
Predicate Abstraction and CEGAR for νHFLZ
Validity Checking

Naoki Iwayama1, Naoki Kobayashi1 , Ryota Suzuki1, and Takeshi Tsukada2

1 The University of Tokyo, {iwayama,koba,rsuzuki}@kb.is.s.u-tokyo.ac.jp
2 Chiba University, tsukada@math.s.chiba-u.ac.jp

Abstract. We propose an automated method for νHFLZ validity check-
ing. HFLZ is an extension of the higher-order fixpoint logic HFL with
integers, and νHFLZ is a restriction of it to the fragment without the
least fixpoint operator. The validity checking problem for HFLZ has re-
cently been shown to provide a uniform approach to higher-order pro-
gram verification. The restriction to νHFLZ studied in this paper al-
ready provides an automated method for a large class of program veri-
fication problems including safety and non-termination verification, and
also serves as a key building block for solving the validity checking prob-
lem for full HFLZ. Our approach is based on predicate abstraction and
counterexample-guided abstraction refinement (CEGAR). We have im-
plemented the proposed method, and applied it to program verification.
According to experiments, our tool outperforms a closely related tool
called Horus in terms of precision, and is competitive with a more spe-
cialized program verification tool called MoCHi despite the generality
of our approach.

1 Introduction

HFLZ [12] is an extension of the higher-order fixpoint logic HFL [21] with in-
tegers. Kobayashi et al. [12,22] have shown that various program verification
problems for functional programs can be reduced to HFLZ validity checking
problems.3 For example, consider the following OCaml program.

let rec sum f n k = if n<=0 then k 0

else f n (fun x-> sum f (n-1) (fun y -> k(x+y)))

let main n = sum (fun x k -> k(x+x)) n (fun r->assert(r>=n))

The main function takes an integer n as an argument, computes the sum r =∑n
x=1(x+x), and asserts that r ≥ n (here, the function sum is represented in the

continuation-passing style to make the correspondence with the formula below
clear). By using the reduction of [12], the property that the assertion never fails

3 Kobayashi et al. [12] actually considered model checking problems, but it is actu-
ally sufficient to consider validity checking problems for formulas without modal
operators, as shown in a follow-up paper [22]; thus, throughout this paper, we shall
consider only validity checking for formulas without modal operators.

2 N. Iwayama et al.

for any integer n can be expressed by the HFLZ formula ∀n.main n, where main
is defined by:

main n =ν sum (λx.λk.k(x+ x)) n (λr.r ≥ n)
sum f n k =ν (n ≤ 0 ⇒ k 0) ∧ (n > 0 ⇒ f n (λx.sum f (n− 1) λy.k(x+ y))).

Here, the subscript ν of each equality symbol indicates that main and sum are
the greatest predicates that satisfy the equations. Notice that the formulas above
(whose precise semantics will be introduced later) directly correspond to the def-
initions of the main and sum functions; for example, the part n ≤ 0 ⇒ k 0 in the
equation for the sum predicate corresponds to the then-part of the sum function.
Watanabe et al. [22] have shown that verification of arbitrary regular properties
(i.e., those expressible in the modal µ-calculus) of simply-typed, higher-order
recursive functional programs can be reduced to HFLZ validity checking in a
similar (but a little more elaborated) manner: more precisely, given a closed
program P and a regular property A, one can construct a closed HFLZ for-
mula φP,A such that P satisfies A just if φP,A is valid. Thus, an automated
HFLZ validity checker would yield a very general automated verification tool for
higher-order functional programs.

As the first step towards the development of an automated HFLZ validity
checker, in the present paper, we focus on a fragment of HFLZ called νHFLZ,
and develop an automated method for validity checking of νHFLZ formulas (note
that our method is sound but necessarily incomplete, as the problem is undecid-
able). The fragment νHFLZ is obtained by removing the least fixpoint operator
from HFLZ. A νHFLZ validity checker can be used for verifying various prop-
erties of higher-order functional programs, such as safety and non-termination
properties. In fact, the verification of properties expressible in the ν-only frag-
ment of the modal µ-calculus can be reduced to validity checking of a νHFLZ
formula. This fragment is powerful enough to verify the (un)reachability prob-
lem in the presence of both angelic and demonic branches; in contrast, most
of the previous automated verification tools for higher-order programs (such as
MoCHi [10]) only deal with demonic branches. A νHFLZ validity checker can
also be used as a building block for a (forthcoming) full HFLZ validity checker
(which can then be used for verification of arbitrary properties expressive in the
full the modal µ-calculus, like “an event A occurs infinitely often”), by using the
technique developed for a first-order fixpoint logic [9].

Our method is based on predicate abstraction and counterexample-guided
abstraction refinement (CEGAR). The techniques of predicate abstraction and
CEGAR have been used in the context of model checking. In this paper, we adapt
them for proving the validity of a νHFLZ formula. Given a νHFLZ formula φ
and a set of predicates on integers, we compute a pure HFL formula φ′ without
integers, as an underapproximation of φ, so that if φ′ is valid, so is φ. The va-
lidity of the pure HFL formula φ′ is decidable; one can use either an HFL model
checker (such as HomuSat [6]) or a HORS model checker (such as [7]) based on
the reduction from HORS to HFL model checking [8]. For example, suppose that
we have chosen the predicate λx.x > 0 for abstracting integers. Then, the integer

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 3

predicate λx.λy.x+ y > 0 can be abstracted to λbx>0.λb
′
y>0.bx>0 ∧ b′y>0, where

bx>0 (b′y>0, resp.) is instantiated to true just if the value of the original argu-
ment x (y, resp.) is positive. The formula λbx>0.λb

′
y>0.bx>0 ∧ b′y>0 semantically

represents the predicate λx.λy.x > 0∧y > 0, which is an underapproximation of
the original predicate λx.λy.x+ y > 0. As in the ordinary predicate abstraction
technique for model checking, the success of validity checking heavily depends on
the choice of the predicates used for abstraction; we thus use CEGAR to refine
the set of predicates in an on-demand manner, based on counterexamples. Due
to the generality of νHFLZ validity checking (which, as mentioned earlier, can
deal with the reachability in the presence of both angelic and demonic branches),
we need a more elaborate method for CEGAR than the previous methods for
CEGAR for higher-order program verification.

We have implemented an automated νHFLZ validity checker PaHFL based
on the method above, and compared through experiments with two related tools:
Horus [2] and MoCHi [10]. Horus is a satisfiability checker for HoCHC, higher-
order constrained Horn clauses. As we discuss in Section 2, the validity check-
ing problem for νHFLZ and the satisfiability problem for HoCHC are reducible
to each other; thus Horus can also be used as a νHFLZ validity checker. As
demonstrated through the experiments, however, Horus is not powerful enough
to prove the validity of many formulas obtained from higher-order program ver-
ification problems, although Horus often terminates quickly when it succeeds.
MoCHi [10] is an automated program verification tool for OCaml, developed
based on HORS model checking. The original version of MoCHi is tailor-made
for (non-)reachability verification, although various extensions for proving and
disproving termination and fair termination have been developed later. In con-
trast, our νHFLZ validity checker can deal with a wider class of properties than
the original version of MoCHi, in a more uniform and general manner than the
various extensions of MoCHi mentioned above. According to our experiments,
PaHFL is competitive with MoCHi, despite the generality.

The rest of this paper is structured as follows. Section 2 reviews the defi-
nition of HFLZ and its validity checking problem. Sections 3 and 4 formalize
our method. Section 5 reports our implementation and experiments. Section 6
discusses related work and Section 7 concludes the paper.

2 Preliminaries: Higher-Order Fixed-Point Logic νHFLZ

This section reviews (modal-free) νHFLZ and its validity checking problem. The
logic νHFLZ is a higher-order logic with arithmetic (over integers) and greatest
fixed-point operators νx.ψ, hence the name. It is a fragment of HFLZ [12], which
is an extension of HFL [21] with arithmetic (over integers).4

The set of types, ranged over by τ , is defined by:

τ (types) ::= • | τ̄ → τ τ̄ (extended types) ::= τ | int.
4 It is possible to further extend HFLZ with other data structures such as lists and
trees, and extend our predicate abstraction method accordingly, as long as the back-
ground solvers (such as SMT and CHC solvers) support them.

4 N. Iwayama et al.

Γ, x : τ ⊢ST x : τ
(S-Var)

b ∈ {true, false}
Γ ⊢ST b : • (S-Bool)

Γ ⊢ST n : int
(S-Int)

Γ ⊢ST ai : int for each i

Γ ⊢ST p(a1, ..., an) : •
(S-Pred)

Γ ⊢ST ai : int for each i

Γ ⊢ST op(a1, ..., an) : int
(S-Op)

Γ ⊢ST ψ : τ̄ → τ Γ ⊢ST ψ̄ : τ̄

Γ ⊢ST ψψ̄ : τ
(S-App)

Γ, x : τ̄ ⊢ST ψ : τ

Γ ⊢ST λxτ̄ .ψ : τ̄ → τ
(S-Abs)

Γ ⊢ST ψ1 : • Γ ⊢ST ψ2 : •
Γ ⊢ST ψ1 ∧ ψ2 : • (S-And)

Γ ⊢ST ψ1 : • Γ ⊢ST ψ2 : •
Γ ⊢ST ψ1 ∨ ψ2 : • (S-Or)

Γ, x : τ ⊢ST ψ : τ

Γ ⊢ST νxτ .ψ : τ
(S-Nu)

Fig. 1. Simple typing of νHFLZ

The type • describes propositions. Note that int can occur only on the lefthand
side of →; for example, int → int is invalid. Every type τ can be written in the
form τ̄1 → · · · → τ̄k → •.

The set of νHFLZ formulas, ranged over ψ, is defined by:

ψ (formula) ::= xτ | true | false | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

| νxτ .ψ | λxτ̄ .ψ | ψψ̄ | p(ã)
a (arithmetic expression) ::= n | xint | op(ã)
ψ̄ (extended formula) ::= ψ | a

Here, the metavariables x, n, p, and op respectively range over the sets of vari-
ables, integers, integer predicates (such as <) , and integer operators (such as
+). We often use infix notations for predicates and operators. The formula νxτ .ψ
denotes the greatest fixpoint of λxτ .ψ. We often omit the type annotation on
the shoulder of a variable.

We use a standard simple type system for the λ-calculus to restrict the shape
of formulas. As usual, a type environment, denoted by the metavariableΓ , is a
finite map from a set of variables to the set of extended types. The typing relation
Γ ⊢ST ψ̄ : τ̄ is defined by the rules in Figure 1. Henceforth, we consider only
well-typed formulas.

The interpretation of a type τ̄ is a poset (Dτ̄ ,⊑τ̄), inductively defined by:

D• := {tt, ff} ⊑• := { (ff, ff), (ff, tt), (tt, tt) }
Dint := Z ⊑int := {(n, n) | n ∈ Z}

Dτ̄→τ := Dτ̄ → Dτ ⊑τ̄→τ := {(f, g) | ∀v ∈ Dτ̄ . f(v) ⊑τ g(v)}.

Here, Dτ̄ → Dτ denotes the set of monotone functions from Dτ̄ to Dτ . Note
that (Dτ ,⊑τ) is a complete lattice (although (Dint,⊑int) is not). Hence, for
every function f ∈ Dτ→τ , there exists a greatest fixpoint. gfp(f) of f , given by:
gfp(f) =

⊔
{ v ∈ Dτ | v ⊑τ f(v) }.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 5

We define the interpretation of formulas. Given a type environment Γ , a
valuation for Γ is a mapping ρ such that ρ(x) ∈ Dτ for each (x : τ) ∈ Γ . We
assume that the interpretations JopK and JpK of operators and atomic predicates
are given a priori. For a formula Γ ⊢ST ψ : τ and a valuation ρ for Γ , the
interpretation JψKρ is defined by:JxKρ := ρ(x) JtrueKρ := tt JfalseKρ := ff JnKρ := nJop(a1, . . . , an)Kρ := JopK(Ja1Kρ, . . . , JanKρ)Jp(a1, . . . , an)Kρ := JpK(Ja1Kρ, . . . , JanKρ)Jψ ψ̄Kρ := JψKρ(Jψ̄Kρ) Jλxτ̄ .ψKρ = { v 7→ JψKρ∪{x 7→v} | v ∈ Dτ̄ }Jνxτ .ψKρ := gfp(Jλxτ .ψKρ).

For a formula ψ of type •, we write ρ |= ψ to mean JψKρ = tt. If ρ |=
ψ for every valuation ρ, we write |= ψ and say that ψ is valid. The νHFLZ
validity checking problem asks if a formula of type • is valid. Since the universal
quantifiers are definable (see Examples 3 and 4 below), we can assume without
loss of generality that an input of the validity checking problem is a closed
formula. The validity checking problem for νHFLZ is undecidable.

Example 1. Let ψ be νX.λn.(n = 0 ∨ (n > 0 ∧ X(n − 2))). Then |= ψ(n) holds
just if n is a non-negative even number. ⊓⊔

Example 2. The example in Section 1 is expressed by ∀n.main n, where main is
defined by:

main := λnint.sum (λx.λk.k(x+ x)) n (λr.r ≥ n)
sum := νsumτ .λfint→(int→•)→•.λnint.λkint→•.(n > 0 ∨ k 0)

∧(n ≤ 0 ∨ f n (λxint.sum f (n− 1) λyint.k(x+ y)))
τ := (int → (int → •) → •) → int → (int → •) → •.

Note that the subformula n > 0 ∨ k 0 is equivalent to n ≤ 0 ⇒ k 0, which in
turn corresponds to the then-part of the sum function in the source program.
We emphasize again that the formula above mimics the structure of the source
program in the continuation passing style, where the answer type of the source
program corresponds to the type • of formulas. ⊓⊔

Example 3. The universal quantifier over integers is definable. Let forallint :=

λfint→•.
((
νXint→•.λyint.(f y) ∧ (X (y + 1)) ∧ (X (y − 1))

)
0
)
. Then, given a

formula of type int → •, one has Jforallint ψKρ = tt iff ∀n ∈ Z. JψKρ(n) = tt. ⊓⊔

Example 4. The universal quantifiers over predicates can be given without using
the fixed-point operators. Since the interpretation of a formula is monotone,JψKρ(⊥τ) = tt if and only if ∀v ∈ Dτ . JψKρ(v) = tt, where ⊥τ is the least element
of Dτ . Since ⊥τ = Jλx1.λxk.falseK (where τ = τ̄1 → · · · → τ̄k → •), the
universal quantifier can be defined by forallτ := λfτ→•.f (λx1.λxk.false).
One can define existential quantifiers on predicates by the same technique, using
the greatest element λx1.λxk.true instead of the least one.5 ⊓⊔
5 In contrast, the existential quantifier over integers is not definable in this logic.

