Non-Step-indexed
Separation Logic with
Invariants and Rust-Style Borrows

Yusuke Mql'sushii'q Supervised by Prof. Naoki Kobayashi

January 16, 2024 — Ph.D. Thesis Defense

Program verification

Reasoning & about behaviors of
the execution &g, of programs gBx
Esp. Prove absence of bugs ﬁ@tﬁ

Program verification

Reasoning & about behaviors of
the execution &g, of programs gBx
Esp. Prove absence of bugs ﬁ@tﬁ

Example

Type system
Commonly used & Lightweight

&

Program verification

Reasoning & about behaviors of
the execution g, of programs gBx
Esp. Prove absence of bugs ﬁ@tﬁ

Example

Type system

Commonly used & Lightweight

@ . t Explore sound & powerful
€lC. o o o
TS reasoning principles

Program logic

Foundational & General (Hoare ’69) etc.

Separation logic *x for mutable state

Separation logic *x for mutable state

Global state that can be mutated ‘.'fe‘

Esp. Mutable objects on heap memory

Core difficulty in program reasoning Causes real-world bugs: Use dfter free, ... &

Separation logic *x for mutable state

Global state that can be mutated ‘.'fe‘

Esp. Mutable objects on heap memory

Core difficulty in program reasoning Causes real-world bugs: Use dfter free, ... &

Separation logic = (©Hean+ 99), (ishitag+ 01), ..

Scalable program logic for

Actively studied, de facto standard program logic for mutable state

Key idea Use ownership W to eliminate aliasing

Propositional sharing & Problem of existing work

Propositional sharing & Problem of existing work

Big challenge Shared mutable state in SL %r*”(
E.g., Mutex-guarded shared object

Propositional sharing & Problem of existing work

Big challenge Shared mutable state in SL %r*,ﬂ(
E.g., Mutex-guarded shared object

(Hobor+ °08), (Buisse+ ’1 |),
[riS (Jung+ ’15), {3} (Jung+ ’18), ...

Propositional sharing ;@ Modem SLs

Sharing with contract by SL props

Solved challenging problems

Memory safety by Rust’s ownership types (Jung+’18),
Information-flow control (Gregersen+ °21), Purity of ST monad (Jacobs+ ’22), ...

Propositional sharing & Problem of existing work

Big challenge Shared mutable state in SL %r*,ﬂ(
E.g., Mutex-guarded shared object

(Hobor+ °08), (Buisse+ ’1 |),
[ris (Jung+ ’15), iR (Jung+’18), ...

Propositional sharing ;@ Modem SLs

Sharing with contract by SL props

Solved challenging problems

Memory safety by Rust’s ownership types (Jung+’18),
Information-flow control (Gregersen+ °21), Purity of ST monad (Jacobs+ ’22), ...

Existing work Later modality > = Can’t verify liveness
termination efc.

High-level overview

Core contribution ~ Mechanization Future applications

Core contribution of my work

Sepa ration |ogic sk Scalable program logic for mutable state

Basic SLs Recent SLs My work Nola

Iris (Jung+ °15) etc. Framework for building SLs

oo

Verification
goals

Liveness ¥

Termination etc.

. . 1 Later modality B> Later-free
Pl‘Opos|i'|onc|| Syntax for SL props

Sharing J@* 4 v

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props

Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

List mutation Liveness x Nesting §3.3

Case studies

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
£ List mutation Liveness x Nesting §3.3 : What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Nola is fully mechanized as a general library

Nola is fully mechanized as a general library

Fully mechanized in Coq 'l),)

Proofs are rigorously formalized & machine-checked

Nola is fully mechanized as a general library

Fully mechanized in Coq 'L),J

Proofs are rigorously formalized & machine-checked

¥ — SL framework used in various studies
Generql Iibrqry on Irfﬁs (Jung+ ’15) Won Alonzo Church Award '23

Can be combined with diverse Iris-based studies

Publicly available at https://github.com/hopv/nola

https://github.com/hopv/nola

Possible future applications of my work Nola

Possible future applications of my work Nola

+ Practical verification tools w/ propositional sharing
> Liveness such as program termination + Later-free

» Support invariant & borrow in SL-based verification platforms
Viper (Miiller+ ’16), Steel (Fromherz+ °21), ...

