10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

On Average-Case Hardness of Higher-Order
Model Checking

Yoshiki Nakamura
Tokyo Institute of Technology, Japan

Kazuyuki Asada
Tohoku University, Japan

Naoki Kobayashi
The University of Tokyo, Japan

Ryoma Sin’ya
Akita University, Japan

Takeshi Tsukada
The University of Tokyo, Japan

—— Abstract
We study a mixture between the average case and worst case complexities of higher-order model
checking, the problem of deciding whether the tree generated by a given AY-term (or equivalently, a
higher-order recursion scheme) satisfies the property expressed by a given tree automaton. Higher-
order model checking has recently been studied extensively in the context of higher-order program
verification. Although the worst-case complexity of the problem is k-EXPTIME complete for order-k
terms, various higher-order model checkers have been developed that run efficiently for typical inputs,
and program verification tools have been constructed on top of them. One may, therefore, hope
that higher-order model checking can be solved efficiently in the average case, despite the worst-case
complexity. We provide a negative result, by showing that, under certain assumptions, for almost
every term, the higher-order model checking problem specialized for the term is k-EXPTIME hard
with respect to the size of automata. The proof is based on a novel intersection type system that
characterizes terms that do not contain any useless subterms.

2012 ACM Subject Classification Theory of computation — Program verification

Keywords and phrases Higher-order model checking, Average-case complexity, Intersection type
system, Useless analysis

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Related Version A full version of the paper is available at [20].

1 Introduction

Higher-order model checking [12, 23, 25] asks whether the (possibly infinite) tree generated by
a given AY-term (or equivalently, a higher-order recursion scheme) is accepted by a given tree
automaton. The problem was shown to be decidable by Ong in 2006 [23], and has been applied
to higher-order program verification [15, 16, 22, 19]. Although the worst-case complexity of
higher-order model checking is k-EXPTIME complete (where k is the type-theoretic order of
the given \Y-term), practical higher-order model checkers have been developed that run fast
for many typical inputs. They lead to the development of various automated verification
tools for higher-order functional programs.

In view of the situation above, we are interested in the following question: why do
higher-order model checkers run efficiently, despite the extremely high worst case complexity?
There are a couple of known reasons. First, the worst-case time complexity of higher-order
model checking is actually polynomial in the size of a given term, provided that the other

© Yoshiki Nakamura, Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada;
37 licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).

Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:36

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

On Average-Case Hardness of Higher-Order Model Checking

parameters (the largest order and arity of functions, and the size of an automaton) are
fixed [18]. Second, linear functions do not blow up the complexity [5]. These reasons alone,
however, do not fully explain why higher-order model checking works in practice. For example,
for the first point above, the constant factor determined by the other parameters is huge.

In the present paper, we consider another possibility: higher-order model checking may
actually be easy in the average case; in other words, it may be the case that hard instances
that cost k-EXPTIME are sparse and many of the instances of higher-order model checking
can be solved more efficiently. We give a somewhat negative result on that possibility.
For each term t of the A\Y-calculus, we consider the following higher-order model checking
problem specialized to t:

HOMC(t,-): Given a tree automaton A, decide whether the tree
generated by t is accepted by A.
Our main result is that for almost every term t of order-k that is sufficiently large, HOMC(t, -)
is k-EXPTIME hard. A little more precisely, we prove that, for the set Terms,, j of terms of

size n and order k (modulo certain additional conditions that we explain later), the ratio of
“hard” terms:

#{t € Terms,, ;, | HOMC(t,-) is k-EXPTIME hard}
#Terms,, i,

tends to 1 if n — oo (where #S5 denotes the cardinality of a set S). In other words, if we
pick up a term randomly according to the uniform distribution over Terms,, j, it is likely
that there exists a bad automaton A such that HOMC(¢,.A) is very hard. Note that this is a
mixture between the average case and worst-case analysis: the result above says that in the
average case on the choice of a term ¢, the complexity of HOMC(t, -) is k-EXPTIME hard in
the worst-case on the choice of an automaton.

In order to make the above analysis meaningful, we have to carefully define the set
Terms,, ; of terms. To see why, consider a term of the form (Az.c)t, where c is a nullary
tree constructor. The term generates the singleton tree c; so, no matter how large ¢ is, the
problem HOMC((A\x.c)t,-) is easy. Thus, if we include such terms in Terms, j, the ratio of
hard instances above would not be 1 for the trivial reason. In the context of applications of
higher-order model checking to program verification, however, such instances are unlikely to
appear: a AY-term corresponds to a program, and it is unlikely that one writes a program that
contains such a huge useless term ¢. (It might be the case for machine-generated programs,
but even in that case, one can apply simple preprocessing to remove such useless terms
before invoking a costly higher-order model checking algorithm.) We, therefore, exclude out,
from Terms, j, terms that contain any useless subterms. Here, a subterm ¢; of ¢ is useless
if replacing t; with another term never changes the tree generated by ¢t. (We will impose
further conditions such as the number of variables, which will be explained in Section 2.)

Once the set Terms,, ;, is properly chosen as explained above, our main result can be
proved as follows. First, according to Kobayashi and Ong’s work on the complexity of
higher-order model checking [17], there exists an order-k “hard” term ¢pamp,x such that
HOMC (tHarp, k> -) is k-EXPTIME complete. Second, according to Asada et al’s work on
quantitative analysis on A-terms [1], any sufficiently large term ¢ can be decomposed to the
form E[C4,...,Cy,] for sufficiently many contexts C, ..., C,, where each C; is large enough
to be replaced by a context, say C/, that contains the hard term tyagp x, without changing
the term size. Thus, by using their argument (which originates from the so called “infinite
monkey theorem”), we can deduce that almost every sufficiently large term contains the
hard term tyagp,k, if we ignore the condition that useless terms should be excluded. Finally

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

(and most importantly), we can choose the context C] that contains the hard term, so that
if E[C1,...,C;,...,Cy)] belongs to Terms, , (and therefore does not contain any useless
subterms), then so does E[C1,...,Cl,...,Ch).

To obtain the last part of the result, we develop a novel intersection type system that
completely characterizes the set of terms that do not contain useless terms, in the sense that

a closed term ¢ is typable if and only if ¢ does not contain any useless term. This type system

is one of the main contributions of the present paper, and may be of independent interest.

Type systems for useless code elimination have been studied before [6, 7, 13] (in particular,
Damiani [7] used intersection types), but the complete characterization was not known, to
our knowledge.

The rest of this paper is structured as follows. Section 2 provides formal definitions of
AY-terms and the higher-oder model checking. Section 3 states our main result and gives
an proof outline. Sections 4-6 prove the theorem. Section 7 discusses related work, and
Section 8 concludes this article.

2 Preliminaries

For a map f, we write dom(f) for the domain of f and rng(f) for the range of f. We denote
by N the set of non-negative integers and by N the set of positive integers. For m,n € N,
we write [m,n| for the set {i € N|m <i <n}, and [n] for [1,n]; note that [0] = (). The
cardinality of a set A is denoted by #(A). We use AU B instead of AU B if sets A and B
are disjoint. For a set A, we write A* for the set of finite sequences consisting of elements of
A. An L-labeled tree is a partial map T from N to L such that, for every (a,i) € Nt x N,
if @4 € dom(T), then {a,a-1,...,a (i —1)} C dom(T). An L-labeled tree T is called
finite if dom(T) is finite. We write rp(«) for the number of children of a node « in T, i.e.,
rp(a) = #{i € Ny | a-i € dom(T)}. A ranked alphabet ¥ is a map from a finite set of
symbols to N. We call ¥(a) the rank of a. A dom(X)-labeled tree T is called a X-ranked tree
(3-tree, for short) if, for every o € dom(7T), rr(a) = E(T ().

2.1)Y -Terms as Tree Generators

In this subsection, we introduce (simply-typed) AY-terms [28] as generators of (possibly
infinite) Y-trees. In the context of higher-order model checking, higher-order recursion
schemes have originally been used as generators of trees [12, 23], but the AY-terms (with
constants of order up to 1 as tree constructors), which is equi-expressive as tree generators
(see, e.g., [26]), have also been used in later studies on higher-order model checking [25]. For
the purpose of the present paper, we find it more convenient to use AY -terms.

Let ¥ be a ranked alphabet. Each a € dom(X) is called a tree constructor. We use
meta-variables a, b, ¢ for tree constructors (and a,b,c,... for concrete symbols). The set
of simple types is defined by: k == o | k1 — k2. The ground type o is the type of
trees. The order and arity of a simple type k, written ord (k) and ar (k) respectively,
are defined by: ord(k; — - — Kk, — 0) = max({0} U {ord(k;) +1 |1 < i < n}) and
ar (k; — -+ — K, — 0) = n, where n > 0. Let V be a countably infinite set, which is ranged
over by z,y, z.

» Definition 1 (\Y-terms). The set of (AY-)terms (over ¥) is defined by:
tu=a [A"t | A"t tite | YO | a(ty, ... tn@) | L7

We call elements of V U {__} variables and use meta-variables z,y, z for them. As in the
standard AY-calculus, the constructor Y® may be considered a fixpoint operator of type

23:3

CVIT 2016

23:4

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

On Average-Case Hardness of Higher-Order Model Checking

(k — k) — k. The special variable ‘_’ denotes an unused variable (hence can occur only in a
binder, not in the body of a function). For each type k, we have a special term L*, which
intuitively represents an unused term and will play an important role in the definition of
minimal terms. We often omit type annotations (for example, Az*.2" is just written \x.z).
For a term ¢, we write FV(¢) for the set of all the free variables of ¢.

A simple type environment T is a finite partial map from V (recall that the special variable

__does not belong to V) to the set of simple types. We simply write T',z : x for T' U {x — £}.

The type judgment relation I' g1 ¢ : k is inductively defined by the following rules:

Irz:xbgrt:w Thert:w
(Var) (Absl) = (Abs2) w)
T:KkbFgT 2% K kgt Azt k — K kg ARtk — K Dbt L5 K
I'ibgrt:s—K Tobgrs:k Fibkgrtiio... TykFsTrtn:o I'kgrt:n—k
(App) @ ——————(v)
I'MuUlgbkgrts: K Uie[n]r’i FsT a(tl,...,tn):o 'kt Ytk

Henceforth, we only consider well-typed terms (i.e., terms ¢t such that I g7 ¢ : k for some
(T, k)). Note that for every well-typed term ¢, there is a unique pair (I',x) such that
I' kgt t : k; and moreover, its derivation tree is also uniquely determined. We sometimes
annotate a term with its type, like t*, when ¢ has type k (under a certain type environment).
We say that t is closed if I' = (; and that ¢ is ground-typed if k = o.

» Definition 2. The (call-by-name) reduction relation — s defined as the least binary
relation on well-typed terms (up to a-sequivalence) closed under the following rules, where
we write t{s/x} for the term obtained from t by substituting s for all the free occurrences of
x in a capture-avoiding manner:

(B) (AEt)s —s t{s/7); (Y) Yt —t(Yt); (L) Lm=mp 1w,
(App) tu — t'u th — t/,' (a) a(tl, Ce ,tn) — a(tl, Ce ,ti_l,t;,ti+1, Ce ,tn) th1 — t;

We write —* for the reflexive transitive closure of —.

The tree generated by a closed and ground A\Y -term t is the one obtained from t by
(possibly) infinite rewriting with respect to the above reduction relation. The precise
definition is given below.

We write X1 for the ranked alphabet ¥ W {1 + 0}. We define the binary relation C on
Yt -trees by: Ty C Ty if and only if (i) dom(7}) C dom(73) and (ii) for every a € dom(T}),
Ti(a) = L or Ty(a) = To(ar). We write Ty T Ty if Ty C T and Ty # T». We denote the join
of {Ti}icr on C by | |, T; if defined.

A term consisting of only tree constructors and L° can naturally be regarded as a X+-tree.
For example, b(c,a(L°)) can be regarded as the Y -tree: {e+> b, 1+ ¢c,2+> 2,2 -1+ L};
hence we identify finite trees and terms consisting of tree constructors and L° below. For
each closed and ground-typed term ¢, the X*-tree t* is defined by: t+ £ a(t{, ... ,té(a)) if
t=a(ty,...,tx@); and t+ £ | otherwise. The walue tree of a closed and ground-typed term
t, written T'(t), is defined by: T(t) 2 | |{s* | t —* s}. For example, consider the value tree
of (Yt1)c where t; = Af°7°.\z°.b(z, f(a(x))). By applying the reduction rules (Y) and (5),
we can obtain the following reduction sequence

(Yt1)c — t1(Yt1)e —" b(c, (Yt1)(a(c))) —" b(c,b(alc), (Yt1)(ala(c)))))

and observe that T'(¢) is the infinite tree of the form b(c,b(a(c),b(a(a(c)),b(---)))).
We also define the size and order of a term, which will be used in the complexity analysis.

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

» Definition 3 (size, order). The size of a term t is defined by: |x| = | L| £ 1, |\z.t| = |[Yt| £
L+ [t], [t1to] £ 1+ [t1] + [t2], and |a(ty, ... tx@)| £ 1+ Yies(ay Itil- The order of a term
t, written ord (t), is defined by:

ord (t) £ max({0} U {ord (k) | \z".s or Y"s is a subterm of t}).

Note that the size of a variable is a constant; this is appropriate in our context, as we fix the
number of variables in the main theorem (Theorem 6).

2.2 Higher-Order Model Checking

We assume the notion of alternating parity tree automaton (APT for short): see, e.g., [10].
A formal definition of APT can be found in Appendix A; but the precise definition of APT
is unnecessary for understanding our technical development in later sections, once you admit
the results in this subsection. We recall the definition of higher-order model checking.

» Definition 4 (higher-order model checking problem). The higher-order model checking
problem, written HOMC (-, -), is the problem of, given a closed and ground-typed \Y -term
t over ¥ and an APT A over ¥ as input, deciding whether A accepts T(t). We write
HOMC (-, -) when the first input is restricted to a term of order-k. We denote by HOMC (¢, -)
the problem obtained by fixing the first input to t, i.e., the problem of, given an APT A as
input, deciding whether A accepts T(t).

Ong [21] has shown that the HOMC(+,) is k-EXPTIME complete (combined complexity)
for each k > 0. The following theorem states the complexity of HOMC (¢, -), which serves as
a basis of the present work.

» Theorem 5 ([17, Theorem 3.8] for (2)). For each k > 1,

(1) for every order-k \Y -term t, HOMC (¢, -) is decidable in k-EXPTIME; and
(2) for some order-k AY -term tyapp k, HOMC (tHarp i, -) %8 k-EXPTIME hard.

