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Advanced type systems for the π-calculus have recently been proposed to

guarantee deadlock-freedom in the sense that certain communications will

eventually succeed unless the whole process diverges. Although such guar-

antees are useful for reasoning about the behavior of concurrent programs,

there still remains the weakness that the success of a communication is not

completely guaranteed due to the possibility of divergence. For example,

although a server process that has received a request message cannot dis-

card the request, it is allowed to infinitely delegate the request to other

processes, causing a livelock. In this paper, we present a type system which

guarantees that certain communications will eventually succeed under fair

scheduling, regardless of whether processes diverge. We also present a vari-

ant of the type system which guarantees that a communication will succeed

within a given number of reduction steps.

1. INTRODUCTION
It is an important and challenging task to statically guarantee the correctness

of concurrent programs. Concurrent programs are more complex than sequential
programs (due to dynamic control, non-determinism, deadlock, etc.), which makes
it hard for programmers to debug concurrent programs or reason about their be-
havior.

Unfortunately, existing concurrent/distributed programming languages and thread
libraries provide only limited support for checking the correctness of concurrent pro-
grams. For example, consider the following program in CML [30, 31].

fun f(n:int) = let val c = channel() in recv(c)+n end;

The function f takes an integer n as an argument, creates a fresh channel c, and
waits to receive a value on the channel (by recv(c)). Since there is no sender on
c, evaluation gets stuck at recv(c).

1A preliminary version of this paper appeared in Proceedings of IFIP TCS2000, LNCS 1872,
Springer-Verlag, pp.365–389, 2000, under the title “Type Systems for Concurrent Processes: From
Deadlock-Freedom to Livelock-Freedom, Time-Boundedness.”
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A function in CML may also behave in a non-deterministic manner. Consider
the following program.

fun g(n:int) = let val c = channel() in

(spawn(fn ()=>send(c,1));

spawn(fn ()=>send(c,2));

recv(c)+n)

end

The function g creates a fresh channel c, spawns two processes that send 1 and 2 to
the channel, and waits to receive a value on c. Then, it adds n to the received value
and returns the result. So g(n) returns either n+1 or n+2 in a non-deterministic
manner. In spite of these non-functional behaviors of f and g, CML assigns to them
a function type int → int . So, CML does not guarantee that a term of function
type really behaves like a function.

To improve the situation above, a number of type systems [16, 25, 26, 32, 38] have
been studied in the setting of process calculi, just as type systems for functional
languages have been studied in the setting of λ-calculus. Along this line of research,
we have proposed expressive type systems [14, 17, 34] for the π-calculus [21, 22, 23]
to guarantee deadlock-freedom of processes. The deadlock-freedom property is
useful for reasoning about behavior of concurrent programs. Suppose that a client
process sends a request to a server process. The client and server processes can be
written as

Client
�
= (νr) (s〈req, r〉 | r(rep)c. P )

Server
�
= ∗s(x, r). Q

in a π-calculus-like language. Here, (νr) creates a fresh communication channel
r for receiving a reply from the server. s〈req, r〉 sends a request req and the
channel r to the location s (which is also a channel) of the server. In parallel
to this, r(rep)c. P waits to receive a reply rep from the server. The annotation
c indicates that r(rep)c. P should eventually receive a reply. The server process
∗s(x, r). Q repeatedly receives a request x and a reply channel r through channel
s and behaves like Q. In general, there is no guarantee that the client can receive
a reply; Q may do nothing, ignoring the request from the client, or Q may be
blocked forever before sending a reply. However, our previous type systems [17]
can guarantee that if Server |Client is well-typed, the client can eventually receive
a reply as long as Server does not diverge. In this way, type systems for deadlock-
freedom can ensure that a process implementing a server really behaves as a correct
server and that a channel implementing a semaphore is really used as a semaphore
in the sense that a process that has acquired a semaphore will release it eventually.

Although the deadlock-freedom property above is useful for reasoning about be-
havior of concurrent programs, there is still a limitation: success of a communication
is not completely guaranteed because a process may diverge before the communi-
cation succeeds. In the client-server model above, while Server cannot ignore a
request, it is allowed to infinitely delegate a request to other processes. For exam-
ple, Q may be a process s〈x, r〉, which resends all received messages on s. Then,
the client and server processes fall into a livelock [19, 20, 30], a situation where
processes are executing forever without doing useful work. These livelocked client
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and server processes are, however, well-typed in our type systems for deadlock-
freedom [14, 17, 34].

In this paper, we present a new type system which guarantees that certain com-
munications will eventually succeed regardless of whether processes diverge, pro-
vided that scheduling is strongly fair [3, 7] in the sense that every process that is
able to participate in a communication infinitely often can eventually participate
in a communication. We call this property lock-freedom (modulo the fairness as-
sumption), because not only deadlock situations but also livelock situations like
the one described above are prevented: the livelocked client and server processes
above are judged to be ill-typed in the new type system. We also present a variant
of the type system, which guarantees that a communication will succeed within a
certain amount of time. For example, one can write r(x)n. P to denote a process
that should receive a value on channel r within n reduction steps. If the whole
system of processes containing this process is well-typed, it is indeed guaranteed
that a reply is received within n-steps of reductions of the whole system.

The basic idea of the new type system is the same as that of the previous type
systems for deadlock-freedom [14, 17, 34]: Channel types are augmented with in-
formation about the order in which each channel is used for input or output. In the
new type system, types are further augmented with information about how much
time it takes for a process to become ready to input or output a value on a channel,
and how much time it takes for the process to succeed to input or output a value
after the process has become ready. The resulting type system is simpler than the
previous ones, as discussed in Section 6.

An alternative approach to guaranteeing success of communication would be
to develop a type system to guarantee termination of a process and combine it
with the previous type systems for deadlock-freedom (because deadlock-freedom
implies success of communications unless the whole process diverges). We do not
take this approach, because in order to guarantee success of a communication, we
must guarantee termination of the whole process, which is in general difficult. For
example, let us consider the process s〈r〉 | s(x). (x〈 〉 |P ), where P is some complex
process. It is easy to see that a message is sent on r; Indeed, our type system can
guarantee this property. However, if we try to derive that property by showing
termination of the whole process, we may fail: When P is complex, it is difficult to
analyze whether P terminates. Requiring termination of the whole process is also
too restrictive: many correct concurrent programs run forever.

The rest of this paper is organized as follows. In Section 2, we introduce our target
language and then explain what we mean by deadlock-freedom and lock-freedom.
Section 3 introduces our new type system for lock-freedom and shows its soundness.
Section 4 shows that with a minor modification, our type system can also guarantee
that certain communications succeed within a certain number of reduction steps.
The type system given in Section 3 is rather naive and cannot guarantee the lock-
freedom of recursive programs. Section 5 discusses extensions that may be useful
for increasing the expressive power of the type system. Section 6 discusses related
work, and Section 7 concludes. We do not discuss algorithmic issues related to type-
checking or type inference in this paper. We expect that those issues are basically
similar to the case for the deadlock-free calculus [14, 17].
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2. TARGET LANGUAGE
This section introduces the target language of our type system and defines deadlock-

freedom and lock-freedom. The target language is a subset of the polyadic π-
calculus [21]. We drop the matching and choice operators from the π-calculus, but
keep the other operators. In particular, channels are first-class citizens as in the
usual π-calculus, in the sense that they can be dynamically created and passed
through other channels. Although first-class channels make it difficult to guaran-
tee deadlock/lock-freedom, we keep them because they are important in modeling
modern concurrent/distributed programming languages. In fact, for example, in
concurrent object-oriented programming [37], an object is dynamically created and
its reference is passed through messages. Since a reference to a concurrent object
corresponds to a record of communication channels [18, 27], channels should be
first-class data.

2.1. Syntax

Definition 2.1 (processes). The set of processes is defined as follows:

P (processes) ::= 0 | A | (P |Q) | (νx) P

A(atomic processes) ::= x〈v1, . . . , vn〉a. P | x(y1, . . . , yn)a. P

| if v then P else Q | ∗A
v (values) ::= true | false | x
a (attributes) ::= ∅ | c

Here, x and yi range over a countably infinite set Var of variables.

Notation 2.1. As usual, y1, . . . , yn in x(y1, . . . , yn). P and x in (νx) P are called
bound variables. The other variables are called free variables. The set of free
variables in P is denoted by FV (P ). We write P ≡α Q when P and Q are identical
up to α-conversion (renaming of bound variables). We write [x1 �→ v1, . . . , xn �→
vn]P for the process obtained from P by replacing all free occurrences of x1, . . . , xn

with v1, . . . , vn. We write x̃ for a sequence of variables x1, . . . , xn. We abbreviate
[x̃ �→ ṽ] and (νx̃) to [x1 �→ v1, . . . , xn �→ vn] and (νx1) · · · (νxn) , respectively.

We often omit an inaction 0 and write x〈ỹ〉a for x〈ỹ〉a.0. When attributes are
not important, we omit them and just write x〈ỹ〉. P and x(ỹ). P for x〈ỹ〉a. P and
x(ỹ)a. P respectively.

We assume that prefixes (x〈ỹ〉a. , x(ỹ)a. , (νx) , and ∗) bind tighter than the
parallel composition operator ( | ), so that x〈ỹ〉a. P |Q means (x〈ỹ〉a. P ) |Q, not
x〈ỹ〉a. (P |Q). We also assume that | is right-associative, so that P1 |P2 |P3 means
P1 | (P2 |P3).

0 denotes inaction. x〈v1, . . . , vn〉a. P denotes a process that sends a tuple 〈v1, . . . , vn〉
on x and then (after the tuple is received by some process) behaves like P . Each
vi is either a boolean or a variable, which denotes a channel or a boolean. An
attribute a expresses a programmer’s intention and it does not affect the opera-
tional semantics: a = c means that the programmer wants this output to succeed,
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i.e., once the output is executed and the tuple is sent, the tuple is expected to be
received eventually. There is no such requirement when a is ∅. x(y1, . . . , yn)a. P

denotes a process that receives a tuple 〈v1, . . . , vn〉 on x and then behaves like
[y1 �→ v1, . . . , yn �→ vn]P . If a is c, then this input is expected by the programmer
to succeed eventually. ∗A represents infinitely many copies of the process A running
in parallel. P |Q denotes concurrent execution of P and Q, and (νx) P denotes a
process that creates a fresh channel x and then behaves like P . if v then P else Q

behaves like P if v is true and behaves like Q if v is false; otherwise it is blocked
forever.

Remark 2.1. Our type system presented in Section 3 does not much depend
on the choice of process constructors. For example, it is not difficult to extend
our type system with the choice operator [21]. The restriction that the replica-
tion operator can be only applied to atomic processes is for technical convenience
in defining the notion of fairness. A general replication ∗P can be simulated by
(νx) (∗x( ). P | ∗x〈 〉).

Example 2.1. The process ∗sum(m, n, r). r〈m + n〉 behaves as a function server
computing the sum of two integers. (Here, the language is extended with integers
and operations.) It receives a triple consisting of two integers and a channel, and
sends the sum of the integers on the channel. A client process can be written like
(νy) (sum〈1, 2, y〉 | y(x)c. P ). The attribute c of the input process specifies that the
input process should eventually receive a result on channel y.

Example 2.2. A binary semaphore (or lock) can be implemented by using a
channel. Basically, we can regard the presence of a value in the channel as the
unlocked state, and the absence of a value as the locked state. Then, creation of
a semaphore corresponds to channel creation, followed by output of a null tuple
((νx) (x〈 〉 |P )). A semaphore can be acquired by extracting a value from the
channel (x( ). Q), and released by putting a value back into the channel (x〈 〉). If
we want to explicitly specify that a semaphore x can be eventually acquired, we
can annotate an input as x( )c. Q.

2.2. Operational Semantics
The operational semantics is essentially the same as the standard reduction se-

mantics of the π-calculus [21]. For subtle technical reasons, we introduce a struc-
tural preorder 	 instead of a structural congruence relation. The differences from
the usual structural congruence ≡ are that neither (νx) (P |Q) 	 (νx) P |Q nor
∗P |P 	 ∗P holds and that 	 is not closed under output and input prefixes, repli-
cations, and conditionals. The reason for not allowing (νx) (P |Q) 	 (νx) P |Q is
described in Remark 2.3. The reason for not allowing ∗P |P 	 ∗P is that in our
type system given in Section 3, ∗P |P and ∗P are not always well-typed under the
same type environment.
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Definition 2.2. The structural preorder 	 is the least reflexive and transitive
relation closed under the following rules (P ≡ Q denotes (P 	 Q) ∧ (Q 	 P )):

P ≡α Q

P ≡ Q
(SPCong-Alpha)

P |0 ≡ P (SPCong-Zero)

P |Q ≡ Q |P (SPCong-Commut)

P | (Q |R) ≡ (P |Q) |R (SPCong-Assoc)

(νx) P |Q 	 (νx) (P |Q) (if x is not free in Q) (SPCong-New)

∗P 	 ∗P |P (SPCong-Rep)

P 	 P ′ Q 	 Q′

P |Q 	 P ′ |Q′ (SPCong-Par)

P 	 Q

(νx) P 	 (νx) Q
(SPCong-CNew)

We write P 	−α Q when P 	 Q can be derived without using rule (SPCong-

Alpha).
Now we define the reduction relation. Following the operational semantics of

the linear π-calculus [16], we define the reduction relation as a ternary relation
P

l−→ Q. l describes the channel on which the reduction is performed: l is either
ε, which means that the reduction is performed by communication on an internal
channel or by the reduction of a conditional expression, or comx, which means that
the reduction is performed by communication on the free channel x.

Definition 2.3. The reduction relation l−→ is the least relation closed under
the following rules:

x〈v1, . . . , vn〉a. P |x(z1, . . . , zn)a′
. Q

comx−→ P | [z1 �→ v1, . . . , zn �→ vn]Q
(R-Com)

P
l−→ Q

P |R l−→ Q |R
(R-Par)

P
comx−→ Q

(νx) P
ε−→ (νx) Q

(R-New1)

P
l−→ Q l �= comx

(νx) P
l−→ (νx) Q

(R-New2)
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if true then P else Q
ε−→ P (R-IfT)

if false then P else Q
ε−→ Q (R-IfF)

P 	 P ′ P ′ l−→ Q′ Q′ 	 Q

P
l−→ Q

(R-SPCong)

Notation 2.2. We write P −→ Q if P
l−→ Q for some l. We write −→∗ for the

reflexive and transitive closure of −→. P
l−→ and P −→ mean ∃Q.(P l−→ Q) and

∃Q.(P −→ Q) respectively.

2.3. Deadlock-Freedom and Lock-Freedom
Based on the operational semantics, we formally define deadlock-freedom and

lock-freedom. Basically, we regard a process as locked if one of its subprocesses is
trying to communicate with some process but is blocked forever without finding a
communication partner. However, not every process that is blocked forever should
be regarded as being in a bad state. For example, there should be no problem even
if a server process waits for a request forever: it just means that no client process
sends a request message. It is also fine that an output process remains forever
on a channel implementing a semaphore (Example 2.2), because it means that no
process tries to acquire the semaphore. Therefore, we focus on communications
that are expected to succeed by a programmer, i.e., those annotated with attribute
c. A process is considered locked if it is trying to perform input or output but is
blocked forever, and if the input or output is annotated with c.

We first define deadlock.