» Foundation for verifiers that leverage Rust’s types etc.
RustHorn (Matsushita+ °20), Creusot (Denis+ °22), ...

Possible future applications of my work Nola

+ Practical verification tools w/ propositional sharing
> Liveness such as program termination + Later-free

» Support invariant & borrow in SL-based verification platforms
Viper (Miiller+ ’16), Steel (Fromherz+ °21), ...

» Foundation for verifiers that leverage Rust’s types etc.
RustHorn (Matsushita+ °20), Creusot (Denis+ °22), ...

+ Verifying program optimization algorithms

» Leverage Rust’s types etc. + Propositional sharing

» Verify (fair) termination preservation « Liveness < Later-free
SL such as Simuliris (Gdher+ °22), ...

General background

Liveness ¥ Separation logic

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing ¢ Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
£ List mutation Liveness x Nesting §3.3 : What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Partial vs Total correctness

Two types of standard program correctness

Partial correctness

Total correctness ¥

12

Partial vs Total correctness

Two types of standard program correctness

Partial correctness Total correctness ¥

e doesn’t terminate with a non-W result e terminates with a W result

1P)e?] [P]e|Y]

Partial Hoare triple Total Hoare triple

12

Partial vs Total correctness

Two types of standard program correctness

Total correctness ¥

Partial correctness

e doesn’t terminate with a non-W result e terminates with a W result
{P}eq¥} P e [¥]
Partial Hoare triple Total Hoare triple

Example fun osum(n) { if n#0 {2xXn—1+osum(n—1) } else {0} }
{n € Z} osum(n) {Av. v = nz} [n € N] osum(n) [Av. v = nz]

Infinite loop v& 1> 2> -3 Terminate! - Induction by n € N

12

Safety vs Liveness ¥

Two classes of program properties

Safety Liveness ¥

13

Safety vs Liveness ¥

Two classes of program properties

Safety Liveness ¥
(Pye{w} B [p]e[v]
Partial correctness Total correctness
Bad things Roughly Good things
don’t happen eventually happen

Errors, Bad outputs, ... Termination, ...

Coinduction Typical proof Induction

13

Safety vs Liveness ¥

Two classes of program properties

Safety Liveness ¥ B, Significant &
Examples Challenging
{P} € {qj} [P] € [IP] Damaged by later >
Partial correctness Total correctness
Bad things Roughly Good things
don’t happen eventually happen
Errors, Bad outputs, ... Termination, ...

Coinduction Typical proof Induction

13

Technical contributions of my work Nola

Propositional sharing j8* by syntax in separation logic :

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Reasoning about mutable state is hard

Example

15

Reasoning about mutable state is hard

Example

N

x> 0

x+=1;, y+=1

x— 1 Ay—1

15

Reasoning about mutable state is hard

Example
Unsound V&W
AlICISII‘Ig v x=y N x>0 yHO]x+:1;y+:1 x+—>2/\y+—>2]

Unexpected

15

Reasoning about mutable state is hard

Example

— 1

Unsound V& ° [xl—>0 yr— 0| x

X=y _

AliCISiI‘Ig v hx:y/\X|—>O yHO]x+:1;y+:1hx+—>2/\yr—>2]
Unexpected

-

No
aliasing

X
v
@

Yoo _
v x#Fy N x>0 yHO]x+:1;y+:1 x+—>1/\y+—>l]

— Not scalable

15

Basics of separation logic :k (0'Hearn* *99), Ishitag+ 01, etc.

Separcﬂ'ion |ogic *k Scalable program logic for mutable state

16

Basics of separation logic :k (0'Hearn* *99), Ishitag+ 01, etc.

Separcﬂ'ion |ogic *k Scalable program logic for mutable state

E.g., [XHO * Y>>0 x+=1;, y+=1 [le Yy =1 Noaliasingby>l<

16

Basics of separation logic :k (0'Hearn* *99), Ishitag+ 01, etc.

