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Outline 
 Part 1: Introduction [by Ong, 15 minutes] 

 Part 2: Applications to program verification 
 [by Kobayashi, 25 minutes] 

 Part 3: Type systems and algorithms for 
higher-order model checking [by Kobayashi, 25 minutes] 

 Part 4: Advanced topics [by Ong, 25 minutes] 



Tool demonstration: 
MoCHi 

(a software model checker  
for a subset of OCaml) 

 



Higher-Order Model Checking 

 
 e.g.  
  - Does every finite path end with “c”? 
  - Does “a” occur below “b”? 

Given 
   G:  HORS 
   A:  alternating parity tree automaton (APT) 
       (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 

k-EXPTIME-complete [Ong, LICS06]        
(for order-k HORS), 
but practical algorithms exist    

      p(x) 
     2 
   .. 
  2 
2 



From Program Verification 
to HO Model Checking 

[K. POPL 2009] 

Program  
Transformation 

Higher-order 
program 
  + 
specification 
(on events or  
output) 

HORS 
(describing all  
event sequences 

or outputs) 
+ 

Tree automaton, 
 recognizing  

valid event sequences 
or outputs 

Model 
Checking 



From Program Verification to Model Checking:  
Example 

let f x =  
 if ∗ then close(x)  
 else (read(x); f x) 
in 
let y = open “foo” 
in 
     f (y) 

c 
+ 

+ 

c 
+ 

c 
... 

r 

r 

r 
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 Is the file “foo” 
accessed according  

to read* close? 
Is each path of the tree 

labeled by r*c? 

F x k → + (c k) (r(F x k)) 
S → F d  
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Is the file “foo” 
accessed according  
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Is each path of the tree 

labeled by r*c? 

CPS 
Transformation! 

continuation parameter,  
expressing how “foo” is 

accessed after the call returns 
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Example 2: handling exceptions 
let read’(x) = 
 read(x); 
 if * then () 
 else raise Eof 
let f(x) =  
  read’(x); f(x) 
in 
let y = open “foo” 
in try f(y) with 
   Eof -> close y 

+ 
c 

+ 
c 

... 

r 

r 

r 
 

 
Is the file “foo” 

accessed according  
to read* close? 

Is each path of the tree 
labeled by r*c? 

Read’ x h k → r (+ k h) 
F x h k   
→ Read’ x h (F x h k) 
S → F d (c )  

exception 
handler 

continuation for 
normal termination 
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eof 
... 
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c 
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Example 3: handling Booleans 
F x k →  
 Eof x (λb.If b (c k) (r (F x k))). 
S → F d . 
Eof x k → 
  + (eof (k True)) (k False). 
If b x y → b x y. 
True x y → x. 
False x y → y. 

Is the file closed  
only after eof has 

been reached? Does c occur only below eof? 

let f x =  
 if eof(x)  
 then     
    close(x)  
 else (read(x); f x) 
in 
let y = open “foo” 
in 
     f (y) 

Return whether 
end of file has 
been reached 

eof has been 
reached 

Church encoding 
of Booleans 



From Program Verification 
to HO Model Checking 

 

Program  
Transformation 

Higher-order 
program 
  + 
specification 

HORS 
(describing all  

event sequences) 
+ 

automaton for 
 infinite trees 

Model 
Checking 

Sound, complete, and automatic for: 
  - A large class of higher-order programs: 
      simply-typed λ-calculus + recursion  
      + finite base types (e.g. booleans) + exceptions + ... 
  - A large class of verification problems: 
      resource usage verification (or typestate checking),  
      reachability, flow analysis, strictness analysis, ... 



From Program Verification 
to HO Model Checking 

 

Program  
Transformation 

Higher-order 
program 
  + 
specification 

HORS 
(describing all  

event sequences) 
+ 

automaton for 
 infinite trees 

Model 
Checking 

For finite-data HO programs,  
automated verification comes for free  
from HO model checking! 