Definition 2.4 (deadlock, deadlock-freedom). A process P is in deadlock if
(i) P 	 (νỹ) (x(z̃)c. Q |R) or P 	 (νỹ) (x〈z̃〉c. Q |R) and (ii) there is no P ′ such
that P −→ P ′. A process P is deadlock-free if there exists no Q such that P −→∗ Q

and Q is in deadlock.

Remark 2.2. In the usual terminology, deadlock often refers to a more restricted
state, where processes are blocked forever because of cyclic dependencies on com-
munications. As the definition above shows, in this paper, deadlock refers to a state
where processes are blocked forever, regardless of cyclic dependencies.

Example 2.3. (νx) (x( )c.0) is in deadlock because the input from x is an-
notated with c but there is no output process. (νx) (νy) (x( )c. y〈 〉 | y( ). x〈 〉) is
also deadlocked because the input on x cannot succeed because of cyclic depen-
dencies on communications on x and y. On the other hand, (νx) (x( ).0) and
(νx) (x〈 〉 |x( )c.0) are not in deadlock.
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Example 2.4. A process (νx) (x( )c.0 | (νy) (y〈x〉 | ∗y(z). y〈z〉)) is deadlock-free.
Although the input from x never succeeds, the entire process is never blocked. In
fact, our previous type systems for deadlock-freedom [17, 34] judges this process to
be well-typed, hence, deadlock-free.

The last example shows a weakness of the deadlock-freedom property: Even if a
process is deadlock-free, communications may not be guaranteed to succeed eventu-
ally. The lock-freedom property defined below requires that every communication
annotated with c eventually succeeds, regardless of whether processes diverge.

Before defining the lock-freedom property, we make an assumption about schedul-
ing. Let us consider the process x〈true〉c | ∗x〈false〉 | ∗x(y) .0. If we do not make
any assumption about scheduling, the process x〈true〉c is not guaranteed to succeed
because ∗x(y) .0 may always communicate with ∗x〈false〉. However, since ∗x(y) .0
is always listening on channel x, it would be reasonable to expect that the process
x〈true〉c actually succeeds to output eventually; hence it is reasonable to consider
the process lock-free. Thus, we assume that scheduling is strongly fair [7, 3] in
the sense that every process that is enabled to participate in a communication in-
finitely many times can eventually participate in a communication. Strong fairness
is actually implemented in programming language Pict [28, 35].

Note that weak fairness [7, 3], which says that every process that is continuously
enabled to participate in a communication can eventually participate in a commu-
nication, is insufficient for our purpose. Let us consider the following process.

x〈 〉 |x( )c. P | ∗x( ). y( ). x〈 〉 | ∗y〈 〉

Here, x is a channel used as a binary semaphore (recall Example 2.2), and x( )c. P is
trying to acquire the semaphore. Since ∗x( ). y( ). x〈 〉 always releases the semaphore
after acquiring it, it is reasonable to expect that the process x( )c. P can eventually
acquire the semaphore. However, that is not guaranteed by weak fairness: The
process x( )c. P is not able to participate in a communication continuously, because
the process is reduced to

x( )c. P | y( ). x〈 〉 | ∗x( ). y( ). x〈 〉 | ∗y〈 〉,

There are subtle problems in formally stating the fairness assumption based on
the reduction semantics defined in Section 2.2. In order to state that a certain pro-
cess has succeeded to communicate, we must identify the process correctly. How-
ever, different processes may be confused because of the following reasons.

• Confusion of different channels. Because α-conversion is allowed in reductions,
different channels may be confused. For example, consider the following reduction:

(νx) (x( ).0 |R1) | (νy) (y( ).0 |R2) −→ (νx) (νy) (x( ).0 | y( ).0 |R).

Because of the possibility of α-conversion, we do not know whether x( ).0 in the
lefthand process corresponds to x( ).0 or y( ).0 in the righthand process.
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• Confusion of structurally congruent processes. Consider the following reduction
sequence:

x( ).0 | ∗x( ).0 | ∗x〈 〉 	 x( ).0 | (∗x( ).0 |x( ).0) | (∗x〈 〉 |x〈 〉)
	 x( ).0 | ∗x( ).0 | ∗x〈 〉 | (x( ).0 | ∗x〈 〉)
−→ x( ).0 | ∗x( ).0 | ∗x〈 〉
−→ x( ).0 | ∗x( ).0 | ∗x〈 〉
−→ · · ·

It is unclear whether the leftmost process x( ).0 or a copy of ∗x( ).0 is reduced in
each step.

To deal with the first problem above, we forbid α-conversion on top-level ν-
prefixes (which stand for already created channels) in normal reduction sequences
defined below (Definition 2.6). An alternative way to avoid renaming of already
created channels is to replace rules (R-New1) and (R-New2) with the following
rule for generating a fresh channel:

(νx) P
ε−→ [y/x]P (y fresh)

For the second problem we assume that an appropriate process is chosen when
there are structurally congruent processes; In the example above, we assume that
there is a step in which the leftmost process is chosen. If we want to avoid
the problem completely, we can tag each process to distinguish between struc-
turally congruent processes. For example, the process x( ).0 | ∗x( ).0 | ∗x〈 〉.0 can
be replaced by x( ). tag〈 〉 | ∗(νtag′) x( ). tag′〈 〉 | ∗(νtag′′) x〈 〉. tag′′〈 〉. (The process
∗(νtag′) x( ). tag′〈 〉 is further encoded into a valid process using the trick described
in Remark 2.1.) Here, to distinguish between different occurrences of the same
process, we replaced each occurrence of 0 with an output on a tag channel. Al-
ternatively, we can introduce a new construct P L to denote a process P tagged
with L. Since processes are created dynamically, we also need a mechanism for
generating fresh tags dynamically. The above solution of using channels as tags
takes advantage of the fact that we already have a construct for generating fresh
channels.

Definition 2.5 (normal form). A process is in normal form if it is of the
form (νx̃) (A1 | · · · |An) and if the variables x̃ are different from each other and
from the free variables of (νx̃) (A1 | · · · |An). (Here, (νx̃) (A1 | · · · |An) stands for
(νx̃)0 if n = 0.) When a process P = (νx̃) (A1 | · · · |An) is in normal form, we
write NewChan(P ) for the sequence x̃. When P 	 Q and Q is in normal form, we
say that Q is a normal form of P .

Definition 2.6 (reduction sequence). Let I be the set Nat of natural num-
bers or a subset {i ∈ Nat | 0 ≤ i ≤ n} for some n ∈ Nat. A set {Pi | i ∈ I} of
processes is called a reduction sequence if Pi−1 −→ Pi holds for every i ∈ I\{0}.
A reduction sequence {Pi | i ∈ I} is normal if (i) Pi is in normal form for every
i ∈ I , and (ii) NewChan(Pi−1) is a prefix of NewChan(Pi) for every i ∈ I\{0}. A
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reduction sequence {Pi | i ∈ I} is complete if I = Nat or I = {i | 0 ≤ i ≤ n} with
Pn �−→,

We write P0 −→ P1 −→ P2 −→ · · · for a reduction sequence {P0, P1, P2, . . . |
Pi −→ Pi+1 for i = 0, 1, 2, . . .}.

Remark 2.3. If we defined (νx) (P |Q) 	 (νx) P |Q to hold in Definition 2.2,
α-conversion on top-level ν-prefixes may occur in a normal reduction sequence.
Suppose P −→ Q with {x, y} ∩ FV (P ) = ∅. Renaming on x and y are carried out
in the following reduction.

(νx) (νy) (x〈true〉 | y〈false〉 |P ) 	 (νx) (x〈true〉) | (νy) (y〈false〉 |P )
	 (νy) (y〈true〉) | (νx) (x〈false〉 |P )
	 (νx) (νy) (x〈false〉 | y〈true〉 |P )
−→ (νx) (νy) (x〈false〉 | y〈true〉 |Q).

Definition 2.7 (fair reduction sequence). A normal, complete reduction se-
quence P0 −→ P1 −→ P2 −→ · · · is fair if the following conditions hold.

(i)If there exists an infinite increasing sequence n0 < n1 < . . . of natural numbers
such that Pni 	−α (νw̃i) (x〈ṽ〉a. Q |x(ỹ)ai . Qi |Ri), then there exists n ≥ n0 such
that Pn 	−α (νw̃) (x〈ṽ〉a. Q |x(ỹ)a′

. Q′ |R′) and (νw̃) (Q | [ỹ �→ ṽ]Q′ |R′) 	 Pn+1.
(ii)If there exists an infinite increasing sequence n0 < n1 < . . . of natural numbers

such that Pni 	−α (νw̃i) (x(ỹ)a. Q |x〈ṽi〉ai . Qi |Ri), then there exists n ≥ n0 such
that Pn 	−α (νw̃) (x(ỹ)a. Q |x〈ṽ〉a′

. Q′ |R′) and (νw̃) ([ỹ �→ ṽ]Q |Q′ |R′) 	 Pn+1.
(iii)If Pi 	−α (νw̃) (if v then Q1 else Q2 |R) and v = true or false for some

i, then there exists n ≥ i such that Pn 	−α (νw̃) (if v then Q1 else Q2 |R′),
(νw̃) (Q′ |R′) 	 Pn+1, and Q′ = Q1 if v = true and Q′ = Q2 otherwise.

Now we define the lock-freedom property (relative to the fairness assumption).
Intuitively, a process is lock-free if in any fair reduction sequence a process trying to
perform communication annotated with c eventually communicates with another
process.

Definition 2.8 (lock-freedom). A process P0 in normal form is lock-free (un-
der fair scheduling) if the following conditions hold for any fair reduction sequence
P0 −→ P1 −→ P2 −→ · · ·:

1.If Pi 	−α (νw̃) (x〈ṽ〉c. Q |R) for some i ≥ 0, there exists n ≥ i such that
Pn 	−α (νw̃′) (x〈ṽ〉c. Q |x(ỹ)a. R1 |R2) and (νw̃′) (Q | [ỹ �→ ṽ]R1 |R2) 	 Pn+1.

2.If Pi 	−α (νw̃) (x(ỹ)c. Q |R) for some i ≥ 0, there exists n ≥ i such that
Pn 	−α (νw̃′) (x(ỹ)c. Q |x〈ṽ〉a. R1 |R2) and (νw̃′) ([ỹ �→ ṽ]Q |R1 |R2) 	 Pn+1.

A process P is defined to be lock-free if there is a normal form of P that is lock-free.

Note that lock-freedom is a stronger property than deadlock-freedom.
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Example 2.5. The deadlocked processes in Example 2.3 are not lock-free. The
process in Example 2.4 is deadlock-free but not lock-free. The process
(νx) (x〈 〉 |x( )c.0) | (νy) (y〈 〉 | ∗y( ). y〈 〉) is lock-free: On the fairness assumption,
the input from x succeeds eventually.

3. TYPE SYSTEM FOR LOCK-FREEDOM

This section introduces a type system that guarantees the lock-freedom property.
We first explain general ideas of our type system (in Section 3.1). Then we define
the type system and show that it is sound in the sense that every closed well-typed
process is lock-free. The usage of fairness assumption in the soundness proof may
be interesting for an expert.

3.1. Basic Ideas
As in our previous type systems for deadlock-freedom [14, 17, 34], we augment

channel types with information about how each channel is used. In our previous
type systems, the type of a channel used for exchanging integers is of the form
[int ]/U , where the part U , called a usage, describes how the channel is used for
input and output. The usages are defined by the following grammar in [34]:

U (usages) ::= 0 | Ia.U | Oa.U | (U1 |U2) | ∗U
a (attributes) ⊆ {c,o}

The usage 0 describes a channel that cannot be used at all. Ia.U and Oa.U describe
channels that can be first used for input and output respectively and then used
according to U . An attribute a attached to I or O expresses whether a channel
of that usage must be used for input or output (o ∈ a in that case) and whether
the input or output is guaranteed to succeed (c ∈ a in that case). U1 |U2 describes
a channel that is used according to U1 by one process and according to U2 by
another process. A channel of usage ∗U can be used according to U by infinitely
many processes. The usage of each channel tells which communication may or may
not succeed. For example, suppose that a channel has usage Ia1 .0 | Ia1 .0 |Oa2 .0.
Since there is only one O, we know that at least one of the two inputs will fail.
On the other hand, we know that if one of the two inputs is guaranteed to be
executed, the output is guaranteed to succeed. That is one of the key ideas behind
our previous type systems for deadlock-freedom [14, 17, 34].

To ensure the lock-freedom property, we replace an attribute a above with more
precise information: how many reduction steps it takes for a process to become
ready to input or output a value on the channel, and how many steps it takes for
the process to find a communication partner after it becomes ready to communicate.
For example, the usage I t1

t2 .0 of a channel means that some process must become
ready to input a value on the channel within t1 steps, and that once a process
becomes ready to input a value on the channel, it succeeds to find an output
process to communicate with within t2 steps. For example, the usage of channel x

in the process x( ).0 | y( ). x〈 〉 | y〈 〉 is expressed by I0
1 .0 |O1

0.0: The part I0
1 .0 means

that a process becomes ready to input a value immediately (since x( ).0 appears at
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the top-level), and that the input process may have to wait for one step (since the
communication on y must complete before the output process x〈 〉 is executed).

To see how a lock is detected, consider a (dead)locked process x( )c. y〈 〉 | y( ). x〈 〉.
Suppose that the usage of x is It1

t2 .0 |Ot3
t4 .0 and that of y is It5

t6 .0 |Ot7
t8 .0. Since the

input process x( )c. y〈 〉 must wait until the output process x〈 〉 is executed, it must
be the case that t3 ≤ t2. Similarly, we have the constraint t7 ≤ t6 on the usage
of y. Moreover, from the sub-process x( )c. y〈 〉, we know that y is used for output
only after the input on x succeeds. So, it must be the case that t2 < t7, since t7
should be greater than or equal to t2 (the number of steps required for the input
process on x to find a communication partner), plus another step required for the
communication on x to complete. Similarly, we get the constraint t6 < t3 from the
other sub-process y( ). x〈 〉. From these constraints, we have t2 < t7 ≤ t6 < t3 ≤ t2,
a contradiction. Thus, a finite upper-bound on the number of reduction steps
cannot be assigned to the input on x, hence we can reason that the process may
not be lock-free.

As another example, consider a (live)locked process x( )c.0 | y〈x〉 | ∗y(z). y〈z〉.
Suppose that y is a channel used for communicating a channel of usage Ot1

t2 .0 and
that it takes t3(> 0) steps for a message sent on y to be received. The subprocess
y(z). y〈z〉 receives a channel z of usage Ot1

t2 .0, so that it must be guaranteed that
z is used for output within t1 steps after the reception. However, since it resends
z on y, it takes t3 steps for z to be received by another process, and t1 steps for z

to be used for output by the process. So, it must be the case that t1 + t3 ≤ t1, a
contradiction. Therefore, we know that the whole process may not be lock-free.

3.2. Usages and Types
Based on the ideas explained in the previous section, we define a type system

that enables systematic reasoning about lock-freedom. We first define the formal
syntax of usages and types.

Definition 3.9 (usages). The set U of usages is given by the following syntax.