3 Main Theorem

This section formally states the main result of the paper: for almost every order-k AY-term,
the higher-order model checking problem HOMC(t, -) is k<-EXPTIME hard, under a certain
assumption, and sketches an overall structure of the proof. We first prepare some auxiliary
notations. We denote by [t], the a-equivalence class of t. In our quantitative analysis,
we count a-equivalent terms at most once (e.g., we do not distinguish (Az.\y.x)z and
(Az.A_.2)2). We define #vars (t) = min{#(V(#')) | t' € [t]a}, where V(t) denotes the set of
all the variables (except _) occurring in ¢t. Namely, #vars () means the minimum number
of wariables occurring in term ¢, up to a-equivalence. For example, #vars ((Az.\y.z)z) =1
since the term is a-equivalent to (Az.A__.z)z. Also the internal arity of a term ¢, written
iar (t), is defined by: iar (t) £ max({ar (x) | s* is a subterm of t}).

Let A, (k, ¢, &) be the set of all (a-equivalence classes of) closed and ground-typed AY-
terms such that! (i) the size is n (i.e., [t| = n); (ii) the order is up to k (i.e., ord (t) < k);
(iii) the internal arity is up to ¢ (i.e., iar (¢) < ¢); (iv) the number of variable names is up to £
(i.e., #vars (t) < &); and (v) the terms are minimal (see Section 3.1 below for the definition).

The main theorem is stated as follows.

1 The set An(k, t,€) implicitly depends on the choice of ranked alphabet X. The main theorem holds
independently of the choice of ¥ unless ¥ is unreasonably small.

23:5

CVIT 2016

23:6

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

On Average-Case Hardness of Higher-Order Model Checking

» Theorem 6 (main theorem). For each k > 1, let v and & be sufficiently large natural
numbers. Then,

#({t € An(k,0,€) | HOMC(t,) is k-EXPTIME hard})

lim =1.

s #(Rak,1.6))

Below we first define the minimality in Section 3.1 and give a proof outline in Section 3.2.

3.1 Minimal Terms

Intuitively, a term is minimal if it has no useless subterm. The formal definition of minimal
term is given as follows. We define the relation C on terms, which is analogous to the
corresponding relation (C) on trees.

» Definition 7. The approximate relation C is the least binary relation on (well-typed) terms
closed under the following rules: 1% C t%; x® T x; if t1 C s1 and to C so, then t1to C 51 So;
if t C s, then A\z".t C A\z".s; if t C s, then Y"t C Y*s; and if t; C s; for every i € [X(a)],
then a(ty, . .. 7t2(a)) C a(sy,---, SZ(a))-

In other words, s C t means that s is obtained from ¢ by replacing subterms t7*, ..., ¢k
with L1 ... 1%~ We write s C t if s C ¢ and s # t. We denote the join of {¢;};,c; on C by
|_|i€I t; if defined, and we sometimes write ¢; U...U¢%, for |_|i€[n] t;. With respect to L+-tree
terms, the relation T on terms is equivalent to the relation T on X-t-trees.

» Definition 8. A closed and ground-typed term t is minimal if for every s C t, T(s) # T(t).2

In other words, a term t is not minimal if there exists s obtained by replacing a non-_L
subterm w of ¢ with L such that T'(s) = T'(t).

» Example 9. Let ¢t = (Az.A\y.z) a u. Then the value tree is the finite tree expressed by the
term a (since (A\x.\y.x) a u — (A\y.a) u — a). Note that, for generating the value tree
of the above term, the subterm u is “unused”. In fact, if u # 1, then ¢ is not minimal as
expected. This is because s = (Az.\y.x) a L C ¢t but T(s) = T'(¢). The term s is minimal.

The following proposition gives an important property of minimal term. We write ¢’ < ¢
when ¢’ is a subterm of a term ¢.

» Proposition 10. Let t be a closed and ground-typed term. If t is minimal, then for every
non-L, closed and ground-typed subterm s < t, its value tree T(s) is a subtree of T(t).

This property is intuitively obvious. Since ¢ is minimal, the subterm s assumed to be non-_1
must be used in the computation of the value tree T'(¢). As s is closed and ground-typed, the
only way to use s is to place its value tree T'(s) somewhere in T'(¢); hence the proposition.
For a formal proof, see Appendix G in the full version [20].

3.2 Proof Outline

For each k, let tgarp,x be an order-k closed and ground-typed term such that the problem
HOMC(t,-) is k-EXPTIME hard. Such tysrpr always exists by Theorem 5 (2). We can

2 Here T(s) # T(t) is equivalent to T'(s) C T'(t). It is because s C ¢ implies T((s) C T'(t) for every s and t.

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

assume without loss of generality that tyagp, , is minimal; otherwise take a minimal element
tiaro.k Of {8 [T(s) = T'(tuanp,k)}- The proof idea of Theorem 6 is fairly simple, and can
be divided into two parts. We will show that (a) for each order k, every order-k minimal
term containing the “hard” term tgagp,; as a subterm yields k-EXPTIME-hardness for the
higher-order model checking problem, and (b) almost every minimal term of order-k contains
the “hard” term tyarp,k as a subterm. The ideas (a) and (b) are formalized as the following
Lemma 11 and Lemma 12, respectively.

» Lemma 11. Let k > 1. For every minimal \Y-term t > tysrpr, HOMC (¢,-) is
k-EXPTIME hard.

» Lemma 12. For each k > 1, let v and € be sufficiently large natural numbers. Then,

#({t € Aulh,,€) | £t}

lim =1

e #(Rak,1.9)

Theorem 6 follows immediately from the two lemmas above. Lemma 11 is relatively easily
proved as follows.

Proof (of Lemma 11). Assume that ¢ = tgapp k- Then T(¢) = T (tuaro,k) by Proposition
10, i.e. T(tuaro,k) = (T(t)[a) for some a € dom(T(t)) where (T'[,) denotes the subtree of
T induced by the node a. Let ¢ be the length of a. For any APT A, we can construct an
automaton A[, by adding ¢ states to A and replacing the initial state so that A, accepts
T if and only if A accepts T, (intuitively, A[, first moves to the node « then behaves
like A). Then the polynomial-time function A +— (A[,) gives a polynomial-time reduction
from HOMC (tHarp,k,-) to HOMC (¢,-) The lemma follows from k-EXPTIME-hardness of
HOMC (tHARD,ka) |

The remaining part is to show Lemma 12. To prove it, we introduce the following lemma
(where the precise definition of second-order context will be given in Section 4).

» Lemma 13. Let k > 1. For each k, let v and £ be sufficiently large natural numbers. There
is m such that the following holds: Let n > m, E be any second-order linear context, and C
be any affine context of |C| > m such that E[C] € Ay (k,1,€). Then there is an affine context
D > tgarp,k Such that E[D] € /AXn(k7 L, €).

We show how Lemma 12 follows from Lemma 13 in Section 4. We then introduce a new
intersection type system that characterizes the minimality in Section 5, and use it to prove
Lemma 13 in Section 6.

4 Infinite Monkey Theorem for Minimal Terms

Our proof of Lemma 12 is alangous to that of the following classical so-called infinite monkey
theorem (a.k.a. “Borges’s theorem” [9, p.61, Note 1.35]) for words:

» Theorem 14. Let 3 be a finite alphabet. For any word x € ¥*, almost all words contain
r as a subword, i.e.

I #{w € X" | w = uzv for some u,v € ¥*})
im

=1.

23:7

CVIT 2016

23:8

283

284

285

286

287

288

289

290

291

292

293

294

299

300

301

302

303

304

305

306

307

308

309

310

311

On Average-Case Hardness of Higher-Order Model Checking

The theorem above follows from the following reasoning: Any word w can be decomposed
to the form wiws - - wpw’ where |w;| = |z] and |w'| < |z|. If we pick w randomly, the
probability that w; coincides with z is (ﬁ)m; hence the probability that w contains x is
at least 1 — (1 — (ﬁ)m)p , which tends to 1 when n tends to infinity. For the purpose of
proving Lemma 12, we analogously decompose each term ¢ to the form E[C1,...,Cp] (where
E and C; respectively correspond to w’ and w; above), by using the tree decomposition in [1].
Below, we first recall the tree decomposition of [1] (adapted to our setting) in Section 4.1.
We then prove Lemma 12, modulo Lemma 13.

4.1 Decomposition of Terms

In this subsection, we recall the decomposition function ®,,(-) given in [1] and its properties.
Hereafter we regard the set of AY-terms A(k,¢,&) over ¥ as ¥k, ¢)-trees where ¥y (4, ¢) is
an extension of X defined by:

U{AZ" = 1|z e Ve U{ } ord(k) < k,iar (k) <}
U{@Q—2}U{Y"—1,1%+— 0] ord (k) < k,iar (k) <}

where Ve = {z1,--- ,z¢} is a finite subset of V and the symbol @ represents the application
operation. One can easily observe that ¥z, ¢) is finite. Since A\Y-terms are 3y, ¢)-trees,
we can apply the decomposition method for trees to our AY-terms.

The decomposition function ®,,(-) (where m is a parameter) that decomposes a AY -term
t into (i) a (sufficiently long) sequence C' = Cj---C}, consisting of “affine” subcontexts
of size no less than m, and (ii) a “second-order” context E (defined later), which is the
remainder of extracting 8 from T'. For example, the term on the left hand side of Figure 1
can be decomposed to the second-order context and affine contexts shown on the right hand
side. Here, the symbol [[] in the second-order context on the right-hand side represents the
original position of each subcontext. By filling the i-th occurrence (counted in the depth-first,
left-to-right pre-order) of [] with the i-th affine context, we can recover the original tree
on the left hand side. Before introducing the decomposition function ®,,(+), we give formal
definitions of contexts and second-order contexts.

Second-order context

i
[]
@3 |
/@\
[1 T
[1
+

Sequence of affine subcontexts
(eal[])L - A.a(a) - Ay.a(y)

Figure 1 An example of term decomposition. The parts surrounded by rectangles on the left hand
side show the extracted affine subcontexts, and the remaining part of the tree is the second-order
tree context.

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347
348

349

350

351

352

353

354

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

The set of contexts over a ranked alphabet X, also called ¥-contexts and ranged over C,
is a set of X W {[] — 0}-trees where [] is a special nullary symbol called hole:

C = [] | a(C’l, ey CE(a))-
The size of a context C, denoted by |C|, is inductively defined as follows: |[]| £ 0 and
la(Cy,...,Cx@))| £ 14 |Ci| + -+ + |Cs(q)|- Note that [] and each rank-0 constructor
a € dom(X) have different sizes: |[|| = 0 but |a| = 1. For a context C, we denote the number

of occurrences of [] in C by hn (C): hn ([]) £ 1 and hn (a(Cy,...,Cx(q))) =hn(Cy) + -+
hn (Cx(q)). hn (C) = 0 means that C is a tree. We call C linear if hn (C') = 1, and call affine if
it is either a tree or linear. In general, we call C' a k-context if hn (C) = k. For contexts C, 8 =
C1 -+ Cun(cy, we write C[a] or C[C1,...,Cuey] for the context which can be obtained
by replacing each occurrence of [] in C with C; in the left-to-right non-capture-avoiding
manner: [][C] £ C and (a(Cy,..., Cz(a)))[c_*i e 82((1)] 2 a(Cy [C—H)], oy O [82((1)]]),
where #(3) =hn (C;) for each i € [X(a)]. For a 0-context C, |C| coincides with the size of
C as a Y-tree. For contexts C,C’, we call C’ a subcontext of C, written C’ < C, if there exists
contexts Co, C1, ..., Cuy(c) such that C" = Co[C[C1, ..., Cuy(c)]]. In particular, if C,C" are
trees then we say that C’ is a subtree of C.

» Definition 15 (second-order contexts). The set of second-order contexts over X, ranged
over by E, is defined by:

Eu=[I}[Er,.... By | a(Ey,..., Bx) (a € dom(%)).

Intuitively, the second-order context is an expression having holes of the form [} (called
second-order holes), which should be filled with a k-context of size n. By filling all the
second-order holes, we obtain a X-tree. Note that £ may be 0. In the technical development
below, we only consider second-order holes []7 such that k is 0 or 1. We write shn (E) for the
number of the second-order holes in E. Note that X-trees can be regarded as second-order
contexts E such that shn (F) = 0, and vice versa. For ¢ < shn (E), we write E.i for the i-th
second-order hole (counted in the depth-first, left-to-right pre-order). We define the size |E|
by: |[IR[Ers - -, Bl £ n+|Bi| + -+ |Ey| and |a(E1,. .., Bsy)| 2 B+ + | Bs@| + 1.
Note that |F| includes the size of contexts to fill the second-order holes in E.

» Definition 16 (substitution for second-order contexts). For a context C' and a second-order
hole %, we write C : [} if C is a k-context of size n. For a second-order context E and a
sequence of contexts C = Cy -+ - Capn(p) such that C; : Edi for each i € [shn (E)], we write
E[?] or E[C1,...,Camr)] for the tree which can be obtained by replacing each occurrence
of [] in E with C; in the left-to-right manner (and by interpreting the syntactical bracket [—]

as the substitution operation for usual contexts), where #(d) = shn (E;) for each i:

(LB, B])[C - Ct -+ Ch] 2 CIEA[CY), .., E4[Chl]
(@(En, -, Bs@))C1 - Cs)] 2 alBA[C1), .., Bsw)[Csw))-

We say that an affine context C' is good for m (or m-good) if |C| > m and C is of the
form a(C1,...,Cxq) where |C;| < m for each i € [¥(a)]. In other words, C' is good if C is
of an appropriate size: it is large enough (i.e. |C| > m) but not too large (i.e. the size of
any proper subcontext is less than m). For example, a(b([]),b(c)) is good for 3, but neither
C; =1(b([])) (since |C1] < 3) nor Cy = a(c,b(b(b([])))) (since C4 = b(b(b([]))) < Co has
size 3) is.

23:9

CVIT 2016

23:10

355
356

357

358
359

360

361

362

363

364
365
366

367

368
369

370

371

372
373

374

375

376

377

378
379
380
381
382
383
384
385
386
387
388

389

390

On Average-Case Hardness of Higher-Order Model Checking

» Theorem 17 (decomposition function [1]). For any m > 2, there exists a function ®,,(-)
which takes a X-tree T and returns a pair (E, C') of a second-order context and a sequence
of good affine contexts such that:

(1) E[C] =T
(2) shn(F) = #(8) > Il irm < |T| where r = maxrng(¥); and

— 2rm

(3) for any_@)' € [shn (E_))] and any m-g(gd affine context C : E.i,
D, (E[C’]) = (E,C") holds where C" is a sequence of contexts obtained by replacing the

i-th component 8(@) 0f8 with C.

4.2 Proof of Lemma 12

We are now ready to prove Lemma 12, under the assumption that Lemma 13 is correct
(the proof of Lemma 13 is given in Section 6). For readability, in this subsection we fix
the parameters k, ¢, and write A and A, for A(k,L,f) and]\n(k,L,f), respectively. Let
7 = max rng(EA(k,Lﬁg)).

We firstly introduce some auxiliary notation. For a term ¢ € Aand m € N, we simply
write Ef, and C'!, for the second-order context and sequence of contexts obtained by ®,,(t),
i.e., D (t) = (EL,, Bﬁn) For n,m > 2 and a term ¢ € A, we define

gn 2 {Efn Ite an} ool (E) 2 {t € Aip | B, = E}

Con(t,7) 2 T () C(B,i) 2 {Cn(t,7) |t € Ay and B, = B}

For a second-order context E, we define a family of sets S(‘)E) SlE 2---08 sb;m(B) of minimal
terms of size n as follows:

SE & {te O, Y (E) | taaro.k Z Cm(t,j) for each j € [i]} .

