
POPL 2016 Tutorial:
Higher-Order Model Checking

Naoki Kobayashi
University of Tokyo

Luke Ong
University of Oxford

Outline
 Part 1: Introduction [by Ong, 15 minutes]

 Part 2: Applications to program verification
 [by Kobayashi, 25 minutes]

 Part 3: Type systems and algorithms for
higher-order model checking [by Kobayashi, 25 minutes]

 Part 4: Advanced topics [by Ong, 25 minutes]

Tool demonstration:
MoCHi

(a software model checker
for a subset of OCaml)

Higher-Order Model Checking

 e.g.
 - Does every finite path end with “c”?
 - Does “a” occur below “b”?

Given
 G: HORS
 A: alternating parity tree automaton (APT)
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS),
but practical algorithms exist

 p(x)
 2
 ..
 2
2

From Program Verification
to HO Model Checking

[K. POPL 2009]

Program
Transformation

Higher-order
program
 +
specification
(on events or
output)

HORS
(describing all
event sequences

or outputs)
+

Tree automaton,
 recognizing

valid event sequences
or outputs

Model
Checking

From Program Verification to Model Checking:
Example

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r





 Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

continuation parameter,
expressing how “foo” is

accessed after the call returns

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

S

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

F d 

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

F d 

+
c



r

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

+
c



r

+

F d 

c



r

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r





 Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

Example 2: handling exceptions
let read’(x) =
 read(x);
 if * then ()
 else raise Eof
let f(x) =
 read’(x); f(x)
in
let y = open “foo”
in try f(y) with
 Eof -> close y

+
c

+
c

...

r

r

r



Is the file “foo”

accessed according
to read* close?

Is each path of the tree
labeled by r*c?

Read’ x h k → r (+ k h)
F x h k
→ Read’ x h (F x h k)
S → F d (c ) 

exception
handler

continuation for
normal termination

eof

+

+

eof
...

r

r




c

c

Example 3: handling Booleans
F x k →
 Eof x (λb.If b (c k) (r (F x k))).
S → F d .
Eof x k →
 + (eof (k True)) (k False).
If b x y → b x y.
True x y → x.
False x y → y.

Is the file closed
only after eof has

been reached? Does c occur only below eof?

let f x =
 if eof(x)
 then
 close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Return whether
end of file has
been reached

eof has been
reached

Church encoding
of Booleans

From Program Verification
to HO Model Checking

Program
Transformation

Higher-order
program
 +
specification

HORS
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

Sound, complete, and automatic for:
 - A large class of higher-order programs:
 simply-typed λ-calculus + recursion
 + finite base types (e.g. booleans) + exceptions + ...
 - A large class of verification problems:
 resource usage verification (or typestate checking),
 reachability, flow analysis, strictness analysis, ...

From Program Verification
to HO Model Checking

Program
Transformation

Higher-order
program
 +
specification

HORS
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

For finite-data HO programs,
automated verification comes for free
from HO model checking!

Outline
 Introduction [by Ong, 15 minutes]

Applications to program verification
 [by Kobayashi, 25 minutes]

– Verification of finite-data programs
– Verification of infinite-data programs

 Type systems and algorithms for higher-order
model checking [by Kobayashi, 25 minutes]

Advanced topics [by Ong, 25 minutes]

Verification of Higher-order Programs
with Infinite Data Domains
(integers, lists, trees, ...)

 For safety properties (e.g. reachability),
overapproximation by abstraction of infinite data
suffices.

 For other properties (e.g. termination),
combinations of problem reduction and abstraction
are required.

Verification of Higher-order Programs
with Infinite Data Domains
(integers, lists, trees, ...)

 For safety properties (e.g. reachability),
overapproximation by abstraction of infinite data
suffice.

 For other properties (e.g. termination),
combinations of problem reduction and abstraction
are required.
=> see our papers in ESOP 2014, CAV 2015 and POPL 2016

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

[K.&Sato&Unno, PLDI2011]

Predicate
abstraction

Higher-order
functional program

Higher-order
boolean program

f(g,x)=g(x+1)

λx.x>0

f(g, b)=
 if b then g(true)
 else g(∗)

Higher-order
model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

[K.&Sato&Unno, PLDI2011]

Predicate
abstraction

Higher-order
functional program

Higher-order
boolean program

f(g,x)=g(x+1)

λx.x>0

f(g, b)=
 if b then g(true)
 else g(∗)

Higher-order
model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates

Abstraction Types
Used to specify which predicates should be

used for abstraction of each expression
· int[P1,...,Pn]
 Integers that should be abstracted by P1,...,Pn
 e.g.