6 N. Iwayama et al.

A νHFL formula is a νHFLZ formula that has no arithmetic subformula. It
is known that the validity checking of closed νHFL formulas is decidable. We
shall use νHFL as the target of the predicate abstraction in Section 3.

Remark 1. The νHFLZ validity checking problem is polynomial-time equivalent
to the HoCHC satisfiability checking problem [2] with arithmetic as the un-
derlying constraint language. The mutual reductions between the two problems
are obtained in essentially the same way as those between the validity checking
problem for the first-order fragment of νHFLZ and the satisfiability problem for
CHC [9]. Existential quantifiers in HoCHC correspond to universal quantifiers
in νHFLZ, which can be expressed as discussed in Examples 3 and 4 above. ⊓⊔

3 Predicate Abstraction

This section formalizes a predicate abstraction method for νHFLZ. It computes
a pure νHFL formula φ (for which validity checking is decidable) as an under-
approximation of an input νHFLZ formula ψ, by abstracting information about
integers. We can then check the validity of φ by using either a (pure) νHFL
model checker [6], or using a reduction to HORS model checking [8]. If φ is
valid, we can conclude that the original formula ψ is also valid; otherwise, we
proceed to the CEGAR phase described in Section 4.

Following the predicate abstraction method of Kobayashi et al. [10] for higher-
order functional programs, we use abstraction types to express how each subfor-
mula should be abstracted. The syntax of abstraction type is given by:

(abstraction type) σ ::= • | x : int[P1, ..., Pk] → σ | σ1 → σ2
(predicate) P,Q ::= true | false | p(ã) | P1 ∧ P2 | P1 ∨ P2

(environment) Σ ::= ∅ | Σ, x : int | Σ, x : σ

Here x in x :int[P1, . . . , Pk] → σ is a binding variable whose scope is P1, . . . , Pk

and σ. The type (x : int[P1, . . . , Pn] → σ) describes predicates whose first
integer argument x should be abstracted by using the predicates P1, . . . , Pn.
For example, given an abstraction type (x : int[x = 0, 1 < x, x < 5] → •),
the predicate λx.(0 ≤ x ∧ x ≤ 10) on integers is abstracted to the predicate
λbx=0b1<xbx<5.

(
bx=0 ∨ (b1<x ∧ bx<5)

)
on Booleans bx=0, b1<x, and bx<5, which

respectively represent underapproximations of the values of x = 0, 1 < x, and
x < 5. Thus, (λx.(0 ≤ x ∧ x ≤ 10))2 is abstracted to (λbx=0b1<xbx<5.bx=0 ∨
(b1<x ∧ bx<5))false true true, which evaluates to tt. Intuitively, the abstract
Boolean predicate above corresponds to λx.

(
x = 0 ∨ (1 < x ∧ x < 5)

)
, which is

an underapproximation of the original predicate λx.(0 ≤ x∧x ≤ 10). As another
example, let us consider the higher-order predicate λx.λk.k(x + x). Given the
abstraction type x : int[x ≥ 0] → (r : int[r ≥ x] → •) → •, λx.λk.k(x + x) is
abstracted to λbx≥0.λk

′.k′ bx≥0. Here, k
′ expects as its argument an underap-

proximation of r ≥ x, where r refers to the argument x+ x of k in the original
expression. Since x ≥ 0 implies x + x ≥ x, we can pass bx≥0 to k′ as an un-
derapproximation of r ≥ x. The formula (λx.λk.k(x + x))1 (λr.r ≥ 1) is then

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 7

abstracted to (λbx≥0.λk
′.k′ bx≥0)true (λbr≥1.br≥1), which evaluates to true. In

contrast, by using the same abstraction type, (λx.λk.k(x+x))1 (λr.r ≥ 2) is ab-
stracted to (λbx≥0.λk

′.k′ bx≥0)true (λbr≥1.false), which is equivalent to false;
note that br≥1 only gives an underapproximation of r ≥ 1, which is not useful
to conclude r ≥ 2, although r in the original formula evaluates to 2.6 As the
last example shows, the result of predicate abstraction only provides an under-
approximation of the original formula (which is equivalent to true in the last
example).

In order to clarify the shapes of input and output formulas of predicate
abstraction, let us define the following two translations from abstraction types
to simple types:

•♯ := • (x :int[P1, ..., Pk] → σ)♯ = int → σ♯ (σ1 → σ2)
♯ = σ♯

1 → σ♯

•♭ = • (x :int[P1, ..., Pk] → σ)♭ =

k︷ ︸︸ ︷
• → · · · → • → σ♭ (σ1 → σ2)

♭ = σ♭
1 → σ♭.

Given an abstraction type σ, our predicate abstraction converts a νHFLZ formula
of type σ♯ to a νHFL formula of type σ♭; for instance, as in the above examples,
the abstraction type x : int[x = 0, 1 < x, x < 5] → • is used to abstract a
formula of type (x : int[x = 0, 1 < x, x < 5] → •)♯ = int → • to a formula of
type (x : int[x = 0, 1 < x, x < 5] → •)♭ = • → • → • → •.

Our predicate abstraction is formalized as the predicate abstraction relation
Σ | Θ ⊢ ψ : σ ⇝ φ (where the metavariable Θ denotes a sequence of predi-
cates P1, . . . , Pk; we sometimes use set notations for Θ when the order is not
important) given in Figure 2. It means that assuming that the free variables
in ψ are abstracted according to the abstraction type environment Σ, and that
underapproximations of Θ = P1, . . . , Pk are available as special Boolean vari-
ables bP1 , . . . , bPk

, ψ can be abstracted to ϕ according to the abstraction type
σ. The abstraction relation Σ | P1, . . . , Pk ⊢ ψ : σ ⇝ φ is used to convert
a νHFLZ formula ψ such that Σ♯ ⊢ ψ : σ♯ to a νHFL formula φ such that
Σ♭, bP1

: •, . . . , bPk
: • ⊢ φ : σ♭, where Σ♯ and Σ♭ are pointwise extensions of the

corresponding translations for types, defined by:

∅♯ := ∅ (Σ, x : int)♯ := Σ♯, x : int (Σ, x : σ)♯ := Σ♯, x : σ♯

∅♭ := ∅ (Σ, x : int)♭ := Σ♭ (Σ, x : σ)♭ := Σ♭, x : σ♭

We explain the main rules in Figure 2. (A-Pred) translates a predicate into
a corresponding Boolean variable provided that the predicate is currently avail-
able. In (A-IntAbs), the integer variable x of λx.ψ is translated into Boolean
variables bP1

, . . . , bPk
where P1, . . . , Pk is predicates attached to x; the predi-

cates P1, ..., Pk, as well as corresponding variables bPi
, are available in the body

ψ. These Boolean variables are supplied in (A-IntApp), which applies Boolean

variables b̃P to the abstraction φ of the function. The (A-Coerce) rule is used

6 We can prove the validity of (λx.λk.k(x + x))1 (λr.r ≥ 2) if we use a different
abstraction type, like x : int[] → (r : int[r ≥ 2x] → •) → • for λx.λk.k(x+ x).

8 N. Iwayama et al.

Σ, x : σ | Θ ⊢ x : σ ⇝ x
(A-Var)

P ∈ Θ

Σ | Θ ⊢ P : •⇝ bP
(A-Pred)

Σ | Θ ⊢ ψ : (x : int[P1, ..., Pk] → σ)⇝ φ Σ ⊢ST a : int

Σ | Θ, [a/x]P̃ ⊢ ψa : [a/x]σ ⇝ φb̃[a/x]P
(A-IntApp)

Σ, x : int | Θ, P̃ ⊢ ψ : σ ⇝ φ

Σ | Θ ⊢ λx.ψ : (x : int[P̃] → σ)⇝ λb̃P .φ
(A-IntAbs)

Σ | Θ ⊢ ψ1 : σ1 → σ2 ⇝ φ1 Σ | Θ ⊢ ψ2 : σ1 ⇝ φ2

Σ | Θ ⊢ ψ1ψ2 : σ2 ⇝ φ1φ2

(A-App)

Σ, x : σ1 | Θ ⊢ ψ : σ2 ⇝ φ

Σ | Θ ⊢ λx.ψ : σ1 → σ2 ⇝ λx.φ
(A-Abs)

Σ | Θ ⊢ ψ1 : •⇝ φ1 Σ | Θ ⊢ ψ2 : •⇝ φ2

Σ | Θ ⊢ ψ1 ∧ ψ2 ⇝ φ1 ∧ φ2

(A-And)

Σ | Θ ⊢ ψ1 : •⇝ φ1 Σ | Θ ⊢ ψ2 : •⇝ φ2

Σ | Θ ⊢ ψ1 ∨ ψ2 ⇝ φ1 ∨ φ2

(A-Or)

Σ, x : σ | Θ ⊢ ψ : σ ⇝ φ

Σ | Θ ⊢ νx.ψ : σ ⇝ νx.φ
(A-Nu)

Σ | Θ ⊢ ψ : σ ⇝ φ Σ ⊢ φ : (Θ, σ) ⪯ (Θ′, σ′)⇝ φ′

Σ | Θ′ ⊢ ψ : σ′ ⇝ φ′ (A-Coerce)

X : •k → • ⊢ST ξ : •l → •JXP1...PkKρ ⊒• JξQ1...QlKρ for all ρ s.t. dom(ρ) = {X} ∪ {x | x : int ∈ Σ}
Σ ⊢ φ : (P1, ..., Pk, •) ⪯ (Q1, ..., Ql, •)⇝ [λbP1 ...bPk .φ/X]ξbQ1 ...bQl

(AC-Base)

Σ, x : int ⊢ φbP1 ...bPk : ((Θ1, P1, ..., Pk), σ1) ⪯ ((Θ2, Q1, ..., Ql), σ2)⇝ φ′

Σ ⊢ φ : (Θ1, x : int[P1, ..., Pk] → σ1) ⪯ (Θ2, x : int[Q1, ..., Ql] → σ2)⇝ λbQ1 · · · bQl .φ
′

(AC-IntArrow)

Σ, x : σ′
1 ⊢ x : (ε, σ′

1) ⪯ (Θ′, σ1)⇝ φ1 Σ, y : σ1 ⊢ φy : (Θ, σ2) ⪯ (Θ′, σ′
2)⇝ φ′

2

Σ ⊢ φ : (Θ, σ1 → σ2) ⪯ (Θ′, σ′
1 → σ′

2)⇝ λx.[φ1/y]φ
′
2

(AC-Arrow)

Fig. 2. Abstraction relation

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 9

to change the abstraction type σ and predicates P̃ in a judgment. Its major
premise is the coercion relation Σ ⊢ φ : (Θ, σ) ⪯ (Θ′, σ′) ⇝ φ′, which we shall
explain below.

The coercion relation Σ ⊢ φ : (Θ, σ) ⪯ (Θ′, σ′) ⇝ φ′ transforms an ab-
straction φ following (Θ, σ) into another abstraction φ′ following (Θ′, σ′). For
example, let Θ = (x = 0, P̃) and Θ′ = (x ≤ 0, x ≥ 0, P̃). Then an abstraction φ
following (Θ, σ) can be rewritten to another abstraction [(bx≤0 ∧ bx≥0)/bx=0]φ
following (Θ′, σ) since |= x = 0 ⇐⇒ (x ≤ 0 ∧ x ≥ 0); hence Σ ⊢ φ : (Θ, σ) ⪯
(Θ′, σ)⇝ [(bx≤0 ∧ bx≥0)/bx=0]φ.

7 Another interesting example is

Σ ⊢ φ : ((x ≤ 0, x ≥ 0), •) ⪯ ((), •)
⇝ ([true/bx≤0, false/bx≥0]φ) ∧ ([false/bx≤0, true/bx≥0]φ).

Although an abstraction following ((), •) has no information on x, we know
that |= (x ≤ 0) ∨ (x ≥ 0) and the above coercion means that it suffices to
check the two cases, namely the cases that x ≤ 0 and that x ≥ 0.8 The most
important rule is (AC-Base), which is a generalization of the above argument.

Since JXP1 · · ·PkKρ ⊒• JξQ1 · · ·QlKρ for arbitrary X, substituting λb̃P .φ for
X results in the judgment of the conclusion. Note that (AC-Base) is non-
deterministic in the choice of ξ. In general, the most precise ξ is given by the
following formula.

ξ = λb̃Q.
∨
Φ,Ψ

|=Ψ(Q̃)=⇒Φ(P̃)

Ψ(b̃Q) ∧
 ∧

ṽ∈{true,false}n

|=Φ(ṽ)

X ṽ

where n and m are the lengths of P̃ and Q̃, and Φ and Ψ range over positive
Boolean formulas over n and m variables. In practice, since computing the best
abstraction is too costly, we restrict the shape and size of Ψ and Φ (for example,
Ψ is restricted to conjunctive formulas of a certain size, as in [1]).

We present basic properties of the proposed abstraction. The first property
is soundness, as stated in the following theorem; see Appendix A for a proof.

Theorem 1 (Soundness of predicate abstraction). Suppose ⊢ ψ : • ⇝ φ.
If φ is valid, so is ψ.

The second property is about expressivity. The theorem below (see Ap-
pendix C for a proof) says that the proposed predicate abstraction (followed
by νHFL validity checking) is at least as expressive as a refinement intersec-
tion type system (see Appendix C for the definition). In particular, this result

7 More precisely there exists a formula φ′ such that Σ ⊢ φ : (Θ, σ) ⪯ (Θ′, σ) ⇝ φ′

and φ′ =βη [(bx≤0 ∧ bx≥0)/bx=0]φ.
8 Note that the case where both x ≤ 0 and x ≥ 0 hold (i.e. x = 0) is not
problematic because of monotonicity: if [true/bx≤0, false/bx≥0]φ is true, then
[true/bx≤0, true/bx≥0]φ is true as well.

10 N. Iwayama et al.

indicates that our approach is more powerful than the approach of Horus for
HoCHC [2], because their approach is based on a refinement type system with-
out intersection types.

Theorem 2 (Completeness with respect to refinement intersection sys-
tem). If ⊢ ψ : tt is provable in the refinement dependent intersection type system,
then there exists a νHFL formula φ such that ⊢ ψ : •⇝ φ and φ is valid.

As indicated in the example below, an abstraction of a valid formula is not
necessarily valid. One needs to find a good abstraction type to obtain an ab-
straction that is valid.

Example 5. Let ψ := ψ0 7ψ1 where

ψ0 := (λn.λf.(f 5) ∧ (f n)) and ψ1 := (λy.(0 ≤ y ∧ y ≤ 10)).

