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Abstract
Dynamic code generation is useful for optimizing code with respect
to information available only at run-time. Writing a code gener-
ator is, however, difficult and error prone. We consider a simple
language for writing code generators and propose an automated
method for verifying code generators. Our method is based on
higher-order model checking, and can check that a given code gen-
erator can generate only closed, well-typed programs. Compared
with typed multi-stage programming languages, our approach is
less conservative on the typability of generated programs (i.e. can
accept valid code generators that would be rejected by typical
multi-stage languages) and can check a wider range of properties
of code generators. We have implemented the proposed method and
confirmed its effectiveness through experiments.

1. Introduction
Dynamic code generation, where code is generated by running a
program (called a code generator), is useful for specializing a pro-
gram with respect to information available at runtime. Writing a
code generator is often difficult and error prone, however. A num-
ber of multi-stage languages have been introduced [3, 5, 8, 10, 13,
20, 30–33, 36] to make it easier to write program generators. Those
languages are usually equipped with type systems to ensure that
only “valid” programs can be generated. A drawback of such typed
multi-staged languages is that the type systems are sometimes too
conservative on the typability of generated programs. For example,
λ© [9] expresses the type of a program for generating a value of
type τ as©τ . But then the following program:

if mode = "int" then next(0) else next(0.0)

will be rejected as ill-typed, because the then-part has type©int
whereas the else-part has type ©float. (Here, suppose that
next M generates the code for evaluating M at the next stage.)
The type systems of multi-stage languages are also not flexible
enough on the guaranteed properties; for example, while the type
system for λ© can guarantee that an expression of type ©int
only generates a code fragment evaluated to an integer, it does not
guarantee that the expression generates only a code fragment eval-
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uated to a positive integer; to guarantee such a property, one has to
redesign the type system of the language.

We propose an alternative approach to safe code generation,
based on higher-order model checking [15, 21]. We provide pro-
grammers with a simple functional language equipped with primi-
tives for generating symbols and constructing code fragments. The
programs in our language must be simply-typed, but unlike λ©

and other typed multi-stage languages, the generated code is dy-
namically typed; we have only a single type code for code and
symbols. Thus, programs may generate ill-typed programs, or even
those that do not respect variable bindings (like λx.y, which con-
tains an unbound variable). To reject those invalid code genera-
tors, we transform a code generator to a tree-generating program,
which produces a certain tree representation of the generated code.
By appropriately instrumenting the trees, various notions of “valid-
ity” (such as closedness and well-typedness) of the generated code
are reduced to regular properties on the corresponding trees, which
can be checked by using higher-order model checking. Higher-
order model checking [21] is a higher-order extension of finite-state
model checking, which can decide whether the tree generated by a
given simply-typed tree grammar satisfies a given regular tree prop-
erty.

We explain our approach through an example. Let us consider
the following OCaml-like program, where the function main takes
an integer n as an argument and generates code for the function that
takes x and returns xn.

let rec genpower n x =
if n=0 then One else Times(x, genpower (n-1) x)

let main n =
let x = gensym() in Abs(x, genpower n x)

Here, One, Times, and Abs are code constructors of arities 0, 2,
and 2 respectively; they represent the code for constant 1, multipli-
cation, and a λ-abstraction respectively. The function main takes
an integer n, generates a fresh symbol and then passes n and the
symbol to the function genpower, which returns a code fragment
e of the form Times(x, · · · Times(x, One) · · · ). The main function
then returns the whole code Abs(x, e) (which represents the func-
tion λx.xn).

We convert the above program to the following, non-deterministic
program for generating trees.

let gensym() = ...
let rec genpower x =

if * then One else Times(x, genpower x)
let main() =

let x = gensym() in Abs(x, genpower x)

Here, we have removed integer arguments and replaced the condi-
tion n = 0 with a non-deterministic Boolean *. The code construc-
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tors have been replaced by tree constructors of the same name. The
definition of gensym depends on the property to be verified. If we
wish to verify that the code produced by the original program is
Abs(x,M), where M is of the form

Times(x1, Times(x2, · · · Times(xn, One) · · · )),
then we can simply define gensym as a constant function that
always returns a singleton tree Var:

let gensym() = Var

Then, the transformed program generates

Abs(Var, One),
Abs(Var, Times(Var, One)),
Abs(Var, Times(Var, Times(Var, One))), . . .

in a non-deterministic manner. Therefore, it suffices to check that
all the generated trees belong to the regular tree language described
by the grammar:

S → Abs(Var, A)
A→ One A→ Times(Var, A),

by using higher-order model checking.
To verify that the above program generates only closed pro-

grams (where Abs is considered a variable binder), one can instead
define gensym by:

let gensym() = if * then Var else Ig

It returns either Var or Ig. Intuitively, Var represents variables
whose binding information should be tracked, whereas Ig repre-
sents those that should be ignored. Then, to check the closedness, it
suffices to check that whenever Var occurs in the generated code,
it is in the scope of Abs(Var, . . .). Indeed, the trees generated by
the transformed program are:

Abs(Var, One), Abs(Ig, One),
Abs(Var, Times(Var, One)), Abs(Ig, Times(Ig, One)),
Abs(Var, Times(Var, Times(Var, One))),
Abs(Ig, Times(Ig, Times(Ig, One))), . . . ,

all of which satisfy the condition above. If the main function were
wrongly defined by:

let main n =
let x = gensym() in let y = gensym() in

Abs(x, genpower n y),

then, the set of the trees generated by the transformed program
would contain:

Abs(Ig, Times(Var, One)),
which indicates that open code may be generated. In this manner,
with an appropriate instantiation of the gensym function, we can
verify various properties of the programs generated by code gener-
ators.

We formalize the above idea and show how the closedness
and well-typedness of the generated code can be verified by using
higher-order model checking. Since it may be too low-level to
directly write a program generator in the gensym language, we
also design a simple two-stage programming language, which is
similar to λ©, but does not require expressions of the next stage
to be simply-typed, and formalize the translation from λ© to the
gensym language, so that our verification method can be applied.
We have implemented a prototype verification tool based on our
method, and confirmed its effectiveness.

The rest of this paper is structured as follows: Section 2 in-
troduces the gensym language, the source language for describing
code generators. Section 3 formalizes our verification methods for
code generators. Section 4 reports an implementation and experi-

ments on the verification methods propopsed in Section 3. Section 5
introduces a relaxed version of λ© and provides a translation from
it into the gensym language, so that we can apply our verification
method to programs written in the relaxed λ©. Section 6 discusses
limitations of our method and related work. Section 7 concludes
the paper.

Notations
We write N for the set of natural numbers. For a natural number
n ∈ N, we write [n] for {k ∈ N | 1 ≤ k ≤ n}. For a binary
relation R ⊆ A × B, we write dom(R) and im(R) for {a ∈
A | ∃b ∈ B. (a, b) ∈ R} and {b ∈ B | ∃a ∈ A. (a, b) ∈ R}
respectively. For a (partial) map f fromA toB, dom(f) and im(f)
are defined as special cases. For a map f , we write f [a 7→ b] for
the map f ′ such that dom(f ′) = dom(f) ∪ {a}, f ′(a) = b, and
f ′(x) = f(x) for x ∈ dom(f ′) \ {a}.

2. The Language for Code Generation
This section introduces a language for writing code generators
that we call the gensym language. To clairfy the essence of our
verification method, the language is kept minimal; it is a call-
by-name functional programming language with code constructors
and primitives for generating fresh symbols, having only code as
base type values. All the functions are named and defined at the
top level. The language should be considered a core language, to
which actual programs written by programmers are transformed
before applying our verification method. For dealing with call-by-
value programs (like the examples in Section 1), it suffices to apply
the CPS transformation. For dealing with programs using other
values such as integers, we can use predicate abstraction [17], and
then encode Booleans as functions, code and functions as primitive
values.

We assume a finite set of code constructors, and write P for the
map from the set of code constructors to the set of natural numbers,
representing the arities of code constructors. We assume that P
contains at least the following bindings:

APP 7→ 2, ABS 7→ 2, FIX 7→ 2, IFTE 7→ 3.
They are constructors for function applications, abstractions, recur-
sions, and conditional expressions (if-then-else). In examples, we
use other constructors such as TIMES (of arity 2) and ’n (of arity 0)
for each integer n. We use the meta-variable P for code costructors.

