
On Average-Case Hardness of Higher-Order1

Model Checking2

Yoshiki Nakamura3

Tokyo Institute of Technology, Japan4

Kazuyuki Asada5

Tohoku University, Japan6

Naoki Kobayashi7

The University of Tokyo, Japan8

Ryoma Sin’ya9

Akita University, Japan10

Takeshi Tsukada11

The University of Tokyo, Japan12

Abstract13

We study a mixture between the average case and worst case complexities of higher-order model14

checking, the problem of deciding whether the tree generated by a given λY -term (or equivalently, a15

higher-order recursion scheme) satisfies the property expressed by a given tree automaton. Higher-16

order model checking has recently been studied extensively in the context of higher-order program17

verification. Although the worst-case complexity of the problem is k-EXPTIME complete for order-k18

terms, various higher-order model checkers have been developed that run efficiently for typical inputs,19

and program verification tools have been constructed on top of them. One may, therefore, hope20

that higher-order model checking can be solved efficiently in the average case, despite the worst-case21

complexity. We provide a negative result, by showing that, under certain assumptions, for almost22

every term, the higher-order model checking problem specialized for the term is k-EXPTIME hard23

with respect to the size of automata. The proof is based on a novel intersection type system that24

characterizes terms that do not contain any useless subterms.25

2012 ACM Subject Classification Theory of computation → Program verification26

Keywords and phrases Higher-order model checking, Average-case complexity, Intersection type27

system, Useless analysis28

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2329

Related Version A full version of the paper is available at [20].30

1 Introduction31

Higher-order model checking [12, 23, 25] asks whether the (possibly infinite) tree generated by32

a given λY -term (or equivalently, a higher-order recursion scheme) is accepted by a given tree33

automaton. The problem was shown to be decidable by Ong in 2006 [23], and has been applied34

to higher-order program verification [15, 16, 22, 19]. Although the worst-case complexity of35

higher-order model checking is k-EXPTIME complete (where k is the type-theoretic order of36

the given λY -term), practical higher-order model checkers have been developed that run fast37

for many typical inputs. They lead to the development of various automated verification38

tools for higher-order functional programs.39

In view of the situation above, we are interested in the following question: why do40

higher-order model checkers run efficiently, despite the extremely high worst case complexity?41

There are a couple of known reasons. First, the worst-case time complexity of higher-order42

model checking is actually polynomial in the size of a given term, provided that the other43

© Yoshiki Nakamura, Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 On Average-Case Hardness of Higher-Order Model Checking

parameters (the largest order and arity of functions, and the size of an automaton) are44

fixed [18]. Second, linear functions do not blow up the complexity [5]. These reasons alone,45

however, do not fully explain why higher-order model checking works in practice. For example,46

for the first point above, the constant factor determined by the other parameters is huge.47

In the present paper, we consider another possibility: higher-order model checking may48

actually be easy in the average case; in other words, it may be the case that hard instances49

that cost k-EXPTIME are sparse and many of the instances of higher-order model checking50

can be solved more efficiently. We give a somewhat negative result on that possibility.51

For each term t of the λY -calculus, we consider the following higher-order model checking52

problem specialized to t:53

HOMC(t, ·): Given a tree automaton A, decide whether the tree
generated by t is accepted by A.

54

Our main result is that for almost every term t of order-k that is sufficiently large, HOMC(t, ·)55

is k-EXPTIME hard. A little more precisely, we prove that, for the set Termsn,k of terms of56

size n and order k (modulo certain additional conditions that we explain later), the ratio of57

“hard” terms:58

#{t ∈ Termsn,k | HOMC(t, ·) is k-EXPTIME hard}
#Termsn,k

59

tends to 1 if n→∞ (where #S denotes the cardinality of a set S). In other words, if we60

pick up a term randomly according to the uniform distribution over Termsn,k, it is likely61

that there exists a bad automaton A such that HOMC(t,A) is very hard. Note that this is a62

mixture between the average case and worst-case analysis: the result above says that in the63

average case on the choice of a term t, the complexity of HOMC(t, ·) is k-EXPTIME hard in64

the worst-case on the choice of an automaton.65

In order to make the above analysis meaningful, we have to carefully define the set66

Termsn,k of terms. To see why, consider a term of the form (λx.c)t, where c is a nullary67

tree constructor. The term generates the singleton tree c; so, no matter how large t is, the68

problem HOMC((λx.c)t, ·) is easy. Thus, if we include such terms in Termsn,k, the ratio of69

hard instances above would not be 1 for the trivial reason. In the context of applications of70

higher-order model checking to program verification, however, such instances are unlikely to71

appear: a λY -term corresponds to a program, and it is unlikely that one writes a program that72

contains such a huge useless term t. (It might be the case for machine-generated programs,73

but even in that case, one can apply simple preprocessing to remove such useless terms74

before invoking a costly higher-order model checking algorithm.) We, therefore, exclude out,75

from Termsn,k, terms that contain any useless subterms. Here, a subterm t1 of t is useless76

if replacing t1 with another term never changes the tree generated by t. (We will impose77

further conditions such as the number of variables, which will be explained in Section 2.)78

Once the set Termsn,k is properly chosen as explained above, our main result can be79

proved as follows. First, according to Kobayashi and Ong’s work on the complexity of80

higher-order model checking [17], there exists an order-k “hard” term tHard,k such that81

HOMC(tHard,k, ·) is k-EXPTIME complete. Second, according to Asada et al.’s work on82

quantitative analysis on λ-terms [1], any sufficiently large term t can be decomposed to the83

form E[C1, . . . , Cm] for sufficiently many contexts C1, . . . , Cm, where each Ci is large enough84

to be replaced by a context, say C ′i, that contains the hard term tHard,k, without changing85

the term size. Thus, by using their argument (which originates from the so called “infinite86

monkey theorem”), we can deduce that almost every sufficiently large term contains the87

hard term tHard,k, if we ignore the condition that useless terms should be excluded. Finally88

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:3

(and most importantly), we can choose the context C ′i that contains the hard term, so that89

if E[C1, . . . , Ci, . . . , Cm] belongs to Termsn,k (and therefore does not contain any useless90

subterms), then so does E[C1, . . . , C
′
i, . . . , Cm].91

To obtain the last part of the result, we develop a novel intersection type system that92

completely characterizes the set of terms that do not contain useless terms, in the sense that93

a closed term t is typable if and only if t does not contain any useless term. This type system94

is one of the main contributions of the present paper, and may be of independent interest.95

Type systems for useless code elimination have been studied before [6, 7, 13] (in particular,96

Damiani [7] used intersection types), but the complete characterization was not known, to97

our knowledge.98

The rest of this paper is structured as follows. Section 2 provides formal definitions of99

λY -terms and the higher-oder model checking. Section 3 states our main result and gives100

an proof outline. Sections 4–6 prove the theorem. Section 7 discusses related work, and101

Section 8 concludes this article.102

2 Preliminaries103

For a map f , we write dom(f) for the domain of f and rng(f) for the range of f . We denote104

by N the set of non-negative integers and by N+ the set of positive integers. For m,n ∈ N,105

we write [m,n] for the set {i ∈ N | m ≤ i ≤ n}, and [n] for [1, n]; note that [0] = ∅. The106

cardinality of a set A is denoted by #(A). We use A ·∪B instead of A ∪B if sets A and B107

are disjoint. For a set A, we write A∗ for the set of finite sequences consisting of elements of108

A. An L-labeled tree is a partial map T from N∗+ to L such that, for every 〈α, i〉 ∈ N∗+ ×N+,109

if α · i ∈ dom(T), then {α, α · 1, . . . , α · (i − 1)} ⊆ dom(T). An L-labeled tree T is called110

finite if dom(T) is finite. We write rT (α) for the number of children of a node α in T , i.e.,111

rT (α) = #{i ∈ N+ | α · i ∈ dom(T)}. A ranked alphabet Σ is a map from a finite set of112

symbols to N. We call Σ(a) the rank of a. A dom(Σ)-labeled tree T is called a Σ-ranked tree113

(Σ-tree, for short) if, for every α ∈ dom(T), rT (α) = Σ(T (α)).114

2.1 λY -Terms as Tree Generators115

In this subsection, we introduce (simply-typed) λY -terms [28] as generators of (possibly116

infinite) Σ-trees. In the context of higher-order model checking, higher-order recursion117

schemes have originally been used as generators of trees [12, 23], but the λY -terms (with118

constants of order up to 1 as tree constructors), which is equi-expressive as tree generators119

(see, e.g., [26]), have also been used in later studies on higher-order model checking [25]. For120

the purpose of the present paper, we find it more convenient to use λY -terms.121