U ::= 0 | αto
tc

.U | (U1 |U2) | ∗U
α ::= I | O

to, tc ∈ Nat+

Here, Nat+ denotes the set Nat ∪ {∞}.
As explained in the previous subsection, αto

tc
.U means that there is an obligation

to execute the action α within time to (where the execution means that a process
becomes ready to perform the action, not that it actually succeeds in communi-
cating with another process), and then there is a capability to successfully find a
communication partner and start a communication within time tc. (It takes an-
other step to complete the communication.) We call to the time limit of execution
of an action, and tc the time limit of success of an action. As defined above, a time
limit t is either a natural number or ∞. Intuitively, 1 denotes the time required
for performing one-step reduction. (Actually, a time limit t denotes abstract length
of time rather than the number of reduction steps: see Remark 3.4 below.) The
time limit ∞ means that there is no time limit. For example, O∞

tc
.0 means that an

output may never be performed. Oto∞.0 means that an output may never succeed.
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We extend the summation n1 + n2 of natural numbers by adding the rule ∀t ∈
Nat+.(∞ + t = t + ∞ = ∞). We also extend the relation < on natural numbers
by adding the rule ∀n ∈ Nat.(n < ∞).

Note that the new usages express more precise information than those in the
previous type systems [34, 17]. The usages I{c}.U and I{o}.U in the previous type
systems are expressed by I∞

t .U and It
∞.U respectively for some t ∈ Nat.

Notation 3.3. We give a higher precedence to prefixes (αto
tc

. and ∗) than to | .
So, Ito

tc
.U1 |U2 means (Ito

tc
.U1) |U2, not Ito

tc
.(U1 |U2). We write α for the co-action

of α (O is the co-action of I and I is the co-action of O).

Definition 3.10 (types). The set of types is given by the following syntax.

τ ::= bool | [τ1, . . . , τn]/U

[τ1, . . . , τn]/U denotes the type of a channel that can be used for communicating
a tuple of values of types τ1, . . . , τn. The channel must be used according to U .

We introduce several operations on usages and types. t U represents the usage
of a channel that is used according to U after a delay of at most time t.

Definition 3.11. A unary operation t on usages is defined inductively by:

t 0 = 0 t αto
tc

.U = αto+t
tc

.U

t (U1 |U2) = t U1 | t U2 t (∗U) = ∗ t U

Note that t αto
tc

.U is not αto+t
tc+t.U but αto+t

tc
.U . Usage t αto

tc
.U means that a

channel can be used according to αto
tc

.U after a delay of at most t. So, it may take
time to + t until the action α is executed. On the other hand, since the action
may be executed immediately (without waiting for time t), the action should be
guaranteed to succeed within time tc.

Constructors and operations on usages are extended to operations on types.

Definition 3.12. Operations | , ∗, t on types are defined by:

bool | bool = bool ([τ̃ ]/U1) | ([τ̃ ]/U2) = [τ̃ ]/(U1 |U2)
∗bool = bool ∗[τ̃ ]/U1 = [τ̃ ]/∗U1

t bool = bool t [τ̃ ]/U1 = [τ̃ ]/ t U1

3.3. Reliability of Usages
As in the type systems for deadlock-freedom [17, 34], the usage of each channel

must be consistent (reliable) in the sense that the success of each input/output
action is guaranteed by an execution of its co-action. For example, consider the
usage I∞

tc
.U1 |Oto∞.U2. In order for an input process to find a communication partner

within time tc, to must be shorter than or equal to tc. This consistency should be
preserved during the whole computation. After a communication on a channel of
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usage I∞
tc

.U1 |Oto∞.U2 happens, the channel is used according to U1 |U2. So, U1 |U2

must be also consistent. To state such a condition, we first define reduction of a
usage. Similarly to the reduction relation on processes defined in Section 2, the
reduction relation on usages is defined via a structural relation and a reduction
relation.

Definition 3.13.
∼= is the least congruence relation satisfying the following

rules:

•Laws for 0:

U ∼= U |0
•Laws for | :

U1 |U2
∼= U2 |U1

(U1 |U2) |U3
∼= U1 | (U2 |U3)

•Laws for ∗U :

∗0 ∼= 0

∗U ∼= ∗U |U

∗(U1 |U2) ∼= ∗U1 | ∗U2

∗∗U ∼= ∗U

The last rule does not appear in the usual definition of structural congruence
of processes [33] or in the definition of the structural preorder on processes in
Section 2. It is better to have this rule, because we use the congruence relation
on usages to define not only a reduction relation (Definition 3.14 below) but also
a subusage relation (Definition 3.17). This rule allows more processes to be typed:
See Remark 3.7.

Definition 3.14 (usage reduction). A binary relation −→ on usages is the
least relation closed under the following rules:

Ito
tc

.U1 |Ot′o
t′c

.U2 |U3 −→ U1 |U2 |U3

U1
∼= U ′

1 U ′
1 −→ U ′

2 U ′
2
∼= U2

U1 −→ U2

−→∗ is the reflexive and transitive closure of −→.

A usage U is defined to be reliable if after any reduction steps, whenever it
contains an input/output usage with a time limit tc of success (i.e., it is structurally
congruent to I to

tc
.U1 |U2), it contains an output/input usage with an equal or shorter
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time limit of execution. We first define predicates obα and capα to judge whether
a usage contains an obligation to execute or a capability to successfully perform an
action α within a given time limit, and then give a formal definition of reliability.

Definition 3.15 (obligations and capabilities). The relations obI , obO(⊆ Nat+×
U) between a time limit and a usage are defined by: obα(t, U) if and only if t = ∞ or
∃to, tc, U1, U2.((U ∼= αto

tc
.U1 |U2)∧ (to ≤ t)). The relations capI , capO(⊆ Nat+ ×U)

are defined by: capα(t, U) if and only if t = ∞ or ∃to, tc, U1, U2.((U ∼= αto
tc

.U1 |U2)∧
(tc ≤ t)).

Definition 3.16 (reliability). If obα(tc, U2) holds whenever U −→∗ U ′ and
capα(tc, U ′), U is called reliable, and written rel(U). A type τ is reliable, written
rel(τ), if it is of the form [τ̃ ]/U and rel(U) holds.

Reliability rel(U) is decidable: As in a type system for deadlock-freedom [17],
the problem of deciding rel(U) can be reduced to the reachability problem of Petri
nets [8]. In practice, however, it may be necessary to approximate the problem to
solve it efficiently [17].

Remark 3.4. Because of the definitions above, time limits in this section should
be considered to express not the number of reduction steps but more abstract length
of time. Consider a usage U = Ot

∞.0 | ∗I∞
t .Ot

∞.0. This is the usage of a binary
semaphore (recall Example 2.2): It means that every process can acquire the lock
within time t and that every process having acquired the lock will release the lock
within t. Although the usage U is reliable, actually some input action (the acquisi-
tion of the lock) may not succeed in t reduction steps: Suppose that t expresses the
number of reduction steps, and that multiple processes are simultaneously trying
to acquire the lock. Although the lock is always released within t reduction steps,
if one process succeeds to acquire the lock, the other waiting processes must wait
again until t steps of reduction are performed. We will redefine reliability in Sec-
tion 4, so that a time limit exactly corresponds to an upper-bound of the number
of (parallel) reduction steps.

3.4. Subusage and subtyping
The subusage relation defined below allows one usage to be viewed as another

usage. Consider a usage I 2
2 .0. It means that an input must be executed within

time 2, and after that, the input is guaranteed to succeed within time 2. If one
has a channel of that usage, it is safe to assume that an input must be executed
within shorter time, e.g., 1, and that the input is guaranteed to succeed within
longer time, e.g., 3. So, I2

2 .0 is a subusage of I1
3 .0 and written I2

2 .0 ≤ I1
3 .0.

Definition 3.17. The subusage relation ≤ on usages is the least reflexive and
transitive relation closed under the following rules:

U ∼= U ′

U ≤ U ′ (SubU-Cong)
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α∞
tc

.U ≤ 0 (SubU-Zero)

αto
tc

.U1 | to + tc + 1 U2 ≤ αto
tc

.(U1 |U2) (SubU-Delay)

U ≤ U ′ t′o ≤ to tc ≤ t′c

αto
tc

.U ≤ α
t′o
t′c

.U ′
(SubU-Act)

U1 ≤ U ′
1 U2 ≤ U ′

2

U1 |U2 ≤ U ′
1 |U ′

2

(SubU-Par)

U ≤ U ′

∗U ≤ ∗U ′ (SubU-Rep)

Rule (SubU-Zero) indicates that a channel whose time limit of execution is ∞
need not be used at all. Rule (SubU-Delay) allows some usage to be delayed until
a communication succeeds. For example, consider the usage I 1

1 .0 |O4
1.0. The part

I1
1 .0 implies that an input is executed within time 1 and then it succeeds within time

1 (plus time 1 before the input completes). So, it is fine that an output is performed
within time 1 after the input succeeds. Therefore, I1

1 .0 |O4
1 .0 can be considered a

subusage of I1
1 .(0 |O1

1 .0), which says that an output should be executed only after
an input succeeds. Note that the converse does not hold: I1

1 .(0 |O1
1 .0) also implies

that an output can be executed only after an input succeeds, while I1
1 .0 |O4

1.0 allows
an output to be executed immediately. Rule (SubU-Act) means that it is safe to
assume that a time limit of execution is shorter than the actual time limit, while
the time limit of success can be assumed to be longer than the actual one.

We conjecture that the subusage relation is decidable (although we have not
proved it yet). A non-trivial point is that in order to check whether U ≤ U ′

1 |U ′
2

holds by using rule (SubU-Par), we have to split U appropriately. To overcome
the problem, we can use a technique used in proof search in linear logic [11, 14].

Remark 3.5. In our previous type system for deadlock-freedom [17], the sub-
usage relation was defined co-inductively by using a simulation relation. This paper
uses the axiomatic definition for simplicity.

The subusage relation is extended to the following subtyping relation.

Definition 3.18 (subtyping). A subtyping relation ≤ is the least relation
closed under the following rules:

bool ≤ bool (SubT-Bool)

U ≤ U ′

[τ̃ ]/U ≤ [τ̃ ]/U ′ (SubT-Chan)
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Remark 3.6. Instead of rule (SubT-Chan), it is possible to use the following
more general rule, as in [25]:

U ≤ U ′

τ̃ ≤ τ̃ ′ if U ′ contains I

τ̃ ′ ≤ τ̃ if U ′ contains O

[τ̃ ]/U ≤ [τ̃ ′]/U ′

The resulting type system allows more processes to be typed. For simplicity, how-
ever, we did not choose this rule.

Definition 3.19. A unary predicate noob on types is defined by: noob(τ) if and
only if τ = bool or τ = [τ̃ ]/U and U ≤ 0.

3.5. Type Environment
A type environment is a mapping from a finite set of variables to types. We

use a meta-variable Γ to denote a type environment. The domain of Γ is denoted
by dom(Γ). We write ∅ for the type environment whose domain is empty. When
x �∈ dom(Γ), we write Γ, x : τ for the type environment Γ′ satisfying dom(Γ′) =
dom(Γ) ∪ {x}, Γ′(x) = τ , and Γ′(y) = Γ(y) for y ∈ dom(Γ). We extend the
notation to Γ, v : bool. If τ = bool, then Γ, b : τ (where b ∈ {true, false}) denotes
the same type environment as Γ; otherwise Γ, b : τ is undefined. We abbreviate
∅, v1 : τ1, . . . , vn : τn to v1 : τ1, . . . , vn : τn. We write Γ\S for the type environment Γ′

such that dom(Γ′) = dom(Γ)\S and Γ′(x) = Γ(x) for each x ∈ dom(Γ′).
The operations and relations on usages or types are pointwise extended to those

on type environments as follows.

Definition 3.20 (operations on type environments). The operations | , ∗, t

on type environments are defined by:

dom(Γ1 |Γ2) = dom(Γ1) ∪ dom(Γ2)

(Γ1 |Γ2)(x) =

⎧⎨
⎩

Γ1(x) |Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)
Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)

dom(∗Γ) = dom(Γ)
(∗Γ)(x) = ∗(Γ(x))
dom( t Γ) = dom(Γ)
( t Γ)(x) = t (Γ(x))

Definition 3.21. A type environment Γ is reliable, written rel(Γ), if rel(Γ(x))
holds for each x ∈ dom(Γ).
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∅ � 0 (T-Zero)
Γ, x : [τ1, . . . , τn]/U � P a = c ⇒ tc < ∞

tc + 1 (v1 : τ1 | · · · | vn : τn |Γ) |x : [τ1, . . . , τn]/O0
tc

.U � x〈v1, . . . , vn〉a. P

(T-Out)
Γ, x : [τ1, . . . , τn]/U, y1 : τ1, . . . , yn : τn � P a = c ⇒ tc < ∞

( tc + 1 Γ), x : [τ1, . . . , τn]/I0
tc

.U � x(y1, . . . , yn)a. P

(T-In)
Γ1 � P1 Γ2 � P2

Γ1 |Γ2 � P1 |P2

(T-Par)

Γ, x : [τ1, . . . , τn]/U � P rel(U)

Γ � (νx) P
(T-New)

Γ � P Γ � Q

( 1 Γ) | v : bool � if v then P else Q
(T-If)

Γ � P

∗Γ � ∗P (T-Rep)

Γ′ � P Γ ≤ Γ′

Γ � P
(T-Weak)

FIG. 1. Typing Rules

Definition 3.22. obx(t, Γ), obx(t, Γ), capx(t, Γ), and capx(t, Γ) are defined by:

obxα(t, Γ) ⇐⇒ ∃τ̃ , U.(Γ(x) = [τ̃ ]/U ∧ obα(t, U))
capxα(t, Γ) ⇐⇒ ∃τ̃ , U.(Γ(x) = [τ̃ ]/U ∧ capα(t, U))

Here, xα denotes x if α = I and x if α = O.

The subtyping relation is extended to a relation on type environments below.
Γ1 ≤ Γ2 means that Γ1 represents a more liberal usage of free channels than Γ2.
For example,

(x : [ ]/I∞∞ .0, y : [ ]/I∞
∞ .0) ≤ x : [ ]/I0

∞.0

holds. The lefthand type environment means that x and y can be used for input
but that they need not be used (since the time limit for execution is ∞). Therefore,
there is no problem even if x is used immediately and y is not used at all as specified
by the righthand type environment.

Definition 3.23. A binary relation ≤ on type environments is defined by: Γ1 ≤
Γ2 if and only if (i) dom(Γ1) ⊇ dom(Γ2), (ii) Γ1(x) ≤ Γ2(x) for each x ∈ dom(Γ2),
and (iii) noob(Γ1(x)) for each x ∈ dom(Γ1)\dom(Γ2).

3.6. Typing Rules
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A type judgment is of the form Γ � P , which means that P is well typed under
Γ. Here, we assume that the bound variables in P are always different from each
other and the variables in dom(Γ). are given in Figure 1. Basically, we accumulate
information about the usage of a channel in type environments, and check the
consistency of the accumulated information in rule (T-New). We explain each rule
below.

(T-Zero). The process 0 does nothing. So, it is well-typed under the empty
type environment.

(T-Out). The left premise implies that P uses x as a channel of usage U and
uses other variables according to Γ. Since x〈v1, . . . , vn〉a. P uses x for output before
that, the total usage of x is expressed by O0

tc
.U . (Here, the time limit of execution

of an output can be 0 since an output is executed right now.) Other variables
are used by P and the receiver of [v1, . . . , vn] according to v1 : τ1 | · · · | vn : τn |Γ
only after the communication on x succeeds. We use v1 : τ1 | · · · | vn : τn |Γ instead
of Γ, v1 : τ1, . . . , vn : τn because vi and vj may refer to the same variables. It may
take time tc until the communication is enabled and it takes time 1 before the
communication completes. Therefore, the total use of other variables is expressed
by tc + 1 (v1 : τ1 | · · · | vn : τn |Γ). The righthand premise requires that the time
limit of success must be finite if the output is annotated with c.