A function definition is a pair:

(F,λx1. · · ·λxk. e),
where F is a function symbol and e ranges over the set of applica-
tive terms, defined by:

e ····= F | x | e e | P | gensym/cont.
Here, F and x are meta-variables for function symbols and vari-
ables respectively. The primitive gensym/cont e is a fresh sym-
bol generator in continuation passing style; it takes an expres-
sion e as an argument, creates a fresh symbol, and passes it to
e. We often write F x1 · · · x` = e for the function definition
(F,λx1. · · ·λx`. e). We also often abbreviate a finite sequence of
variables x1, . . . , x` to x̃, and write (F,λx̃. e) or F x̃ = e for the
function definition.

A (source) program is a pair (D, S) where D is a finite set of
function definitions, and S, called the main function, is one of the
function symbols defined in D. We allow D to contain more than
one function definition for each function symbol. That is for the
purpose of modelling non-determinism that would be introduced
when predicate abstraction is used.
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The operational semantics of the language is given as follows.
We assume a countably infinite set Symbol of symbols that may
be generated by gensym/cont, ranged over by α. The set of
runtime terms, the set of code values, and the set of evaluation
contexts, ranged over respectively by ê, v, and C, are defined by:

ê ····= α | F | ê ê | P | gensym/cont ,
v ····= α | P | v v ,
C ····= [ ] | P v · · · v C ê · · · ê .

We write C[ê] for the term obtained by replacing the sole occur-
rence [ ] in the evaluation context C with the term ê. The reduction
relation ↪→D of the gensym language is defined as the least relation
that satisfies the following rules:

C[F ê1 · · · ê` ] ↪→D C[[ê`/x`] · · · [ê1/x1]e]
if (F x1 · · · x` = e) ∈ D

C[gensym/cont ê] ↪→D C[ê α]
if α ∈ Symbol does not occur in C[gensym/cont ê]

If S ↪→D∗ v, we say v is a code value generated by (D, S). We
write C(D, S) for the set of code values that the program generates.

Example 1. The program (D, S), where

D ··= {GenPower x = ’1,

GenPower x = TIMES x (GenPower x),
S = gensym/cont K,
K x = ABS x (GenPower x)}

corresponds to the genpower example in Section 1. The following
is a reduction process of (D, S):

S ↪→D gensym/cont K ↪→D K α ↪→D ABS α (GenPower α)
↪→D ABS α (TIMES α (GenPower α))
↪→D ABS α (TIMES α (TIMES α (GenPower α)))
↪→D ABS α (TIMES α (TIMES α (TIMES α (GenPower α))))
↪→D ABS α (TIMES α (TIMES α (TIMES α ’1)))
We require that programs are simply-typed. The set of types,

ranged over by τ , is defined by:

τ ····= code | τ → τ

where the type code describes the type of generated code. Note
that every code fragment has the same type code and we do not
aim to infer (more detailed) types for generated code fragments by
this simple-type system, unlike typed multi-stage calculi such as
λ© [9]. A program (D, S) is well-typed if there exists a type envi-
ronment Γ of the form {Fi 7→ τi | Fi ∈ dom(D)} that satisfies
Γ (S) = code and Γ ` (λx̃. e) : Γ (F ) for each (F x̃ = e) ∈ D,
where the typing rules for (runtime) terms are given as follows:

Γ [x1 7→ τ1] · · · [x` 7→ τ`] ` e : code
Γ ` λx1. · · ·λx`. e : τ1→ · · · → τ`→ code

(Γ (x) = τ)
Γ ` x : τ

(Γ (F ) = τ)
Γ ` F : τ Γ ` α : code

Γ ` ê1 : τ2→ τ Γ ` ê2 : τ2
Γ ` ê1 ê2 : τ

Γ ` gensym/cont : (code→ code)→ code

Γ ` P : code→ · · · → code→︸ ︷︷ ︸
P(P )

code

The following is a standard property of the simple type system.

Theorem 2. Let (D, S) be a well-typed program of the gensym
language. If S ↪→D∗ ê, then (i) ê is a value and ∅ ` ê : code; or
(ii) there exists a run-time term ê′ such that ê ↪→D ê′.

3. Verification Method
This section describes methods to verify the code generated by
a program of the gensym language. As mentioned in the intro-
duction, we reduce verification problems to the decision problem
called higher-order model checking [15, 21]. We shall briefly re-
view (a variant of) higher-order model checking in Section 3.1 and
then describe methods to verify closedness (Section 3.2) and well-
typedness (Section 3.3) of the generated code.

3.1 Preliminaries: higher-order model checking
Higher-order model checking [15, 21] is the problem to decide
whether, given a higher-order tree grammar (called a higher-order
recursion scheme) G and a regular tree propertyA, the trees gener-
ated by G satisfy A.

Remark 3. The definition of higher-order model checking given
below is actually a variant of the original problem in [21], which
properly subsumes ours. The differences are: (1) in the original
setting, a higher-order recursion scheme is deterministic and gen-
erates a possibly infinite tree, whereas in our setting, it is non-
deterministic and generates a set of finite trees, and (2) a property in
the original setting is ω-regular, whereas in our setting it is regular
(since we do not handle infinite trees in our setting).

Higher-order recursion schemes Intuitively, a higher-order re-
cursion scheme is a call-by-name, simply-typed, and non-deterministic
functional program for generating a tree.

A ranked alphabet Σ is a finite collection of symbols equipped
with their arities. Formally it is a map Σ : dom(Σ) → N from a
finite set of symbols (called terminal symbols) to natural numbers.

A (non-deterministic) higher-order recursion scheme (a HORS
for short) on a ranked alphabet Σ is a triple G = (Σ,R, S)
consisting of

• the ranked alphabet Σ;

• a finite setR of rewriting rules of the form:

F x̃→ t,

where F is a symbol called a nonterminal, x̃ is a (possibly
empty) finite sequence of variables and t is an applicative term
given by the grammar t ····= a | F | x | t t (where a, F , and
x range over dom(Σ), the set of non-terminals, and the set {x̃}
of variables);

• a special non-terminal S called the start symbol.

We write dom(R) for the set of nonterminals occurring on the left-
hand side of a rule. Each non-terminal may have more than one
rewriting rule, as in the language in Section 2. We require that the
HORS be simply-typed in the following sense. Let Sort be the
set of sorts (i.e. simple types for HORSs) defined by κ ····= o |
κ→ κ, where o is the sort of trees. The HORS G = (Σ,R, S)
is well-typed if there exists a map K : dom(R) → Sort from
nonterminals to sorts such that
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• for every rule (F x1 . . . x` → t) ∈ R, there exist sorts
κ1, . . . , κ` that satisfy K[x1 7→ κ1] · · · [x` 7→ κ`] `Σ t : o
and K(F ) = κ1→ · · · → κ`→ o, and

• K(S) = o holds for the start symbol S,

where each terminal a ∈ dom(Σ) has the type o→ · · · → o→︸ ︷︷ ︸
Σ(a)

o.

Given a HORS G = (Σ,R, S), we define the reduction relation
−→G as the least relation that satisfies:

• (F t1 · · · t`) −→G [t`/x`] · · · [t1/x1]t
if (F x1 · · ·x` → t) ∈ R,

• (a t1 · · · ti · · · tm) −→G (a t1 · · · t′i · · · tm)
if Σ(a) = m and ti −→G t′i.

We write −→∗G for the reflexive and transitive closure of −→G .
A (finite)Σ-labeled ranked tree (or simply a tree) is an applica-

tive term consisting only of terminal symbols. As usual, we often
depict the tree a t1 · · · tn as follows.

a

t1 t2

· · ·

· · · tm

A value tree of a HORS G is a tree t such that S −→∗G t. We write
L(G) for the set of value trees generated by G.

Example 4. Consider the HORS G = (Σ,R, S) where:

Σ ··= {a 7→ 2, b 7→ 1, c 7→ 0, d 7→ 0},
R ··= {S → F c, F x→ a x (F (b x)), F x→ d}.

