-order CHCs [11], our reduction

can still model Rust programs that operate boxed closures, using some tricks. In order to model

a closure that captures mutable references, we can equip the model of a closure with the ‘drop

predicate’, which expresses the constraint that we should add when we release the closure. In

order to model a closure that updates objects it captures, we can equip the output of the closure

the updated version of the closure (using some recursive type). We need further investigation on

verifying Rust programs with boxed closures and trait objects.

Libraries with Unsafe Code. Although the subset discussed earlier is quite limited, we can easily

apply our reduction to some Rust libraries. For example, the vector (dynamically allocated array)

type Vec<T> [64] can simply be represented as a functional array. In particular, we can model Vec::
index_mut(self: &mut Vec<T>, idx: usize)-> &mut T, a function that takes out a mutable

reference to some element of a vector out of a mutable reference to a vector. Also, we can support

mutable iterators on a vector. Similarly, we can also support data structures like a hash map

HashMap<K, V> [60]. We can also support some concurrency libraries like thread::spawn [63].
However, Rust libraries like RefCell<T> [59] and Mutex<T> [62] impose challenges to our

method, because they introduce shared mutable states (or more technically, interior mutability). A
naive approach is to pass around the global memory state for such data types. Here, let us discuss

how to support RefCell<T>, which is a memory cell that attains dynamic permission control by

reference counting and allows us to build data structures with circular references. We can model

each instance of RefCell as an index and pass around the global array that maps each index of a

RefCell<T> instance to a pair of the body value and the reference counter. To take a mutable or

immutable reference from RefCell, we check and update the counter and take out the value from

the array. At the time we take a mutable reference ⟨𝑎, 𝑎◦⟩ from a RefCell<T>, the body value in

the global array should be updated into 𝑎◦. This precisely models RefCell, but handling indices
and the global array can be costly. We can also think of separating the array into smaller parts by

methods like region-based type systems and pointer analysis.

Evenwhenwe find amodel for some Rust library, verifying the implementation of the library itself

can be tough, since it usually relies a lot on unsafe code, which is Rust code without static permission

control. RustBelt [34] mechanically proved (in the Coq proof assistant) memory safety of well-

typed Rust programs supporting various Rust libraries, including those with interior mutability. We

discuss this work more in §6. Matsushita [48] discusses how to extend RustBelt to verify functional
correctness with respect to our reduction, but the proof is not mechanized yet.

One caveat about our verification method is that it loses completeness in the presence of memory
leaks. A memory leak [55] is an act to throw away an object without successful cleanup, such as

memory deallocation and lock release. Although a basic subset of Rust (including the features

supported in COR) does not allow memory leaks, advanced libraries in Rust can cause memory

leaks. For example, when we build a cyclic graph using interior mutability by RefCell [59] and
reference-counting garbage collection by Rc [61], we can cause a memory leak by isolating some

cycle. When a leaked object has a mutable reference, we can fail at determining the final target

value of it, which makes our method incomplete. Still, we don’t think this is a major problem,

because our method is still sound and in general program behaviors with memory leaks are very

hard to verify any way.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:34 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

4 PROOF OF THE SOUNDNESS AND COMPLETENESS OF OUR REDUCTION
In this section, we give the complete proof of Theorem 1 stated in §3.3, the soundness and com-

pleteness of our reduction.

Clearly the tricky point is that our model of a mutable reference ⟨𝑎, 𝑎◦⟩ has future information,
namely the final target value 𝑎◦. Our proof gets around this by keeping all possibilities about the

future and narrowing them in the course of execution. A key ingredient is resolution, a deduction
algorithm over CHCs that can handle syntactic variables that are universally quantified over values.
This is nice for encoding future possibilities. Our proof goes by building a bisimulation between

execution in Rust and resolution over the CHCs obtained by our reduction, where the final target

value of each mutable reference is modeled by a syntactic variable in logic.

In §4.1, we introduce a special sort of resolution called SLDC resolution. In §4.2, we extend

the extraction-examination judgments introduced in §1 to model mutable references and frozen

variables. In §4.3, we complete the proof of Theorem 1, the soundness and completeness of our

reduction, by establishing a bisimulation between program execution and SLDC resolution (Theorem

4).

4.1 SLDC Resolution
We introduce a deduction algorithm on CHC systems, which we call SLDC resolution (Selective
Linear Definite clause Calculative resolution). It is a variant of SLD resolution [43] with calculative

steps. SLDC resolution is designed to be complete with respect to the logic (Lemma 2). Interpreting

each CHC as a deduction rule, resolution can generally be understood as a top-down construction

of a proof tree, and this idea is related to computation. As we see later, SLDC resolution is designed

to form bisimulation with execution in the operational semantics (Theorem 4).

SLDC resolution is described as a transition system on resolutive configurations K , which are of

the form ®̌𝜑 | 𝑝 . In a process of transition, it also uses resolutive pre-configurations ˆK , which are of

the form ®𝜑 | 𝑝 . Recall that 𝜑 is a meta-variable for a pattern formula, which does not have integer

operators op; on the other hand, 𝜑 is a meta-variable for a usual formula, which can have operators.

The pattern 𝑝 on the right side of a configuration/pre-configuration is used to track how variables

are instantiated. Later, SLDC resolution is associated with execution in the operational semantics;

the pattern formulas ®̌𝜑 in a configuration/pre-configuration can be understood as a model of a

call stack, and the pattern 𝑝 records the final return value. Resolutive (pre-)configurations that are

alpha-equivalent are considered identical.

The one-step transition relation judgment of SLDC resolution (Φ,Ξ) ⊢ K → K ′ is defined by

the following non-deterministic transformation.

(1) K should have one or more pattern formulas on the left side. LetK = 𝑓 (®𝑝), ®̌𝜑 | 𝑞. Take from Φ
any CHC𝛷 whose head formula unifies with 𝑓 (®𝑝). Namely,𝛷 is of the form ∀· · ·. 𝑓 (®𝑝 ′) ⇐=∧ ®𝜓 and ®𝑝 ′ unifies with ®𝑝 . Take the most general unifier (𝜃, 𝜃 ′) on ®𝑝 and ®𝑝 ′, such that

𝑝𝑖 𝜃 = 𝑝 ′𝑖 𝜃
′
holds for each 𝑖 . Here, 𝜃 and 𝜃 ′ are finite maps from variables to patterns. Now

we have a pre-configuration
ˆK =
−−→
𝜓 𝜃 ′,

−→̌
𝜑 𝜃 | 𝑞 𝜃 .

(2) Now we calculate and specialize
ˆK until we remove all operators and all variables that appear

only once (which we call orphaned variables) in K . By that, we obtain a configuration K ′
out of the pre-configuration

ˆK . Then we judge that (Φ,Ξ) ⊢ K → K ′ holds.
More precisely, the calculation and specialization process repeats the following operations

(the order of the operations can actually be freely chosen).

• We replace a term of the form 𝑛 op 𝑛′ with the integer taken by 𝑛 ⟦op⟧𝑛′.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:35

• An orphaned variable in the pre-configuration is replaced with any value of the suitable

sort.
11

• When in the pre-configuration there occurs a term of form 𝑥 op 𝑡 or 𝑡 op 𝑥 for some

variable 𝑥 , we globally replace 𝑥 with any integer 𝑛.12

Lemma 2 (Completeness of SLDC Resolution). For any CHC system (Φ,Ξ), for each predicate
variable 𝑓 taking one or more arguments, the predicate given in the least solution Mleast

(Φ,Ξ) (𝑓) is
equivalent to the predicate 𝑓 SLDC on values of the appropriate sorts defined by the following rule.

(Φ,Ξ) ⊢ 𝑓 (®𝑣, 𝑥) | 𝑥 → · · · → 𝜖 | 𝑝 𝑝 unifies to𝑤
𝑓 SLDC (®𝑣,𝑤)

Here, ‘𝑝 unifies to𝑤 ’ means that replacing variables in 𝑝 with some values we obtain𝑤 .

Proof. Similar to the proof of completeness of SLD resolution [43]. □

Example 6 (Resolution Sequence in SLDC Resolution). Below is an example resolution sequence

in SLDC resolution for the CHC system presented in Example 3, which represents the program

introduced in Example 1. It corresponds to the example execution in the operational semantics

presented in Example 2.

inc-maxentry (⟨5⟩, ⟨3⟩, 𝑟) | 𝑟
→ inc-maxL1 (⟨5⟩, ⟨3⟩, 𝑟) | 𝑟
→+ inc-maxL3 (⟨5, 𝑎◦⟩, ⟨3, 𝑏◦⟩, ⟨𝑎◦⟩, ⟨𝑏◦⟩, 𝑟) | 𝑟
→ take-maxentry (⟨5, 𝑎◦⟩, ⟨3, 𝑏◦⟩,mc), inc-maxL4 (mc, ⟨𝑎◦⟩, ⟨𝑏◦⟩, 𝑟) | 𝑟
→ take-maxL1 (⟨inj1 ()⟩, ⟨5, 𝑎◦⟩, ⟨3, 𝑏◦⟩,mc), inc-maxL4 (mc, ⟨𝑎◦⟩, ⟨𝑏◦⟩, 𝑟) | 𝑟
→+ take-maxL3 (⟨5, 𝑎◦⟩, ⟨3, 𝑏◦⟩,mc), inc-maxL4 (mc, ⟨𝑎◦⟩, ⟨𝑏◦⟩, 𝑟) | 𝑟
→ take-maxL4 (⟨5, 𝑎◦⟩,mc), inc-maxL4 (mc, ⟨𝑎◦⟩, ⟨3⟩, 𝑟) | 𝑟
→ inc-maxL4 (⟨5, 𝑎◦⟩, ⟨𝑎◦⟩, ⟨3⟩, 𝑟) | 𝑟
→ inc-maxL5 (⟨1⟩, ⟨5, 𝑎◦⟩, ⟨𝑎◦⟩, ⟨3⟩, 𝑟) | 𝑟
→+ inc-maxL7 (⟨6⟩, ⟨5, 𝑎◦⟩, ⟨𝑎◦⟩, ⟨3⟩, 𝑟) | 𝑟
→+ inc-maxL9 (⟨6, 𝑎◦⟩, ⟨𝑎◦⟩, ⟨3⟩, 𝑟) | 𝑟
→ inc-maxL10 (⟨6⟩, ⟨3⟩, 𝑟) | 𝑟
→+ inc-maxL14 (⟨inj1 ()⟩, 𝑟) | 𝑟
→ 𝜖 | ⟨inj

1
()⟩

In the third line (inc-maxL3), the mutable references ma and mb are modeled respectively as ⟨5, 𝑎◦⟩
and ⟨3, 𝑏◦⟩, where 𝑎◦ and 𝑏◦ are logic variables freshly taken for the borrows. Here, the frozen

variables oa and ob are respectively modeled as ⟨𝑎◦⟩ and ⟨𝑏◦⟩. In the seventh line (take-maxL4),
the mutable reference mb has been thrown away, and now 𝑏◦ is specialized to 3, which makes ob
modeled as a value ⟨3⟩ without a logic variable. In the twelfth line (inc-maxL10), the variable 𝑎◦ has
now been specialized to 6. Note that each logic variable is specialized before the deadline of the
corresponding borrow and the timing is determined dynamically.

