
January 16, 2024 ― Ph.D. Thesis Defense

Non-Step-Indexed
Separation Logic with
Invariants and Rust-Style Borrows

Yusuke Matsushita Supervised by Prof. Naoki Kobayashi

the execution of programs

Program verification

2

Reasoning about behaviors of

Esp. Prove absence of bugs

the execution of programs

Program verification

2

Type system
Commonly used & Lightweight

etc.

Example

Reasoning about behaviors of

Esp. Prove absence of bugs

the execution of programs

Program verification

2

Type system
Commonly used & Lightweight

etc.

Example

Reasoning about behaviors of

Esp. Prove absence of bugs

Program logic

Explore sound & powerful
reasoning principles

Foundational & General (Hoare ’69) etc.

Separation logic ✽ for mutable state

3

Separation logic ✽ for mutable state

3

Causes real-world bugs: Use after free, …

Esp. Mutable objects on heap memory
Global state that can be mutatedMutable state

Core difficulty in program reasoning

Separation logic ✽ for mutable state

3

Causes real-world bugs: Use after free, …

Esp. Mutable objects on heap memory
Global state that can be mutatedMutable state

Core difficulty in program reasoning

Scalable program logic for mutable state

Separation logic ✽ (O’Hearn+ ’99), (Ishitaq+ ’01), …

Actively studied, de facto standard program logic for mutable state

Key idea Use ownership to eliminate aliasing

Propositional sharing & Problem of existing work

4

Propositional sharing & Problem of existing work

4

Big challenge Shared mutable state in SL ✽
E.g., Mutex-guarded shared object

Propositional sharing & Problem of existing work

4

Big challenge Shared mutable state in SL ✽
E.g., Mutex-guarded shared object

Propositional sharing
Sharing with contract by SL props

(Jung+ ’15), (Jung+ ’18), …

Solved challenging problems
Memory safety by Rust’s ownership types (Jung+ ’18),
Information-flow control (Gregersen+ ’21), Purity of ST monad (Jacobs+ ’22), …

(Hobor+ ’08), (Buisse+ ’11),
Modern SLs

Propositional sharing & Problem of existing work

4

Big challenge Shared mutable state in SL ✽
E.g., Mutex-guarded shared object

Propositional sharing
Sharing with contract by SL props

(Jung+ ’15), (Jung+ ’18), …

Solved challenging problems
Memory safety by Rust’s ownership types (Jung+ ’18),
Information-flow control (Gregersen+ ’21), Purity of ST monad (Jacobs+ ’22), …

(Hobor+ ’08), (Buisse+ ’11),
Modern SLs

Existing work Later modality → Can’t verify livenessù
termination etc.

High-level overview
MechanizationCore contribution Future applications

Core contribution of my work

6

Basic SLs

✔

✘ ✔

✘

Recent SLs
Iris (Jung+ ’15) etc.

Later modality ù Later-free
Syntax for SL props

✔

✔

My work Nola

Termination etc.
Liveness ♥

Propositional
Sharing

Verification
goals

Framework for building SLs

Separation logic ✽ Scalable program logic for mutable state

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality ù Later-free
No step-indexing ✔ Liveness ♥

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality ù Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality ù Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

Nola is fully mechanized as a general library

8

Nola is fully mechanized as a general library

8

Fully mechanized in Coq
Proofs are rigorously formalized & machine-checked

Nola is fully mechanized as a general library

8

Fully mechanized in Coq
Proofs are rigorously formalized & machine-checked

General library on (Jung+ ’15)

Can be combined with diverse Iris-based studies

SL framework used in various studies
Won Alonzo Church Award ’23

https://github.com/hopv/nolaPublicly available at

https://github.com/hopv/nola

Possible future applications of my work Nola

9

✦ Practical verification tools w/ propositional sharing

‣ Liveness such as program termination ← Later-free

‣ Support invariant & borrow in SL-based verification platforms

‣ Foundation for verifiers that leverage Rust’s types etc.

Possible future applications of my work Nola

9

Viper (Müller+ ’16), Steel (Fromherz+ ’21), …

RustHorn (Matsushita+ ’20), Creusot (Denis+ ’22), …

✦ Practical verification tools w/ propositional sharing

‣ Liveness such as program termination ← Later-free

‣ Support invariant & borrow in SL-based verification platforms

‣ Foundation for verifiers that leverage Rust’s types etc.