The following are value trees of G:

a

a

a

db

b

c

b

c

c

a

a

a

a

db

b

b

c

b

b

c

b

c

c

Tree automata We use a tree automaton to specify a property
of the trees generated by a HORS. A (non-deterministic, top-
down) tree automaton on a ranked alphabet Σ is a quadruple
A = (Σ,Q,∆, qINI) consisting of

• the ranked alphabet Σ;

• a finite set Q of states;

• a finite set ∆ ⊆ Q × Σ × Q∗ of transition rules such that
(q, a, q1 · · · qm) ∈ ∆ implies m = Σ(a);

• a special state qINI ∈ Q called the initial state.

We write q a→ q1 · · · qm for a transition rule (q, a, q1 · · · qm).
The set of Q-labeled trees is given by: r ····= q r1 · · · rm

where q ranges over Q and m ≥ 0. A Σ-labeled ranked tree t is
said to be accepted byA = (Σ,Q,∆, qINI) if there exists a (finite)
Q-labeled tree r such that t a∆ qINI J r, where the relation t a∆

q J r is inductively defined by: (a t1 · · · tm) a∆ q J r if r is of
the form (q r1 · · · rm) and there exists (q a → q1 · · · qm) ∈ ∆
such that ti a∆ qi J ri for each i ∈ [m]. A Q-labeled tree r is
called a run-tree of A over t if t a∆ qINI J r holds.

Example 5. Let Σ be a ranked alphabet in Example 4. Consider
the automaton A1 = (Σ,{q0, q1},∆, q0) where:

∆ ··= {q0 a→ q1 q1, q1 a→ q1 q1, q1 b→ q1,

q0 c→ ε, q1 c→ ε,

q0 d→ ε, q1 d→ ε}.
Intuitively, A1 accepts a tree t if every b-labeled node of t has an
ancestor node labeled with a. For example, the tree on the left-
hand side of Example 4 (as well as the one on the right-hand side)
is accepted by A1, as witnessed by the following relation.

a

a

a

db

b

c

b

c

c

a∆ q0 J

q0

q1

q1

q1q1

q1

q1

q1

q1

q1

For another example of automata, letA2 = (Σ,{q},∆, q) where
∆ ··= {q a→ q q, q b→ q, q c→ ε}. This automaton checks
whether every leaf of a given tree is labeled with c. The tree above
is not accepted by A2. �

Higher-order model checking We say that a HORS G is accepted
by a tree automatonA if all the value trees of G are accepted byA.
Higher-order model checking is the following decision problem:

Given a HORS G and a tree automaton A on a common
ranked alphabet Σ, is G accepted by A?

Example 6. Let G0 = (Σ,R, S) be a HORS in Example 4 and
A1 and A2 be automata in Example 5. The HORS G0 is accepted
by A1, whereas G1 is not. �

Higher-order model checking is decidable [21]. Despite its
extremely high computational complexity, practical higher-order
model checkers [2, 15, 24] are available that run fast for typical
inputs.

3.2 Verifying closedness of generated code
Since the gensym language defined in Section 2 has independent
mechanisms for generating (i.e. gensym/cont) and binding (i.e.
ABS e1 e2 and FIX e1 e2) a symbol, it is possible for users to write
mistakenly a program that can generate code with an unbound vari-
able. In this section, we propose a method to check that every code
generated by a given source program is closed. As sketched in the
introduction, given a source program (D, S), we convert (D, S) to
a HORS Gcls(D, S), and check whether Gcls(D, S) is accepted by
an automaton Acls using higher-order model checking.

A code value v is closed if so is the obvious corresponding
λ-term. This notion is formally defined as follows. A code value
v is well-formed if, for every subterm of the form ABS v1 v2 or
FIX v1 v2, v1 ∈ Symbol. We say that the occurrences of α
in ABS α v2 and FIX α v2 are binding occurrences and every
occurrence of the symbol α in v2 is bound. An occurrence of a
symbol is unbound if it is neither binding nor bound. A well-formed
code value is closed if it has no unbound occurrence of a symbol.
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Example 7. Let v :≡ ABS α (ABS β (ABS α (APP α β))) be a
code value. It has two binding occurrences of α, one binding oc-
currence of β, one bound occurrence of α and one bound occur-
rence of β. This is well-formed and closed. The code value v′ :≡
ABS α (APP α β) is well-formed but not closed since the unique oc-
currence of β is unbound. The code value v′′ :≡ ABS (APP α β) γ
and v′′′ :≡ ABS ’1 ’2 are not well-formed.

The main obstacles in the static verification of closedness of
generated code are (i) the set of code values generated by the
program may be infinite and (ii) the number of symbols occurring
in a code value has no a priori bound. We can easily overcome
the first problem by modeling a code generator as a HORS that
generates the tree representation of code values. An additional
trick is, however, required to address the second problem. Note
that the set of terminal symbols occurring in a HORS and a tree
automaton must be finite; thus, we need to properly model a code
value containing an unbounded number of symbols with a finite set
of terminals.

An important observation here is that whether an occurrence of
α is bound is completely irrelevant to the usage of other symbols.
Hence, for the purpose of checking if there is an unbound occur-
rence of α, the code value v :≡ ABS α (APP α (ABS β γ)) has the
same information as 〈v〉{α} ≡ ABS var (APP var (ABS ig ig)),
where var represents the symbol that we currently focus on (that is
α here) and ig represents the other symbols. Note that 〈v〉{α} uses
only a bounded number of symbols; in fact, it is aΣcls-labeled tree,
where Σcls = P ∪ {var 7→ 0, ig 7→ 0}. The notions of well-
formedness and closedness are extended to 〈v〉{α}; we say that a
Σcls-labeled tree is closed if it has no unbound var. Now closed-
ness of v is reduced to that of 〈v〉{α} for every α ∈ Symbol.

We formalize the above idea. Given a code value v and a subset
X ⊆ Symbol, the operation 〈v〉X replacing α ∈ X with var and
β /∈ X with ig is defined by:

〈α〉X :≡
{

var (if α ∈ X)
ig (otherwise)

〈P 〉X :≡ P

〈v1 v2〉X :≡ 〈v1〉X 〈v2〉X .
As discussed above, given a code value v, it is well-formed and
closed if and only if 〈v〉{α} is well-formed and closed for every
α ∈ Symbol. As we shall see in Lemma 9, this is equivalent
to the condition that 〈v〉X is well-formed and closed for every
X ⊆ Symbol. (The latter is technically more convenient.)

Example 8. Let

v :≡ ABS α (ABS β (ABS α (APP α β)))
be a closed code value. There are essentially four choices of X ⊆
Symbol, namely X0 ··= ∅, X1 ··= {α }, X2 ··= {β } and
X3 ··= {α, β }. We have

〈v〉X0 ≡ ABS ig (ABS ig (ABS ig (APP ig ig)))
〈v〉X1 ≡ ABS var (ABS ig (ABS var (APP var ig)))
〈v〉X2 ≡ ABS ig (ABS var (ABS ig (APP ig var)))
〈v〉X3 ≡ ABS var (ABS var (ABS var (APP var var))),

all of which are closed. Consider a non-closed code value

v′ :≡ ABS α (APP α β),
in which β is unbound. Setting X ··= {β }, we have

〈v′〉X ≡ ABS ig (APP ig var)
in which var is unbound.

Lemma 9. For every code value v, the following conditions are
equivalent:

1. v is well-formed and closed.

2. 〈v〉{α} is well-formed and closed for all α ∈ Symbol.
3. 〈v〉X is well-formed and closed for all X ⊆ Symbol.

Proof. (1 ⇒ 3) If 〈v〉X is not well-formed, then v is not well-
formed. Assume that 〈v〉X is not closed, i.e. it has an unbound
occurrence of var. Let α be the symbol in v occurring at this
position. Then this occurrence of α is unbound. (3 ⇒ 2) Obvious.
(2 ⇒ 1) If v is not well-formed, then 〈v〉{α} is not well-formed
(for any α). Assume that v is not closed. Let α be a symbol which
has an unbound occurrence. Then the corresponding occurrence of
var in 〈v〉{α} is unbound. �

It is easy to see that the set of Σcls-labeled trees representing
well-formed and closed code values is a regular tree language. Let
Acls be the automaton that recognizes this language; the definition
of Acls is given in Appendix.