11
We need this rule for the random value instruction let ∗𝑦 = rand() in establishing the bisimulation of Theorem 4.

12
We add this rule for the completeness lemma Lemma 2. Actually we do not need this rule for resolution of a CHC

representation (|𝛱 |) .

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:36 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

4.2 Extending the Basic Extraction-Examination Judgment
We extend the basic extraction-examination judgment 𝛱 ⊢ C ▶ok ˇC defined in §3.3 to accept

mutable references and frozen variable. The key idea is to model the final target value 𝑎◦ of each
mutable reference as a logic variable, which is semantically universally quantified. To model each

variable, we now use a value with logic variables, i.e., a pattern 𝑝 . A mutable reference is modeled as

a pair of the current target pattern and a logic variable uniquely assigned to the mutable reference.

Each mutably borrowed part of a frozen variable is set to the logic variable of the mutable reference

that borrows that part.

The new extraction-examination judgment is of the form 𝛱 ⊢ C ⊲ok C, where C is an abstract
configuration, which is an extension of a weak abstract configuration with logic variables. To

formally describe this judgment, we introduce new judgments for collecting the global information

on lifetime variables.

The safety judgment on a concrete configuration 𝛱 ⊢ C: ok is defined as ∃C. 𝛱 ⊢ C ⊲ok C.
Later we prove the progress and preservation properties for this safety condition for a well-typed

program, which can be regarded as the proof of soundness of the type system.

Taking Global and Dynamic Information on Lifetime Variables. First, for a well-typed program 𝛱

and a concrete configuration C, we construct the global lifetime context A𝛱,C, which is the lifetime

context for all the stack frames in C. A local lifetime 𝛼 in the 𝑖-th stack frame (indexed from the

bottom) is named 𝛼𝑖 . It also has the global elimination order, which is constructed based on the

promises in each function call (i.e., the lifetime context given by the type system for each stack

frame) and the hierarchy of stack frames (i.e., the property that 𝑖 ≥ 𝑗 implies 𝛼𝑖 ≤ 𝛽 𝑗
). We also add

to the global lifetime context the lifetime parameters in the base stack frame. Formally, A𝛱,C is

defined as follows.

A𝛱,C :=
(
{𝛼𝑖 | 𝑖, 𝛼 ∈ 𝐴!

𝑖 }, {(𝛼𝑖 , 𝛽𝑖) | 𝑖, (𝛼, 𝛽) ∈ ≤!

𝑖 } + {(𝛼𝑖 , 𝛽 𝑗) | 𝑖 ≥ 𝑗, 𝛼 ∈ 𝐴!

𝑖 , 𝛽 ∈ 𝐴!

𝑗 }
)

where C := [𝑓𝑛, 𝐿𝑛] F𝑛 ; [𝑓𝑛−1, 𝐿𝑛−1] 𝑥𝑛−1, F𝑛−1; · · · [𝑓0, 𝐿0] 𝑥0, F0 A𝑖 := A𝛱,𝑓𝑖 ,𝐿𝑖

𝐴!

𝑖+1 := |A𝑖+1 | −𝐴ex𝛱,𝑓𝑖+1,𝐿𝑖+1 (i.e., the set of local lifetimes) 𝐴!

0
:= |A0 |

≤!

𝑖 := {(𝛼, 𝛽) | (𝛼, 𝛽) ∈ ≤A𝑖
, 𝛼, 𝛽 ∈ 𝐴!

𝑖 }
A𝛱,𝑓 ,𝐿 : the lifetime context assigned to (𝑓 , 𝐿) in 𝛱 by the type system

Also, for each stack frame, indexed 𝑖 , we define the lifetime substitution Θ𝛱,C,𝑖 . It maps each

lifetime variable in the stack frame to the corresponding lifetime variable in the global lifetime

context A𝛱,C. For each local lifetime 𝛼 in the stack frame, we just add the tag 𝛼𝑖 . For each lifetime

parameter, we should find the lifetime variable assigned to it. Therefore, formally, Θ𝛱,C,𝑖 is defined

as follows.
13

Θ𝛱,C,𝑖+1 := {(𝛼, 𝛼𝑖+1) | 𝛼 ∈ 𝐴!

𝑖+1} + {
−−−−−−−−−−−−−−−→
(𝛽𝑖+1, 𝛾𝑖+1Θ𝛱,C,𝑖)} Θ𝛱,C,0 := {(𝛼, 𝛼0) | 𝛼 ∈ 𝐴!

0
}

where C := [𝑓𝑛, 𝐿𝑛] F𝑛 ; [𝑓𝑛−1, 𝐿𝑛−1] 𝑥𝑛−1, F𝑛−1; · · · [𝑓0, 𝐿0] 𝑥0, F0 A𝑖 := A𝛱,𝑓𝑖 ,𝐿𝑖

𝐴!

𝑖+1 := |A𝑖+1 | −𝐴ex𝛱,𝑓𝑖+1,𝐿𝑖+1 𝐴!

0
:= |A0 |

𝛴𝛱,𝑓𝑖+1,𝐿𝑖+1 := ⟨−−→𝛽𝑖+1 | · · ·⟩(· · ·) → · · ·

the function call for each stack frame indexed 𝑖 < 𝑛 is let𝑥𝑖 = 𝑓𝑖+1⟨−−→𝛾𝑖+1⟩(· · ·)

13
For simplicity, we assume that for each non-top stack frame we can uniquely determine the label of the function call

statement performed for creating the frame, which allows us to determine
−−→
𝛾𝑖+1. We can always satisfy this by inserting a

fresh no-op labeled statement just after the function call.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:37

Extracting Rich Information from the Heap Memory. First, we define an abstract configuration C
and an abstract stack frame F as follows.

(abstract configuration) C ::= [𝑓0, 𝐿0] F0; [𝑓1, 𝐿1] 𝑥1, F1; · · · [𝑓𝑛, 𝐿𝑛] 𝑥𝑛, F𝑛
(abstract stack frame) F ::= (a finite map from variables to patterns)

They correspond to a concrete configuration C and a concrete stack frame F, but map each data

variable to a pattern, which may contain logic variables. The use of the logic variables here is related
to the notion of prophecy variables [1, 36, 73].

We also introduce some auxiliary notions. A logic variable summary X is a finite multiset of

items of the form described below.

(item of a logic variable summary)

::= ↑𝛼𝑥 [∗𝑎:𝑇] (the ‘giver’ on 𝑥 , which promises to store an object typed𝑇 at the address 𝑎 before the lifetime 𝛼)

| ↓𝛼𝑥 [∗𝑎:𝑇] (the ‘taker’ on 𝑥 , which expects to obtain an object typed𝑇 at the address 𝑎 at the lifetime 𝛼)

A logic variable summary records how logic variables are used in extracting patterns from a concrete

configuration. An extended memory footprint ˆM is a finite multiset of items of the form described

below.

(item of an extended memory footprint) ::= 𝑎[updatea] (update access to the address 𝑎 under the activeness a)

| 𝑎[read𝛼] (read access to the address 𝑎 allowed until the lifetime 𝛼)

The activeness a has been introduced for data contexts in §2.2; it is of the form actv (active) or
†𝛽 (borrowed until the lifetime 𝛽). An extended memory footprint records the memory access

employed in extracting the data from a concrete configuration. An extended access mode �̂� is an

item of the form either update or read𝛼 .
Now we introduce the two basic extraction judgments, H ⊢a

�̂�
𝑎: 𝑃 𝑇 ⊲ 𝑝 | X, ˆM and H ⊢a

�̂�
∗𝑎:

𝑇 ⊲ 𝑝 | X, ˆM. The former structurally extracts from the heap memory H the pointer object typed

𝑃 𝑇 of the address 𝑎 as a pattern 𝑝 , yielding a logic variable summary X and the extended memory

footprintM, under the activeness a and the extended access mode �̂� . The latter is similar to the

former but extracts the object typed 𝑇 stored at the address 𝑎. They are defined by the following

rules.

H ⊢a
�̂� ·𝑃
∗𝑎:𝑇 ⊲ 𝑝 | X, ˆM

H ⊢a
�̂�

𝑎: 𝑃 𝑇 ⊲ ⟨𝑝⟩ | X, ˆM
�̂� · own := �̂� update · immut𝛽 := read𝛽 read𝛼 · immut𝛽 := read𝛼

H ⊢aupdate ∗𝑎:𝑇 ⊲ 𝑝 | X, ˆM

H ⊢aupdate 𝑎:mut𝛽 𝑇 ⊲ ⟨𝑝, 𝑥⟩ | X ⊕ {|↑𝛽𝑥 [∗𝑎:𝑇] |}, ˆM
(Extract-Mut-Update)

H ⊢aread𝛼 ∗𝑎:𝑇 ⊲ 𝑝 | X, ˆM

H ⊢aread𝛼 𝑎:mut𝛽 𝑇 ⊲ ⟨𝑝, 𝑞⟩ | X, ˆM
(Extract-Mut-Read)

𝑎[�̂�a] :=

{
𝑎[updatea] (�̂� = update)
𝑎[read𝛽] (�̂� = read𝛽)

H ⊢ †𝛼
�̂�
∗ 𝑎:𝑇 ⊲ 𝑥 | {|↓𝛼𝑥 [∗𝑎:𝑇] |},∅ (Extract-Take-Variable)

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:38 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

