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Reasoning      about behaviors of

Esp.  Prove absence of bugs

Program logic

Explore sound & powerful 
reasoning principles

Foundational & General (Hoare ’69) etc.
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Causes real-world bugs:  Use after free, …

Esp.  Mutable objects on heap memory
Global state that can be mutatedMutable state

Core difficulty in program reasoning

Scalable program logic for mutable state

Separation logic ✽ (O’Hearn+ ’99), (Ishitaq+ ’01), …

Actively studied, de facto standard program logic for mutable state

Key idea   Use ownership     to eliminate aliasing



Propositional sharing & Problem of existing work

4



Propositional sharing & Problem of existing work

4

Big challenge  Shared mutable state in SL ✽
E.g., Mutex-guarded shared object



Propositional sharing & Problem of existing work

4

Big challenge  Shared mutable state in SL ✽
E.g., Mutex-guarded shared object

Propositional sharing
Sharing with contract by SL props

(Jung+ ’15),       (Jung+ ’18), …

Solved challenging problems
Memory safety by Rust’s ownership types (Jung+ ’18),
Information-flow control (Gregersen+ ’21),  Purity of ST monad (Jacobs+ ’22),  …

(Hobor+ ’08), (Buisse+ ’11),
Modern SLs



Propositional sharing & Problem of existing work

4

Big challenge  Shared mutable state in SL ✽
E.g., Mutex-guarded shared object

Propositional sharing
Sharing with contract by SL props

(Jung+ ’15),       (Jung+ ’18), …

Solved challenging problems
Memory safety by Rust’s ownership types (Jung+ ’18),
Information-flow control (Gregersen+ ’21),  Purity of ST monad (Jacobs+ ’22),  …

(Hobor+ ’08), (Buisse+ ’11),
Modern SLs

Existing work   Later modality    → Can’t verify livenessù
termination etc.
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Recent SLs
Iris (Jung+ ’15) etc.

Later modality ù Later-free
Syntax for SL props

✔

✔

My work Nola 

Termination etc.
Liveness ♥

Propositional
Sharing

Verification 
goals

Framework for building SLs

Separation logic ✽ Scalable program logic for mutable state
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Fully mechanized in Coq
Proofs are rigorously formalized & machine-checked

General library on (Jung+ ’15)

Can be combined with diverse Iris-based studies

SL framework used in various studies 
Won Alonzo Church Award ’23

https://github.com/hopv/nolaPublicly available at

https://github.com/hopv/nola
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✦ Practical verification tools w/ propositional sharing 

‣ Liveness such as program termination ← Later-free 

‣ Support invariant & borrow in SL-based verification platforms 

‣ Foundation for verifiers that leverage Rust’s types etc.

✦ Verifying program optimization algorithms 

‣ Leverage Rust’s types etc. ← Propositional sharing 

‣ Verify (fair) termination preservation ← Liveness ← Later-free

Possible future applications of my work Nola

9

Viper (Müller+ ’16), Steel (Fromherz+ ’21), …

RustHorn (Matsushita+ ’20), Creusot (Denis+ ’22), …

SL such as Simuliris (Gäher+ ’22), …
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Example
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�
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Termination, …

�
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 ⇥
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Typical proofCoinduction Induction

Significant &
Challenging🔥

ùDamaged by later

Two classes of program properties
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G 7! 1 ^ ~ 7! 1

i
Unsound

h
G = ~ ^ G 7! 0 ^ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 2 ^ ~ 7! 2

i
Aliasing

x y=

Unexpected

→ Not scalable

h
G < ~ ^ G 7! 0 ^ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ^ ~ 7! 1

ix y≠

Manually eliminate aliasing

No 
aliasing

Example
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E.g., No aliasing by ⇤

Points-to token v
ℓ

✓ 7! E Ownership     of memory cell
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✓ 7! E ⇤ ✓ 0 7! E 0 ✏ ✓ < ✓ 0
No aliasing⇥
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Retained

Concurrency

Separation between threads

Thread-local reasoning⇥
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⇤ ⇥
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✓ 7! true _ ✓ 7! false

ℓ:  ref bool

n
✓ 7! true _ ✓ 7! false

o
!✓

n
_E . E = true _ E = false

o
bool
ℓ

Example  Shared mutable ref
Allocate

Store

Load

n
✓ 7! true

o
skip

n
✓ 7! true _ ✓ 7! false

o
n

✓ 7! true _ ✓ 7! false
o
✓ false

n
>

o

%

Share % = % ⇤ %

Situation P always holdsInvariant
Imaginary store

Established by (Jung+ ’15)

P
P

Globally shared in verification✓ 7! E < ✓ 7! E ⇤ ✓ 7! ECf.