Now what remains is to construct a HORS Gcls(D, S) for a
given program (D, S) such that

L(Gcls(D, S)) = {〈v〉X | S ↪→D∗ v,X ⊆ Symbol}.
Given a program (D, S), we define the HORS Gcls(D, S) =
(Σcls,R, S) by:

R ··= {F x̃→ 〈e〉 | (F x̃ = e) ∈ D}
∪ {Gensym k → k var, Gensym k → k ig}

where the transformation 〈–〉 of terms into applicative terms of the
HORS is given by:

〈x〉 :≡ x, 〈F 〉 :≡ F, 〈e1 e2〉 :≡ 〈e1〉 〈e2〉,

〈P 〉 :≡ P, 〈gensym/cont〉 :≡ Gensym.

The HORS Gcls(D, S) basically simulates the program (D, S)
except for gensym/cont. The nonterminal Gensym of the
HORS (that corresponds to gensym/cont) non-deterministically
chooses whether or not the newly generated symbol should belong
toX ⊆ Symbol, and passes var or ig to the continuation accord-
ingly. The enumeration of all the possible behaviours of Gensym
corresponds to that of X ⊆ Symbol in 〈–〉X .

Example 10. Consider the following variation of the genpower
example in Section 1:

letrec genpower_fake n x =
if n ≤ 0 then ’1 else

TIMES x (genpower_fake (n− 1) x) in
λn. let x = gensym () in

let y = gensym () in ABS y (genpower_fake n x)

and its corresponding program (D, S) in the gensym language:

D = {GenPowerFake x = ’1,
GenPowerFake x = TIMES x (GenPowerFake x),
S = gensym/cont K1,

K1 x = gensym/cont (K2 x),
K2 x y = ABS y (GenPowerFake x)}.

Clearly this program can produce a target code that is not closed.
It is transformed to the following HORS consisting of the fol-

lowing rules:

GenPowerFake x→ ’1,
GenPowerFake x→ TIMES x (GenPowerFake x),
S → Gensym K1,
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K1 x→ Gensym (K2 x),
K2 x y → ABS y (GenPowerFake x),
Gensym k → k var, Gensym k → k ig.

The HORS generates ABS ig (TIMES var · · ·) if the first rule for
Gensym is chosen in the body ofK1 and the second rule is chosen
in the body ofK2. Thus, the HORS is rejected byAcls as expected.
�

We prove the correctness of our method below.

Lemma 11. For every program (D, S) of the gensym language,
we have

L(Gcls(D, S)) = {〈v〉X | S ↪→D∗ v,X ⊆ Symbol}.
Proof sketch. (⊇) Given a reduction sequence S ↪→D∗ v and
a subset X ⊆ Symbol, we construct a reduction sequence
S −→Gcls(D,S)

∗ t which simulates the reduction sequence of the
program. A reduction step gensym/cont ê ↪→D ê α corre-
sponds to Gensym t −→Gcls(D,S) t var if α ∈ X and otherwise
Gensym t −→Gcls(D,S) t ig.

(⊆) Assume a reduction sequence S −→Gcls(D,S)
∗ t. By using

the bijective correspondence between rewriting rules in Gcls(D, S)
and function definitions in (D, S), we can construct a reduction
sequence S ↪→D∗ v in which gensym/cont does not generate
the same symbol twice. The set X ⊆ Symbol is defined by
α ∈ X if and only if gensym/cont ê′ ↪→D ê′ α appears in the
reduction sequence and the corresponding rewriting in the HORS
is Gensym t′ −→Gcls(D,S) t

′ var. Then 〈v〉X ≡ t. �

The next theorem is a consequence of Lemmas 9 and 11.

Theorem 12. Let (D, S) be a source program of the gensym
language. Then the following are equivalent:

(1) All code values generated by (D, S) are well-formed and
closed.

(2) L(Gcls(D, S)) is accepted by Acls.

3.3 Verifying well-typedness of generated code
This section presents a method for checking that all the code

values that can be generated by a given program are simply-typed.
The set TgType of types of generated code fragments, ranged
over by T , is defined by:

T ····= Int | Float | Bool | T → T.

We assume every code constructor P in P (except ABS and FIX) is
associated with a set of types:

Ptype : (dom(P) \ {ABS, FIX})→ 2TgType.

For example,

Ptype(APP) ··= {(T1→ T2)→ T1→ T2 | (T1→ T2) ∈ TgType}
Ptype(IFTE) ··= {Bool→ T → T → T | T ∈ TgType}
Ptype(TIMES) ··= {Int→ Int→ Int, Float→ Float→ Float}.
Note that each constant may have more than one type. A code value
v is well-typed (and has type T ) if ∅ ` v : T is derivable using the
rule for constants:

(T ∈ Ptype(P ))
∅ ` P : T

and the standard typing rules for the simply-typed λ-calculus and
recursion.

The problem that we address in this section is as follows:

Given a program (D, S) of the gensym language, are all the
code values generated by (D, S) well-typed?

Example 13. Consider the following function generating a spe-
cialized power function for integers or floating numbers depending
on the value of option:

letrec genpower_opt init n x =
if n ≤ 0 then init

else TIMES x (genpower_opt init (n− 1) x) in
λoption. λn. let x = gensym () in

if option then genpower_opt ’1 n x

else genpower_opt ’1.0 n x

This function returns a well-typed code value for every pair of
arguments but this is ill-typed under type systems for multi-stage
languages such as λ© [9]. In order to ensure well-typedness of
generated code, it suffices to check well-typedness of all code
values generated by the following program of the gensym language,
which is an abstraction of the above function applied to random
arguments:

D ··= {S = gensym/cont (PowerOpt ’1),
S = gensym/cont (PowerOpt ’1.0),
PowerOpt init x = init,
PowerOpt init x = TIMES x (PowerOpt init x)}.

As we shall see, our method automatically proves this.

Let T ⊆fin TgType be a finite subset of types that satisfies

(T1→ T2) ∈ T ⇒ {T1, T2} ⊆ T .
We call an element of T a candidate type. Our method is paramater-
ized by T and checks whether a code value v has a type derivation
that uses only types in T . Let us fix T in the rest of this section.

Let v be a code value of which we would like to check well-
typedness. Similarly to the idea in the previous subsection, we
replace symbols in v with some elements of a finite set in such
a way that the resulting tree has enough information to check the
well-typedness of v. The key observation is that, once closedness
of v has been established, it is sufficient to know the type of each
symbol to check well-typedness. Let varT be a tree constructor of
arity 0 for each T ∈ T . Given a map θ : Symbol → T , we
define [v]Tθ as the ΣTwt-labelled tree obtained by replacing α in v
to varθ(α). The resulting trees are (P ∪ {varT 7→ 0 | T ∈ T })-
labelled trees.

We then give a type system for (P ∪ {varT 7→ 0 | T ∈ T })-
labelled trees as follows.

varT : T

(T1→ · · · → Tn→ T ) ∈ Ptype(P )
t1 : T1 · · · tn : Tn T ∈ T

P t1 · · · tn : T

v : T2 (T1→ T2) ∈ T
ABS varT1 v : T1→ T2

v : T1→ T2

FIX varT1→T2 v : T1→ T2

Thanks to the conditions T ∈ T and (T1→T2) ∈ T in the second
and third rules, v : T implies T ∈ T . Since T is a finite set, one
can construct an automaton that recognizes the set of all well-typed
(P ∪{varT 7→ 0 | T ∈ T })-labelled trees. We writeWT for this
regular tree language.

Lemma 14. Let v be a well-formed and closed code value. If there
exists θ : Symbol → T such that [v]Tθ ∈ WT , then v is well-
typed.
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Example 15. Let v :≡ ABS α (ABS β (IFTE α β ’1)) and assume
that Ptype(’1) = {Int}. For a map θ such that θ(α) ≡ Float and
θ(β) ≡ Bool, we have

[v]Tθ ≡ ABS varFloat (ABS varBool (IFTE varFloat varBool ’1)),

which is not well-typed. For a map θ′ such that θ′(α) ≡ Bool and
θ′(β) ≡ Int, we have

[v]Tθ′ = ABS varBool (ABS varInt (IFTE varBool varInt ’1)),
which has type Bool→Int→Int. Hence v has the same type and
in particular well-typed. �

Now the following proposition is a sufficient condition for the
well-typedness of all the code values generated by (D, S):

∀v ∈ C(D, S). ∃θ : Symbol→ T . [v]Tθ ∈ WT .
We reduce this proposition to higher-order model checking. An
important difference from the problem in Section 3.2 is that we
have to handle the existential quantification. (Recall that higher-
order model checking is a problem to decide if every value tree
satisfies a certain property.)