#HSin())
#S5)
randomly chosen term ¢ from <I>,_,11(E) does not contain tgarp,r in any its decomposed

Note that S¥ = & !(E) and thus the fraction

m

means the probability that a

subcontexts.

By using Lemma 13, we can easily prove that, for any term ¢ € A and i € [shn (EL))], there
exists a good affine context C such that tyappr < C, C : EL i and Efn[g] € A. This means
that a term ¢ can contain tpagp i as a subterm in arbitrary decomposed part independently
with other decomposed parts. Hence, if SE | is non-empty, SZ, \ SE is also non-empty
(i.e., SE| 2 SE) for each i € [2,shn (E)]. Moreover, since we can bound the number of
possible decomposed contexts as #(C,, (E, 1)) < ™™ for some constant + (intuitively, v is an
upper-bound of the growth rate of the number of contexts of size at most rm), the fraction
#(SiE) /#(Sﬁl) is bounded above by ("™ — 1)/4"™ = 1 — 4~"™. Summing up above
discussion, by using Lemma 13 and some analysis, we can bound the probability that no
decomposed part contains tiagp,r as follows (see Appendix B for details).

ZEesZ}L #(Sgn(E))

» Lemma 18. For some real number v > 0, ——~2———- < (1 — =™ shn(E)
LRl S L

391

392

393

394
395

396

397

398

399

400

401

402

4

S

3

404

405

406

407

408

409

410

411

412

413

4

=

4

4

=

5

416

417

418

4

a

9

420

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

Thus we have our Lemma 12 as:

#({0€ Atk | s 201) _ Sicey, #(Shuir)
#(An(k7 Ly 5)) > peen #(S¢°)
(. Lemma 18) (1 — y~"m)sin(E)

(.- Ttem 2 of Theorem 17)

(1—y"")zm — 0 (as n — o0).

5 Intersection Types for Minimal Terms

In this section, we introduce an intersection type system for characterizing minimal terms.

This type system will be a key tool to show Lemma 13. We define the sets of prime
intersection types and intersection types as follows, where n > 0:

0,0 = N{m,...

We often abbreviate \"{71,..., 7.} by A{r,....m}. We also often write Aj_(, 7 (or
1A ATy for N{m,...,7n}, and T% (or T) for A" 0. For each intersection types
0 =A\"Sand § = \" T, We denote by 6 A § the intersection type A"(SUT). We use 6, § to
denote a prime intersection type or an intersection type. An intersection type environment,

T,ou=o0|0—>T Tn -

written as © or A is a finite partial mapping from V to the set of intersection types. For
each ©, z € V\ dom(0), and 0, we write (0, z : 0) for O U {x — 0}. The refinement relation
0 :: k (resp. © :: ') is the least relation closed under the following rules, where n > 0:

T1 <%

K

Tn

g

K

T

K

! e:T

0

R

0 =717k —K

K
0o /\ie[n] Ti K

(©,2:0): (T,x: k)

Henceforth we only consider intersection types occurring in this refinement relation (so, we
always make the assumption that for each 6, 6 :: x holds for some k). Thanks to the x in
A", for each 6 (and similarly for ©), the type » such that 6 :: s is unique.

We write © A A for the intersection type environment {x — ©(x) A A(z) | z € dom(©) U
dom(A)}, where ©(x) = T* (similarly for A(z)) if z € dom(©) (where k is determined by
A(z)). The intersection type judgement relation © &t : 0 is inductively defined by the rules

in Figure 2, where we force that © & ¢ : 6 holds only when I' gy ¢ : 5, © :: T, and 6 :: & hold.

(Var O,x:0Ft:T (Abs1) @J—tIT (Abs2)
x:MNrTtEat T OFAxt:0—71 OF Azt T —r7
: . Okt (Yta): .
OFti0o7 Absif, 1 (Yto) Ty QLT
ONAFts:T OFY(t1Uts): 7 OFYt:T
@1%t1:91... @nFtngn @1Ft11T1... @nkth’Tn (/\) @Fté (T)
/\ie[n] ©; Falty,....tn): 0 /\ie[n] O, - I_liE[n] ti: /\ie[n] Ti O,z:THt:0

Figure 2 The intersection type system for the minimality.

Intuitively, we write O ¢ : A{r, ..

., Tn} if t is typed by each of 74, ..

., Tn, in a standard

(idempotent) intersection type system, but in this intersection type system, we write the one

if there is a partition {t;};e[n) of t (i.e., t = |], t:) such that each ¢; is typed by 7;. This

23:11

CVIT 2016

23:12

421
422

423

424

425

426
427
428

429
430

431

432

433

434
435

436
437
438
439

440

441

442

443

444

445

446

On Average-Case Hardness of Higher-Order Model Checking

difference is useful for characterizing the minimality introduced in Section 3 in cases of that
terms are “used” in multiple ways; see Example 21. The following theorem states that the
minimality can be characterized by this intersection type system.

» Theorem 19 (soundness and completeness). For every closed and ground-typed term t, t is
minimal if and only if O =t : 0 for some 0.

Proof Sketch. Both the soundness and the completeness can be proved by showing a subject-
reduction lemma and a subject-expansion lemma for this intersection type system, respectively.
The proof is proceeded in a standard way (using an alternative definition of the minimality),
but not so concise. For the details of the proof, see Appendix H in the full version [20]. <«

The following are examples of proving the minimality by using the intersection type system.

» Example 20. Let ¢t = (Ax°.A\y°.z°) a L° be the term appeared in Section 3. Then we can
show that ¢ is minimal by giving the derivation tree of § ¢ : o as follows:

—— (Var)
z:N{o}Fa°:o0
z: Ao} AyPa®: T —o (Abs2) (=)
: Yol (Absl) - 2Faso
0= Xxe A y®.x®: A{o} - T —o P+ a:A{o} App) (A)
D (Ax°Xy°.z®)a: T = o PP O Le:T

A
O (Az°Ay°.z®)a L°:0 (App)

Note that in contrast, § ¥ (Az°.A\y°.2°) aa:o by xz: A{o},y: A{o} ¥ z°: o; see (Var).
The following case is a bit more complicated, but the intersection types are essentially used.

» Example 21. Let 5 = (Af(°°70)=° a(ffst, fsnd)), u = (A\g°?°°.gbc), and t = su,
where fst = Az°. A\y°.z° and snd = Az°.\y°.5°. Then () ¢ : o is derived from the following
two by applying (App), where 77 = A{o} = T — o and 2 = T — A{o} — o. Hence this ¢
is minimal. Note that the term u is “used” in two ways when it is applied to the term s (the
f fst uses the b and the fsnd uses the c, respectively).

OFfst:m

Ve e
f:/\{/\{ﬁ}—>o}l—f:/\{n}—>o(ar) O+ fst: A{m1}
FiMMn) o} F ffstio (Aor) (imilaly to thelft)__
NN {1} = o} F ffst: {o} " fiN{A{r2} = o} F fsnd: {o}
S NN 2 o M) o] Falffst fand) o oo (@)
s
O Afa(ffst, fsnd) : A iM{n} = o} =0
(®)
(Vo) LERIO ™ .
g:Mnttg: Ao} =T —o OFb:A{o} OFL:T (similarly to the left)
T) Trere
g:Mnttyg ‘o (Abs1) g:MmtFglc:o (Abs1)
OFXg.gbLl:A{r1} —o OFXg.glc:A{r2} =0

()
0+ Ag.gbc: /\16[2]{/\{7',} — o}

6 Proof of the Main Lemma (Lemma 13)

In this section, we prove Lemma 13 by using the intersection type system in the previous
section. Recall that we need to prove that if E[C] € A,(k,¢,&), then there is a context

447

448

449

450

451

452

453

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

D > tyaro .k such that E[D] € /A\n(k, t,€). Thanks to the result of the previous section,
E|C] € An(k, t,€) implies that E[C] is typable in the intersection type system. Thus, it
suffices to construct D of the same size such that (i) C has “the same typing properties” as
D, and (ii) D contains tyagrpx. To this end, we first extend the notion of types to those
of contexts (called context-types) in Section 6.1. We then show in Section 6.2 that we can
indeed construct a context D that has the same context types as C, and prove Lemma 13.

6.1 Context-Types

For each affine-context C, we write C <gt {(I'},k}),..., (I, k0)} = (T, k) if there is a
derivation tree of I' Fgr C[x] : £ with the assumptions {I'} FeT x: K),..., T, FsT x: K},
where x is a variable not occurring in C' (informally speaking, it means that there is a

derivation tree of I'" Fgr C : k' with the assumptions {T'} Fsr []: &4, T Fst []: KL }).

For example, let ¢ = (Az°.[] z) a; then ¢t <gT {((T',x : 0),0 = k)} = (I', k), where I is any
environment and « is any simple-type. We often write ¢ <igr g for t <gT 0= 6. We use &
to denote a pair (I, k) and use U to denote a {(I'}, k%),..., (I}, k})} = (I, k). Note that C
is a term (resp. a linear-context) if C' <gr {(I'}, &%), ..., (T}, %)} = (', k) holds for n =0

(resp. n =1). In the following, we extend the notion of <igT to the intersection type system.

The set of (affine-)context-types, ranged over by fi, is defined as follows, where n > 0 and we
may write 07 for 6 if 6 # 0:
7u=(0,71) 0= {F1,..., 7} Tou=7|0F fii=0= 7.

The refinement relation is the least relation closed under the following rules, where n > 0:

0:T 7urx #alye)y ... Fu,r) (V&) 7:(,K)
(©,7) = (I, k) {71, Tt (T R) 0 = 7 (V) = (T, k)

Henceforth we only consider context-types occurring in this refinement relation (so, we always
make the assumptions that for each 6’ = 6, for some (T, k) and (I",x’), 0 :: (I',k) and

¢’ :: (I",K')). For each affine-context C, we write C < {(©,7]),...,(0,, 7))} = (0, 71) if

n)»'n

there is a derivation tree of © F C[x] : 7 with the assumptions {©} Fx:7{,...,0, Fx:7,}.
For n > 1, we write (|_|i€[n] Ci) < (Uie[n] 0) = {71,...,Tn} if C; 9 0, = 7; for each ¢ € [n].
We often write t <1 6 for t <1) = 6. We list a few properties (see Appendix D for the proofs).

» Proposition 22 (substitution). Suppose that C is a linear-context. If C <1 0 = 6 and
C' <0 =0, then C[C"] < 0" = 6.

» Proposition 23 (inverse substitution). Suppose that C is a linear-context. If C[C'] <1 6" = 6,
then C <16’ = 0 and C' <0”" = 0" for some 6.

These properties enable us to replace contexts preserving the minimality. For example,
given 0 - C[DI[t]] : o (i.e., C[D[t]] is minimal); then by Proposition 23, C' <16 = {(0,0)},
D <60 = 6,and t < ' for some § and §'; then by Proposition 22, C[D'[t] < {(0,0)} (hence,
C[D'[t]] is also minimal) for each linear context D’ < 0 = 0.

6.2 Proof of Lemma 13

Here, we fix parameters k, ¢, and £. W.l.o.g., in the following, we only consider terms,
contexts, and environments having only variables in a fixed set V¢ = {z1,..., 2} (of size
€). We say that (', k) is ((k, ¢, &)-)bounded if max{ord (x') | " € {k} Urng(I")} < k and

23:13

CVIT 2016

23:14

487
488
489
490
491

492

493
494
495
496

497

498
499

500

501
502

503
504

505
506
507
508
509
510
511
512

513
514

515
516
517
518
519
520
521
522
523

524

525

526
527

528

On Average-Case Hardness of Higher-Order Model Checking

max{iar (') | & € {k} Urng(I")} < ¢; and that (I",x") = (T', k) is bounded if both (I, k")
and (T, k) are; and that a context-type fi is bounded if the ¥ such that i :: ¥ is. We also say
that t is bounded if ord (t) < k and iar () < ¢; and that a linear-context C' is bounded if
C[L] is. Also, we use a (resp. b, c) to denote a tree constructor of arity 0 (resp. 2, 1).

The following technical lemma allows conversion between a ground-typed term and a
term of a required typing property: see Appendix C for a proof.

» Lemma 24. (1) Suppose that 0F :: (T, k) is bounded. If #(dom(I")) < & or ar (k) < ¢,
then Cgy <1 {(0,0)} = 6% for some bounded linear-context Cj, .

(2) Suppose that 0 is bounded. Then, Dy <10 = {(D,0)} for a bounded affine-context Dj.

The following is the key lemma, which shows that for any bounded context-type, one can

construct a context D that has the context-type and contains the hard term tiagp k-

» Lemma 25. Suppose that C <1 6’ = 0% for some bounded affine-context C. Then for some
mo, for every m > my, there is a bounded affine-context D of size m such that D < 6’ = 0+
and D = tHARD,k:-

Proof. Let (T, k) be such that % < (T, x). Note that §’ and 6F are also bounded.
(a) #(dom(T)) < € or ar (k) < «: For each [> 0, let D; be as follows, where c!(a) is the
term c(...c(a)...) that c occurs [times and Dy and Cpy,; are the ones in Lemma 24:

Dy £ Ce [b(tranw,k, b(c' (),)] [Dg/)-

Then D; = tyarp k is obvious, and D; < ¢’ = 0% by Proposition 22 (since b(tuarp &, b(c!, [])) <
{{(0,0)} = {(B,0)}). Therefore, the claim has been proved by using these Dy, Do, - --.

(b) Otherwise: Then, I' Fgp C[L] : &, C[L1] is bounded, and #(dom(I")) = £ and
ar (k) = ¢, so C should be of the form A_.Cj (see Lemma 40 in Appendix C). By Proposition
23, Co < 0 = 6y and A_.[] < 6y = 6 for some 6. Then ar (Cy) < ar(C) < ¢ and
fo # 0 by Co # L (since &€ > 0). Therefore by (a), for some mj, there is {Di}i>m;, such
that D] < 0 = 6, D} > tHarp,k, and |Dj| =1 for each | > my. Let D; = A_.Dj. Then
Dy = twaro,k is obvious, and D; < 0 = 6+ by Proposition 22. Therefore, the claim has been
proved by using these Dy, Dypr g1, - |

We are now ready to prove the main lemma.