✦ Verifying program optimization algorithms

‣ Leverage Rust’s types etc. ← Propositional sharing

‣ Verify (fair) termination preservation ← Liveness ← Later-free

Possible future applications of my work Nola

9

Viper (Müller+ ’16), Steel (Fromherz+ ’21), …

RustHorn (Matsushita+ ’20), Creusot (Denis+ ’22), …

SL such as Simuliris (Gäher+ ’22), …

General background
Separation logic ✽Liveness ♥

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Partial vs Total correctness

12

Partial correctness Total correctness ♥
Two types of standard program correctness

Partial vs Total correctness

12

�
%

4
�
R

 e doesn’t terminate with a non-Ψ result e terminates with a Ψ result⇥
%
⇤
4
⇥
R
⇤

Partial Hoare triple Total Hoare triple

Partial correctness Total correctness ♥
Two types of standard program correctness

Partial vs Total correctness

12

Example

�1 ! �2 ! �3 ! · · ·Infinite loop Terminate! ∵ Induction by n ∈ ℕ

�
= 2 Z

osum(=)

�
_E . E = =2

 ⇥
= 2 N

⇤
osum(=)

⇥
_E . E = =2

⇤fun osum(=) { if = < 0 { 2⇥= � 1 + osum(=�1) } else { 0 } }

�
%

4
�
R

 e doesn’t terminate with a non-Ψ result e terminates with a Ψ result⇥
%
⇤
4
⇥
R
⇤

Partial Hoare triple Total Hoare triple

Partial correctness Total correctness ♥
Two types of standard program correctness

Safety vs Liveness ♥

13

Safety Liveness ♥
Two classes of program properties

Safety vs Liveness ♥

13

Safety Liveness ♥
Examples

Partial correctness Total correctness

RoughlyBad things
don’t happen

Errors, Bad outputs, …

Good things
eventually happen

Termination, …

�
%

4
�
R

 ⇥
%
⇤
4
⇥
R
⇤

Typical proofCoinduction Induction

Two classes of program properties

Safety vs Liveness ♥

13

Safety Liveness ♥
Examples

Partial correctness Total correctness

RoughlyBad things
don’t happen

Errors, Bad outputs, …

Good things
eventually happen

Termination, …

�
%

4
�
R

 ⇥
%
⇤
4
⇥
R
⇤

Typical proofCoinduction Induction

Significant &
Challenging🔥

ùDamaged by later

Two classes of program properties

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Reasoning about mutable state is hard

15

Example

Reasoning about mutable state is hard

15

? h
G 7! 0 ^ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ^ ~ 7! 1

i
Example

Reasoning about mutable state is hard

15

? h
G 7! 0 ^ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ^ ~ 7! 1

i
Unsound

h
G = ~ ^ G 7! 0 ^ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 2 ^ ~ 7! 2

i
Aliasing

x y=

Unexpected

Example

Reasoning about mutable state is hard

15

? h
G 7! 0 ^ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ^ ~ 7! 1

i
Unsound

h
G = ~ ^ G 7! 0 ^ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 2 ^ ~ 7! 2

i
Aliasing

x y=

Unexpected

→ Not scalable

h
G < ~ ^ G 7! 0 ^ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ^ ~ 7! 1

ix y≠

Manually eliminate aliasing

No
aliasing

Example

Basics of separation logic ✽

16

(O’Hearn+ ’99), (Ishitaq+ ’01), etc.

Scalable program logic for mutable stateSeparation logic ✽

Basics of separation logic ✽

16

(O’Hearn+ ’99), (Ishitaq+ ’01), etc.

Scalable program logic for mutable state
h
G 7! 0 ⇤ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ⇤ ~ 7! 1

i
E.g., No aliasing by ⇤

Separation logic ✽

Basics of separation logic ✽

16

(O’Hearn+ ’99), (Ishitaq+ ’01), etc.

Scalable program logic for mutable state
h
G 7! 0 ⇤ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ⇤ ~ 7! 1

i
E.g., No aliasing by ⇤

Points-to token v
ℓ

✓ 7! E Ownership of memory cell
Exclusive access right to mutable state

Separation logic ✽

Basics of separation logic ✽

16

(O’Hearn+ ’99), (Ishitaq+ ’01), etc.

Separating conjunction Disjoint ownershipP Q% ⇤&

Scalable program logic for mutable state
h
G 7! 0 ⇤ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ⇤ ~ 7! 1

i
E.g., No aliasing by ⇤

Points-to token v
ℓ

✓ 7! E Ownership of memory cell
Exclusive access right to mutable state

Separation logic ✽

Basics of separation logic ✽

16

(O’Hearn+ ’99), (Ishitaq+ ’01), etc.

Separating conjunction Disjoint ownershipP Q% ⇤&

Scalable program logic for mutable state
h
G 7! 0 ⇤ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ⇤ ~ 7! 1

i
E.g., No aliasing by ⇤

Points-to token v
ℓ

✓ 7! E Ownership of memory cell
Exclusive access right to mutable state

✓ 7! E ⇤ ✓ 0 7! E 0 ✏ ✓ < ✓ 0
No aliasing⇥

✓ 7! E ⇤ %
⇤
✓ F

⇥
✓ 7! F ⇤ %

⇤
Retained

Separation logic ✽

Basics of separation logic ✽

16

(O’Hearn+ ’99), (Ishitaq+ ’01), etc.