We embed all possible choices of θ into a tree by the following
technique. Let

ΣTwt ··= P ∪ {varT 7→ 0 | T ∈ T } ∪ {oneof 7→ #T }
where #T is the number of elements in T . The tree constructor
oneof means that at least one child should be well-typed. Hence it
has the typing rule

ti : T for some i ∈ [n]
oneof t1 · · · tn : T

Again well-typedness of ΣTwt-labelled trees is a regular property.
We write ATwt for an automaton that recognizes the language; a
construction of ATwt is given in Appendix.

A ΣTwt-labelled tree can be seen as a set of (ΣTwt \ {oneof})-
labelled tree. We write ‖t‖ for the set of trees defined by:

‖oneof t1 · · · tn‖ ··=
⋃
i∈[n]

‖ti‖,

‖P t1 · · · t`‖ ··= {P u1 · · · u` | ∀i ∈ [`]. ui ∈ ‖ti‖}.
The next lemma justifies the intuition that oneof describes an
existential quantification.

Lemma 16. A ΣTwt-labelled tree t is accepted by ATwt if and only
if ∃u ∈ ‖t‖. u ∈ WT .

For a code value v and a ΣTwt-labelled tree t, we write v ∼ t if
‖t‖ = {[v]Tθ | θ : Symbol→ T }. Provided that v ∼ t, then by
Lemmas 14 and 16, a code value v is well-typed if t is accepted by
ATwt.

Given a program (D, S), we define a HORS GTwt(D, S) =
(ΣTwt,R, S) such that, for every v ∈ C(D, S), there exists t ∈
L(GTwt(D, S)) such that v ∼ t. The rewriting rules are defined
by:

R ··= {F x̃→ 〈e〉 | (F x̃ = e) ∈ D}
∪ {Gensym k → oneof (k varT1 ) · · · (k varTn)},

where T1, . . . , Tn is an enumeration of T . The operation 〈e〉 is
defined in Section 3.2, which replaces gensym/cont in e to
Gensym. The HORS GTwt(D, S) basically simulates the program
(D, S) except for gensym/cont. The nonterminal Gensym

guesses a correct type for the newly generated symbol. The next
lemma shows that the HORS generates an expected tree language.

Lemma 17. For every v ∈ C(D, S), there exists t ∈ L(GTwt(D, S))
such that v ∼ t.

Proof sketch. First we extend [–]Tθ to expressions and ‖–‖ to ap-
plicative terms. For an expression ê and an applicative term t (that
is not necessarily a tree), the relation ê ∼ t is defined by the obvi-
ous way. The claim extended to arbitrary expressions and applica-
tive terms can be proved by induction on the length of reduction
sequences. �

As a consequence of Lemmas 14, 16 and 17, we have the
following theorem.

Theorem 18 (Soundness). Let (D, S) be a program of the gen-
sym language generating well-formed and closed code values. If
L(GTwt(D, S)) is accepted by ATwt, then all code values generated
by (D, S) are well-typed.

Note that whether L(GTwt(D, S)) is accepted by ATwt is an
instance of higher-order model checking and thus decidable.

Unfortunately, our method is incomplete, as discussed below.
The first source of incompleteness comes from the choice of T ,
which must be finite to keepWT regular. There is a program of the
gensym language such that every generated code value has a type
but the set of all types of the generated code values are infinite. An
example is the program (D, S) defined by:

D ··= {S = ’1, S = gensym/cont T, T x = ABS x S}

which generates a code value λα1. . . . λα`. 1 (written in the
standard syntax) for every ` ∈ N.

The second source of incompleteness comes from the fact that
we assign a type to each symbol. Consider a code value

v :≡ ABS α (APP α (ABS α (TIMES α ’1))),

which can be written in the standard syntax as λα. α (λα. α ∗
1). This code value is well-typed: an example of a correct type
annotation is:

λα(Int→Int)→Int. α (λαInt. α ∗ 1).

Observe that different occurrences of α have different types. This is
inevitable to type v. Hence all elements of {[v]Tθ | θ : Symbol→ T }
are ill-typed, whatever T is.

Remark 19. The method above can be extended to intersection
types and/or refinement types, as long as the set T of type candi-
dates is finite. For example, with intersection types, the first two
rules for typing labeled trees would become:

varT1∧···∧Tk : Ti

(T1,1 ∧ · · · ∧ T1,k1 )→ · · · → (Tn,1 ∧ · · · ∧ Tn,kn)→ T
∈ Ptype(P ) ∩ T

ti : Ti,j for each i ∈ [n], j ∈ [ki]
P t1 · · · tn : T

As long as T , the above rules can be expressed as transition rules of
an alternating tree automaton. (The observation that the typability
in intersection types can be captured by a tree automaton is not
novel; see, e.g., [25].) Using intersection types and/or refinement
types, we can check more complex properties of generated code.
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Answer Time [s]
Program #T C WT C WT

genpower
2

10
16

Yes Yes 0.004
0.004
0.012
0.016

genpower_fake 2 No – 0.004 –

genpower_option
4

10
16

Yes Yes 0.004
0.008
0.014
0.098

effgenpower
2

10
16

Yes Yes 0.004
0.006
0.025
0.032

geniprod
4

10
16

Yes Yes 0.008
0.008
0.018
0.069

gentranspose
5

10
16

Yes Yes 0.008
0.012
0.022
0.091

Table 1. The Result of Preliminary Experiments

4. Experiments
Based on the verification methods described in Section 3, we have
implemented a prototype verification tool for code generators and
carried out preliminary experiments. The tool supports a call-by-
value language with OCaml-like syntax and the gensym primitive.
A source program is converted to a program in Section 2 by replac-
ing all the conditionals with non-deterministic branches; we have
not integrated predicate abstraction yet and applying the CPS trans-
formation. The program is then transformed to HORS, based on the
transformations described in Sections 3.2 and 3.3. HORSAT2 [2] is
used as the backend higher-order model checker.

We have tested the tool on a machine with an Intel Core-i5 CPU
with 2.60GHz and 4.00GB memory. The result is shown in Table 1,
where “C” and “WT” mean the closedness check and the well-
typedness check, respectively, and the column “#T ” shows the
number of types considered as candidates of the types of generated
symbols in the well-typedness check. The benchmark programs
used in the experiments are the following ones:

genpower: a function that takes a nonnegative integer n and re-
turns code for λx. xn, described in Section 1 and Example 1.

genpower_fake: a buggy version of genpower, which is de-
scribed in Example 10.

genpower_option: an extended version of genpower, which is
shown in Example 13.

effgenpower: a variant of genpower, which generates code for a
function that takes an integer x as an input and computes xn in
time O(logn).

geniprod: a function that takes a nonnegative integer n and re-
turns code that takes a couple of n-dimentional vectors u, v
(represented by lists of length n) as inputs and computes the
inner product u>v.

gentranspose: a function that takes nonnegative integers m, n
and returns code that transposes matrices of size m× n.

Here, the types of code values have been extended with list types:
T ····= · · · | T List, and we have added code costructors for
lists: (NIL 7→ 0), (CONS 7→ 2), (CAR 7→ 1), (CDR 7→ 1) ∈ P .
The benchmark programs are available at http://www-kb.is.s.
u-tokyo.ac.jp/~suwa/benchmark1.zip.

For all the programs, the tool terminated quickly and output
expected answers.