It is easy to see that ψ is valid. For the abstraction type σ0 :=
(
n : int[0 ≤ n] →

(y : int[0 ≤ y, y ≤ 5] → •) → •
)
, we obtain:

⊢ ψ0 :σ0 ⇝ λb0≤n.λf.

f true true ∧
(
(b0≤n ∧ f true false) ∨ (f true false ∧ f false true)

)
.

Here f true true is the abstraction of f 5 and the remaining part of the body
of the function is the abstraction of f n. This is indeed the “most precise” ab-
straction of ψ0 following σ0. An abstraction of ψ1 following σ2 := (y : int[0 ≤
y, y ≤ 5] → •) is λb0≤yby≤5.b0≤y ∧ by≤5. Hence

⊢ ψ0 7ψ1 : • ⇝(
λb0≤n.λf.f true true ∧

(
(b0≤n ∧ f true false)

∨ (f true false ∧ f false true)
))

true (λb0≤yby≤5.b0≤y ∧ by≤5).

The result of the abstraction is invalid. This suggests that a better abstraction
type is required for ψ0. ⊓⊔

Example 6. Recall Example 2. Let the abstraction type σsum for sum be:

(x:int[x ≥ 0] → (y:int[y ≥ x] → •) → •) → n:int[] → (r:int[r ≥ n] → •) → •.

The body ψsum of sum can be abstracted as follows.

Γ ;n > 0, n ≤ 0 ⊢ ψsum : •⇝
(bn>0 ∨ k bn≤0)
∧(bn≤0 ∨ f bn>0 (λbx≥n.sum f (λby≥n−1.k(bx≥n ∧ by≥n−1 ∧ bn≤0)))).

Here, Γ = sum : σsum , x : int, f : (y : int[y ≥ x] → •) → •, n : int, k : r :
int[r ≥ n] → •. By (A-Coerce) (let ξ in (AC-Base) be (λX.X false true ∧
X true false)X), we get:

Γ ;⊢ ψsum : σsum ⇝ (λX.X false true ∧X true false)
(λbn>0bn≤0.(bn>0 ∨ k bn≤0)
∧(bn≤0 ∨ f bn>0 (λbx≥n.sum f (λby≥n−1.k(bx≥n ∧ by≥n−1 ∧ bn>0))))).

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 11

The output formula can be simplified to:

k true ∧ f true λbx≥n.sum f λby≥n−1.k(bx≥n ∧ by≥n−1).

Thus, the whole formula is abstracted to sum ′ (λbx≥0.λk.k bx≥0) λbr≥n.br≥n,
where

sum ′ := νsum.λf.λk.k true ∧ f true λbx≥n.sum f λby≥n−1.k(bx≥n ∧ by≥n−1),

which is equivalent to true (as can be confirmed by a HFL model checker);
hence, we can conclude that the original formula is also valid. ⊓⊔

4 Counterexample-Guided Abstraction Refinement

This section describes the second component of our method, counterexample-
guided abstraction refinement (CEGAR). Let φ be an abstraction of ψ, i.e. ⊢ ψ :
•⇝ φ. If φ is valid, then ψ is valid and we are done, as discussed in the previous
section. Otherwise either ψ is invalid or the abstraction is too coarse (or both).
Below we first introduce the notion of a counterexample (which shows why φ is
invalid) in our context in Section 4.1. We then discuss, in Section 4.2, a way to
determine whether the counterexample also implies the invalidity of ψ. If that is
the case, we can conclude that ψ is invalid; otherwise, we refine the abstraction
by finding new predicates, as discussed in Section 4.3.

4.1 Counterexample

In the context of our νHFLZ validity checking, a counterexample is a witness of
the invalidity of a closed proposition. Formally the set of candidate counterex-
amples used in this paper is given by the following grammar:

c ::= false | c ∧ ∗ | ∗ ∧ c | c ∨ c.

Intuitively a candidate counterexample is a sufficiently large part of a formula,
which ensures the invalidity of the formula; replacing each ∗ in a counterexample
to an arbitrary formula results in a false formula.

A candidate counterexample c is a counterexample of ψ, written c ▷ ψ, if c
witnesses the invalidity of ψ. Intuitively c▷ψ means that ψ matches the pattern
of c. For example, counterexamples of(

(1 = 0) ∧ (10 > 1)
)
∨
(
(4 ̸= 2 + 2) ∧ (3 < 0)

)
are (

false ∧ ∗
)
∨
(
false ∧ ∗

)
and

(
false ∧ ∗

)
∨
(
∗ ∧ false

)
.

Here, the subformulas 1 = 0, 4 ̸= 2+2, and 3 < 0 “match” false, since they are
equivalent to false. The counterexamples above evaluate to false irrespectively
of which formula we substitute for ∗.

The relation c▷ ψ is formally defined inductively by the rules in Fig. 3.

12 N. Iwayama et al.

|= ¬p(ã)
false▷ p(ã)

c1 ▷ φ1

c1 ∧ ∗▷ φ1 ∧ φ2

c2 ▷ φ2

∗ ∧ c2 ▷ φ1 ∧ φ2

c1 ▷ φ1 c2 ▷ φ2

c1 ∨ c2 ▷ φ1 ∨ φ2

c▷ ([φ′/x]φ) ψ̃

c▷ (λx.φ)φ′ ψ̃

c▷ ([νx.φ/x]φ) ψ̃

c▷ (νx.φ) ψ̃

Fig. 3. Rules for the counterexample relation c▷ ψ

Example 7. Let φ be the result of the abstraction in Example 5, i.e.,

⊢ ψ0 7ψ1 : • ⇝(
λb0≤n.λf.f true true ∧

(
(b0≤n ∧ f true false)

∨ (f true false ∧ f false true)
))

true (λb0≤yby≤5.b0≤y ∧ by≤5).

Then c▷ φ for

c = ∗ ∧
(
∗ ∧ (∗ ∧ false)

)
∨
(
∗ ∧ (false ∧ ∗)

)
.

In fact, we have

c▷(true∧true)∧
((

true∧(true∧false)
)
∨
(
(true∧false)∧(false∧true)

))
,

from which we can derive c▷ φ by using the rule for β-redexes in Figure 3. ⊓⊔

Every invalid formula has a counterexample. This follows easily from the fact
that, for co-continuous arguments, Jνxτ .ψKρ coincides with

d
i∈ωJλxτ .ψKiρ(⊤τ)

in the semantics of νHFLZ formulas9; see, e.g. Lemma 14 of [11]:

Proposition 1. For any closed νHFLZ formula ψ of type •, JψK = ff if and
only if c▷ ψ for some c.

Let ψ be a νHFLZ formula, and φ be a νHFL formula obtained by applying
predicate abstraction to φ, and suppose that φ is invalid. The goal of the rest
of this subsection is to compute a set of candidate counterexamples for ψ.

By using a model-checker for νHFL (without arithmetic), we can obtain a
counterexample c for φ (i.e., c such that c▷φ). Note, however, that the shape of
c does not necessarily match that of ψ, due to the conjunctions and disjunctions
that may have been introduced in the predicate abstraction phase. For example,
recall φ in Example 7, which is an abstraction of the formula ψ in Example 5.
The counterexample c in Example 7 is not a counterexample of ψ. In fact, the
original formula has just conjunctions, and the disjunctions (and also some of
the conjunctions) in c have been introduced by the abstraction.

To address the issue above, we distinguish between boolean connectives in
an original formula and those introduced in the abstraction phase, by writing

9 This is not the case for full HFLZ.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 13

∧̄ and ∨̄ for the latter. We assume that the boolean connectives in (AC-Base)
(used in ξ) are ∧̄ and ∨̄. A counterexample with ∧̄ or ∨̄ is called an abstract
counterexample.

An abstract counterexample c induces a set of (candidate) counterexamples
C(c) defined by:

C(false) := {false} C(c1 ∨ c2) := {c′1 ∨ c′2 | c′i ∈ C(ci)}
C(∗ ∧ c) := { ∗ ∧ c′ | c′ ∈ C(c) } C(c ∧ ∗) := { c′ ∧ ∗ | c′ ∈ C(c) }

C(c1 ∨̄ c2) := C(c1) ∪ C(c2) C(∗ ∧̄ c) := C(c) C(c ∧̄ ∗) := C(c).

Example 8. The formula in Example 7 should be written as(
λb0≤n.λf.f true true ∧

(
(b0≤n ∧̄ f true false)

∨̄ (f true false ∧̄ f false true)
))

true (λb0≤yby≤5.b0≤y ∧ by≤5).

and an abstract counterexample is c = ∗ ∧
((

∗ ∧̄ (∗ ∧ false)
)
∨̄
(
∗ ∧̄ (false ∧

∗)
))

. Then C(c) = { ∗ ∧ (∗ ∧ false), ∗ ∧ (false ∧ ∗) }. ⊓⊔

Assume that ⊢ ψ : •⇝ φ and φ is invalid. Then a model-checker generates an
abstract counterexample c of φ. We randomly pick a candidate counterexample
from C(c) and proceed to feasibility checking.

4.2 Feasibility Check

Let ψ be a closed formula, and c be a candidate counterexample of ψ. We would
like to check whether c▷ ψ.

The rules in Fig. 3 can be seen as the definition of a procedure for checking
c ▷ ψ. For example, to check whether c1 ∨ c2 ▷ ψ1 ∨ ψ2, the procedure checks
whether c1 ▷ ψ1 and c2 ▷ ψ2. If the candidate counterexample c comes from an
abstract counterexample of an abstraction of ψ, the procedure to check c ▷ ψ
terminates.10

If c▷ψ, then ψ is invalid. Otherwise we refine the abstraction by using c, as
discussed in the next subsection.

Remark 2. In the actual implementation, we allow ψ to contain free integer
variables x1, . . . , xk, and judge the validity of ∀x1, . . . , xk.ψ. In this case, the
feasibility check is a little more involved.

4.3 Predicate Discovery and Abstraction Refinement

Let c be an infeasible candidate counterexample c of ψ. To improve the precision
of abstraction, we would like to find predicates that are useful to show the validity
of ψ. Our approach is based on a refinement dependent intersection type system.

10 This procedure does not terminate in general. An example is false▷ (νf.λx.f x) 0.

14 N. Iwayama et al.

Our type system is a variant of the refinement intersection type system for
higher-order functional programs [18]. An important feature of our type system
is a type of the form ¬c, for each candidate counterexample c. Intuitively, a
formula ψ has type ¬c if ψ does not have c as a counterexample (i.e. if c ⋫ ψ).
The typing rules include:

∆ | Φ ⊢ ψ2 : ¬c
∆ | Φ ⊢ ψ1 ∧ ψ2 : ¬(∗ ∧ c)

and
∆ | Φ ⊢ ψi : ¬ci (i = 1 or 2)

∆ | Φ ⊢ ψ1 ∨ ψ2 : ¬(c1 ∨ c2)

where ∆ is a type environment and Φ is a precondition. The former rule checks
the specified branch, ignoring the discarded part (i.e. ψ1) corresponding to ∗. So
⊢ false ∧ true : ¬(∗ ∧ false) is a valid type judgment although false ∧ true

is an invalid formula. The latter rule says that, to show (c1 ∨ c2) ⋫ (ψ1 ∨ ψ2), it
suffices to prove either c1 ⋫ ψ or c2 ⋫ ψ2. The complete list of typing rules can
be found in Appendix C.

Example 9. Here is an example of a derivation in the refinement intersection
type system.

y : int | y ≤ 9 ⊢ (y ≤ 10) : ¬(false)
y : int | y ≤ 9 ⊢ (0 ≤ y) ∧ (y ≤ 10) : ¬(∗ ∧ false)

ϵ | true ⊢ λy.(0 ≤ y) ∧ (y ≤ 10)) : y :{int | y ≤ 9} → ¬(∗ ∧ false)

Although the condition y ≤ 9 does not imply that the body is true, y ≤ 9 implies
that ∗∧false is not a valid counterexample for the body (since the right branch
of the conjunction y ≤ 10 is actually true). ⊓⊔

The abstraction refinement phase proceeds as follows. Given an infeasible
candidate counterexample c of ψ, we construct a derivation ⊢ ψ : ¬c, a proof of
c ⋫ ψ. Then we extract predicates from the derivation.

We can use a template-based dependent type inference [18,19] to find a deriva-
tion for ⊢ ψ : ¬c. We first prepare a template of each refinement type, which is
completely determined by ψ and c. For example, the template for the formula ψ
in Example 5 with candidate counterexample ∗ ∧ (∗ ∧ false) is

(λn.λf.fn) :
n :{int | P (n)} →

(
y :{int | Q(n, y)} → ¬(∗ ∧ false)

)
→ ¬(∗ ∧ false)

(λy.(0 ≤ y) ∧ (y ≤ 10)) : y :{int | R(y)} → ¬(∗ ∧ false)

where P , Q and R are predicate variables. We then generate constraints on
predicate variables so that the formula has type ¬c if and only if the constraints
are satisfied, in a manner similar to [10]. We then solve the constraints by using
a CHC solver [19,4] (see the remark below) and obtain a derivation for ⊢ ψ : ¬c.

Remark 3. The constraints generated are actually more complex than those gen-
erated in the CEGAR phase of [10]. The constraints generated in our CEGAR
phase are conjunctions of clauses of the form:

P1(x̃1) ∨ · · · ∨ Pk(x̃k) ⇐ A1 ∧ · · · ∧Am,

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 15

where k ≥ 0, and each Ai is an atom of the form Pℓ(ỹ) or p(ã). The constraints
are acyclic (in the sense that there is no circular dependency like P (x) ∨ · · · ⇐
Q(x)∧· · · and Q(x)∨· · · ⇐ P (x)∧· · ·). In contrast, the constraints generated in
the CEGAR phase of [10] are acyclic CHCs, obtained by imposing the restriction
k ≤ 1 to the form of constraints above. Thanks to the acyclicity, we can solve
the extended constraints by invoking a CHC solver multiple times. ⊓⊔

The extraction of predicates from a derivation for ⊢ ψ : ¬c is rather straight-
forward. For example, suppose a subformula λx.ψ0 of ψ that has simple type
int → τ . Because our type system has intersection types, this subformula may
have several types, say x : {int | Pi(x)} → δi for each i = 1, . . . , k. Then the
extracted abstraction type for this subformula is x : int[P1, . . . , Pk] → σ for
some σ.