Separating conjunction Disjoint ownershipP Q% ⇤&

Scalable program logic for mutable state
h
G 7! 0 ⇤ ~ 7! 0

i
G += 1; ~ += 1

h
G 7! 1 ⇤ ~ 7! 1

i
E.g., No aliasing by ⇤

Points-to token v
ℓ

✓ 7! E Ownership of memory cell
Exclusive access right to mutable state

✓ 7! E ⇤ ✓ 0 7! E 0 ✏ ✓ < ✓ 0
No aliasing⇥

✓ 7! E ⇤ %
⇤
✓ F

⇥
✓ 7! F ⇤ %

⇤
Retained

Concurrency

Separation between threads

Thread-local reasoning⇥
%
⇤
4
⇥
&
⇤ ⇥

% 0 ⇤ 40 ⇥& 0 ⇤⇥
% ⇤ % 0 ⇤ 4 k 40

⇥
& ⇤& 0 ⇤

Separation logic ✽

Direct background
Propositional sharing Later modality ù

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Invariant ― Simple propositional sharing

19

Invariant ― Simple propositional sharing

19

Propositional sharing Sharing with contract by SL props
Modern approach to shared mutable state in SL ✽

Invariant ― Simple propositional sharing

19

%

Share % = % ⇤ %

Situation P always holdsInvariant
Imaginary store

Established by (Jung+ ’15)

P
P

Globally shared in verification✓ 7! E < ✓ 7! E ⇤ ✓ 7! ECf.

Propositional sharing Sharing with contract by SL props
Modern approach to shared mutable state in SL ✽

Invariant ― Simple propositional sharing

19

✓ 7! true _ ✓ 7! false

ℓ: ref bool

n
✓ 7! true _ ✓ 7! false

o
!✓

n
_E . E = true _ E = false

o
bool
ℓ

Example Shared mutable ref
Allocate

Store

Load

n
✓ 7! true

o
skip

n
✓ 7! true _ ✓ 7! false

o
n

✓ 7! true _ ✓ 7! false
o
✓ false

n
>

o

%

Share % = % ⇤ %

Situation P always holdsInvariant
Imaginary store

Established by (Jung+ ’15)

P
P

Globally shared in verification✓ 7! E < ✓ 7! E ⇤ ✓ 7! ECf.

Propositional sharing Sharing with contract by SL props
Modern approach to shared mutable state in SL ✽

More invariant examples

20

More invariant examples

20

ℓ: ref (ref bool)

Nested invariant

ℓ

boolℓ’
ℓ’

Example Nested ref

9✓ 0. ✓ 7! ✓ 0 ⇤ ✓ 0 7! true _ ✓ 0 7! false

More invariant examples

20

ℓ: ref (ref bool)

Nested invariant

ℓ

boolℓ’
ℓ’

Example Nested ref

9✓ 0. ✓ 7! ✓ 0 ⇤ ✓ 0 7! true _ ✓ 0 7! false

ℓ: refmutex T lock object?

ℓ ℓ+1

Example Thread-safe ref to a mutex-guarded object

Unlocked Locked

�
✓ 7! false ⇤) (✓ +1)

�
_ ✓ 7! true

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Old approach’s problem: Later modality

22

ù

P

Invariant access rule�
ù % ⇤ &

4
�
_E . ù % ⇤ R E

�
% ⇤ &

4
�
R

Weakened by
later modalityù
Naively store P not P → Paradox!ù

ù

Store
P

Old approach’s problem: Later modality

22

ù

P

Invariant access rule�
ù % ⇤ &

4
�
_E . ù % ⇤ R E

�
% ⇤ &

4
�
R

Weakened by
later modalityù
Naively store P not P → Paradox!ù

ù

Store
P

Old approach’s problem: Later modality

22

Under ⇧
ù ✓ 7! E ⌘ ✓ 7! E

✓ 7! true _ ✓ 7! false✔

ù % . %Later in the way

✘
Nested invariant

9✓ 0. ✓ 7! ✓ 0 ⇤ ✓ 0 7! true _ ✓ 0 7! false

ù

Old workaround step-indexing & Its problem

23

Old workaround step-indexing & Its problem

23

One execution step ↔ One later ù
4 õ! 40

�
%

40

�
R

�
ù %

4
�
R

Step-indexing

Laters stripped
as program executes

Old workaround step-indexing & Its problem

23

One execution step ↔ One later ù
4 õ! 40

�
%

40

�
R

�
ù %

4
�
R

Step-indexing

Laters stripped
as program executes

4 õ! 40
⇥
%
⇤
40

⇥
R
⇤

⇥
ù %

⇤
4
⇥
R
⇤cannot be used

to verify liveness ♥
Termination guarantee lost

Where later comes from

24

ù

Where later comes from

24

Indexing
Index 0 1 2 3

…
Gradually define things as index grows

P

Pù …⊤ Later defers index by one ù ù % < ù %
Non-idempotentù

Technique of semantics construction

ù

Where later comes from

24

Indexing
Index 0 1 2 3

…
Gradually define things as index grows

P

Pù …⊤ Later defers index by one ù ù % < ù %
Non-idempotentù

Technique of semantics construction

For propositional sharing

✘ Ill-defined

Defer by later
Later in storeù

(Jung+ ’15) etc.