Let Σ be a ranked alphabet. Each a ∈ dom(Σ) is called a tree constructor. We use122

meta-variables a, b, c for tree constructors (and a, b, c, . . . for concrete symbols). The set123

of simple types is defined by: κ ::= o | κ1 → κ2. The ground type o is the type of124

trees. The order and arity of a simple type κ, written ord (κ) and ar (κ) respectively,125

are defined by: ord (κ1 → · · · → κn → o) , max({0} ∪ {ord (κi) + 1 | 1 ≤ i ≤ n}) and126

ar (κ1 → · · · → κn → o) , n, where n ≥ 0. Let V be a countably infinite set, which is ranged127

over by x, y, z.128

I Definition 1 (λY -terms). The set of (λY -)terms (over Σ) is defined by:129

t ::= xκ | λxκ.t | λ_κ.t | t1 t2 | Yκt | a(t1, . . . , tΣ(a)) | ⊥κ.130

We call elements of V ·∪ {_} variables and use meta-variables x̄, ȳ, z̄ for them. As in the131

standard λY -calculus, the constructor Yκ may be considered a fixpoint operator of type132

CVIT 2016

23:4 On Average-Case Hardness of Higher-Order Model Checking

(κ→ κ)→ κ. The special variable ‘_’ denotes an unused variable (hence can occur only in a133

binder, not in the body of a function). For each type κ, we have a special term ⊥κ, which134

intuitively represents an unused term and will play an important role in the definition of135

minimal terms. We often omit type annotations (for example, λxκ.xκ is just written λx.x).136

For a term t, we write FV(t) for the set of all the free variables of t.137

A simple type environment Γ is a finite partial map from V (recall that the special variable138

_ does not belong to V) to the set of simple types. We simply write Γ, x : κ for Γ ·∪ {x 7→ κ}.139

The type judgment relation Γ `ST t : κ is inductively defined by the following rules:140

(Var)
x : κ `ST xκ : κ

Γ, x : κ `ST t : κ′
(Abs1)

Γ `ST λxκ.t : κ→ κ′
Γ `ST t : κ′

(Abs2)
Γ `ST λx̄κ.t : κ→ κ′

(⊥)
∅ `ST ⊥κ : κ

141

Γ1 `ST t : κ→ κ′ Γ2 `ST s : κ
(App)

Γ1 ∪ Γ2 `ST t s : κ′
Γ1 `ST t1 : o . . . Γn `ST tn : o

(a)⋃
i∈[n] Γi `ST a(t1, . . . , tn) : o

Γ `ST t : κ→ κ
(Y)

Γ `ST Yκ t : κ
142

Henceforth, we only consider well-typed terms (i.e., terms t such that Γ `ST t : κ for some143

〈Γ, κ〉). Note that for every well-typed term t, there is a unique pair 〈Γ, κ〉 such that144

Γ `ST t : κ; and moreover, its derivation tree is also uniquely determined. We sometimes145

annotate a term with its type, like tκ, when t has type κ (under a certain type environment).146

We say that t is closed if Γ = ∅; and that t is ground-typed if κ = o.147

I Definition 2. The (call-by-name) reduction relation −→ is defined as the least binary148

relation on well-typed terms (up to α-sequivalence) closed under the following rules, where149

we write t{s/x} for the term obtained from t by substituting s for all the free occurrences of150

x in a capture-avoiding manner:151

(β) (λx̄.t) s −→ t{s/x̄}; (Y) Yt −→ t (Yt); (⊥) ⊥κ1→κ2t −→ ⊥κ2 ;152

(App) tu −→ t′u if t −→ t′; (a) a(t1, . . . , tn) −→ a(t1, . . . , ti−1, t
′
i, ti+1, . . . , tn) if ti −→ t′i.153

We write −→∗ for the reflexive transitive closure of −→.154

The tree generated by a closed and ground λY -term t is the one obtained from t by155

(possibly) infinite rewriting with respect to the above reduction relation. The precise156

definition is given below.157

We write Σ⊥ for the ranked alphabet Σ ·∪ {⊥ 7→ 0}. We define the binary relation v on158

Σ⊥-trees by: T1 v T2 if and only if (i) dom(T1) ⊆ dom(T2) and (ii) for every α ∈ dom(T1),159

T1(α) = ⊥ or T1(α) = T2(α). We write T1 @ T2 if T1 v T2 and T1 6= T2. We denote the join160

of {Ti}i∈I on v by
⊔
i∈I Ti if defined.161

A term consisting of only tree constructors and ⊥o can naturally be regarded as a Σ⊥-tree.162

For example, b(c, a(⊥o)) can be regarded as the Σ⊥-tree: {ε 7→ b, 1 7→ c, 2 7→ a, 2 · 1 7→ ⊥};163

hence we identify finite trees and terms consisting of tree constructors and ⊥o below. For164

each closed and ground-typed term t, the Σ⊥-tree t⊥ is defined by: t⊥ , a(t⊥1 , . . . , t⊥Σ(a)) if165

t = a(t1, . . . , tΣ(a)); and t⊥ , ⊥ otherwise. The value tree of a closed and ground-typed term166

t, written T (t), is defined by: T (t) ,
⊔
{s⊥ | t −→∗ s}. For example, consider the value tree167

of (Yt1)c where t1 = λfo→o.λxo.b(x, f(a(x))). By applying the reduction rules (Y) and (β),168

we can obtain the following reduction sequence169

(Yt1)c −→ t1(Yt1)c −→∗ b(c, (Yt1)(a(c))) −→∗ b(c, b(a(c), (Yt1)(a(a(c)))))170

and observe that T (t) is the infinite tree of the form b(c, b(a(c), b(a(a(c)), b(· · ·)))).171

We also define the size and order of a term, which will be used in the complexity analysis.172

173

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:5

I Definition 3 (size, order). The size of a term t is defined by: |x| = |⊥| , 1, |λx̄.t| = |Yt| ,174

1 + |t|, |t1 t2| , 1 + |t1|+ |t2|, and |a(t1, . . . , tΣ(a))| , 1 +
∑
i∈[Σ(a)] |ti|. The order of a term175

t, written ord (t), is defined by:176

ord (t) , max({0} ∪ {ord (κ) | λxκ.s or Yκs is a subterm of t}).177

Note that the size of a variable is a constant; this is appropriate in our context, as we fix the178

number of variables in the main theorem (Theorem 6).179

2.2 Higher-Order Model Checking180

We assume the notion of alternating parity tree automaton (APT for short): see, e.g., [10].181

A formal definition of APT can be found in Appendix A; but the precise definition of APT182

is unnecessary for understanding our technical development in later sections, once you admit183

the results in this subsection. We recall the definition of higher-order model checking.184

I Definition 4 (higher-order model checking problem). The higher-order model checking185

problem, written HOMC (·, ·), is the problem of, given a closed and ground-typed λY -term186

t over Σ and an APT A over Σ as input, deciding whether A accepts T (t). We write187

HOMCk(·, ·) when the first input is restricted to a term of order-k. We denote by HOMC (t, ·)188

the problem obtained by fixing the first input to t, i.e., the problem of, given an APT A as189

input, deciding whether A accepts T (t).190

Ong [21] has shown that the HOMCk(·, ·) is k-EXPTIME complete (combined complexity)191

for each k ≥ 0. The following theorem states the complexity of HOMC (t, ·), which serves as192

a basis of the present work.193

I Theorem 5 ([17, Theorem 3.8] for (2)). For each k ≥ 1,194

(1) for every order-k λY -term t, HOMC (t, ·) is decidable in k-EXPTIME; and195

(2) for some order-k λY -term tHard,k, HOMC (tHard,k, ·) is k-EXPTIME hard.196

3 Main Theorem197

This section formally states the main result of the paper: for almost every order-k λY -term,198

the higher-order model checking problem HOMC(t, ·) is k-EXPTIME hard, under a certain199

assumption, and sketches an overall structure of the proof. We first prepare some auxiliary200

notations. We denote by [t]α the α-equivalence class of t. In our quantitative analysis,201

we count α-equivalent terms at most once (e.g., we do not distinguish (λx.λy.x)z and202

(λz.λ_.z)z). We define #vars (t) , min{#(V(t′)) | t′ ∈ [t]α}, where V(t) denotes the set of203

all the variables (except _) occurring in t. Namely, #vars (t) means the minimum number204

of variables occurring in term t, up to α-equivalence. For example, #vars ((λx.λy.x)z) = 1205

since the term is α-equivalent to (λz.λ_.z)z. Also the internal arity of a term t, written206

iar (t), is defined by: iar (t) , max({ar (κ) | sκ is a subterm of t}).207

Let Λ̂n(k, ι, ξ) be the set of all (α-equivalence classes of) closed and ground-typed λY -208

terms such that1 (i) the size is n (i.e., |t| = n); (ii) the order is up to k (i.e., ord (t) ≤ k);209

(iii) the internal arity is up to ι (i.e., iar (t) ≤ ι); (iv) the number of variable names is up to ξ210

(i.e., #vars (t) ≤ ξ); and (v) the terms are minimal (see Section 3.1 below for the definition).211

The main theorem is stated as follows.212

1 The set Λ̂n(k, ι, ξ) implicitly depends on the choice of ranked alphabet Σ. The main theorem holds
independently of the choice of Σ unless Σ is unreasonably small.