Propositional sharing Sharing with contract by SL props
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ℓ:  ref (ref bool)

Nested invariant

ℓ

boolℓ’
ℓ’

Example  Nested ref

9✓ 0. ✓ 7! ✓ 0 ⇤ ✓ 0 7! true _ ✓ 0 7! false

ℓ:  refmutex T lock object?

ℓ ℓ+1

Example  Thread-safe ref to a mutex-guarded object

Unlocked Locked

�
✓ 7! false ⇤ ) (✓ +1)

�
_ ✓ 7! true
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Under ⇧
ù ✓ 7! E ⌘ ✓ 7! E

✓ 7! true _ ✓ 7! false✔

ù % . %Later in the way

✘
Nested invariant

9✓ 0. ✓ 7! ✓ 0 ⇤ ✓ 0 7! true _ ✓ 0 7! false
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�
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4
�
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Step-indexing

Laters stripped
as program executes

4 õ! 40
⇥
%
⇤
40

⇥
R
⇤

⇥
ù %

⇤
4
⇥
R
⇤cannot be used 

to verify liveness ♥
Termination guarantee lost
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Indexing
Index 0 1 2 3

…
Gradually define things as index grows

P

Pù …⊤ Later    defers index by one ù ù % < ù %
Non-idempotentù

Technique of semantics construction

For propositional sharing

✘ Ill-defined

Defer by later
Later    in storeù

(Jung+ ’15) etc.

State ,? � iProp iProp ,? State ! Prop

State , � (I iProp) iProp , State ! gProp

ù
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⇥
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nProp
SL prop syntax

inv P 2 iProp
P 2 nProp

Invariant

Nola user Nola library Old

Invariant

nProp 3 P , Q F
E

F | P * Q | ✓ |-> E | · · ·
% 2 iProp
% 2 iProp

Cf.
Iris (Jung+ ’15) etc.
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⇤
4
⇥
R
⇤ 0

⇥
ù % ⇤ &

⇤
4
⇥
_E . ù % ⇤ R E

⇤
⇥
% ⇤ &

⇤
4
⇥
R
⇤
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· · · JP * QK , JPK ⇤ JQK · · ·
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Later-free rules Rules with later

nProp
SL prop syntax

inv P 2 iProp
P 2 nProp

Invariant
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Defer by later

Old Iris (Jung+ ’15) etc.

% , 9] . �[] : ag next %]

My work Nola
Defer by syntax

inv P , 9] . �[] : ag P ]
Equality weakened by later

State , � nProp iProp , State ! Prop State , � (I iProp) iProp , State ! gProp

Proposition itself

Weakened by laterLater-freeStore

Step-indexing → No liveness

No step-indexing → ✔ Liveness ♥

Store
Winv J K , 9I . · · · ⇤ ⇤]

�
(JI ]K ⇤ · · ·) _ · · ·

�
Wiinv , 9� . · · · ⇤ ⇤]

�
(ù � ] ⇤ · · ·) _ · · ·

�

Access the store
⇥
%
⇤
4
⇥
R
⇤ 0 ,

⇥
%
⇤
4
⇥
R
⇤ Winv J K
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Shared mutable 
singly linked list Φ

ℓ0

ℓ1

Φ
ℓ1

ℓ2 Φ
ℓ2

ℓ3 Φ
ℓ3

ℓ1Data type Cyclic

Infinitely nested referenceData 
invariant

fun 5 (✓) { ✓ !✓ + 3 }E.g.,

Verify Iterative mutation

over a list safely terminates ♥ if f safely terminates under Φ
Φ _✓ . 9: . ✓ 7! 3:

fun iter(✓)
�
if !2 < 0 { 5 (✓); 2 !2 � 1; iter(!(✓ +1)) }
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Construct SL prop syntax nProp 3 P , Q F

E

F | P * Q | ✓ |-> E | inv P | list F ✓ | · · ·

Jinv PK , inv P

Construct semantic interpretation
J E

F K , 90. JF 0K JP * QK , JPK ⇤ JQK J✓ |-> EK , ✓ 7! E

Jlist F ✓K , inv (F ✓) ⇤ inv
� E

✓ 0. (✓ +1) |-> ✓ 0 * list F ✓ 0
�

Verify 
termination ∵ Induction over n ∈ ℕ8✓ .