H(𝑎) = 𝑎′ H ⊢a
�̂�

𝑎′: 𝑃 𝑇 ⊲ 𝑝 | X, ˆM

H ⊢a
�̂�
∗𝑎: 𝑃 𝑇 ⊲ 𝑝 | X, ˆM ⊕ {|𝑎[�̂�a] |}

H(𝑎) = 𝑖 ∈ {0, 1} H ⊢a
�̂�
∗(𝑎 + 1):𝑇𝑖 ⊲ 𝑝 | X, ˆM 𝑁 = max{|𝑇1−𝑖 | − |𝑇𝑖 |, 0}

H ⊢a
�̂�
∗𝑎:𝑇0 +𝑇1 ⊲ inj𝑖 𝑝 | X, ˆM ⊕ {|𝑎[�̂�a] |} ⊕ {|(𝑎 + 1 + |𝑇𝑖 | + 𝑘) [�̂�a] | 0 ≤ 𝑘 < 𝑁 |}

H ⊢a
�̂�
∗𝑎:𝑇0 ⊲ 𝑝0 | X0, ˆM0 H ⊢a

�̂�
∗(𝑎 + |𝑇0 |):𝑇1 ⊲ 𝑝1 | X1, ˆM1

H ⊢a
�̂�
∗𝑎:𝑇0 ×𝑇1 ⊲ (𝑝0, 𝑝1) | X0 ⊕ X1, ˆM0 ⊕ ˆM1

H ⊢a
�̂�
∗𝑎:𝑇 [𝜇𝑋 .𝑇 /𝑋] ⊲ 𝑝 | X, ˆM

H ⊢a
�̂�
∗𝑎: 𝜇𝑋 .𝑇 ⊲ 𝑝 | X, ˆM

H(𝑎) = 𝑛

H ⊢a
�̂�
∗𝑎: int ⊲ 𝑛 | ∅, {|𝑎[�̂�a] |}

H ⊢a
�̂�
∗𝑎: unit ⊲ () | ∅,∅

The two judgments are extensions of the judgments H ⊢𝐷 𝑎: 𝑃 𝑇 ▶ 𝑣 | M and H ⊢𝐷 ∗𝑎:𝑇 ▶ 𝑣 | M
introduced in §3.3.

For the judgment H ⊢a
�̂�

𝑎: 𝑃 𝑇 ⊲ 𝑝 | X, ˆM, we have two rules for extracting the data of a mutable

reference, namely Extract-Mut-Update and Extract-Mut-Read. The former is the one used for

update access; in this case, we use a logic variable 𝑥 at the second argument of the mut container
and record the variable into the logic variable summary. The latter is the one used for read access;

in this case, we do not care about the second argument of the mut container.
Also, for the judgment H ⊢a

�̂�
∗𝑎:𝑇 ⊲ 𝑝 | X, ˆM, we can stop exploring the heap memory and

just return a logic variable using the rule Extract-Take-Variable. Although we impose here no

special restriction on using this rule, the use of the rule is recorded in the logic variable summary

X as the ‘taker’ item ↓𝛼 𝑥 [∗𝑎:𝑇]. Later, in the safety condition on the logic variable summary,

we require that the giver and the taker correspond one to one with some agreement conditions

(Safe-Summary-Correspond).

Next, we introduce the judgment for extracting the data of a concrete stack frame into an abstract

stack frame, H,Θ ⊢ F: Γ ⊲ F | X, ˆM. Here, Θ is a substitution on lifetime variables associated with

the stack frame (soon later, Θ𝛱,C,𝑖 is assigned to Θ). It is defined by the following rule.

for each 𝑥 :
a𝑇 ∈ Γ, H ⊢aupdate F(𝑥): 𝑇Θ ⊲ 𝑝𝑥 | X𝑥 , ˆM𝑥

H,Θ ⊢ F: Γ ⊲ {(𝑥, 𝑝𝑥) | 𝑥} |
⊕

𝑥 X𝑥 ,
⊕

𝑥
ˆM𝑥

It is an extension of the judgment H ⊢ F: Γ ▶ ˇF | M introduced in §3.3. Since the logic variable

summary records the information of lifetime variables in types, we apply the lifetime substitution

Θ to the type 𝑇 of each variable.

Now we define the judgment for extracting values from the concrete configuration as an abstract

configuration, 𝛱 ⊢ C ⊲ C | X, ˆM, by the following rule.

C = [𝑓0, 𝐿0] F0; [𝑓1, 𝐿1] 𝑥1, F1; · · · ; [𝑓𝑛, 𝐿𝑛] 𝑥𝑛, F𝑛 | H
for each 𝑖, H,Θ𝛱,C,𝑖 ⊢ F𝑖 : Γ𝛱,𝑓𝑖 ,𝐿𝑖 ⊲ F𝑖 | X𝑖 , ˆM𝑖

𝛱 ⊢ C ⊲ [𝑓0, 𝐿0] F0; [𝑓1, 𝐿1] 𝑥1, F1; · · · ; [𝑓𝑛, 𝐿𝑛] 𝑥𝑛, F𝑛 |
⊕

𝑖 X𝑖 ,
⊕

𝑖
ˆM𝑖

It is an extension of the judgment 𝛱 ⊢ C ▶ ˇC | M introduced in §3.3.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:39

Examining the Safety. Now we define safety conditions.

First, we introduce the safety judgment on a logic variable summary A ⊢ X: ok. It uses the global
lifetime context A. It is defined by the following rules, using an auxiliary judgment A ⊢𝑥 X: ok.

for each 𝑥, A ⊢𝑥 X: ok
A ⊢ X: ok

X𝑥 = ∅
A ⊢𝑥 X: ok

X𝑥 = {|↑𝛼𝑥 [∗𝑎:𝑇], ↓𝛽𝑥 [∗𝑎:𝑇 ′] |} A ⊢ 𝑇 ≤ 𝑇 ′, 𝑇 ′ ≤ 𝑇 𝛼 ≤A 𝛽

A ⊢𝑥 X: ok
(Safe-Summary-Correspond)

X𝑥
: the multiset of the items of the form ↑· · ·𝑥 [· · ·] or ↓· · ·𝑥 [· · ·] in X

For each logic variable 𝑥 such thatX𝑥 ≠ ∅, we require that the logic variable summaryX has exactly

one giver and one taker of 𝑥 , that they agree on the address and the type (up to equivalence), and

that the lifetime of the giver is no later than the lifetime of the taker (Safe-Summary-Correspond).

Next, we introduce the safety judgment on an extended memory footprint A ⊢ ˆM: ok. It is
defined by the following rules, using an auxiliary judgment A ⊢𝑎 ˆM: ok.

for each 𝑎, A ⊢𝑎 ˆM: ok

A ⊢ ˆM: ok

ˆM𝑎 = ∅
A ⊢𝑎 ˆM: ok

ˆM𝑎 = {|𝑎[updateactv] |}
A ⊢𝑎 ˆM: ok

ˆM𝑎 = {|
−−−−−−−→
𝑎[read𝛽] |}

A ⊢𝑎 ˆM: ok

ˆM𝑎 = {|𝑎[update†𝛼],
−−−−−−−→
𝑎[read𝛽] |} for each 𝑖, 𝛽𝑖 ≤A 𝛼

A ⊢𝑎 ˆM: ok
(Safe-Footprint-Update-Read)

ˆM𝑎
: the multiset of items of the form 𝑎[· · ·]

This judgment is an extension of ⊢ ˆM: ok introduced in §3.3. We now have to deal with frozen

access. Since a mutable (re)borrow completely masks the lender with a logic variable, even if we

have 𝑎[updateactv] that comes form a mutable reference, we do not have any other items of the

form 𝑎[· · ·], which keeps the situation simple. When we have shared references that comes from

some lender, we need to see agreement between the frozen update access and the borrowed read

access, which is performed by the rule Safe-Footprint-Update-Read.

Finally, we define the extended extraction-examination judgment 𝛱 ⊢ C ⊲ok C by the following

rule.

𝛱 ⊢ C ⊲ C | X, ˆM A𝛱,C ⊢ X: ok A𝛱,C ⊢ ˆM: ok
𝛱 ⊢ C ⊲ok C

Safety Condition on a Concrete Configuration. The safety judgment on a concrete configuration,

𝛱 ⊢ C: ok, is defined simply as ∃C. 𝛱 ⊢ C ⊲ok C.
For any well-typed program, we have the progress property on the safety condition.

Proposition 3 (Safety on a Concrete Configuration Ensures Progress). For any 𝛱 and C,
if 𝛱 ⊢ C: ok holds and 𝛱 ⊢ C: end does not hold, then there exists some C′ satisfying 𝛱 ⊢ C→ C′.

Proof. It can be easily proved by a straightforward case analysis. The safety condition simply

ensures that the data stored in the heap memory has the expected forms. □

The preservation property on the safety condition also holds. It is later shown (Corollary 5) as a

corollary of the bisimulation theorem (Theorem 4).

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:40 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

4.3 Bisimulation Between Execution and SLDC Resolution
Now we define the judgment, or relation, 𝛱 ⊢ C ⊲ok K , which links the world of the operational

semantics and the world of SLDC resolution. We prove that the relation forms a bisimulation
between execution in the operational semantics and SLDC resolution in our CHC representation

(Theorem 4). Using this bisimulation, we complete the proof of Theorem 1, the soundness and

completeness of our reduction. A key point is that, at the moment we release a mutable reference

modeled as ⟨𝑝, 𝑥◦⟩, we specialize the logic variable 𝑥◦ into the current target pattern 𝑝 .

The judgment 𝛱 ⊢ C ⊲ok K , which translates a concrete configuration C into a logic configura-

tion K , is defined as follows.

𝛱 ⊢ C ⊲ok C C = [𝑓𝑛, 𝐿𝑛] {
−−−−−−→
(𝑥𝑛, 𝑝𝑛)}; [𝑓𝑛−1, 𝐿𝑛−1] 𝑦𝑛, {

−−−−−−−−−−→
(𝑥𝑛−1, 𝑝𝑛−1)}; · · · [𝑓0, 𝐿0] 𝑦1, {

−−−−−−→
(𝑥0, 𝑝0)}

𝛱 ⊢ C ⊲ok 𝑓𝑛 𝐿𝑛 (
−→
𝑝𝑛, 𝑧𝑛), 𝑓𝑛−1𝐿𝑛−1

(𝑧𝑛, −−−→𝑝𝑛−1, 𝑧𝑛−1), · · · 𝑓0𝐿0
(𝑧1,
−→
𝑝0, 𝑧0) | 𝑧0

Here, K is designed as a resolutive configuration for our CHC representation of the program

(|𝛱 |). For simplicity, we assumed here that the arguments of the predicate 𝑓𝑖 𝐿𝑖 are in the order

of 𝑦𝑖+1,
−→𝑥𝑖 , res for each 𝑖 < 𝑛. The variables 𝑧0, . . . , 𝑧𝑛 are fresh logic variables that are mutually

distinct.