· x:int[P1,...,Pn]→ int[Q1,...,Qm]
Assuming that argument x is abstracted by P1,...,Pn,
abstract the return value by Q1,...,Qm

 e.g. λx.x+x: (x:int[λx.x>0]→ int[λy.y>x])

3: int[λx.x>0, even?] ⇒ (true, false)

⇒ λb.

x>0?
x+x>x?

?

Abstraction Types
Used to specify which predicates should be

used for abstraction of each expression
· int[P1,...,Pn]
 Integers that should be abstracted by P1,...,Pn
 e.g.

· x:int[P1,...,Pn]→ int[Q1,...,Qm]
Assuming that argument x is abstracted by P1,...,Pn,
abstract the return value by Q1,...,Qm

 e.g. λx.x+x: (x:int[λx.x>0]→ int[λy.y>x])

3: int[λx.x>0, even?] ⇒ (true, false)

⇒ λb.

x>0?
x+x>x?

b

Abstraction Types
Used to specify which predicates should be

used for abstraction of each expression
· int[P1,...,Pn]
 Integers that should be abstracted by P1,...,Pn
 e.g.

· x:int[P1,...,Pn]→ int[Q1,...,Qm]
Assuming that argument x is abstracted by P1,...,Pn,
abstract the return value by Q1,...,Qm

 e.g. λx.x+x: (x:int[λx.x>0]→ int[λy.y>x])
 λx.x+x: (x:int[λx.x>1, even?]→ int[λy.y>0])

3: int[λx.x>0, even?] ⇒ (true, false)

⇒ λb.b

⇒ λ(b1,b2).if b1 then true else ∗

Example (predicate abstraction)

Abstraction type of mc91:
 x:int[λx.x>101]→ int[λr.r=91, λr.r=x-10]

let mc91 x = if x > 100 then x - 10
 else mc91 (mc91 (x + 11))
let main n = if n <= 101 then assert (mc91 n = 91)

let mc91 bx>101 =
 if (if bx>101 then true else ∗) then (not(bx>101), true)
 else let (br1=91,br1=x-10) = mc91 ∗ in
 let (br=91,br=r1-10)=
 mc91 (if br1=91 || br1=x-10 then false else ∗)
 in (br=91, ∗)
let main () = if ∗ then
 assert(let (br=91,br=x-10) = mc91 false in br=91)

Example (predicate abstraction)

Abstraction type of mc91:
 x:int[λx.x>101]→ int[λr.r=91, λr.r=x-10]

let mc91 x = if x > 100 then x - 10
 else mc91 (mc91 (x + 11))
let main n = if n <= 101 then assert (mc91 n = 91)

let mc91 bx>101 =
 if (if bx>101 then true else ∗) then (not(bx>101), true)
 else let (br1=91,br1=x-10) = mc91 ∗ in
 let (br=91,br=r1-10)=
 mc91 (if br1=91 || br1=x-10 then false else ∗)
 in (br=91, ∗)
let main () = if ∗ then
 assert(let (br=91,br=x-10) = mc91 false in br=91)

Example (predicate abstraction)

Abstraction type of mc91:
 x:int[λx.x>101]→ int[λr.r=91, λr.r=x-10]

let mc91 x = if x > 100 then x - 10
 else mc91 (mc91 (x + 11))
let main n = if n <= 101 then assert (mc91 n = 91)

let mc91 bx>101 =
 if (if bx>101 then true else ∗) then (not(bx>101), true)
 else let (br1=91,br1=x-10) = mc91 ∗ in
 let (br=91,br=r1-10)=
 mc91 (if br1=91 || br1=x-10 then false else ∗)
 in (br=91, ∗)
let main () = if ∗ then
 assert(let (br=91,br=x-10) = mc91 false in br=91)

Example (predicate abstraction)