⇥
inv (F ✓)

⇤
5 (✓)

⇥
>
⇤ 0

⇥
Jlist F ✓K ⇤ 2 7! =

⇤
iter(✓)

⇥
2 7! 0

⇤ 0
Old

Later-free access
Later

⇥
Jlist F ✓K

⇤
!(✓ +1)

⇥
_E . 9✓ 0 = E . Jlist F ✓ 0K

⇤ 0
listQ ✓ , Q ✓ ⇤ 9✓ 0. (✓ +1) 7! ✓ 0 ⇤ listQ ✓ 0⇥
listQ ✓

⇤
!(✓ +1)

⇥
_E . 9✓ 0 = E . ù listQ ✓ 0

⇤



Technical contributions of my work Nola

Syntax for SL props

Step-indexing   No liveness

Old

Propositional sharing      by syntax in separation logic ✽

Later modality Later-free
No step-indexing   ✔ Liveness ♥

Invariant Simple & Powerful  §3.2

List mutation Liveness × Nesting  §3.3

C
as

e 
stu

di
es

Type soundness Scalable & Flexible  §5

Borrow Advanced & Foundation for Rust  §6

Prophetic borrow Functionally verify  §7

Expressivity
What is paradoxical &
    What can be shared  §3.4

Semantic alteration
Novel general approach  §4

ù



Analyze paradox in terms of Landin’s knot

37



Analyze paradox in terms of Landin’s knot

37

Landin’s knot
let r = ref id in 
r := (λ _, !r ()); !r ()

Shared mutable ref to a function causes infinite loop
r

Call !r

Background

Self-reference



Analyze paradox in terms of Landin’s knot

37

Landin’s knot
let r = ref id in 
r := (λ _, !r ()); !r ()

Shared mutable ref to a function causes infinite loop
r

Call !r

Background

Self-reference

% ⇤ & ✏ |V �
% ⇤ '

�
% ⇤ & ✏ |V '

% ✏ |V %Later-free invariant

� _ ⇤ |V?Construct
Contradiction

“Logical function”

Paradox My contribution, a simplified version of (Krebbers+ ’17+)’s

Fancy update
✏ |V?
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inv bad
Ill-defined
Cyclic reference to J KJbadK ,? � _ ⇤ |VWinv J K ?

Store

Well-definedness of      naturally avoids paradoxesJ K

✘

Fancy update

Avoid Landin’s knotJthoare P 4 Y K ,?
⇥
JPK

⇤
4
⇥
JY K

⇤ Winv J K
✘

Internally uses fancy updateHoare triple

Everything allowed under later → Subsume the old way

✔ Defer by laterJ|> hoare P 4 Y K , ù
�
JPK

 
4
�
JY K

 Winv J K
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Jinv PK , inv P✘
Syntactic Cyclic reference to

✘ Jinv PK ,? 9Q . ⇤
�
JPK ⇤�⇤ JQK

�
⇤ inv Q
J K

Jinv (P * Q )K = Jinv (Q * P )K
Jinv inv (P * Q )K = Jinv inv (Q * P )K

Goal  Semantically alter props

✔
Derivability

Jinv PK , 9Q . ⇤ der (P *-* Q ) ⇤ inv Q

der (P *-* Q ) ✏ JPK ⇤�⇤ JQKSound
⇥
JPK ⇤ &

⇤
4
⇥
_E . JPK ⇤ R E

⇤ 0
⇥
Jinv PK ⇤ &

⇤
4
⇥
R
⇤ 0

Judgment

Challenge  Construct sound & complete-ish derivability der
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Judgment semantics