CVIT 2016

23:6 On Average-Case Hardness of Higher-Order Model Checking

I Theorem 6 (main theorem). For each k ≥ 1, let ι and ξ be sufficiently large natural213

numbers. Then,214

lim
n→∞

#
(
{t ∈ Λ̂n(k, ι, ξ) | HOMC(t, ·) is k-EXPTIME hard}

)
#
(

Λ̂n(k, ι, ξ)
) = 1.215

Below we first define the minimality in Section 3.1 and give a proof outline in Section 3.2.216

3.1 Minimal Terms217

Intuitively, a term is minimal if it has no useless subterm. The formal definition of minimal218

term is given as follows. We define the relation v on terms, which is analogous to the219

corresponding relation (v) on trees.220

I Definition 7. The approximate relation v is the least binary relation on (well-typed) terms221

closed under the following rules: ⊥κ v tκ; xκ v xκ; if t1 v s1 and t2 v s2, then t1 t2 v s1 s2;222

if t v s, then λx̄κ.t v λx̄κ.s; if t v s, then Yκt v Yκs; and if ti v si for every i ∈ [Σ(a)],223

then a(t1, . . . , tΣ(a)) v a(s1, . . . , sΣ(a)).224

In other words, s v t means that s is obtained from t by replacing subterms tκ1
1 , . . . , tκn

n225

with ⊥κ1 , . . . ,⊥κn . We write s @ t if s v t and s 6= t. We denote the join of {ti}i∈I on v by226 ⊔
i∈I ti if defined, and we sometimes write t1 t . . .t tn for

⊔
i∈[n] ti. With respect to Σ⊥-tree227

terms, the relation v on terms is equivalent to the relation v on Σ⊥-trees.228

I Definition 8. A closed and ground-typed term t is minimal if for every s @ t, T (s) 6= T (t).2229

In other words, a term t is not minimal if there exists s obtained by replacing a non-⊥230

subterm u of t with ⊥ such that T (s) = T (t).231

I Example 9. Let t = (λx.λy.x) a u. Then the value tree is the finite tree expressed by the232

term a (since (λx.λy.x) a u −→ (λy.a) u −→ a). Note that, for generating the value tree233

of the above term, the subterm u is “unused”. In fact, if u 6= ⊥, then t is not minimal as234

expected. This is because s = (λx.λy.x) a ⊥ @ t but T (s) = T (t). The term s is minimal.235

The following proposition gives an important property of minimal term. We write t′ � t236

when t′ is a subterm of a term t.237

I Proposition 10. Let t be a closed and ground-typed term. If t is minimal, then for every238

non-⊥, closed and ground-typed subterm s � t, its value tree T (s) is a subtree of T (t).239

This property is intuitively obvious. Since t is minimal, the subterm s assumed to be non-⊥240

must be used in the computation of the value tree T (t). As s is closed and ground-typed, the241

only way to use s is to place its value tree T (s) somewhere in T (t); hence the proposition.242

For a formal proof, see Appendix G in the full version [20].243

3.2 Proof Outline244

For each k, let tHard,k be an order-k closed and ground-typed term such that the problem245

HOMC(t, ·) is k-EXPTIME hard. Such tHard,k always exists by Theorem 5 (2). We can246

2 Here T (s) 6= T (t) is equivalent to T (s) @ T (t). It is because s v t implies T (s) v T (t) for every s and t.

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:7

assume without loss of generality that tHard,k is minimal; otherwise take a minimal element247

t′Hard,k of {s | T (s) = T (tHard,k)}. The proof idea of Theorem 6 is fairly simple, and can248

be divided into two parts. We will show that (a) for each order k, every order-k minimal249

term containing the “hard” term tHard,k as a subterm yields k-EXPTIME-hardness for the250

higher-order model checking problem, and (b) almost every minimal term of order-k contains251

the “hard” term tHard,k as a subterm. The ideas (a) and (b) are formalized as the following252

Lemma 11 and Lemma 12, respectively.253

I Lemma 11. Let k ≥ 1. For every minimal λY -term t � tHard,k, HOMC (t, ·) is254

k-EXPTIME hard.255

I Lemma 12. For each k ≥ 1, let ι and ξ be sufficiently large natural numbers. Then,256

lim
n→∞

#
(
{t ∈ Λ̂n(k, ι, ξ) | t � tHard,k}

)
#
(

Λ̂n(k, ι, ξ)
) = 1.257

Theorem 6 follows immediately from the two lemmas above. Lemma 11 is relatively easily258

proved as follows.259

Proof (of Lemma 11). Assume that t � tHard,k. Then T (t) � T (tHard,k) by Proposition260

10, i.e. T (tHard,k) = (T (t)�α) for some α ∈ dom(T (t)) where (T �α) denotes the subtree of261

T induced by the node α. Let c be the length of α. For any APT A, we can construct an262

automaton A�α by adding c states to A and replacing the initial state so that A�α accepts263

T if and only if A accepts T �α (intuitively, A�α first moves to the node α then behaves264

like A). Then the polynomial-time function A 7→ (A�α) gives a polynomial-time reduction265

from HOMC (tHard,k, ·) to HOMC (t, ·) The lemma follows from k-EXPTIME-hardness of266

HOMC (tHard,k, ·). J267

The remaining part is to show Lemma 12. To prove it, we introduce the following lemma268

(where the precise definition of second-order context will be given in Section 4).269

I Lemma 13. Let k ≥ 1. For each k, let ι and ξ be sufficiently large natural numbers. There270

is m such that the following holds: Let n ≥ m, E be any second-order linear context, and C271

be any affine context of |C| ≥ m such that E[C] ∈ Λ̂n(k, ι, ξ). Then there is an affine context272

D � tHard,k such that E[D] ∈ Λ̂n(k, ι, ξ).273

We show how Lemma 12 follows from Lemma 13 in Section 4. We then introduce a new274

intersection type system that characterizes the minimality in Section 5, and use it to prove275

Lemma 13 in Section 6.276

4 Infinite Monkey Theorem for Minimal Terms277

Our proof of Lemma 12 is alangous to that of the following classical so-called infinite monkey278

theorem (a.k.a. “Borges’s theorem” [9, p.61, Note I.35]) for words:279

I Theorem 14. Let Σ be a finite alphabet. For any word x ∈ Σ∗, almost all words contain280

x as a subword, i.e.281

lim
n→∞

#({w ∈ Σn | w = uxv for some u, v ∈ Σ∗})
#(Σn) = 1.282

CVIT 2016

23:8 On Average-Case Hardness of Higher-Order Model Checking

The theorem above follows from the following reasoning: Any word w can be decomposed283

to the form w1w2 · · ·wpw′ where |wi| = |x| and |w′| < |x|. If we pick w randomly, the284

probability that wi coincides with x is (1
|Σ|)
|x|; hence the probability that w contains x is285

at least 1 − (1 − (1
|Σ|)
|x|)p, which tends to 1 when n tends to infinity. For the purpose of286

proving Lemma 12, we analogously decompose each term t to the form E[C1, . . . , Cp] (where287

E and Ci respectively correspond to w′ and wi above), by using the tree decomposition in [1].288

Below, we first recall the tree decomposition of [1] (adapted to our setting) in Section 4.1.289

We then prove Lemma 12, modulo Lemma 13.290

4.1 Decomposition of Terms291

In this subsection, we recall the decomposition function Φm(·) given in [1] and its properties.292

Hereafter we regard the set of λY -terms Λ̂(k, ι, ξ) over Σ as ΣΛ(k,ι,ξ)-trees where ΣΛ(k,ι,ξ) is293

an extension of Σ defined by:294

ΣΛ(k,ι,ξ) , Σ ·∪ {x 7→ 0 | x ∈ Vξ}295

·∪ {λx̄κ 7→ 1 | x̄ ∈ Vξ ·∪ {_}, ord (κ) ≤ k, iar (κ) ≤ ι}296

·∪ {@ 7→ 2} ·∪ {Yκ 7→ 1,⊥κ 7→ 0 | ord (κ) ≤ k, iar (κ) ≤ ι}297
298

where Vξ = {x1, · · · , xξ} is a finite subset of V and the symbol @ represents the application299

operation. One can easily observe that ΣΛ(k,ι,ξ) is finite. Since λY -terms are ΣΛ(k,ι,ξ)-trees,300

we can apply the decomposition method for trees to our λY -terms.301

The decomposition function Φm(·) (where m is a parameter) that decomposes a λY -term302

t into (i) a (sufficiently long) sequence −→C = C1 · · ·Ck consisting of “affine” subcontexts303

of size no less than m, and (ii) a “second-order” context E (defined later), which is the304

remainder of extracting −→C from T . For example, the term on the left hand side of Figure 1305

can be decomposed to the second-order context and affine contexts shown on the right hand306

side. Here, the symbol JK in the second-order context on the right-hand side represents the307

original position of each subcontext. By filling the i-th occurrence (counted in the depth-first,308

left-to-right pre-order) of JK with the i-th affine context, we can recover the original tree309

on the left hand side. Before introducing the decomposition function Φm(·), we give formal310

definitions of contexts and second-order contexts.311

J K

J K

J K+

7�!