(T-In). This is similar to rule (T-Out). Since P uses x according to the usage
U , the total usage of x is expressed by I0

tc
.U . Also, since x(y1, . . . , yn)a. P executes

P only after the communication on x has completed, the total use of other variables
is expressed by tc + 1 Γ.

(T-Par). The premises imply that P1 uses variables as specified by Γ1, and
in parallel to this, P2 uses variables as specified by Γ2. So, the type environ-
ment of P1 |P2 should be expressed as the combination Γ1 |Γ2. For example, if
Γ1 = x : [ ]/Ito1

tc1
.0 and Γ2 = x : [ ]/Oto2

tc2
.0, then P1 |P2 should be well typed under

x : [ ]/(Ito1
tc1

.0 |Oto2
tc2

.0).

(T-New). (νx) P is well typed if P is well typed and it uses x as a channel of a
reliable usage.

(T-If). Since if v then P else Q executes either P or Q, P and Q must be
well typed under the same type environment Γ. Assuming that it takes time 1 to
check whether v is true or false, the total use of variables in if v then P else Q is
expressed by 1 Γ | v : bool.

(T-Rep). The process ∗P runs infinitely many copies of P in parallel and the
premise implies that each P uses variables as specified by Γ. Therefore, ∗P uses
variables as specified by ∗Γ as a whole.

(T-Weak). Γ ≤ Γ′ means that Γ represents a more liberal use of variables than
Γ′. So, if P is well typed under Γ′, so is under Γ.

Remark 3.7. Consider a process ∗∗x〈 〉. If the rule ∗∗U ∼= ∗U in Definition 3.13
were not allowed, we would not be able to derive x : [ ]/∗Oto

tc
.0 � ∗∗x〈 〉, although

the process exhibits the same behavior as ∗x〈 〉 and x : [ ]/∗Oto
tc

.0 � ∗x〈 〉 holds.
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3.7. Type Soundness
We show that our type system is sound in the sense that any closed well-typed

process is lock-free (Corollary 3.6). We need a proof technique that is different from
those used in the usual proofs of type soundness. Usually, type soundness is a safety
property that nothing bad happens; hence it follows immediately from a subject
reduction property that well-typedness is preserved by reductions. On the other
hand, soundness of our type system is a liveness property that a communication
succeeds eventually under fair scheduling. We show this property by using the
subject reduction theorem (Theorem 3.1) and a property that some progress is
always made by reduction (Lemma 3.2).

As in the linear π-calculus [16], the type environment of a process may change
during reduction. For example, while a process x〈 〉 |x( ).0 is well typed under
x : [ ]/(Oto

tc
.0 | It′o

t′c
.0), the reduced process 0 is well typed under x : [ ]/0. This change

of a type environment is captured by the following relation Γ l−→ Δ.

Definition 3.24. A ternary relation Γ l−→ Δ is defined to hold if one of the
following conditions holds:

1. l = ε and Γ = Δ.
2. l = comx, Γ = (Γ′, x : [τ̃ ]/U), Δ = (Γ′, x : [τ̃ ]/U ′), and U −→ U ′ for some

Γ′, τ̃ , U , and U ′.

We write Γ −→ Δ when Γ l−→ Δ holds for some l.

Theorem 3.1 (subject reduction). If Γ � P and P
l−→ Q, then there exists Δ

such that Δ � Q and Γ l−→ Δ.

Proof. See Appendix A.1.2.

The following lemma implies that if a process has an obligation to execute an
input/output action within a certain time limit but is waiting for the success of
some communication, it fulfills the obligation within a shorter time limit after the
success of the communication.

Lemma 3.2. If Γ, x : [τ̃ ]/U � x〈ṽ〉a. P |x(ỹ)a′
. Q, then there exist Δ and U ′ such

that Δ, x : [τ̃ ]/U ′ � P | [ỹ �→ ṽ]Q and Γ ≤ 1 Δ with U −→ U ′.

Proof. See Appendix A.1.2.

The following main theorem says that if the type environment of a process con-
tains an obligation to execute an input or output action, the action is indeed ex-
ecuted eventually (property A below), and that if the type environment contains
a capability to successfully complete an input or output action, the action indeed
succeeds eventually (property B).
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Theorem 3.3. Suppose that P0 −→ P1 −→ P2 −→ · · · is a fair reduction se-
quence and that Γ � P0 holds for some Γ with rel(Γ). If t < ∞, the following
properties hold.

A(Obligations). If obx(t, Γ) (obx(t, Γ), resp.), then there exists n ≥ 0 such that
Pn 	−α (νw̃) (x〈ṽ〉a. Q1 |Q2) (Pn 	−α (νw̃) (x(ỹ)a. Q1 |Q2), resp.).

B(Capabilities). Suppose that P0 is of the form P01 |P02. Suppose also that
Γ1 � P01 and Γ2 � P02 hold with Γ = Γ1 |Γ2.

–If P01 = x〈ṽ〉a. Q and capx(t, Γ1), then there exists n ≥ 0 such that Pn 	−α

(νw̃) (x〈ṽ〉a. Q |x(ỹ)a′
. R1 |R2) and (νw̃) (Q | [ỹ �→ ṽ]R1 |R2) 	 Pn+1.

–If P01 = x(ỹ)a. Q and capx(t, Γ1), then there exists n ≥ 0 such that Pn 	−α

(νw̃) (x(ỹ)a. Q |x〈ṽ〉a′
. R1 |R2) and (νw̃) ([ỹ �→ ṽ]Q |R1 |R2) 	 Pn+1.

We need some auxiliary lemmas to prove the theorem. Lemma 3.4 means that
if a usage U says that some action must be executed within time t and if U is a
subusage of V , then V also guarantees that the action is executed with the same
time limit. The action may be executed only after another action is executed (recall
rule (SubU-Delay)); this is taken care of by the case (ii) of the following lemma..

Lemma 3.4. If obα(t, U) and U ≤ V , then either (i) obα(t, V ) holds or (ii)
capα(tc, U) holds for some tc such that tc < t.

Proof. See Appendix A.1.1.

The following lemma states that reliability is preserved by usage reductions and
the subusage relation. The relation −→∗≤ is the composition of the relations −→∗

and ≤.

Lemma 3.5. If rel(U) and U −→∗≤ V , then rel(V ) also holds. If rel(Γ) and
Γ −→∗≤ Δ, then rel(Δ) also holds.

Proof. See Appendix A.1.1.

Proof (Proof of Theorem 3.3). We prove this theorem by course-of-values in-
duction on t. Suppose that the theorem holds for any t′ such that t′ < t.

A. We show only the case for obO(t, U). The other case is similar. By the
assumption Γ � P , there exist P01 and P02 such that

P01 is an output, an input, or a conditional process
P0 	−α (νw̃) (P01 |P02)
Δ1, w̃ : σ̃1, x : [τ̃ ]/U1 � P01

Δ2, w̃ : σ̃2, x : [τ̃ ]/U2 � P02

obO(t, U1)
Γ ≤ Δ1 |Δ2, x : [τ̃ ]/(U1 |U2)
rel(w̃ : σ̃1 | w̃ : σ̃2).

Without loss of generality, we can assume (νw̃) (P01 |P02) −→ P1 (because other-
wise, we can get a fair reduction sequence (νw̃) (P01 |P02) −→ P ′

1 −→ P ′
2 −→ · · ·

with Pi 	−α P ′
i ). Case analysis on P01.
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– Case where P01 is a conditional process if b then P ′
01 else P ′′

01: b must
be true or false. Suppose b = true (The case for b = false is similar). By the
assumption of fairness, there exists n such that

Pn 	−α (νw̃) (νũ) (P01 |R)
(νw̃) (νũ) (P ′

01 |R) 	 Pn+1

P02 −→∗ (νũ) R

By Theorem 3.1, we have

Δ′
2, w̃ : σ̃′

2, x : [τ̃ ]/U ′
2 � (νũ) R

(Δ2, w̃ : σ̃2, x : [τ̃ ]/U2) −→∗ (Δ′
2, w̃ : σ̃′

2, x : [τ̃ ]/U ′
2).

By rule (T-If), we also have

Δ′
1, w̃ : σ̃′

1, x : [τ̃ ]/U ′
1 � P ′

01

(Δ1, w̃ : σ̃1, x : [τ̃ ]/U1) ≤ 1 (Δ′
1, w̃ : σ̃′

1, x : [τ̃ ]/U ′
1)

So, we have

Δ′
1 |Δ′

2, x : [τ̃ ]/(U ′
1 |U ′

2) � Pn+1.

By the condition

(Δ1, w̃ : σ̃1, x : [τ̃ ]/U1) ≤ 1 (Δ′
1, w̃ : σ̃′

1, x : [τ̃ ]/U ′
1),

obO(t, U1) and Lemma 3.4, it must be the case that either obO(t, 1 U ′
1) holds or

capI(tc, U1) holds for some tc with tc < t. In the former case, it must be the case
that obO(t − 1, U ′

1). So, we can obtain the required result by applying property A
of the induction hypothesis to the fair reduction sequence Pn+1 −→ Pn+2 −→ · · ·.
In the latter case, it must be the case that obO(tc, U1 |U2). Applying property A
of the induction hypothesis to the fair reduction sequence P0 −→ P1 −→ · · ·, we
obtain the required result.

– Case where P01 is an output or input process: If P01 = x〈ṽ〉a. R, then the
result follows immediately. Otherwise, suppose P01 = y〈ṽ〉a. R with y �= x. (The
case where P01 is an input process is similar.) Then, it must be the case that

(Δ1, w̃ : σ̃1)(y) = [τ̃ ′]/Uy

Uy
∼= O

toy

tcy
.Vy |V ′

y

tcy < t

Therefore, by property B of the induction hypothesis, there exists n such that

Pn 	−α (νw̃) (νũ) (y〈ṽ〉a. R | y(z̃)a′
. R′ |R′′)(= P ′

n)
(νw̃) (νũ) (R | [ṽ/z̃]R′ |R′′) 	 Pn+1

P02 −→∗ (νũ) (y(z̃)a′
. R′ |R′′)

By Theorem 3.1, we have

Δ′
2, w̃ : σ̃′

2, x : [τ̃ ]/U ′
2 � (νũ) (y(z̃)a′

. R′ |R′′)
(Δ2, w̃ : σ̃2, x : [τ̃ ]/U2) −→∗ (Δ′

2, w̃ : σ̃′
2, x : [τ̃ ]/U ′

2)
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for some Δ′
2, σ̃

′
2, and U ′

2. By the former condition and the typing rules, it must be
the case that

Δ3, x : [τ̃ ]/U3, ũ : σ̃3 � y(z̃)a′
. R′

Δ4, x : [τ̃ ]/U4, ũ : σ̃4 � R′′

(Δ′
2, w̃ : σ̃′

2, x : [τ̃ ]/U ′
2) ≤ (Δ3 |Δ4), x : [τ̃ ]/(U3 |U4)

So, we obtain

(Δ1, w̃ : σ̃1) | (Δ3, ũ : σ̃3), x : [τ̃ ]/(U1 |U3) � P01 | y(z̃)a′
. R′.

By Lemma 3.2, we have

Θ, x : [τ̃ ]/U5 � R | [z̃ �→ ṽ]R′

U1 |U3 ≤ 1 U5

for some Θ and U5. By the latter condition, obO(t, U1), and by Lemma 3.4, it must
be the case that either obO(t, 1 U5) holds or capI(tc, U1 |U3) holds for some tc with
tc < t. In the former case, we have obO(t − 1, U5). By Lemma 3.5, we have

(Θ\{ũ, w̃}) | (Δ4\w̃), x : [τ̃ ]/(U5 |U4) � Pn+1

and rel((Θ\{ũ, w̃}) | (Δ4\w̃), x : [τ̃ ]/(U5 |U4)). Hence, we can obtain the required
result by applying property A of the induction hypothesis to the fair reduction
sequence Pn+1 −→ Pn+2 −→ · · ·.
In the latter case, we have

(Δ1 |Δ3 |Δ4)\{w̃}, x : [τ̃ ]/(U1 |U3 |U4) � P ′
n

obO(tc, U1 |U3 |U4).

So, applying property A of the induction hypothesis to the fair reduction sequence
P ′

n −→ Pn+1 −→ · · ·, we obtain the required result.

B. We show only the first case. The second case is similar. Suppose there ex-
ists no such n. Then, it must be the case that Pi 	−α (νũi) (x〈ṽ〉a. Q |Ri) and
R −→ (νũ1) R1 −→ (νũ2) R2 −→ · · · is a fair reduction sequence. We show that
there exist infinitely many i such that Ri 	−α (νw̃i) (x(ỹ)a′

. R′
i |R′′

i ), which con-
tradicts with the assumption that the reduction sequence P0 −→ P1 −→ P2 −→ · · ·
is fair. Let j be an arbitrary natural number. Then, by the subject reduc-
tion theorem (Theorem 3.1), there must exist Γ′

2 such that Γ′
2 � (νũj) Rj and

Γ2 −→∗ Γ′
2. Let Γ′ = Γ1 |Γ′

2. Since rel(Γ) and Γ ≤−→∗ Γ′ hold, rel(Γ′) follows
by Lemma 3.5. By the assumption capx(t, Γ1), we have obx(t, Γ′). We also have
that Γ′ � (νũj) (x〈ṽ〉a. Q |Rj). Therefore, by property A, there exists i ≥ j such
that Ri 	−α (νw̃i) (x(ỹ)a′

. R′
i |R′′

i ). Thus, we have shown that there exist infinitely
many i such that Ri 	−α (νw̃i) (x(ỹ)a′

. R′
i |R′′

i ).

Corollary 3.6 (lock-freedom). If Γ � P and rel(Γ), then P is lock-free.
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Proof. Suppose Γ � P , rel(Γ), and P −→∗ Pi 	−α (νw̃) (x〈ṽ〉c. Q |R). By
Theorem 3.1, we have Γ′, w̃ : τ̃ � x〈ṽ〉c. Q |R and rel(Γ′, w̃ : τ̃ ) for some Γ′ and τ̃ .
Moreover, by the typing rules, it must be the case that Δ1 � x〈ṽ〉c. Q, Δ2 � R,
capx(t, Δ1), and (Γ′, w̃ : τ̃) ≤ Δ1 |Δ2 for some Δ1, Δ2, and t (< ∞). By Lemma 3.5,
we have rel(Δ1 |Δ2). So, the required result follows from property B of Theo-

rem 3.3. The case for input is similar.

3.8. Examples
In this subsection, we give examples to show how our type system can be used

to reason about lock-freedom.

Example 3.6. A concurrent object can be modeled by multiple processes, each
of which handles each method of the object [27, 18, 14]. For example, a point object
is expressed by the following process:

(νs : [int , int ]/(O0
∞.0 | ∗I∞

0 .O0
∞.0))

(s〈0, 0〉
| ∗move(dx : int , dy : int , r : [ ]/O1

∞.0). s(x, y). (s〈x + dx, y + dy〉 | r〈 〉)
| ∗read(r : [int , int ]/O1

∞.0). s(x, y). (s〈x, y〉 | r〈x, y〉))
Here, bound variables are annotated with types for clarity. The channel s is used
to store the current location. s〈0, 0〉 means that the current location is (0, 0).
The process above waits to receive request messages on channels move and read.
For example, when a request move〈dx, dy, r〉 arrives, it reads the current location,
updates it, and sends an acknowledgment on r.