Separcﬂ'ion |ogic *k Scalable program logic for mutable state

E.g., [XHO * Y>>0 x+=1;, y+=1 [le Yy =1 Noaliasingby>l<

. A .
Points-to token ¢ — 0 Ownership W of memory cell

Exclusive access right to mutable state

16

Basics of separation logic :k (0'Hearn* *99), Ishitag+ 01, etc.

Separcﬂ'ion |ogic *k Scalable program logic for mutable state

Eg., [XHO * y—> 0 x+=1; y +=1 [le Yy =1

A

No aliasing by =k

Points-to token ¢ — 0 Ownership W of memory cell

Exclusive access right to mutable state

Separating conjunction P * () @@w Disjoint ownership

16

Basics of separation logic :k (O'Hearn* *99), Ishitag+ 01, etc

Separcﬂ'ion |ogic *k Scalable program logic for mutable state

E.g, [XHO Yy 0 x+=1 y+=1 [XHl * yr— 1| No dliasing by k

. A .
Points-to token ¢ — 0 Ownership W of memory cell

Exclusive access right to mutable state

Separating conjunction P * () @@w Disjoint ownership

t—ox{ >0 F L+
No aliasing

Retained
16

Basics of separation logic :k (O'Hearn* *99), Ishitag+ 01, etc

Separcﬂ'ion |ogic *k Scalable program logic for mutable state

E.g, [XHO Yy 0 x+=1 y+=1 [XHl * yr— 1| No dliasing by k

. A .
Points-to token ¢ — 0 Ownership W of memory cell

Exclusive access right to mutable state

Separating conjunction P * () @@w Disjoint ownership

t— o=l >0 FE L+ Concurrency Thread-local reasoning
No aliasing [P] o [Q] [P’] o’ [Q']
(o] tew [Emwi Pl pepTele (0]
Retained Separation between threads

16

Direct background

Propositional sharing @ Later modality >

Technical contributions of my work Nola

Propositional sharing J“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Invariant — Simple propositional sharing

19

Invariant — Simple propositional sharing

o _ 0 o ‘ ® ®
Propositional sharing ,@“ Sharing with contract by SL props
Modern approach to shared mutable state in SL *%

19

Invariant — Simple propositional sharing

o _ 0 o ‘ ® ®
Propositional sharing ,@“ Sharing with contract by SL props
Modern approach to shared mutable state in SL *%

Invariant Estabiished by (Jung+ 15) Situation P always holds

Shqre — sk Imaginary STOFEﬂ ‘:@‘.*E

Cf. t—L 0+ {—0x{HU Globally shared in verificaton & ~~""

19

Invariant — Simple propositional sharing

o _ 0 o ‘ ® ®
Propositional sharing ,@“ Sharing with contract by SL props
Modern approach to shared mutable state in SL *%

Invariant Estabiished by (Jung+ 15) Situation P always holds
Share = * Imaginary store ff “;"é:“m

Cf. t—L 0+ {—0x{HU Globally shared in verification A

Example Shared mutable ref

A
7~)

E. ref bool bg I f — true } skip { f — true V £ — false } Allocate
* 00

1€ true V £ > false | ; £ «false { T } Store

{ — true V f — false f \
{1 €+ true V ¢+ false | ; !¢ {/10. v = true V o = false } Load

19

More invariant examples

20

More invariant examples

Example Nested ref

v/ Vk
4: ref (ref bool)

/. >t %

" — true V ¢’ — false

Nested invariant

20

More invariant examples

Example Nested ref

Z :
Y
2. ref(refbool) ¢ > "« | £ > true V ¢’ — false

Nested invariant

Example Thread-safe ref to a mutex-guarded object

v/ g+

4: refmutexT (¢ +> false = T(£+1)) V £+ true
Unlocked Locked

20

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Old approach’s problem: Later modality >

22

Old approach’s problem: Later modality >

Invariant access rule
‘" Y o
{DP 8 Q} e {AU. > P % llfv} later modality >

{ 8 Q} € {g/} Naively store P not >P — Paradox!

22

Old approach’s problem: Later modality >

Invariant access rule
{I>P % Q} e {AU. > P % lI/v}

{[P]+ O} e {¥}

v | true V f|—>false

X

Naively store P not >P — Paradox!