Second-order context

Sequence of a�ne subcontexts

�3
<latexit sha1_base64="Y25b6jBMOaCoCnadE00ikJWb1oU=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld1W0GPRi8cK9gPapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo5bRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqp1WuMeL/WL5W9ijcHXiV+TsqQo9EvffUGiqYxk5YKYkzX9xIbZERbTgWbFnupYQmhYzJkXUcliZkJsvm1U3zulAGOlHYlLZ6rvycyEhsziUPXGRM7MsveTPzP66Y2ug4yLpPUMkkXi6JUYKvw7HU84JpRKyaOEKq5uxXTEdGEWhdQ0YXgL7+8SlrVil+rVO8vy/WbPI4CnMIZXIAPV1CHO2hAEyg8wjO8whtS6AW9o49F6xrKZ07gD9DnDw6cjsk=</latexit>

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

Y<latexit sha1_base64="n2Ua7mA6OmSMMHjxVauWwbnDW7Q=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+9C2lEyaaUMzmSG5I5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xYykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zxTea3nrg2IlL3OIl5L6RDJQLBKFrpsRtSHPlB+jDtl8puxZ2BLBMvJ2XIUe+XvrqDiCUhV8gkNabjuTH2UqpRMMmnxW5ieEzZmA55x1JFQ2566SzxlJxaZUCCSNunkMzU3xspDY2ZhL6dzBKaRS8T//M6CQZXvVSoOEGu2PyjIJEEI5KdTwZCc4ZyYgllWtishI2opgxtSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMEzvMKbY5wX5935mI+uOPnOEfyB8/kDz2yRAQ==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

?<latexit sha1_base64="UYKwwofUuuOdfsM5oOS0ekmYRI8=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2WTIPJaZWSEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnBNpf6kbKDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5rfO0LlThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vwozJJLVUksWiOOXIKpQ/joZMU2L51BFMNHO3IjLGGhPr4im7EILll1dJu14LLmv1h6tq47aIowSncAYXEMA1NOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/ABrRjkc=</latexit>�
<latexit sha1_base64="cpYy4H96zOSrWb3Gf5Cq0hBTCuM=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ad2hpLJZNrQTDIkGaEM/Qs3LhRx69+4829M21lo64HA4Zxzyb0nTDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkpQttEcql6IdaUM0HbhhlOe6miOAk57Ybj25nffaJKMykezCSlQYKHgsWMYGOlR5/baISRPxhUa27dnQOtEq8gNSjQGlS//EiSLKHCEI617ntuaoIcK8MIp9OKn2maYjLGQ9q3VOCE6iCfbzxFZ1aJUCyVfcKgufp7IseJ1pMktMkEm5Fe9mbif14/M/F1kDORZoYKsvgozjgyEs3ORxFTlBg+sQQTxeyuiIywwsTYkiq2BG/55FXSadS9i3rj/rLWvCnqKMMJnMI5eHAFTbiDFrSBgIBneIU3RzsvzrvzsYiWnGLmGP7A+fwBAcaQeg==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

�x
<latexit sha1_base64="CwO+/zUxlsjKk4GaefOZdcF0Mj0=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqszUgi6LblxWsA9ph5LJZNrQJDMkGbEM/Qo3LhRx6+e4829M21lo64HA4Zxzyb0nSDjTxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVhLZIzGPVDbCmnEnaMsxw2k0UxSLgtBOMb2Z+55EqzWJ5byYJ9QUeShYxgo2VHvrcRkOMngblilt150CrxMtJBXI0B+WvfhiTVFBpCMda9zw3MX6GlWGE02mpn2qaYDLGQ9qzVGJBtZ/NF56iM6uEKIqVfdKgufp7IsNC64kIbFJgM9LL3kz8z+ulJrryMyaT1FBJFh9FKUcmRrPrUcgUJYZPLMFEMbsrIiOsMDG2o5ItwVs+eZW0a1Xvolq7q1ca13kdRTiBUzgHDy6hAbfQhBYQEPAMr/DmKOfFeXc+FtGCk88cwx84nz9z/pAt</latexit>

Y<latexit sha1_base64="n2Ua7mA6OmSMMHjxVauWwbnDW7Q=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+9C2lEyaaUMzmSG5I5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xYykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zxTea3nrg2IlL3OIl5L6RDJQLBKFrpsRtSHPlB+jDtl8puxZ2BLBMvJ2XIUe+XvrqDiCUhV8gkNabjuTH2UqpRMMmnxW5ieEzZmA55x1JFQ2566SzxlJxaZUCCSNunkMzU3xspDY2ZhL6dzBKaRS8T//M6CQZXvVSoOEGu2PyjIJEEI5KdTwZCc4ZyYgllWtishI2opgxtSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMEzvMKbY5wX5935mI+uOPnOEfyB8/kDz2yRAQ==</latexit>

@
<latexit sha1_base64="KLdrpM4jFNUPck3AS3RlfnxyAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZr1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fkqeMyA==</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

a
<latexit sha1_base64="ySMBu/QbWjBwIchix222n5PEAf0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcYSY0Wm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8MlZEp</latexit>

�y
<latexit sha1_base64="TPyhFvh+DR7DQdxEd/ogdQqUZGo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ie0Q8lkMm1okhmSjDAM/Qo3LhRx6+e4829M21lo64HA4Zxzyb0nSDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtMbmd+94kqzWL5YLKE+gKPJIsYwcZKjwNuoyFG2bBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+xMoxwOq0MUk0TTCZ4RPuWSiyo9vP5wlN0ZpUQRbGyTxo0V39P5FhonYnAJgU2Y73szcT/vH5qoms/ZzJJDZVk8VGUcmRiNLsehUxRYnhmCSaK2V0RGWOFibEdVWwJ3vLJq6TTqHsX9cb9Za15U9RRhhM4hXPw4AqacActaAMBAc/wCm+Ocl6cd+djES05xcwx/IHz+QN1gpAu</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

(� .a([]))? · �x.a(x) · �y.a(y)
<latexit sha1_base64="0z6UASoIB23tBj3eJyHHEAYtUaU=">AAACS3icbVBLS8NAGNzUV62vqkcvi0VoQUpSBT0WvXisYLWQhLLZbHRx82D3izSE/j8vXrz5J7x4UMSDmzaH2jqwyzAzH/vteIngCkzzzagsLa+srlXXaxubW9s79d29WxWnkrI+jUUsBx5RTPCI9YGDYINEMhJ6gt15j5eFf/fEpOJxdANZwtyQ3Ec84JSAloZ1r+kInfYJdoZt7IQEHgByMsZN2zl2Wy3seDHUHOoXd5kczQabo9acnf2xs9aw3jDb5gR4kVglaaASvWH91fFjmoYsAiqIUrZlJuDmRAKngo1rTqpYQugjuWe2phEJmXLzSRdjfKQVHwex1CcCPFFnJ3ISKpWFnk4WS6p5rxD/8+wUgnM351GSAovo9KEgFRhiXBSLfS4ZBZFpQqjkeldMH4gkFHT9NV2CNf/lRXLbaVsn7c71aaN7UdZRRQfoEDWRhc5QF12hHuojip7RO/pEX8aL8WF8Gz/TaMUoZ/bRH1RWfgHt77EQ</latexit>

Figure 1 An example of term decomposition. The parts surrounded by rectangles on the left hand
side show the extracted affine subcontexts, and the remaining part of the tree is the second-order
tree context.

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:9

The set of contexts over a ranked alphabet Σ, also called Σ-contexts and ranged over C,312

is a set of Σ ·∪ {[] 7→ 0}-trees where [] is a special nullary symbol called hole:313

C ::= [] | a(C1, . . . , CΣ(a)).314

The size of a context C, denoted by |C|, is inductively defined as follows: |[]| , 0 and315

|a(C1, . . . , CΣ(a))| , 1 + |C1| + · · · + |CΣ(a)|. Note that [] and each rank-0 constructor316

a ∈ dom(Σ) have different sizes: |[]| = 0 but |a| = 1. For a context C, we denote the number317

of occurrences of [] in C by hn (C): hn ([]) , 1 and hn
(
a(C1, . . . , CΣ(a))

)
, hn (C1) + · · ·+318

hn
(
CΣ(a)

)
. hn (C) = 0 means that C is a tree. We call C linear if hn (C) = 1, and call affine if319

it is either a tree or linear. In general, we call C a k-context if hn (C) = k. For contexts C,−→C =320

C1 · · ·Chn(C), we write C[−→C] or C[C1, . . . , Chn(C)] for the context which can be obtained321

by replacing each occurrence of [] in C with Ci in the left-to-right non-capture-avoiding322

manner: [][C] , C and (a(C1, . . . , CΣ(a)))[
−→
C1 · · ·

−→
C Σ(a)] , a(C1[−→C1], . . . , CΣ(a)[

−→
C Σ(a)]]),323

where #
(−→
Ci

)
= hn (Ci) for each i ∈ [Σ(a)]. For a 0-context C, |C| coincides with the size of324