Proof (of Lemma 13). Let m = max{mg 4 | C < 0’ = 6% for some bounded C}, where
each Mgy g+ 18 the mg in Lemma 25. Indeed such m exists, since the number of bounded
context-types is finite. Recall E[C] € An(k, 1,€). Let E be an affine-context such that
E[C] = E[C[t]] for some t or E[C] = E[C]. For the sake of brevity, we only write the case of
that F is linear-context (i.e., E[C] = E[C[t]]). Since E[C[t]] is minimal, § - E[C[t]] : § for
some 6 :: o (Theorem 19). Then E[C[t]] <0 = {(#,0)} (by E[C[t]] # L). By Proposition
23, there are § and ¢ such that £ <10 = {(§,0)}, C <0’ = 0, and t <) = §'. By Lemma
25 (and C # 1), there is a bounded linear-context D < 0’ = 6 such that D = tHarp,k and
|D| = |C|. Therefore E[D[t]] < = {(#,0)} (hence, § - E[D[t]] : A{o}) by Proposition 22,
and thus F[D] is minimal (Theorem 19). Hence, E[D] € An(k,). <

7 Related Work

Ong [21] proved the k-EXPTIME completeness of higher-order model checking. There have
also been results on parameterized complexity [15, 18, 17] and the complexity of subclasses
of the problem [17, 5]. To our knowledge, however, they are all about the worst-case

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

complexity. Despite the extremely high worst-case complexity, practical model checkers have
been developed that run quite fast for typical inputs [14, 4, 24, 29], which has led to the
motivating question for our work: is higher-order model checking really hard in the average
case?

Technically, closest to ours is the work of Asada et al. [27, 1] on a quantitative analysis
of the length of S-reduction sequences of simply-typed A-terms. In fact, our use of the
tree-version of infinite monkey theorem (to show that almost every term contains a “hard”
term), as well as the tree decomposition (Theorem 17) has been inspired by their work and
other studies on quantitative analysis of the A-calculus and combinatory logics [8, 2]. The
main new difficulty was that, unlike in the case of the length of S-reduction sequences, even
if t is a “hard” term to model-check, a term C[t] that contains ¢ as a subterm may not be
hard to model-check, because ¢ may not actually be used in C[t] or may be irrelevant for
the property to be checked. This has led us to restrict terms to “minimal ones” that do not
contain unnecessary subterms. The restriction turned out to be natural also for our goal: we
wish to model the average case that arises in the actual applications to program verification,
and the restriction to minimal terms helps us exclude out unlikely inputs.

We have used an intersection type system to characterize minimal terms. Related type
systems have been studied in the context of useless code elimination [6, 7, 13]. In particular,
Daminani [7] also used an intersection type system. To our knowledge, however, previous
studies do not provide a complete characterization of minimal terms (especially in the presence
of recursion).

There has been much interest in the average-case complexity in the field of computational
complexity: see [3] for a good survey. In their terminology, our ultimate goal is to answer
whether (HOMCy (-, -),U) belongs to AvgsDTIME(f(n)) (the class of distributional problems
that can be solved in time f(n) for at least (1 — &(n))-fraction of the inputs of size n),
where HOMCy (-,) is the higher-order model checking problem of order k, U is a uniform
distribution on inputs of each size n, § is a function that is asymptotically smaller than An.1,
and f(n) is a function asymptotically much smaller than exp,(cn) (a k-fold exponential
function). The result obtained in the present paper (Theorem 6) is not yet of this form, and
is rather a mixture of average-case and worst-case analysis, which may be of independent
interest from the perspective of complexity theory.

8 Conclusion

We have studied a mixture of average-case and worst-case complexity of higher-order model
checking, and shown that for almost every order-k AY -term ¢, the higher-order model checking
problem specialized for ¢ is k-EXPTIME hard with respect to the size of a tree automaton.
To our knowledge, this is the first result on the average-case hardness of higher-order model
checking. To obtain the result, we have given a complete type-based characterization of
“minimal” terms that contain no useless subterms, which may be of independent interest.
Pure average-case analysis of the hardness of higher-order model checking is left for future
work.

3 A similar notion has also been studied under the name “generic-case complexity” [11].

23:15

CVIT 2016

23:16

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

619

On Average-Case Hardness of Higher-Order Model Checking

—— References

1

10

11

12

13

14

15

16
17

Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada. Almost Every Simply
Typed Lambda-Term Has a Long Beta-Reduction Sequence. Logical Methods in Computer
Science, Volume 15, Issue 1, February 2019. URL: https://1lmcs.episciences.org/5203,
doi:10.23638/LMCS-15(1:16)2019.

Maciej Bendkowski, Katarzyna Grygiel, and Marek Zaionc. On the likelihood of normalization
in combinatory logic. J. Log. Comput., 27(7):2251-2269, 2017. URL: https://doi.org/10.
1093/1logcom/exx005, doi:10.1093/1logcom/exx005.

Andrej Bogdanov and Luca Trevisan. Average-case complexity. CoRR, abs/cs/0606037, 2006.
URL: http://arxiv.org/abs/cs/0606037, arXiv:cs/0606037.

Christopher H. Broadbent and Naoki Kobayashi. Saturation-based model checking of higher-
order recursion schemes. In Proceedings of CSL 2013, volume 23 of LIPIcs, pages 129-148,
2013.

Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski. Linearity in higher-order
recursion schemes. PACMPL, 2(POPL):39:1-39:29, 2018. URL: https://doi.org/10.1145/
3158127, doi:10.1145/3158127.

Mario Coppo, Ferruccio Damiani, and Paola Giannini. Refinement types for program analysis.
In Proceedings of the Third International Symposium on Static Analysis, SAS ’96, pages
143-158, Berlin, Heidelberg, 1996. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?
1d=647165.717834.

Ferruccio Damiani. A conjunctive type system for useless-code elimination. Mathematical
Structures in Computer Science, 13(1):157-197, 2003. URL: https://doi.org/10.1017/
50960129502003869, doi:10.1017/S0960129502003869.

René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier, and
Marek Zaionc. Asymptotically almost all A-terms are strongly normalizing. Logical Methods
in Computer Science, 9(1), 2013.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
New York, NY, USA, 1 edition, 2009.

Erich Gradel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.

Ilya Kapovich, Alexei G. Myasnikov, Paul Schupp, and Vladimir Shpilrain. Generic-case
complexity, decision problems in group theory and random walks. CoRR, math.GR/0203239,
2002. URL: http://arxiv.org/abs/math.GR/0203239.

Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are easy.
In Foundations of Software Science and Computation Structures, 5th International Conference,
FOSSACS 2002, volume 2303 of Lecture Notes in Computer Science, pages 205-222. Springer,
2002.

Naoki Kobayashi. Type-based useless-variable elimination. Higher-Order and Symbolic
Computation, 14(2-3):221-260, 2001.

Naoki Kobayashi. Model-checking higher-order functions. In Proceedings of PPDP 2009, pages
25-36. ACM Press, 2009.

Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order pro-
grams. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages (POPL), pages 416-428. ACM Press, 2009.

Naoki Kobayashi. Model checking higher-order programs. Journal of the ACM, 60(3), 2013.

Naoki Kobayashi and C.-H. Ong. Complexity of Model Checking Recursion Schemes
for Fragments of the Modal Mu-Calculus. Logical Methods in Computer Science, 7(4),
jan 2012. URL: http://arxiv.org/abs/1109.5267http://dx.doi.org/10.2168/LMCS-7 (4:
9)2011https://1lmcs.episciences.org/1211, arXiv:1109.5267, doi:10.2168/LMCS-7(4:9)
2011.

https://lmcs.episciences.org/5203
http://dx.doi.org/10.23638/LMCS-15(1:16)2019
https://doi.org/10.1093/logcom/exx005
https://doi.org/10.1093/logcom/exx005
https://doi.org/10.1093/logcom/exx005
http://dx.doi.org/10.1093/logcom/exx005
http://arxiv.org/abs/cs/0606037
http://arxiv.org/abs/cs/0606037
https://doi.org/10.1145/3158127
https://doi.org/10.1145/3158127
https://doi.org/10.1145/3158127
http://dx.doi.org/10.1145/3158127
http://dl.acm.org/citation.cfm?id=647165.717834
http://dl.acm.org/citation.cfm?id=647165.717834
http://dl.acm.org/citation.cfm?id=647165.717834
https://doi.org/10.1017/S0960129502003869
https://doi.org/10.1017/S0960129502003869
https://doi.org/10.1017/S0960129502003869
http://dx.doi.org/10.1017/S0960129502003869
http://arxiv.org/abs/math.GR/0203239
http://arxiv.org/abs/1109.5267 http://dx.doi.org/10.2168/LMCS-7(4:9)2011 https://lmcs.episciences.org/1211
http://arxiv.org/abs/1109.5267 http://dx.doi.org/10.2168/LMCS-7(4:9)2011 https://lmcs.episciences.org/1211
http://arxiv.org/abs/1109.5267 http://dx.doi.org/10.2168/LMCS-7(4:9)2011 https://lmcs.episciences.org/1211
http://arxiv.org/abs/1109.5267
http://dx.doi.org/10.2168/LMCS-7(4:9)2011
http://dx.doi.org/10.2168/LMCS-7(4:9)2011
http://dx.doi.org/10.2168/LMCS-7(4:9)2011

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

18

19

20

21

22

23

24

25

26

27

28

29

Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of LICS 2009, pages 179-188.
IEEE Computer Society Press, 2009.

Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predicate abstraction and CEGAR for
higher-order model checking. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 222-233. ACM Press, 2011.

Yoshiki Nakamura, Asada Kazuyuki, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada.
On average-case hardness of higher-order model checking. Full version. Available from https:
//wuw.kb.is.s.u-tokyo.ac. jp/~koba/papers/OnAverageCaseHOMC. pdf.

C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), pages 81-90. IEEE Computer
Society Press, 2006.

C.-H. Luke Ong and Steven Ramsay. Verifying higher-order programs with pattern-matching
algebraic data types. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles
of Programming Languages (POPL), pages 587-598. ACM Press, 2011.

C.-H.L. Ong. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In 21st
Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages 81-90. IEEE, 2006.
URL: http://ieeexplore.ieee.org/document/1691219/, doi:10.1109/LICS.2006.38.
Steven Ramsay, Robin Neatherway, and C.-H. Luke Ong. An abstraction refinement approach
to higher-order model checking. In Proceedings of ACM SIGPLAN/SIGACT Symposium on
Principles of Programming Languages (POPL), 2014.

Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. In
Proceedings of ICALP 2011, volume 6756 of Lecture Notes in Computer Science, pages 162—173.
Springer, 2011.

Sylvain Salvati and Igor Walukiewicz. Recursive schemes, krivine machines, and col-
lapsible pushdown automata. In Alain Finkel, Jéréme Leroux, and Igor Potapov, ed-
itors, Reachability Problems - 6th International Workshop, RP 2012, Bordeauz, France,
September 17-19, 2012. Proceedings, volume 7550 of Lecture Notes in Computer Sci-
ence, pages 6-20. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-33512-9_2,
doi:10.1007/978-3-642-33512-9_2.

Ryoma Sin’ya, Kazuyuki Asada, Naoki Kobayashi, and Takeshi Tsukada. Almost every simply
typed A-term has a long [-reduction sequence. In Foundations of Software Science and
Computation Structures - 20th International Conference, FOSSACS 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, volume 10203 of Lecture Notes in Computer Science,
pages 53-68, 2017.

Richard Statman. On the lambda Y calculus. APAL, 130(1-3):325-337, 2004. doi:10.1016/
j.apal.2004.04.004.

Ryota Suzuki, Koichi Fujima, Naoki Kobayashi, and Takeshi Tsukada. Streett automata model
checking of higher-order recursion schemes. In FSCD, volume 84 of LIPIcs, pages 32:1-32:18.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

23:17

CVIT 2016

https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
http://ieeexplore.ieee.org/document/1691219/
http://dx.doi.org/10.1109/LICS.2006.38
https://doi.org/10.1007/978-3-642-33512-9_2
http://dx.doi.org/10.1007/978-3-642-33512-9_2
http://dx.doi.org/10.1016/j.apal.2004.04.004
http://dx.doi.org/10.1016/j.apal.2004.04.004
http://dx.doi.org/10.1016/j.apal.2004.04.004

23:18

661

662

663

664
665
666
667

668

669
670
671
672
673
674

675

676

677

678

679

680
681
682
683
684

685

686

687

688

689

690

691

692

693

694

695

696

On Average-Case Hardness of Higher-Order Model Checking

A Definition of Alternating Parity Tree Automata

» Definition 26 (alternating parity tree automata). Let 3 be a ranked alphabet. An alternating
parity tree automaton over ¥ is a quadruple A = (Q, qo,6,Q), where

Q is a finite set of states,

qo € Q 1is the initial state,

§: QXX — BT ([m] x Q) is the transition function, where m is the largest rank of symbols
in dom(X); and BY (X) denotes the set of positive boolean formulae over X.

Q: Q — [p] assigns a priority to each state.

A run of an APT A over a X-tree T is a (dom(T) x Q)-labeled tree R such that: (1)
R(e) = (g,q0); and (2) for every B € dom(R) with R(8) = («,q), the formula 6(q,T(a))
evaluates to true when each variable in the set {(i,q') [(- 1,q") € U cpp sy 1R(B 1)1} is
set to true. A run R is accepting if every infinite path 8 in R satisfies the parity condition:
let B = j1jo--- and for each l > 1, let q; be such that R(j1ja...51) = {a,q) (for some a);
then the largest priority that occurs infinitely often in Q(qo)Q(q1)2(q2) - - - is even. A accepts
T if there is an accepting run of A over T.

B Proof of Lemma 18

To prove Lemma 18, we firstly introduce three lemmas.

» Lemma 27. Let ¥ be a finite ranked alphabet with #(dom(X)) = . The number of all
Y-trees of size n is bounded by v for each n € N.

Proof. It is well-known that any ranked tree can be represented without using parenthesis
(¢f. Polish notation). For example, a {a — 0,b — 2,c — 1}-tree t = c(b(a, c(a))) can be
represented just as a word over dom(X): cbaca, which is the depth-first left-to-right traversal
of t. Hence one can easily observe that there is an injection from the set of all X-trees
of size n into the set dom(X)" of all words over dom(X) of length n. The latter satisfies
dom(X)" = ~". <

Since every linear contexts of size n over ¥ can be regarded as a tree over X U {[]|} of size
n + 1, the following is deduced.

» Corollary 28. For any ranked alphabet 33, there exists some real number vy such that the
number of all affine contexts over X of size at most n is bounded by ™ for each n € N.

» Lemma 29. Let A be a finite sequence of non-negative real numbers and B be a sequence

CAG
of positive real numbers of the same length #(A) = #(B) = n. % is bounded by
i€ln]

— A(l A(n)
C—max{m’... ’B(n)}'
Proof.
. A . .
ZiG[n] A(’) Zie[n} BEZ; : B(l) Zie[n] C- B(’L)

= < = C.

Qi) B(0) e B) T Xien BO)

The last lemma is similar to Lemma 13, but is modified for good affine contexts.

