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Example

Type system

Commonly used & Lightweight

@ . t Explore sound & powerful
€lC. o o o
TS reasoning principles

Program logic

Foundational & General (Hoare ’69) etc.
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Separation logic *x for mutable state

Global state that can be mutated ‘.'fe‘

Esp. Mutable objects on heap memory

Core difficulty in program reasoning  Causes real-world bugs: Use dfter free, ... &

Separation logic = (©Hean+ 99), (ishitag+ 01), ..

Scalable program logic for

Actively studied, de facto standard program logic for mutable state

Key idea Use ownership W to eliminate aliasing
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Propositional sharing ;@ Modem SLs

Sharing with contract by SL props

Solved challenging problems

Memory safety by Rust’s ownership types (Jung+’18),
Information-flow control (Gregersen+ °21), Purity of ST monad (Jacobs+ ’22), ...

Existing work Later modality > = Can’t verify liveness
termination efc.
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Nola is fully mechanized as a general library

Fully mechanized in Coq 'L),J

Proofs are rigorously formalized & machine-checked

¥ — SL framework used in various studies
Generql Iibrqry on Irfﬁs (Jung+ ’15) Won Alonzo Church Award '23

Can be combined with diverse Iris-based studies

Publicly available at https://github.com/hopv/nola
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+ Practical verification tools w/ propositional sharing
> Liveness such as program termination + Later-free

» Support invariant & borrow in SL-based verification platforms
Viper (Miiller+ ’16), Steel (Fromherz+ °21), ...

» Foundation for verifiers that leverage Rust’s types etc.
RustHorn (Matsushita+ °20), Creusot (Denis+ °22), ...

+ Verifying program optimization algorithms

» Leverage Rust’s types etc. + Propositional sharing

» Verify (fair) termination preservation « Liveness < Later-free
SL such as Simuliris (Gdher+ °22), ...
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Partial vs Total correctness

Two types of standard program correctness

Total correctness ¥

Partial correctness

e doesn’t terminate with a non-W result e terminates with a W result
{P}eq¥} P e [¥]
Partial Hoare triple Total Hoare triple

Example fun osum(n) { if n#0 {2xXn—1+osum(n—1) } else {0} }
{n € Z} osum(n) {Av. v = nz} [n € N] osum(n) [Av. v = nz]

Infinite loop v& 1> 2> -3 Terminate! - Induction by n € N

12
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Safety vs Liveness ¥

Two classes of program properties

Safety Liveness ¥ B, Significant &
Examples Challenging
{P} € {qj} [P] € [IP] Damaged by later >
Partial correctness Total correctness
Bad things Roughly Good things
don’t happen eventually happen
Errors, Bad outputs, ... Termination, ...

Coinduction Typical proof Induction

13
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Reasoning about mutable state is hard

Example

— 1

Unsound V& ° [xl—>0 yr— 0| x

X=y _

AliCISiI‘Ig v hx:y/\X|—>O yHO]x+:1;y+:1hx+—>2/\yr—>2]
Unexpected

-

No
aliasing

X
v
@

Yoo _
v x#Fy N x>0 yHO]x+:1;y+:1 x+—>1/\y+—>l]

— Not scalable

15
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Basics of separation logic :k (O'Hearn* *99), Ishitag+ 01, etc

Separcﬂ'ion |ogic *k Scalable program logic for mutable state

E.g, [XHO Yy 0 x+=1 y+=1 [XHl * yr— 1| No dliasing by k

. A .
Points-to token ¢ — 0 Ownership W of memory cell

Exclusive access right to mutable state

Separating conjunction P * () @@w Disjoint ownership

t— o=l >0 FE L+ Concurrency Thread-local reasoning
No aliasing [P] o [Q] [P’] o’ [Q']
(o] tew [Emwi Pl pepTele (0]
Retained Separation between threads

16
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Invariant — Simple propositional sharing

o _ 0 o ‘ ® ®
Propositional sharing ,@“ Sharing with contract by SL props
Modern approach to shared mutable state in SL *%

Invariant Estabiished by (Jung+ 15) Situation P always holds
Share = * Imaginary store ff “;"é:“m

Cf. t—L 0+ {—0x{HU Globally shared in verification A

Example Shared mutable ref

A
7~ )

E. ref bool bg I f — true } skip { f — true V £ — false } Allocate
* 00

1€ true V £ > false | ; £ «false { T } Store

{ — true V f — false f \
{1 €+ true V ¢+ false | ; !¢ {/10. v = true V o = false } Load

19
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More invariant examples

Example Nested ref

v/ Vk
4: ref (ref bool)

/. >t %

" — true V ¢’ — false

Nested invariant
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More invariant examples

Example Nested ref

Z :
Y
2. ref(refbool) ¢ > "« | £ > true V ¢’ — false

Nested invariant

Example Thread-safe ref to a mutex-guarded object

v/ g+

4: refmutexT (¢ +> false = T(£+1)) V £+ true
Unlocked Locked

20
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Old approach’s problem: Later modality >

Invariant access rule
{I>P % Q} e {AU. > P % lI/v}

{[P]+ O} e {¥}

v | true V f|—>false

X

Naively store P not >P — Paradox!