C as a Σ-tree. For contexts C,C ′, we call C ′ a subcontext of C, written C ′ � C, if there exists325

contexts C0, C1, . . . , Chn(C) such that C ′ = C0[C[C1, . . . , Chn(C)]]. In particular, if C,C ′ are326

trees then we say that C ′ is a subtree of C.327

I Definition 15 (second-order contexts). The set of second-order contexts over Σ, ranged328

over by E, is defined by:329

E ::= JKnk [E1, . . . , Ek] | a(E1, . . . , EΣ(a)) (a ∈ dom(Σ)).330

Intuitively, the second-order context is an expression having holes of the form JKnk (called331

second-order holes), which should be filled with a k-context of size n. By filling all the332

second-order holes, we obtain a Σ-tree. Note that k may be 0. In the technical development333

below, we only consider second-order holes JKnk such that k is 0 or 1. We write shn (E) for the334

number of the second-order holes in E. Note that Σ-trees can be regarded as second-order335

contexts E such that shn (E) = 0, and vice versa. For i ≤ shn (E), we write E�i for the i-th336

second-order hole (counted in the depth-first, left-to-right pre-order). We define the size |E|337

by: |JKnk [E1, . . . , Ek]| , n+ |E1|+ · · ·+ |Ek| and |a(E1, . . . , EΣ(a))| , |E1|+ · · ·+ |EΣ(a)|+ 1.338

Note that |E| includes the size of contexts to fill the second-order holes in E.339

I Definition 16 (substitution for second-order contexts). For a context C and a second-order340

hole JKnk , we write C : JKnk if C is a k-context of size n. For a second-order context E and a341

sequence of contexts −→C = C1 · · ·Cshn(E) such that Ci : E�i for each i ∈ [shn (E)], we write342

E[−→C] or E[C1, . . . , Cshn(E)] for the tree which can be obtained by replacing each occurrence343

of JK in E with Ci in the left-to-right manner (and by interpreting the syntactical bracket [−]344

as the substitution operation for usual contexts), where #
(−→
Ci

)
= shn (Ei) for each i:345

(JKnk [E1, . . . , Ek]) [C · −→C1 · · ·
−→
Ck] , C[E1[−→C1], . . . , Ek[−→Ck]]346

(a(E1, . . . , EΣ(a)))[
−→
C1 · · ·

−→
C Σ(a)] , a(E1[−→C1], . . . , EΣ(a)[

−→
C Σ(a)]).347

348

We say that an affine context C is good for m (or m-good) if |C| ≥ m and C is of the349

form a(C1, . . . , CΣ(a)) where |Ci| < m for each i ∈ [Σ(a)]. In other words, C is good if C is350

of an appropriate size: it is large enough (i.e. |C| ≥ m) but not too large (i.e. the size of351

any proper subcontext is less than m). For example, a(b([]), b(c)) is good for 3, but neither352

C1 = b(b([])) (since |C1| < 3) nor C2 = a(c, b(b(b([])))) (since C ′2 = b(b(b([]))) ≺ C2 has353

size 3) is.354

CVIT 2016

23:10 On Average-Case Hardness of Higher-Order Model Checking

I Theorem 17 (decomposition function [1]). For any m ≥ 2, there exists a function Φm(·)355

which takes a Σ-tree T and returns a pair (E,−→C) of a second-order context and a sequence356

of good affine contexts such that:357

(1) E[−→C] = T ;358

(2) shn (E) = #
(−→
C
)
≥ |T |

2rm if m ≤ |T | where r = max rng(Σ); and359

(3) for any i ∈ [shn (E)] and any m-good affine context C : E�i,360

Φm
(
E[
−→
C ′]
)

= (E,
−→
C ′) holds where

−→
C ′ is a sequence of contexts obtained by replacing the361

i-th component −→C (i) of −→C with C.362

4.2 Proof of Lemma 12363

We are now ready to prove Lemma 12, under the assumption that Lemma 13 is correct364

(the proof of Lemma 13 is given in Section 6). For readability, in this subsection we fix365

the parameters k, ι, ξ and write Λ̂ and Λ̂n for Λ̂(k, ι, ξ) and Λ̂n(k, ι, ξ), respectively. Let366

r = max rng
(
ΣΛ(k,ι,ξ)

)
.367

We firstly introduce some auxiliary notation. For a term t ∈ Λ̂ and m ∈ N, we simply368

write Etm and −→C t
m for the second-order context and sequence of contexts obtained by Φm(t),369

i.e., Φm(t) = (Etm,
−→
C t
m). For n,m ≥ 2 and a term t ∈ Λ̂, we define370

Enm ,
{
Etm | t ∈ Λ̂n

}
Φ−1
m (E) ,

{
t ∈ Λ̂|E| | Etm = E

}
371

Cm(t, i) , −→C t
m(i) Cm(E, i) ,

{
Cm(t, i) | t ∈ Λ̂|E| and Etm = E

}
372
373

For a second-order context E, we define a family of sets SE0 ⊇ SE1 ⊇ · · · ⊇ SEshn(E) of minimal374

terms of size n as follows:375

SEi ,
{
t ∈ Φ−1

m (E) | tHard,k 6� Cm(t, j) for each j ∈ [i]
}
.376

Note that SE0 = Φ−1
m (E) and thus the fraction #(SE

shn(E))
#(SE

0) means the probability that a377

randomly chosen term t from Φ−1
m (E) does not contain tHard,k in any its decomposed378

subcontexts.379

By using Lemma 13, we can easily prove that, for any term t ∈ Λ̂ and i ∈ [shn (Etm)], there380

exists a good affine context C such that tHard,k � C, C : Etm�i and Etm[−→C] ∈ Λ̂. This means381

that a term t can contain tHard,k as a subterm in arbitrary decomposed part independently382

with other decomposed parts. Hence, if SEi−1 is non-empty, SEi−1 \ SEi is also non-empty383

(i.e., SEi−1) SEi) for each i ∈ [2, shn (E)]. Moreover, since we can bound the number of384

possible decomposed contexts as #(Cm(E, i)) ≤ γrm for some constant γ (intuitively, γ is an385

upper-bound of the growth rate of the number of contexts of size at most rm), the fraction386

#
(
SEi
)
/#
(
SEi−1

)
is bounded above by (γrm − 1)/γrm = 1 − γ−rm. Summing up above387

discussion, by using Lemma 13 and some analysis, we can bound the probability that no388

decomposed part contains tHard,k as follows (see Appendix B for details).389

I Lemma 18. For some real number γ > 0,
∑

E∈En
m

#(SE
shn(E))∑

E∈En
m

#(SE
0) ≤ (1− γ−rm)shn(E).390

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:11

Thus we have our Lemma 12 as:391

#
(
{t ∈ Λ̂n(k, ι, ξ) | tHard,k 6� t}

)
#
(

Λ̂n(k, ι, ξ)
) ≤

∑
E∈En

m
#
(
SEshn(E)

)
∑
E∈En

m
#
(
SE0
)392

(∵ Lemma 18) ≤ (1− γ−rm)shn(E)
393

(∵ Item 2 of Theorem 17) ≤ (1− γ−rm) n
2rm −→ 0 (as n −→∞).394

395

396

5 Intersection Types for Minimal Terms397

In this section, we introduce an intersection type system for characterizing minimal terms.398

This type system will be a key tool to show Lemma 13. We define the sets of prime399

intersection types and intersection types as follows, where n ≥ 0:400

τ, σ ::= o | θ → τ θ, δ ::=
∧κ{τ1, . . . , τn}.401

We often abbreviate
∧κ{τ1, . . . , τn} by

∧
{τ1, . . . , τn}. We also often write

∧κ
i∈[n] τi (or402

τ1 ∧ · · · ∧ τn) for
∧κ{τ1, . . . , τn}, and >κ (or >) for

∧κ ∅. For each intersection types403

θ =
∧κ

S and δ =
∧κ

T , We denote by θ ∧ δ the intersection type
∧κ(S ∪ T). We use θ̄, δ̄ to404

denote a prime intersection type or an intersection type. An intersection type environment,405

written as Θ or ∆, is a finite partial mapping from V to the set of intersection types. For406

each Θ, x ∈ V \ dom(Θ), and θ, we write (Θ, x : θ) for Θ ·∪ {x 7→ θ}. The refinement relation407

θ̄ :: κ (resp. Θ :: Γ) is the least relation closed under the following rules, where n ≥ 0:408

o :: o

τ1 :: κ . . . τn :: κ∧κ
i∈[n] τi :: κ

θ :: κ τ :: κ′

θ → τ :: κ→ κ′ ∅ :: ∅
Θ :: Γ θ :: κ

(Θ, x : θ) :: (Γ, x : κ).409

Henceforth we only consider intersection types occurring in this refinement relation (so, we410

always make the assumption that for each θ̄, θ̄ :: κ holds for some κ). Thanks to the κ in411 ∧κ, for each θ̄ (and similarly for Θ), the type κ such that θ̄ :: κ is unique.412

We write Θ ∧∆ for the intersection type environment {x 7→ Θ(x) ∧∆(x) | x ∈ dom(Θ) ∪413

dom(∆)}, where Θ(x) = >κ (similarly for ∆(x)) if x 6∈ dom(Θ) (where κ is determined by414

∆(x)). The intersection type judgement relation Θ ` t : θ̄ is inductively defined by the rules415

in Figure 2, where we force that Θ ` t : θ̄ holds only when Γ `ST t : κ, Θ :: Γ, and θ̄ :: κ hold.416

(Var)
x : ∧{τ} ` xκ : τ

Θ, x : θ ` t : τ
(Abs1)

Θ ` λx.t : θ → τ

Θ ` t : τ (Abs2)
Θ ` λx̄.t : > → τ

Θ ` t : θ → τ ∆ ` s : θ (App)
Θ ∧∆ ` t s : τ

Θ ` t1 (Yt2) : τ
(Y1)