Later in the way » +*

0. £) %

" > true V ¢ — false

22

Old workaround step-indexing & Its problem

23

Old workaround step-indexing & Its problem

One execution step < One later >

Laters stripped e = e P } 4 {qj}
as program executes { > P } p { q/}

Step-indexing

23

Old workaround step-indexing & Its problem

One execution step < One later >

Laters stripped e = e P } 4 {II/}
as program executes {D P} 0 { q/}

P| ¢ | V]
[I>P] e

Termination guarantee lost

Step-indexing

/

cannot be used
to verify liveness ¥

23

Where later > comes from

24

Where later > comes from

|ndexing Technique of semantics construction

Index O 1 2 3

>P T ® @ - Later > defers index by one

Gradually define things as index grows

Non-idempotent
>> P # > P

24

Where later > comes from

|ndexing Technique of semantics construction

Index O 1 2 3

>P T ® @ - Later > defers index by one

Gradually define things as index grows

Non-idempotent
>> P # > P

For propositional sharing @* Iris (ung+’I5) etc

X lll-defined State =, FiProp iProp =, State — Prop

A

Defer by later State = F (» iProp) iProp = State — ﬁr\o})
Later > in store f{

24

Why later > damages liveness

25

Why later > damages liveness

Model
{Ple{v} = O(P—>wpe{V}) Liveness €@ [P|e|v| 2 0(P—twpe[¥])
wp e{EP} =, .- VVeee wpe {\I/} twp e [llf] éﬂ oV Ve e—e. twp €’ [11/]
Greatest fixpoint Inductive Least fixpoint

25

Why later > damages liveness

Model
{Pte{?} = O(P—>wpei¥}) Liveness € [Ple[¥] = 0(P—twpe|Y])
wpe{qf} =S V‘v’e’<—°e.wpe’{\I/} twpe[llf] éﬂ VVe’Pe.twpe’[ll/]
Greatest fixpoint Inductive Least fixpoint
- - Later
Step-indexing wpe{¥} £ vVl oe swpe {w) Mdex 0T 23
Safety <= Coinductive Guarded fixpoint >WP L @ -

25

Why later > damages liveness

Model
{Pte{¥} = O(P—>wpe{V}) Liveness € [P|e[¥] = 0(P—twpe|¥])
wp e{EP} =, -V Veee wpe {\If} twp e [lI/] éﬂ oV Ve e—e. twp €’ [11/]
Greatest fixpoint Inductive Least fixpoint
- - Later
Step-indexing wpe{¥} £ vVl oe swpe {w) Mdex 0T 23
Safety <= coinductive Guarded fixpoint >WP L @
Paradox loop < loop twp loop [J_] = twp loop [J_]

Sl'ep-inclexil‘lg >twp loop [J-]

= twp loop [J_]

Coinductivity by > Lob

= twp loop [

| Non-termination &

25

Big picture

Technical contributions

Core contribution of my work Recap

Sepa ration |ogic sk Scalable program logic for mutable state

Basic SLs Recent SLs My work Nola

Iris (Jung+ °15) etc. Framework for building SLs

oo

Verification
goals

Liveness ¥

Termination etc.

. . 1 Later modality B> Later-free
Pl‘Opos|i'|onc|| Syntax for SL props

Sharing J@* 4 v

27

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props

Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

List mutation Liveness x Nesting §3.3
Type soundness Scalable & Flexible §5

Case studies

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

List mutation Liveness x Nesting §3.3

Case studies

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

List mutation Liveness x Nesting §3.3

Case studies

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
£ List mutation Liveness x Nesting §3.3 : What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
£ List mutation Liveness x Nesting §3.3 : What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Central topics

Invariant Expressivity Semantic alteration

Technical contributions of my work Nola

Propositional sharing Je“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing ¢ Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

PI‘OphetiC borrow Functionally verify §7

Interface of Nola invariant

31

Interface of Nola invariant

Ct

Nola user Nola library Old Iris (ung+ ’15) etc.

SL prop syntax

nProp u Invariant Invariant

nProp > P,Q = Inv P € iPrOp E iPI"Op
3¢ | PxQ | 1> 0 | --- P € nProp P € iProp

31

Interface of Nola invariant

Ct.