The relation 𝛱 ⊢ C ⊲ok K forms a bisimulation between execution in the operational semantics

and SLDC resolution in our CHC representation.

Theorem 4 (Bisimulation Between Execution and SLDC Resolution Under Our CHC

Representation). Assume that 𝛱 ⊢ C ⊲ok K holds. For any C′ satisfying 𝛱 ⊢ C → C′, there
exists K ′ such that (|𝛱 |) ⊢ K → K ′ and 𝛱 ⊢ C′ ⊲ok K ′ hold. Likewise, for any K ′ satisfying
(|𝛱 |) ⊢ K → K ′, there exists C′ such that 𝛱 ⊢ C→ C′ and 𝛱 ⊢ C′ ⊲ok K ′ hold.

Proof. Taking a close look at each type of statements, we can find a correspondence between a

transition on concrete configurations and the transition on resolutive configurations under our

CHC representation. Therefore, we can choose K ′ based on C′ and choose C′ based on K ′ (we do
not explicitly describe this choice here). The question is whether 𝛱 ⊢ C′ ⊲ok K ′ really holds. Let

C′ the abstract configuration associated with K ′. The property 𝛱 ⊢ C′ ⊲ok K ′ can be broken into

(i) whether the extraction judgment 𝛱 ⊢ C′ ⊲ C′ | X′, ˆM ′ holds, (ii) whether the safety condition

on the logic variable summary X′ holds, and (iii) whether the safety condition on the extended

memory footprint
ˆM ′ holds. We can show 𝛱 ⊢ C′ ⊲ok K ′ under the assumptions by some case

analyses. Below we give more detailed illustrations for some types of transitions.

Manipulation of Owning Pointers. Some transitions manipulates the target objects of some owning

pointers. For example, the instruction let ∗𝑦 = (∗𝑥, ∗𝑥 ′) moves the memory sequences of 𝑥 and

𝑥 ′ to allocate the two at one consecutive memory region. Also, the swap instruction swap(𝑥,𝑦)
destructively can update the target object of an ownership pointer.

In order to handle such operations, the type system and the extraction judgments give an

important guarantee: the manipulated memory cells should always be accessed with the active

update permission. The safety judgment on the extended memory footprint A ⊢ ˆM: ok ensures
that, when there is an active update access on an address, there is no other access on the address.

Therefore, we can ensure that the transition updates only the expected part of the heap memory in

the expected way and does not affect other unrelated memory cells. Note especially that the swap

operation does not change the logic variable summary and the extended memory footprint.

Manipulation of Mutable References and Logic Variables. When a mutable reference is released,

weakened (to an immutable reference), or subdivided by the transition, logic variables in the

resolutive configuration and the abstract configuration are updated.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:41

When a mutable reference modeled as a pattern ⟨𝑝, 𝑥⟩ is released or weakened, the logic variable
𝑥 is resolved into the pattern 𝑝 . The lender of the target object of the mutable reference, which

is still frozen under some lifetime in the type system, retrieves frozen update access to the object

through extraction judgments. The safety on the logic variable summary provides an important

guarantee: for each logic variable 𝑥 concerned, there exist exactly one giver ↑𝛼 𝑥 [∗𝑎:𝑇] and one

taker ↓𝛽𝑥 [∗𝑎′:𝑇 ′], which agree on the address and types (𝑎 = 𝑎′ and 𝑇 ≤ 𝑇 ′ ∧ 𝑇 ′ ≤ 𝑇).
When a mutable reference is subdivided, the situation is a bit more involved. For example, when

we perform match on a mutable reference to a variant ⟨inj𝑖 𝑝, 𝑥⟩, 𝑥 is resolved into inj𝑖 𝑥! with a

newly taken logic variable 𝑥!, and we get a new mutable reference ⟨𝑝, 𝑥!⟩.
We can check that, after each type of manipulation on mutable references and logic variables,

𝛱 ⊢ C′ ⊲ok K ′ holds.

Retyping. The retyping instruction 𝑥 as 𝑇 ′ can change the type of an active data variable 𝑥 from

the original type 𝑇 to a new type 𝑇 ′, if A∗ ⊢ 𝑇 ≤ 𝑇 ′ holds under the local lifetime context A∗. By
induction over the type 𝑇 and the memory extraction for 𝑥 , we can prove the following properties,

under the global lifetime context A, which extends the local lifetime context A∗. (i) Every update

on the extended memory footprint has the following form: an item 𝑎[read𝛼] turns into 𝑎[read𝛽]
for 𝛽 satisfying 𝛽 ≤A 𝛼 under the (global) lifetime context A. (ii) Every update on the logic variable

summary has the following form: an item ↑𝛼𝑥 [∗𝑎:𝑇] turns into ↑𝛽𝑥 [∗𝑎:𝑇 ′] for 𝛽 and 𝑇 satisfying

𝛽 ≤A 𝛼 and A:𝑇 ≤ 𝑇 ′, 𝑇 ′ ≤ 𝑇 . Importantly, the type information in the logic variable summary

remains unchanged up to type equivalence, because the mutable reference type mut𝛼 𝑇 is invariant

over the body type 𝑇 .

Elimination of a Local Lifetime Variable. When a local lifetime 𝛼 is eliminated with the instruction

now𝛼 , all the frozen variables in the data context tagged with †𝛼 get reactivated. The type system

ensures that there remains no reference associated with the lifetime 𝛼 . Therefore, the extended

memory footprint has no item of form 𝑎[read𝛼], which ensures the safety condition on the extended
memory footprint after the lifetime elimination. □

Using this bisimulation, we can show preservation of the safety condition on concrete configura-

tions (although this is not directly linked to the proof of Theorem 1).

Corollary 5 (Safety on a Concrete Configuration is Preserved by Transition). For any
𝛱 , C and C′, if 𝛱 ⊢ C: ok and 𝛱 ⊢ C→ C′ hold, then 𝛱 ⊢ C′: ok holds.

Proof. It follows from Theorem 4, because the judgment 𝛱 ⊢ C: ok is equivalent to ∃K . 𝛱 ⊢
C ⊲ok K . □

Before completing the proof of Theorem 1, we show a few simple lemmas.

Lemma 6 (Eqivalence Between the Basic and Extended Extraction-Examination Judg-

ments). For any simple function 𝑓 in a program 𝛱 , for any concrete configuration C of form
[𝑓 , 𝐿] F | H, satisfying either 𝐿 = entry or ⊢ C: end, the following equivalence holds.

𝛱 ⊢ C ▶ok ˇC ⇐⇒ 𝛱 ⊢ C ⊲ok ˇC

Proof. It can be proved by straightforward induction. □

Lemma 7 (Uniqeness on the Basic Extraction-Examination Judgments). For any 𝛱 and C,
there exists at most one ˇC such that 𝛱 ⊢ C ▶ok ˇC holds.

Proof. Clear from the definition. □

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:42 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

Lemma 8 (Construction of a Concrete Configuration from a Weak Abstract Configu-

ration). For any program 𝛱 and any weak abstract configuration ˇC = [𝑓 , 𝐿] ˇF , if the function 𝑓 is
simple, the label 𝐿 is entry or a label associated with a return statement, and ˇF maps each variable to
a value of the suitable sort, then there exists a concrete configuration C such that 𝛱 ⊢ C ▶ok ˇC holds.

Proof. By straightforward construction. □

Now we complete the proof of Theorem 1, the soundness and completeness of our reduction.

Proof of Theorem 1. We show each direction of the implication.

Necessity (𝑓 OS
𝛱
(®𝑣,𝑤) implies Mleast

(|𝛱 |) (𝑓entry) (®𝑣,𝑤)). There exists a sequence of concrete configura-
tions C0, . . . ,C𝑛 such that the following judgments hold.

𝛱 ⊢ C0 → · · · → C𝑛 : end 𝛱 ⊢ C0 ▶
ok [𝑓 , entry] {

−−−−→
(𝑥, 𝑣)} 𝛱 ⊢ C𝑛 ▶

ok [𝑓 , 𝐿] {(𝑦,𝑤)}
By Lemma 6, by setting K0 = 𝑓entry (®𝑣, 𝑧) | 𝑧 and K ′ = 𝑓𝐿 (𝑤, 𝑧) | 𝑧, the following judgments hold.

𝛱 ⊢ C0 ⊲ok K0 𝛱 ⊢ C𝑛 ⊲ok K ′

By Theorem 4, we have a sequence of resolutive configuration K0, . . . ,K𝑛 such that the following

judgments hold.

(|𝛱 |) ⊢ K0 → · · · → K𝑛 𝛱 ⊢ C𝑛 ⊲ok K𝑛

By Lemma 6 and Lemma 7, we have K𝑛 = K ′. Because 𝛱 ⊢ C𝑛 : end holds, in the CHC represen-

tation (|𝛱 |) there is only one CHC whose head has 𝑓𝐿 and the CHC has the form 𝑓𝐿 (𝑦,𝑦) ⇐= ⊤.
Thus 𝛱 ⊢ K ′→ 𝜖 | 𝑤 holds. Therefore, by Lemma 2, we have Mleast

(|𝛱 |) (𝑓) (®𝑣,𝑤).

Sufficiency (Mleast
(|𝛱 |) (𝑓entry) (®𝑣,𝑤) implies 𝑓 OS

𝛱
(®𝑣,𝑤)). By Lemma 2, there exists a sequence of reso-

lutive configurations K0, . . . ,K𝑛+1 such that the following properties hold.

(|𝛱 |) ⊢ K0 → · · · → K𝑛+1 K0 = 𝑓entry (®𝑣, 𝑧) | 𝑧 K𝑛+1 = 𝜖 | 𝑤
By the definition of the CHC representation (|𝛱 |), we can find that K𝑛 is of the form 𝑓𝐿 (𝑤, 𝑧) | 𝑧,
where the statement at the label 𝐿 is a return statement. By Lemma 8, we can construct a concrete

configuration C0 such that 𝛱 ⊢ C0 ⊲ok K0 holds. By Theorem 4, we also have a sequence of

concrete configurations C1, . . . ,C𝑛 such that the following judgments hold.

𝛱 ⊢ C0 → C1 → · · · → C𝑛 : end 𝛱 ⊢ C𝑛 ⊲ok K𝑛

Thus we also have the following judgments.