Outline 
 Introduction [by Ong, 15 minutes] 

Applications to program verification 
 [by Kobayashi, 25 minutes] 

– Verification of finite-data programs 
– Verification of infinite-data programs 

 Type systems and algorithms for higher-order 
model checking [by Kobayashi, 25 minutes] 

Advanced topics [by Ong, 25 minutes] 



Verification of Higher-order Programs 
with Infinite Data Domains  
(integers, lists, trees, ...) 

 For safety properties (e.g. reachability), 
overapproximation by abstraction of infinite data 
suffices. 

 For other properties (e.g. termination), 
combinations of problem reduction and abstraction 
are required. 



Verification of Higher-order Programs 
with Infinite Data Domains  
(integers, lists, trees, ...) 

 For safety properties (e.g. reachability), 
overapproximation by abstraction of infinite data 
suffice. 

 For other properties (e.g. termination), 
combinations of problem reduction and abstraction 
are required. 
=> see our papers in ESOP 2014, CAV 2015 and POPL 2016   



Predicate Abstraction and CEGAR  
for Higher-Order Model Checking 

[K.&Sato&Unno, PLDI2011] 

Predicate  
abstraction 

Higher-order 
functional program 

Higher-order 
boolean program 

f(g,x)=g(x+1) 

λx.x>0 

f(g, b)=  
  if b then g(true) 
  else g(∗) 
 

Higher-order 
model checking 

Error path 

property satisfied 

property not satisfied 

Program is safe! 

Real 
error 
path? 

yes 
Program is unsafe! 

New 
predicates 
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Abstraction Types  
Used to specify which predicates should be 

used for abstraction of each expression 
· int[P1,...,Pn]   
     Integers that should be abstracted by P1,...,Pn 
     e.g.  

 

· x:int[P1,...,Pn]→ int[Q1,...,Qm] 
Assuming that argument x is abstracted by P1,...,Pn, 
abstract the return value by Q1,...,Qm 

    e.g. λx.x+x: (x:int[λx.x>0]→ int[λy.y>x]) 

3: int[λx.x>0, even?] ⇒ (true, false) 

⇒ λb. 

x>0? 
x+x>x? 

? 
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Abstraction Types  
Used to specify which predicates should be 

used for abstraction of each expression 
· int[P1,...,Pn]   
     Integers that should be abstracted by P1,...,Pn 
     e.g.  

 

· x:int[P1,...,Pn]→ int[Q1,...,Qm] 
Assuming that argument x is abstracted by P1,...,Pn, 
abstract the return value by Q1,...,Qm 

    e.g. λx.x+x: (x:int[λx.x>0]→ int[λy.y>x]) 
        λx.x+x: (x:int[λx.x>1, even?]→ int[λy.y>0]) 

3: int[λx.x>0, even?] ⇒ (true, false) 

⇒ λb.b 

⇒ λ(b1,b2).if b1 then true else ∗ 



Example (predicate abstraction) 

Abstraction type of mc91: 
   x:int[λx.x>101]→ int[λr.r=91, λr.r=x-10] 

let mc91 x = if x > 100 then x - 10 
                   else mc91 (mc91 (x + 11)) 
let main n = if n <= 101 then assert (mc91 n = 91) 

let mc91 bx>101 =  
    if  (if bx>101 then true else ∗) then  (not(bx>101), true)  
    else let (br1=91,br1=x-10) = mc91 ∗ in  
           let (br=91,br=r1-10)= 
                    mc91 (if br1=91 || br1=x-10 then false else ∗) 
           in (br=91, ∗) 
let main () = if ∗ then  
                   assert(let (br=91,br=x-10) = mc91 false in br=91)  
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Dealing with algebraic data types 
(e.g. lists) 

Abstraction approach: 
– automata-based [K+ POPL10][Unno+ APLAS 10]... 

– pattern-based [Ong&Ramsay POPL11] 

 Encoding approach [Sato+ PEPM13] : 
– algebraic data as functions 
                length  function from indices to elements 

[ τ list ] = int × (int → [τ] ) 
   nil = (0, λx. fail ) 
 cons = λx.λ(len,f). 
         (len+1, λi.if i=0 then x else f(i-1)) 

 hd (len,f) = f(0) 
  ... 