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:19

sr » Lemma 30. Let k > 1. For each k, let v and & be sufficiently large natural numbers.
es There is m such that the following holds: Let E be any second-order linear context and C be
0o any affine context good for m such that E[C] € An(k, t,€). Then there is an affine context
w0 D = tyarpk good for m such that E[D] € IAXn(k7 L, €).

o1 Proof. Let mg be the natural number obtained by Lemma 13 and let m = 1 4+ mg X
72 max({2} Urng(X)). We only write the case C = a(Cy,...,Cx@)). (Other cases are
73 proved in the same way.) Let C; be such that |C;| = max{|Ci|,...,|Cx@)|}. Let E' be
704 E[a(Cl, ey C,'_l, [[]]701'-{-17 ceey CZ(a))]~ Then |CZ| Z mo and E[O] = E/[CZ], SO by Lemma 13,
s thereis C) > tyagp,k such that E'[C]] € An(k, t,€). Then D = a(C1,...,Ci1,Cf,Ciq1, ..., COsa))
w6 is an affine context good for m and E[D] € A, (k,t,€) (since E[D] = E'[C})). <

707 The following is an immediate consequence of the last lemma.
m

w0 that (1) taarok = C; (2) C: El vi; and (3) EY,|
7o obtained by replacing the i-th component of C't, by C.

s » Corollary 31. For anyt € A and i € [shn (E!, %, there exists a good affine context C such
| € A, where 8 is a sequence of contexts

m Then, we will prove that Lemma 18 is true if we take v as a constant stated in Corollary 28
n2 for ¥y (k,.,¢). By Lemma 29,

Sieey #(Shar) _ #(Sthuw)
Ypeen #(S7) — #(SF)

na holds for some FE € E"

m?

#(SsEhn(E)) <1—ym

713

thus it is suffice to show the following inequation for such E:

715

(1)

716 #(SOE') -
nr o If SsEhn(B = () the inequality (1) holds obviously, thus we assume S sEhn() i non-empty. Since
E E
#(SEum) #(SE) #(SE) #(SE)
718 #(SE) —#(SE) X#(SE) X‘-‘XiE N
0 0 1 # (Sshn(E)—l)
ne it is suffice to show that
SE
720 Lé) <1 —A7mm (2)
721 #(Slfl)
72 holds for each i € [shn (E)].
723 For i € [shn (F)], we define:
720 D (E,i) £ {C € Cn(E, 1) | tuarox 2 C}
i—1 shn(FE)
v BulBi) 2 ()i € [[DnlEj) x [[ColEi) | Conltsj) = C; (j # i) for some t € @} (E)
726 j=1 Jj=i+1

= Intuitively, D,,(F, i) consists of “non-hard” contexts appeared in i-th decomposed part of
78 some minimal term in ®,}(E). For (C});z € Dn(E,j), we further define the number of

CVIT 2016

23:20 On Average-Case Hardness of Higher-Order Model Checking

7o “possible” contexts NS, ((C;);zi) and the number of non-hard contexts N ((C;);j.i) that
750 consistent with (C}),;; in minimal terms as follows:

731 N’SL ((Cj)j¢z) £ #({Cz S Cm(E,i) ‘ 8% == Cl s Cn,10i0i+1 cee Cj for some t € (I);Ll(E)})
B ND((C)ie) 2 #({C € DulB0) | Tl = Cr o Cuy €ty € for some t € 01(E))
73 Since SZ, is non-empty, Bm(EJ) is also non-empty. Further, by the definition of

735 Bm(E, i), NS ((C});ji) is always positive. By regarding each t € ®;,1(E) as a sequence of
16 extracted contexts (it is one-to-one if we fix E), we have

737 #(SF) = Z Nrg ((C])J?fl)
(Cj)j#ieBm(Evi)
738 #(SZE_l) = Z NSL ((Cj)ﬁéi)

(Cy)ii €Dl Boi)

739

740 For each 1—)>m(E7 i), by Corollary 31, there exists some C' € Cp,(E,) \ Dy (FE,) such that
741 Bfn =C1+-Ci1CCiyq1 -+ Copp() for some t € @, 1(E). Thus we have

w NP (Bm(E,i)) < NS (Bm(E,i)) -~

73 Moreover, because of the goodness for m, each element C € C,,(E, i) satisfies |C| < r(m —
m 1)+ 1 < rm hence

745 #(Cm(EJ)) S ’}/Tm
us by Corollary 28. Combining these two facts, the following holds

N7 ((Cj)ji) 1 1 -
747 m <1- Sl,ibglivrm.
NS, ((C)ji) NG, ((C)ji) #(Cm(E,1))
us Therefore, by Lemma 29, we obtain the inequality (2) as follows:
#(SzE) _ Z(Cj)#iev,,,L(Eﬂ) N ((Cy)zi) <1 —n7mm
#(SE1) ey, mepmm N (Ch)jzi) —

0 for each i € [shn (E)].

749

= C Proof of Lemma 24

2 The size of a simple type x and a simple type environment I', written || and |T'| respectively, is
75 defined by: |k| £ 1if k = o, |k| 2 14|ky|+|k2| if K = K1 — Ko, and |T| = 143~ cdomr) T(@)].
754

s B Definition 32. The term tr . is inductively defined as follows, where in the second case,
e | = min{i € [£] | z € dom(T")}; and in the third case, | = min{i € [{] | z; ¢ dom(T")}:
a (k=o0and T =10)

b(2itp et -ty em, trro) (k=0 andl = (I",z : k' = ... = K™ = 0))
k=K — K" and #(dom(T")) < &)

k=K — K" and ar (k) <)

1>

757 tr),g Azl-t(l",zl;n/)7,@//

()\Zl ~t(z1:o),fc) tF,o
undefined

(
(
(
(

otherwise)

758

759

760

761

762

763

764

765

766

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

785

786

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:21

» Proposition 33. Suppose that (I', k) is ((k,¢,€)-)bounded. If #(dom(I")) < £ orar (k) < ¢,
then (1) tr . s defined, (2) T Fsr tr . : &, and (3) tr . is bounded.

Proof. By a straightforward induction on the parameter (|s|, |T'|). <
We now extend the above for intersection types.

» Definition 34. The term ig 4 is inductively defined as follows, where in the second case,
I =min{i € [£] | z; € dom(O)}; and in the third case, | = min{i € [{] | z; & dom(O)}:

a (6 =0 and © =)
b(Liepn 2tto.0r - - - to,0r, ter o) (=0 and © = (0,2 : Niepn) 0l — ... = 0™ — o))
A2 t(©,2:0'), 77 (0 =60 — 7" and #(dom(0)) < &)
tog = (Az14(2,:0001),8) 00 (0=0"— 7" and ar (k) < 1)
Liepm te.m: 6= Nigpm) i and n > 1)
s (0=T" and © = 0)
undefined (otherwise)

» Proposition 35. Suppose that (0,0) :: (T', k) for some bounded (T, x). If #(dom(F)_) <E,

ar (k) <, or (©,0) = (B, T), then (1) to.g is defined, (2) tg g Etry, (3) OFtgg:0, and
(4) to g is bounded.

Proof. By a straightforward induction on the parameter (|x|, |I'|). The existence of the join
in each case can be ensured by the assumption (2). <

We now extend the above for context-types (i.e., for Lemma 24).

» Definition 36. The linear-context Cx is inductively defined as follows, where in the second
case, | = min{i € [£] | z; & dom(O)}:

b(t@,oa []) (T = O)
o N A21.C (@ 201 ,777) (1=60"—= 7" and #(dom(©)) < §) For each 6+ —
(©.m) (Az1:t(z:info}),7r) Cloy (T=0 — 7" and ar (1) < 1) '

undefined (otherwise)
{F1,... Fn}, let Czu = I—lie[n] Cs,. This is well-defined by using Proposition 35(2).

» Proposition 37. Suppose that 01 :: (T, k) for some bounded (T, k). If #(dom(T")) < &

or
ar (k) < 1, then (1) Cyy is defined, (2) Cz <1 {(0,0)} = 0, and (3) Cyy is bounded.
Proof. By a straightforward induction on the parameter (x|, |T'[). <

» Definition 38. The linear-context D; is defined as follows, where in the first case, | =
min{i € [£] | z; € dom(©)}; and in the second case, T =01 — ... — ™ — o:

Az1.Digr) t 0=(0,2:0 j
a {(2D ry) toe, (0,2 l)) Let Dy 2 Uicpn) D for each 0t =

(®,7) —
C(H t@791 oo t@yg'm) (@ == @)
{F1,...,%n}. This is well-defined by using Proposition 35(2). Also, specially, let Dy = a.

» Proposition 39. Suppose that 0 :: (T, k) for some bounded (T',x). Then, (1) Dy is defined,
(2) Dy <0 = {(0,0)}, and (3) D; is bounded.

Proof. By a straightforward induction on the parameter (|x|, |T|). <

As a consequence of Proposition 37 and 39, Lemma 24 has been proved.

CVIT 2016

23:22

787

788

789

790

791

792
793
794

795

796

797

798

799

800

801
802

803

804

805

806
807

808

809

810

811

812
813
814

815

816

817
818
819
820

821

On Average-Case Hardness of Higher-Order Model Checking

C.1 On the Boundary Case for Lemma 24(1)

Here, we consider the boundary case for Lemma 24(1), i.e., I' Fgr ¢ : &, t is {k, ¢, £)-bounded,
#(dom(T")) =&, and ar (k) = ¢. Actually in this case, ¢t should be of a special form.

» Lemma 40. Suppose that (1) T bgrt: K, (2) t is (k,i,&)-bounded, (3) #(dom(T")) = &,
and (4) ar (k) = ¢. Then, t is a-equivalent to a term of the form A__.t;.

Proof. By { > 1,t#xand t # L. By ¢ >0, t # a(ty,...,t5)). By ar (k) = ¢, t # tito
and t # Yt;. Therefore ¢ is of the form Az.t;. By that ¢ is bounded and #(dom(I")) = ¢,
the last rule of T kg1 AZ.t; : k should be (Abs2), so T Fgr 1 : k", where k = k' — k”. Then
Z does not occur in t; as a free variable. Therefore ¢ is a-equivalent to the term _.t;. <«

D Proof of Proposition 22 and 23

» Lemma 41. Suppose that C is a linear-context. If C <10’ = 7 and C' < 0" = @', then
ClC'l <0 = {7}.

Proof. Let 6’ = {7],...,7.}. By C' < 6" = ', there exists {(9;2,0) Yien),jelk,] Such that
C" = Uity jers Crio 0" = Uiermljelk) 9”, and Cj ; 9” = Here, we can assuime that
k1 =--- =k, (so, we denote them by k). Then from the derivation tree of C <10 = 7 (see

the left-hand side below), we can construct a derivation tree of C[C"] < §” = 7 (see the
right-hand side below) as follows, where ¥ = (0, 7) and f: [m] — [n/] is a surjective map:

Ff(1 < 9 1= %;(1) C,,r'(m)-l < 9}/(,"),1 = %}("ﬁ

x<QFp) o X< T T —_— T
W T ~ Chs C“_Le[n] Ciqler e o C[ULQ[H] C:,k] -7 (/\)' <
eOrClC:T
Proof of Proposition 22. Let §' = {7{,...,7},} and 6= {F1,...,Tn}. By C' < 0’ = 0, there

exists {(6),C;) }iepm) such that C' = |_|Z€[m] CZ, 0 = Uiem) 92, and C; < 0, = Tty By
'« 01” = @', there exists {(0” ", C%)}jems) such thimt C" = Ujem C’j’:, 0" = Ujepr ~9§’, n~d
Cj/'/ < 9;/ = {7:]} Let C; ~: Llje[n/]ﬁ_;_eé‘; C;/ and let 97{/ = L"Jje[n']:%;eé; 9;’ Then CZI < 9;’ = 9;
By Lemma 41, C;[C}] <1 0] = 7¢(;). Therefore, C[C'] < 0" = 0. <

» Lemma 42. Suppose that C is a linear-context. If C[C'] 0" = 7, then C <10’ = 7 and
C'<0" =60 for some 0.

Proof. Then (the derivation tree of) C[C'] <1 §” = 7 should be of the form in the right-hand
side below, where 7 = (©,7), C" = | |;¢(,,; C, and 0" = Uiem /. Welet 0 = {7],...,7..}.

Then, ¢’ < 0" = ¢’ is immediate and C' <1 §’ = 7 is shown by replacing each subterm arise
from ¢ to x (see the left-hand side below).

x<dF .. x<QF, Ci<all=7 ... ChL <l =7
OFCx]:7 o OrCC):T

<

Proof of Proposition 23. Let 8" = {#/,...,7/,} and 0 = {,...,7,}. By C[C"] < 0" = 0,
there are a surjective map f: [m] — [n] and a sequence {(C}, Cj, 91) }ie[m) such that Cy[C}] <
0! = Tty € = Uiepm Cir €' = Liepm) €1 and 6" = Uieim) 0! (see also Proposition 45 in
the full version [20]). By Lemma 42, C; < 8, = Tty and Cf < 0! = @/ for some 0. We now

let 6 = Ujepm) 0;. Then, both C' <1 6" = 9’ and C' <1 0 = 0 are immediate. <

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

E Properties of the Approximate Relation

In this section we list some properties of the approximate relation 1.
» Proposition 43.

(1) If s 3¢, then t{s/x} D t{s'/x}.

(2) If s s and x € FV(t), then t{s/x} T t{s'/x}.
(3) Ift' 3t, then t'{s/x} J t{s/x}.

(4) Ift' Ot and s # L, then t'{s/x} D t{s/z}.

Proof. By simple induction on the structure of ¢. |
» Proposition 44. If s,u C t for some t, then the join s Uw is defined.

Proof. By induction on the structure of ¢. If s = L or u = L, then the existence of s Uu
is obvious. Otherwise we do case analysis on the structure of t. We only write the case of
t =ty to (Other cases are shown in the same way). By ¢ J s # L, s is of the form s so. As

well for u, u is of the form w; us. For each | € [2], by s;,u; C ¢; and LH., s; U is defined.
Then ¢ = (s1Uwu1) (s2Uusg) is the join of s and u, i.e, for every t” such that s,u C¢", ¢ C¢".

We now show it. By s,u C ¢, t” is of the form ¢} ¢} and also s1,u; C t] and so,us C ¢}
hold. Therefore by s; Lluy C] and so Uug C ¢, ¢/ T ¢” has been proved. <

We write FVCy(t) for the number of occurrences of x in t as a free variable. We say that
a substitution t{s/x} (more formally, a tuple (¢, s,x)) is conservative if the following holds:
(1) FVC,(t) < 1;and (2) if x ¢ FV(t), then s = L. By this restriction, the following useful
proposition holds.

» Proposition 45.

(1) Ift{s/x} = |jepny w and t{s/x} is a conservative substitution, then there is {(t, s1) }ie[n]
such that (a) for each | € [n], ti{si/x} = w and t;{s;/x} is a conservative substitution;
(b) t =gy ti; and (c) s = [yepy 51-

(2) If (a) for each l € [n], ti{si/x} = w and t;{si/x} is a conservative substitution; (b)
t=liep tis and (¢) s = gy st then t{s/x} = |,y (and t{s/x} is a conservative
substitution).

Proof. (1): By induction on the structure of t. Without loss of generality, we can assume
that, for each I € [n], u; # L (if wy = L, let {(t;,) = (L, 1)).