Θ ` Y(t1 t t2) : τ
Θ ` t⊥ : τ (Y2)
Θ ` Yt : τ

Θ1 ` t1 : θ1 . . . Θn ` tn : θn (a)∧
i∈[n] Θi ` a(t1, . . . , tn) : o

Θ1 ` t1 : τ1 . . . Θn ` tn : τn (∧)∧
i∈[n] Θi `

⊔
i∈[n] ti :

∧
i∈[n] τi

Θ ` t : θ̄ (>)
Θ, x : > ` t : θ̄

Figure 2 The intersection type system for the minimality.
417

Intuitively, we write ∅ ` t :
∧
{τ1, . . . , τn} if t is typed by each of τ1, . . . , τn, in a standard418

(idempotent) intersection type system, but in this intersection type system, we write the one419

if there is a partition {ti}i∈[n] of t (i.e., t =
⊔
i∈[n] ti) such that each ti is typed by τi. This420

CVIT 2016

23:12 On Average-Case Hardness of Higher-Order Model Checking

difference is useful for characterizing the minimality introduced in Section 3 in cases of that421

terms are “used” in multiple ways; see Example 21. The following theorem states that the422

minimality can be characterized by this intersection type system.423

I Theorem 19 (soundness and completeness). For every closed and ground-typed term t, t is424

minimal if and only if ∅ ` t : θ̄ for some θ̄.425

Proof Sketch. Both the soundness and the completeness can be proved by showing a subject-426

reduction lemma and a subject-expansion lemma for this intersection type system, respectively.427

The proof is proceeded in a standard way (using an alternative definition of the minimality),428

but not so concise. For the details of the proof, see Appendix H in the full version [20]. J429

The following are examples of proving the minimality by using the intersection type system.430

I Example 20. Let t = (λxo.λyo.xo) a ⊥o be the term appeared in Section 3. Then we can431

show that t is minimal by giving the derivation tree of ∅ ` t : o as follows:432

(Var)
x : ∧{o} ` xo : o

(Abs2)
x : ∧{o} ` λyo.xo : > → o

(Abs1)
∅ ` λxo.λyo.xo : ∧{o} → > → o

(a)
∅ ` a : o (∧)
∅ ` a : ∧{o}

(App)
∅ ` (λxo.λyo.xo) a : > → o

(∧)
∅ ` ⊥o : >

(App)
∅ ` (λxo.λyo.xo) a ⊥o : o

433

Note that in contrast, ∅ 0 (λxo.λyo.xo) a a : o by x : ∧{o}, y : ∧{o} 0 xo : o; see (Var).434

The following case is a bit more complicated, but the intersection types are essentially used.435

I Example 21. Let s = (λf (o→o→o)→o.a(f fst, f snd)), u = (λgo→o→o.g b c), and t = s u,436

where fst = λxo.λyo.xo and snd = λxo.λyo.yo. Then ∅ ` t : o is derived from the following437

two by applying (App), where τ1 = ∧{o} → > → o and τ2 = > → ∧{o} → o. Hence this t438

is minimal. Note that the term u is “used” in two ways when it is applied to the term s (the439

f fst uses the b and the f snd uses the c, respectively).440

(Var)
f : ∧{∧{τ1} → o} ` f : ∧{τ1} → o

∅ ` fst : τ1 (∧)
∅ ` fst : ∧{τ1}

(App)
f : ∧{∧{τ1} → o} ` f fst : o

(∧)
f : ∧{∧{τ1} → o} ` f fst : {o}

(similarly to the left)
(∧)

f : ∧{∧{τ2} → o} ` f snd : {o}
(a)

f : ∧{∧{τ1} → o,∧{τ2} → o} ` a(f fst, f snd) : o
(Abs1)

∅ ` λf.a(f fst, f snd) :
∧

l∈[2]{∧{τl} → o} → o

441

442

(Var)
g : ∧{τ1} ` g : ∧{o} → > → o

(b)
∅ ` b : o

(∧)
∅ ` b : ∧{o}

(∧)
∅ ` ⊥ : >

(App)
g : ∧{τ1} ` g b⊥ : o

(Abs1)
∅ ` λg.g b⊥ : ∧{τ1} → o

(similarly to the left)
(App)

g : ∧{τ2} ` g⊥ c : o
(Abs1)

∅ ` λg.g⊥ c : ∧{τ2} → o
(∧)

∅ ` λg.g b c :
∧

l∈[2]{∧{τl} → o}

443

6 Proof of the Main Lemma (Lemma 13)444

In this section, we prove Lemma 13 by using the intersection type system in the previous445

section. Recall that we need to prove that if E[C] ∈ Λ̂n(k, ι, ξ), then there is a context446

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:13

D � tHard,k such that E[D] ∈ Λ̂n(k, ι, ξ). Thanks to the result of the previous section,447

E[C] ∈ Λ̂n(k, ι, ξ) implies that E[C] is typable in the intersection type system. Thus, it448

suffices to construct D of the same size such that (i) C has “the same typing properties” as449

D, and (ii) D contains tHard,k. To this end, we first extend the notion of types to those450

of contexts (called context-types) in Section 6.1. We then show in Section 6.2 that we can451

indeed construct a context D that has the same context types as C, and prove Lemma 13.452

6.1 Context-Types453

For each affine-context C, we write C CST {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉} V 〈Γ, κ〉 if there is a454

derivation tree of Γ `ST C[x] : κ with the assumptions {Γ′1 `ST x : κ′1, . . . ,Γ′n `ST x : κ′n},455

where x is a variable not occurring in C (informally speaking, it means that there is a456

derivation tree of Γ′ `ST C : κ′ with the assumptions {Γ′1 `ST [] : κ′1, . . . ,Γ′n `ST [] : κ′n}).457

For example, let t = (λxo.[]x) a; then t CST {〈(Γ, x : o), o→ κ〉}V 〈Γ, κ〉, where Γ is any458

environment and κ is any simple-type. We often write t CST θ̃ for t CST ∅V θ̃. We use κ̃459

to denote a pair 〈Γ, κ〉 and use ν̃ to denote a {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉}V 〈Γ, κ〉. Note that C460

is a term (resp. a linear-context) if C CST {〈Γ′1, κ′1〉, . . . , 〈Γ′n, κ′n〉}V 〈Γ, κ〉 holds for n = 0461

(resp. n = 1). In the following, we extend the notion of CST to the intersection type system.462

The set of (affine-)context-types, ranged over by µ̃, is defined as follows, where n ≥ 0 and we463

may write θ̃+ for θ̃ if θ̃ 6= ∅:464

τ̃ ::= 〈Θ, τ〉 θ̃ ::= {τ̃1, . . . , τ̃n} π̃ ::= τ̃ | θ̃+ µ̃ ::= θ̃ V π̃.465

The refinement relation is the least relation closed under the following rules, where n ≥ 0:466

Θ :: Γ τ :: κ
〈Θ, τ〉 :: 〈Γ, κ〉

τ̃1 :: 〈Γ, κ〉 . . . τ̃n :: 〈Γ, κ〉
{τ̃1, . . . , τ̃n} :: 〈Γ, κ〉

θ̃′ :: 〈Γ′, κ′〉 π̃ :: 〈Γ, κ〉

θ̃′ V π̃ :: 〈Γ′, κ′〉V 〈Γ, κ〉
.467

Henceforth we only consider context-types occurring in this refinement relation (so, we always468

make the assumptions that for each θ̃′ V θ̃, for some 〈Γ, κ〉 and 〈Γ′, κ′〉, θ̃ :: 〈Γ, κ〉 and469

θ̃′ :: 〈Γ′, κ′〉). For each affine-context C, we write C C {〈Θ′1, τ ′1〉, . . . , 〈Θ′n, τ ′n〉} V 〈Θ, τ〉 if470

there is a derivation tree of Θ ` C[x] : τ with the assumptions {Θ′1 ` x : τ ′1, . . . ,Θ′n ` x : τ ′n}.471

For n ≥ 1, we write (
⊔
i∈[n] Ci) C (

⋃
i∈[n] θ̃

′
i)V {τ̃1, . . . , τ̃n} if Ci C θ̃′i V τ̃i for each i ∈ [n].472

We often write t C θ̃ for t C ∅V θ̃. We list a few properties (see Appendix D for the proofs).473

474

I Proposition 22 (substitution). Suppose that C is a linear-context. If C C θ̃′ V θ̃ and475

C ′ C θ̃′′ V θ̃′, then C[C ′] C θ̃′′ V θ̃.476

I Proposition 23 (inverse substitution). Suppose that C is a linear-context. If C[C ′] C θ̃′′ V θ̃,477

then C C θ̃′ V θ̃ and C ′ C θ̃′′ V θ̃′ for some θ̃′.478

These properties enable us to replace contexts preserving the minimality. For example,479

given ∅ ` C[D[t]] : o (i.e., C[D[t]] is minimal); then by Proposition 23, C C θ̃ V {〈∅, o〉},480

D C θ̃′ V θ̃, and t C θ̃′ for some θ̃ and θ̃′; then by Proposition 22, C[D′[t]] C {〈∅, o〉} (hence,481