Summary of Part 2 
 For finite-data HO programs: 

 sound, complete, and fully automatic verification is   
 achieved by reduction to HO model checking 
 

 For infinite-data HO programs: 
 sound and automatic (but incomplete) verification is   
 achieved by a combination of: 
– HO model checking 
– abstraction, and  
– program transformation 
Verification methods are necessarily incomplete,  
but often more precise than other approaches; 
sometimes relatively complete modulo certain assumptions 
[Unno, Terauchi &K, POPL 2013] 



Comparison with Traditional Approach 

Higher-order 
(functional) 
programs 

Finite state 
systems 

Safe 
or 
(maybe) 
unsafe 

Abstraction 
of data and 

control 

Higher-order 
(functional) 
programs 

HORS 
(infinite state 

systems) 

Abstraction 
of data 

model 
checking  

HO model 
checking  

Traditional Approach 

HO Model Checking 

Safe 
or 
(maybe) 
unsafe 
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Practical algorithms for  
HO model checking? 

Many program verification problems can be 
reduced to HO model checking 

Unfortunately, HO model checking is  
k-EXPTIME complete for order-k HORS 

 Fortunately, there are practical algorithms 
that work well for typical inputs 
– The state-of-the-art HO model checker HorSat2 can 

handle 1,000 – 100,000 lines of input 

Most of those algorithms are based on 
type-based characterization of HO model 
checking  
 



Type-based approach to  
HO model checking [K POPL09][KO LICS09] 

Construct a type system TS(A) s.t. 
   Tree(G) is accepted by tree automaton A  
    if and only if 

   G is typable in TS(A) 
 

Model Checking as 
Type Checking  
(c.f. [Naik & Palsberg, ESOP2005]) 



HO Model Checking Problem 

Given 
   G:  HORS 
   A:  alternating parity tree automaton (APT) 
       (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 

k-EXPTIME-complete [Ong, LICS06] 
(for order-k HORS) 



HO Model Checking Problem:  
Restricted version 

Given 
   G:  HORS 
   A:  trivial automaton [Aehlig CSL06] 

          (Büchi tree automaton where 
        all the states are accepting states)  
does A accept Tree(G)? 

k-EXPTIME-complete [KO, ICALP09] 
(for order-k HORS) 



Trivial tree automaton  
for infinite trees 

c a 
a 

b 
c 

a 
b 
b 
c 

a 
b 
b 
b 
c 

... 

 
δ(q0, a) = q0 q0 
δ(q0, b) = q1 
δ(q1, b) = q1 
δ(q0, c) = ε 
δ(q1, c) = ε 

q0 

q0 q0 
q0 q0 

q1 
q0 q0 

q1 

q1 

q0 
q1 

q1 

q1 
“a” does not occur below “b” 

q0 q0 

A tree is accepted just if a run of the automaton does not get stuck 
(no acceptance conditions, such as Buchi/Muller/parity) 



Types for HORS 
Automaton state as the type of trees 

– q: trees accepted from state q 
 
 
 

– q1∧q2: trees accepted from both q1 and q2 
 
 
 
 

q 

Is Tree(G) accepted by A? 

Does Tree(G) have type q0? 



Types for HORS 
q1→ q2:  
   functions that take a tree of type q1  
   and return a tree of q2 

 
 
 
 
 

q2 

q1 + = 
q1 

q2 

q1 



Types for HORS 
q1∧q2 → q3:  
 functions that take a tree of type q1∧q2  
  and return a tree of type q3 

 
 
 
 
 + = 

q1, q2 
q3 

q1 q2 q2 

q3 

q1 q2 q2 



Types for HORS 
(q1 → q2) → q3:  
 functions that take a function of type q1 → q2  
  and return a tree of type q3 
 
 
 
 
 

+ = 

q3 

q1 

q2 

q1 

q2 

q3 

q1 

q2 



 
 Γ, x:τ ┝ x :τ 

 

Typing 

 

   Γ┝ t1: τ1∧…∧τn → τ  
 Γ┝ t2:τi (i=1,..n) 
−−−−−−−−−−−−−−−−−−−−  

 Γ┝ t1 t2:τ 
 

 
   Γ, x:τ1,..., x:τn ┝ t:τ  
−−−−−−−−−−−−−−−−−−  
 Γ┝ λx.t: τ1∧…∧τn → τ  

 