Case t = x: For each [, let (t;, ;) = (x,u;). Then (a)(b)(c) hold.

Caset=2a (forz #x)ort=1: By x € FV(¢), s = L. For each [, let (t;,s;) = {uy, L).
Then (a)(b)(c) hold.

Case t = t't%: Then (i) t{s/x} = (t'{s/x})t? or (ii) t{s/x} = t' (t*{s/x}) holds,
because FVC,(t) < 1. We only write case (i) (in the same way for (ii)). For each [, by
(t'{s/x})t* Du; # L, u; is of the form u} u?. Then t'{s/x} = Ui uj and t? = Liepm u?.
By LH., there is {(t], s]) }ic[n] such that (a’) for each I € [n], t]{s]/x} = u] and t}{s]/x}
is a conservative substitution; (b’) t* = L) t}; and (¢’) s = Llic(n 51- For each [, let
(t1,s1) = (t} u?, s;). Then (a)(b)(c) hold by using the above (a’)(b’)(c’).

Case t = Az.ty, t = Yty, or t = a(ty,...,tx@)): In the same way as Case t = th 2.

(2): It suffices to show the case when n = 2. t{s/x} J | |;c[o w is shown by Proposition
43. We now show ¢{s/x} C | |;c;5 w by induction on the structure of ¢. If x ¢ FV(¢1), then
by this and sy = L, (t; Ut2){s1 U sa/x} =t Uta{sa/x} = us Uug. Similar for x ¢ FV(t2).
Otherwise we can assume that, x € FV(t). We now do case analysis on the structure of ¢.

23:23

CVIT 2016

23:24

865
866
867
868
869
870

871
872

873
874

875

876
877
878

879
880

881
882
883
884
885

886

887

888
889

890
891

892
893
894
895

896

897

898
899

900

On Average-Case Hardness of Higher-Order Model Checking

Case t =z (for © # x) or t = L: This case does not occur by x & FV(t).

Case t = x: Then t; =ty = x, so t{s/x} = s =t1{s1/x} Uta{sa/x}.

Case t = t1 t2: Then (i) t{s/x} = (t'{s/x})t?; or (i) t{s/x} = t' (t*{s/x}) holds, because
FVC,(t) < 1. We only write case (i) (in the same way for (ii)). Foreach [, by t' > 3¢, # L, t;
is of the form ¢} t7. By LH., t'{s/x} = t{{s1/x}Uts{s2/x}. Therefore t{s/x} = (t'{s/x})t*> =
(ti{s1/x} Uta{sa/x}) t? = (ti{s1/x} 1) U (t{s2/x} 13) = ta{s1/x} U to{s2/x}.

Case t = Aw.t1, t = Yty, or t = a(ty,...,tx()): In the same way as Case t = th 2, <

The following is immediate from Proposition 45(1).

» Proposition 46 (Cor. of Prop. 45(1)). Assume that u C t{s/x} and t{s/x} is a conservative
substitution. Then there is (t',s') such that (a) u=1t'{s'/x} and t'{s'/x} is a conservative
substitution, (b) t' Ct, and (c) s' C s.

In fact Proposition 45 holds even for the substitution in non-capture avoiding manner (the
proof is proceeded in the same manner). We write ¢[s/z] for the term obtained from t by
substituting s for all the free occurrences of z in non-capture-avoiding manner. The following
proposition is used for the substitution in linear contexts (see Proposition 23).

» Proposition 47.

(1) If t[s/x] = jepny w and t[s/x] is a conservative substitution, then there is {(t, s1) }ie[n]
such that (a) for each | € [n], ti[si/x] = w and t;[s;/x] is a conservative substitution; (b)
t =g tis and (c) s = e, st

(2) If (a) for each l € [n], ti[si/x] = w and ti[s;/x] is a conservative substitution; (b)
t = et and (¢) s = [igpy s15 then t[s/x] = |y, w (and t[s/x] is a conservative
substitution).

The following is a proposition between J and —. We write —=! for the relation
(—) U (=)
» Proposition 48.
(1) If st andt — t', then s —=' &' and s’ I t' for some &', i.e., (J—) C (—=10)

holds.
(2) Ift Jsandt — t', then s —=' s’ and t' J s’ for some s'.

Proof. By simple induction on the derivation tree of t — ¢'. |
» Proposition 49. Ift J s, then T'(t) J T(s).

Proof. It suffices to show that, for every Nt-tree V, if s —*3 V, then t —*J V. It is
shown by ¢ J s —*J V and Proposition 48. <

F An Alternative Definition of the Minimality

In this section, we introduce an alternative definition of the minimality using label and we
show that the minimality is equivalent to the minimality of Definition 8. This definition will
be used to prove Theorem 19 (Appendix H) and Proposition 10 (Appendix G).

To define it, we introduce the special tree constructor ¢ (disjoint with X) of arity 1, called
label. Let ¢ £ ¥ W {¢}. We say that a term is labelled if £ occurs in the term. For each term
t, we define the term t¢ as follows, where T' Fgr t: k1 — ... — K, — o

= A A (e 2.

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

We define the following operation f. Intuitively () denotes the term obtained from ¢ by
replacing each occurrence of the form £(u) to u, repeatedly.

» Definition 50. The term §(t) is inductively defined as follows:

§(z) ==

B(AZ.t) = A\Z.4(¢)

g(t1t2) = b(t1) B(t2)

0(Yt1) = Yi(t1)

g(L) =1

h(a(tlv cee atZ(a))) = a(h(t1)7 R h(tz(a))) (a € 2)
g(6(t1)) = (1)

The following proposition can be shown by a straightforward induction.
» Proposition 51.

(1) If t —*3 ¢/, then 5(t) —* 2 4(t').
(2) Ifti(t) =s and s —*3 &', then t —* It/ and s' = 4(t’) for some t'.

We say that a term ¢ is tracked (by £) if there is (C,u) such that ¢t = C[¢(u)] and fu # L.

Then, the goal of this section is to show the following.

» Theorem 52 (Alternative definition of the minimality). Let ¢ be a closed and ground-typed
term over ¥. Then, t is minimal if and only if for every (C,s) that t = C[s] and s # L,
there is a tracked finite tree V such that C[s'] —*3J V.

F.1 Proof of Theorem 52

In this subsection, we prove Theorem 52. First, the following holds for the minimality.

» Proposition 53. Let t be a closed and ground-typed term over 3. Then, t is minimal if
and only if for every (C,s) that t = C[s] and s # L, T(C[L]) C T(C|[s)).

Proof. (=): By C[l] C CJs]. (<=): It suffices to show the following: If t = Clt1,...,ty]
and t; # L holds for some 4, then T(C[L,...,1]) © T(C[t1,...,ts]). It is shown by
using the assumption as follows: T(C[L,...,1]) © T(C[t1,... ti—1, L,tit1,..-,tn]) C
T(Clt1,. .., ts])- <

From this, to prove Theorem 52, it suffices to show the following (1) < (3).
» Lemma 54. For each closed and ground-typed term C|[s] over X, the following are equivalent:

(1) T(C[L]) CT(C[s);
(2) T(RC[L]) € T(5C[s")); and
(3) there is a tracked finite tree V. such that C[s*] —*3J V.

To prove Lemma 54, we introduce the following operation b. Intuitively, b(¢) denotes the
term obtained from ¢ by replacing each occurrence of the form ¢(u) to £(.L).

» Definition 55. The term b(t) is inductively defined as follows:

b(x) ==z

)
b(AZ.t) = \T.b(t)

23:25

CVIT 2016

23:26

939
940
941
942

943
944
945

946
947

948
949

950

951
952

953
954
955
956
957
958
959
960
961
962
963
964
965
966

967

972

973
974

975

976
977
978

979

On Average-Case Hardness of Higher-Order Model Checking

bty ta) = b(t1)b(t2)

b(Yt)) = Yo(t))

b(L) =L

alts, .. tow)) = ab(tr)s- . blis@)) (@€ 3)
b(E(tr)) = (L)

The following proposition can be shown by a straightforward induction.
» Proposition 56.

(1) Ift —*3 ¥, then b(t) —* I b(t)).
(2) Ifb(t) = s and s —*J &', thent —*J t' and s’ =b(t') for some t'.
Also the following holds between f and b.

» Proposition 57. If ¢ is not tracked, then f(b(t)) = 4(t).

Proof. By induction on t. We only write the case t = £(t) Then note that §(¢1) = L holds,
because t is not tracked. From this, (b(t)) = (¢(L)) = L =t(t1) = 4(t).)

We now prove Lemma 54.

Proof of Lemma 54. (1) <= (2): By n-conversion (note that T(C[u]) = T'(C[u’]) holds, for
every X-term Clu]). (3) = (2): Without loss of generality, we can take a tracked finite tree V'
such that V' = D[{(u)] and ¢ does not occur in D. By C[s‘] —*J D[¢(u)] (and Proposition
51(1)), 4(C[s%]) —*T 5(D[€(w)]), so §(C[s*]) —*2 Dlfu]. Assume (towards contradiction)
that T'(5(C[L*])) 2 T(5(C[s])). By T(C[L?]) 3 T(5(C[L¥])) and this assumption, and
1(C[s*)) —*2 Dlju], C[LY] —*3 D[] ...(¥1). Also by C[s‘] —*2 D[l(u)] (and
Proposition 56(1)), b(C[s]) —*2 b(D[l(u)]), so C[L*] —*2 D[{(L)] ... (%2). By (x1)
and (x2), D[ju] U D[¢(L)] is defined, but it is contradiction because fu # L (since V is
tracked). Therefore T(C[5(C[LY])]) 2 T(5(C[s%))), and thus T(C[(C[L))]) # T(4(C[s*])-
Hence T(C[1(C[L])]) = T(5(C[s°]) has been proved (since T(C[5(C[L¢])]) C T(5(C[s%])))-
(2) = (3): We show the contraposition. It suffices to show that T(5(C[L*])) 2 T(5(C[s]))
(since T(4(C[L*])) C T(4(C[s"])) holds). Namely, we show that, for every finite tree V, if
1(C[s']) —*2 V, then §(C[L¢]) —*3 V. Assume that §(C[s’]) —*3 V. By Proposition
51(2), there is V’ such that C[s‘] —*3 V' and §(V’) = V. Note that V' is not tracked by
the assumption. Therefore,

1L = 56(Cls"]) —* T E6(V)) (Prop. 51(1) and 56(1))
=5V’ (Prop. 57)
=V <

G Proof of Proposition 10

» Proposition (restatement of Prop. 10). Lett be a closed and ground-typed term. If t is
minimal, then for every non-L, closed and ground-typed subterm s < t, its value tree T(s) is
a subtree of T'(t).

Proof. Let C be a linear-context such that ¢ = C[s]. Since t is minimal, there is a tracked finite
tree V such that C[{(s)] —*2 V (Theorem 52). Let C[l(s)] =t — to — ... — t, I V.
Then let ¢ be the maximum number such that, for every subterm of ¢; of the form #(u),
u = s holds; and let D be a linear-context such that t; 3 D[((s)] and D[L] is a Xt-tree

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:27

w0 term (such ¢ and D always exist by the existence of V). If we assume s —*J W, then
e D[s] —*J D[W] (by that D[L] is a ¥*-tree), so C[s] —*J D[W] holds (by Proposition
2 48). Therefore T(s) < T(t). <

ws H Proof of Theorem 19

oe« In this section, we prove the soundness and the completeness of the intersection type section

s system (Section 5) via the alternative definition of the minimality (Appendix F). Let us recall

o that ¢ is a special tree constructor (disjoint with ¥) of arity 1, called label, and X £ ¥ 1 {£}.

087 In the following proof, we introduce an alternative intersection type system as follows,

s where we redefine (0,2 :0) as ©U{z — 0} if 0 # T, and © if # = T. In a nutshell, the

0 system is “the intersection type system (in Section 5)” + (¢) — (T). Also, (Absl) and (Abs2)
are put together as the rule (Abs) thanks to the redefinition of “(0,z : 0)”.

O,x:0Ft:T
var) 2 PORUIT
x:MNrTtEat T OFATt: 0 =T

. . OFt (Yt : .
@Ft.@%TAFs.G(App) 1 (Ytg) T(Yl) @HL.T(YQ)
ONAFts:T OFY(tiUts): 7 OFYt:T

@1Ft1201...@nktn16n ®1Ft1371... @nktn:Tn(/\) OFt:o (6)
a v F
Niepn) ©i Falty, ... tn) 0 Niem) ©i F Uiemy i = Niep 7 OFLt):o

Figure 3 An alternative intersection type system.
990
o » Proposition 58. Suppose that t is a term over ¥. Then, O Ft: 0 (in the intersection type
w2 system of Fig. 2) if and only if O\T -t : 0 (in the intersection type system of Fig. 3), where
ws O\ 2 (g O(x) | x € dom(0),0(x) # T}. In particular, O -t : 0 (in the intersection
wi type system of Fig. 2) if and only if O -t : 6 (in the intersection type system of Fig. 3).

ws Proof. («): This part is trivial since ¢ does not occur in ¢. (=): This part is also easy,
ws because from a given derivation tree, we can construct a derivation tree such that © = ©\T
o7 for each environment ©. |

ws For simplicity, we will use this alternative intersection type system to prove Theorem 19.

« H.1 Properties of the Intersection Type System

wo In this subsection we list some properties of the intersection type system (and some proposi-
wor tions to show them).

w2 » Proposition 59. If © -t : 0, then FV(t) = dom(0).
ws Proof. By a straight-forward induction on the derivation tree. |

O1Fti: 0 ... OnFt,:0,
ws B Proposition 60. The following rule (N') is admissible: — (N).
/\iE[n] O, - |—|l€[n] ti: /\iE[n] 0;

ws Proof. Assume that ©; - ¢; : 6; for each i € [n]. If 0, is not prime, then the derivation tree
ws of ©; Ft; : 0; is of the following form (on the left-hand side). If 6; is prime, then let m; = 1,
o Of =0,] =t;, and 0} = 0;. Then A, Oi = [ti : Aigpn 0 is shown by the following
wes derivation tree (on the right-hand side).

CVIT 2016

23:28 On Average-Case Hardness of Higher-Order Model Checking

Ol-tl:rt .. Ok
J J J (")
o Pietm &1 Lietma # Aseima %
OlrFtl:rl ©2Ft2:7F ... Okt gMe)
1010 /\ie[n] /\je[mi] @g F I—Iie[n] I—lje[mi] t{ : /\ie[n] /\je[mi] 0?
Niepn ©i F Uiepny i Nicpny 9

1011 <
w2 » Proposition 61.
oz (1) IfOFt: T, thent=_1 and © = {.
s (2) IfOF L :0, then =T and © = 0.
s Proof. In these case, the last derivation step should be (A) and also n = 0 should. |

we B Proposition 62 (substitution). Assume that ©,x : SkHt:0, AFs:8, and FVC,(t) < 1.
wr Then © ANAF t{s/x} 6.

ws Proof. By induction on the derivation tree of ©,x: 6 -t : 6. If 6 = T, then x ¢ FV(t) by = ¢
s dom((6,x : §)) (Proposition 59); and A = () by Proposition 61. Therefore © AA - t{s/x} : 6
w2 is immediate from ©,x : 6 =t : 0. Welet (n, {As}icpn, {5i}icn)» 103 Fiem)) be such that, if 4 is
wx not prime (note that the last derivation step of Ak s:dis (A)), A = A;cpy D, 6 = Njep i
w2 8= | ;e Sis and for every i € [n], A; b s; @ 0y and if § is prime, (1, {A}, {s},{0}). Then
123 we do case analysis on the last derivation step.
1024 Case (Var): By x € dom((©,x : §)) (since & # T), ¢ should be x. Also © =@ and § = §
w2 should hold. Therefore © A A F ¢{s/x} : 0 is immediate from A+ s: 4.