5. Verification of Two-Stage Programs
Since it may be cumbersome to write code generators in the gen-
sym language in Section 2, we introduce in this section a two-stage
programming language called Relaxed λ© and formalize a transla-
tion to (a variant of) the gensym language. Our two-stage program-
ming language lies somewhere between the untyped multi-stage
language λU [29] and the typed multi-stage language λ© [9]. It
has only quasiquotation and unquote as constructs for staging (like
λ©). Typing is more relaxed, however, than λ© proper in that it
is applied only for stage 0; the types of terms at the next stage
are collapsed to a single type code. The translation is essentially
the one presented in Calcagno et al. [4]1, who study compilation
from λU [29] to a single-stage language with a special datatype
for ASTs, gensym, and reflection. We show that the translation
preserves typing, which is not studied in [4] (because the source
language is untyped). This property is important for our verifica-
tion methods to be applicable to Relaxed λ©. We do not discuss in
detail another important property that the translation preserves se-
mantics but it should straightforwardly be adapted from the results
in [4].

The sets of terms and types, ranged over by M and τ respec-
tively, are defined by:

M ····= c(M, . . . , M) | x | M M | λx. M | fix x. λx. M

| if M then M else M | M | ˜M ,

τ ····= int | float | bool | code | τ → τ.

Here, c and x range over the sets of constants (such as integers,
booleans, and primitive operations on them) and variables, re-
spectively. The expression c(M1, . . . , Mm) applies the m-ary
constant c to arguments M1, . . . ,Mm. We often write c for c().
When c = ⊕ is binary, we sometimes use the infix notation and
write M1 ⊕ M2 for ⊕(M1, M2). The term M corresponds to
quasiquote in Lisp and represents (quoted) code of M ; the term
˜M—which should appear inside quasiquotation—escapes from
the quote, evaluates M , and embeds the value of M , which is ex-
pected to be a code value, into the surrounding quotation. We omit
the operational semantics, which we assume to be call-by-value, as
it is basically the same as that of λU [4, 29].

Example 20. The program in Example 1 can be written in Relaxed
λ© as follows:

letrec power n x =
if n = 0 then 1 else x̃ ∗ (̃power (n− 1) x) in

λn. λx. (̃power n x )

where letrec x0 x1 · · · x` = M1 in M2 is a shorthand for
(λx0. M2) (fix x0. λx1. · · ·λx`. M1). �

We present a type system for Relaxed λ©. As we mentioned,
we will restrict the set of stages to {0, 1}. The type judgments
Γ `0 M : τ for stage 0 and Γ `1 M : © for stage 1 are defined
as follows:

(C(c) = τ1→ · · · → τm→ τ) Γ `0 Mi : τi for each i ∈ [m]
Γ `0 c(M1, . . . , Mm) : τ

(Γ (x) = τ)
Γ `0 x : τ

Γ `0 M1 : τ1→ τ2 Γ `0 M2 : τ1
Γ `0 M1 M2 : τ2

1 in fact, a degenerated case of theirs
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Γ [x 7→ τ1] `0 M : τ2
Γ `0 λx. M : τ1→ τ2

Γ [x 7→ τ ] `0 M : τ
Γ `0 fix x. M : τ

Γ `0 M0 : bool Γ `0 M1 : τ Γ `0 M2 : τ
Γ `0 if M0 then M1 else M2 : τ

Γ `1 M :©
Γ `0 M : code

Γ `0 M : code
Γ `1 ˜M :©

(C(c) = τ1→ · · · → τm→ τ) Γ `1 Mi :© for each i ∈ [m]
Γ `1 c(M1, . . . , Mm) :©

(Γ (x) =©)
Γ `1 x :©

Γ `1 M1 :© Γ `1 M2 :©
Γ `1 M1 M2 :©

Γ [x 7→ ©] `1 M :©
Γ `1 λx. M :©

Γ [x 7→ ©] `1 M :©
Γ `1 fix x. M :©

Γ `1 M0 :© Γ `1 M1 :© Γ `1 M2 :©
Γ `1 if M0 then M1 else M2 :©

Here, C maps each constant to its type. In Relaxed λ©, terms are
simply-typed at stage 0, while only the occurrence of variables is
controlled by types at stage 1.

The target language of the translation is actually an intermediate
language, which was already used in Examples 1 and 10, between
Relaxed λ© and the gensym language. We first set PC to be the
map defined by:

PC ··= {’c 7→ m | C(c) ≡ τ1→ · · · → τm→ τ}
∪ {APP 7→ 2, ABS 7→ 2, FIX 7→ 2, IFTE 7→ 3}.

For example, if C(+) ≡ int→ int→ int, then PC(’+) = 2.
The set of terms, ranged over by N , is defined by:

N ····= c | x | N N | λx. N | fix x. N
| if N then N else N | P | gensym ()

where c and P range over the set of constants and dom(PC),
respectively. The type judgment Γ m̀ N : τ for the intermediate
language is defined by the following typing rules:

(C(c) = τ)
Γ m̀ c : τ

(Γ (x) = τ)
Γ m̀ x : τ

Γ m̀ N1 : τ1→ τ2 Γ m̀ N2 : τ1
Γ m̀ N1 N2 : τ2

Γ [x 7→ τ1] m̀ N : τ2
Γ m̀ λx. N : τ1→ τ2

Γ [x 7→ τ ] m̀ N : τ
Γ m̀ fix x. N : τ

Γ m̀ N0 : bool Γ m̀ N1 : τ Γ m̀ N2 : τ
Γ m̀ if N0 then N1 else N2 : τ

Γ m̀ P : code→ · · · → code→︸ ︷︷ ︸
PC(P )

code

Γ m̀ gensym () : code

Note that type environments for Relaxed λ© possibly map a vari-
able to the symbol©, while those for the intermediate language do
not. The translation b–ciΨ of Relaxed λ© to the intermediate lan-
guage with a map Ψ from variables to the set {0, 1} of stages is
defined by:

bc(M1, . . . , Mm)c0Ψ :≡ c bM1c0Ψ · · · bMmc0Ψ ,
bxc0Ψ :≡ x if Ψ(x) = 0,

bM1 M2c0Ψ :≡ bM1c0Ψ bM2c0Ψ ,
bλx. Mc0Ψ :≡ λx. bMc0Ψ [x 7→0],

bfix x. Mc0Ψ :≡ fix x. bMc0Ψ [x 7→0],

bif M0 then M1 else M2c0Ψ :≡
if bM0c0Ψ then bM1c0Ψ else bM2c0Ψ ,

bM c0Ψ :≡ bMc1Ψ ,
bc(M1, . . . , Mm)c1Ψ :≡ ’c bM1c1Ψ · · · bMmc1Ψ ,

bxc1Ψ :≡ x if Ψ(x) = 1,

bM1 M2c1Ψ :≡ APP bM1c1Ψ bM2c1Ψ ,
bλx. Mc1Ψ :≡
let x = gensym () in ABS x bMc1Ψ [x 7→1],

bfix x. Mc1Ψ :≡
let x = gensym () in FIX x bMc1Ψ [x 7→1],

bif M0 then M1 else M2c1Ψ :≡ IFTE bM0c1Ψ bM1c1Ψ bM2c1Ψ ,
b̃Mc1Ψ :≡ bMc0Ψ .

Here, we write let x = M1 inM2 as a shorthand for (λx.M2)M1.

Example 21. The program in Example 20 is translated as follows:

bfix power . λn. λx. if n = 0 then 1 else . . .c0∅
≡ fix power . λn. λx. if n = 0 then b 1 c0Ψ1 else

b (̃ x) ∗ (̃power (n− 1) x) c0Ψ1

≡ fix power . λn. λx. if n = 0 then ’1 else
TIMES b̃ xc1Ψ1 b̃ (power (n− 1) x)c1Ψ1

≡ fix power . λn. λx. if n = 0 then ’1 else
TIMES x (power (n− 1) x)

where Ψ1 ··= {power 7→ 0, n 7→ 0, x 7→ 0}, and:

bλn. λx. (̃power n x ) c0{power 7→0}

≡ λn. let x = gensym () in
b̃ (power n x )c1{power 7→0,n7→0,x 7→1}

≡ λn. let x = gensym () in power n x .
The following theorem asserts the validity of the translation:

Theorem 22. Let Γ be a type environment, M be a term and τ be
a type of Relaxed λ©. Then the following hold:

(1) If Γ `0 M : τ , then bΓ c m̀ bMc0ΨΓ : τ .