  
 Γ┝ tk : τ (for every Fk:τ∈Γ)      

−−−−−−−−−−−−−−−−−−−−−−−−−  
 ┝ {F1→t1,..., Fn → tn} : Γ 

 

δ(q, a) = q1…qn 
−−−−−−−−−−−−−−−−−−−  
┝ a :q1 → … → qn → q 

 

 
 Γ, x:τ ┝ x :τ 

 

a 

… 

q 

q1 qn 



 
 Γ, x:τ ┝ x :τ 

 

Typing 

 

   Γ┝ t1: τ1∧…∧τn → τ  
 Γ┝ t2:τi (i=1,..n) 
−−−−−−−−−−−−−−−−−−−−  

 Γ┝ t1 t2:τ 
 

 
   Γ, x:τ1,..., x:τn ┝ t:τ  
−−−−−−−−−−−−−−−−−−  
 Γ┝ λx.t: τ1∧…∧τn → τ  

 

  
 Γ┝ tk : τ (for every Fk:τ∈Γ)      

−−−−−−−−−−−−−−−−−−−−−−−−−  
 ┝ {F1→t1,..., Fn → tn} : Γ 

 

δ(q, a) = q1…qn 
−−−−−−−−−−−−−−−−−−−  
┝ a :q1 → … → qn → q 

 



Soundness and Completeness 
[K., POPL2009] 

  G = {F1 →t1, ..., Fm →tm } (with S=F1) 
A: Trivial automaton with initial state q0 
TS(A): Intersection type system for A       

Tree(G) is accepted by A 
    if and only if 
S has type q0 in TS(A), 
i.e. ∃Γ.(S:q0∈ Γ ∧  |− {F1→t1,..., Fn → tn} : Γ) 
    if and only if 
∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈Γ. Γ|− tk : τ ) 
 



Soundness and Completeness 
[K., POPL2009] 

Tree(G) is accepted by A 
    if and only if 
S has type q0 in TS(A), 
i.e. ∃Γ.(S:q0∈ Γ ∧ |− {F1→t1,..., Fn → tn} : Γ) 
    if and only if 
∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈Γ. Γ|− tk : τ ) 
    if and only if 
∃Γ.(S: q0 ∈ Γ  ∧  Γ = H( Γ) ) 
for H(Γ) = { Fk:τ ∈ Γ  |   Γ |− tk:τ } 

Function to filter out invalid type bindings 



Type checking (=model checking) problem 

Is there a fixedpoint of H greater than {S:q0}?  
(where H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ }) 

Γmax (the set of all type bindings)   

{S:q0} 

⊆
 {F:q0→q0,S:q0} 

⊆
 

⊆
 

⊆
 

... 

..
. ... 

∅ 

⊆
 

x  fixedpoint of H 



Naive Algorithm [K. POPL09] 
1.Compute the greatest fixedpoint Γgfp of H 
   (H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ }) 
2.Check whether S:q0∈ Γgfp 

Γmax (the set of all possible type bindings)   

{S:q0} 

⊆
 

{F:q0→q0,S:q0} 

⊆
 

... 
... 

x  fixedpoint 

H(Γmax) x 

H2(Γmax) x 

H3(Γmax) x 
... 



Example 
HORS: 

  S → F c     F → λx.a x (F (b x)) 
  (S:o, F: o→o) 

Automaton: 
   δ(q0, a) = q0 q0    δ(q0, b) = δ(q1, b) = q1  

δ(q0, c) = δ(q1, c) = ε  

Γmax= {S:q0, S:q1,  F: T→q0, F: q0 →q0, F: q1 →q0, F: q0 ∧q1 →q0,  
       F: T→q1, F: q0 →q1, F: q1 →q1, F: q0 ∧q1 →q1} 