The type of channel s implies that an output is performed immediately after s is
created, and that whenever an input is performed, it succeeds eventually and after
that, an output is performed immediately. The type of (two occurrences of) channel
r implies that a reply is sent in time 1. So, if the process above is well-typed, a
client process (like (νr) (read〈r〉 | r(x, y)c. · · ·)) can receive a reply in time 1.

Let us briefly check that the process above is indeed well-typed. First, consider
the sub-process ∗read(r). s(x, y). (s〈x, y〉 | r〈x, y〉). By using rules (T-Zero), (T-

Out) and (T-Par), we obtain

s : [int , int ]/O0
∞.0, r : [int , int ]/O0

∞.0 � s〈x, y〉 | r〈x, y〉.

From this, we obtain

s : [int , int ]/I∞
0 .O0

∞.0, r : [int , int ]/O1
∞.0 � s(x, y). (s〈x, y〉 | r〈x, y〉)

by using rule (T-In). By using rule (T-In) and (T-Rep), we derive

read : [[int , int ]/O1
∞.0]/∗I0

∞.0, s : [int , int ]/∗I∞
0 .O0

∞.0 � ∗read(r). s(x, y). · · ·.

The other part can be type-checked similarly, and the whole process is type-checked
under the type environment:

move : [int , int , [ ]/O1
∞.0]/∗I0

∞.0, read : [[int , int ]/O1
∞.0]/∗I0

∞.0.
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Example 3.7. Let Point be the point process in the example above. Using it,
we can implement a circle process, whose center is the point above and radius is 3,
as follows:

(νmove) (νread) (νs : [int ]/(O0
∞.0 | ∗I∞

0 .O0
∞.0))

(s〈3〉 |Point

| ∗movec(dx : int , dy : int , r : [ ]/O2
∞.0). move〈dx, dy, r〉

| ∗center(r : [int , int ]/O2
∞.0). read〈r〉

| ∗radius(r : [int ]/O1
∞.0). s(z). (s〈z〉 | r〈z〉))

This object accepts three kinds of requests movec, center, and radius. When a
movec or center request arrives, the object forwards the request to the pointer.
When a radius request arrives, the object reads the radius from s and returns it.

Note that the type of channel r on the third line is [ ]/O2
∞.0. The time limit

of execution of an output is 2, because it takes one step for the forwarded mes-
sage move〈dx, dy, r〉 to be received by the point, and it takes another step for the
object to send a reply. The process above is well typed under the following type
environment:

movec : [int , int , [ ]/O2∞.0]/∗I0∞.0, center : [[int , int ]/O2∞.0]/∗I0∞.0,

radius : [[int ]/O1∞.0]/∗I0∞.0

So, we see that a client can receive a reply eventually.
Suppose that the subprocess ∗movec(dx, dy, r). move〈dx, dy, r〉 is replaced by

∗movec(dx, dy, r). movec〈dx, dy, r〉 by mistake. Then, only the type of r is not
[ ]/O2∞.0 but [ ]/O∞∞.0. So, we know that a reply may not be returned in this case.

Example 3.8. Behavior of a dining philosopher can be expressed by the follow-
ing process.

P
�
= ∗phil(left, right). left( )c. right( )c. food( ). (left〈 〉 | right〈 〉 | phil〈left, right〉)

A philosopher is parameterized with two channels left, right representing forks.
It first acquires the forks (by left( )c. right( )c. · · ·), then eats food(by food( ). · · ·),
releases forks, and repeats the same behavior. The inputs on left and right are
annotated with c, because we want a philosopher to acquire forks eventually.

If there are two philosophers sharing forks f1 and f2, we can think of the following
two configurations:

Q1
�
= (νfood) (νphil) (P | ∗food〈 〉 | phil〈f1, f2〉 | phil〈f2, f1〉 | f1〈 〉 | f2〈 〉)

Q2
�
= (νfood) (νphil) (P | ∗food〈 〉 | phil〈f1, f2〉 | phil〈f1, f2〉 | f1〈 〉 | f2〈 〉)

In Q1, the two philosophers try to acquire forks f1 and f2 in the reverse order,
while in Q2, the philosophers try to acquire f1 and f2 in the same order.

To see which configuration may suffer from a lock, we can check typing. First,
the process P can be typed as:

phil : [[ ]/∗I∞
3 .O3

∞.0, [ ]/∗I∞
1 .O1

∞.0]/(∗I0
∞.0 | ∗O∞

0 .0), food : [ ]/∗I∞0 .0 � P.
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The part left( )c. right( )c. · · · is type-checked since the time limits of success of
inputs on left and right are respectively 3 and 1. The time limit of execution of an
output on right is 1 since the process only waits on food before releasing the right

fork after acquiring it. On the other hand, the time limit of execution of an output
on left is 3 because the process waits on right and food before releasing the right

fork after acquiring it.
Using the typing of P , Q1 and Q2 are typed as follows:

f1 : [ ]/(∗I∞
3 .O3∞.0 | ∗I∞

1 .O1∞.0 |O0∞.0), f2 : [ ]/(∗I∞
1 .O1∞.0 | ∗I∞

3 .O3∞.0 |O0∞.0) � Q1

f1 : [ ]/(∗I∞
3 .O3∞.0 | ∗I∞

3 .O3∞.0 |O0∞.0), f2 : [ ]/(∗I∞
1 .O1∞.0 | ∗I∞

1 .O1∞.0 |O0∞.0) � Q1

The usage ∗I∞
3 .O3

∞.0 | ∗I∞
1 .O1

∞.0 |O0
∞.0 of channel f1 in Q1 is not reliable, be-

cause the usage is reduced to ∗I∞
3 .O3

∞.0 | ∗I∞
1 .O1

∞.0 |O3
∞.0. Note that the part

∗I∞
1 .O1

∞.0 means that the fork is expected to be acquired in time 1, but the fork is
only guaranteed to be released in time 3 (by the part O3

∞.0). Therefore, we know
that Q1 may suffer from a lock. On the other hand, Q2 does not suffer from a lock
because the usages of f1 and f2 are both reliable.

The reasoning above can be extended to 2N philosophers easily (where N is a
natural number). The following process creates a configuration consisting of 2N
philosophers.

(νfood) (νf1) (νf2) (config〈N, f1, f2〉 | phil〈f1, f2〉 | f1〈 〉 | f2〈 〉 | ∗food〈 〉 |P ) |
∗config(n, left, right).

(if n = 0 then phil〈left, right〉
else (νf3) (νf4) (phil〈left, f3〉 | phil〈f4, f3〉 | f3〈 〉 | f4〈 〉

| config〈n − 1, f4, right〉))

Here, config〈N, f1, f2〉 creates 2N − 1 philosophers and connects them as follows:

f1 ��
��

phil ��
��

phil ��
��

phil ��
��

phil
f2

In the process above, 2nth philosopher acquire the lefthand fork and the righthand
fork in this order, while 2n+1th philosopher acquire the forks in the reverse order.
The process above is well typed under the type environment:

phil : [[ ]/∗I∞
3 .O3∞.0, [ ]/∗I∞

1 .O1∞.0]/(∗I0∞.0 | ∗O∞
0 .0),

config : [int , [ ]/∗I∞
3 .O3∞.0, [ ]/∗I∞

1 .O1∞.0]/(∗I0∞.0 | ∗O∞
0 .0)

So, we know that the process is lock-free for any natural number N .
A solution to the problem of 2N +1 dining philosophers is to let one philosopher

acquire the lefthand fork and the righthand fork in this order and let all the others
acquire the forks in the reverse order. To describe this solution, we need dependent
types discussed in Section 5.

4. TIME-BOUNDED PROCESSES
In this section, we show that with a minor modification, our type system can

guarantee not only that certain communications eventually succeed, but also that



TYPE SYSTEM FOR LOCK-FREEDOM 27

some of them succeed within a certain number of parallel reduction steps. Parallel
reduction allows several independent communications to be performed in one step.

4.1. Time-Boundedness
We first define the time-boundedness of a process. We replace attributes of

input/output processes with time limits within which the input/output actions
should succeed. The new syntax of processes is given by:

P ::= 0 | A | (P |Q) | (νx) P

A ::= x〈v1, . . . , vn〉t. P | x(y1, . . . , yn)t. P | if v then P else Q | ∗A

The annotation t of x〈ṽ〉t. P specifies that this output process can find a communi-
cation partner and start a communication within t parallel reduction steps (defined
below) after it is executed. (It takes another step for the output process to complete
the communication.)

Assuming unlimited parallelism in reductions of concurrent processes, we count
the number of parallel reduction steps performed. Note that communications on
different channels can occur in parallel in this parallel reduction model. To model
such parallel reduction, we introduce a parallel reduction relation P =⇒ Q: P =⇒
Q means that P is reduced to Q by reducing every conditional expression and
performing one communication on every channel whenever possible. We assume
here that at most one communication can occur on each channel and that the
two processes that communicate each other are chosen randomly. So, it takes two
steps to reduce ∗x( ).0 |x〈 〉 |x〈 〉 to ∗x( ).0. It is possible to change reduction
rules and the type system in order to allow as many communications as possible to
occur simultaneously on each channel and/or to reflect a certain scheduling (such
as priority scheduling and the FIFO scheduling).

Remark 4.8. The reason why we do not consider the number of sequential
reductions (−→ in Section 2) is that it is not preserved by parallel composition with
independent processes (not sharing any channels). Consider the process x( ).0 |x〈 〉.
The input on x succeeds immediately, but if the process is executed in parallel with
a diverging process (νy) (y〈 〉 | ∗y( ). y〈 〉), we can no longer bound the number of
sequential reduction steps required for the success of the input.

To define the relation P =⇒ Q, we use an auxiliary relation P
S=⇒ Q where S is

a subset of {comx, x, x | x ∈ Var}. Intuitively, P
S=⇒ Q means:

• a communication is performed on every closed channel whenever possible,
• if comx ∈ S, then a communication is performed on the free channel x, and
• if x ∈ S (x ∈ S, resp.), there is an output (input, resp.) process on x that is

not reduced in this step.

Definition 4.25 (parallel process reduction). S=⇒ (where S is a subset of
{comx, x, x | x ∈ Var}) and =⇒ are the least relations closed under the rules given
below.

x〈v1, . . . , vn〉t. P |x(z1, . . . , zn)t′ . Q
{comx}=⇒ P | [z1 �→ v1, . . . , zn �→ vn]Q

(PR-Com)
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0 ∅=⇒ 0 (PR-Zero)

x〈ṽ〉t. P {x}
=⇒ x〈ṽ〉t−1. P (PR-WaitO)

x(ṽ)t. P
{x}
=⇒ x(ṽ)t−1. P (PR-WaitI)

P
S1=⇒ P ′ Q

S2=⇒ Q′ S1 ∩ S2 ∩ {comx | x ∈ Var} = ∅
P |Q S1∪S2=⇒ P ′ |Q′

(PR-Par)

P
S=⇒ Q {x, x} ⊆ S ⇒ comx ∈ S

(νx) P
S\{x}
=⇒ (νx) Q

(PR-New)

P
S=⇒ Q ∀x.(comx �∈ S)

∗P S=⇒ ∗Q
(PR-Rep)

if true then P else Q
∅=⇒ P (PR-IfT)

if false then P else Q
∅=⇒ Q (PR-IfF)

P 	 P ′ P ′ S=⇒ Q′ Q′ 	 Q

P
S=⇒ Q

(PR-SPCong)

P
S=⇒ Q ∀x ∈ Var.({x, x} ⊆ S ⇒ comx ∈ S)

P =⇒ Q
(PR-Close)

Here, ∞− 1 = ∞, and 0 − 1 is undefined.

Main differences between parallel reductions and sequential reductions are that
in a parallel reduction step,

• Multiple communications can be performed in parallel. (Note the difference
between rule (PR-Par) and rule (R-Par).)
• Time limits for processes that do not participate in any communication are

decremented by one.

Similar features are found in operational semantics of timed process calculi [2].
Basically, a parallel reduction step P =⇒ Q corresponds to several sequential re-
duction steps P −→∗ Q, except that time annotations may change in P =⇒ Q.

Rule (PR-WaitO) ((PR-WaitI), resp.) says that if an output (input, resp.)
process is not reduced, its time limit is decremented. The rightmost premises
of rules (PR-Par) and (PR-Rep) ensure that only one communication can be
performed on each channel: If we remove this condition, multiple communications
will be performed on the same channel in each step. The right premises of rules
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(PR-New) and (PR-Close) ensure that a communication is performed on each
channel whenever both an input process and an output process are ready.

A process is time-bounded if whenever the time limit of an input or output
process has become 0 (i.e., it becomes x〈ṽ〉0. P or x(ỹ)0. P ), the input or output
operation always succeeds in the next parallel reduction step:

Definition 4.26 (time-boundedness). A process P is time-bounded if the fol-
lowing conditions hold whenever P =⇒∗ P ′.

1.If P ′ 	 (νw̃) (x〈ṽ〉0. Q |R), then R �comx−→ and R 	 (νũ) (x(ỹ)t′ . R1 |R2) with
x �∈ {ũ} for some t′, ũ, R1, R2.

2.If P ′ 	 (νw̃) (x(ỹ)0. Q |R), then R �comx−→ and R 	 (νũ) (x〈ṽ〉t′ . R1 |R2) with
x �∈ {ũ} for some t′, ũ, ṽ, R1, R2.

In the first condition, R �comx−→ ensures that there is no other output process, so
that x〈ṽ〉0. Q can always communicate with x(ỹ)t′ . R1.

4.2. Modification to the Type System
Now we modify the type system in Section 3 to guarantee the time-boundedness.

We just need to refine the reliability condition (Definition 3.16) to estimate the
channel-wise behavior more correctly. As stated in Remark 3.4, a problem of Def-
inition 3.16 is that it does not take race conditions into account. For example,
O0

∞.0 | I∞0 .O0
∞.0 | I∞0 .O0

∞.0 is reliable according to Definition 3.16, but only one
input is guaranteed to succeed immediately: The other input must wait until an out-
put action is executed again. The correct usage should be O0

∞.0 | I∞1 .O0
∞.0 | I∞1 .O0

∞.0.
We redefine usage reduction to take race conditions into account. For example,

O0
∞.0 | I∞1 .O0

∞.0 | I∞1 .O0
∞.0 is reduced to O0

∞.0 | I∞0 .O0
∞.0. Note that in this case

the time limit of success of an input has been reduced by 1. The resultant usage is
further reduced to O0∞.0. To define a new usage reduction relation U =⇒ U ′, we
introduce an auxiliary relation S=⇒ where {actO, actI , O, I} ⊆ S. When actO ∈ S

(actI ∈ S, resp.), U
S=⇒ V means that an output (input, resp.) usage in U is

reduced. O ∈ S (I ∈ S, resp.) indicates that an output (input, resp.) action
is ready but does not participate in this reduction step (either because no input
action is ready or because another output usage is chosen for communication).