(2) If Γ `1 M :©, then bΓ c m̀ bMc1ΨΓ : code.

where, for a type environment Γ , the map ΨΓ : dom(Γ )→ {0, 1}
and the type environment bΓ c are defined by:

ΨΓ (x) ··=
{

1 (if Γ (x) ≡ ©)
0 (otherwise) ,

bΓ c(x) ··=
{

code (if Γ (x) ≡ ©)
Γ (x) (otherwise) .

Thanks to the theorem above, we can apply the verification meth-
ods proposed in Section 3 to programs written in Relaxed λ©; note
that well-typed programs of the intermediate language can be trans-
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lated to those of the gensym language of Section 2. The proof of
Theorem 22 is given in Appendix.

6. Discussions
We discuss limitations of our approach in Section 6.1 and related
work in Section 6.2.

6.1 Limitations
There are some fundamental limitations of our approach that come
from the use of higher-order model checking. The first limitation
is that the gensym language must be simply-typed; this is due to
the limitation of higher-order model checking that models (called
higher-order recursion schemes) must be simply typed in order for
the model checking problem to be decidable. There are a few ways
to relax the restriction, however. First, the let-polymorphism (with-
out polymorphic recursion) can be allowed in the gensym language,
because programs can be converted to simply-typed programs by
inlining all the let-definitions. Second, a certain class of recur-
sive data structures (like lists) can be encoded as functions [26].
Third, if we give up the decidability, we can replace higher-order
model checking with µHORS model checking [16], an extension
of higher-order model checking with recursive types.

Another limitation of our approach is that we cannot support
the so-called Run primitive, the primitive for running target code
at the current stage. With the run primitive, for example, we could
express the following computation:

(run (let x = gensym () in ABS x (genpower 2 x))) 3
→∗ (run (ABS X (TIMES X (TIMES X ’1)))) 3
→ (λx. x ∗ (x ∗ 1)) 3→∗ 9

where genpower is the function defined in Section 1. The lack
of the run-primitive comes from the limitation of higher-order
model checking that trees cannot be deconstructed in higher-order
recursion schemes. One way to remedy the problem would be to use
EHMTT verification methods [34], instead of higher-order model
checking.

6.2 Related Work
6.2.1 Multi-stage programming

Since the seminal work by Davies and Pfenning [10], a lot of
type systems for safe dynamic code generation have been stud-
ied [3, 5, 8, 13, 20, 30–33, 36]. Although they differ in the choices
of language primitives for code generation (and, in some cases, ex-
ecution), most of them aim at checking validity of generated code
when the code generator is typechecked2. As the line of those stud-
ies shows, it is not very easy to design a type system that is both
flexible and safe. Also, the property we would like to check is hard-
coded into the type system. With our approach, code values are
given a single type, which gives much flexibility, and properties
to check are not hard-coded. We can also make good use of stan-
dard techniques for model checking such as predicate abstraction.
One drawback of our approach would be the lack of modularity:
the whole code generator has to be available to check its property,
whereas type systems usually allow for separate checking (if the
types of free variables are given).

Static analysis for multi-stage languages has been studied by
Choi et al. [6]. They give a translation from a multi-stage language
to an ordinary, single-stage language, where their semantics corre-
spondence enables static analysis on a multi-stage program by an-
alyzing the translated program by standard abstract interpretation.

2 One notable exception is Shields et al.[28], in which typechecking of
generated code is deferred until the execution of the generated code starts.

In their translation, a code value is represented by a function from
the values of its free variables to the execution result of the code.
So, syntactic information is lost. In fact, they assume a certain type
system similar to [13], which can check well-typedness of gener-
ated code and translation is type-based. In some sense, their focus
is more on semantic properties of generated code. Rather, our tech-
nique is closer to string analysis such as [19] in the sense that data
structures to be generated by a program are checked against a gram-
mar. Our technique is more powerful than grammar-based string
analysis because of the use of more powerful grammars, namely
higher-order recursion schemes; indeed, we can extend our tech-
nique to checking more semantic properties as well, by encoding a
more refined type system such as an intersection type system into a
tree automaton (recall Remark 19 at the end of Section 3).

Other frameworks for verification of multi-stage languages
have been also studied. Berger and Tratt [1] have developed a
Hoare logic for a variant of MiniML�

e [10]; Concoqtion [11] and
Ωmega [27] have introduced very expressive type systems with
indexed types into multi-stage languages. Although they can also
verify complex semantic properties of code generators, they require
a lot of human assistance to verify.

Our translation from the staged language to the gensym lan-
guage is very similar to the compilation scheme for multi-stage lan-
guages [4], where code values are represented by a special datatype
for ASTs. Our setting is much simpler because we do not deal with
eval and cross-stage persistence.

6.2.2 Higher-order model checking
Model checking of HORS and its application to program verifica-
tion has been studied extensively [14, 15, 17, 18, 21, 22]. Verifica-
tion of higher-order tree transducers studied by Kobayashi, Unno,
and Tabuchi [18] is closely related to the present work in that it is
a technique to verify the shape of trees output by a certain class of
functional programs. One notable difference is that our work deals
with binding structure in output trees. Kobayashi [14] showed re-
duction of the resource usage problem [12] to higher-order model
checking. The way how multiple variable are treated in this work
has been inspired by his method (which itself was inspired by [7])
to track the usages of mulitiple resources. As already mentioned
above, we can use techniques for higher-order model checking to
refine our analysis.

7. Conclusion
We have proposed an automated method for verifying code gener-
ators written in a gensym language, based on higher-order model
checking. Our method can check that all the generated code values
are closed and well-typed, while maintaining the flexibility of pro-
gramming in the gensym language. We have implemented a proto-
type verification tool based on the proposed method. We have also
designed a two-stage programming language and a translation to
the gensym language, so that our verification method can also be
applied to two-stage programs.
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Appendix
Proof of Theorem 2
Lemma 23. Let Γ be a type environment, ê be a term, and C be an
evaluation context. Then we have Γ ` C[ê] : code if and only if
Γ ` ê : code.

Proof. By straightforward induction on the structure of C. �

Lemma 24. Let Γ be a type environment, êA be an applicative
term, eB be a run-time term, and τA, τB be types. If Γ ` êA : τA
and Γ [x 7→ τA] ` eB : τB, then Γ ` [êA/x]eB : τB

Proof. By straightforward induction on the derivation of Γ [x 7→
τA] ` eB : τB. Intuitively we can deduce Γ ` [êA/x]eB : τB
by replacing every leaf of the form Γ [x 7→ τA] ` x : τA in the
derivation tree of Γ [x 7→ τA] ` eB : τB with the derivation tree
of Γ ` êA : τA. �

Lemma 25. If Γ ` v : code, then ∅ ` v : code.

Proof. By induction on Γ ` v : code. �

Proof of Theorem 2. It is proved in two steps (namely, by showing
Preservation and Progress [23, 35]). We first show that, if Γ `
ê : τ and ê ↪→D ê′, then Γ ` ê : τ . Second, we show that if
Γ ` ê : τ , then either (i) ê is a value and ∅ ` ê : code; or (ii)
there exists a run-time term ê′ such that ê ↪→D ê′.

The first property is proved by induction on the definition of
↪→D , it suffices for us to consider the following two cases:

• The case (F x1 · · · x` = e) ∈ D, êA ≡ C[F ê1 · · · ê`]
and êB ≡ C[[ê`/x`] · · · [ê1/x1]e]: since (D, S) is simply-
typed by the definition of the gensym language, there exist types
τ1, . . . , τ` such that Γ [x1 7→ τ1] · · · [x` 7→ τ`] ` e : code and
Γ (F ) = τ1→ · · · → τ`→ code. By Lemma 23 we have Γ `
F ê1 · · · ê` : code, and considering the derivation of it we have
Γ ` êi : τi for each i ∈ [`]. Thus, by repeated application of
Lemma 24, we have Γ ` [ê`/x`] · · · [ê1/x1]e : code. Again
by Lemma 23 we have Γ ` C[[ê`/x`] · · · [ê1/x1]e] : code.

• The case êA ≡ C[gensym/cont ê] and êB ≡ C[ê α]:
by Lemma 23 we have Γ ` gensym/cont ê : code, and
considering the derivation for it Γ ` ê : code→ code holds.
Therefore, we can derive Γ ` ê α : code, and by Lemma 23
we have Γ ` C[ê α] : code.