H(Γmax) = { S:τ ∈ Γmax | Γmax |− F c:τ }  
           ∪ { F:τ ∈ Γmax | Γmax |− λx.a x (F(b x)) :τ } 
           = {S:q0, S:q1,  F: q0 →q0, F: q0∧q1 →q0} 
H2(Γmax) = {S:q0, F: q0∧q1 →q0} 
H3(Γmax) = {S:q0, F: q0∧q1 →q0} = H2(Γmax)  



Naive Algorithm [K. POPL09] 
1.Compute the greatest fixedpoint Γgfp of H 
   (H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ }) 
2.Check whether S:q0∈ Γgfp 

Γmax (the set of all possible type bindings)   

{S:q0} 

⊆
 

{F:q0→q0,S:q0} 

⊆
 

... 
... 

x  fixedpoint 

H(Γmax) x 

H2(Γmax) x 

H3(Γmax) x 
... 

Drawbacks: 
 - Huge cost for computing H 
 - Huge number of iterations 
(both as huge as |Γmax| =  
 
 O(|G|×               ) 
 
 
) 

      (AQ)1+ε 
     2 
   .. 
  2 
2 

k: order of G 
A: largest arity 
Q: automaton size  



Outline 
 Introduction [by Ong, 15 minutes] 

Applications to program verification 
 [by Kobayashi, 25 minutes] 

 Type systems and algorithms for higher-order 
model checking [by Kobayashi, 25 minutes] 

– type-based characterization 
– practical algorithms 

• TRecS 
• HorSat 
• other algorithms 

Advanced topics [by Ong, 25 minutes] 



Practical Algorithm (TRecS [K. PPDP09]) 
1.Guess a type environment Γ0 
2.Compute greatest fixedpoint Γ smaller than Γ0  
3.Check whether S:q0∈ Γ 
4. Repeat 1-3 until the property is proved or refuted. 

Γmax (the set of all possible type bindings)   

{S:q0} 

... ... 

H(Γ0) x 
H2(Γ0) x 

... 

Γ0 x 



Practical Algorithm (TRecS [K. PPDP09]) 

Γmax (the set of all possible type bindings)   

{S:q0} 

... 
... 

H(Γ0) x 
H2(Γ0) x 

... 

Γ0 x 

1.Guess a type environment Γ0 
2.Compute greatest fixedpoint Γ smaller than Γ0  
3.Check whether S:q0∈ Γ 
4. Repeat 1-3 until the property is proved or refuted. 



How to guess Γ0? 
Reduce HORS 
a finite number of 
steps 
Observe how each 
function is used and 
express it as types 

Γmax 

{S:q0} 

... ... 

H(Γ0) x 
H2(Γ0) x 

... 

Γ0 x 



Example 
HORS: 

  S → F c     F → λx.a x (F (b x)) 
Automaton: 

   δ(q0, a) = q0 q0    δ(q0, b) = δ(q1, b) = q1  
δ(q0, c) = δ(q1, c) = ε  

→ F c 
 

c F(b c) 

→ a 
 

c a 

→ a 
 

b F(b(b c)) 
c 

S 
q0 q0 q0 

q0 
q0 

q0 

q0 q0 

q0 

q1 

q0 



Example 
HORS: 

  S → F c     F → λx.a x (F (b x)) 
Automaton: 

   δ(q0, a) = q0 q0    δ(q0, b) = δ(q1, b) = q1  
δ(q0, c) = δ(q1, c) = ε  

→ F c 
 

c F(b c) 

→ a 
 

c a 

→ a 
 

b F(b(b c)) 
c 

S q0 q0 q0 

q0 
q0 

q0 

q0 q0 

q0 

q1 

q0 

Γ0 : 
 S: q0 



Example 
HORS: 

  S → F c     F → λx.a x (F (b x)) 
Automaton: 

   δ(q0, a) = q0 q0    δ(q0, b) = δ(q1, b) = q1  
δ(q0, c) = δ(q1, c) = ε  

→ F c 
 

c F(b c) 

→ a 
 

c a 

→ a 
 

b F(b(b c)) 
c 

S q0 q0 q0 

q0 
q0 

q0 

q0 q0 

q0 

q1 

q0 

Γ0 : 
 S: q0 

F: ? → q0  



Example 
HORS: 