Abstraction type of mc91:
 x:int[λx.x>101]→ int[λr.r=91, λr.r=x-10]

let mc91 x = if x > 100 then x - 10
 else mc91 (mc91 (x + 11))
let main n = if n <= 101 then assert (mc91 n = 91)

let mc91 bx>101 =
 if (if bx>101 then true else ∗) then (not(bx>101), true)
 else let (br1=91,br1=x-10) = mc91 ∗ in
 let (br=91,br=r1-10)=
 mc91 (if br1=91 || br1=x-10 then false else ∗)
 in (br=91, ∗)
let main () = if ∗ then
 assert(let (br=91,br=x-10) = mc91 false in br=91)

Example (predicate abstraction)

Abstraction type of mc91:
 x:int[λx.x>101]→ int[λr.r=91, λr.r=x-10]

let mc91 x = if x > 100 then x - 10
 else mc91 (mc91 (x + 11))
let main n = if n <= 101 then assert (mc91 n = 91)

let mc91 bx>101 =
 if (if bx>101 then true else ∗) then (not(bx>101), true)
 else let (br1=91,br1=x-10) = mc91 ∗ in
 let (br=91,br=r1-10)=
 mc91 (if br1=91 || br1=x-10 then false else ∗)
 in (br=91, ∗)
let main () = if ∗ then
 assert(let (br=91,br=x-10) = mc91 false in br=91)

Example (predicate abstraction)

Abstraction type of mc91:
 x:int[λx.x>101]→ int[λr.r=91, λr.r=x-10]

let mc91 x = if x > 100 then x - 10
 else mc91 (mc91 (x + 11))
let main n = if n <= 101 then assert (mc91 n = 91)

let mc91 bx>101 =
 if (if bx>101 then true else ∗) then (not(bx>101), true)
 else let (br1=91,br1=x-10) = mc91 ∗ in
 let (br=91,br=r1-10)=
 mc91 (if br1=91 || br1=x-10 then false else ∗)
 in (br=91, ∗)
let main () = if ∗ then
 assert(let (br=91,br=x-10) = mc91 false in br=91)

Dealing with algebraic data types
(e.g. lists)

Abstraction approach:
– automata-based [K+ POPL10][Unno+ APLAS 10]...

– pattern-based [Ong&Ramsay POPL11]

 Encoding approach [Sato+ PEPM13] :
– algebraic data as functions
 length function from indices to elements

[τ list] = int × (int → [τ])
 nil = (0, λx. fail)
 cons = λx.λ(len,f).
 (len+1, λi.if i=0 then x else f(i-1))

 hd (len,f) = f(0)
 ...

Summary of Part 2
 For finite-data HO programs:

 sound, complete, and fully automatic verification is
 achieved by reduction to HO model checking

 For infinite-data HO programs:
 sound and automatic (but incomplete) verification is
 achieved by a combination of:
– HO model checking
– abstraction, and
– program transformation
Verification methods are necessarily incomplete,
but often more precise than other approaches;
sometimes relatively complete modulo certain assumptions
[Unno, Terauchi &K, POPL 2013]

Comparison with Traditional Approach

Higher-order
(functional)
programs

Finite state
systems

Safe
or
(maybe)
unsafe

Abstraction
of data and

control

Higher-order
(functional)
programs

HORS
(infinite state

systems)

Abstraction
of data

model
checking

HO model
checking

Traditional Approach

HO Model Checking

Safe
or
(maybe)
unsafe

References on Part 2
- Naoki Kobayashi, Model checking higher-order programs,

 J. ACM, 60(3), 2013
 [reductions of various problems to HO model checking]

- Yoshihiro Tobita, Takeshi Tsukada, Naoki Kobayashi,
Exact Flow Analysis by Higher-Order Model Checking, FLOPS 2012
[reduction from flow analysis to HO model checking]

- Luke Ong and Steven Ramsay, Verifying higher-order functional
programs with pattern-matching algebraic data types. POPL 2011:
587-598
[verification of functional programs with pattern matching]

- Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno, Predicate
abstraction and CEGAR for higher-order model checking, PLDI 2011
[predicate abstraction]

- Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi,
Towards a scalable software model checker for higher-order
programs, PEPM 2013
[exceptions and algebraic data types]

References on Part 2
- Takuya Kuwahara, Tachio Terauchi, Hiroshi Unno, and Naoki

Kobayashi, Automatic Termination Verification for Higher-Order
Functional Programs, ESOP 2014
[termination verification]