𝛱 ⊢ C0 ▶
ok {
−−−−→
(𝑥, 𝑣)} 𝛱 ⊢ C𝑛 ▶

ok {(𝑦,𝑤)}
Therefore, 𝑓 OS

𝛱
(®𝑣,𝑤) holds.

□

5 IMPLEMENTATION AND EVALUATION
We implemented a verification tool for Rust programs based on our reduction, RustHorn, and
conducted preliminary evaluation experiments with small benchmarks, where we successfully

confirmed the effectiveness of our approach. In this section we report on that.

5.1 Implementation of RustHorn
We implemented a prototype CHC-based verification tool RustHorn, which reduces Rust programs

to CHCs by our method proposed in this paper. It is available at https://github.com/hopv/rust-horn.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://github.com/hopv/rust-horn

RustHorn: CHC-based Verification for Rust Programs 1:43

It is written in Rust by ~2,500 lines of code. The tool supports the core features of Rust, including

recursions and recursive types.

RustHorn analyzes theMIR (Mid-level Intermediate Representation) [54] of a Rust program, which

is provided by the Rust compiler, and then generates CHCs by applying our reduction. The use of

MIR enables our tool to support a broad range of Rust programs, with various kinds of syntax sugar.

(An obstacle is that the implementation depends on a nightly version of the Rust compiler because

the Rust compiler’s internal representation is unstable.) RustHorn relies on the Rust compiler’s

borrow check and simply ignores the lifetime information, which is valid thanks to the nature of

our method.

We briefly explain here MIR and RustHorn’s algorithm. MIR models each Rust function as

a set of simple instructions (called a statement) labeled with program points, like our calculus

COR. In MIR, some sequentially executed instructions are packed into what is called a basic block.
For efficiency, RustHorn introduces a predicate variable for each basic block rather than for each

program point. RustHorn analyzes the set of local variables at the head of each basic block. Then

for each basic block, it models the initial environment by symbolic values and performs a kind of

symbolic execution to analyze the final environment of the block. In particular, in a MIR statement,

we can directly access a (possibly deep) substructure of a local variable (called a place), which is

not supported in COR but can easily be modeled in our reduction. Depending on the action taken

at the end of the block (which is expressed by what is called a terminator), it adds some CHCs to

the output. Before we jump to another basic block or return from the function, we clean up the

local variables that will not be used any more and add the equality constraint on the final target
value of each mutable reference contained in the variables.

This algorithm performs a more advanced reduction than our formalized reduction presented

in §3. We believe that our soundness and completeness proof presented in §2 and §4 justifies the

core idea of this advanced reduction, but direct proof on the advanced reduction remains to be a

challenge.

5.2 Benchmarks and Experiments
In order to measure the performance of RustHorn and the existing CHC-based verifier for C,

SeaHorn [25], we conducted preliminary experiments using the benchmarks listed in Table 1.

Each benchmark program has one assertion to be verified, and is provided both in Rust and C.

Most benchmark instances consist of a pair of safe and an unsafe programs that only differ from

each other in the asserted property. We also wrote LOC (in Rust, skipping blank and comment

lines) of each benchmark in the table. The column Loop? shows whether the verified program has

loops (which include recursions, exclude vacuous loops like loop {}). The column Mut? shows
whether the verified program uses mutable references. The benchmarks and experimental results

are available at https://doi.org/10.5281/zenodo.4710723.

We conducted experiments on a commodity laptop (2.6GHz Intel Core i7 MacBook Pro with

16GB RAM). First we reduced each benchmark program into CHCs in the SMT-LIB 2 format using

RustHorn and SeaHorn (version 10.0.0-rc0-86a31cf1) [25]. The time for the reduction was quite

short (at most ~0.3 second for each program). After that, we measured the time of CHC solving by

Spacer [42] in Z3 (version 4.8.10) [75] and HoIce (version 1.8.3)
14
[12, 13] for the generated CHCs.

HoIce does not accept SeaHorn’s outputs, because SeaHorn uses a different format and employs

arrays for pointers. We have also prepared modified versions of some of the CHCs generated by

SeaHorn, obtained by adding constraints on address freshness to improve accuracy of the model

and reduce false alarms. Still, we could not make the modified versions for the benchmarks in the

14
We used Z3 version 4.7.1 for the backend SMT solver of HoIce, in order to deal well with recursive data types.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.5281/zenodo.4710723

1:44 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

RustHorn SeaHorn w/Spacer
Group Instance Safe? LOC Loop? Mut? w/Spacer w/HoIce as is modified

simple

01 safe 12 yes no <0.1 0.1 <0.1

04-recursive safe 14 yes no 0.5 timeout 0.8

05-recursive unsafe 26 yes no <0.1 <0.1 <0.1

06-loop safe 10 yes no timeout 0.1 timeout

hhk2008 safe 20 yes no timeout 47.9 <0.1

unique-scalar unsafe 9 no yes <0.1 0.3 <0.1

bmc

1 safe
46 no no

0.2 <0.1 <0.1

unsafe 0.2 <0.1 <0.1

2 safe
15 yes no

timeout 0.1 <0.1

unsafe <0.1 0.1 <0.1

3 safe
35 yes no

0.1 <0.1 <0.1

unsafe <0.1 <0.1 <0.1

diamond-1 safe
55 no no

0.1 <0.1 <0.1

unsafe <0.1 <0.1 <0.1

diamond-2 safe
40 no no

0.2 <0.1 <0.1

unsafe 0.1 <0.1 <0.1

prusti

ackermann safe 17 yes no <0.1 0.1 <0.1

ackermann-same safe 26 yes no timeout timeout timeout

compress safe 12 no yes <0.1 0.1 false alarm

borrows-align safe 14 no yes <0.1 0.1 <0.1

account safe
18 no yes

<0.1 0.1 <0.1

unsafe <0.1 0.2 <0.1

restore safe 14 no yes <0.1 0.3 false alarm

inc-max

base safe
15 no yes

<0.1 0.2 false alarm <0.1

unsafe <0.1 0.2 <0.1 <0.1

base3 safe
22 no yes

<0.1 0.2 false alarm

unsafe <0.1 0.2 <0.1

repeat safe
22 yes yes

0.1 timeout false alarm timeout

unsafe <0.1 0.5 <0.1 <0.1

repeat3 safe
29 yes yes

0.2 timeout false alarm

unsafe <0.1 1.4 <0.1

swap-dec

base safe
23 yes yes

0.1 0.5 false alarm <0.1

unsafe 0.1 timeout <0.1 0.1

base3 safe
27 yes yes

0.1 timeout false alarm <0.1

unsafe 0.4 14.2 <0.1 0.1

exact safe
24 yes yes

0.1 0.6 false alarm 0.2

unsafe <0.1 timeout <0.1 <0.1

exact3 safe
30 yes yes

timeout timeout false alarm 0.2

unsafe 0.1 2.2 <0.1 <0.1

swap2-dec

base safe
24 yes yes

0.4 0.8 false alarm <0.1

unsafe 1.2 timeout <0.1 0.1

base3 safe
32 yes yes

1.8 timeout false alarm <0.1

unsafe 67.0 39.0 <0.1 0.2

exact safe
25 yes yes

1.0 1.0 false alarm 0.2

unsafe <0.1 timeout <0.1 <0.1

exact3 safe
35 yes yes

timeout timeout false alarm 1.3

unsafe <0.1 6.2 <0.1 <0.1

just-rec base safe
14 yes yes

<0.1 0.2 <0.1

unsafe <0.1 0.2 <0.1

linger-dec

base safe
15 yes yes

<0.1 0.2 false alarm

unsafe <0.1 0.2 <0.1

base3 safe
29 yes yes

<0.1 0.3 false alarm

unsafe <0.1 31.9 <0.1

exact safe
16 yes yes

<0.1 0.3 false alarm

unsafe <0.1 0.3 <0.1

exact3 safe
30 yes yes

<0.1 0.4 false alarm

unsafe <0.1 1.3 <0.1

lists

append safe
27 yes yes

tool error 0.3 false alarm

unsafe tool error 0.3 0.1

inc-all safe
35 yes yes

tool error 0.3 false alarm

unsafe tool error 0.4 <0.1

inc-some safe
32 yes yes

tool error 0.3 timeout

unsafe tool error 0.6 0.1

inc-some2 safe
34 yes yes

tool error timeout timeout

unsafe tool error 0.7 0.3

trees

append safe
35 yes yes

tool error 0.4 false alarm

unsafe tool error 0.3 <0.1

inc-all safe
36 yes yes

tool error timeout timeout

unsafe tool error 0.2 0.1

inc-some safe
34 yes yes

tool error 0.4 timeout

unsafe tool error 0.7 0.1

inc-some2 safe
36 yes yes

tool error tool error timeout

unsafe tool error 0.9 timeout

Table 1. Benchmarks and experimental results on RustHorn and SeaHorn, with Spacer and HoIce.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:45

groups linger-dec, lists and trees because address freshness check is quite hard to model. For

inc-max/base3 and inc-max/repeat3 we could not make the modified versions because SeaHorn

wrongly omitted all the memory manipulation in the CHC outputs for them, probably by inaccurate

pointer analyses.

Below we explain our benchmarks more in detail.

The benchmarks in the groups simple and bmc were taken from those of SeaHorn (https:

//github.com/seahorn/seahorn/tree/master/test). They are originally provided in C and the Rust

versions were written by us. The benchmarks in SeaHorn were chosen based upon the following

criteria: they (i) consist only of features supported by the core of Rust (covered by RustHorn), (ii)

follow Rust’s permission discipline, and (iii) are small enough to be amenable for manual translation

from C to Rust. We omitted SeaHorn tests that use arrays (such as simple/02_array) and function
pointers (such as devirt/devirt_02), in light of (i). For an example of (ii), the following SeaHorn

test dsa/test-1 was not included, because here the two pointers a and b can simultaneously point

at the same object y with update permission.

void f(int* x, int* y){ *x = 1; *y = 2; }

void g(int* p, int* q, int* r, int* s) { f(p, q); f(r, s); }

int main(){

int x, y, w, z; int* a = &x; int* b = &y; if (nd()) a = b;

g(a, b, &w, &z); return x + y + w + z;

}

Also, in light of (iii), we omitted large SeaHorn tests, such as bmc/cdaudio_simpl1. The following
benchmark simple/hhk2008 is a SeaHorn test that was adopted in our experiments. The key

challenge of this program is to find out an invariant on the while loop.

int main() {

int a = rand(), b = rand();

if (!(a <= 1000000 && 0 <= b && b <= 1000000)) return 0;

int res = a, cnt = b;

while (cnt > 0) { cnt = cnt - 1; res = res + 1; }

assert(res == a + b); return 0;

}

The benchmarks in the group prusti were taken from tests of Prusti [3], a semi-automated

verification tool for Rust (available at https://github.com/viperproject/prusti-dev). We chose several

small, interesting benchmarks from Prusti’s tests. For example, restore features amutable reference

to a randomly chosen object.

struct T { val: i32 }

fn main() {

let mut x = T { val: 11 }; let mut y = T { val: 22 };

let z = if rand() { &mut x } else { &mut y };

z.val += 33; x.val += 44; y.val += 44;

assert !(x.val == 88 || x.val == 55);

assert !(y.val == 66 || y.val == 99);

}

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://github.com/seahorn/seahorn/tree/master/test
https://github.com/seahorn/seahorn/tree/master/test
https://github.com/viperproject/prusti-dev

1:46 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

The benchmarks in the remaining seven groups were made by us featuring various use cases of

mutable references. The benchmarks in the groups inc-max, just-rec and linger-dec are based

on the examples in §1 and §3.4.