Example 10. Let ψ be a formula in Example 5, i.e. ψ = ψ0 7ψ1 where ψ0 =
(λn.λf.f5 ∧ fn) and ψ1 = (λy.(0 ≤ y) ∧ (y ≤ 10)). Assume that a candidate
counterexample is ∗ ∧ (∗ ∧ false) (cf. Example 8). A derivation of ⊢ ψ : ¬(∗ ∧
(∗ ∧ false)) contains the following typing to subformulas:

ψ0 : n :{int | n ≤ 7} →
(
y :{int | y ≤ 8} → ¬(∗ ∧ false)

)
→ ¬(∗ ∧ (∗ ∧ false))

ψ1 : y :{int | y ≤ 9} → ¬(∗ ∧ false)

The abstraction types for ψ0 and ψ1 extracted from this proof are

σ′
0 := n :int[n ≤ 7] → (y :int[y ≤ 8] → •) → • σ′

1 := y :int[y ≤ 9] → •.

By adding this information to the abstraction types in Example 5, one obtains

σ′′
0 := n : int[0 ≤ n, n ≤ 7] → (y : int[0 ≤ y, y ≤ 5, y ≤ 8] → •) → •
σ′′
2 := y : int[0 ≤ y, y ≤ 5, y ≤ 9] → •.

After this refinement, there exists an abstraction that is true. ⊓⊔

The refinement process enjoys the progress property in the following sense.

Theorem 3 (Progress). Assume a derivation of ⊢ ψ : ¬c in the dependent
intersection type system. Then there exists an abstraction ⊢ ψ : •⇝ φ following
the abstraction types extracted from the derivation such that, for any abstract
counterexample c′ of φ, the set C(c′) contains a candidate counterexample that
differs from c.

5 Implementation and Evaluation

We have implemented a νHFLZ validity checker PaHFL based on the method
described so far. PaHFL uses the following tools as backend solvers:

– Z3 [14], as a backend SMT solver for computing predicate abstraction.

16 N. Iwayama et al.

– HorSat2, as a backend model checker for checking the validity of (pure)
νHFL formulas and extracting an abstract counterexample if there is any.
(HorSat2 is a HORS model checker, but it can also be used as a νHFL model
checker by using the reduction of Kobayashi et al. [8].)

– RCaml [19] and HoIce [4] as backend constraint solvers, for the predicate
discovery phase.

Given a νHFLZ formula, PaHFL starts with the empty set of predicates, and
repeats the CEGAR loop until it succeeds to prove or disprove the validity of
the formula; of course, it may run forever since the validity checking problem is
undecidable.

We have conducted experiments to compare our tool with two related tools:

– A HoCHC solver called Horus [2], which solves the satisfiability of HoCHC
(a higher-order extension of CHC, constrained Horn Clauses). Since the
HoCHC satisfiability problem and νHFLZ can be mutually reducible (re-
call Remark 1), Horus is a direct competitor of our tool.

– An automated higher-order program verification tool MoCHi, developed by
Kobayashi et al. [10,16,13]. Since the main application of our νHFLZ validity
checking is higher-order program verification, MoCHi is also an (indirect)
competitor of our tool. Like PaHFL, MoCHi uses predicate abstraction and
CEGAR, though its main building block is HORS model checking (rather
than HFL validity checking. Actually, the goal of our project has been to
replace the HORS-based approach of MoCHi with the HFL-based approach,
where the latter provides a more uniform approach to program verification.
Thus the goal of the comparison with MoCHi is to confirm that our new
tool PaHFL works at least as effectively as MoCHi, for program verification
problems. There are other fully automated verification tools for functional
programs, including those based on refinement type inference [23,5,24,25,3].
We have chosen MoCHi as the target of the experimental comparison, as
the underlying technique is directly related; other tools can be indirectly
compared through their experimental comparison with MoCHi found in the
respective papers [24,25,3].

Both experiments were conducted on a Linux server with Intel Xeon CPU E5-
2680 v3 and 64 GB of RAM with a timeout set to 180 seconds.

Comparison with Horus We used two benchmark sets in this experiment:
Benchmarks A and B. Benchmark A has been taken from that of Horus [2],
which in turn comes from a benchmark set of MoCHi for safety property ver-
ification [10]. Benchmark B has been obtained from another benchmark set of
MoCHi, by using our own translation (based on [12,22]). Benchmark A has 10
instances and B has 58. We used Z3 as a backend CHC solver of Horus.

The result is shown in Table 1 and Figure 4. In the table, the row ‘Unknown’
means that Horus could not prove the validity of νHFLZ formula due to its
incompleteness; as mentioned in Section 1, Horus reduces HoCHC problems

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 17

Benchmark A Benchmark B

Ours
Solved 8 50
Timeout 0 8

Horus
Solved 7 19
Timeout 0 3
Unknown 1 35

Table 1. Comparison of PaHFL with Horus

to CHC problems in a sound but incomplete manner. The “unknown” case of
Horus in Benchmark A is attributed to the lack of intersection types in the
type system used by Horus; recall our remark before Theorem 2. As is clear
from Figure 4, Horus is much faster than PaHFL when Horus succeeds. In fact,
Horus terminated within 0.1 seconds in those cases. In contrast, PaHFL clearly
outperforms Horus in the number of solved instances. That is more apparent for
the subset of benchmarks consisting of only higher-order inputs: see Appendix E.

O
u

rs
 (

se
c

)

1.0e-2

0.1

1.0

10.0

100.0

Timeout/Error

1.0e-2 1.0 10.0 Timeout/Error
Horus (sec)

Benchmark A

Benchmark B

O
u

rs
 (

se
c

)

1.0e-2

0.1

1.0

10.0

100.0

Timeout/Error

1.0e-2 1.0 10.0 Timeout/Error
MoCHi (sec)

Benchmark I

Benchmark II

Fig. 4. Comparison of PaHFL with Horus (left) and MoCHi (right)

Comparison with MoCHi Figure 4 shows the result of the comparison with
MoCHi. We used two benchmark sets; Benchmark I consists of 258 of 262 safety
property verification problems of OCaml programs used in [16] and Benchmark
II consists of a modified version11 of 10 non-termination property verification
problems used in [13]. All the benchmark programs are small (each around 10
lines of OCaml programs), but many of them are tricky. The νHFLZ formulas

11 Existential quantifiers that arise from the original programs have been replaced
with finite disjunctions.

18 N. Iwayama et al.

in both benchmark sets have been obtained by using the translation used for
obtaining Benchmark B. Different modes of MoCHi have been used for the two
benchmark sets: the reachability verification mode [10] for Benchmark I, and
the non-termination verification mode [13] for Benchmark II. PaHFL solved 221
instances for Benchmark I and 4 for II while MoCHi solved 252 for Benchmark
I and 9 for II. Although PaHFL is a little inferior to MoCHi in the number of
solved instances, PaHFL is competitive in terms of the running times for solved
instances, as shown in Figure 4.

Figure 5 and Table 2 respectively show the distribution of the number of CE-
GAR loops and the average percentage of the time spent in each phase for solved
instances in Benchmark I and II. PaHFL and MoCHi have similar tendencies
in both the figure and the table.

F
re

q
u

e
n

c
y

(%
)

0

10

20

30

40

50

60

0 2 4 6 8 10
Number of CEGAR loops

Mochi

Fig. 5. Distribution of the number of CE-
GAR loops

PaHFL MoCHi

Preprocess 31.0 39.2
Abstraction 47.7 45.4
Refine 19.1 13.9
Model Checking 2.21 1.49

Table 2. Average percentage of time spent
in each phase

6 Related Work

Burn et al. [2] introduced higher-order constrained Horn clauses (HoCHC), and
developed Horus, a type-based HoCHC satisfiability checker. As already men-
tioned, Horus is a direct competitor of our tool PaHFL, since the satisfiability
problem for HoCHC is essentially equivalent to the validity problem for νHFLZ.
As confirmed by experiments, our tool is often slower than Horus, but can solve
more problem instances. Ong and Wagner [15] also studied some theoretical
aspects of HoCHC, but have not developed an actual verification tool, to our
knowledge.

Our technique of predicate abstraction has been inspired by the correspond-
ing techniques developed forMoCHi [10,13]; in particular, we have borrowed the
notion of abstraction types from their work. Our predicate abstraction technique
is, however, different from theirs, in that our technique is used for abstracting

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 19

formulas, while their technique is for abstracting programs. Our technique can
also be considered more general since the techniques of MoCHi [10,13] are spe-
cialized for the verification of either reachability or non-termination, whereas
our technique can be used for the verification of arbitrary branching-time safety
properties, including the reachability and non-termination properties.

Higher-order fixpoint logic (HFL) has originally been proposed by Viswanathan
and Viswanathan [21]. Kobayashi et al. [12,22] introduced HFLZ, an extension of
HFL with integers, and showed its applications to higher-order program verifica-
tion. Although a pure HFL model checker has already been developed by Hosoi
et al. [6], there is no automated validity checker for HFLZ, to our knowledge.
Kobayashi et al. [9] have recently developed a validity checker for the first-order
fragment of HFLZ, which reduces (in a sound but incomplete manner) the valid-
ity problem for the first-order fragment of HFLZ to that for the ν-only, first-order
fragment of HFLZ. We expect that the same technique can be used to obtain a
full HFLZ validity checker from our νHFLZ validity checker.

Another major approach to automated verification of higher-order programs
is a type-based one [23,5,24,25,3,18], some of which incorporates counterexample-
guided refinement [23,18]. Most of them are restricted to verification of the
(un)reachability problem in the presence of only demonic branches (except [20]),
and do not support intersection types (except [18]). Our support of both kinds
of (i.e., angelic and demonic) branches is crucial for building the full HFLZ va-
lidity checker as mentioned above. Intersection types are also crucial for high
precision. To mitigate the high cost of predicate abstraction and discovery, Sato
et al. [16] combined higher-order model checking and type inference.

7 Conclusion

We have proposed a new method for automated νHFLZ validity checking based
on predicate abstraction and CEGAR, and developed a tool based on the pro-
posed technique. According to our experiments on applications to program veri-
fication, our tool outperformed Horus in terms of precision, and was competitive
with a more specialized program verification tool MoCHi. We plan to develop
a full HFLZ validity checker, by combining the present work with the work of
Kobayashi et al’s [9] for the first-order HFLZ validity checker. It is also left for
future work to extending the logic with data structures (such as lists and trees),
which is important for verification of higher-order functional programs that ma-
nipulate data structures. To this end, we plan to exploit two approaches: one
is to encode data structures as higher-order functions as in MoCHi [17], and
the other is to directly handle data structures, as in the refinement-type-based
approach [5,25].

Acknowledgments We would like to thank anonymous referees for useful com-
ments. This work was supported by JSPS KAKENHI Grant Number JP15H05706,
JP20H00577 and JP20H05703.

20 N. Iwayama et al.

References

1. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: Burke, M., Soffa, M.L. (eds.) Proceedings of the 2001
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), Snowbird, Utah, USA, June 20-22, 2001. pp. 203–213. ACM (2001).
https://doi.org/10.1145/378795.378846

2. Burn, T.C., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses
for verification. Proc. ACM Program. Lang. 2(POPL), 11:1–11:28 (2018).
https://doi.org/10.1145/3158099

3. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: Ice-based refinement type dis-
covery for higher-order functional programs. Journal of Automated Reasoning
(2010), to appear. A preliminary summary appeared in Proceedings of TACAS
2018.

4. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: Ice-based refinement type dis-
covery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 24th Inter-
national Conference, TACAS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-
20, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10805, pp.
365–384. Springer (2018). https://doi.org/10.1007/978-3-319-89960-2 20

5. Hashimoto, K., Unno, H.: Refinement type inference via horn constraint opti-
mization. In: Blazy, S., Jensen, T.P. (eds.) Static Analysis - 22nd International
Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings.
Lecture Notes in Computer Science, vol. 9291, pp. 199–216. Springer (2015).
https://doi.org/10.1007/978-3-662-48288-9 12

6. Hosoi, Y., Kobayashi, N., Tsukada, T.: A type-based HFL model checking algo-
rithm. In: Lin, A.W. (ed.) Programming Languages and Systems - 17th Asian
Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11893, pp. 136–155. Springer
(2019). https://doi.org/10.1007/978-3-030-34175-6 8

7. Kobayashi, N.: HorSat2: A saturation-based model checker for higher-order recur-
sion schemes (2015), https://www.kb.is.s.u-tokyo.ac.jp/∼koba/horsat2/

8. Kobayashi, N., Lozes, É., Bruse, F.: On the relationship between higher-order re-
cursion schemes and higher-order fixpoint logic. In: Castagna, G., Gordon, A.D.
(eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, Paris, France, January 18-20, 2017. pp. 246–
259. ACM (2017)

9. Kobayashi, N., Nishikawa, T., Igarashi, A., Unno, H.: Temporal verification of
programs via first-order fixpoint logic. In: Chang, B.E. (ed.) Static Analysis -
26th International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11822, pp. 413–436. Springer
(2019). https://doi.org/10.1007/978-3-030-32304-2 20

10. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Hall, M.W., Padua, D.A. (eds.) Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. pp. 222–233. ACM (2011).
https://doi.org/10.1145/1993498.1993525

11. Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program ver-
ification via HFL model checking. CoRR abs/1710.08614 (2017),
http://arxiv.org/abs/1710.08614

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 21

12. Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program verification
via HFL model checking. In: Ahmed, A. (ed.) Programming Languages and
Systems - 27th European Symposium on Programming, ESOP 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lec-
ture Notes in Computer Science, vol. 10801, pp. 711–738. Springer (2018).
https://doi.org/10.1007/978-3-319-89884-1 25

13. Kuwahara, T., Sato, R., Unno, H., Kobayashi, N.: Predicate abstraction and CE-
GAR for disproving termination of higher-order functional programs. In: Kroening,
D., Pasareanu, C.S. (eds.) Computer Aided Verification - 27th International Con-
ference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 9207, pp. 287–303. Springer (2015).
https://doi.org/10.1007/978-3-319-21668-3 17

14. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings. pp. 337–340 (2008)

15. Ong, C.L., Wagner, D.: Hochc: A refutationally complete and seman-
tically invariant system of higher-order logic modulo theories. In: 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2019, Vancouver, BC, Canada, June 24-27, 2019. pp. 1–14. IEEE (2019).
https://doi.org/10.1109/LICS.2019.8785784

16. Sato, R., Iwayama, N., Kobayashi, N.: Combining higher-order model checking with
refinement type inference. In: Hermenegildo, M.V., Igarashi, A. (eds.) Proceedings
of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manip-
ulation, PEPM@POPL 2019, Cascais, Portugal, January 14-15, 2019. pp. 47–53.
ACM (2019). https://doi.org/10.1145/3294032.3294081

17. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker
for higher-order programs. In: Albert, E., Mu, S. (eds.) Proceedings of the
ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipula-
tion, PEPM 2013, Rome, Italy, January 21-22, 2013. pp. 53–62. ACM (2013).
https://doi.org/10.1145/2426890.2426900