- Takuya Kuwahara, Ryosuke Sato, Hiroshi Unno and Naoki Kobayashi,
Predicate Abstraction and CEGAR for Disproving Termination of
Higher-Order Functional Programs. CAV 2015
[non-termination verification]

- Akihiro Murase, Tachio Terauchi, Naoki Kobayashi, Ryosuke Sato and
Hiroshi Unno, Temporal Verification of Higher-order Functional
Programs, POPL 2016
[liveness]

- Kazuhide Yasukata, Naoki Kobayashi, Kazutaka Matsuda,
Pairwise Reachability Analysis for Higher Order Concurrent Programs
by Higher-Order Model Checking. CONCUR 2014
[verification of concurrent programs]

Outline
 Part 1: Introduction [by Ong, 15 minutes]

 Part 2: Applications to program verification
 [by Kobayashi, 25 minutes]

 Part 3: Type systems and algorithms for
higher-order model checking [by Kobayashi, 25 minutes]

 Part 4: Advanced topics [by Ong, 25 minutes]

Practical algorithms for
HO model checking?

Many program verification problems can be
reduced to HO model checking

Unfortunately, HO model checking is
k-EXPTIME complete for order-k HORS

 Fortunately, there are practical algorithms
that work well for typical inputs
– The state-of-the-art HO model checker HorSat2 can

handle 1,000 – 100,000 lines of input

Most of those algorithms are based on
type-based characterization of HO model
checking

Type-based approach to
HO model checking [K POPL09][KO LICS09]

Construct a type system TS(A) s.t.
 Tree(G) is accepted by tree automaton A
 if and only if

 G is typable in TS(A)

Model Checking as
Type Checking
(c.f. [Naik & Palsberg, ESOP2005])

HO Model Checking Problem

Given
 G: HORS
 A: alternating parity tree automaton (APT)
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

HO Model Checking Problem:
Restricted version

Given
 G: HORS
 A: trivial automaton [Aehlig CSL06]

 (Büchi tree automaton where
 all the states are accepting states)
does A accept Tree(G)?

k-EXPTIME-complete [KO, ICALP09]
(for order-k HORS)

Trivial tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0 q0
q0 q0

q1
q0 q0

q1

q1

q0
q1

q1

q1
“a” does not occur below “b”

q0 q0

A tree is accepted just if a run of the automaton does not get stuck
(no acceptance conditions, such as Buchi/Muller/parity)

Types for HORS
Automaton state as the type of trees

– q: trees accepted from state q

– q1∧q2: trees accepted from both q1 and q2

q

Is Tree(G) accepted by A?

Does Tree(G) have type q0?

Types for HORS
q1→ q2:
 functions that take a tree of type q1
 and return a tree of q2

q2

q1 + =
q1

q2

q1

Types for HORS
q1∧q2 → q3:
 functions that take a tree of type q1∧q2
 and return a tree of type q3

 + =

q1, q2
q3

q1 q2 q2

q3

q1 q2 q2

Types for HORS
(q1 → q2) → q3:
 functions that take a function of type q1 → q2
 and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2

 Γ, x:τ ┝ x :τ

Typing

 Γ┝ t1: τ1∧…∧τn → τ
 Γ┝ t2:τi (i=1,..n)
−−−−−−−−−−−−−−−−−−−−

 Γ┝ t1 t2:τ

 Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
 Γ┝ λx.t: τ1∧…∧τn → τ

 Γ┝ tk : τ (for every Fk:τ∈Γ)

−−−−−−−−−−−−−−−−−−−−−−−−−
 ┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

 Γ, x:τ ┝ x :τ

a

…

q

q1 qn

 Γ, x:τ ┝ x :τ

Typing

 Γ┝ t1: τ1∧…∧τn → τ
 Γ┝ t2:τi (i=1,..n)
−−−−−−−−−−−−−−−−−−−−

 Γ┝ t1 t2:τ

 Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
 Γ┝ λx.t: τ1∧…∧τn → τ

 Γ┝ tk : τ (for every Fk:τ∈Γ)

−−−−−−−−−−−−−−−−−−−−−−−−−
 ┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Soundness and Completeness
[K., POPL2009]

 G = {F1 →t1, ..., Fm →tm } (with S=F1)
A: Trivial automaton with initial state q0
TS(A): Intersection type system for A