Definition 4.27 (timed usage reduction). Binary relations S=⇒ and =⇒ (where
S ⊆ {actI , actO, I, O}) on usages are the least relations closed under the following
rules:

αto
tc

.U
{actα}
=⇒ U (TU-Act)

0 ∅=⇒ 0 (TU-Zero)

0 < tc

αto
tc

.U
{α}
=⇒ α0

tc−1.U
(TU-Wait)

0 < to

αto
tc

.U
∅=⇒ αto−1

tc
.U

(TU-Skip)
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U1
S1=⇒ U ′

1 U2
S2=⇒ U ′

2 S1 ∩ S2 ∩ {actI , actO} = ∅
U1 |U2

S1∪S2=⇒ U ′
1 |U ′

2

(TU-Par)

U
S=⇒ U ′ S ∩ {actI , actO} = ∅

∗U S=⇒ ∗U ′
(TU-Rep)

U ∼= U ′ U ′ S=⇒ V ′ V ′ ∼= V

U
S=⇒ V

(TU-Cong)

U
S=⇒ V {I, O} ⊆ S ⇒ {actI , actO} ⊆ S

actα ∈ S ⇒ actα ∈ S

U =⇒ V
(TU-Red)

Rules (TU-ComI) and (TU-ComO) respectively model the situations where
input and output actions succeed. On the other hand, rule (TU-Wait) models
the situation where the (input or output) action α has been executed but has not
succeeded. In this case, the time limit of success of the action is decremented by 1.
Rule (TU-Skip) is for the case where the action α has not been executed yet: in
this case, the time limit of execution of the action is reduced by 1. The rightmost
premises of rules (TU-Par) and (TU-Rep) ensure that only one pair of an input
usage and an output usage can be reduced. Rule (TU-Red) ensures that in each
reduction step, if both input and output actions are ready, some pair of an input
usage and an output usage must be reduced.

Remark 4.9. The above usage reduction relation allows only one pair of I and
O to be reduced in one step. This is because we defined parallel reduction of
processes so that only one communication can occur on each channel. If we allow
multiple communications to be simultaneously performed on the same channel, we
should allow multiple pairs of I and O to be reduced in one step, by removing the
side conditions of (TU-Par) and (TU-Rep), replacing labels with multisets, and
replacing the third condition of (TU-Red) with the condition that S must contain
the same number of actI and actO.

Using the above parallel usage reduction, we can strengthen the reliability condi-
tion as defined below. The condition ensures that when the time limit of an input
or output capability has reached 0, the input or output operation must succeed in
the next step.

Definition 4.28 (reliability (refined)). A usage U is reliable, written relT (U),
if obα(0, U2) and U2 �−→ hold whenever U =⇒∗∼= αto

0 .U1 |U2.

Predicate relT is extended to those on types and type environments in a manner
similar to rel .

The new set of typing rules is obtained by replacing rules (T-Out), (T-In), and
(T-New) in Figure 1 with the following rules.
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Γ, x : [τ1, . . . , τn]/U � P tc ≤ t

x : [τ1, . . . , τn]/O0
tc

.U | tc + 1 (v1 : τ1 | · · · | vn : τn |Γ) � x〈v1, . . . , vn〉t. P
(T-BOut)

Γ, x : [τ1, . . . , τn]/U, y1 : τ1, . . . , yn : τn � P tc ≤ t

tc + 1 Γ, x : [τ1, . . . , τn]/I0
tc

.U � x(y1, . . . , yn)t. P
(T-BIn)

Γ, x : [τ1, . . . , τn]/U � P relT (U)

Γ � (νx) P
(T-BNew)

Rules (T-BOut) and (T-BIn) are the same as (T-Out) and (T-In) except that
the time limit t given by a programmer is compared with the actual time limit tc

guaranteed by the type system. We write Γ �T P if Γ � P is derivable using the
new typing rules.

4.3. Type Soundness
We can prove the following time-boundedness theorem.

Theorem 4.1. If Γ �T P and relT (Γ), then P is time-bounded.

In particular, every closed well-typed process is time-bounded. The above theo-
rem follows from the following properties:

• The well-typedness of a process is preserved by (parallel) reductions.
• Any well-typed process does not immediately suffer from a time-out. (By

“time-out,” we mean that the time limit of success of some action has reached, but
the action is not enabled.)

As in the case for sequential reductions (recall Theorem 3.1), the type environment
of a process changes during parallel reductions. To express the change of a type
environment, we first define a parallel reduction relation Γ S=⇒ Δ.

Definition 4.29. Let S be a subset of {comx, x, x | x ∈ Var}. S|x is the set
{actI , actO | comx ∈ S} ∪ {I | x ∈ S} ∪ {O | x ∈ S}.

Definition 4.30. A ternary relation Γ S=⇒ Δ is defined to hold if the following
conditions hold

1.dom(Γ) = dom(Δ).
2.For each x in dom(Γ), one of the following conditions hold:

(i)Γ(x) = Δ(x) = bool, or

(ii)There exist τ̃ , U , U ′ such that Γ(x) = [τ̃ ]/U , Δ(x) = [τ̃ ]/U ′, and U
S|x=⇒ U ′.

We write Γ =⇒ Δ when Γ S=⇒ Δ for some S.

Using the above relation, the first property discussed above is stated as the
following theorem.
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Theorem 4.2 (parallel subject reduction). If Γ �T P , relT (Γ), and P
S=⇒ Q,

then there exists Δ such that Γ S=⇒ Δ and Δ �T Q.

Proof. See Appendix B.1.

Proof (Proof of Theorem 4.1). Suppose P =⇒∗	 (νw̃) (x〈ṽ〉0. Q |R). By Theo-
rem 4.2, we have Γ′ �T (νw̃) (x〈ṽ〉0. Q |R) and relT (Γ′) for some Γ′. By the typing
rules, it must be the case that

Δ1, x : [τ̃ ]/Oto
0 .U1 �T x〈ṽ〉0. Q

Δ2, x : [τ̃ ]/U2 �T R

relT (Oto
0 .U1 |U2)

By the last condition, it must be the case that U2
∼= I0

tc
.U3 |U4 and U2 �−→. By the

first condition and typing rules, it must be the case that R 	 (νũ) (x(ỹ). R1 |R2).
The other required condition R � x−→ follows from the condition U2 �−→ and the
subject reduction theorem (Theorem 3.1).

The case for input is similar.

5. EXTENSIONS

In this section, we give some examples that show limitations of our type system
in Section 3 and discuss how to extend the type system to overcome the limitations.

5.1. Dependent Types
Let us consider the following process P , which works as a function server com-

puting the factorial of a natural number:

∗fact(n, r). (if n = 0 then r〈1〉 else (νr′) (fact〈n − 1, r′〉 | r′(m). r〈m × n〉))

The parallel composition of P and a client process (νy) (fact〈3, y〉 | y(x)c.0) cannot
be judged to be lock-free in our type system. Suppose that the type of fact is of the
form [Nat, [Nat]/Oto

tc
.0]/U . Then, fact〈n − 1, r′〉 and r′(m). r〈m × n〉 are typed

as:

fact : [Nat, [Nat]/Oto
tc

.0]/I0
0 .0, r′ : [Nat]/Oto+1

tc
.0, n : Nat � fact〈n − 1, r′〉

r′ : [Nat]/I0
t′c

.0, r : [Nat]/O
t′c+1
tc

.0 � r′(m). r〈m × n〉

In order for the usage of r′ to be reliable, it must be the case that to +1 ≤ t′c. Since
r must have type [Nat]/Oto

tc
.0 in the process if n = 0 then r〈1〉 else · · ·, it must

be the case that t′c + 1 + 1 ≤ to. From the two conditions, we obtain to + 3 ≤ to,
which implies to = ∞. So, it is not guaranteed that P returns a result eventually.

The problem of the example above is that the time required for r to be used
for output depends on the other argument n. To express such dependency, we can
use dependent types [24]. In general, a dependent type Σx : τ1.τ2 describes a pair
〈v1, v2〉 such that v1 has type τ1 and v2 has type [x �→ v1]τ2. In the process above,
the type of channel fact can be expressed by [Σn :Nat.[Nat]/O3n

∞ .0]/U . It means
that fact is used to communicate pairs of a natural number n and a channel x, and
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x is used for output within time 3n. In order for type-checking to work, explicit
type annotations by programmers would be necessary. It would also be necessary
to impose some restriction on arithmetic expressions that can appear in dependent
types, as in DML, an extension of ML with dependent types [36].

5.2. Polymorphism
Polymorphism in the π-calculus [26] is also useful to improve the expressive power

of our type system. For example, let us consider the following process.

∗id(x, r). r〈x〉 | (νr′) (id〈y, r′〉 | r′(u). u〈 〉) | (νr′′) (id〈z, r′〉 | r′′(u). u( ).0)

The process ∗id(x, r). r〈x〉 works as an identity function: It receives a pair of a value
v and a reply channel r, and returns v to r. The process (νr′) (id〈y, r′〉 | r′(u). u〈 〉)
calls the identify function, and then uses the returned channel y for output, while
(νr′′) (id〈z, r′〉 | r′′(u). u( ).0) calls the identify function and then uses the returned
channel for input. Therefore, the type assigned to x, y, and z is of the form
[ ]/(O∞

t1 .0 | I∞t2 .0), from which we cannot tell whether y and z are used for input or
output.

If we introduce polymorphism as in the polymorphic π-calculus [26], we can
rewrite the process above as:

∗id(ρ; x : ρ, r : [ρ]/O0
∞.0). r〈x〉

| (νr′) (id〈[ ]/O0
t1 .0; y, r′〉 | r′(u). u〈 〉) | (νr′′) (id〈[ ]/I0

t1 .0; z, r′〉 | r′′(u). u( ).0)

Here, channel id carries an additional parameter ρ, which denotes the type of x.
With this modification, the types of y and z become [ ]/O0

t1 .0 and [ ]/I0
t1 .0, which

imply that y and z are used for output and input, respectively.

5.3. Dependencies between Different Channels
Another shortcoming of our type system is that it loses some information about

dependencies between different channels. Let us consider the following process.

∗ping( ). pong〈 〉 | ping〈 〉. pong( )c.0

The process ∗ping( ). pong〈 〉 listens to receive a message on channel ping and sends
an acknowledgment on channel pong. The process ping〈 〉. pong( )c.0 sends a mes-
sage on ping and waits to receive an acknowledgment on pong. Our type system
in Section 3 cannot guarantee that an acknowledgment is received. Let the type of
ping be [ ]/(∗I t1

t2 .0 |Ot3
t4 .0) and pong be [ ]/(∗Ot5

t6 .0 | It7
t8 .0). In order for the input on

pong to be guaranteed to succeed, it must be the case that t8 < ∞, which implies
that t5 < ∞. In order for t5 < ∞ to hold, it must be the case that t2 < ∞ (since
t2 < t5 must hold in order for ping( ). pong〈 〉 to be well typed). This cannot hold,
however, because the usage ∗I t1

t2 .0 |Ot3
t4 .0 of ping must be reliable and it is reduced

to ∗It1
t2 .0.

The problem above arises because our type system does not keep information that
the obligation to send a message on pong arises only after a message is received on
ping. To overcome this problem, we must extend types and type environments to
express the usage of multiple channels together. Using an idea of our recent generic
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type system for the π-calculus [13], we can express a combined usage of channels
ping and pong as ∗ping0

∞.pong0
∞.0 | ping

∞
0 .pong∞0 .0. Here, I and O are replaced

with ping, pong, ping, and pong to express which channel is used for input and
output. The usage implies that a process is always waiting to receive a message on
ping, and sends a message on pong immediately after a message arrives on ping,
and that a process can successfully send a message on ping and then receive a
message on pong. In order to check validity (reliability) of the usage, we can reduce
it as follows.

∗ping0
∞.pong0

∞.0 | ping
∞
0 .pong∞0 .0 −→ ∗ping0

∞.pong0
∞.0 | pong0

∞.0 | pong∞0 .0
−→ ∗ping0

∞.pong0
∞.0.

Each capability (a usage of the form αt
0.U) is matched by a corresponding obligation

(a usage of the form α0
t .U

′). Hence, we see that ∗ping0
∞.pong0

∞.0 | ping
∞
0 .pong∞0 .0

is valid and that the input on pong is guaranteed to succeed.

6. RELATED WORK

Our Previous Type Systems for Deadlock-Freedom. The type system in this
paper has evolved from our previous type systems for deadlock-freedom [14, 17, 34]
by extending the usages of channels with the notion of time limits. We think that
a similar type system for deadlock-freedom can be obtained from the type system
in Section 3, by replacing the rules for input and output with the following rules
(where tc < Γ means that all the time limits for the success of actions in Γ should
be greater than tc):

Γ, x : [τ1, . . . , τn]/U � P a = c ⇒ tc < ∞
tc < (v1 : τ1 | · · · | vn : τn |Γ)

v1 : τ1 | · · · | vn : τn |Γ |x : [τ1, . . . , τn]/O0
tc

.U � x〈v1, . . . , vn〉a. P
(T-Out’)

Γ, x : [τ1, . . . , τn]/U, y1 : τ1, . . . , yn : τn � P a = c ⇒ tc < ∞
tc < Γ

Γ, x : [τ1, . . . , τn]/I0
tc

.U � x(y1, . . . , yn)a. P
(T-In’)

Nice points about the new type system are that time tags [14, 34] and usages
are integrated and that we can get rid of complex side conditions on the time
tags (which were introduced to get enough expressive power) in the typing rules
of the previous type systems [14, 34]. We expect that we can recover much of
the expressive power by using more standard concepts like dependent types and
polymorphism as described in Section 5.

Other Type Systems to Analyze Similar Properties of Concurrent Processes. To
the author’s knowledge, among previous type systems for languages of π-calculus
family, only Sangiorgi’s type system for receptiveness [32] and Yoshida et al.’s recent
type system for strong normalization [39] can guarantee the lock-freedom property.
Sangiorgi’s type system deals with more specific situations than our type system:
It ensures that an input process is spawned immediately after a certain channel
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(called a receptive name) is created, and therefore guarantees that every output
on that channel succeeds immediately. Yoshida et al’s type system guarantees the
termination of every well-typed process, which is a stronger property than lock-
freedom. As discussed in Section 1, this approach seems too restrictive for our
purpose.

There are other type systems that deal with some deadlock-freedom property [1,
29, 38]. Please refer to our previous paper [17] for comparisons with them.

Recently, we have extended the idea of augmenting a type with information about
usage of each channel and developed a generic type system for the π-calculus [13],
which can be used to verify various properties of processes, like deadlock-freedom [14,
17, 34] and race-freedom [9, 10]. The generic type system incorporates the extension
outlined in Section 5.3, to keep track of dependencies between different channels.
Unfortunately, however, the generic type system is not general enough to subsume
the type system described in this paper. It is left for future work to integrate the
type system of this paper and the generic type system.

Abadi and Flanagan [10] developed type systems to guarantee race-freedom for
a concurrent language with reference cells and lock primitives. They sketch an
extension of the type system to avoid deadlocks (without a proof of correctness), by
allowing a programmer to specify a partial order on locks (binary semaphores). The
partial order roughly corresponds to the order induced by time limits in this paper
and the tag ordering used in our previous type systems for deadlock-freedom [14,
17, 34]. However, their type system does not prevent livelocks.

Type Systems for Bounding Execution Time of Sequential Programs. There are
several pieces of work that try to statically bound running-time of sequential pro-
grams [6, 12]. A major difficulty in bounding the running-time of a concurrent
process is that unlike sequential programs (where a function/procedure call is never
blocked), a process may be blocked until a communication partner becomes ready.
We have dealt with this difficulty in this paper by associating each input/output
operation with two time limits: a time limit within which a process executes the op-
eration, and another time limit within which the process can successfully complete
the operation.