The group swap-dec consists of benchmark programs that perform repeated and involved

updates via mutable references to a mutable reference to an integer. For example, below is the safe

program of the instance swap-dec/base, with some details modified for readability. The verified

property is that the function test always returns true whenever it terminates.

fn may_swap <T>(mx: &mut T, my: &mut T) {

if rand() { swap(mx, my); }

}

fn swap_dec <'a>(mma: &mut &'a mut i32 , mmb: &mut &'a mut i32) {

may_swap(mma , mmb); if rand() { return; }

**mma -= 1; **mmb -= 2; swap_dec(mma , mmb);

}

fn test(mut a: i32 , mut b: i32) {

let a0 = a; let mut ma = &mut a; let mut mb = &mut b;

swap_dec (&mut ma, &mut mb); assert(a0 >= a);

}

The group swap2-dec is an advanced variant of swap-dec. It features amutable reference to a mu-
table reference to a mutable reference to an integer. For example, the safe program of swap2-dec/base
is as follows (may_swap is the same as above).

fn swap2_dec <'a>(mmma: &mut &'a mut &'a mut i32 ,
mmmb: &mut &'a mut &'a mut i32) {

may_swap(mmma , mmmb); may_swap (*mmma , *mmmb);

if rand() { return; }

*** mmma -= 1; *** mmmb -= 2; swap2_dec(mmma , mmmb);

}

fn test(mut a: i32 , mut b: i32) {

let a0 = a; let mut ma = &mut a; let mut mb = &mut b;

let mut mma = &mut ma; let mut mmb = &mut mb;

swap2_dec (&mut mma , &mut mmb); assert(a0 >= a);

}

The instances labeled repeat in the group inc-max repeat the operation of the function inc_max
n times, for some random number n. The instances labeled exact in the groups swap-dec,
swap2-dec and linger-dec not only observe the decrease but also check the amount of the

decrease. For example, in the safe program of swap-dec/exact, the last check is a0 >= a && a0
- a <= 2 * n, which has the condition a0 - a <= 2 * n unlike swap-dec/base.
The groups lists and trees feature destructive updates on recursive data structures (singly

linked lists and binary trees) via mutable references. The instance lists/inc-some has appeared

as Example 5. The safe program of the instance lists/append is as follows.

enum List <T> { Cons(T, Box <List <T>>), Nil } use List ::*;

fn append(mla: &mut List <i32 >, lb: List <i32 >) { match mla {

Cons(_, mla2) => { append(mla2 , lb); }

Nil => { *mla = lb; }

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:47

} }

fn sum(la: &List <i32 >) -> i32 {

match la { Cons(a, la2) => a + sum(la2), Nil => 0 }

}

fn test(la: List <i32 >, lb: List <i32 >) {

let m = sum(&la); let n = sum(&lb);

append (&mut la, lb); let r = sum(&la); assert(r == m + n);

}

The safe program of the instance lists/inc-all is as follows (List and sum are the same as

above).

fn inc_all <'a>(mla: &'a mut List <i32 >) { match mla {

Cons(ma, mla2) => { *ma += 1; inc_all(mla2); }, Nil => {}

} }

fn length(la: &List <i32 >) -> i32 {

match la { Cons(a, la2) => 1 + length(la2), Nil => 0 }

}

fn test(mut la: List <i32 >) {

let n = sum(&la); let l = length (&la);

inc_all (&mut la); let r = sum(&la); assert(r == n + l);

}

The instance lists/inc-some2 is an advanced variant of inc-some of Example 5. Its program

with the safe property is presented below (List and sum are the same as above). The function test
takes mutable references to some two elements of the input list and performs increment on them.

fn take_some_rest <'a>(mla: &'a mut List <i32 >) ->

(&'a mut i32 , &'a mut List <i32 >) { match mla {

Cons(ma, mla2) => { if rand() { (ma, mla2) }

else { take_some_rest(mla2) } }

Nil => take_some_rest(mla)

} }

fn test(mut la: List <i32 >) {

let n = sum(&la); let (mb, mla2) = take_some_rest (&mut la);

let (mc, _) = take_some_rest(mla2);

*mb += 1; *mc += 1; let r = sum(&la); assert(r == n + 2);

}

Benchmarks in the group trees are analogous to those in the group lists but designed for binary

trees instead of lists.

5.3 Experimental Results
Table 1 shows the results of the experiments. The columns for RustHorn and SeaHorn show the time

for verification (in seconds) in the case the verification was successful. In the case the verification

failed, the columns show one of the following failure labels. The label timeout means timeout over

the time limit of 180 seconds. The label false alarm means a report of unsafety for a safe program.

The label tool error means an error of the backend CHC solver; Spacer was unstable for recursive

types in general and HoIce was unstable in some situations.

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:48 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

RustHorn, combined with either Spacer or HoIce, successfully verified all programs that were

successfully verified by SeaHorn (without our modification). Also, RustHorn successfully verified

various interesting programs that SeaHorn could not verify. The verification time of RustHorn

largely matched that of SeaHorn. Although the benchmark set used for the experiments is small

and more or less contrived, we believe that the experimental results already indicate effectiveness

of our verification method. Experiments on larger, more realistic benchmark programs are left to

future work.

The combination of RustHorn and HoIce succeeded in verifying many programs with recursive
data types (lists and trees), including lists/inc-some and trees/inc-some. Still, it failed at

some benchmarks such as lists/inc-some2 and trees/inc-all. This is because HoIce, unlike
Spacer, can find models defined with primitive recursive functions for recursive data types, as

discussed in Example 5 in §3.4.

SeaHorn, without our modification, issued false alarms for many programs in the last seven

benchmark groups, from inc-max to trees. This is due to SeaHorn’s imprecise modeling of pointers

and memory states, where freshness of pointer addresses is not fully specified. For our modified CHC

outputs of SeaHorn, false alarms were not observed but verification timed out for one benchmark

(although one timeout was observed), but we could not make modified versions for many of

the benchmarks. For the last four groups from just-rec to trees, unboundedly many memory

cells can be allocated, which imposes a fundamental challenge for the array-based reduction as

discussed in §1.1. SeaHorn succeeded in verification for just-rec by analyzing absence of effective
destructive updates and generating CHCs without arrays, but for all other benchmarks of the safe

property SeaHorn failed because of imprecise representation. RustHorn succeeded in verifying

most benchmark programs in these groups.

For the benchmarks in the groups swap-dec and swap2-dec, RustHorn performed somewhat in-

efficiently compared to SeaHorn with our modification. This is presumably because the benchmarks

in the groups feature nested mutable references, which are modeled as a big value in our reduction.

The group swap-dec features a mutable reference to a mutable reference to an integer, which

is modeled as a pair of pairs of integers, which has four integers in total. The group swap2-dec
features a mutable reference to a mutable reference to a mutable reference to an integer (threefold!),

which is modeled as a value that has eight integers in total. For SeaHorn, the benchmarks in

swap-dec and swap2-dec are quite easy because only a limited number of addresses (up to six

addresses) are used in each program. This indicates a disadvantage of our approach compared to

the array-based approach. Still, we believe that in real-world Rust programs we do not use such

nested mutable references so often.

6 RELATEDWORK
CHC-based Verification of Pointer-Manipulating Programs. SeaHorn [25] is a representative ex-

isting tool for CHC-based verification of pointer-manipulating programs. It basically represents

the heap memory as an array. Although some pointer analyses [26] are used to optimize the array

representation of the heap memory, their approach suffers from some pointer use cases that our

approach can handle, as is examined by our experiments reported in §5. Still, their approach is sig-

nificant in the context of automated verification, given that many real-world pointer-manipulating

programs do not fit within Rust’s permission control.

Another approach is taken by JayHorn [38, 39], which automatically verifies Java programs

(possibly using object pointers) by reduction to CHCs. It represents store invariants using special

predicates pull and push. Although this allows faster reasoning about the heap memory than the

array-based approach, it can suffer from more false alarms. We conducted a small experiment for

JayHorn (0.6-alpha) on some of the benchmarks of §5.2. JayHorn reported ‘UNKNOWN’ (instead of

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

RustHorn: CHC-based Verification for Rust Programs 1:49

‘SAFE’ or ‘UNSAFE’) for even simple programs such as the programs of the instance unique-scalar
in simple and the instance basic in inc-max.

Verification for Rust. Whereas we have presented the first CHC-based (fully automated) verifica-

tion method specially designed for Rust, there are a number of studies on other types of verification

for Rust.

RustBelt by Jung et al. [34] formally verified safety properties for Rust libraries with unsafe
internal implementation, using manual reasoning in the higher-order separation logic Iris [35, 37],

based upon higher-order concurrent separation logic, built on the Coq Proof Assistant [16]. They

presented a formalized core of Rust, 𝜆Rust, which affected the language design of our calculus COR.

Thanks to the power of Iris, their verification method is highly extensible for various Rust libraries

with unsafe code, including those with interior mutability. Still, they verify only the safety property

and do not cover functional correctness. Also, the automation of the verification in their approach

is not well discussed.

Ullrich [72] translated a subset of Rust into a purely functional programming language to

manually verify functional correctness of some tricky Rust programs using the Lean Theorem

Prover [17]. Although this method eliminates pointers to get simple models like our approach, the

applicability of this method is quite limited, because it deals with mutable references by simple

static tracking of addresses based on lenses [22]. This method thus does not support even basic use

cases such as dynamic selection of mutable references (e.g., take_max in §1.2) [71], which can be

easily handled by our method. On the other hand, our approach covers arbitrary pointer operations

supported in the safe core of Rust, as discussed in §3.