Tree(G) is accepted by A
 if and only if
S has type q0 in TS(A),
i.e. ∃Γ.(S:q0∈ Γ ∧ |− {F1→t1,..., Fn → tn} : Γ)
 if and only if
∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈Γ. Γ|− tk : τ)

Soundness and Completeness
[K., POPL2009]

Tree(G) is accepted by A
 if and only if
S has type q0 in TS(A),
i.e. ∃Γ.(S:q0∈ Γ ∧ |− {F1→t1,..., Fn → tn} : Γ)
 if and only if
∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈Γ. Γ|− tk : τ)
 if and only if
∃Γ.(S: q0 ∈ Γ ∧ Γ = H(Γ))
for H(Γ) = { Fk:τ ∈ Γ | Γ |− tk:τ }

Function to filter out invalid type bindings

Type checking (=model checking) problem

Is there a fixedpoint of H greater than {S:q0}?
(where H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })

Γmax (the set of all type bindings)

{S:q0}

⊆
 {F:q0→q0,S:q0}

⊆

⊆

⊆

...

..
. ...

∅

⊆

x fixedpoint of H

Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H
 (H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x fixedpoint

H(Γmax) x

H2(Γmax) x

H3(Γmax) x
...

Example
HORS:

 S → F c F → λx.a x (F (b x))
 (S:o, F: o→o)

Automaton:
 δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1

δ(q0, c) = δ(q1, c) = ε

Γmax= {S:q0, S:q1, F: T→q0, F: q0 →q0, F: q1 →q0, F: q0 ∧q1 →q0,
 F: T→q1, F: q0 →q1, F: q1 →q1, F: q0 ∧q1 →q1}

H(Γmax) = { S:τ ∈ Γmax | Γmax |− F c:τ }
 ∪ { F:τ ∈ Γmax | Γmax |− λx.a x (F(b x)) :τ }
 = {S:q0, S:q1, F: q0 →q0, F: q0∧q1 →q0}
H2(Γmax) = {S:q0, F: q0∧q1 →q0}
H3(Γmax) = {S:q0, F: q0∧q1 →q0} = H2(Γmax)

Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H
 (H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x fixedpoint

H(Γmax) x

H2(Γmax) x

H3(Γmax) x
...

Drawbacks:
 - Huge cost for computing H
 - Huge number of iterations
(both as huge as |Γmax| =

 O(|G|×)

)

 (AQ)1+ε
 2
 ..
 2
2

k: order of G
A: largest arity
Q: automaton size

Outline
 Introduction [by Ong, 15 minutes]

Applications to program verification
 [by Kobayashi, 25 minutes]

 Type systems and algorithms for higher-order
model checking [by Kobayashi, 25 minutes]

– type-based characterization
– practical algorithms

• TRecS
• HorSat
• other algorithms

Advanced topics [by Ong, 25 minutes]

Practical Algorithm (TRecS [K. PPDP09])
1.Guess a type environment Γ0
2.Compute greatest fixedpoint Γ smaller than Γ0
3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

Γmax (the set of all possible type bindings)

{S:q0}

... ...

H(Γ0) x
H2(Γ0) x

...

Γ0 x

Practical Algorithm (TRecS [K. PPDP09])

Γmax (the set of all possible type bindings)

{S:q0}

...
...

H(Γ0) x
H2(Γ0) x

...

Γ0 x

1.Guess a type environment Γ0
2.Compute greatest fixedpoint Γ smaller than Γ0
3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

How to guess Γ0?
Reduce HORS
a finite number of
steps
Observe how each
function is used and
express it as types

Γmax

{S:q0}

... ...

H(Γ0) x
H2(Γ0) x

...

Γ0 x

Example
HORS:

 S → F c F → λx.a x (F (b x))
Automaton:

 δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))
c

S
q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Example
HORS:

 S → F c F → λx.a x (F (b x))
Automaton:

 δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))
c

S q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
 S: q0

Example
HORS:

 S → F c F → λx.a x (F (b x))
Automaton:

 δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))
c

S q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
 S: q0

F: ? → q0

Example
HORS:

 S → F c F → λx.a x (F (b x))
Automaton:

 δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))
c

S q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
 S: q0

F: q0 ∧ q1

 → q0

Example
HORS:

 S → F c F → λx.a x (F (b x))
Automaton:

 δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))
c

S q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
 S: q0

F: q0 ∧ q1

 → q0
F: q0 → q0

Example
HORS:

 S → F c F → λx.a x (F (b x))
Automaton:

 δ(q0, a) = q0 q0 δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))
c

S q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
 S: q0

F: q0 ∧ q1

 → q0
F: q0 → q0

F: T → q0

Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

1.Guess a type environment Γ0
2.Compute greatest fixedpoint Γ smaller than Γ0
3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

{S:q0}
...