Abstract Interpretation. An alternative way to analyze the behavior of a con-
current program would be to use abstract interpretation [4, 5]. Actually, from a
very general viewpoint, our type-based analysis of locks can be seen as a kind of ab-
stract interpretation. We can read a type judgment Γ � P as “Γ is an abstraction
of a concrete process P .” (The relation “�” corresponds to a pair of abstrac-
tion/concretization functions.) Indeed, we can regard a type environment as an
abstract process: we have defined reductions of type environments in Section 3.7.

The subject reduction property (Theorem 3.1) can be interpreted as “whenever
a concrete process P is reduced to another concrete process Q, an abstraction Γ of
P can also be reduced to another abstract process Δ which is an abstraction of Q.”
In other words, every reduction step of a concrete process is simulated by reduction
of its abstract process. A concrete process is guaranteed to be lock-free, because
the reliability condition (Definition 3.16) guarantees that an abstract process never
falls into a lock,
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7. CONCLUSION
In this paper, we have extended our previous type systems for deadlock-freedom

to guarantee the lock-freedom and time-boundedness properties. The type system
for lock-freedom given in Section 3 guarantees that certain communications succeed
eventually on the assumption of strong fairness. Our contributions about this type
system include formal definitions of fairness and lock-freedom in the π-calculus.
We have also devised a novel technique to prove the soundness of our type system.
The type system given in Section 4 guarantees that certain communications suc-
ceed within a given number of parallel reduction steps. We have defined parallel
reductions in the π-calculus, and proved the soundness of the type system in a novel
manner, using a property that well-typedness is preserved by parallel reductions.

In applying our type systems to real programming languages, we must develop
a type-checking or type inference algorithm. We can probably use an algorithm
similar to the type inference algorithm for type systems for deadlock-freedom [17].
The details are left for future work. A number of practical issues also remain
to be solved. For example, we must address how to combine dependent types,
polymorphism, etc., and how and to what extent to let programmers supply type
information.

A key idea common to those type systems is to decompose the behavior of a
whole process into that on each communication channel, which is specified by using
a mini-process calculus of usages. This idea would be applicable to other analyses
such as race detection and memory management. The former application has been
exploited in our recent generic type system [13]. As for the latter application
(memory management), we have already applied a similar idea to analyze how
and in which order each heap cell (instead of a communication channel) is used in
functional programs [15].
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APPENDIX A

A.1. PROOFS OF LEMMAS AND THEOREMS IN SECTION 3

A.1.1. Proofs of Lemmas 3.4 and 3.5
We first prove auxiliary lemmas. The following lemma means that if a usage

has an obligation or capability to perform some action, its subusage also has a
corresponding obligation or capability to perform the same action.

Lemma A.1. Suppose U ≤ V . Then the following conditions hold:

A.If V ∼= αto
tc

.V1 |V2, then there exist U1, U2, t
′
o, t

′
c such that U ∼= α

t′o
t′c

.U1 |U2,
U1 |U2 ≤ V1 |V2, to ≤ t′o, and t′c ≤ tc.

B.If V ∼= Ito1
tc1

.V1 |Oto2
tc2

.V2 |V3, then there exist U1, U2, U3, t
′
o1, t

′
c1, t

′
o2, t

′
c2 such that

U ∼= I
t′o1
t′c1

.U1 |Ot′o2
t′c2

.U2 |U3, U1 |U2 |U3 ≤ V1 |V2 |V3, to1 ≤ t′o1, to2 ≤ t′o2, t′c1 ≤ tc1,
and t′c2 ≤ tc2.

Proof. The proof proceeds by induction on derivation of ≤, with case analysis
on the last rule.

• Case for (SubU-Cong): Trivial (Let U1 = V1, U2 = V2, and U3 = V3).
• Case for (SubU-Zero): This cannot happen.
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• Case for (SubU-Delay): Case B is vacuously true. So, we need to show only
A. Suppose V ∼= αto

tc
.V1 |V2. It must be the case that V1

∼= V11 |V12, V2
∼= 0, and

U = αto
tc

.V11 | to + tc + 1 V12. So, the required result holds for t′o = to, t′c = tc,

U1 = V11, and U2 = to + tc + 1 V12.
• Case for (SubU-Act): Case B is vacuously true. So, we need to show only A.

Suppose V ∼= αto
tc

.V1 |V2. It must be the case that

U = α
t′o
t′c

.U ′ V = αto
tc

.V ′ U ′ ≤ V ′

V1
∼= V ′ V2

∼= 0
to ≤ t′o t′c ≤ tc

The required result holds for U1 = U ′ and U2 = 0.
• Case for (SubU-Par): In this case, V = V1 |V2, U = U1 |U2, U1 ≤ V1, and

U2 ≤ V2. We show only B: The proof of A is similar and simpler. Suppose V ∼=
Ito1
tc1

.V4 |Oto2
tc2

.V5 |V6. Then one of the following conditions hold:

(a) Vi
∼= Ito1

tc1
.V4 |Oto2

tc2
.V5 |V ′

6 and V ′
6 |V3−i

∼= V6 for i = 1 or 2.

(b) Vi
∼= Ito1

tc1
.V4 |V ′

6 , V3−i
∼= Oto2

tc2
.V5 |V ′′

6 , and V ′
6 |V ′′

6
∼= V6 for i = 1 or 2.

Since the case (a) is trivial by induction hypothesis, we show only the case (b).
Without loss of generality, we can assume that i = 1. By induction hypothesis, we
have

U1
∼= I

t′o1
t′c1

.U4 |U ′
6 U2

∼= O
t′o2
t′c2

.U5 |U ′′
6

U4 |U ′
6 ≤ V4 |V ′

6 U5 |U ′′
6 ≤ V5 |V ′′

6

to1 ≤ t′o1 to2 ≤ t′o2

t′c1 ≤ tc1 t′c2 ≤ tc2.

Let U6 = U ′
6 |U ′′

6 . Then, we have U ∼= I
t′o1
t′c1

.U4 |Ot′o2
t′c2

.U5 |U6 and U4 |U5 |U6 ≤
V4 |V5 |V6 as required.
• Case for (SubU-Rep): In this case, V = ∗V ′, U = ∗U ′, and U ′ ≤ V ′. We

show only B. The proof of A is similar. Suppose V ∼= Ito1
tc1

.V1 |Oto2
tc2

.V2 |V3. Then,
it must be the case that V ′ ∼= Ito1

tc1
.V1 |Oto2

tc2
.V2 |V ′

3 and V ′
3 | ∗V ′ ∼= V3. By induction

hypothesis, U ′ ∼= I
t′o1
t′c1

.U1 |Ot′o2
t′c2

.U2 |U ′
3, U1 |U2 |U ′

3 ≤ V1 |V2 |V ′
3 , to1 ≤ t′o1, to2 ≤ t′o2,

t′c1 ≤ tc1, and t′c2 ≤ tc2. Let U3 = U ′
3 | ∗U ′. Then, we have U ∼= I

t′o1
t′c1

.U1 |Ot′o2
t′c2

.U2 |U3

and U1 |U2 |U3 ≤ (U1 |U2 |U ′
3) | ∗U ′ ≤ (V1 |V2 |V ′

3) | ∗V ′ ≤ V1 |V2 |V3 as required.
• Case for the rule for transitivity: The result follows immediately by using

induction hypothesis twice.

The following lemma means that if a usage can be reduced, its subusage also has
a corresponding reduction.

Lemma A.2. If U ≤ V and V −→ V ′, then there exists U ′ such that U −→ U ′

and U ′ ≤ V ′. If Γ ≤ Γ′ and Γ′ l−→ Δ′, then there exists Δ such that Δ ≤ Δ′ and
Γ l−→ Δ.
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Proof. We show the former property by induction on derivation of V −→ V ′.
The latter property is an immediate corollary. We have two cases to analyze.

• Case where V = I to
tc

.V1 |Ot′o
t′c

.V2 |V3 and V ′ = V1 |V2 |V3: By Lemma A.1, it
must be the case that

U ∼= Ito1
tc1

.U1 |Ot′o1
t′c1

.U2 |U3

U1 |U2 |U3 ≤ V1 |V2 |V3

So, we have the required result for U ′ = U1 |U2 |U3.
• Case where V ∼= V1 −→ V ′

1
∼= V ′: By U ≤ V ≤ V1, V1 −→ V ′

1 and induction
hypothesis, there exists U ′ such that U −→ U ′ ≤ V ′

1 ≤ V ′.

Proof of Lemma 3.4. Since the case where t = ∞ is trivial, suppose t < ∞.
The proof proceeds by induction on derivation of U ≤ V , with case analysis on
the last rule. We show only the case for rule (SubU-Delay) and the rule for
transitivity. The other cases are similar or trivial.

• Case for (SubU-Delay): It must be the case that U = α′to

tc
.U1 | to + tc + 1 U2

and V = α′to

tc
.(U1 |U2). obα(t, U) implies either obα(t, α′to

tc
.U1) or obα(t, to + tc + 1 U2).

In the former case, α = α′ and to ≤ t, which implies obα(t, V ). In the latter case,
to + tc + 1 ≤ t. So, if α = α′, then obα(t, V ) holds. If α′ = α, then capα(tc, U) and
tc < t hold as required.
• Case for the rule for transitivity: It must be the case that U ≤ U ′ ≤ V . By

applying induction hypothesis to U ≤ U ′, we have either obα(t, U ′) or capα(tc, U)
for some tc with tc < t. In the former case, by applying induction hypothesis again
to U ′ ≤ V , we have either obα(t, V ) or capα(tc, U ′) for some tc with tc < t. If
capα(tc, U ′) holds, capα(tc, U) follows from Lemma A.1, as required.

The following lemma means that for reliable usages, obα(t, U) is closed under the
subusage relation.

Lemma A.3. If rel(U), U ≤ V , and obα(t, U), then obα(t, V ) holds.

Proof. If t = ∞, then obα(t, V ) always holds. We show the case for t < ∞
by induction on t. Suppose that the lemma holds for any t′ such that t′ < t. By
Lemma 3.4, either obα(t, V ) holds or capα(tc, U) holds for some tc(< t). In the lat-
ter case, by the assumption rel(U), it must be the case that obα(tc, U2), which also
implies obα(tc, U). So, by induction hypothesis, we have obα(tc, V ), which implies

obα(t, V ).

Proof of Lemma 3.5. Suppose U −→∗≤ V , rel(U), and V −→∗ V ′ with
capα(tc, V ′). It suffices to show obα(tc, V ′). By Lemma A.2, there exists U ′ such
that U −→∗ U ′ with U ′ ≤ V ′. By Lemma A.1, we have capα(t′c, U ′) for some
t′c(≤ tc). So, by the assumption rel(U), it must be the case that obα(t′c, U

′). By
using Lemma A.3, we obtain obα(tc, V ′).

A.1.2. Proofs of the Subject Reduction Properties
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Lemma A.4 (substitution lemma). If Γ, x : τ � P and Γ | v : τ is well defined,
then Γ | v : τ � [x �→ v]P holds.

Proof.
We prove this by induction on the structure of P . We show only the case where

P is an input process: The other cases are similar or trivial. Suppose P = w(z̃)a. Q.
The only non-trivial cases are where w = x and v appears in Q and where w = v

and x appears in Q: the other cases are trivial by induction hypothesis. Suppose
w = x and v appears in Q. By the typing rules, we have

Γ1, x : [τ̃ ]/U1, v : [τ̃ ]/U2, z̃ : τ̃ � Q

Γ ≤ tc + 1 (Γ1, v : [τ̃ ]/U2)
τ ≤ [τ̃ ]/I0

tc
.U1

a = c ⇒ tc < ∞

By induction hypothesis, we have Γ1, v : [τ̃ ]/(U1 |U2), z̃ : τ̃ � [x �→ v]Q. By using
(T-In), we obtain:

tc + 1 Γ1, v : [τ̃ ]/I0
tc

.(U1 |U2) � v(z̃)a. ([x �→ v]Q)(= [x �→ v]P ).

Since tc + 1 U2 | I0
tc

.U1 ≤ I0
tc

.(U1 |U2) holds, we have

Γ | v : τ ≤ tc + 1 (Γ1, v : [τ̃ ]/U2) | v : [τ̃ ]/I0
tc

.U1

≤ tc + 1 Γ1, v : [τ̃ ]/I0
tc

.(U1 |U2).

We have therefore Γ | v : τ � [x �→ v]P as required.

The case where w = v is similar.

Lemma A.5. If Γ, x : τ � P and x is not free in P , then noob(τ) and Γ � P hold.

Proof. Trivial from the fact that x : τ can be introduced only by rule (T-

Weak).

Proof (Proof of Lemma 3.2). By the typing rules, we have

Γ1, x : [τ̃ ]/U1 � P

Γ2, x : [τ̃ ]/U2, y1 : τ1, . . . , yn : τn � Q

Γ ≤ tc + 1 (Γ1 | v1 : τ1 | · · · | vn : τn) | t′c + 1 Γ2

U ≤ O0
tc

.U1 | I0
t′c

.U2

By the substitution lemma (Lemma A.4), we have

Γ2 | v1 : τ1 | · · · | vn : τn, x : [τ̃ ]/U2 � [ỹ �→ ṽ]Q.

So, by using (T-Par), we obtain

Γ1 |Γ2 | v1 : τ1 | · · · | vn : τn, x : [τ̃ ]/(U1 |U2) � P | [ỹ �→ ṽ]Q.
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By Lemma A.2 and the condition U ≤ Oto
tc

.U1 | It′o
t′c

.U2, there exists U ′ such that
U −→ U ′ and U ′ ≤ U1 |U2. Let Δ = Γ1 |Γ2 | v1 : τ1 | · · · | vn : τn. Then we have
Δ, x : [τ̃ ]/U ′ � P | [ỹ �→ ṽ]Q and Γ ≤ tc + 1 (Γ1 | v1 : τ1 | · · · | vn : τn) | t′c + 1 Γ2 ≤
1 Δ as required.

Lemma A.6. If Γ � P and P 	 Q, then Γ � Q.

Proof. The proof proceeds by induction on derivation of P 	 Q with case
analysis on the last rule used. We show only the cases for (SPCong-New) and
(SPCong-Rep). The other cases are trivial,

• Case for (SPCong-New) (in both directions): Suppose Γ � (νx) (P1 |P2) and
x is not free in P2. By the typing rules, we have

Γ1, x : [τ̃ ]/U1 � P1

Γ2, x : [τ̃ ]/U2 � P2

U ≤ U1 |U2

rel(U)
Γ ≤ Γ1 |Γ2

By Lemma A.5, we have Γ2 � P2 and U2 ≤ 0. So, by using (T-Weak), we get
Γ1, x : [τ̃ ]/(U1 |U2) � P1. By using (T-New), (T-Par), and (T-Weak), we obtain
Γ � (νx) P1 |P2 as required.

On the other hand, suppose Γ � (νx) P1 |P2. By the typing rules, we have

Γ1, x : [τ̃ ]/U � P1

Γ2 � P2

rel(U)
Γ ≤ Γ1 |Γ2

By Lemma A.5, we have Γ2\{x} � P2 and Γ2 ≤ Γ2\{x}. So, we have Γ1 | (Γ2\{x}) �
(νx) (P1 |P2). Since Γ ≤ Γ1 |Γ2 ≤ Γ1 | (Γ2\{x}) holds, we obtain Γ � (νx) (P1 |P2)
by using (T-Weak).
• Case for (SPCong-Rep): It must be the case that P = ∗R and Q = ∗R |R.