Nola user Nola library Old Iris (ung+ ’15) etc.

SL prop syntax

nProp u Invariant Invariant
nProp > P, = Inv P € iPI”Op € iProp
Equ\P*Q\fl—>v\---’ P € nProp P € iProp
Interpretation
P EP D - Later-free rules Rules with later
iPro
- [Pxq] Z [P] < [a] - [[P] Q] e [A0. [P] » ol [P+ Qe [to.oP x ¥o]
linvP « Q] e [¥] [P] Q| e |¥]

v Liveness ¥
31

Model for Nola invariant

32

Model for Nola invariant

Old Iris (Jung+ ’15) etc.

My work Nola

Defer by syntax Defer by later
State = F nProp iProp = State — Prop State = F (» iProp) iProp = State — Prop
_____ L .
invP = Ji.io|1:=agP]|: 2 Ji.io[1:= agnext P]:
Proposition itse[f Equality weakened by later

32

Model for Nola invariant

Old Iris (Jung+ ’15) etc.

My work Nola

Defer by syntax Defer by later
State = F nProp iProp = State — Prop State = F (» iProp) iProp = State — Prop
N N
wp 2 3] 3R s
* Proposition itself Equality weakened by later

\

v

Winv [] £ 3I.--- % %, ([T *--)v--) Wiinv 2 3L -+ s %, (I) Ve-)
Store Later-free Store 4 Weakened by later
Ple[w] 2 [Ple[w]V™!! Access the store N
L Step-indexing = No liveness

No step-indexing — ¢ Liveness ¥
32

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
% List mutation Liveness x Nesting §3.3 E What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Verification target

34

Verification target

Big goal Verify total correctness ¥ on nested invariant “@*
N

34

Verification target

Big goal Verify total correciness ¥ on nested invariant @*
2 .

43
4 v/ v/
Data type Shared mutable T @

singly linked list

Data

‘ ' Infinitely n reference
Invariant finitely nested referenc

34

Verification target

Big goal Verify total correciness ¥ on nested invariant @*

1 .

43
9 v/
Data type Shared mutable T @

singly linked list =
Invariant

Verify

Infinitely nested reference

lterative mutation funiter(€) { if lc#0 { f(£); c «!c—1; iter(!(£+1)) } }

over a list safely terminates ¥ if f safely terminates under @

E.g.,, funf(&) {t<t+3} @ A¢L. =

k. { — 3k

34

Verify termination with Nola invariant

35

Verify termination with Nola invariant

Construct SL prop syntax nProp > P,Q :=
1¢ | PxQ | 1> o0 | invP | list & ¢ | ---

35

Verify termination with Nola invariant

Construct SL prop syntax nProp > P,Q :=
1¢ | PxQ | 1> o0 | invP | list & ¢ | ---

Construct semantic interpretation

[3¢] £ Fa.[¢a] [P*xQ] = [P]+[Q] [¢1>0v] = ¢+—ov [invP] = invP

[list ¢] = inv($¢€) = inv (3L, (€+1) 1= ¢ * list &)

35

Verify termination with Nola invariant

Construct SL prop syntax nProp > P,Q :=
1¢ | PxQ | 1> o0 | invP | list & ¢ | ---

Construct semantic interpretation

[3¢] £ Fa.[¢a] [P*xQ] = [P]+[Q] [¢1>0v] = ¢+—ov [invP] = invP

[list ¢] = inv($¢€) = inv (3L, (€+1) 1= ¢ * list &)

Verify ve. [inv($)] f(o) [T]
termination [[list é (] = cn]iter(f) [c— 0]
7 old
[[list ¢ €] | '(£+1) [Ao. B¢ =0. [List ¢ /]| listde 2 [@e|« |3 (6+1) > ¢ = list D ¢

Later-free access [list®o ¢ | 1(¢+1) [Ao. 3¢ = 0. > list & ¢]
Later 35

.- Induction over n € N

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
¢ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Analyze paradox in terms of Landin’s knot