State ,? � iProp iProp ,? State ! Prop

State , � (I iProp) iProp , State ! gProp

ù

Why later damages liveness

25

ù

Why later damages liveness

25

Safety Liveness ♥

Coinductive Greatest fixpoint Inductive Least fixpoint
twp 4

⇥
R
⇤

,` · · · _ 840 ú 4 . twp 40
⇥
R
⇤

wp 4
�
R

,a · · · _ 840 ú 4 . wp 40

�
R

�
%

4
�
R

, ⇤

�
% ! wp 4

�
R

 � ⇥
%
⇤
4
⇥
R
⇤
, ⇤

�
% ! twp 4

⇥
R
⇤ �

Model

ù

Why later damages liveness

25

Safety Liveness ♥

Coinductive Greatest fixpoint Inductive Least fixpoint
twp 4

⇥
R
⇤

,` · · · _ 840 ú 4 . twp 40
⇥
R
⇤

wp 4
�
R

,a · · · _ 840 ú 4 . wp 40

�
R

�
%

4
�
R

, ⇤

�
% ! wp 4

�
R

 � ⇥
%
⇤
4
⇥
R
⇤
, ⇤

�
% ! twp 4

⇥
R
⇤ �

Model

Step-indexing
Coinductive Guarded fixpoint

Index 0 1 2 3

wpù …⊤Safety
wp 4

�
R

, · · · _ 840 ú 4 . ùwp 40

�
R

 Later

ù

Why later damages liveness

25

Safety Liveness ♥

Coinductive Greatest fixpoint Inductive Least fixpoint
twp 4

⇥
R
⇤

,` · · · _ 840 ú 4 . twp 40
⇥
R
⇤

wp 4
�
R

,a · · · _ 840 ú 4 . wp 40

�
R

�
%

4
�
R

, ⇤

�
% ! wp 4

�
R

 � ⇥
%
⇤
4
⇥
R
⇤
, ⇤

�
% ! twp 4

⇥
R
⇤ �

Model

Step-indexing
Coinductive Guarded fixpoint

Index 0 1 2 3

wpù …⊤Safety
wp 4

�
R

, · · · _ 840 ú 4 . ùwp 40

�
R

 Later

Paradox

Löb

loop õ! loop twp loop
⇥
?
⇤
✏ twp loop

⇥
?
⇤

ù twp loop
⇥
?
⇤
✏ twp loop

⇥
?
⇤

✏ twp loop
⇥
?
⇤

Non-termination

Step-indexing
Coinductivity by ù

ù

Big picture
Technical contributions

Core contribution of my work Recap

27

Basic SLs

✔

✘ ✔

✘

Recent SLs
Iris (Jung+ ’15) etc.

Later modality ù

✔

✔

Later-free
Syntax for SL props

My work Nola

Termination etc.
Liveness ♥

Propositional
Sharing

Verification
goals

Framework for building SLs

Separation logic ✽ Scalable program logic for mutable state

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

ù

Technical contributions of my work Nola

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

ù

Technical contributions of my work Nola

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

ù

Technical contributions of my work Nola

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

ù

Technical contributions of my work Nola

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

ù

Technical contributions of my work Nola

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

ù

Central topics
Invariant Expressivity Semantic alteration

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Interface of Nola invariant

31

Interface of Nola invariant

31

nProp
SL prop syntax

inv P 2 iProp
P 2 nProp

Invariant

Nola user Nola library Old

Invariant

nProp 3 P , Q F
E

F | P * Q | ✓ |-> E | · · ·
% 2 iProp
% 2 iProp

Cf.
Iris (Jung+ ’15) etc.

Interface of Nola invariant

31

JPK 2 iProp ⇥
JPK ⇤ &

⇤
4
⇥
_E . JPK ⇤ R E

⇤ 0
⇥
inv P ⇤ &

⇤
4
⇥
R
⇤ 0

⇥
ù % ⇤ &

⇤
4
⇥
_E . ù % ⇤ R E

⇤
⇥
% ⇤ &

⇤
4
⇥
R
⇤

✔ Liveness ♥

· · · JP * QK , JPK ⇤ JQK · · ·

Interpretation
Later-free rules Rules with later

nProp
SL prop syntax

inv P 2 iProp
P 2 nProp

Invariant

Nola user Nola library Old

Invariant

nProp 3 P , Q F
E

F | P * Q | ✓ |-> E | · · ·
% 2 iProp
% 2 iProp

Cf.
Iris (Jung+ ’15) etc.

Model for Nola invariant

32

Model for Nola invariant

32

Defer by later

Old Iris (Jung+ ’15) etc.