Case (Abs): Then t is of the form Az.t;. Without loss of generality, we can assume that

x & FV(s) by using a-equivalence. The derivation tree is of the following form:

O,x:0,x:0Ft1:7
@,x:gl—)\x.t1:5—>7

@,x:gl—/\x.tlzé

(Abs)

By LH.,, © AA,x: 60,2 :5F t1{s/x} : 7. Therefore,

OANAx:8,x:6Ft{s/x}:T
OANAx:6F dxty{s/x}:0 =T

OANAx:6F (Axty){s/x}: 0

(Abs)

Case (Y1): Then ¢ is of the form Ytg. The derivation tree is of the following form.

@1,}{151}_15125—)@ 92,XZ(§2"Y1€21(5
0, /\@27}{:51 /\Sgl_tl(YtQ)Zé
@1/\@2,X:51/\(§2|_Y(t1|_|t2)ié

O,x:0FYty: 0

(App)
Y1)

For each [€ [2], let S; be a subset of [n] such that & =A
d; = 0 otherwise. Then A

ies, Oi if 4 is not prime; and

ies, Di F Lics, si ¢ & (by using (A) if § is not prime). By LH.,

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

O1 A Njes, Di F t1{licg, si} 2 6 = 6. Also by LH., ©3 A \;cq, Ai b (Yta){|icq, si} 2 6.
(Note that FVCy(t1) < 1 and FVC,(Yty) < 1.) Therefore,

01 A /\iesl A; - tl{l—liesl Sz/X} 10— é O5 A /\i652 Ai = (Yt2){l_|i652 Si/X} 10
@1 A @2 A /\iéleJSg Az l_ tl{l—liesl Sl/X} (Yt2){|—|i652 SZ/X} N é

(App)

OAAF (Yto){s/x}: 0

Case (App)(Y2)(a)(£)(A): In the same way as (Y1). <

» Proposition 63 (inverse substitution). Assume that ©° - t{s/x}: 0 and FVC,(t) < 1. Also
assume that if FVCy(t) =0, then s = L. Then there is (©,A,d) such that (a) 0'=0AA,
(b)) ©,x:5Ft:0, and (¢) AL s:6.

Proof. By induction on the derivation tree of @° I~ t{s/x} : §. If § is not prime, then
the derivation tree is of the following form (using Proposition 45), where ¢t = |_|Z-€[n] ti,
s = [;epn) 5i» and for each i € [n], if x ¢ FV(t;), then s; = L.

OV Ftyi{s1/x}:m ... OV Ft,{sn/x} : T
N, 7 l_lie[n] tifsi/x} s Nioy 7

Q0 F t{s/x}: 0

(N

For each i € [n], let (©;,A;,d;) be a tuple obtained by LH. for 0% F ¢,{s,/x} : T,.
Then (A;c() Ois Niepn) Dis Nigpny 9i) satisfies (a)(b)(c). (b) and (c) are shown by using the
admissible rule (A"). Otherwise we do case analysis on the structure of ¢.

Case t = x: Then (©,A,d) = (0,0°,0) satisfies (a)(b)(c). (a) is trivial. (b) is directly
derived by the rule (Var). (c¢) is shown by t{s/x} = s.

Case t = L or t = x (where # x): Then (0, A,d) = (0° (), T) satisfies (a)(b)(c) (note
that s = L by FVC,(t) = 0).

Case t = Ax.t;: Without loss of generality, we can assume that x ¢ FV(s) by using
a-equivalence. Then the derivation tree is of the following form:

0%z 0k ti{s/x}: T
O Azt {s/x}:0 =T

Q0+ t{s/x}: 0

(Abs)

Let (©1,A1,01) be a tuple obtained by I.H.. Then by = ¢ FV(s) and Proposition 59,
x ¢ dom(A;), and thus ©;(z) = 6. Let ©) be such that ©; = ©/,z : §. Then (0,A,6) =
(0}, A1,8,) satisfies (a)(b)(c). (a) and (c) are trivial. (b) is derived from O,z : &,x : &; F
t1 : 7 by applying (Abs).

Case t = Yt and the last derivation step is (Y1): Then the derivation tree is of the
following form (using Proposition 45), where tg = t1 U ta, s = s1 U s9, and for each I € [2], if

23:29

CVIT 2016

23:30 On Average-Case Hardness of Higher-Order Model Checking

x € FV(t;), then s; = L:

OV ti{s1/x}:0 =0 OF Yto{sy/x}: 6
@? A @g - tl{Sl/X}(YtQ{Sg/X}) : é
@(1) A @(2) = Y(tl{sl/x} UtQ{SQ/X}) : é

(App)
(Y1)

0%+ t{s/x}: 6

wa Let (01, A1, 1) be a tuple obtained by LH. for ©9 I ¢, {s1/x} : § — 0. Also let (05, Ay, d2) be
w2 a tuple obtained by L.H. for O F Yty{so/x} : 6. Then (0, A,8) = (01 AOy, A AAg, 61 Ady)
s satisfies (a)(b)(c). (a) is trivial. (b) is derived from ©1,x: 01 Ft; : 6 — 7 and Og,x : & I
wa Yto : 0 by applying (App) and then applying (Y1). (c) is shown by using the admissible
s rule (/\/).

1046 Case t =ty ta, t = a(ty,...,txw)), t = £(t1), or (t = Yty and the last derivation step is
we (Y2)): In the same way as the above case. <

ws > Proposition 64 (subject reduction). Assume that © -t : 6.

wio (1) Ift — t', then there is ' T t' such that (a) © F 5" : 0 and (b) if t is labelled, then so is

/!

1050 S
ws (2) Ift —* t', then there is ' T t' such that (a) © & 5" : 0 and (b) if t is labelled, then so
1052 is §'.

w3 Proof. (1): By induction on (t|,|6]). If § is not prime (note that the last derivation step
we of © -t : 0 is (A)), then let ({O;}icp, {ti tiem], {Ti ticpn)) be such that, for each i € [n],
1055 @i F ot Tis 0 = /\ze[n] @i7 t = |—|z€[n] ti, and 0 = /\ie[n] Ti- By t; C tand t — t/
wss (Proposition 48), there is t; C ¢’ such that t; — t,. Then by L.H., there is s} C ¢} such
w7 that ©; F 55 : 7;. © F 5" : 6 has been proved by letting s’ = | |
10ss analysis on the last derivation step of ¢ — t'.
Case (8): Thent — t' is of the form (Ax.to{z/x1} ... {a/xm})u — to{u/x1} ... {u/xm},
where x1, ..., %, are all distinct, x1,...,%, € FV(2)UFV(t)UFV (u), and each of x4, ..., %,
occurs in t just once. Also the derivation tree of © -t : is of the following form.

/ .
icn) Si- Otherwise we do case

O,z : Njgpy oi tof{x/x1}. . {x/xm} i T (Abs) Arbui:or ... Anbu,:o, "
O1 F Azdof{x/x1}.. {x/xm} Nimyoi = T N A E L wi s Ay i (App)
O1 AN A Azdo{z/xa} .. {z/xm})u: T
- evrt:r

wss By applying inverse substitution lemma (Proposition 63) to ©1,z : A;cp, 00 b to{z/xi}. .. {z/xn}
wo T iteratively, there is (01,...d,,) such that /\ie[n] o = /\je[m] §; and ©1,%1 : 01, .., Xy

wn O b Lo 0 7. Also for each j € [m], there is a subset S; of [n] such that §; = A;cq, 05 By

we using (A), Ajeg, Di = Lies, wi 0 0. Then 5" = to{| g, ui/x1} .. {lics,, wi/xm} satisfies

wes the conditions: s’ C ¢’ is shown by Proposition 43 and © F s’ : § is shown by applying

e substitution lemma (Proposition 62) to ©1, : A;gpy 0i F to{z/x1}. .. {@/xm} : 7 iteratively.

1065 Case (Y): Then t — t’ is of the form Ytg — ¢o(Yto). From this, the last derivation

wes rule of © Ft: 0 is (Y1) or (Y2).

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

Sub-Case (Y1): The derivation tree is of the following form:

Or Y 10
u1 (Yuz) (Y 1)
OFY(u Uug): 6

Then s" = u; (Yus) satisfies the conditions. s’ C #' is derived from uy,us C to and © F s : §
is immediately shown by using the above derivation tree.
Sub-Case (Y2): The derivation tree is of the following form:

@FtoJ_Ié

— (Y 2)
OF Yty: 0

Then s’ = ty.L satisfies the conditions. s’ C ¢’ is derived from 1 C Yty and © - s : 0 is
immediately shown by using the above derivation tree.
Case (L): Then t — ¢’ is of the form 1t — 1. Also the derivation tree of © ¢ : 6 is

of the following form: -
@1}_L54)9 62'it26(App)
@1 A\ @2 }_ J_tg . 9

However it is contradiction, because ©; ¥ L : § — 6 by Proposition 61.
Case (App): Then t — t' is of the form t; t — ¢} t3 and is derived from t; — ¢].
The derivation tree of © It : 0 is of the following form.

@1Ft115*>9_ @thgla
- (App)
@1/\@2Ft1t2:9

By LH., there is s} C #} such that ©; - s} : § — 0. Then s’ = s)t, satisfies the conditions.

Case (a) (a € ¥ and a = ¥): In the same way as case (App).

(2): Let t1,...,t, be such that t =¢; — ... — t,, = t/. We prove the following by
induction on ¢ (%): there is a term s; C ¢; such that © s, : 0. If i = 1, then s; = t; satisfies
(%). Otherwise by LH., we have s;_; C t;_; such that © F s,_; : 6. By Proposition 48 (since
ti1 O s;_1 and t;_; —> t;), there is s} such that s;_; —=! s/ and ¢; J s,. If s5,_; —0 s/,
then s; = s;_; satisfies the conditions. If s;_; —! s/, then by (1), there is s; C s/ such that
O F s; : 6 (and also if s;_; is labelled, then s; is labelled). Indeed this s; satisfies (). Finally,
this lemma has been proved by letting s’ = s,,. <

» Proposition 65 (subject expansion). Assume that s' Tt and © F s’ : 6.

(1) Ift —> t', then there is s C t such that (a) s —<'2J 5" and (b) O F s : ?
(2) If t —* t/, then there is s Tt such that (a) s —*3 8" and (b) O F s: 6.

Proof. By induction on |¢t|. In the later we only consider the case of that # is not prime.
(The case of that 0 is prime can be proved in the same way.) Then note that the last
derivation step of © k- s' : 0 is (A)). We let (n,{O;}ic(n], {5i}ien), {Ti}ie[n) be such that,
© = Nicpn ©i> 0 = Niepn) Tir 8" = Liepn) 5> and for every i € [n], ©; F s} : 7. If s = L, then
s = | satisfies the conditions. Otherwise we do case analysis on the last derivation rule.
Case (8): Thent —» t' is of the form (A\z.t%{z/x'} ... {z/x™})t! — O{e! /x). {t' /x™},
where x!,...,x™ are all distinct, x!,...,x™ ¢ FV(z) UFV(t’) UFV(t!), and each of

23:31

CVIT 2016

23:32 On Average-Case Hardness of Higher-Order Model Checking

x!, ..., x™ occurs in t just once. By t°{t'/x'}...{t'/x™} 3 s’ and applying Proposi-

tion 46 iteratively, we have a tuple (s°,s!,...,s™) such that s’ = s%{s!/x'}... {s™/x™},
t© 3% ¢t O3 st ..., and t' O s™. By using Proposition 45 iteratively, we have a set
{(s9, s}, ..., s;”>}i€[n] such that for each i € [n], s; = s7{sj/x'}... {s{"/x™}; and for each

j €10,m], 87 = e,y 57 Then for each 4, by ©; b s?{s;/x'}...{s]"/x™} : 7, and applying
inverse substitution lemma (Proposition 63) iteratively, there is {e! Yieo,m]s {87 }iem)) such
that (i) = Njeom ©i» (i) ©F,x' 2 6}, ..., x™ 0 01" F 57 7, and (iii) for each j € [m],
o+ s (517. Then let s = Az (Uigpm s {z/x'} .. {z/x™}) (Wicpn Ujepm 87 . sCtis
shown by s) C t° and s} C t' (j > 1). Indeed this s satisfies (a)(b) (a) is shown by
s — (Uicpm Ui Usepm 51/5'} - AUicin U 1/x™} 3 st /xa} . {s™ /x™} =
s’. Also (b) is derived from /\ co.m ©7 F (A sSYa/xt} . {x/x}) (Ljepmy s7) ¢ 7 (for
i=1,...,n) by applying (A). Each of them is shown by the following derivation tree, where
(i”) is shown by (ii) and applying substitution lemma (Proposition 62) iteratively.

(ii") (iii) (iii)

CHEX /\je[m] SZ Fsi{/x'} . {z/x")T (Abs) OlkFsl:o ... Orksnr:ir (")
O) b Aw.sX{w/x'} . {x/x™) Njepm 61 = T Ajem 1 F Ujerm 571 Njetm) 0 Aop)
Asetom ©F F Qs {z/x} . {z/x™}) (Ujepm 1) < 7
1089 Case (Y): Then t —» ¢’ is of the form Yt' — t9(Yt°). For each i € [n], by ¢’ J s} # L,
wo s is of the form s!s?. s? is one of the forms (i) L or (ii) Ys? (let s? = L in (i) for

wn convenience). Then let s = Y(L; jyepnxp2) st). s C t is shown by sl C to. (a) is shown
w2 by s — (l—l(i,l>e[n]><[2] 5) (Y(|_|<i,z>e[n]x[2] s7)) 3 (Uie[n] 5;) (Y(Uie[n] s7)) = Uie[n] s; =
w3 Also for (b), it suffices to show that, for each i € [n], ©; F Y(s! Us?) : 7. It is shown by the
o following derivation trees, where the left-hand side is for (i) (s? = L1); and the right-hand
wes side is for (ii) (S? = YS?)

O,k s O;Fs:m
————————————— i sl=sll, 2= 1 LI TE L = sl (Y s?)
1096 O;F(stus?)L:m O;Fst(Ys?):
Y?2) Y1)
@Z‘l—Y(SiUSi)ZTi @il_Y(SZlHSZZ)ZTi
1007 Case (L): Then ¢t — ¢’ is of the form l¢; — L, but it is contradiction because

we t' I £ L.
Case (App): Then t — ¢’ is of the form t0t2 —> t'¢? and is derived from t° — tl For
each i € [n], by ¢/ J s} # L, s, is of the form s!s?. Then the derivation tree of ©; I si1s? : 7;
is of the following form.