By the typing rules, it must be the case that Δ � R and Γ ≤ ∗Δ for some Δ. By
using (T-Par) and (T-Rep), we obtain ∗Δ |Δ � Q. By the fact ∗U ∼= ∗U |U , we
have Γ ≤ ∗Δ ≤ ∗Δ |Δ. So, by using (T-Weak), we obtain Γ � ∗R |R as required.

Proof of Theorem 3.1. The proof proceeds by induction on derivation of
P

l−→ Q, with case analysis on the last rule used.

• Case (R-Com): This follows immediately from Lemma 3.2 and rule (T-Weak).

• Case (R-Par): It must be the case that P = P1 |P2, Q = Q1 |P2, and P1
l−→

Q1. By the typing rules and Γ � P , there must exist Γ1 and Γ2 such that Γ1 � P1,
Γ2 � P2, and Γ ≤ Γ1 |Γ2. By induction hypothesis, we have Δ1 such that Δ1 � Q1

and Γ1
l−→ Δ1, which also implies Γ1 |Γ2

l−→ Δ1 |Γ2. By Lemma A.2, there exists



TYPE SYSTEM FOR LOCK-FREEDOM 43

Δ such that Γ l−→ Δ and Δ ≤ Δ1 |Γ2. By using (T-Par) and (T-Weak), we
obtain Δ � Q as required.
• Cases for (R-New1) and (R-New2): Trivial by induction hypothesis and

Lemma 3.5.
• Case for (R-IfT): It must be the case that P = if true then Q else R and

l = ε. By the typing rules, Γ ≤ 1 Δ and Δ � Q. By using (T-Weak), we have
Γ � Q as required.
• Case for (R-IfF): Similar to the case for (R-IfT).
• Case for (R-SPCong): Trivial by induction hypothesis and Lemma A.6.

APPENDIX B

B.1. PROOF OF PARALLEL SUBJECT REDUCTION THEOREM
(THEOREM 4.2)

We prove the following, more general property than Theorem 4.2:

Lemma B.1. If Γ �T P and P
S=⇒ Q, then either of the following conditions

holds:

1.There exists Δ such that Γ S=⇒ Δ and Δ �T Q.
2.There exists x ∈ dom(Γ) such that xα ∈ S and capxα(0, Γ).

The lemma means that if a well-typed process is reduced, either the resulting
process is well-typed under a reduced type environment (the first case above) or
a time-out has occurred on a free channel. The lemma implies Theorem 4.1 be-
cause the second case cannot happen if relT (Γ) holds. We prove Lemma B.1 after
introducing several lemmas.

Lemma B.2. For any U ∈ U and t ∈ Nat+ such that 0 < t, t U
∅=⇒ t − 1 U

holds. For any type environment Γ and t ∈ Nat+ such that 0 < t, t Γ ∅=⇒ t − 1 Γ
holds.

Proof. The former property follows by straightforward induction on the struc-
ture of U ′ (use (TU-Zero) and (TU-Skip) for base cases). The latter is an immedi-

ate corollary.

Lemma B.3. If U ≤ V and V
S=⇒ V ′, then one of the following conditions holds:

1.There exists U ′ such that U
S=⇒ U ′ and U ′ ≤ V ′.

2.α ∈ S and capα(0, U)

Proof. The proof proceeds by induction on derivation of U ≤ V with case
analysis on the last rule. Without loss of generality, we can assume that (SubU-

Rep) is applied only when the righthand usage of the premise is 0 or of the form
αto

tc
.U . Suppose that the second condition of the lemma does not hold.
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• Case for (SubU-Cong): It must be the case that U ∼= V . So, U ′ = V ′ satisfies
the required condition.
• Case for (SubU-Zero): It must be the case that U = αto

tc
.U1, V = 0, and

V ′ ∼= 0. So, U ′ = U satisfies the required condition.
• Case for (SubU-Par): It must be the case that:

U = U1 |U2 V = V1 |V2

U1 ≤ V1 U2 ≤ V2.

By the assumption V
S=⇒ V ′, there exist V ′

1 , V ′
2 , S1, and S2 such that:

V ′ ∼= V ′
1 |V ′

2

V1
S1=⇒ V ′

1 V2
S2=⇒ V ′

2

S = S1 ∪ S2 S1 ∩ S2 ∩ {comI , comO} = ∅.

(This can be proved by induction on derivation of V
S=⇒ V ′.)

By induction hypothesis, there exist U ′
1 and U ′

2 such that:

U1
S1=⇒ U ′

1 U2
S2=⇒ U ′

2

U ′
1 ≤ V ′

1 U ′
2 ≤ V ′

2 .

So, U ′ = U ′
1 |U ′

2 satisfies the required condition.
• Case for (SubU-Rep): It must be the case that:

U = ∗U1 V = ∗V1 U1 ≤ V1

V1 is either 0 or αto
tc

.V2

If V1 = 0, then it must be the case that S = ∅, V ′ ∼= 0, and V1
S=⇒ 0. So, by

induction hypothesis, there exists U ′
1 such that U1

S=⇒ U ′
1 and U ′

1 ≤ V1. U = ∗U1

satisfies the required condition.

If V1 = αto
tc

.V2, then because there are three ways to reduce V1 (by using (U-ComX),
(U-Wait) or (U-Skip)), there exist V ′

1 , V ′
2 , V ′

3 such that

V ′ ∼= V ′
1 |V ′

2 |V ′
3

V ′
1 ∈ {0, V2}

V ′
2 ∈ {0, αto−1

tc
.V2, ∗αto−1

tc
.V2}

V ′
3 ∈ {0, α0

tc−1.V2, ∗α0
tc−1.V2}

V ′
2 = ∗αto−1

tc
.V2 or V ′

3 = ∗α0
tc−1.V2

Since the other cases are similar and simpler, we show only the case for V ′
1 = V2,

V ′
2 = ∗αto−1

tc
.V2, and V ′

3 = ∗α0
tc−1.V2. In this case, S = {comα, α}. By applying

induction hypothesis to

U1 ≤ V1
{comα}
=⇒ V2

U1 ≤ V1
∅=⇒ αto−1

tc
.V2

U1 ≤ V1
{α}
=⇒ α0

tc−1.V2,
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we obtain U ′
1, U

′
2, U

′
3 such that:

U1
{comα}
=⇒ U ′

1 U ′
1 ≤ V2

U1
∅=⇒ U ′

2 U ′
2 ≤ αto−1

tc
.V2

U1
{α}
=⇒ U ′

3 U ′
3 ≤ α0

tc−1.V2.

Let U ′ = U ′
1 | ∗U ′

2 | ∗U ′
3. Then, we have U = ∗U1

∼= U1 | ∗U1 | ∗U1
S=⇒ U ′ and

U ′ ≤ V ′ as required.
• Case for (SubU-Delay): It must be the case that

U = αto
tc

.U1 | to + tc + 1 U2 V = αto
tc

.(U1 |U2)

By Lemma B.2, we have to + tc + 1 U2
∅=⇒ to + tc U2. By the assumption V

S=⇒
V ′, one of the following conditions must hold:

1. V ′ ∼= U1 |U2 and S = {comα}.
2. V ′ ∼= α0

tc−1.(U1 |U2), S = {α}, and tc �= 0.

3. V ′ ∼= αto−1
tc

.(U1 |U2) and S = {α}.
For each case, define U ′ by:

1. U ′ = U1 | to + tc U2.

2. U ′ = α0
tc−1.U1 | to + tc U2.

3. U ′ = αto−1
tc

.U1 | to + tc U2.

Then, U
S=⇒ U ′ holds. U ′ ≤ V ′ can be proved as follows:

U1 | to + tc U2 ≤ U1 |U2

α0
tc−1.U1 | to + tc U2 ≤ α0

tc−1.U1 | 0 + (tc − 1) + 1 U2

≤ α0
tc−1.(U1 |U2)

αto−1
tc

.U1 | to + tc U2 ≤ αto−1
tc

.U1 | (to − 1) + tc + 1 U2

≤ αto−1
tc

.(U1 |U2)

• Case for (SubU-Act): It must be the case that

U = αto
tc

.U1 V = α
t′o
t′c

.V1

U1 ≤ V1 t′o ≤ to tc ≤ t′c.

By the assumption V
S=⇒ V ′, one of the following conditions must hold:

1. V ′ ∼= V1 and S = {comα}.
2. V ′ ∼= α0

t′c−1.V1, S = {α}, and tc �= 0.

3. V ′ ∼= α
t′o−1
t′c

.V1 and S = {α}.
The required conditions hold if we define U ′ by:
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1. U ′ = U1

2. U ′ = α0
tc−1.U1

3. U ′ = αto−1
tc

.U1

for each case.
• Case for the rule for transitivity: Trivial by induction hypothesis.

Lemma B.4. If Γ ≤ Δ and Δ S=⇒ Δ′, then one of the following conditions holds:

1.There exists Γ′ such that Γ S=⇒ Γ′ and Γ′ ≤ Δ′.
2.There exists x ∈ dom(Γ) such that xα ∈ S and capxα(0, Γ).

Proof. This follows immediately from Lemma B.3.

We are now ready to prove Lemma B.1, from which Theorem 4.2 follows.

Proof (Proof of Lemma B.1). The proof proceeds by induction on derivation
of P

S=⇒ Q, with case analysis on the last rule used. Suppose that the second
condition of the theorem does not hold.

• Case for (PR-Com): It must be the case that:

P = x〈ṽ〉t. R1 |x(ỹ)t′ . R2

Q = R1 | [ỹ �→ ṽ]R2

S = {comx}
Γ ≤ Γ′, x : [τ̃ ]/(Oto

tc
.U1 | It′o

t′c
.U2)

By Lemma B.4, we can assume without loss of generality that:

Γ = Γ′, x : [τ̃ ]/(Oto
tc

.U1 | It′o
t′c

.U2)

By Lemma 3.2, there exists Δ′ such that

Γ′ ≤ 1 Δ′

Δ′, x : [τ̃ ]/(U1 |U2) �T Q

So, by Lemmas B.4 and B.2, there exists Δ′′ such that Γ′ ∅=⇒ Δ′′ and Δ′′ ≤ Δ′.

Let Δ = Δ′′, x : [τ̃ ]/(U1 |U2). Then we have Δ �T Q and Γ
{comx}=⇒ Δ as required.

• Case for (PR-Zero): Trivial.
• Case for (PR-WaitO): It must be the case that

P = x〈ṽ〉t. R
Q = x〈ṽ〉t−1. R

S = {x}
Γ′, x : [τ̃ ]/U �T R

Γ ≤ x : [τ̃ ]/Oto
tc

.U, tc + 1 (ṽ : τ̃ |Γ′)
tc ≤ t
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By Lemma B.4, we can assume without loss of generality that:

Γ = x : [τ̃ ]/Oto
tc

.U, tc + 1 (ṽ : τ̃ |Γ′)

and 0 < tc. Let Δ = x : [τ̃ ]/O0
tc−1.U, tc (ṽ : τ̃ |Γ′). Then by Lemma B.2, we have

Γ S=⇒ Δ. By the condition tc ≤ t, we have tc − 1 ≤ t − 1. So, by applying rule
(BT-Out) to Γ′, x : [τ̃ ]/U �T R, we obtain Δ �T Q, as required.
• Case for (PR-WaitI): Similar to the case above.
• Case for (PR-Par): It must be the case that

P = P1 |P2 Q = Q1 |Q2

P1
S1=⇒ P2 Q1

S2=⇒ Q2

S = S1 ∪ S2 S1 ∩ S2 ∩ {comx | x ∈ Var} = ∅
Γi �T Pi Γ ≤ Γ1 |Γ2

By induction hypothesis, there exist Δ1, Δ2 such that Δi �T Qi and Γi
Si=⇒ Δi.

(Notice that the second condition of the theorem cannot hold.) So, we have
(Γ1 |Γ2)

S=⇒ (Δ1 |Δ2) by rule (TU-Par). By Lemma B.4, we have Δ �T Q

and Γ S=⇒ Δ for some Δ.
• Case for (PR-Rep): It must be the case that

P = ∗P ′ Q = ∗Q′

P ′ S=⇒ Q′ S ∩ {comx | x ∈ Var} = ∅
Γ′ �T P ′ Γ ≤ ∗Γ′

By induction hypothesis, there exists Δ′ such that Γ′ S=⇒ Δ′ and Δ′ �T Q′. By
rule (TU-Rep), we have ∗Γ′ S=⇒ ∗Δ′. So, we obtain the required result by using
Lemma B.4.
• Case for (PR-IfT): It must be the case that

P = if true then Q else R S = ∅
Γ′ �T Q Γ ≤ 1 Γ′

By Lemmas B.4 and B.2, there exists Δ such that Δ ≤ Γ′ and Γ ∅=⇒ Δ. By using
(T-Weak), we obtain Δ �T Q as required.
• Case for (PR-IfF): Similar to the case above.
• Case for (PR-New): It must be the case that

P = (νx) P ′ Q = (νx) Q′

P
S′−→ Q S = S ′\{comx, x, x}

Γ, x : [τ̃ ]/U �T P ′ relT (U)

By induction hypothesis, one of the following conditions holds:

1. Δ, x : [τ̃ ]/U ′ �T Q′ and (Γ, x : [τ̃ ]/U) S′
=⇒ (Δ, x : [τ̃ ]/U ′) for some Δ, U ′.
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2. For some y ∈ dom(Γ), yα ∈ S, Γ(y) = [τ̃y ]/V , and V ∼= αto
0 .V1 |V2.

3. xα ∈ S and U ∼= αto
0 .U1 |U2.

In the second case, the required condition follows immediately. Next, we show
that the third case cannot happen. Suppose that the third is the case. By the
condition relT (U), it must be the case that U2

∼= α0
tc

.U3 |U4 for some tc, U3 and
U4. Suppose α = I (the other case is similar). It must be the case that P ′ 	
(νw̃) (x〈ṽ〉. P1 |P2), which implies comx ∈ S or x ∈ S. By the side condition
of (PR-New), we have comx ∈ S in both cases. So, it must be the case that
P ′ 	 (νw̃) (x〈ṽ〉. P1 |x(ỹ). P3 |x(ỹ). P4 |P5). By the typing rules, there must exist
U5 and U6 such that U2

∼= O0
tc

.U3 | It′o
t′c

.U5 |U6, which contradicts with the necessary
condition U2 �−→ of relT (U).

In the first case, the required result (Δ �T Q and Γ S=⇒ Δ) follows if we show

relT (U ′). By the condition (Γ, x : [τ̃ ]/U) S′
=⇒ (Δ, x : [τ̃ ]/U ′), we have U

S′|x=⇒ U ′. By
the side condition of (PR-New), {x, x} ⊆ S′ implies comx ∈ S′. So, U =⇒ U ′.
By the definition of relT (U), we have relT (U ′).
• Case for (PR-SPCong): Trivial by Lemma A.6.

Proof of Theorem 4.2. This follows immediately from Lemma 4.2. Note
that, by the same argument as the case for (PR-New) in the proof of Lemma 4.2,
the second case of Lemma 4.2 cannot happen if relT (Γ) holds.