  S → F c     F → λx.a x (F (b x)) 
Automaton: 

   δ(q0, a) = q0 q0    δ(q0, b) = δ(q1, b) = q1  
δ(q0, c) = δ(q1, c) = ε  

→ F c 
 

c F(b c) 

→ a 
 

c a 

→ a 
 

b F(b(b c)) 
c 

S q0 q0 q0 

q0 
q0 

q0 

q0 q0 

q0 

q1 

q0 

Γ0 : 
 S: q0 

F: q0 ∧ q1 

         → q0  



Example 
HORS: 

  S → F c    F → λx.a x (F (b x)) 
Automaton: 

   δ(q0, a) = q0 q0    δ(q0, b) = δ(q1, b) = q1  
δ(q0, c) = δ(q1, c) = ε  

→ F c 
 

c F(b c) 

→ a 
 

c a 

→ a 
 

b F(b(b c)) 
c 

S q0 q0 q0 

q0 
q0 

q0 

q0 q0 

q0 

q1 

q0 

Γ0 : 
 S: q0 

F: q0 ∧ q1 

         → q0  
F: q0 → q0  



Example 
HORS: 

  S → F c    F → λx.a x (F (b x)) 
Automaton: 

   δ(q0, a) = q0 q0    δ(q0, b) = δ(q1, b) = q1  
δ(q0, c) = δ(q1, c) = ε  

→ F c 
 

c F(b c) 

→ a 
 

c a 

→ a 
 

b F(b(b c)) 
c 

S q0 q0 q0 

q0 
q0 

q0 

q0 q0 

q0 

q1 

q0 

Γ0 : 
 S: q0 

F: q0 ∧ q1 

         → q0  
F: q0 → q0  

F: T → q0  



Practical Algorithms [K. PPDP09] [K.FoSSaCS11] 

1.Guess a type environment Γ0 
2.Compute greatest fixedpoint Γ smaller than Γ0  
3.Check whether S:q0∈ Γ 
4. Repeat 1-3 until the property is proved or refuted. 

{S:q0} 
... 

H(Γ0) x 
H2(Γ0) x 

... 

Γ0 x 

Γ0 = {S: q0, F: q0 ∧ q1→ q0,  
        F: q0 → q0 , F: T → q0}  
  H(Γ0) = { Fk:τ ∈ Γ0 | Γ0 |− tk:τ } 

   = {S: q0, F: q0 ∧ q1→ q0,  
           F: q0 → q0 }  
  H2(Γ0) = {S: q0, F: q0 ∧ q1→ q0}  
  

H3(Γ0) = {S: q0, F: q0 ∧ q1→ q0}  
  



TRecS [K. PPDP09] 
http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/ 

 The first model checker for HORS 

Used as a backend of MoCHi [K+11,Sato+13] 



Outline 
 Introduction [by Ong, 15 minutes] 

Applications to program verification 
 [by Kobayashi, 25 minutes] 

 Type systems and algorithms for higher-order 
model checking [by Kobayashi, 25 minutes] 

– type-based characterization 
– practical algorithms 

• TRecS 
• HorSat 
• other algorithms 

Advanced topics [by Ong, 25 minutes] 



HorSat algorithm [Broadbent&K, CSL13] 

 Basis of the state-of-the-art HO model 
checker HorSat2  
(http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2) 

 Based on the “dual” type system 
– use the complement of property automaton A, 

to characterize invalid trees 
– least fixed-point computation instead of 

greatest 



Yet another characterization of 
HO model checking 

 G: HORS, A: trivial tree automaton 
         Tree(G) ∈ Lang(A) 
    iff  S ∉ Pre*(Error) where: 
  Pre*(t) = {s | s →G* t } 
  Error = {t | t⊥ ∈ Lang(A)} 
 
 

 
 
Tree obtained by replacing non-tree 
parts with ⊥ 
 
 
 
 
 
 
 
   

b A(T b) 

    a 
 

c 

⊥ 
= b ⊥ 

    a 
 

c 



Yet another characterization of 
HO model checking 

 G: HORS, A: trivial tree automaton 
         Tree(G) ∈ Lang(A) 
    iff  S ∉ Pre*(Error) where: 
  Pre*(t) = {s | s →G* t } 
  Error = {t | t⊥ ∈ Lang(A)} 
 