There are a series of studies [3, 19, 29] of methods of semi-automated verification of Rust programs

using Viper [52], a verification platform based on separation logic with fractional permission. This
approach can deal with advanced features such as unsafe code [29] and type traits [19] to some

extent. In particular, Prusti by Astrauskas et al. [3] conducted semi-automated verification (manually

providing pre/post-conditions and loop invariants) on many realistic examples. Also, they use

special machinery called a pledge to model mutable borrows, which enables operations like Vec
::index_mut. Still, this approach does not support some basic operations on mutable references,

such as split of mutable references, unlike our RustHorn. We suppose that Viper’s reasoning based

on fractional permission does not naturally match Rust’s lifetime-based permission control. On the

other hand, our reduction of RustHorn is specially designed for Rust. As we discussed in §3.5, our

reduction of Rust programs to CHCs can be applied to semi-automated verification where users

can declare pre/post-conditions and loop invariants. This extension of our approach can work more

nicely than their Viper-based approaches for a wide class of Rust programs.

There are also approaches based on bounded model checking [4, 46, 70] for verification of Rust

programs with unsafe code. Our reduction can be applied to bounded model checking as discussed

in §3.5.

Verification using Permission/Ownership. The notion of permission/ownership has been applied to

a wide range of verification. It has been used for detecting race conditions in concurrent programs

[8, 69] and analyzing the safety of memory allocation [68]. Separation logic based on permission is

also studied well [7, 37, 52]. A simple notion of permission has also been used in some verification

tools [5, 15, 23]. However, existing studies on permission-based verification are mostly based on

fractional or counting permission, which is quite different from Rust’s permission control.

Prophecy Variables. Our idea of considering a future value to represent a mutable reference is

related to the notion of prophecy variables [1, 36, 73]. In particular, Jung et al. [36] presented a new

program logic that supports prophecy variables on the separation logic Iris [37].

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

1:50 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

7 CONCLUSION
We proposed a novel method for CHC-based automated verification of Rust programs. The key

idea is to model a mutable reference as a pair of the current target value and the target value at the
end of the borrow. We formalized the method for a core language of Rust and proved its soundness

and completeness. We implemented a prototype verification tool for a subset of Rust and confirmed

the effectiveness of our approach through an experiment.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Numbers JP15H05706, JP16K16004, JP20H05703

and JP21J20459. We are grateful to the anonymous reviewers for insightful and helpful comments.

REFERENCES
[1] Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement Mappings. Theor. Comput. Sci. 82, 2 (1991),

253–284. https://doi.org/10.1016/0304-3975(91)90224-P

[2] Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, and Natasha Sharygina. 2012. Lazy Abstraction

with Interpolants for Arrays. In Logic for Programming, Artificial Intelligence, and Reasoning - 18th International
Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7180),
Nikolaj Bjørner and Andrei Voronkov (Eds.). Springer, 46–61. https://doi.org/10.1007/978-3-642-28717-6_7

[3] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2018. Leveraging Rust Types for Modular

Specification and Verification. (2018). https://doi.org/10.3929/ethz-b-000311092

[4] Marek S. Baranowski, Shaobo He, and Zvonimir Rakamaric. 2018. Verifying Rust Programs with SMACK, See [45],

528–535. https://doi.org/10.1007/978-3-030-01090-4_32

[5] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram Schulte, and Herman Venter. 2011.

Specification and Verification: The Spec# Experience. Commun. ACM 54, 6 (2011), 81–91. https://doi.org/10.1145/

1953122.1953145

[6] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. 2015. Horn Clause Solvers for

Program Verification. In Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His
75th Birthday (Lecture Notes in Computer Science, Vol. 9300), Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz,

Bernd Finkbeiner, and Wolfram Schulte (Eds.). Springer, 24–51. https://doi.org/10.1007/978-3-319-23534-9_2

[7] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission Accounting in

Separation Logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005, Jens Palsberg and Martín Abadi (Eds.). ACM, 259–270.

https://doi.org/10.1145/1040305.1040327

[8] Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. 2002. Ownership Types for Safe Programming: Preventing

Data Races and Deadlocks. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2002, Seattle, Washington, USA, November 4-8, 2002., Mamdouh Ibrahim

and Satoshi Matsuoka (Eds.). ACM, 211–230. https://doi.org/10.1145/582419.582440

[9] John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis, 10th International Symposium,
SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2694), Radhia
Cousot (Ed.). Springer, 55–72. https://doi.org/10.1007/3-540-44898-5_4

[10] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s Decidable About Arrays?. In Verification, Model
Checking, and Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 3855), E. Allen Emerson and Kedar S. Namjoshi (Eds.). Springer,

427–442. https://doi.org/10.1007/11609773_28

[11] Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay. 2018. Higher-Order Constrained Horn Clauses for

Verification. PACMPL 2, POPL (2018), 11:1–11:28. https://doi.org/10.1145/3158099

[12] Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato. 2018. ICE-Based Refinement Type Discovery

for Higher-Order Functional Programs. In Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10805),
Dirk Beyer and Marieke Huisman (Eds.). Springer, 365–384. https://doi.org/10.1007/978-3-319-89960-2_20

[13] Adrien Champion, Naoki Kobayashi, and Ryosuke Sato. 2018. HoIce: An ICE-Based Non-linear Horn Clause Solver.

In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December
2-6, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 146–156. https:

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1007/978-3-642-28717-6_7
https://doi.org/10.3929/ethz-b-000311092
https://doi.org/10.1007/978-3-030-01090-4_32
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/582419.582440
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/11609773_28
https://doi.org/10.1145/3158099
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-030-02768-1_8

RustHorn: CHC-based Verification for Rust Programs 1:51

//doi.org/10.1007/978-3-030-02768-1_8

[14] David G. Clarke, John Potter, and James Noble. 1998. Ownership Types for Flexible Alias Protection. In Proceedings of
the 1998 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages & Applications (OOPSLA ’98),
Vancouver, British Columbia, Canada, October 18-22, 1998., Bjørn N. Freeman-Benson and Craig Chambers (Eds.). ACM,

48–64. https://doi.org/10.1145/286936.286947

[15] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas Santen, Wolfram

Schulte, and Stephan Tobies. 2009. VCC: A Practical System for Verifying Concurrent C. In Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture
Notes in Computer Science, Vol. 5674), Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.).

Springer, 23–42. https://doi.org/10.1007/978-3-642-03359-9_2

[16] Coq Team. 2021. The Coq Proof Assistant. https://coq.inria.fr/

[17] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The

Lean Theorem Prover (System Description). In Automated Deduction - CADE-25 - 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9195),
Amy P. Felty and Aart Middeldorp (Eds.). Springer, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

[18] Dropbox. 2020. Rewriting the Heart of Our Sync Engine - Dropbox. https://dropbox.tech/infrastructure/rewriting-the-

heart-of-our-sync-engine

[19] Matthias Erdin. 2019. Verification of Rust Generics, Typestates, and Traits. Master’s thesis. ETH Zürich.

[20] Grigory Fedyukovich, Samuel J. Kaufman, and Rastislav Bodík. 2017. Sampling Invariants from Frequency Distributions.

In 2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, Daryl Stewart and
Georg Weissenbacher (Eds.). IEEE, 100–107. https://doi.org/10.23919/FMCAD.2017.8102247

[21] Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti Gupta. 2019. Quantified Invariants via Syntax-

Guided Synthesis. In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.).

Springer, 259–277. https://doi.org/10.1007/978-3-030-25540-4_14

[22] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007. Combinators

for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans. Program. Lang.
Syst. 29, 3 (2007), 17. https://doi.org/10.1145/1232420.1232424

[23] Léon Gondelman. 2016. Un système de types pragmatique pour la vérification déductive des programmes. (A Pragmatic
Type System for Deductive Verification). Ph.D. Dissertation. University of Paris-Saclay, France. https://tel.archives-

ouvertes.fr/tel-01533090

[24] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. 2012. Synthesizing Software

Verifiers from Proof Rules. In ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 405–416. https:

//doi.org/10.1145/2254064.2254112

[25] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. 2015. The SeaHorn Verification Framework.

In Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel Kroening and Corina S. Pasareanu (Eds.).

Springer, 343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[26] Arie Gurfinkel and Jorge A. Navas. 2017. A Context-Sensitive Memory Model for Verification of C/C++ Programs. In

Static Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August 30 - September 1, 2017, Proceedings
(Lecture Notes in Computer Science, Vol. 10422), Francesco Ranzato (Ed.). Springer, 148–168. https://doi.org/10.1007/978-

3-319-66706-5_8

[27] Arie Gurfinkel, Sharon Shoham, and Yuri Meshman. 2016. SMT-Based Verification of Parameterized Systems. In

Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.). ACM, 338–348.

https://doi.org/10.1145/2950290.2950330

[28] Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. 2018. Quantifiers on Demand, See [45], 248–266. https://doi.org/10.

1007/978-3-030-01090-4_15

[29] Florian Hahn. 2016. Rust2Viper: Building a Static Verifier for Rust. Master’s thesis. ETH Zürich. https://doi.org/10.3929/

ethz-a-010669150

[30] Jochen Hoenicke, Rupak Majumdar, and Andreas Podelski. 2017. Thread Modularity at Many Levels: A Pearl in

Compositional Verification. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 473–485.

https://doi.org/10.1145/3009837

[31] Hossein Hojjat and Philipp Rümmer. 2018. The Eldarica Horn Solver. In 2018 Formal Methods in Computer Aided
Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, Nikolaj Bjørner and Arie Gurfinkel (Eds.). IEEE,

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1145/286936.286947
https://doi.org/10.1007/978-3-642-03359-9_2
https://coq.inria.fr/
https://doi.org/10.1007/978-3-319-21401-6_26
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://doi.org/10.23919/FMCAD.2017.8102247
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1145/1232420.1232424
https://tel.archives-ouvertes.fr/tel-01533090
https://tel.archives-ouvertes.fr/tel-01533090
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1145/2950290.2950330
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.3929/ethz-a-010669150
https://doi.org/10.3929/ethz-a-010669150
https://doi.org/10.1145/3009837

1:52 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi

1–7. https://doi.org/10.23919/FMCAD.2018.8603013

[32] Alfred Horn. 1951. On Sentences Which are True of Direct Unions of Algebras. The Journal of Symbolic Logic 16, 1
(1951), 14–21. http://www.jstor.org/stable/2268661

[33] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling Wang. 2002. Cyclone:

A Safe Dialect of C. In Proceedings of the General Track: 2002 USENIX Annual Technical Conference, June 10-15, 2002,
Monterey, California, USA, Carla Schlatter Ellis (Ed.). USENIX, 275–288. http://www.usenix.org/publications/library/

proceedings/usenix02/jim.html

[34] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: Securing the Foundations of

the Rust Programming Language. PACMPL 2, POPL (2018), 66:1–66:34. https://doi.org/10.1145/3158154

[35] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

[36] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart

Jacobs. 2020. The Future is Ours: Prophecy Variables in Separation Logic. PACMPL 4, POPL (2020), 45:1–45:32.

https://doi.org/10.1145/3371113

[37] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
Sriram K. Rajamani and David Walker (Eds.). ACM, 637–650. https://doi.org/10.1145/2676726.2676980

[38] Temesghen Kahsai, Rody Kersten, Philipp Rümmer, and Martin Schäf. 2017. Quantified Heap Invariants for Object-

Oriented Programs. In LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Maun, Botswana, May 7-12, 2017 (EPiC Series in Computing, Vol. 46), Thomas Eiter and David Sands (Eds.).