C[D′[t]] is also minimal) for each linear context D′ C θ̃′ V θ̃.482

6.2 Proof of Lemma 13483

Here, we fix parameters k, ι, and ξ. W.l.o.g., in the following, we only consider terms,484

contexts, and environments having only variables in a fixed set Vξ , {z1, . . . , zξ} (of size485

ξ). We say that 〈Γ, κ〉 is (〈k, ι, ξ〉-)bounded if max{ord (κ′) | κ′ ∈ {κ} ∪ rng(Γ)} ≤ k and486

CVIT 2016

23:14 On Average-Case Hardness of Higher-Order Model Checking

max{iar (κ′) | κ′ ∈ {κ} ∪ rng(Γ)} ≤ ι; and that 〈Γ′, κ′〉V 〈Γ, κ〉 is bounded if both 〈Γ′, κ′〉487

and 〈Γ, κ〉 are; and that a context-type µ̃ is bounded if the ν̃ such that µ̃ :: ν̃ is. We also say488

that t is bounded if ord (t) ≤ k and iar (t) ≤ ι; and that a linear-context C is bounded if489

C[⊥] is. Also, we use a (resp. b, c) to denote a tree constructor of arity 0 (resp. 2, 1).490

The following technical lemma allows conversion between a ground-typed term and a491

term of a required typing property: see Appendix C for a proof.492

I Lemma 24. (1) Suppose that θ̃+ :: 〈Γ, κ〉 is bounded. If #(dom(Γ)) < ξ or ar (κ) < ι,493

then Cθ̃+ C {〈∅, o〉}V θ̃+ for some bounded linear-context Cθ̃+ .494

(2) Suppose that θ̃ is bounded. Then, Dθ̃ C θ̃ V {〈∅, o〉} for a bounded affine-context Dθ̃.495

The following is the key lemma, which shows that for any bounded context-type, one can496

construct a context D that has the context-type and contains the hard term tHard,k.497

I Lemma 25. Suppose that C C θ̃′ V θ̃+ for some bounded affine-context C. Then for some498

m0, for every m ≥ m0, there is a bounded affine-context D of size m such that D C θ̃′ V θ̃+
499

and D � tHard,k.500

Proof. Let 〈Γ, κ〉 be such that θ̃+ C 〈Γ, κ〉. Note that θ̃′ and θ̃+ are also bounded.501

(a) #(dom(Γ)) < ξ or ar (κ) < ι: For each l ≥ 0, let Dl be as follows, where cl(a) is the502

term c(. . . c(a) . . .) that c occurs l times and Dθ̃′ and Cθ̃+ are the ones in Lemma 24:503

Dl , Cθ̃+ [b(tHard,k, b(cl(a), []))][Dθ̃′].504

ThenDl � tHard,k is obvious, andDl C θ̃′ V θ̃+ by Proposition 22 (since b(tHard,k, b(cl, [])) C505

{〈∅, o〉}V {〈∅, o〉}). Therefore, the claim has been proved by using these D1, D2, · · · .506

(b) Otherwise: Then, Γ `ST C[⊥] : κ, C[⊥] is bounded, and #(dom(Γ)) = ξ and507

ar (κ) = ι, so C should be of the form λ_.C0 (see Lemma 40 in Appendix C). By Proposition508

23, C0 C θ̃′ V θ̃0 and λ_.[] C θ̃0 V θ̃ for some θ̃0. Then ar (C0) < ar (C) ≤ ι and509

θ̃0 6= ∅ by C0 6= ⊥ (since ξ > 0). Therefore by (a), for some m′0, there is {D′l}l≥m′
0
such510

that D′l C θ̃′ V θ̃0, D′l � tHard,k, and |D′l| = l for each l ≥ m′0. Let Dl = λ_.D′l. Then511

Dl � tHard,k is obvious, and Dl C θ̃′ V θ̃+ by Proposition 22. Therefore, the claim has been512

proved by using these Dm′
0
, Dm′

0+1, · · · . J513

We are now ready to prove the main lemma.514

Proof (of Lemma 13). Let m , max{mθ̃′Vθ̃+ | C C θ̃′ V θ̃+ for some bounded C}, where515

each mθ̃′Vθ̃+ is the m0 in Lemma 25. Indeed such m exists, since the number of bounded516

context-types is finite. Recall E[C] ∈ Λ̂n(k, ι, ξ). Let Ẽ be an affine-context such that517

E[C] = Ẽ[C[t]] for some t or E[C] = Ẽ[C]. For the sake of brevity, we only write the case of518

that Ẽ is linear-context (i.e., E[C] = Ẽ[C[t]]). Since Ẽ[C[t]] is minimal, ∅ ` Ẽ[C[t]] : θ̄ for519

some θ̄ :: o (Theorem 19). Then Ẽ[C[t]] C ∅ V {〈∅, o〉} (by Ẽ[C[t]] 6= ⊥). By Proposition520

23, there are θ̃ and θ̃′ such that Ẽ C θ̃ V {〈∅, o〉}, C C θ̃′ V θ̃, and t C ∅V θ̃′. By Lemma521

25 (and C 6= ⊥), there is a bounded linear-context D C θ̃′ V θ̃ such that D � tHard,k and522

|D| = |C|. Therefore Ẽ[D[t]] C ∅V {〈∅, o〉} (hence, ∅ ` Ẽ[D[t]] : ∧{o}) by Proposition 22,523

and thus E[D] is minimal (Theorem 19). Hence, E[D] ∈ Λ̂n(k, ι, ξ). J524

7 Related Work525

Ong [21] proved the k-EXPTIME completeness of higher-order model checking. There have526

also been results on parameterized complexity [15, 18, 17] and the complexity of subclasses527

of the problem [17, 5]. To our knowledge, however, they are all about the worst-case528

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:15

complexity. Despite the extremely high worst-case complexity, practical model checkers have529

been developed that run quite fast for typical inputs [14, 4, 24, 29], which has led to the530

motivating question for our work: is higher-order model checking really hard in the average531

case?532

Technically, closest to ours is the work of Asada et al. [27, 1] on a quantitative analysis533

of the length of β-reduction sequences of simply-typed λ-terms. In fact, our use of the534

tree-version of infinite monkey theorem (to show that almost every term contains a “hard”535

term), as well as the tree decomposition (Theorem 17) has been inspired by their work and536

other studies on quantitative analysis of the λ-calculus and combinatory logics [8, 2]. The537

main new difficulty was that, unlike in the case of the length of β-reduction sequences, even538

if t is a “hard” term to model-check, a term C[t] that contains t as a subterm may not be539

hard to model-check, because t may not actually be used in C[t] or may be irrelevant for540

the property to be checked. This has led us to restrict terms to “minimal ones” that do not541

contain unnecessary subterms. The restriction turned out to be natural also for our goal: we542

wish to model the average case that arises in the actual applications to program verification,543

and the restriction to minimal terms helps us exclude out unlikely inputs.544

We have used an intersection type system to characterize minimal terms. Related type545

systems have been studied in the context of useless code elimination [6, 7, 13]. In particular,546

Daminani [7] also used an intersection type system. To our knowledge, however, previous547

studies do not provide a complete characterization of minimal terms (especially in the presence548

of recursion).549

There has been much interest in the average-case complexity in the field of computational550

complexity: see [3] for a good survey. In their terminology, our ultimate goal is to answer551

whether (HOMCk(·, ·),U) belongs to AvgδDTIME(f(n)) (the class of distributional problems552

that can be solved in time f(n) for at least (1 − δ(n))-fraction of the inputs of size n),3553

where HOMCk(·, ·) is the higher-order model checking problem of order k, U is a uniform554

distribution on inputs of each size n, δ is a function that is asymptotically smaller than λn.1,555

and f(n) is a function asymptotically much smaller than expk(cn) (a k-fold exponential556

function). The result obtained in the present paper (Theorem 6) is not yet of this form, and557

is rather a mixture of average-case and worst-case analysis, which may be of independent558

interest from the perspective of complexity theory.559

8 Conclusion560

We have studied a mixture of average-case and worst-case complexity of higher-order model561

checking, and shown that for almost every order-k λY -term t, the higher-order model checking562

problem specialized for t is k-EXPTIME hard with respect to the size of a tree automaton.563

To our knowledge, this is the first result on the average-case hardness of higher-order model564

checking. To obtain the result, we have given a complete type-based characterization of565

“minimal” terms that contain no useless subterms, which may be of independent interest.566

Pure average-case analysis of the hardness of higher-order model checking is left for future567

work.568

3 A similar notion has also been studied under the name “generic-case complexity” [11].

CVIT 2016

23:16 On Average-Case Hardness of Higher-Order Model Checking

References569

1 Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada. Almost Every Simply570

Typed Lambda-Term Has a Long Beta-Reduction Sequence. Logical Methods in Computer571

Science, Volume 15, Issue 1, February 2019. URL: https://lmcs.episciences.org/5203,572

doi:10.23638/LMCS-15(1:16)2019.573

2 Maciej Bendkowski, Katarzyna Grygiel, and Marek Zaionc. On the likelihood of normalization574

in combinatory logic. J. Log. Comput., 27(7):2251–2269, 2017. URL: https://doi.org/10.575