% , 9] . �[] : ag next %]

My work Nola
Defer by syntax

inv P , 9] . �[] : ag P]
Equality weakened by later

State , � nProp iProp , State ! Prop State , � (I iProp) iProp , State ! gProp

Proposition itself

Model for Nola invariant

32

Defer by later

Old Iris (Jung+ ’15) etc.

% , 9] . �[] : ag next %]

My work Nola
Defer by syntax

inv P , 9] . �[] : ag P]
Equality weakened by later

State , � nProp iProp , State ! Prop State , � (I iProp) iProp , State ! gProp

Proposition itself

Weakened by laterLater-freeStore

Step-indexing → No liveness

No step-indexing → ✔ Liveness ♥

Store
Winv J K , 9I . · · · ⇤ ⇤]

�
(JI]K ⇤ · · ·) _ · · ·

�
Wiinv , 9� . · · · ⇤ ⇤]

�
(ù �] ⇤ · · ·) _ · · ·

�

Access the store
⇥
%
⇤
4
⇥
R
⇤ 0 ,

⇥
%
⇤
4
⇥
R
⇤ Winv J K

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Verification target

34

Verification target

34

Big goal Verify total correctness ♥ on nested invariant

Verification target

34

Shared mutable
singly linked list Φ

ℓ0

ℓ1

Φ
ℓ1

ℓ2 Φ
ℓ2

ℓ3 Φ
ℓ3

ℓ1Data type Cyclic

Infinitely nested referenceData
invariant

Big goal Verify total correctness ♥ on nested invariant

Verification target

34

Shared mutable
singly linked list Φ

ℓ0

ℓ1

Φ
ℓ1

ℓ2 Φ
ℓ2

ℓ3 Φ
ℓ3

ℓ1Data type Cyclic

Infinitely nested referenceData
invariant

fun 5 (✓) { ✓ !✓ + 3 }E.g.,

Verify Iterative mutation

over a list safely terminates ♥ if f safely terminates under Φ
Φ _✓ . 9: . ✓ 7! 3:

fun iter(✓)
�
if !2 < 0 { 5 (✓); 2 !2 � 1; iter(!(✓ +1)) }

Big goal Verify total correctness ♥ on nested invariant

Verify termination with Nola invariant

35

Verify termination with Nola invariant

35

Construct SL prop syntax nProp 3 P , Q F

E

F | P * Q | ✓ |-> E | inv P | list F ✓ | · · ·

Verify termination with Nola invariant

35

Construct SL prop syntax nProp 3 P , Q F

E

F | P * Q | ✓ |-> E | inv P | list F ✓ | · · ·

Jinv PK , inv P

Construct semantic interpretation
J E

F K , 90. JF 0K JP * QK , JPK ⇤ JQK J✓ |-> EK , ✓ 7! E

Jlist F ✓K , inv (F ✓) ⇤ inv
� E

✓ 0. (✓ +1) |-> ✓ 0 * list F ✓ 0
�

Verify termination with Nola invariant

35

Construct SL prop syntax nProp 3 P , Q F

E

F | P * Q | ✓ |-> E | inv P | list F ✓ | · · ·

Jinv PK , inv P

Construct semantic interpretation
J E

F K , 90. JF 0K JP * QK , JPK ⇤ JQK J✓ |-> EK , ✓ 7! E

Jlist F ✓K , inv (F ✓) ⇤ inv
� E

✓ 0. (✓ +1) |-> ✓ 0 * list F ✓ 0
�

Verify
termination ∵ Induction over n ∈ ℕ8✓ .

⇥
inv (F ✓)

⇤
5 (✓)

⇥
>
⇤ 0

⇥
Jlist F ✓K ⇤ 2 7! =

⇤
iter(✓)

⇥
2 7! 0

⇤ 0
Old

Later-free access
Later

⇥
Jlist F ✓K

⇤
!(✓ +1)

⇥
_E . 9✓ 0 = E . Jlist F ✓ 0K

⇤ 0
listQ ✓ , Q ✓ ⇤ 9✓ 0. (✓ +1) 7! ✓ 0 ⇤ listQ ✓ 0⇥
listQ ✓

⇤
!(✓ +1)

⇥
_E . 9✓ 0 = E . ù listQ ✓ 0

⇤

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Analyze paradox in terms of Landin’s knot

37

Analyze paradox in terms of Landin’s knot

37

Landin’s knot
let r = ref id in
r := (λ _, !r ()); !r ()

Shared mutable ref to a function causes infinite loop
r

Call !r

Background

Self-reference

Analyze paradox in terms of Landin’s knot

37

Landin’s knot
let r = ref id in
r := (λ _, !r ()); !r ()

Shared mutable ref to a function causes infinite loop
r

Call !r

Background

Self-reference

% ⇤ & ✏ |V �
% ⇤ '

�
% ⇤ & ✏ |V '

% ✏ |V %Later-free invariant

� _ ⇤ |V?Construct
Contradiction

“Logical function”

Paradox My contribution, a simplified version of (Krebbers+ ’17+)’s

Fancy update
✏ |V?