Construct parameterized semantics
Jinv PKX , 9Q . ⇤ X (P *-* Q ) ⇤ inv Q · · · JP * QKX , JPKX ⇤ JQKX · · ·

Defer by parameterization

J K+ : (Judg ! iProp) ! (Judg ! iProp) JP *-* QK+X , JPKX ⇤�⇤ JQKX
Derivability candidate

X  X 0 , 8J . ⇤
�
X J ! JJK+X 0 ^ X 0 J

�

General der construction
der J ,` 8X 2 Deriv s.t. der X . JJK+X

Universally quantify

X 2 Deriv ,` 8J .�
8X 0 2 Deriv s.t. X  X 0 . JJK+X 0

� ✏ X J

semantics

der 2 Deriv ∵ Definition

Sound ∵ Induction

Complete-ish

der J ✏ JJK+der

Member

w.r.t. ∀ over Deriv

Semantic alteration generally solved!

�
8X 2 Deriv . ⇤ JJ 0K+X �⇤ JJK+X

� ✏
8X 2 Deriv . ⇤X J 0 �⇤ X J

etc.
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Verification goal  Well-typed programs terminate ♥
Leveled type system Eliminate Landin’s knot with levels i ∈ ℕ

Restrict ref access
â ` 4 :9 ref8 T 8 < 9

â ` !4 :9 T
â ` 4 :9 ref8 T â ` 40 :9 T 8 < 9

â ` 4 40 :9 unit

Shared mutable ref & functionT8 , U8 F ref: T: | T8 !9 U8 ( 9  8 ) | · · ·

Solution  Model type system with Nola invariants
Semantic type judgment

Construct interpretation
by induction over the level

JE : U ` 4 :8 TK ,
⇥⇤ JUK E

⇤
4
⇥
JTK

⇤⇤:<8 Winv J K⇤:

Jref TK E , 9✓ = E . inv (✓ 7! T ) J✓ 7! TK⇤ , 9F . ✓ 7! F ⇤ JTKF

JT !9 UK E , 8D .
⇥
JTKD

⇤
E (D)

⇥
JUK

⇤⇤:< 9 Winv J K⇤:
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Lender Borrowers

P
Q

R

After 
α ends During α

During α

Reborrowers

R During β ⊆ αS
After 
β ends

…

Rust-style borrow Lend / borrow ownership during a time period

(Jung+ ’18)RustBelt
Borrows in SL to verify 
memory safety under 
Rust’s ownership types

Later     → No livenessù

Nola borrow
JPK ✏ |V0 �

bora P ⇤ lenda P
�

etc.

Later-free

Rich operations
Subdivision, merger, reborrow

Custom &

[a]@ ⇤ bora P ✏ |V0�
[a]@ ⇤ boraub P ⇤ (†a �⇤ bora P )

�
nProp

Just like invariant
J K

Proof rules

[a]@ ⇤ bora P ✏ |V0 �
obora@ P ⇤ JPK

�

Return ownership without direct communication ← Propositional sharing
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(Matsushita+ ’22)
RustHornBelt ’s borrows × Parametric prophecy

RustHorn-style verification in SL

Later → No liveness

Ad-hoc

Nola prophetic borrow Nola borrow ×      ’s parametric prophecy

Proof rules  Later-free & Abstract
JF 0K ✏ |V0 � 9G . bora0,G F ⇤ lendaG F

�

†a ⇤ lendaG F ✏ |V0 �
90. h_c . c G = 0i ⇤ JF 0K

�[a]@ ⇤ bora0,G F ✏ |V0 �
[a]@ ⇤ h_c . c G = 0i

�

etc.

Model  Instantiate Nola borrow
Internal custom syntax & interpretation

JxborWG F K⇤ , 90. pcWG 0 ⇤ JF 0K · · ·
P ⇤ F xborWG F | xlendG F | · · ·

(Matsushita+ ’20)
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- Still step-indexed & hiding laters → Liveness unsupported

‣ iCAP (Svendsen+ ’14),  HOCAP (Svendsen+ ’13) 
- Nesting unsupported

✦ Liveness in step-indexed separation logic 

‣ Transfinite Iris (Spies+ ’21) ― Indexing by ordinals 
- Loses rules for later → Borrow unsupported
- Requires bounding by ordinals etc. & Concurrency unsupported
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