18. Terauchi, T.: Dependent types from counterexamples. In: Hermenegildo, M.V.,
Palsberg, J. (eds.) Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, Madrid, Spain, January
17-23, 2010. pp. 119–130. ACM (2010). https://doi.org/10.1145/1706299.1706315

19. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In:
Porto, A., López-Fraguas, F.J. (eds.) Proceedings of the 11th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming, September 7-9, 2009, Coimbra, Portugal. pp. 277–288. ACM (2009).
https://doi.org/10.1145/1599410.1599445

20. Unno, H., Satake, Y., Terauchi, T.: Relatively complete refinement type system
for verification of higher-order non-deterministic programs. Proc. ACM Program.
Lang. 2(POPL), 12:1–12:29 (2018). https://doi.org/10.1145/3158100

21. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In:
Gardner, P., Yoshida, N. (eds.) CONCUR 2004 - Concurrency Theory, 15th In-
ternational Conference, London, UK, August 31 - September 3, 2004, Proceed-
ings. Lecture Notes in Computer Science, vol. 3170, pp. 512–528. Springer (2004).
https://doi.org/10.1007/978-3-540-28644-8 33

22 N. Iwayama et al.

22. Watanabe, K., Tsukada, T., Oshikawa, H., Kobayashi, N.: Reduction from
branching-time property verification of higher-order programs to HFL validity
checking. In: Hermenegildo, M.V., Igarashi, A. (eds.) Proceedings of the 2019
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM@POPL 2019, Cascais, Portugal, January 14-15, 2019. pp. 22–34. ACM
(2019). https://doi.org/10.1145/3294032.3294077

23. Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type in-
ference for ML. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation, 14th International Con-
ference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings. Lec-
ture Notes in Computer Science, vol. 7737, pp. 295–314. Springer (2013).
https://doi.org/10.1007/978-3-642-35873-9 19

24. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: Fisher, K.,
Reppy, J.H. (eds.) Proceedings of the 20th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September
1-3, 2015. pp. 400–411. ACM (2015). https://doi.org/10.1145/2784731.2784766

25. Zhu, H., Petri, G., Jagannathan, S.: Automatically learning shape specifica-
tions. In: Krintz, C., Berger, E. (eds.) Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016. pp. 491–507. ACM (2016).
https://doi.org/10.1145/2908080.2908125

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 23

A Soundness of Predicate Abstraction

As usual, the correctness of the predicate abstraction is ensured by a semantic
characterization of the abstraction. For each closed abstraction type σ, we define
the abstraction function ασ and the concretization function γσ, which give us
translations between the concrete domain σ♯ and the abstract domain σ♭.

Definition 1 (abstraction function and concretization function). Given
a closed abstraction type σ, the abstraction function αρ

σ : Dσ♯ → Dσ♭ and the
concretization function γρσ : Dσ♭ → Dσ♯ are defined as follows:

α•(v) := v γ•(v) := v

ασ1→σ2
(v)(x) := ασ2

(v(γσ1
(x))) γσ1→σ2

(v)(x) := γσ2
(v(ασ1

(x)))

and, for int[P̃] → σ,

αx:int[P̃]→σ(v)(b̃) :=
l
n∈ZJP̃ (n)K≥b̃

α[n/x]σ(v(n))

γx:int[P̃]→σ(v)(n) := γ[n/x]σ(v(JP̃ (n)K)).
⊓⊔

We first check well-definedness.

Lemma 1. Let σ be a closed abstraction type and assume σ = σ1 → σ2 or
x : int[P̃] → σ0. Then ασ(v) and γσ(v) are monotone.

Proof. The only nontrivial case is αx:int[P̃]→σ0
(v). Assume b̃ ≤ b̃′. It suffices to

show that l
n∈ZJP̃ (n)K≥b̃

α[n/x]σ(v(n)) ≤
l
n∈ZJP̃ (n)K≥b̃′

α[n/x]σ(v(n)),

which follows from the fact that JP̃ (n)K ≥ b̃′ implies JP̃ (n)K ≥ b̃. ⊓⊔

We prove some basic properties.

Lemma 2. ασ and γσ are monotonic for every closed abstraction type σ.

Proof. Easy induction on the structure of σ. ⊓⊔

Lemma 3. For every closed abstraction type σ,

(∀v ∈ Dσ♭)(∀w ∈ Dσ♯)
[

v ⊑σ♭ ασ(w) ⇐⇒ γσ(v) ⊑σ♯ w
]
.

Proof. By induction on σ.

– Case σ = •: Trivial.

24 N. Iwayama et al.

– Case σ = σ1 → σ2: Let v ∈ Dσ♭
1→σ♭

2
and w ∈ Dσ♯

1→σ♯
2
. Then

v ⊑σ♭ ασ(w) ⇐⇒ (∀x ∈ Dσ♭
1
)
[
v(x) ⊑σ♭

2
ασ2

(w(γσ1
(x)))

]
⇐⇒ (∀x ∈ Dσ♭

1
)
[
γσ2(v(x)) ⊑σ♯

2
w(γσ1(x))

]
=⇒ (∀y ∈ Dσ♯

1
)
[
γσ2

(v(ασ1
(y))) ⊑σ♯

2
w(γσ1

(ασ1
(y)))

]
=⇒ (∀y ∈ Dσ♯

1
)
[
γσ2

(v(ασ1
(y))) ⊑σ♯

2
w(y)

]
⇐⇒ γσ(v) ⊑σ♯ w,

where we use γσ1
(ασ1

(x)) ⊑σ♯
1
y, which follows from the induction hypothe-

sis. The other direction is similar.
– Case σ = x : int[P̃] → σ0: Assume that v ⊑σ♭ ασ(w). Let n be an arbitrary

integer. Then

v(JP̃ (n)K) ⊑σ♭
0

ασ(w)(JP̃ (n)K)
=

l
m∈ZJP̃ (n)K≥JP̃nK

α[m/x]σ0
(w(m))

⊑σ♭
0
α[n/x]σ0

(w(n)).

By the induction hypothesis, we have

γσ(v)(n) = γ[n/x]σ0
(v(JP̃ (n)K)) ⊑σ♯

0
w(n).

Since n is arbitrary, we obtain γσ(v) ⊑σ♯ w as desired.
To prove the converse, assume γσ(v) ⊑σ♯ w and let b̃ be a sequence of Boolean
values. Let n be an integer such that b̃ ⊑ JP̃ (n)K. Then
γ[n/x]σ0

(v(b̃)) ⊑σ♯
0

γ[n/x]σ0
(v(JP̃ (n)K)) = γσ(v)(n) ⊑σ♯

0
w(n)

since γ[n/x]σ0
and v are monotone. By the induction hypothesis,

v(b̃) ⊑σ♭
0

ασ0
(w(n)).

Since n is an arbitrary integer such that b̃ ⊑ JP̃ (n)K,
v(b̃) ⊑σ♭

0

l
n∈ZJP̃ (n)K≥b̃

α[n/x]σ0
(w(n)) = ασ(w)(b̃).

Since b̃ is arbitrary, we obtain

v ⊑σ♭ ασ(w)

as required.
⊓⊔

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 25

Let (⊑̇σ) ∈ Dσ♭ × Dσ♯ be a relation defined by

v ⊑̇σ w :⇐⇒ v ⊑σ♭ ασ(w)

⇐⇒ γσ(v) ⊑σ♯ w.

This is the criterion of the soundness of the abstraction: we shall show that
⊢ ψ : σ ⇝ φ implies JφK ⊑̇σ JψK, which immediately leads to the soundness of
the predicate abstraction (i.e. JφK = tt implies JψK = tt).

We extend the relation ⊑̇ to valuations. Let Σ be an abstraction type envi-
ronment and Θ be a sequence of predicates. For valuations χ and ρ of (Σ | Θ)♭

and (Σ | Θ)♯, respectively, we write χ ⊑̇Σ,Θ ρ if

– χ(x) ⊑̇ρ(σ) ρ(x) for all x : σ ∈ Σ, and
– χ(bP) ⊑• JP Kρ for all P ∈ Θ.

Here ρ(σ) is obtained by replacing all free variables x in σ with ρ(x) (note that
free variables in σ are integers).

Lemma 4. f ⊑̇σ1→σ2
g if and only if f(x) ⊑̇σ2

g(y) for every x ⊑̇σ1
y.

Proof. Assume that f ⊑̇σ1→σ2
g and x ⊑̇σ1

y. Hence

γσ1→σ2
(f) ⊑(σ1→σ2)♯ g and γσ1

(x) ⊑σ♯
1
y.

We have

γσ2(f(x)) ⊑ γσ2(f(ασ1(γσ1(x))))

= γσ1→σ2(f)(γσ1(x))

⊑ g(γσ1(x))

⊑ g(y).

To prove the converse, assume that x ⊑̇σ1
y implies f(x) ⊑̇σ2

g(y). For every
y ∈ Dσ♯

1
, one has ασ1(y) ⊑σ♭

1
ασ1(y) and thus ασ1(y) ⊑̇σ1

y. So f(ασ1(y)) ⊑̇σ2

g(y). Hence
γσ1→σ2

(f)(y) = γσ2
(f(ασ1

(y))) ⊑σ♯
2
g(y).

Since y is arbitrary, γσ1→σ2
(f) ⊑(σ1→σ2)♯ g as required. ⊓⊔

Before the proof of the soundness, we prepare lemmas to prove soundness of
(A-Nu) and (A-Coerce), respectively.

Lemma 5. If f ⊑̇σ→σ g, then gfp(f) ⊑̇σ gfp(g).

Proof. Let f ∈ Dσ♭→σ♭ and g ∈ Dσ♯→σ♯ and assume that f ⊑̇σ→σ g. Since Dσ♯

is a complete lattice, we have

gfp(g) =
⊔

{ y | y ⊑σ♯ g(y) }

by the Knaster-Tarski theorem.

26 N. Iwayama et al.

Let x be an arbitrary fixed-point of f , i.e. f(x) = x. Then

x = f(x) ⊑σ♭ ασ→σ(g)(x) = ασ(g(γσ(x))).

Hence

γσ(x) ⊑σ♯ g(γσ(x)).

So

γσ(x) ⊑σ♯

⊔
{ y | y ⊑σ♯ g(y) } = gfp(g),

that means, x ⊑̇σ gfp(g). Since x is an arbitrary fixed-point of f , we have
gfp(f) ⊑̇σ gfp(g). ⊓⊔

Lemma 6. Assume that Σ ⊢ φ1 : (Θ1, σ1) ⪯ (Θ2, σ2)⇝ φ2 and that χ0 ⊑Σ,ε ρ.
If χ0⊎χ2 ⊑Σ,Θ2

ρ, there exists χ1 such that χ0⊎χ1 ⊑̇Σ,Θ1
ρ and γρ(σ2)(Jφ2Kχ0⊎χ2

) ⊑
γρ(σ1)(Jφ1Kχ0⊎χ1

). Furthermore, for every P ∈ Θ1, the value χ1(bP) depends only
on the restriction of ρ to the free variables of P (in particular, on the restriction
of ρ to integer variables).

Proof. By induction on the structure of the derivation Σ ⊢ φ1 : (Θ1, σ1) ⪯
(Θ2, σ2)⇝ φ2.

– (AC-Base). Then the last rule is the following.

X : •k → • ⊢ ξ : •l → •JX P1 . . . PkKρ⊎{X 7→v} ⊒• Jξ Q1 . . . QlKρ⊎{X 7→v} for all ρ for Σ♯ and v ∈ D•k→•

Σ ⊢ φ : (P1, . . . , Pk, •) ⪯ (Q1, . . . , Ql, •)⇝ [λb̃P .φ/X]ξ b̃Q

Assume χ0 ⊑̇Σ,ε ρ and χ0 ⊎ χ2 ⊑̇Σ,Q̃ ρ. Let χ1 be a valuation defined by

χ1(bPi
) := JPiKρ.

Then χ0 ⊎χ1 ⊑̇Σ,P̃ ρ and χ1 satisfies the dependency requirement. We have

γ•(J[λb̃P .φ/X]ξ b̃QKχ0⊎χ2
) = J[λb̃P .φ/X]ξ b̃QKχ0⊎χ2

= J[λb̃P .φ/X]ξKχ0(χ2(b̃Q))

⊑ J[λb̃P .φ/X]ξKχ0
(JQ̃Kρ))

⊑ JξK{X 7→Jλb̃P .φKχ0
}(JQ̃Kρ))

= Jξ Q̃K
ρ⊎{X 7→Jλb̃P .φKχ0}

= JX P̃ K
ρ⊎{X 7→Jλb̃P .φKχ0}

= Jλb̃P .φKχ0
(JP̃ Kρ)

= JφKχ0⊎χ1

= γ•(JφKχ0⊎χ1
).

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 27

– (AC-IntArrow). The last rule is the following.

Σ, x : int ⊢ φ1 b̃P : ((Θ1, P̃), σ1) ⪯ ((Θ2, Q̃), σ2)⇝ φ2

Σ ⊢ φ1 : (Θ1, x : int[P̃] → σ1) ⪯ (Θ2, x : int[Q̃] → σ2)⇝ λb̃Q.φ2

Assume that χ0 ⊑̇Σ,ε ρ and χ0 ⊎ χ2 ⊑̇Σ,Θ2
ρ. Let n be an arbitrary integer.

Then χ0 ⊑̇(Σ,x:int),ε ρ ⊎ {x 7→ n}

χ0 ⊎ χ2 ⊎ {bQ 7→ JQKρ⊎{x7→n} | Q ∈ Q̃} ⊑̇(Σ,x:int),(Θ2,Q̃) ρ ⊎ {x 7→ n}.

By the induction hypothesis, there exists χ1 such that χ0⊎χ1 ⊑̇(Σ,x:int),(Θ2,Q̃)

ρ ⊎ {x 7→ n} and

γρ(σ2)(Jφ2Kχ0⊎χ2⊎{bQ 7→JQKρ⊎{x 7→n}|Q∈Q̃}) ⊑ γρ(σ1)(Jφ1 b̃P Kχ0⊎χ1
).