Nola avoids paradoxes & subsumes the old way

38

Nola avoids paradoxes & subsumes the old way

38

inv bad
Ill-defined
Cyclic reference to J KJbadK ,? � _ ⇤ |VWinv J K ?

Store

Well-definedness of naturally avoids paradoxesJ K

✘

Fancy update

Nola avoids paradoxes & subsumes the old way

38

inv bad
Ill-defined
Cyclic reference to J KJbadK ,? � _ ⇤ |VWinv J K ?

Store

Well-definedness of naturally avoids paradoxesJ K

✘

Fancy update

Avoid Landin’s knotJthoare P 4 Y K ,?
⇥
JPK

⇤
4
⇥
JY K

⇤ Winv J K
✘

Internally uses fancy updateHoare triple

Nola avoids paradoxes & subsumes the old way

38

inv bad
Ill-defined
Cyclic reference to J KJbadK ,? � _ ⇤ |VWinv J K ?

Store

Well-definedness of naturally avoids paradoxesJ K

✘

Fancy update

Avoid Landin’s knotJthoare P 4 Y K ,?
⇥
JPK

⇤
4
⇥
JY K

⇤ Winv J K
✘

Internally uses fancy updateHoare triple

Everything allowed under later → Subsume the old way

✔ Defer by laterJ|> hoare P 4 Y K , ù
�
JPK

4
�
JY K

 Winv J K

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Derivability for semantic alteration

40

Jinv (P * Q)K = Jinv (Q * P)K
Jinv inv (P * Q)K = Jinv inv (Q * P)K

Goal Semantically alter props

Derivability for semantic alteration

40

Jinv PK , inv P✘
Syntactic Cyclic reference to

✘ Jinv PK ,? 9Q . ⇤
�
JPK ⇤�⇤ JQK

�
⇤ inv Q
J K

Jinv (P * Q)K = Jinv (Q * P)K
Jinv inv (P * Q)K = Jinv inv (Q * P)K

Goal Semantically alter props

Derivability for semantic alteration

40

Jinv PK , inv P✘
Syntactic Cyclic reference to

✘ Jinv PK ,? 9Q . ⇤
�
JPK ⇤�⇤ JQK

�
⇤ inv Q
J K

Jinv (P * Q)K = Jinv (Q * P)K
Jinv inv (P * Q)K = Jinv inv (Q * P)K

Goal Semantically alter props

✔
Derivability

Jinv PK , 9Q . ⇤ der (P *-* Q) ⇤ inv Q

der (P *-* Q) ✏ JPK ⇤�⇤ JQKSound
⇥
JPK ⇤ &

⇤
4
⇥
_E . JPK ⇤ R E

⇤ 0
⇥
Jinv PK ⇤ &

⇤
4
⇥
R
⇤ 0

Judgment

Derivability for semantic alteration

40

Jinv PK , inv P✘
Syntactic Cyclic reference to

✘ Jinv PK ,? 9Q . ⇤
�
JPK ⇤�⇤ JQK

�
⇤ inv Q
J K

Jinv (P * Q)K = Jinv (Q * P)K
Jinv inv (P * Q)K = Jinv inv (Q * P)K

Goal Semantically alter props

✔
Derivability

Jinv PK , 9Q . ⇤ der (P *-* Q) ⇤ inv Q

der (P *-* Q) ✏ JPK ⇤�⇤ JQKSound
⇥
JPK ⇤ &

⇤
4
⇥
_E . JPK ⇤ R E

⇤ 0
⇥
Jinv PK ⇤ &

⇤
4
⇥
R
⇤ 0

Judgment

Challenge Construct sound & complete-ish derivability der

Novel general approach to constructing der

41

Novel general approach to constructing der

41

Judgment semantics

Construct parameterized semantics
Jinv PKX , 9Q . ⇤ X (P *-* Q) ⇤ inv Q · · · JP * QKX , JPKX ⇤ JQKX · · ·

Defer by parameterization

J K+ : (Judg ! iProp) ! (Judg ! iProp) JP *-* QK+X , JPKX ⇤�⇤ JQKX
Derivability candidate

Novel general approach to constructing der

41

Judgment semantics

Construct parameterized semantics
Jinv PKX , 9Q . ⇤ X (P *-* Q) ⇤ inv Q · · · JP * QKX , JPKX ⇤ JQKX · · ·

Defer by parameterization

J K+ : (Judg ! iProp) ! (Judg ! iProp) JP *-* QK+X , JPKX ⇤�⇤ JQKX
Derivability candidate