37

Analyze paradox in terms of Landin’s knot

Background Shared mutable ref to a causes infinite loop

. let r = ref 1d 1n
Landin’s knot W
r:= (A , 'r () Self-reference

37

Analyze paradox in terms of Landin’s knot

Background Shared mutable ref to a causes infinite loop

. let r = ref 1d 1n
Landin’s knot W
r:= (A , 'r () Self-reference

Pa rqdox My contribution, a simplified version of (Krebbers+ °| 7+)’s

Contradiction
Construct -2 v\&
P x = (P % R)
Later-free invariant P EF & . . = R

37

Nola avoids paradoxes & subsumes the old way

38

Nola avoids paradoxes & subsumes the old way

Well-definedness of [| naturally avoids paradoxes
lll-defined

Cyclic reference to [|

inv [bad] %» isi vV

38

Nola avoids paradoxes & subsumes the old way

Well-definedness of [| naturally avoids paradoxes
lll-defined

Cyclic reference to [|

inv [bad] %» isi vV

| | * MP]” e [|[5[/]” Avoid Landin’s knot

Internally uses

38

Nola avoids paradoxes & subsumes the old way

Well-definedness of [| naturally avoids paradoxes
lll-defined

Cyclic reference to [|

inv [bad] %» isi vV

| | * MP]” e [|[5[/]” Avoid Landin’s knot

Internally uses

Everything allowed under later = Subsume the old way
| 1> | =S {ﬂPﬂ}e{ﬂffﬂ} v Defer by later

38

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Derivability for semantic alteration

linv (@ * P)]

Goal Semantically alter props Linv (P Q)] inv inv (Q * P)]

linv inv (P x Q)]

—

40

Derivability for semantic alteration

Goal Semantically alter props

Syntactic

X [invP] £ invP X [invP]

>

|

[inv (P % Q)]
nv inv (P * Q)] =

linv (@ * P)]
inv inv(Q * P)|

—

Cyclic reference to [|

Q. O([P]*=[Q]) = inv@

40

Derivability for semantic alteration

linv (@ * P)]

Goal Semantically alter props Linv (P Q)] inv inv (Q * P)]

[inv inv (P * Q)] =

—

Syntactic Cyclic reference to [|

X [invP] £ invP X [invP] =, 3Q. O([P] *=[Q]) = invg

Derivability
o [invP] = 3Q. Oder (P *x-*Q) * invQ

Judgment |
Sound der(Px-%xQ) E [P]+=[Q] =» [P] ‘ Q| e |Av. [P] = t{fo]

40

Derivability for semantic alteration

linv (@ * P)]

Goal Semantically alter props Linv (P Q)] inv inv (Q * P)]

[inv inv (P * Q)] =

—

Syntactic Cyclic reference to [|

X [invP] £ invP X [invP] =, 3Q. O([P] *=[Q]) = invg

Derivability
o [invP] = 3Q. Oder (P *x-*Q) * invQ

Judgment

Sound der(Px-%xQ) E [P]+=[Q] =» [P] ‘ Q| e |Av. [P] = t{fo]

Challenge Construct sound & complete-ish derivability der

40

Novel general approach to constructing der

4]

Novel general approach to constructing der

Construct parameterized semantics Defer by parameterization

|[invP]]5 é :Q. 5(P X =%k Q) sk inva HP*Q]b L |[P]]5*|[Q]]5
Derivability candidate

Judgment semantics [|": (Judg — iProp) — (Judg — iProp) [P *-*Q]5 = [P]s+—=[Q]s

4]

Novel general approach to constructing der

Construct parameterized semantics Defer by parameterization

[invP]s = 3Q. OS5 (P*-%xQ) * invQ .« [P*Q]s = [P]s*[Q]s ---
Derivability candidate

Judgment semantics [|": (Judg — iProp) — (Judg — iProp) [P *-*Q]5 = [P]s+—=[Q]s

General der construction

derJ =, V& € Derivs.t. der ~ §. [I15
Universally quantify semantics

§ € Deriv =, VJ.
(V&' € Derivst.§~ 8. [J]5) E &J

§~¢8 = V¥J. O(5J - [I]5, A6 T)

4]