Let χ1,1 and χ1,2 be the restriction of χ1 to Θ1 and P̃ , respectively. We claim
that χ1,1 satisfies the requirements. Obviously χ0 ⊎ χ1,1 ⊑̇Σ,,Θ2

ρ and χ1,1

satisfies the requirement on the dependency. It suffices to show that

γρ(x:int[Q̃]→σ2)
(Jλb̃P .φ2Kχ0⊎χ2

)(n) ⊑ γρ(x:int[Q̃]→σ1)
(Jφ1Kχ0⊎χ1,1

)(n)

since n is arbitrary and χ1 is independent of n. We actually have

γρ(x:int[Q̃]→σ2)
(Jλb̃P .φ2Kχ0⊎χ2

)(n)

= γρ(σ2)

(Jλb̃Q.φ2Kχ0⊎χ2(JQKρ⊎{x 7→n})
)

= γρ(σ2)

(Jφ2Kχ0⊎χ2⊎{bQ 7→JQKρ⊎{x7→n}|Q∈Q̃}

)
⊑ γρ(σ1)

(Jφ1 b̃P Kχ0⊎χ1,1⊎χ1,2

)
⊑ γρ(σ1)

(Jφ1 b̃P Kχ0⊎χ1,1⊎{ bP 7→JP Kρ⊎{x 7→n}|P∈P̃ }

)
= γρ(σ1)

(Jφ1Kχ0⊎χ1,1(JP̃ Kρ⊎{x 7→n})
)

= γρ(x:int[P̃]→σ1)
(Jφ1Kχ0⊎χ1,1

)(n)

as required.
– (AC-Arrow). Then the last rule is the following.

Σ, x : σ2,1 ⊢ x : (ε, σ2,1) ⪯ (Θ2, σ1,1)⇝ ξ
Σ, y : σ1,1 ⊢ φ1 y : (Θ1, σ1,2) ⪯ (Θ2, σ2,2)⇝ φ2

Σ ⊢ φ1 : (Θ1, σ1,1 → σ1,2) ⪯ (Θ2, σ2,1 → σ2,2)⇝ λx.[ξ/y]φ2

Assume that χ0 ⊑̇Σ,ε ρ and χ0 ⊎ χ2 ⊑̇Σ,Θ2
ρ. Let v be an arbitrary element

in Dσ♯
1,2

= Dσ♯
2,1

. Then

χ0 ⊎ {y 7→ αρ(σ1,1)(v)} ⊑̇(Σ,y:σ1,1),ε ρ ⊎ {y 7→ v}

28 N. Iwayama et al.

and
(χ0 ⊎ {y 7→ αρ(σ1,1)(v)}) ⊎ χ2 ⊑̇(Σ,y:σ1,1),Θ2

ρ ⊎ {y 7→ v}.
By the induction hypothesis, there exists χ1 such that
• (χ0 ⊎ {y 7→ αρ(σ1,1)(v)}) ⊎ χ1 ⊑̇(Σ,y:σ1,1),Θ1

ρ ⊎ {y 7→ w}, and
• γρ(σ2,2)(Jφ2Kχ0⊎{y 7→αρ(σ1,1)(v)}⊎χ2

) ⊑ γρ(σ1,2)(Jφ1 yKχ0⊎{y 7→αρ(σ1,1)(v)}⊎χ1
).

By a similar argument using the induction hypothesis to the first premise,
we also have

γρ(σ1,1)(JξKχ0⊎{x 7→αρ(σ2,1)(v)}⊎χ2
) ⊑ γρ(σ2,1)(JxKχ0⊎{x 7→αρ(σ2,1)(v)})

= γρ(σ2,1)(αρ(σ2,1)(v))

⊑ v

and thus JξKχ0⊎{x 7→αρ(σ2,1)(v)}⊎χ2
⊑ αρ(σ1,1)(v).

Obviously χ0 ⊎ χ1 ⊑̇Σ,Θ1
ρ and the dependency requirement for χ1 follows

from the same condition for the induction hypothesis. It suffices to show that

γρ(σ2,1→σ2,2)(Jλx.[ξ/y]φ2Kχ0⊎χ2
)(v) ⊑ γρ(σ1,1→σ1,2)(Jφ1Kχ0⊎χ1

)(v)

since v is arbitrary and χ1 is independent of v. We actually have

γρ(σ2,1→σ2,2)(Jλx.[ξ/y]φ2Kχ0⊎χ2
)(v)

= γρ(σ2,2)

(Jλx.[ξ/y]φ2Kχ0⊎χ2
(αρ(σ2,1)(v))

)
= γρ(σ2,2)

(J[ξ/y]φ2Kχ0⊎χ2⊎{x7→αρ(σ2,1)(v)}

)
= γρ(σ2,2)

(Jφ2Kχ0⊎χ2⊎{y 7→JξKχ0⊎χ2⊎{x7→αρ(σ2,1)(v)}

)
⊑ γρ(σ2,2)

(Jφ2Kχ0⊎χ2⊎{y 7→αρ(σ1,1)(v)}

)
⊑ γρ(σ1,2)(Jφ1 yKχ0⊎{y 7→αρ(σ1,1)(v)}⊎χ1

)

= γρ(σ1,2)(Jφ1Kχ0⊎χ1
(αρ(σ1,1)(v)))

= γρ(σ1,1→σ2,2)(Jφ1Kχ0⊎χ1
)(v)

as desired.
⊓⊔

Lemma 7. Suppose that Σ ⊢ φ : (P̃ , σ) ⪯ (Q̃, σ′) ⇝ φ′. Let v′1, ..., v
′
l ∈ {tt, ff}

and assume v′i ⊑• JQiKρ for each i. There exist v1, ..., vk ∈ {tt, ff} such that

– vi ⊑• JPiKρ for each i and

– γσ′

(J(Σ | Q̃)♭ ⊢ φ′ : σ′♭Kρ∪{b̃Q 7→ṽ′}

)
⊑σ♯ γσ

(J(Σ | P̃)♭ ⊢ φ : σ♭Kρ∪{b̃P 7→ṽ}

)
.

Proof. Induction on the derivation with case analysis on the last rule used. We
show only the case of (AC-Base) since other cases are easy. Thus, required
conditions hold. □

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 29

Now we can describe the main lemma.

Lemma 8. If Σ | Θ ⊢ ψ : σ ⇝ φ and χ ⊑̇Σ,Θ ρ, then JφKχ ⊑̇ρ(σ) JψKρ.
Proof. By induction on the structure of the derivation Σ | Θ ⊢ ψ : σ ⇝ φ.

– (A-Var) and (A-Pred). By the definition of ⊑̇Σ,Θ.
– (A-App), (A-Abs), (A-And), (A-Or). By straightforward application of

the induction hypothesis. We use Lemma 4 for (A-App) and (A-Abs).
– (A-Nu). By Lemma 5.
– (A-IntApp). The last rule of the derivation is the following:

Σ | Θ ⊢ ψ : (x : int[P1, ..., Pk] → σ)⇝ φ Σ ⊢ST a : int

Σ | Θ, [a/x]P1, . . . , [a/x]Pk ⊢ ψ a : [a/x]σ ⇝ φ b[a/x]P1
. . . b[a/x]Pk

Assume that χ ⊑̇Σ,(Θ,[a/x]P1,...,[a/x]Pk) ρ. Let χ
′ be the restriction of χ to

(Σ | Θ)♭; then χ′ ⊑̇Σ,Θ ρ. By the induction hypothesis, JφKχ′ ⊑̇ρ(x:int[P̃]→σ)JψKρ, i.e. γρ(x:int[P̃]→σ)(JφKχ′) ⊑ JψKρ. Therefore
γρ([a/x]σ)(Jφ b[a/x]P1

. . . b[a/x]Pk
Kχ) = γρ([a/x]σ)

(JφKχ′(Jb̃[a/x]P Kχ))
⊑ γρ([a/x]σ)(JφKχ′(J[a/x]P̃ Kρ))
= γρ(x:int[P̃]→σ)(JφKχ′)(JaKρ)
⊑ JψKρ(JaKρ)
= Jψ aKρ.

– (A-IntAbs). The last rule is the following:

Σ, x : int | Θ, P̃ ⊢ ψ : σ ⇝ φ

Σ | Θ ⊢ λx.ψ : (x : int[P̃] → σ)⇝ λb̃P .φ

Assume χ ⊑̇Σ,Θ ρ. The goal is to show

γρ(x:int[P̃]→σ)

(Jλb̃P .φKχ) ⊑int→σ♯ Jλx.ψKρ.
Let n be an arbitrary integer. Then

γρ(x:int[P̃]→σ)

(Jλb̃P .φKχ)(n) = γρ([n/x]σ)

(Jλb̃P .φKχ(J[n/x]ρ(P̃)K))
= γρ([n/x]σ)

(Jλb̃P .φKχ(JP̃ Kρ∪{x 7→n})
)

= γρ([n/x]σ)

(JφK
χ∪{b̃P 7→ ˜JP Kρ∪{x 7→n}}

)
.

Since
χ ∪ {b̃P 7→ ˜JP Kρ∪{x 7→n}} ⊑̇Σ,(Θ,P̃) ρ ∪ {x 7→ n},

30 N. Iwayama et al.

by applying the induction hypothesis, we obtain

γρ([n/x]σ)

(JφK
χ∪{b̃P 7→ ˜JP Kρ∪{x 7→n}}

)
⊑ JψKρ∪{x 7→n}.

Therefore

γρ(x:int[P̃]→σ)

(Jλb̃P .φKχ)(n) ⊑ γρ([n/x]σ)

(JφK
χ∪{b̃P 7→ ˜JP Kρ∪{x 7→n}}

)
⊑ JψKρ∪{x 7→n}

= Jλx.ψKρ(n).
Since n is arbitrary, γρ(x:int[P̃]→σ)

(Jλb̃P .φKχ) ⊑ Jλx.ψKρ as required.

– (A-Coerce). The last rule of the derivation is

Σ | Θ′ ⊢ ψ : σ′ ⇝ φ′ Σ ⊢ φ′ : (Θ′, σ′) ⪯ (Θ, σ)⇝ φ

Σ | Θ ⊢ ψ : σ ⇝ φ

Let χ and ρ be valuations with χ ⊑̇Σ,Θ ρ. By Lemma 6, there exists χ′ such
that χ′ ⊑̇Σ,Θ′ ρ and γρ(σ)(JφKχ) ⊑σ♯ γρ(σ′)(Jφ′Kχ′). By induction hypothesis,

we have Jφ′Kχ′ ⊑̇σ′
ρ

JψKρ. Thus JφKχ ⊑̇σρ
JψKρ. □

Soundness of the predicate abstraction (Theorem 1) is an immediate conse-
quence of the previous lemma.

B Counterexample interpretation

This section introduces a new interpretation of formulas, in which the interpre-
tation of a proposition is the counterexamples of the proposition.

The counterexample interpretation is obtained by replacing the interpretation
of •, which is {ff, tt} in the standard interpretation, with the set of sets of
counterexamples:

DC
• := P({ counterexamples }), (⊑C

•) := { (X,Y) | X ⊇ Y }.

Note that the maximum element with respect to ⊑C
• is the empty set, which

is the denotation of formulas with no counterexample (i.e. valid formulas). The
interpretation of other type constructors are unchanged, e.g. DC

τ̄→τ is the set of
monotone functions from DC

τ̄ to DC
τ . The interpretation of formulas is essentially

the same as in the standard interpretation, but the interpretation of boolean
connectives are changed:

Jφ1 ∨ φ2KCρ := { c1 ∨ c2 | c1 ∈ Jφ1KCρ , c2 ∈ Jφ2KCρ }Jφ1 ∧ φ2KCρ := { c1 ∧ ∗ | c1 ∈ Jφ1KCρ } ∪ { ∗ ∧ c2 | c2 ∈ Jφ2KCρ }.

Proposition 2. Let φ be a closed proposition. Then c ∈ JφKC if and only if
c▷ φ.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 31

Proof (Sketch). The right-to-left direction can be easily shown by induction on
the derivation c▷φ; note that the rewriting rules (λx.φ)φ′ ψ̃ −→ [φ′/x]φ ψ̃ and
(νx.φ) ψ̃ −→ [νx.φ/x]φ ψ̃ preserve the interpretation of propositions.

The proof of the left-to-right direction is a consequence of a game-theoretic
characterization of JφK; since the fixed-point operations in φ are greatest fixed-
points, a refutation of a formula should be finite. That means, if JφK = ff , then
its falsehood should be made obvious by unfolding ν finitely many times. Such
a refutation induces a counterexample. ⊓⊔

Recall Proposition 1, which says that a closed formula ψ of type • is valid if
and only if ψ has no counterexample. Hence the above proposition leads to the
following.

Proposition 3. Let φ be a closed proposition. Then JφK = tt if and only ifJφKC = ∅.
By this reason, we shall write tt for ∅ in the sequel.
Recall that a result of predicate abstraction of a proposition φ contains two

kinds of boolean operations: those originate from φ and those introduced in the
abstraction phase. In order to distinguish them, we shall use ∧̄ and ∨̄ for boolean
operations introduced in the abstraction phase. A formula possibly having ∧̄ or
∨̄ is called an abstracted formula. The interpretation of abstracted formulas are
given by the rules for the standard formulas and

Jφ ∧̄ ψKCρ := JφKCρ ∪ JψKCρJφ ∨̄ ψKCρ := JφKCρ ∩ JψKCρ .
The corresponding rules is given by:

c▷ φ1

c▷ φ1 ∧̄ φ2

c▷ φ2

c▷ φ1 ∧̄ φ2

c▷ φ1 c▷ φ2

c▷ φ1 ∨̄ φ2

Lemma 9. If a closed abstracted formula φ has a counterexample c such that
C(c) = {d}, then d ∈ JφKC .
Proof. By induction of the derivation of c▷ φ. ⊓⊔

C Refinement intersection type system for νHFLZ

We define a refinement type system for νHFLZ, which is a variant of a refinement
intersection type system for higher-order functional language [18], and show that
the soundness of the type system.

32 N. Iwayama et al.

C.1 Type System

The set of refinement types is defined by the following grammar:

(prime type) δ ::= tt | ¬c | x : {v : int | Φ} → δ | θ → δ

(intersection type) θ ::= δ1 ∧ · · · ∧ δk
(extended type) θ̄ ::= int | θ
(formula) Φ ::= true | false | p(ã) | Φ1 ∧ Φ2 | Φ1 ∨ Φ2

(environment) ∆ ::= tt | ∆,x : θ̄

We regard types defined above as refinements of abstraction types.12 We
write Φ :: [P1, . . . , Pn] if atomic propositions in Φ are in {P1, . . . , Pn}. For a
dependent refinement type δ and an abstraction type σ, the refinement relation
δ :: σ is defined by the following rules:

tt :: •

¬c :: •

Φ is a positive boolean combination of {P1, . . . , Pn } δ :: σ

(x : {v : int | Φ} → δ) :: (x : int[P1, . . . , Pn] → σ)

θ :: σ δ′ :: σ′

(θ → δ′) :: (σ → σ′)

δ1 :: σ . . . δn :: σ

(δ1 ∧ · · · ∧ δn) :: σ

We write x : Φ → δ for the abbreviation of x : {v : int | [v/x]Φ} → δ. Note
that the syntax of formula Φ is the same as that of the predicate P and thus
compatible. In the intersection δ1 ∧ · · · ∧ δk, each δi is a refinement of the same
abstraction type.