H(Γ0) x
H2(Γ0) x

...

Γ0 x

Γ0 = {S: q0, F: q0 ∧ q1→ q0,
 F: q0 → q0 , F: T → q0}
 H(Γ0) = { Fk:τ ∈ Γ0 | Γ0 |− tk:τ }

 = {S: q0, F: q0 ∧ q1→ q0,
 F: q0 → q0 }
 H2(Γ0) = {S: q0, F: q0 ∧ q1→ q0}

H3(Γ0) = {S: q0, F: q0 ∧ q1→ q0}

TRecS [K. PPDP09]
http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

 The first model checker for HORS

Used as a backend of MoCHi [K+11,Sato+13]

Outline
 Introduction [by Ong, 15 minutes]

Applications to program verification
 [by Kobayashi, 25 minutes]

 Type systems and algorithms for higher-order
model checking [by Kobayashi, 25 minutes]

– type-based characterization
– practical algorithms

• TRecS
• HorSat
• other algorithms

Advanced topics [by Ong, 25 minutes]

HorSat algorithm [Broadbent&K, CSL13]

 Basis of the state-of-the-art HO model
checker HorSat2
(http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2)

 Based on the “dual” type system
– use the complement of property automaton A,

to characterize invalid trees
– least fixed-point computation instead of

greatest

Yet another characterization of
HO model checking

 G: HORS, A: trivial tree automaton
 Tree(G) ∈ Lang(A)
 iff S ∉ Pre*(Error) where:
 Pre*(t) = {s | s →G* t }
 Error = {t | t⊥ ∈ Lang(A)}

Tree obtained by replacing non-tree
parts with ⊥

b A(T b)

 a

c

⊥
= b ⊥

 a

c

Yet another characterization of
HO model checking

 G: HORS, A: trivial tree automaton
 Tree(G) ∈ Lang(A)
 iff S ∉ Pre*(Error) where:
 Pre*(t) = {s | s →G* t }
 Error = {t | t⊥ ∈ Lang(A)}

 Pre*(Error) may be infinite,

but can be finitely represented (and computed)
 by using intersection types:

 Pre*(Error) = {t | lfp(PreTE) |− t:q0 }
 where PreTE (Γ) = { F:σ1→... →σn→q |
 F x1 ... xn → t ∈G and Γ, x1:σ1,..., xn:σn |− t:q }

Other HO model checking algorithms
 GTRecS [K 11]

– first fixed-parameter linear time algorithm
– collect type candidates like TRecS, but

avoid reductions by using game-semantic interpretation of types
 C-SHORe [Broadbent+ 13]

– based on CPDS; the only practical algorithm not based on types
 Preface [Ramsay+ 14]

– abstract interpretation of HORS, with type-based refinement
using (TRecS-style) positive types and (HorSat-style) negative
types

 Thors [Lester+ 11], APTRecS [Fujima+ 13]
– extend TRecS-style algorithm for liveness properties

 HorSatP [Fujima 15]
– extend Horsat-style algorithm for liveness properties

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

 Fixed-parameter polynomial time in the size of
grammars:

 for trivial automata model checking of HORS

 (a Q)1+ε
 2
 ..
 2
2

O(|G| ×) k: order of G
a: largest arity
Q: automaton size

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

 Fixed-parameter polynomial time in the size of
grammars

 Type environment serves as a “certificate”,
which can be checked in polynomial time
 (cf. NP problems)

 For finite-state models, HO model checking can
actually be faster than finite state model checking
– HORS can compactly represent finite-state systems

• An order-k HORS of size x can represent a system with
states

– k-EXPTIME algorithm for HO model checking
≈ PTIME algorithm for finite-state model checking

 p(x)
 2
 ..
 2
2

Why HO Model Checking Works?
(despite k-EXPTIME completeness)