Novel general approach to constructing der

Construct parameterized semantics Defer by parameterization

|[invP]]5 é :Q. 5(P X =%k Q) sk inva HP*Q]b L |[P]]5*|[Q]]5
Derivability candidate

Judgment semantics [|": (Judg — iProp) — (Judg — iProp) [P *-*Q]5 = [P]s+—=[Q]s

General der construction Member der € Deriv - Definition
derJ =, V& € Derivs.t. der ~» 8. [J]* Sound derJ F [J]% - Induction
Universally quantify semantics Complete-ish wcrt v over Deri
0 € De”'V, = YJ- ,) (V& € Deriv. %k [J']5 = [J]5) F ot
(V&' € Derivst.§~ 8. [J]5) E &J VS € Deriv. k8T =87
5~ = VJ.O(8J - [J[5 A8 T) Semantic alteration generally solved!

4]

Other topics

Type soundness Borrow Prophetic borrow

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Termination by leveled types verified with Nola

44

Termination by leveled types verified with Nola

Verification goal Welltyped programs terminate ¥

44

Termination by leveled types verified with Nola

Verification goal Welltyped programs terminate ¥

Leveled type system Eliminate Landin’s knot with levels i € N

T3, Uy o= ref T | Ti—; Ui (j<i) | --- Shared mutable ref & function

: I'tejref;T i<j I're:yjrefjT I'ke'y T i<
Restrict ref access J J j ret j J

F|—!€ZJ'T Fl—eee’:junit

44

Termination by leveled types verified with Nola

Verification goal Welltyped programs terminate ¥

Leveled type system Eliminate Landin’s knot with levels i € N

T3, Uy o= ref T | Ti—; Ui (j<i) | --- Shared mutable ref & function

: I'tejref;T i<j I're:yjrefjT I'ke'y T i<
Restrict ref access J J j ret j J

F|—!€ZJ'T Fl—eee’:junit

Solution Model type system with Nola invariants @“

Semantic type judgment [v:Ute; T] = |[%k[U]o|e|[T]] X, Winv

[refT]o = F¢=0.inv(f— T) 2 Jw. > w [T]w

A K o ; Winv Construct interpretation
[T —;Ulo = Vu [[T]u]o(w) [[U]] by induction over the level

44

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prcphetic borrow Functionally verify §7

Rust-style borrow achieved in Nola

46

Rust-style borrow achieved in Nola

Rust-style borrow @ Lend / borrow ownership during a time period

46

Rust-style borrow achieved in Nola

Rust-style borrow @ Lend / borrow ownership during a time period
Borrowers

Lender
After

46

Rust-style borrow achieved in Nola

Rust-style borrow @ Lend / borrow ownership during a time period

Borrowers Reborrowers

Lender

46

Rust-style borrow achieved in Nola

Rust-style borrow @ Lend / borrow ownership during a time period

Borrowers Reborrowers

Lender

Return ownership without direct communication « Propositional sharing

46

Rust-style borrow achieved in Nola

Rust-style borrow @ Lend / borrow ownership during a time period

Borrowers Reborrowers

Lender

Borrows in SL to verify
memory safety under
Rust’s ownership types

Later B> — No liveness
46

Rust-style borrow achieved in Nola

Rust-style borrow @ Lend / borrow ownership during a time period

Borrowers Reborrowers

Lender

—’—

Return ownership without direct communication « Propositional sharing

Nola borrow Proof rules

RUS"'BE"' ;:? (’ung-l- ,I8) / o o
. . fy Later-free [P EB’ (bor*P = lend* P)
orrows In Sl to veri : O L o
memory safety under Custom nProp & [| o] * bor®P =B (oborg P [P])
Rust's ownership types Just like invariant [oc]q « bor*P E B’
Rich operations ([a]y * bor*™ P x (fo— bor*P))

Later B> = No liveness L
Subdivision, merger, reborrow etc.