The typing relation Σ | Φ ⊢ ψ : δ is defined in Figure 6. This relation means
that ψ has refinement type δ under the environment Σ if formula Φ holds. Each
rule is self-explanatory.

12 Since each abstraction type follows the structure of a simple type, one can regard
refinement types defined above refine simple types as usual.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 33

x : δ ∈ ∆

∆ | Φ ⊢ x : δ
(R-Var)

|= Φ =⇒ p(ã)

∆ | Φ ⊢ p(ã) : tt
(R-Pred)

∆ | Φ ⊢ ψ : (x : Φ′ → δ)

∆ | Φ ∧ [a/x]Φ′ ⊢ ψ a : [a/x]δ
(R-IntApp)

∆,x : int | Φ ∧ Φ′ ⊢ ψ : δ

∆ | Φ ⊢ λx.ψ : (x : Φ′ → δ)
(R-IntAbs)

∆ | Φ ⊢ ψ1 : δ1 ∧ · · · ∧ δk → δ ∆ | Φ ⊢ ψ2 : δi (for each i)

∆ | Φ ⊢ ψ1ψ2 : δ
(R-App)

∆,x : δ1, . . . , x : δk | Φ ⊢ ψ : δ

∆ | Φ ⊢ λx.ψ : δ1 ∧ · · · ∧ δk → δ
(R-Abs)

∆ | Φ1 ⊢ ψ1 : tt ∆ | Φ2 ⊢ ψ2 : tt

∆ | Φ1 ∧ Φ2 ⊢ ψ1 ∧ ψ2 : tt
(R-AndT)

∆ | Φ ⊢ ψ1 : c1

∆ | Φ ⊢ ψ1 ∧ ψ2 : ¬(c1 ∧ ∗)
(R-AndC1)

∆ | Φ ⊢ ψ2 : ¬c2
∆ | Φ ⊢ ψ1 ∧ ψ2 : ¬(∗ ∧ c2)

(R-AndC1)

∆ | Φ1 ⊢ ψ1 : tt ∆ | Φ2 ⊢ ψ2 : tt

∆ | Φ1 ∨ Φ2 ⊢ ψ1 ∨ ψ2 : tt
(R-OrT)

∆ | Φ1 ⊢ ψ1 : ¬c1 ∆ | Φ2 ⊢ ψ2 : ¬c2
∆ | Φ1 ∨ Φ2 ⊢ ψ1 ∨ ψ2 : ¬(c1 ∨ c2)

(R-OrC)

∆,x : δ0, x : δ1, . . . , x : δk | Φ ⊢ ψ : δi for every i = 0, . . . , k

∆ | Φ ⊢ νx.ψ : δ0
(R-Nu)

∆ | Φ ⊢ ψ : δ ∆ | Φ ⊢ δ ⪯ δ′

∆ | Φ ⊢ ψ : δ′
(R-Coerce)

∆ | Φ ⊢ ψ : δi (for each i)

∆ | Φ ⊢ ψ : δ1 ∧ · · · ∧ δk
(R-Intersection)

δ1 = tt or δ1 = δ2 = ¬c
∆ | Φ ⊢ δ1 ⪯ δ2

(RSub-Base)

|= Φ ∧ Φ′
x =⇒ Φx ∆,x : int | Φ ∧ Φ′

x ⊢ δ ⪯ δ′

∆ | Φ ⊢ (x : Φx → δ) ⪯ (x : Φ′
x → δ′)

(RSub-IntArrow)

∆ | Φ ⊢ θ′ ⪯ θ ∆ | Φ ⊢ δ ⪯ δ′

∆ | Φ ⊢ θ → δ ⪯ θ′ → δ′
(RSub-Arrow)

∀i′.∃i.∆ | Φ ⊢ δi ⪯ δ′i′

∆ | Φ ⊢ δ1 ∧ · · · ∧ δk ⪯ δ′1 ∧ · · · ∧ δ′k′
(RSub-Intersection)

Fig. 6. Typing rules of the refinement type system

34 N. Iwayama et al.

C.2 Soundness of refinement intersection type system

We prove the soundness of the type system, i.e. ⊢ φ : ¬c implies c /∈ JφKC for
every closed proposition φ. The proof is based on semantics. For a refinement
type environment ∆ which refines Σ, a valuation for ∆ means a valuation for
(the corresponding simple-type environment of) Σ.

Definition 2 (Semantics of types). Let δ be a refinement type δ with δ :: τ
and ρ be a valuation that assigns integers to free variables of δ. The semanticsLδM ∈ DC

τ is defined by following equations:

LttMρ := ttL¬cMρ := { counterexamples } \ { c }

Lx : Φ→ δMρ(n) = {LδMρ[x 7→n] if ρ[x 7→ n] |= Φ

⊥ otherwise

Lθ → δMρ(v) := {LδMρ if LθMρ ⊑ v

⊥ otherwiseLδ1 ∧ · · · ∧ δkMρ := Lδ1M ⊔ · · · ⊔ LδkM
The set of valuations L∆;ΦM is defined by

L∆;ΦM := { ρ | (∀(x : δ) ∈ ∆.ρ(x) ⊒ LδMρ) and ρ |= Φ }

Lemmas 10 and 11 are justifications of the semantics, relating type judgments
φ : δ to a semantic inequation.

Lemma 10. If ∆ | Φ ⊢ δ ⪯ δ′ and ρ ∈ L∆;ΦM, then LδMρ ⊒ Lδ′Mρ.
Proof. By induction on the structure of derivation.

– (RSub-Base): Easy.
– (RSub-Arrow): Let ρ ∈ L∆;ΦM. By the induction hypothesis, Lθ′Mρ ⊒ LθM

and LδMρ ⊒ Lδ′M. We prove Lθ → δMρ ⊒ Lθ′ → δMρ, i.e. Lθ → δMρ(x) ⊒Lθ′ → δMρ(x) for every x. If x ̸⊒ Lθ′Mρ, the inequation trivially holds sinceLθ′ → δ′Mρ(x) = ⊥. Otherwise x ⊒ Lθ′Mρ ⊒ LθMρ and thus Lθ → δMρ(x) =LδMρ ⊒ Lδ′Mρ = Lθ′ → δMρ(x).
– (RSub-IntArrow):

|= Φ ∧ Φ′
x =⇒ Φx ∆,x : int | Φ ∧ Φ′

x ⊢ δ ⪯ δ′

∆ | Φ ⊢ (x : Φx → δ) ⪯ (x : Φ′
x → δ′)

(RSub-IntArrow)

Let ρ ∈ L∆;ΦM and n be an integer. We prove that Lx : Φx → δMρ(n) ⊒Lx : Φ′
x → δ′Mρ(n). If ρ[x 7→ n] ̸|= Φ′

x, the inequation holds since Lx : Φ′
x →

δ′Mρ(n) = ⊥. Assume ρ[x 7→ n] |= Φ′
x; then ρ[x 7→ n] ∈ L∆;x : int, Φ ∧ Φ′

xM.
By the first premise, we have ρ[x 7→ n] |= Φx. By the induction hypothesis,
we have

Lx : Φx → δMρ(n) = LδMρ[x 7→n] ⊒ Lδ′Mρ[x7→n] = Lx : Φ′
x → δ′Mρ(n).

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 35

– (RSub-Intersection): Let ρ ∈ L∆;ΦM. By the induction hypothesis, for
each i′, there exists i such that LδiMρ ⊒ Lδ′i′Mρ. HenceLδ1 ∧ · · · ∧ δkMρ = Lδ1Mρ ⊔ · · · ⊔ LδkMρ ⊒ LδiMρ ⊒ Lδ′i′Mρ
for each i′ (where i depends on i′). Since i′ is arbitrary, we haveLδ1 ∧ · · · ∧ δkMρ ⊒ Lδ′1Mρ ⊔ · · · ⊔ Lδ′k′Mρ = Lδ′1 ∧ · · · ∧ δ′k′Mρ

⊓⊔
Lemma 11. If ∆ | Φ ⊢ ψ : δ and ρ ∈ L∆;ΦM, then JψKCρ ⊒ LδMρ.
Proof. By induction on the derivation with case analysis on the last rule used.

– (R-Var), (R-Pred). By definition of L∆;ΦM.
– (R-And), (R-Or). By simple application of the induction hypothesis.
– (R-App). Let ρ ∈ L∆;ΦM. By the induction hypothesis,Jψ1KCρ ⊒ Lδ1 ∧ · · · ∧ δk → δMρJψ2KCρ ⊒ LδiMρ for each i.

We have Jψ1KCρ (Jψ2KCρ) ⊒ LδMρ since Jψ2KCρ ⊒ Lδ1 ∧ · · · ∧ δkMρ.
– (R-Abs).

∆,x : δ1, . . . , x : δk | Φ ⊢ ψ : δ

∆ | Φ ⊢ λx.ψ : δ1 ∧ · · · ∧ δk → δ
(R-Abs)

Let ρ ∈ L∆;ΦM and v be a value with v ⊒ Lδ1 ∧ · · · ∧ δkMρ. We haveJλx.ψKCρ (v) = JψKCρ∪{x 7→v} ⊒ LδMρ
by the induction hypothesis. Since v ⊒ Lδ1 ∧ · · · ∧ δkMρ is arbitrary, we haveJλx.ψKCρ ⊒ Lδ1 ∧ · · · ∧ δk → δMρ.

– (R-IntApp). Let ρ ∈ L∆;Φ ∧ [a/x]Φ′M ⊆ L∆;ΦM and n = JaKCρ . By the

induction hypothesis, we have JψKCρ ⊒ Lx : Φ′ → δMρ. Since J[a/x]Φ′Kρ =JΦ′Kρ∪{x7→n} = true, we have Jψ aKCρ = JψKCρ (n) ⊒ LδMρ[x 7→n] = L[a/x]δMρ.
– (R-IntAbs). Let ρ ∈ L∆;ΦM and n be an integer with JΦ′KCρ∪{x7→n} = tt. By

the induction hypothesis, we haveJλx.ψKCρ (n) = JψKCρ[x 7→n] ⊒ LδMρ[x 7→n].

– (R-Nu). Let ρ ∈ L∆;ΦM and v = Lδ0 ∧ . . . δkMρ. By the induction hypothesis,
we have JψKCρ[x 7→v] ⊒ LδiMρ for every i = 1, . . . , k. Hence JψKCρ[x 7→v] ⊒ Lδ0∧· · ·∧
δkMρ = v. This means that v ⊑ Jλx.ψKCρ (v), and thus v ⊑ gfp(Jλx.ψKCρ) =Jνx.ψKCρ .

– (R-Coerce). By Lemma 10.
⊓⊔

The soundness theorem is an immediate consequence of the previous lemma.

Theorem 4 (Soundness of refinement type system). Let φ be a closed
proposition φ. If tt | true ⊢ φ : ¬c, then c /∈ JφKC . If tt | true ⊢ φ : tt, thenJφKC = tt, i.e. JφK = tt.

36 N. Iwayama et al.

D Proofs of Theorems 2 and 3

Theorem 2 states that, if the validity of ψ is provable in the refinement type sys-
tem, then there exists an abstraction (following the abstraction types extracted
from the refinement type derivation) that is valid. The proof is an adaptation of
the proof of a similar statement in Kobayashi et al. [10] for functional programs.
Interestingly Progress (Theorem 3) can be proved by the same technique. This
is because Theorem 3 can be rephrased as follows: if c ⋫ ψ (i.e. c /∈ JψKC) is
provable in the refinement intersection type system, then there exists an abstrac-
tion φ (following the abstraction types extracted from the derivation) such that
c /∈ JφKC .

A formula with abstraction type annotation is a formula of which each binding
variable (i.e. x in λx.φ or νx.φ) is annotated by an abstraction type as in λxσ.φ
and νxσ.φ. We assume an abstraction type σ annotated to a variable x is a
refinement of the simple type τ of x. An abstraction type judgment is of the form
Σ | Θ ⊢ φ : σ where φ is a formula with abstract type annotation. We assume
that an annotated judgment respects the corresponding simple-type judgment,
but do not require further conditions: for example, x : σ | · ⊢ x : σ′ is a valid
annotated judgment even if σ ̸= σ′ (provided that both σ and σ′ are refinements
of the simple type x).

Let Θ = (P1, . . . , Pk) be a sequence of predicates. We often abbreviate the

sequence bP1bP2 . . . bPk
of variables as b̃P or bΘ.

Definition 3 (Type template).

(template) C ::= true | false | []i | C1 ∧ C2 | C1 ∨ C2

(type) ξ ::= • | x : C → ξ | χ→ ξ

(intersection type) χ ::= ξ1 ∧ ... ∧ ξk
(extended type) χ̄ ::= int | χ
(environment) Ξ ::= ∅ | Ξ, x : χ̄

Type templates are used to obtain refinement type by combination with abstrac-
tion types (template application).

Definition 4 (Template application). When template C does not have any
hole []i with i > k, the template application C[Φ1, ..., Φk] denotes formula ob-
tained by replacing all []i in C with Φi. The refinement type ξ[σ] and the re-
finement type environment Ξ[Σ] are also defined by recursively applying this

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 37

template applications. Formally,

•[•] = •
(x : C → ξ)[x : int[P̃] → σ] = x : C[P̃] → ξ[σ]

(χ→ ξ)[σ′ → σ] = χ[σ′] → ξ[σ]

(ξ1 ∧ ... ∧ ξk)[σ] = ξ1[σ] ∧ ... ∧ ξk[σ]
∅[∅] = ∅

(Ξ, x : int)[Σ, x : int] = Ξ[Σ], x : int

(Ξ, x : ξ)[Σ, x : σ] = Ξ[Σ], x : ξ[σ]

Definition 5. For a closed template type ξ and a closed abstraction type σ, a
set of abstract values JξK ⊆ Dσ♭ is defined by

J•K := {tt}J∅K := {∅}J¬cK := {X ⊆ {counterexamples} | c /∈ X}JC → ξK := {g | ∀ṽ ∈ JCK.(g ṽ) ∈ JξK}Jχ→ ξK := {g | ∀v ∈ JχK.(g v ∈ JξK)}Jξ1 ∧ ... ∧ ξkK := Jξ1K ∩ ... ∩ JξkKJCK := {(v1, . . . , vk) ∈ {tt, ff}k | |= C[ṽ]}.