Later in the way » +*

0. £ ) %

" > true V ¢ — false

22
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Old workaround step-indexing & Its problem

One execution step < One later >

Laters stripped e = e P } 4 {II/}
as program executes {D P} 0 { q/}

P| ¢ | V]
[I>P] e

Termination guarantee lost

Step-indexing

/

cannot be used
to verify liveness ¥

23
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Where later > comes from

|ndexing Technique of semantics construction

Index O 1 2 3

>P T ® @ - Later > defers index by one

Gradually define things as index grows

Non-idempotent
>> P # > P

For propositional sharing @* Iris (ung+’I5) etc

X lll-defined  State =, FiProp iProp =, State — Prop

A

Defer by later  State = F (» iProp) iProp = State — ﬁr\o})
Later > in store f{

24
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Why later > damages liveness

Model
{Pte{¥} = O(P—>wpe{V}) Liveness € [P|e[¥] = 0(P—twpe|¥])
wp e{EP} =, -V Veee wpe {\If} twp e [lI/] éﬂ oV Ve e—e. twp €’ [11/]
Greatest fixpoint Inductive Least fixpoint
- - Later
Step-indexing wpe{¥} £ vVl oe swpe {w) Mdex 0T 23
Safety <= coinductive Guarded fixpoint >WP L @
Paradox loop < loop  twp loop [J_] = twp loop [J_]

Sl'ep-inclexil‘lg >twp loop [J-]

= twp loop [J_]

Coinductivity by > Lob

= twp loop [

| Non-termination &

25
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Interface of Nola invariant

Ct.

Nola user Nola library Old Iris (ung+ ’15) etc.

SL prop syntax

nProp u Invariant Invariant
nProp > P, = Inv P € iPI”Op € iProp
Equ\P*Q\fl—>v\---’ P € nProp P € iProp
Interpretation
P EP D - Later-free rules Rules with later
iPro
- [Pxq] Z [P] < [a] - [[P] Q] e [A0. [P] » ol [P+ Qe [to.oP x ¥o]
linvP « Q] e [¥] [P] Q| e |¥]

v Liveness ¥
31
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My work Nola

Defer by syntax Defer by later
State = F nProp iProp = State — Prop State = F (» iProp) iProp = State — Prop
_____ L .
invP = Ji.io|1:=agP]|: 2 Ji.io[1:= agnext P]:
Proposition itse[f Equality weakened by later
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Model for Nola invariant

Old Iris (Jung+ ’15) etc.

My work Nola

Defer by syntax Defer by later
State = F nProp iProp = State — Prop State = F (» iProp) iProp = State — Prop
N N
wp 2 3] 3R s
* Proposition itself Equality weakened by later

\

v

Winv [] £ 3I.--- % %, ([T *--)v--) Wiinv 2 3L -+ s %, (I ) Ve-)
Store Later-free Store 4 Weakened by later
Ple[w] 2 [Ple[w]V™!! Access the store N
L Step-indexing = No liveness

No step-indexing — ¢ Liveness ¥
32
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Verification target

Big goal Verify total correciness ¥ on nested invariant @*

1 .

43
9 v/
Data type Shared mutable T @

singly linked list =
Invariant

Verify

Infinitely nested reference

lterative mutation funiter(€) { if lc#0 { f(£); c «!c—1; iter(!(£+1)) } }

over a list safely terminates ¥ if f safely terminates under @

E.g.,, funf(&) {t<t+3} @ A¢L. =

k. { — 3k

34
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Verify termination with Nola invariant

Construct SL prop syntax nProp > P,Q :=
1¢ | PxQ | 1> o0 | invP | list & ¢ | ---

Construct semantic interpretation

[3¢] £ Fa.[¢a] [P*xQ] = [P]+[Q] [¢1>0v] = ¢+—ov [invP] = invP

[list ¢ ] = inv($¢€) = inv (3L, (€+1) 1= ¢ * list & )

Verify ve. [inv($ )] f(o) [T]
termination  [[list é (] = cn]iter(f) [c— 0]
7 old
[ [list ¢ €] | '(£+1) [Ao. B¢ =0. [List ¢ /]| listde 2 [@e|« |3 (6+1) > ¢ = list D ¢

Later-free access [list®o ¢ | 1(¢+1) [Ao. 3¢ = 0. > list & ¢ ]
Later 35

.- Induction over n € N
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Analyze paradox in terms of Landin’s knot

Background Shared mutable ref to a causes infinite loop

. let r = ref 1d 1n
Landin’s knot W
r:= (A , 'r () Self-reference
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Rust-style borrow @ Lend / borrow ownership during a time period

Borrowers Reborrowers
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—’—
-------------

Return ownership without direct communication « Propositional sharing

Nola borrow Proof rules

RUS"'BE"' ;:? (’ung-l- ,I8) / o o
. . fy Later-free [P EB’ (bor*P = lend* P )
orrows In Sl to veri : O L o
memory safety under Custom nProp & [ | o] * bor®P =B (oborg P [P])
Rust's ownership types Just like invariant [oc]q « bor*P E B’
Rich operations ([a]y * bor*™ P x (fo— bor*P))

Later B> = No liveness L
Subdivision, merger, reborrow  etc.
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