 Pre*(Error) may be infinite,  

but can be finitely represented (and computed) 
 by using intersection types: 

    Pre*(Error) = {t | lfp(PreTE) |− t:q0 } 
       where PreTE (Γ) = { F:σ1→... →σn→q |  
             F x1 ... xn → t ∈G and Γ, x1:σ1,..., xn:σn |− t:q } 



Other HO model checking algorithms 
 GTRecS [K 11] 

– first fixed-parameter linear time algorithm 
– collect type candidates like TRecS, but 

avoid reductions by using game-semantic interpretation of types 
 C-SHORe [Broadbent+ 13] 

– based on CPDS; the only practical algorithm not based on types 
 Preface [Ramsay+ 14] 

– abstract interpretation of HORS, with type-based refinement 
using (TRecS-style) positive types and (HorSat-style) negative 
types  

 Thors [Lester+ 11], APTRecS [Fujima+ 13] 
– extend TRecS-style algorithm for liveness properties 

 HorSatP [Fujima 15] 
– extend Horsat-style algorithm for liveness properties 

 



Why HO Model Checking Works? 
(despite k-EXPTIME completeness) 

 Fixed-parameter polynomial time in the size of 
grammars: 
 
 
 

    
   for trivial automata model checking of HORS 

      (a Q)1+ε 
     2 
   .. 
  2 
2 

O(|G| × ) k: order of G 
a: largest arity 
Q: automaton size  



Why HO Model Checking Works? 
(despite k-EXPTIME completeness) 

 Fixed-parameter polynomial time in the size of 
grammars 

 Type environment serves as a “certificate”, 
which can be checked in polynomial time 
 (cf. NP problems) 

 For finite-state models, HO model checking can 
actually be faster than finite state model checking 
– HORS can compactly represent finite-state systems 

• An order-k HORS of size x can represent a system with                
states 
 
 

– k-EXPTIME algorithm for HO model checking 
≈ PTIME algorithm for finite-state model checking 

      p(x) 
     2 
   .. 
  2 
2 



Why HO Model Checking Works? 
(despite k-EXPTIME completeness) 

 Fixed-parameter polynomial time in the size of 
grammars 

 Type environment serves as a “certificate”, 
which can be checked in polynomial time 
 (cf. NP problems) 

 For finite-state models, HO model checking can 
actually be faster than finite state model checking 
– HORS can compactly represent finite-state systems 

• An order-k HORS of size x can represent a system with                
states 
 
 

– (fixed-parameter) PTIME algorithm for HO model checking 
>> PTIME algorithm for finite-state model checking 

      p(x) 
     2 
   .. 
  2 
2 



References on Part 3 
 Type-based characterization of HO model checking 

- Naoki Kobayashi: Model checking higher-order programs. 
 J. ACM 60(3): 20 (2013) 
- Naoki Kobayashi and Luke Ong: A type system equivalent to 
the modal mu-calculus model checking of higher-order 
recursion schemes, LICS 2009 

 HO model checking algorithms 
– JACM paper above (for TRecS algorithm) 
– Christopher Broadbent and Naoki Kobayashi, Saturation-

Based Model Checking of Higher-Order Recursion Schemes, 
CSL 13 (for HorSat algorithm) 

– Steven J. Ramsay, Robin P. Neatherway, Luke Ong, 
A type-based abstraction refinement approach to higher-
order model checking, POPL 2014 (for Preface algorithm) 



Outline 
 Introduction [by Ong, 15 minutes] 

Applications to program verification 
 [by Kobayashi, 25 minutes] 

 Type systems and algorithms for higher-order 
model checking [by Kobayashi, 25 minutes] 

Advanced topics [by Ong, 25 minutes] 



Advertisement 
We are looking for 

– a postdoc  
– PhD students 

  to work in our project on HO model checking 
  at University of Tokyo. 
  Interested candidates should contact  
  Naoki Kobayashi. 
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