46

Technical contributions of my work Nola

Propositional sharing j8“ by syntax in separation logic

Old Syntax for SL props
Later modality > -> Later-free
Step-indexing No liveness No step-indexing v Liveness ¥

Invariant Simple & Powerful §3.2

Expressivity
g List mutation Liveness x Nesting §3.3 What is paradoxical &
§ Type soundness Scalable & Flexible §5 What can be shared §3.4

Semantic alteration
Novel general approach §4

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Key achievement: Nola prophetic borrow

48

Key achievement: Nola prophetic borrow

RustHorn @ Verify functionally about borrows with prophecy

(Matsushita+ ’20) of value at lifetime’s end

Background

48

Key achievement: Nola prophetic borrow

O RustHorn @ Verify functionally about borrows with prophecy

8 (Matsushita+ *20) of value at lifetime’s end
5 Later = No liveness

Ag RustHornBelt B} {R}’'s borrows x Parametric prophecy

. (Matsushitat "22) RustHorn-style verification in SL Ad-hoc

48

Key achievement: Nola prophetic borrow

RustHorn @ Verify functionally about borrows with prophecy

(Matsushita+ ’20) of value at lifetime’s end
Later = No liveness

(Matsushita+ "22) RustHorn-style verification in SL Ad-hoc

Background

Nola prophetic borrow Nola borrow x #}’s parametric prophecy

48

Key achievement: Nola prophetic borrow

RustHorn @ Verify functionally about borrows with prophecy

(Matsushita+ ’20) of value at lifetime’s end
Later = No liveness

RustHornBelt I8} {&}’s borrows x Parametric prophecy
(Matsushita+ "22) RustHorn-style verification in SL Ad-hoc

Background

Nola prophetic borrow Nola borrow x #}’s parametric prophecy

Proof rules Later-free & Abstract

[¢a] EB' (3x. bory, & * lend} ¢)
o]g * bory, ¢ FBE’ ([oc]q « (Am.mx = a))
tax lend? ¢ FB’ (Ja. (Ar.nrx=a)*[sa])

etc.

48

Key achievement: Nola prophetic borrow

RustHorn @ Verify functionally about borrows with prophecy

(Matsushita+ ’20) of value at lifetime’s end
Later = No liveness

RustHornBelt I8} {&}’s borrows x Parametric prophecy
(Matsushita+ "22) RustHorn-style verification in SL Ad-hoc

Background

Nola prophetic borrow Nola borrow x #}’s parametric prophecy

Proof rules Later-free & Abstract Model Instantiate Nola borrow

[¢a] FB (3x. bor’ ¢ * lend” &) Internal custom syntax & interpretation
alg * borg, & EE ([alg * (Ar.mx = a)) P* = xbor! ¢ | xlend, & | ---
tax lend? ¢ FB’ (Ja. (Ar.nrx=a)*[sa])

[xbory ¢]* = Fa. pcla = [$ 4]

etc.
48

Closing

Related work Summary

Related work

50

Related work

+ ’‘Later-free’ invariants in separation logic
» SteelCore (Swamy+ '20), Later Credit (Spies+ '22)

- Still step-indexed & hiding laters — Liveness unsupported

» iCAP (Svendsen+ '14), HOCAP (Svendsen+ '13)
- Nesting unsupported

50

Related work

+ ’‘Later-free’ invariants in separation logic
» SteelCore (Swamy+ '20), Later Credit (Spies+ '22)

- Still step-indexed & hiding laters — Liveness unsupported

» iCAP (Svendsen+ '14), HOCAP (Svendsen+ '13)
- Nesting unsupported

+ Liveness in step-indexed separation logic

> Transfinite Iris (Spies+ '21) — Indexing by ordinals

- Loses rules for later = Borrow unsupported
- Requires bounding by ordinals etc. & Concurrency unsupported

50

Summary — My work Nola

Propositional sharing by syntax for SL props

Later-free =@ No step-indexing — ¢ Liveness ¥

Invariant Simple & Powerful §3.2 Expressivily
% List mutation Liveness x Nesting §3.3 What is paradoxical &
k: Type soundness Scalable & Flexible §5 What can be shared §3.4

Borrow Advanced & Foundation for Rust §6 Semantic alteration
Prophetic borrow Functionally verify §7 Novel general approach $§4

Technical contributions

High-level Mechanization Future applications Related work

Background Liveness Separation logic Old invariant Later
51