X X 0 , 8J . ⇤
�
X J ! JJK+X 0 ^ X 0 J

�

General der construction
der J ,` 8X 2 Deriv s.t. der X . JJK+X

Universally quantify

X 2 Deriv ,` 8J .�
8X 0 2 Deriv s.t. X X 0 . JJK+X 0

� ✏ X J

semantics

Novel general approach to constructing der

41

Judgment semantics

Construct parameterized semantics
Jinv PKX , 9Q . ⇤ X (P *-* Q) ⇤ inv Q · · · JP * QKX , JPKX ⇤ JQKX · · ·

Defer by parameterization

J K+ : (Judg ! iProp) ! (Judg ! iProp) JP *-* QK+X , JPKX ⇤�⇤ JQKX
Derivability candidate

X X 0 , 8J . ⇤
�
X J ! JJK+X 0 ^ X 0 J

�

General der construction
der J ,` 8X 2 Deriv s.t. der X . JJK+X

Universally quantify

X 2 Deriv ,` 8J .�
8X 0 2 Deriv s.t. X X 0 . JJK+X 0

� ✏ X J

semantics

der 2 Deriv ∵ Definition

Sound ∵ Induction

Complete-ish

der J ✏ JJK+der

Member

w.r.t. ∀ over Deriv

Semantic alteration generally solved!

�
8X 2 Deriv . ⇤ JJ 0K+X �⇤ JJK+X

� ✏
8X 2 Deriv . ⇤X J 0 �⇤ X J

etc.

Other topics
Type soundness Borrow Prophetic borrow

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Termination by leveled types verified with Nola

44

Termination by leveled types verified with Nola

44

Verification goal Well-typed programs terminate ♥

Termination by leveled types verified with Nola

44

Verification goal Well-typed programs terminate ♥
Leveled type system Eliminate Landin’s knot with levels i ∈ ℕ

Restrict ref access
â ` 4 :9 ref8 T 8 < 9

â ` !4 :9 T
â ` 4 :9 ref8 T â ` 40 :9 T 8 < 9

â ` 4 40 :9 unit

Shared mutable ref & functionT8 , U8 F ref: T: | T8 !9 U8 (9  8) | · · ·

Termination by leveled types verified with Nola

44

Verification goal Well-typed programs terminate ♥
Leveled type system Eliminate Landin’s knot with levels i ∈ ℕ

Restrict ref access
â ` 4 :9 ref8 T 8 < 9

â ` !4 :9 T
â ` 4 :9 ref8 T â ` 40 :9 T 8 < 9

â ` 4 40 :9 unit

Shared mutable ref & functionT8 , U8 F ref: T: | T8 !9 U8 (9  8) | · · ·

Solution Model type system with Nola invariants
Semantic type judgment

Construct interpretation
by induction over the level

JE : U ` 4 :8 TK ,
⇥⇤ JUK E

⇤
4
⇥
JTK

⇤⇤:<8 Winv J K⇤:

Jref TK E , 9✓ = E . inv (✓ 7! T) J✓ 7! TK⇤ , 9F . ✓ 7! F ⇤ JTKF

JT !9 UK E , 8D .
⇥
JTKD

⇤
E (D)

⇥
JUK

⇤⇤:< 9 Winv J K⇤:

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Rust-style borrow achieved in Nola

46

Rust-style borrow achieved in Nola

46

Rust-style borrow Lend / borrow ownership during a time period

Rust-style borrow achieved in Nola

46

Lender Borrowers

P
Q

R

After
α ends During α

During α

Rust-style borrow Lend / borrow ownership during a time period

Rust-style borrow achieved in Nola

46

Lender Borrowers

P
Q

R

After
α ends During α

During α

Reborrowers

R During β ⊆ αS
After
β ends

…

Rust-style borrow Lend / borrow ownership during a time period

Rust-style borrow achieved in Nola

46

Lender Borrowers

P
Q

R

After
α ends During α

During α

Reborrowers

R During β ⊆ αS
After
β ends

…

Rust-style borrow Lend / borrow ownership during a time period

Return ownership without direct communication ← Propositional sharing

Rust-style borrow achieved in Nola

46

Lender Borrowers

P
Q

R

After
α ends During α

During α

Reborrowers

R During β ⊆ αS
After
β ends

…

Rust-style borrow Lend / borrow ownership during a time period

(Jung+ ’18)RustBelt
Borrows in SL to verify
memory safety under
Rust’s ownership types

Later → No livenessù

Return ownership without direct communication ← Propositional sharing

Rust-style borrow achieved in Nola

46

Lender Borrowers

P
Q

R

After
α ends During α

During α

Reborrowers

R During β ⊆ αS
After
β ends

…

Rust-style borrow Lend / borrow ownership during a time period

(Jung+ ’18)RustBelt
Borrows in SL to verify
memory safety under
Rust’s ownership types

Later → No livenessù

Nola borrow
JPK ✏ |V0 �

bora P ⇤ lenda P
�

etc.