 Fixed-parameter polynomial time in the size of
grammars

 Type environment serves as a “certificate”,
which can be checked in polynomial time
 (cf. NP problems)

 For finite-state models, HO model checking can
actually be faster than finite state model checking
– HORS can compactly represent finite-state systems

• An order-k HORS of size x can represent a system with
states

– (fixed-parameter) PTIME algorithm for HO model checking
>> PTIME algorithm for finite-state model checking

 p(x)
 2
 ..
 2
2

References on Part 3
 Type-based characterization of HO model checking

- Naoki Kobayashi: Model checking higher-order programs.
 J. ACM 60(3): 20 (2013)
- Naoki Kobayashi and Luke Ong: A type system equivalent to
the modal mu-calculus model checking of higher-order
recursion schemes, LICS 2009

 HO model checking algorithms
– JACM paper above (for TRecS algorithm)
– Christopher Broadbent and Naoki Kobayashi, Saturation-

Based Model Checking of Higher-Order Recursion Schemes,
CSL 13 (for HorSat algorithm)

– Steven J. Ramsay, Robin P. Neatherway, Luke Ong,
A type-based abstraction refinement approach to higher-
order model checking, POPL 2014 (for Preface algorithm)

Outline
 Introduction [by Ong, 15 minutes]

Applications to program verification
 [by Kobayashi, 25 minutes]

 Type systems and algorithms for higher-order
model checking [by Kobayashi, 25 minutes]

Advanced topics [by Ong, 25 minutes]

Advertisement
We are looking for

– a postdoc
– PhD students

 to work in our project on HO model checking
 at University of Tokyo.
 Interested candidates should contact
 Naoki Kobayashi.

	POPL 2016 Tutorial:�Higher-Order Model Checking
	Outline
	Tool demonstration:�MoCHi�(a software model checker �for a subset of OCaml)�
	Higher-Order Model Checking
	From Program Verification�to HO Model Checking�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	Example 2: handling exceptions
	Example 3: handling Booleans
	From Program Verification�to HO Model Checking�
	From Program Verification�to HO Model Checking�
	Outline
	Verification of Higher-order Programs with Infinite Data Domains �(integers, lists, trees, ...)
	Verification of Higher-order Programs with Infinite Data Domains �(integers, lists, trees, ...)
	Predicate Abstraction and CEGAR �for Higher-Order Model Checking�[K.&Sato&Unno, PLDI2011]
	Predicate Abstraction and CEGAR �for Higher-Order Model Checking�[K.&Sato&Unno, PLDI2011]
	Abstraction Types
	Abstraction Types
	Abstraction Types
	Example (predicate abstraction)
	Example (predicate abstraction)
	Example (predicate abstraction)
	Example (predicate abstraction)
	Example (predicate abstraction)
	Example (predicate abstraction)
	Dealing with algebraic data types (e.g. lists)
	Summary of Part 2
	Comparison with Traditional Approach
	References on Part 2
	References on Part 2
	Outline
	Practical algorithms for �HO model checking?
	Type-based approach to �HO model checking [K POPL09][KO LICS09]
	HO Model Checking Problem
	HO Model Checking Problem: �Restricted version
	Trivial tree automaton �for infinite trees
	Types for HORS
	Types for HORS
	Types for HORS
	Types for HORS
	Typing
	Typing
	Soundness and Completeness�[K., POPL2009]
	Soundness and Completeness�[K., POPL2009]
	Type checking (=model checking) problem
	Naive Algorithm [K. POPL09]
	Example
	Naive Algorithm [K. POPL09]
	Outline
	Practical Algorithm (TRecS [K. PPDP09])
	Practical Algorithm (TRecS [K. PPDP09])
	How to guess G0?
	Example
	Example
	Example
	Example
	Example
	Example
	Practical Algorithms [K. PPDP09] [K.FoSSaCS11]
	TRecS [K. PPDP09]�http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/
	Outline
	HorSat algorithm [Broadbent&K, CSL13]
	Yet another characterization of HO model checking
	Yet another characterization of HO model checking
	Other HO model checking algorithms
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	Why HO Model Checking Works?�(despite k-EXPTIME completeness)
	References on Part 3
	Outline
	Advertisement