A subset of abstract valuations JΞ | CKΘ is defined as

{ ρ | |= C[ρ(bΘ)] and ∀(x : χ) ∈ Ξ.ρ(x) ∈ JχK }.
We often omit Θ from JΞ | CKΘ. We write Ξ | C |= e : ξ if ρ ∈ JΞ | CK impliesJeKCρ ∈ JξK. ⊓⊔

We shall prove that, if Ξ[Σ] | C[Θ] ⊢ ψ : ξ[σ], then there exists φ that is an
abstraction of ψ, i.e.,

Σ | Θ ⊢ ψ : σ ⇝ φ

such that
Ξ | C ⊢ ψ : ξ.

Theorems 2 and 3 are corollaries of this result, applied to refinement intersection
type judgments ⊢ ψ : ∅ and ⊢ ψ : ¬c, respectively.

The proof is by induction on the structure of ψ. Since a subformula ψ′ of ψ
may appear several times in a derivation of Ξ[Σ] | C[Θ] ⊢ ψ : ξ[σ], associated
to several different judgments, say (Ξ ′

i[Σ
′] | C ′

i[Θ
′] ⊢ ψ′ : ξ′i[σ

′])i∈I . This family
of judgments that share the same subject and the same abstraction type is the
main object in the proof.

We first prepare some lemmas.

Lemma 12. For each ξ, JξK is upward closed and closed under meets. That
means

38 N. Iwayama et al.

– a ∈ JξK and a ⊑ b implies b ∈ JξK, and
– X ⊆ JξK implies

⊔
X ∈ JξK.

A similar statement holds for JχK.
Proof. Easy. ⊓⊔

Lemma 13. For each ξ, the set JξK has the minimum element. A similar state-
ment holds for χ.

Proof. By induction on ξ.

– ξ = (¬c): Recall that J¬cK is the set of subsets X of counterexamples
such that c /∈ X. The minimum element is the largest subset, which is
{counterexamples} \ {c}.

– ξ = χ1 → ξ2: Let w be the minimum element of Jξ2K. Then the minimum
element in Jχ1 → ξ2K is the mapping

v 7→

{
w, if v ∈ Jχ1K
⊥, otherwise,

where ⊥ is the minimum element of the whole domain.

Other cases are similar. ⊓⊔

The following lemma is used to handle the subsumption rule:

Ξi[Σ] | Ci[Θ] ⊢ ψ : ξi[σ] |= C ′
i[Θ

′] =⇒ Ci[Θ] C ′
i[Θ

′] ⊢ ξi[σ] ⪯ ξ′i[σ
′]

Ξi[Σ] | Ci[Θ] ⊢ ψ : ξi[σ]

Lemma 14. Assume that

– Ξi | Ci |= φ : ξi for every i = 1, . . . , k,
– C ′

i[Θ
′] ⊢ ξi[σ] ⪯ ξ′i[σ

′] for every i = 1, . . . , k, and
– |= C ′

i[Θ
′] =⇒ Ci[Θ].

Then there exists φ′ such that

– Ξi | C ′
i |= φ′ : ξ′i for every i = 1, . . . , k, and

– Σ ⊢ φ : (Θ, σ) ⪯ (Θ′, σ′)⇝ φ′.

A similar statement holds for intersections.

Proof. By induction on the structure of σ.

– σ = •: Then C ′
i[Θ

′] ⊢ ξi[σ] ⪯ ξ′i[σ
′] implies ξi = tt or ξi = ξ′i. ThereforeJξiK ⊆ JξiK. Let ζ(X) be the following formula with free variable X:

ζ(X) = λbΘ′ .
∨̄

1≤i≤k

(
C̄ ′

i[bΘ′] ∧̄
∧̄

ṽ such that |=Ci[ṽ]

X ṽ
)
,

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 39

where C̄ is obtained by replacing ∧ and ∨ in C with ∧̄ and ∨̄. Because
|= C ′[Θ′] =⇒ C[Θ], we have JX ΘKρ ⊒ Jζ Θ′Kρ for every valuation ρ for X
and free integer variables in Θ, Θ′. Hence, by applying (AC-Base) to the
assumption, we obtain

Σ ⊢ φ : (Θ, •) ⪯ (Θ′, •)⇝ ζ(λbΘ.ψ).

We show that Ξi | C ′
i |= ζ(λbΘ.ψ) : ξ′i for every i = 1, . . . , k. Assume

1 ≤ i ≤ k and ρ ∈ JΞi | C ′
iKΘ′

. Then

Jζ(λbΘ.ψ)KCρ ⊒ JC̄ ′
i[bΘ′] ∧̄

∧̄
ṽ such that |=Ci[ṽ]

(λbΘ.ψ) ṽKCρ
= J ∧̄

ṽ such that |=Ci[ṽ]

(λbΘ.ψ) ṽKCρ
=

l
ṽ such that |=Ci[ṽ]

J(λbΘ.ψ) ṽKCρ
=

l
ṽ such that |=Ci[ṽ]

JψKCρ[bΘ 7→ṽ]

∈ JξiK
⊆ Jξ′iK.

– σ = σ1 → σ2: For every i, ξi = (χi,1 → ξi,2) and ξ
′
i = (χ′

i,1 → ξi,2). We have

C ′
i[Θ

′] ⊢ χ′
i,1[σ

′
1] ⪯ χi,1[σ1]

and
C ′

i[Θ
′] ⊢ ξi,2[σ2] ⪯ ξ′i,2[σ

′
2].

Since
Ξi, x : χ′

i,1 | true |= x : χ′
i,1

for each i, by applying the induction hypothesis, there exists φ′ such that

Ξi, x : χ′
i,1 | C ′

i |= φ′ : χi,1

for every i and
Σ, x : σ′

1 ⊢ x : (ϵ, σ′
1) ⪯ (Θ, σ1)⇝ φ′.

Since Σi | Ci ⊢ φ : χi,1 → ξi,2,

Σ, y : χi,1 | Ci ⊢ φy : ξi,2

for each i. By the induction hypothesis, there exists φ′′ such that

Ξi, y : χi,1 | C ′
i |= φ′′ : ξ′i,2

for every i and

Σ, y : σ1 ⊢ φy : (Θ, σ2) ⪯ (Θ′, σ′
2)⇝ φ′′.

40 N. Iwayama et al.

By (AC-IntArrow),

Σ ⊢ φ : (Θ, σ1 → σ2) ⪯ (Θ′, σ′
1 → σ′

2)⇝ λx.[φ′/y]φ′′.

Then
Ξi | C ′

i |= λx.[φ′/y]φ′′ : χ′
i,1 → ξ′i,2

follows from Ξi, y : χi,1 | C ′
i |= φ′′ : ξ′i,2 and Ξi, x : χ′

i,1 | C ′
i |= φ′ : χi,1.

– σ = (x : int[P̃] → σ0): Then σ
′ = (x : int[P̃ ′] → σ′

0), ξi = (Di → ξi,0) and
ξ′i = (D′

i → ξ′i,0). For every i, we have

|= C ′
i[Θ] ∧D′

i[P̃
′] =⇒ Di[P̃]

and
C ′

i[Θ] ∧D′
i[P̃

′] ⊢ ξi,0 ⪯ ξ′i,0.

Since |= C ′
i[Θ

′] =⇒ Ci[Θ], we have

|= C ′
i[Θ

′] ∧D′
i[P̃

′] =⇒ Ci[Θ] ∧D[P̃].

Because
Ξi, x : int | Ci ∧D |= φ bΘ : ξi,0,

by the induction hypothesis, there exists φ′′ such that

Ξi, x : int | C ′
i ∧D′ |= φ′ : ξ′i,0

for every i and

Σ, x : int ⊢ φ b̃P : ((Θ, P̃), σ0) ⪯ ((Θ′, P̃ ′), σ′
0)⇝ φ′.

Hence

Σ ⊢ φ : (Θ, (x : int[P̃] → σ0)) ⪯ (Θ′, (x : int[P̃ ′] → σ′
0))⇝ λb̃P ′ .φ′.

Then Ξi | C ′
i |= λb̃P ′ .φ′ : D′ → ξ′i,0 follows from Ξi, x : int | C ′

i ∧D′ |= φ′ :
ξ′i,0.

We prove the case of intersections. Assume that χi =
∧

j∈Ji
ξi,j and χ′

i =∧
k∈Ki

ξ′i,k. Then C ′
i[Θ

′] ⊢ χi ⪯ χ′
i implies that, for each i and k ∈ Ki, there

exists j ∈ Ji such that C ′
i[Θ

′] ⊢ ξi,j ⪯ ξ′i,k. Let us write the mapping k 7→ j by
fi. Therefore, for each i and k ∈ Ki,

C ′
i[Θ

′] ⊢ ξi,fi(k) ⪯ ξ′i,k.

Since Ξi | Ci |= φ : χi, we have

Ξi | Ci |= φ : ξi,f(k)

for every i and k ∈ Ki. By the induction hypothesis, there exists φ′ such that

Ξi | C ′
i |= φ : ξ′i,k

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 41

for every i and k ∈ Ki and

Σ ⊢ φ : (Θ, σ) ⪯ (Θ′, σ′)⇝ φ′.

The former implies

Ξi | C ′
i |= φ :

∧
k∈Ki

ξ′i,k

as desired. ⊓⊔

The following lemma is mentioned above, relating intersection type deriva-
tions and abstractions.

Lemma 15. Let
(
Ξi[Σ] | Ci[Θ] ⊢ ψ : ξi[σ]

)
i∈I

be a family of refinement inter-
section type derivations. Then there exists φ such that

Σ | Θ ⊢ ψ : σ ⇝ φ

and

Ξi | Ci |= φ : ξi

for every i ∈ I. Furthermore, if ψ has abstraction type annotation and all deriva-
tions Ξi[Σ] | Ci[Θ] ⊢ ψ : ξi[σ] respects the annotation, then the above abstraction
respects the abstraction type as well.

Proof. By induction on the structure of families of derivations.
Assume that at least one of derivations ends with (R-Coerce). One can

assume without loss of generality that all derivations in the family end with
(R-Coerce), by applying the trivial coercion ξi[σ] ⪯ ξi[σ] if necessary. The
claim follows from the induction hypothesis and Lemma 14.

Otherwise the last rule of a derivation is completely determined by ψ.

– Case ψ = x: Then φ = x satisfies the requirements.
– Case ψ = p(ã): Because |= Ci[Θ] =⇒ p(ã) for every i ∈ I, we have

|=
(∨

i

Ci[Θ]
)
=⇒ p(ã).

Therefore

Σ | Θ, p(ã) ⊢ p(ã) : •⇝ bp(ã) Σ ⊢ bp(ã) : ((Θ, p(ã)), •) ⪯ (Θ, •)⇝
∨̄

i∈I Ĉi[bΘ]

Σ | Θ, p(ã) ⊢ p(ã) : •⇝
∨̄

i∈I Ĉi[bΘ]

(More precisely, the result of the abstraction is a formula that is βη-equivalent
to

∨̄
i∈I Ĉi[bΘ].) It is easy to see that this satisfies the requirement.

– Case ψ = ψ0 a: Then the premises are

Ξi[Σ] | C ′
i[Θ

′] ⊢ ψ0 : (Di → ξi)[(x : int[P̃] → σ′)]

42 N. Iwayama et al.

for some C ′
i, Θ

′, ξ′i, P̃ and σ′. Then

σ = [a/x]σ′

ξi[σ] = ξi[[a/x]σ
′]

Θ = (Θ′, [a/x]P̃)

Ci[Θ] = C ′′
i [Θ

′] ∧Di[[a/x]P̃].

By the induction hypothesis, there exists φ such that

Σ | Θ′ ⊢ ψ0 : (x : int[P̃] → σ′)⇝ φ

and
Ξi | C ′

i |= φ : (Di → ξ′i)

for every i ∈ I. Therefore φ b̃[a/x]P satisfies the requirements.
– Case ψ = νx.ψ0: The premises for the i-th derivation is

∀i ∈ Ji. (Ξi, x :
∧
j∈Ji

ξi,j)[Σ, x : σ] | Ci[Θ] ⊢ ψ0 : ξi,j [σ]

where ξi = ξi,j for some j ∈ Ji. By applying the induction hypothesis to the
family indexed by { (i, j) | i ∈ I, j ∈ Ji }, we have φ such that

Σ, x : σ | Θ ⊢ ψ0 : σ ⇝ φ

and for every i ∈ I and j ∈ Ji,

Ξi, x :
∧
j∈Ji

ξij | Ci |= φ : ξi,j .

Let ρ ∈ JΞi | CiK and v be the minimum element of J∧j∈Ji
ξijK (cf. Lemma 13).

Then ρ[x 7→ v] ∈ JΞi, x :
∧

j∈Ji
ξij | CiK. So JφKCρ[x 7→v] ∈ Jξi,jK for every

j ∈ Ji, and thus JφKCρ[x 7→v] ∈ J ∧
i∈Ji

ξi,jK,
that means, JφKCρ[x 7→v] ⊒ v. So

Jνx.φKCρ (v) ⊒ v,

that means, Jνx.φKCρ ∈ J∧j∈Ji
ξi,jK ⊆ Jξi,jK.

Other cases are similar. ⊓⊔

We prove the theorems.

Proof of Theorem 2

Assume that ⊢ ψ : tt. By Lemma 15, there exists φ such that ⊢ ψ : • ⇝ φ and
|= φ : tt. By definition, JφKC = tt. By Proposition 3, we have JφK = tt.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 43

Proof of Theorem 3

Assume ⊢ ψ : ¬c. Let ψ̌ be the formula with abstract type annotation extracted
from the derivation. The derivation respects the annotation ψ̌. So by Lemma 15,
there exists φ such that ⊢ ψ̌ : • ⇝ φ and |= φ : ¬c, i.e. c /∈ JφKC . By (the
contraposition of) Lemma 9, for every counterexample c′ of φ, one has C(c′) ̸=
{c}. Since C(c′) ̸= ∅, we have C(c′) \ {c} ̸= ∅.

E Additional Information about Experimental Results

Figure 7 shows the breakdown of the result reported in the lefthand side of
Figure 4 into the results for first-order inputs and higher-order inputs.

44 N. Iwayama et al.

O
u

rs
 (

se
c

)

1.0e-2

0.1

1.0

10.0

100.0

Timeout/Error

1.0e-2 1.0 10.0 Timeout/Error
Horus (sec)

Benchmark A (first order)

Benchmark B (first order)

O
u

rs
 (

se
c

)

1.0e-2

0.1

1.0

10.0

100.0

Timeout/Error

1.0e-2 1.0 10.0 Timeout/Error
Horus (sec)

Benchmark A (higher order)

Benchmark B (higher order)

Fig. 7. Comparison with Horus for first-order and higher-order benchmarks