The second property is shown by induction on Γ ` ê : code,
using Lemma 25. �

Proof of Theorem 22
Proof. We show (1) and (2) at the same time by induction on the
structure of M .

• The case where M ≡ x is trivial.

• The case M ≡ c(M1, . . . , Mm): assume Γ `0 M : τ . By
the derivation rules we have C(c) = τ1 → · · · → τm → τ
and Γ `0 Mi : τi for each i ∈ [m]. Then by IH we have
bΓ c m̀ bMic0ΨΓ : τ for each i ∈ [m], and by bΓ c m̀ c : C(c)
we can derive bΓ c m̀ c bM1c0ΨΓ · · · bMmc0ΨΓ : τ . On the
other hand, assume Γ `1 M : ©, then by the derivation rules
we have Γ `1 Mi : © for each i ∈ [m], and by IH we have
bΓ c m̀ bMic1ΨΓ : code for each i ∈ [m]. By the assumption
m = PC(’c) and bΓ c m̀ ’c : code→ · · · → code→︸ ︷︷ ︸

m

code,

we can derive bΓ c m̀ ’c bM1c1ΨΓ · · · bMmc1ΨΓ : code.

• The caseM ≡M1 M2: assume Γ `0 M1 M2 : τ holds. By the
derivation rules we have Γ `0 M1 : τ1→ τ and Γ `0 M2 : τ1
for some τ1. Then by IH we can derive:

bΓ c m̀ bM1c0ΨΓ : τ1→ τ bΓ c m̀ bM2c0ΨΓ : τ1
bΓ c m̀ bMc0ΨΓ : τ .

On the other hand, assume Γ `1 M1 M2 :©. By the derivation
rules we have Γ `1 M1 :© and Γ `1 M2 :©, and by IH we
can derive:

bΓ c m̀ APP :
code→ code→ code

bΓ c m̀

bM1c1ΨΓ : code
bΓ c m̀ APP bM1c1ΨΓ : code→ code

bΓ c m̀

bM2c1ΨΓ : code

bΓ c m̀ APP bM1c1ΨΓ bM2c1ΨΓ : code

i.e. we have bΓ c m̀ bMc1ΨΓ : code.

• The case M ≡ λx. M ′: assume Γ `0 λx. M ′ : τ holds.
By the derivation rules, τ is of the form τ1 → τ2 and satisfies
Γ [x 7→ τ1] `0 M ′ : τ2. Since bΓ [x 7→ τ1]c = bΓ c[x 7→ τ1]
and ΨΓ [x 7→τ1] = ΨΓ [x 7→ 0], by IH we can derive:

bΓ c[x 7→ τ1] m̀ bM ′c0ΨΓ [x 7→0] : τ2
bΓ c m̀ λx. bM ′c0ΨΓ : τ1→ τ2

i.e. we have bΓ c m̀ bMc0ΨΓ : τ . On the other hand, if we have
Γ `1 λx. M ′ :©, by the derivation rules Γ [x 7→ ©] `1 M ′ :
© holds. Since we have bΓ [x 7→ ©]c = bΓ c[x 7→ code] and
ΨΓ [x 7→©] = ΨΓ [x 7→ 1], by IH bΓ c m̀ bMc1ΨΓ : code can be
derived; its derivation is shown in Figure 7.

• The case M ≡ fix x. M ′: if we have Γ `0 fix x. M ′ : τ , then
by the derivation rules Γ [x 7→ τ ] `0 M ′ : τ holds. Similarly
to the previous case, by IH we can derive:

bΓ c[x 7→ τ ] m̀ bM ′c0ΨΓ [x 7→0] : τ
bΓ c m̀ fix x. bM ′c0ΨΓ : τ .

The subcase for Γ `1 fix x. M ′ : τ is also similar to the
previous case.

• The case where M ≡ if M0 then M1 else M2 is easy.

• The case M ≡ M ′ : assume Γ `0 M ′ : τ . Then τ ≡ code
and Γ `1 M ′ : © hold by the derivation rules, and by IH we
have bΓ c m̀ bM ′c1ΨΓ : code. Since bM ′c1ΨΓ ≡ bM

′ c0ΨΓ ≡
bMc0ΨΓ , we have bΓ c m̀ bMc0ΨΓ : code.

• The case M ≡ ˜M ′: assume Γ `1 ˜M ′ : ©. Then Γ `0 M ′ :
code holds by the derivation rules, and by IH we have bΓ c m̀
bM ′c0ΨΓ : code. Since bM ′c0ΨΓ ≡ b̃M

′c1ΨΓ ≡ bMc
1
ΨΓ

, we
have bΓ c m̀ bMc1ΨΓ : code.

�

The definition of the automaton Acls

The automaton Acls = (Σcls, Qcls,∆cls, q
INI
cls ) for the well-

formedness and closedness check is defined as follows.

Qcls ··= {q0, q1, qvar, qig},

qINI
cls ··= q0,

∆cls ··= { q1 var→ ε,
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bΓ c[x 7→ code] m̀

ABS : code→ code→ code
bΓ c[x 7→ code] m̀

x : code
bΓ c[x 7→ code] m̀ ABS x : code→ code

bΓ c[x 7→ code] m̀

bM ′c1ΨΓ [x 7→1] : code

bΓ c[x 7→ code] m̀ ABS x bM ′c1ΨΓ [x 7→1] : code

bΓ c m̀ λx. ABS x bM ′c1ΨΓ : code→ code bΓ c m̀ gensym () : code

bΓ c m̀ (λx. ABS x bM ′c1ΨΓ ) gensym () : code

Figure 1. The derivation for bΓ c m̀ bλx. M ′c1ΨΓ : code in the proof of Theorem 22

q0 ig→ ε, q1 ig→ ε,

q0 ABS→ qvar q1, q1 ABS→ qvar q1,

q0 ABS→ qig q0, q1 ABS→ qig q1,

q0 FIX→ qvar q1, q1 FIX→ qvar q1,

q0 FIX→ qig q0, q1 FIX→ qig q1}
∪ {qig ig→ ε, qvar var→ ε}

∪ {q0 P → q0 · · · q0︸ ︷︷ ︸
P(P )

| P ∈ (domP) \ {ABS, FIX}}

∪ {q1 P → q1 · · · q1︸ ︷︷ ︸
P(P )

| P ∈ (domP) \ {ABS, FIX}}.

The state q1 means that var is currently not bound and q0 means it
is bound. The states qvar and qig only accept var and ig, respec-
tively.

The definition of the automaton ATwt

The automaton ATwt = (ΣTwt, Q
T
wt,∆

T
wt, q

INI
wt ) for the well-

typedness check is defined as follows.

QTwt ··= {qT | T ∈ T } ∪ {qany, qsome},
qINI
wt ··= qsome,

∆Twt ··= {qT varT → ε | T ∈ T }
∪ {qT oneof→ ARRAY(i, qT ) | i ∈ [#T ] ∧ T ∈ T }
∪ {qT1→T2 ABS→ qT1 qT2 | (T1→ T2) ∈ T }
∪ {qT FIX→ qT qT | T ∈ T }

∪{qT P → qT1 · · · qTP(P ) |
(P, T1→ · · · → TP(P )→ T ) ∈ Ptype

{T1, . . . , TP(P ), T} ⊆ T }
∪ {qany varT → ε | T ∈ T }
∪ {qany oneof→ qany · · · qany︸ ︷︷ ︸

#T

}

∪ {qany P → qany · · · qany︸ ︷︷ ︸
P(P )

| P ∈ domP}

∪ {qsome varT → ε | T ∈ T }
∪ {qsome oneof→ ARRAY(i, qsome) | i ∈ [#T ]}
∪ {qsome ABS→ qT1 qT2 | (T1→ T2) ∈ T }

∪ {qsome FIX→ qT qT | T ∈ T }

∪{qsome P → qT1 · · · qTP(P ) |
T1→ · · · → TP(P )→ T ∈ Ptype(P )
{T1, . . . , TP(P ), T} ⊆ T }

Here ARRAY(i, q) is a sequence of length #T consisting of
qany except for q at the i-th position. The sate qany accepts all trees
and qsome accepts a tree if it is accepted by qT for some T ∈ T .
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