Later-free

Rich operations
Subdivision, merger, reborrow

Custom &

[a]@ ⇤ bora P ✏ |V0�
[a]@ ⇤ boraub P ⇤ (†a �⇤ bora P)

�
nProp

Just like invariant
J K

Proof rules

[a]@ ⇤ bora P ✏ |V0 �
obora@ P ⇤ JPK

�

Return ownership without direct communication ← Propositional sharing

Technical contributions of my work Nola

Syntax for SL props

Step-indexing No liveness

Old

Propositional sharing by syntax in separation logic ✽

Later modality Later-free
No step-indexing ✔ Liveness ♥

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

ù

Key achievement: Nola prophetic borrow

48

Key achievement: Nola prophetic borrow

48

(Matsushita+ ’20)
RustHorn Verify functionally about borrows with prophecy

of value at lifetime’s end

Ba
ck

gr
ou

nd

Key achievement: Nola prophetic borrow

48

(Matsushita+ ’22)
RustHornBelt ’s borrows × Parametric prophecy

RustHorn-style verification in SL

Later → No liveness

Ad-hoc

(Matsushita+ ’20)
RustHorn Verify functionally about borrows with prophecy

of value at lifetime’s end

Ba
ck

gr
ou

nd

Key achievement: Nola prophetic borrow

48

(Matsushita+ ’22)
RustHornBelt ’s borrows × Parametric prophecy

RustHorn-style verification in SL

Later → No liveness

Ad-hoc

Nola prophetic borrow Nola borrow × ’s parametric prophecy

(Matsushita+ ’20)
RustHorn Verify functionally about borrows with prophecy

of value at lifetime’s end

Ba
ck

gr
ou

nd

Key achievement: Nola prophetic borrow

48

(Matsushita+ ’22)
RustHornBelt ’s borrows × Parametric prophecy

RustHorn-style verification in SL

Later → No liveness

Ad-hoc

Nola prophetic borrow Nola borrow × ’s parametric prophecy

Proof rules Later-free & Abstract
JF 0K ✏ |V0 � 9G . bora0,G F ⇤ lendaG F

�

†a ⇤ lendaG F ✏ |V0 �
90. h_c . c G = 0i ⇤ JF 0K

�[a]@ ⇤ bora0,G F ✏ |V0 �
[a]@ ⇤ h_c . c G = 0i

�

etc.

(Matsushita+ ’20)
RustHorn Verify functionally about borrows with prophecy

of value at lifetime’s end

Ba
ck

gr
ou

nd

Key achievement: Nola prophetic borrow

48

(Matsushita+ ’22)
RustHornBelt ’s borrows × Parametric prophecy

RustHorn-style verification in SL

Later → No liveness

Ad-hoc

Nola prophetic borrow Nola borrow × ’s parametric prophecy

Proof rules Later-free & Abstract
JF 0K ✏ |V0 � 9G . bora0,G F ⇤ lendaG F

�

†a ⇤ lendaG F ✏ |V0 �
90. h_c . c G = 0i ⇤ JF 0K

�[a]@ ⇤ bora0,G F ✏ |V0 �
[a]@ ⇤ h_c . c G = 0i

�

etc.

Model Instantiate Nola borrow
Internal custom syntax & interpretation

JxborWG F K⇤ , 90. pcWG 0 ⇤ JF 0K · · ·
P ⇤ F xborWG F | xlendG F | · · ·

(Matsushita+ ’20)
RustHorn Verify functionally about borrows with prophecy

of value at lifetime’s end

Ba
ck

gr
ou

nd

Closing
Related work Summary

Related work

50

✦ ‘Later-free’ invariants in separation logic

‣ SteelCore (Swamy+ ’20), Later Credit (Spies+ ’22)
- Still step-indexed & hiding laters → Liveness unsupported

‣ iCAP (Svendsen+ ’14), HOCAP (Svendsen+ ’13)
- Nesting unsupported

Related work

50

✦ ‘Later-free’ invariants in separation logic

‣ SteelCore (Swamy+ ’20), Later Credit (Spies+ ’22)
- Still step-indexed & hiding laters → Liveness unsupported

‣ iCAP (Svendsen+ ’14), HOCAP (Svendsen+ ’13)
- Nesting unsupported

✦ Liveness in step-indexed separation logic

‣ Transfinite Iris (Spies+ ’21) ― Indexing by ordinals
- Loses rules for later → Borrow unsupported
- Requires bounding by ordinals etc. & Concurrency unsupported

Related work

50

Summary ― My work Nola

51

High-level Mechanization Future applications Related work

Te
ch

ni
ca

l c
on

tr
ib

ut
io

ns

Invariant Simple & Powerful §3.2

List mutation Liveness × Nesting §3.3

C
as

e
stu

di
es

Type soundness Scalable & Flexible §5

Borrow Advanced & Foundation for Rust §6

Prophetic borrow Functionally verify §7

Expressivity
What is paradoxical &
 What can be shared §3.4

Semantic alteration
Novel general approach §4

Later-free → No step-indexing → ✔ Liveness ♥
Propositional sharing by syntax for SL props

Background Liveness Separation logic Old invariant Later