EasyChair, 368–384.

[39] Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin Schäf. 2016. JayHorn: A Framework for Verifying

Java programs. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan

(Eds.). Springer, 352–358. https://doi.org/10.1007/978-3-319-41528-4_19

[40] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus: Analyzing Safety of Smart Contracts. In

25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society.

[41] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. 2011. Predicate Abstraction and CEGAR for Higher-Order Model

Checking. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 222–233. https:

//doi.org/10.1145/1993498.1993525

[42] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2014. SMT-based Model Checking for Recursive Programs.

In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8559), Armin Biere and

Roderick Bloem (Eds.). Springer, 17–34. https://doi.org/10.1007/978-3-319-08867-9_2

[43] Robert A. Kowalski. 1974. Predicate Logic as Programming Language. In Information Processing, Proceedings of the 6th
IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974, Jack L. Rosenfeld (Ed.). North-Holland, 569–574.

[44] Shuvendu K. Lahiri and Randal E. Bryant. 2004. Constructing Quantified Invariants via Predicate Abstraction. In

Verification, Model Checking, and Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice, Italy, January
11-13, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 2937), Bernhard Steffen and Giorgio Levi (Eds.). Springer,

267–281. https://doi.org/10.1007/978-3-540-24622-0_22

[45] Shuvendu K. Lahiri and Chao Wang (Eds.). 2018. Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings. Lecture Notes in Computer Science,

Vol. 11138. Springer. https://doi.org/10.1007/978-3-030-01090-4

[46] Marcus Lindner, Jorge Aparicius, and Per Lindgren. 2018. No Panic! Verification of Rust Programs by Symbolic

Execution. In 16th IEEE International Conference on Industrial Informatics, INDIN 2018, Porto, Portugal, July 18-20, 2018.
IEEE, 108–114. https://doi.org/10.1109/INDIN.2018.8471992

[47] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language. In Proceedings of the 2014 ACM SIGAda annual
conference on High integrity language technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014, Michael Feldman

and S. Tucker Taft (Eds.). ACM, 103–104. https://doi.org/10.1145/2663171.2663188

[48] Yusuke Matsushita. 2021. Extensible Functional-Correctness Verification of Rust Programs by the Technique of Prophecy.
Master’s thesis. University of Tokyo. http://www.kb.is.s.u-tokyo.ac.jp/~yskm24t/papers/master-thesis.pdf

[49] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2020. RustHorn: CHC-Based Verification for Rust Programs.

In Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.23919/FMCAD.2018.8603013
http://www.jstor.org/stable/2268661
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-540-24622-0_22
https://doi.org/10.1007/978-3-030-01090-4
https://doi.org/10.1109/INDIN.2018.8471992
https://doi.org/10.1145/2663171.2663188
http://www.kb.is.s.u-tokyo.ac.jp/~yskm24t/papers/master-thesis.pdf

RustHorn: CHC-based Verification for Rust Programs 1:53

European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12075), Peter Müller (Ed.). Springer, 484–514. https://doi.org/10.1007/978-3-

030-44914-8_18

[50] Microsoft. 2021. Boogie: An Intermediate Verification Language. https://www.microsoft.com/en-us/research/project/

boogie-an-intermediate-verification-language/

[51] Mozilla. 2021. Rust language — Mozilla Research. https://research.mozilla.org/rust/

[52] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-

Based Reasoning. In Verification, Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI
2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara
Jobstmann and K. Rustan M. Leino (Eds.). Springer, 41–62. https://doi.org/10.1007/978-3-662-49122-5_2

[53] npm. 2019. Rust Case Study: Community Makes Rust an Easy Choice for npm. https://www.rust-lang.org/static/pdfs/Rust-

npm-Whitepaper.pdf

[54] Rust Community. 2021. The MIR (Mid-level IR). https://rustc-dev-guide.rust-lang.org/mir/index.html

[55] Rust Community. 2021. Reference Cycles Can Leak Memory - The Rust Programming Language. https://doc.rust-

lang.org/book/ch15-06-reference-cycles.html

[56] Rust Community. 2021. RFC 2025: NestedMethod Calls. https://rust-lang.github.io/rfcs/2025-nested-method-calls.html

[57] Rust Community. 2021. RFC 2094: Non-lexical Lifetimes. https://rust-lang.github.io/rfcs/2094-nll.html

[58] Rust Community. 2021. Rust Programming Language. https://www.rust-lang.org/

[59] Rust Community. 2021. std::cell::RefCell - Rust. https://doc.rust-lang.org/std/cell/struct.RefCell.html

[60] Rust Community. 2021. std::collections::HashMap - Rust. https://doc.rust-lang.org/std/collections/struct.HashMap.

html

[61] Rust Community. 2021. std::rc::Rc - Rust. https://doc.rust-lang.org/std/rc/struct.Rc.html

[62] Rust Community. 2021. std::sync::Mutex - Rust. https://doc.rust-lang.org/std/sync/struct.Mutex.html

[63] Rust Community. 2021. std::thread::spawn - Rust. https://doc.rust-lang.org/std/thread/fn.spawn.html

[64] Rust Community. 2021. std::vec::Vec - Rust. https://doc.rust-lang.org/std/vec/struct.Vec.html

[65] Rust Community. 2021. Two-phase borrows. https://rust-lang.github.io/rustc-guide/borrow_check/two_phase_

borrows.html

[66] Ryosuke Sato, Naoki Iwayama, and Naoki Kobayashi. 2019. Combining Higher-Order Model Checking with Refinement

Type Inference. In Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM@POPL 2019, Cascais, Portugal, January 14-15, 2019, Manuel V. Hermenegildo and Atsushi Igarashi (Eds.). ACM,

47–53. https://doi.org/10.1145/3294032.3294081

[67] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. 2001. A Decision Procedure for an Extensional

Theory of Arrays. In 16th Annual IEEE Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19,
2001, Proceedings. IEEE Computer Society, 29–37. https://doi.org/10.1109/LICS.2001.932480

[68] Kohei Suenaga and Naoki Kobayashi. 2009. Fractional Ownerships for Safe Memory Deallocation. In Programming
Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings (Lecture Notes
in Computer Science, Vol. 5904), Zhenjiang Hu (Ed.). Springer, 128–143. https://doi.org/10.1007/978-3-642-10672-9_11

[69] Tachio Terauchi. 2008. Checking Race Freedom via Linear Programming. In Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and
Saman P. Amarasinghe (Eds.). ACM, 1–10. https://doi.org/10.1145/1375581.1375583

[70] John Toman, Stuart Pernsteiner, and Emina Torlak. 2015. crust: A Bounded Verifier for Rust. In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, Myra B.

Cohen, Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 75–80. https://doi.org/10.1109/ASE.2015.77

[71] Sebastian Ullrich. 2016. Electrolysis Reference. http://kha.github.io/electrolysis/

[72] Sebastian Ullrich. 2016. Simple Verification of Rust Programs via Functional Purification. Master’s thesis. Karlsruhe

Institute of Technology.

[73] Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph.D. Dissertation. University of Cambridge, UK.

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221

[74] Maarten H. van Emden and Robert A. Kowalski. 1976. The Semantics of Predicate Logic as a Programming Language.

J. ACM 23, 4 (1976), 733–742. https://doi.org/10.1145/321978.321991

[75] Z3 Team. 2021. The Z3 Theorem Prover. https://github.com/Z3Prover/z3

ACM Trans. Program. Lang. Syst., Vol. x, No. x, Article 1. Publication date: January 2021.

https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-44914-8_18
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://research.mozilla.org/rust/
https://doi.org/10.1007/978-3-662-49122-5_2
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doc.rust-lang.org/book/ch15-06-reference-cycles.html
https://doc.rust-lang.org/book/ch15-06-reference-cycles.html
https://rust-lang.github.io/rfcs/2025-nested-method-calls.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://www.rust-lang.org/
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/thread/fn.spawn.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://rust-lang.github.io/rustc-guide/borrow_check/two_phase_borrows.html
https://rust-lang.github.io/rustc-guide/borrow_check/two_phase_borrows.html
https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1109/LICS.2001.932480
https://doi.org/10.1007/978-3-642-10672-9_11
https://doi.org/10.1145/1375581.1375583
https://doi.org/10.1109/ASE.2015.77
http://kha.github.io/electrolysis/
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1145/321978.321991
https://github.com/Z3Prover/z3

	Abstract
	1 Introduction
	1.1 Challenges in Verifying Pointer-Manipulating Programs
	1.2 Our Approach: Leverage Rust's Guarantees on Permission

	2 Formalization of Rust: Calculus of Ownership and Reference
	2.1 Syntax
	2.2 Type System
	2.3 Operational Semantics

	3 Our Reduction from Rust Programs to CHCs
	3.1 Multi-sorted Logic for CHCs
	3.2 Our Reduction from Programs to CHCs
	3.3 Soundness and Completeness of Our Reduction
	3.4 Advanced Examples
	3.5 Discussions

	4 Proof of the Soundness and Completeness of Our Reduction
	4.1 SLDC Resolution
	4.2 Extending the Basic Extraction-Examination Judgment
	4.3 Bisimulation Between Execution and SLDC Resolution

	5 Implementation and Evaluation
	5.1 Implementation of RustHorn
	5.2 Benchmarks and Experiments
	5.3 Experimental Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