@}l—s%:éi%n @?}—83:62»

(App)

oo Let s' = | ;cp, 515 let ©F = A, ©F, and let 6" = A, c,1(6; = 7). Then ©' F ' : 0" is
uo derived from ©} sl :6; — 7 (z =1,...,n) by applying (A) By L.H., there is s° C ¢°
uot such that s —=! 3 s! and ©! F so : 9_’ Let m and {(0'}, s, Z>}ZE | be such that
e Ol = Niepm) 0,0 = Nicm) T s0 = Liepmg s9, and for every i € [m], @’21 l— s9 . 7/. Note
uos that for every i € [m], there is j € [n] such that 7/ = §; — 7, and vice versa. Then let
w8 = (siem s9) (Ujem s3). s C ¢ is shown by s? C ¢ and s7 C ¢*. (a) is shown by using

ns 80 —<1 T s1. (b) is derived from O] A O3 - 50 s7 : 7; by applying (A), where (i,) is all

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

pairs such that 7/ = §; — 7;. Each @'} A ©% I) 57 : 7 is derived from Q' +6; — 7; and
@? (o s? : 7; by applying (App).

Case (a) (a € ¥ and a = £): In the same way as case (App).

(2): Let ty,...,tp, best. t=t — ... — t, J ¢ and let s,, = ¢’. By using (1)
iteratively, there exist s,_1,...,51 s.t. t; 3 s;, s; —=t 3 Si+1, and O F s; ¢ 6 for each
i € [n—1]. Then s = s; satisfies the conditions. ¢t J s and I s : § are obvious from the
above. Also s —*3J s’ is shown by s (—=! 0)* s’ and (J—) C (—=! 3) (Proposition
48). <

H.2 Proof of the Completeness
» Proposition 66. Let V be any finite X--tree. Then O+ V : 0 for some 6.
Proof. By simple induction on the structure of V. |

» Theorem 67 (completeness). Let t be any closed and ground-typed term over . If t is
minimal, then O =t : 6 for some 6.

Proof. Since t is minimal, by Theorem 52, for each (C,s) such that t = CJs], s is a
ground-typed term, and s # 1, let (Do, uc) (note s is uniquely determined by C) be
such that D¢ [f(uc)] is a tracked finite tree and C[s‘] —*3 D¢[l(uc)] ... (x1). We can
assume that ¢ does not occur in D¢. Also let V' = ||, Delouc] (where C' ranges over
linear contexts such that ¢ = C[s| holds for some s # 1). (Note that V is defined by
T(t) = T(4C[s"]) 2 4Dc[l(uc)].) By Proposition 66, § - V : @ for some . Then by
subject expansion lemma (Proposition 65), there exists ¢ C ¢ such that ¢ —*3J V and

0 -t : 0. From this. it suffices to show that ¢ = t. Assume ¢ C ¢ for contradiction.

By the assumption, there is (C,s) such that ¢ = C[s], s # L, and ¢ C C[L]. Then
C[s] 3 C[L] 3 ¥ —*3V 3 D¢liuc], and thus C[s‘] —*3 Dclhuc] ... (x2). By (x1)
and (x2), De[l(ue)] U Delfuc] is defined, but it is contradiction because juc # L (since
Dcll(uc)] is tracked). <

H.3 Label-Generation Lemma
In this subsection we give a key lemma (Lemma 68) to prove the soundness.

» Lemma 68 (label-generation). Assume that t is a closed and ground-typed term and DFHt:0.

Then there is a finite tree V such that (a) t —*3V; (b)) OV : 0; and (c) if t is labelled,
then V so is.

To prove it, we introduce a new reduction relation >+, for only unfolding Y. Precisely,
>v is the binary relation on terms and Y-free terms defined as the least relation closed
under the following rules:

t(Y*t) =v s 11 =7y 81 t2 =y S2
—(=v 1) ¥(ty Y) ——(Var) (App)
th o=y L7 Y~ t >v s h = z® t1to =y S152
t=vy s (Abs) t1 =y 51 . ts(a) ZY S3(a)) 1 =y $1
_(Abs a
ATR .t ' AT".s a(tl, cen 7t2(a)) =Y a(sl, ceey SE(a)) é(tl) =Y E(Sl)

We list some properties with respect to the reduction relation >v.
» Proposition 69.

(1) Ift 3 s>y u, thent =y u.

23:33

CVIT 2016

23:34

1144
1145
1146
1147

1148

1149
1150
1151
1152

1153

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

1165

1166

1167
1168
1169

1170

1171
1172
1173

1174

On Average-Case Hardness of Higher-Order Model Checking

(2) Ift =y s Ju, then t =y u.

(3) If s =y &, then t{s/x} =y t{s'/x}.

(4) If t =y t', then t{s/x} =y t'{s/x}.

(5) Ift =y s —> u, then t —* =y u.

(6) If V is a finite tree and t =v V', then t —*J V.

Proof. (1): By simple induction on the derivation tree of s >y u. (2): By simple induction
on the derivation tree of ¢t =y s. (3)(4): By simple induction on the structure ¢.

(5): By induction on the derivation trees of t >y s. We do case analysis on the last
derivation step of t =v s.

Case (=y L)(Var)(Abs): These cases does not occur because s — u.

Case (=y Y): Then the derivation tree is of the following form.

tl (Ytl) EY S (EY Y)

By LH. t1(Yt1) —*>=v s, and thus t = Yt; — t1(Yt1) —* >y s.

Case (a): Then s is of the form a(sy, ..., sy), uis of the form a(s1, ..., i1, i, Sit1,- -+, Sn),
and ¢ is of the form a(t1,...,t,). By t; v s; — s, and LH., t; —*>vy s. Let u; be
t; —* u; =y si. Then t —* a(t1,...,ti—1, Ui, tig1,. .., tn) =y §'. Hence t —*>vy ¢’

Case (App): We do case analysis on the last rule of the derivation tree of s — s'.

Sub-Case (L): Then u= L, sot —"t =y u by (=y L).

Sub-Case (8): Then s is of the form (Az.s1)s2, u is of the form s;{s2/x}, and ¢ is of the
form (Axz.t1)ta. Then t — t1{ta/2} =y s1{s2/x} = u by t1 =y s1, t2 =y s2, (3) and (4).

Sub-Case (App): Then s is of the form sys2, u is of the form s|ss, and ¢ is of the
form t = t1t5. Then by t; »v s1, s1 — s}, and LH., t; —*>vy s|. Let u; be s.t.
t1 —* uy =y s§. Then t = t1to —* uyty =y 8182 = s by ta =y so. Hence t —*>=v .

(6): By induction on the derivation tree. Case (=y L): Then V = 1, and thust —*3J V.

Case (=y Y): Then the derivation tree is of the following form.

By LH,, t;(Yt;) —*3 V. Therefore t —*3J V is shown by t = Yt; — #1(Yt;) —*3 V.
Case (a): Then the derivation tree is of the following form.

hey Vi oo s 2y Vi) (@)
a
a(tla s 7t2(a)) =y a(‘/la 7VE(G.))
t=vV

For each ¢ € [X(a)], by LH., t;, —*J V;. Let s; be such that ¢;, —* s; 3 V;. Then
t= a(tl, . ,tz(a)) —* a(sl, ceey SZ(a)) | a(Vl, ceey VZ(a)) =V.

Case (£): In the same manner as Case (a).

Other cases do not occur because V is a finite tree. |

» Lemma 70. (1) Assume that t < 0. Then there is a Y-free term s such that (a)t =vy s;
(b) s <10; and (c) if t is labelled, then s so is.

(2) Assume that © -t : 0. Then there is a Y-free term s such that (a)t >y s; (b)) O F 5:6;
and (¢) if t is labelled, then s so is.

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada

Proof. (1): By induction on the minimum sum of the size of derivation trees of t; < {(©1,71)},
-y tn < {(Oy, 7y)} such that t = | |, t; and 6= Uiem{(©:,7:)}. We do case analysis on
the structure of ¢.
Case t = x: Then s = z satisfies (a)(b)(c).
Case t = t! t2: Then each ¢; is of the form t} tf and the derivation tree of ©; F¢; : 7; is of
the following:

i€[n

612’1 H t2 e B @2 ms F t227mi : Oim; ™)
A
@zl = tzl : /\je[m»} Oig = Ti /\]6 [m;] @ l_ |_|j€[m i1 Vig /\je[mi] Oi,j (App)
O M st 1 1 ,(!—,'ininfl L)
@i = ti T

Let 81 be the Y-free term obtained from L.H. for ¢! < Uie[n]{<®l s Njems Uz,a — 1)} Also
let s* be the Y-free term obtained from LH. for #* < Ujcp Ujcim,]{< oi;)}. Then
s = s! s? satisfies (a)(b)(c).
Case t = A\t , t = a(ty,...,tx@)), or t = £(t1): In the same way as Case t = th 2.
Case t = Yt%: Then each ¢; is of the form Yt? and the derivation tree of ©; F ¢; : 7; is
one of the following two forms:

YR

0; Ft2 (Yt)) : 7 v Ot L:7
@i}—YtiZTi @il_Yt?ZTZ

Then let s be the Y-free term obtained from LH. for (¢, t9) (Liepm t H« Uiem{(©:, 7)1,
where, for each i, let t} = Yt? if the last derivation step is (Y 1) and t} = J_ 1f the last
derivation step is (Y 2). This s satisfies (a)(b)(c). In particular (a) is shown as follows:

t° (Yt?) 3 (Uie[n] t) (l_lie[n] t;) (Uie[n] t) (Uie[n] ti) =y s

t2(Yt%) =y s
Yt =y s

Prop. 69(1)

(=v)
(2): Immediate from (1). <

» Lemma 71. Assume that t is a closed and ground-typed term, tis Y -free, and O -t : 6.
Then there is a finite tree V such that (a) t —*3V; (b)) OFV : 0; and (c) if t is labelled,
then V' so is.

Proof. Let V' be the finite tree such that ¢t —* V' (note that such V' always exists since ¢
is Y-free). By subject reduction lemma (Proposition 64), we have a finite tree V' such that
VEV/,0FV :o,andif ¢ is labelled, then so V is. Hence this V satisfies (a)(b)(c). <

Proof of Lemma 68. Assume that ¢ is a closed and ground-typed term and 0 F ¢ : §. By
Lemma 70(2), there is a Y-free term s such that (a) t =y s; (b) 0 - s : 8; and (c) if ¢ is
labelled, then s so is. By Lemma 71, there is a finite tree V such that (a) s —*3 V; (b)
O -V :6; and (c) if s is labelled, then V so is. This V satisfies (a)(b)(c). In particular
(a) is shown as follows: By the above two, ¢ =v——*3 V. Then by Proposition 69(4)(5),
t —*=v V. Therefore by Proposition 69(6), t —*3 V. <

23:35

CVIT 2016

23:36

1199

1200

1201
1202

1203

1204

1205

1206

1207

1208

1209
1210
1211
1212
1213

1214

On Average-Case Hardness of Higher-Order Model Checking

H.4 Proof of the Soundness
» Proposition 72. If© C[s]: 0 and s # L, then © - C[s*] : 6.

Proof. (Recall context-types introduced in Section 6.1.) Let § = Uiem{(©:,7i)} be such
that © = A;c(,,) i A0 = Aigpy Tir and Cls] < 6. By C[s] < 0 and inverse substitution
lemma (Proposition 23), there is 6’ such that C' < # = 6 and s < #'. If s <’ holds, by
substitution lemma (Proposition 22), C’[sel < 6, and hence © + C[s'] : §. We now show
s* <1 0. Let {(©},5;,7])}ic[n) be such that ' = Uiem (05, 7)}, s = ;g 8i» and for each

i € [n], ©)F s; : 7. Note that n > 0 by s # L. For each i, ©) I- s;* : 7/ is shown as follows

(where let s, = Az;..... Az l(siz1 ... z) and let 7/ =61 — ... = §, — o):
(SR i !
,,,,,,,,,,,, 5 ,,,7},,,,,,,, _ (Var)(/\) _ (Var)(/\)
@Fsi:élﬁ...éék%o $1261F$1251 xn:ékkxk:(;k
App)
©,21:01,...,0: 0, Fs;x1...2: 0 ©
O,21 :01,..., 2 O EL(s;21 ... 2p) O
(Abs)
OFAz..... Az l(siz1 ... 28) : 01 — — 0 — o0
@ = Sif T,
Therefore s* < 6’ has been proved, because s' = L) st (note n > 0). <

» Proposition 73.

(1) If O F £(u) : @ for some 0, then fu # L (i.e., L(u) is tracked).
(2) IfV is a labelled finite tree and O =V : 6 for some 6, then V is tracked.

Proof. (1): We show the contraposition. By fu = L, w is of the form £(...¢(L)...). Assume
that @ F u : 6 for some 6 (towards contradiction). We only write the case of that 6 is not
prime (the case of that 6 is prime is shown in the same way). Then the derivation tree is of

the following.
P-_L:o

OFLe(L):o ©

(Z)M(...E(L)...);o(@

DFO(..0(L)...):0

However it is contradiction because () - L : o can not be derived.
(2): By a straight forward induction on the derivation tree of () - V' : 6 using (1). <

» Theorem 74 (soundness). Let t be any closed and ground-typed term over . If 0 ¢ 0
for some 0, then t is minimal.

Proof. If # = T, then t = 1° by Proposition 61, and thus ¢ is minimal. Otherwise, by
Theorem 52, it suffices to show that, for every (C,s) such that ¢t = C[s] and s # L, there
is a tracked finite tree V such that C[s‘] —*3J V. Then by - C[s] : § (Proposition 72),
0+ C[s] : 6. By label-generation lemma (Lemma 68), there is a labelled finite tree V such
that C[s'] —*2 Vand 0V : 0. By § - V : 6 (Proposition 73), V is tracked. Hence it has
been proved. |

	Introduction
	Preliminaries
	Y-Terms as Tree Generators
	Higher-Order Model Checking

	Main Theorem
	Minimal Terms
	Proof Outline

	Infinite Monkey Theorem for Minimal Terms
	Decomposition of Terms
	Proof of Lemma 12

	Intersection Types for Minimal Terms
	Proof of the Main Lemma (Lemma 13)
	Context-Types
	Proof of Lemma 13

	Related Work
	Conclusion
	Definition of Alternating Parity Tree Automata
	Proof of Lemma 18
	Proof of Lemma 24
	On the Boundary Case for Lemma 24(1)

	Proof of Proposition 22 and 23
	Properties of the Approximate Relation
	An Alternative Definition of the Minimality
	Proof of Theorem 52

	Proof of Proposition 10
	Proof of Theorem 19
	Properties of the Intersection Type System
	Proof of the Completeness
	Label-Generation Lemma
	Proof of the Soundness