1093/logcom/exx005, doi:10.1093/logcom/exx005.576

3 Andrej Bogdanov and Luca Trevisan. Average-case complexity. CoRR, abs/cs/0606037, 2006.577

URL: http://arxiv.org/abs/cs/0606037, arXiv:cs/0606037.578

4 Christopher H. Broadbent and Naoki Kobayashi. Saturation-based model checking of higher-579

order recursion schemes. In Proceedings of CSL 2013, volume 23 of LIPIcs, pages 129–148,580

2013.581

5 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski. Linearity in higher-order582

recursion schemes. PACMPL, 2(POPL):39:1–39:29, 2018. URL: https://doi.org/10.1145/583

3158127, doi:10.1145/3158127.584

6 Mario Coppo, Ferruccio Damiani, and Paola Giannini. Refinement types for program analysis.585

In Proceedings of the Third International Symposium on Static Analysis, SAS ’96, pages586

143–158, Berlin, Heidelberg, 1996. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?587

id=647165.717834.588

7 Ferruccio Damiani. A conjunctive type system for useless-code elimination. Mathematical589

Structures in Computer Science, 13(1):157–197, 2003. URL: https://doi.org/10.1017/590

S0960129502003869, doi:10.1017/S0960129502003869.591

8 René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier, and592

Marek Zaionc. Asymptotically almost all λ-terms are strongly normalizing. Logical Methods593

in Computer Science, 9(1), 2013.594

9 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,595

New York, NY, USA, 1 edition, 2009.596

10 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite597

Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.598

Springer, 2002.599

11 Ilya Kapovich, Alexei G. Myasnikov, Paul Schupp, and Vladimir Shpilrain. Generic-case600

complexity, decision problems in group theory and random walks. CoRR, math.GR/0203239,601

2002. URL: http://arxiv.org/abs/math.GR/0203239.602

12 Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are easy.603

In Foundations of Software Science and Computation Structures, 5th International Conference,604

FOSSACS 2002, volume 2303 of Lecture Notes in Computer Science, pages 205–222. Springer,605

2002.606

13 Naoki Kobayashi. Type-based useless-variable elimination. Higher-Order and Symbolic607

Computation, 14(2-3):221–260, 2001.608

14 Naoki Kobayashi. Model-checking higher-order functions. In Proceedings of PPDP 2009, pages609

25–36. ACM Press, 2009.610

15 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order pro-611

grams. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming612

Languages (POPL), pages 416–428. ACM Press, 2009.613

16 Naoki Kobayashi. Model checking higher-order programs. Journal of the ACM, 60(3), 2013.614

17 Naoki Kobayashi and C.-H. Ong. Complexity of Model Checking Recursion Schemes615

for Fragments of the Modal Mu-Calculus. Logical Methods in Computer Science, 7(4),616

jan 2012. URL: http://arxiv.org/abs/1109.5267http://dx.doi.org/10.2168/LMCS-7(4:617

9)2011https://lmcs.episciences.org/1211, arXiv:1109.5267, doi:10.2168/LMCS-7(4:9)618

2011.619

https://lmcs.episciences.org/5203
http://dx.doi.org/10.23638/LMCS-15(1:16)2019
https://doi.org/10.1093/logcom/exx005
https://doi.org/10.1093/logcom/exx005
https://doi.org/10.1093/logcom/exx005
http://dx.doi.org/10.1093/logcom/exx005
http://arxiv.org/abs/cs/0606037
http://arxiv.org/abs/cs/0606037
https://doi.org/10.1145/3158127
https://doi.org/10.1145/3158127
https://doi.org/10.1145/3158127
http://dx.doi.org/10.1145/3158127
http://dl.acm.org/citation.cfm?id=647165.717834
http://dl.acm.org/citation.cfm?id=647165.717834
http://dl.acm.org/citation.cfm?id=647165.717834
https://doi.org/10.1017/S0960129502003869
https://doi.org/10.1017/S0960129502003869
https://doi.org/10.1017/S0960129502003869
http://dx.doi.org/10.1017/S0960129502003869
http://arxiv.org/abs/math.GR/0203239
http://arxiv.org/abs/1109.5267 http://dx.doi.org/10.2168/LMCS-7(4:9)2011 https://lmcs.episciences.org/1211
http://arxiv.org/abs/1109.5267 http://dx.doi.org/10.2168/LMCS-7(4:9)2011 https://lmcs.episciences.org/1211
http://arxiv.org/abs/1109.5267 http://dx.doi.org/10.2168/LMCS-7(4:9)2011 https://lmcs.episciences.org/1211
http://arxiv.org/abs/1109.5267
http://dx.doi.org/10.2168/LMCS-7(4:9)2011
http://dx.doi.org/10.2168/LMCS-7(4:9)2011
http://dx.doi.org/10.2168/LMCS-7(4:9)2011

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:17

18 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus620

model checking of higher-order recursion schemes. In Proceedings of LICS 2009, pages 179–188.621

IEEE Computer Society Press, 2009.622

19 Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predicate abstraction and CEGAR for623

higher-order model checking. In Proceedings of ACM SIGPLAN Conference on Programming624

Language Design and Implementation (PLDI), pages 222–233. ACM Press, 2011.625

20 Yoshiki Nakamura, Asada Kazuyuki, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada.626

On average-case hardness of higher-order model checking. Full version. Available from https:627

//www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf.628

21 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th629

IEEE Symposium on Logic in Computer Science (LICS 2006), pages 81–90. IEEE Computer630

Society Press, 2006.631

22 C.-H. Luke Ong and Steven Ramsay. Verifying higher-order programs with pattern-matching632

algebraic data types. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles633

of Programming Languages (POPL), pages 587–598. ACM Press, 2011.634

23 C.-H.L. Ong. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In 21st635

Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages 81–90. IEEE, 2006.636

URL: http://ieeexplore.ieee.org/document/1691219/, doi:10.1109/LICS.2006.38.637

24 Steven Ramsay, Robin Neatherway, and C.-H. Luke Ong. An abstraction refinement approach638

to higher-order model checking. In Proceedings of ACM SIGPLAN/SIGACT Symposium on639

Principles of Programming Languages (POPL), 2014.640

25 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. In641

Proceedings of ICALP 2011, volume 6756 of Lecture Notes in Computer Science, pages 162–173.642

Springer, 2011.643

26 Sylvain Salvati and Igor Walukiewicz. Recursive schemes, krivine machines, and col-644

lapsible pushdown automata. In Alain Finkel, Jérôme Leroux, and Igor Potapov, ed-645

itors, Reachability Problems - 6th International Workshop, RP 2012, Bordeaux, France,646

September 17-19, 2012. Proceedings, volume 7550 of Lecture Notes in Computer Sci-647

ence, pages 6–20. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-33512-9_2,648

doi:10.1007/978-3-642-33512-9_2.649

27 Ryoma Sin’ya, Kazuyuki Asada, Naoki Kobayashi, and Takeshi Tsukada. Almost every simply650

typed λ-term has a long β-reduction sequence. In Foundations of Software Science and651

Computation Structures - 20th International Conference, FOSSACS 2017, Held as Part of652

the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,653

Sweden, April 22-29, 2017, Proceedings, volume 10203 of Lecture Notes in Computer Science,654

pages 53–68, 2017.655

28 Richard Statman. On the lambda Y calculus. APAL, 130(1-3):325–337, 2004. doi:10.1016/656

j.apal.2004.04.004.657

29 Ryota Suzuki, Koichi Fujima, Naoki Kobayashi, and Takeshi Tsukada. Streett automata model658

checking of higher-order recursion schemes. In FSCD, volume 84 of LIPIcs, pages 32:1–32:18.659

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.660

CVIT 2016

https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/OnAverageCaseHOMC.pdf
http://ieeexplore.ieee.org/document/1691219/
http://dx.doi.org/10.1109/LICS.2006.38
https://doi.org/10.1007/978-3-642-33512-9_2
http://dx.doi.org/10.1007/978-3-642-33512-9_2
http://dx.doi.org/10.1016/j.apal.2004.04.004
http://dx.doi.org/10.1016/j.apal.2004.04.004
http://dx.doi.org/10.1016/j.apal.2004.04.004

23:18 On Average-Case Hardness of Higher-Order Model Checking

A Definition of Alternating Parity Tree Automata661

I Definition 26 (alternating parity tree automata). Let Σ be a ranked alphabet. An alternating662

parity tree automaton over Σ is a quadruple A = 〈Q, q0, δ,Ω〉, where663

Q is a finite set of states,664

q0 ∈ Q is the initial state,665

δ : Q×Σ→ B+ ([m]×Q) is the transition function, where m is the largest rank of symbols666

in dom(Σ); and B+ (X) denotes the set of positive boolean formulae over X.667

Ω: Q→ [p] assigns a priority to each state.668

A run of an APT A over a Σ-tree T is a (dom(T) × Q)-labeled tree R such that: (1)669

R(ε) = 〈ε, q0〉; and (2) for every β ∈ dom(R) with R(β) = 〈α, q〉, the formula δ(q, T (α))670

evaluates to true when each variable in the set {〈i, q′〉 | 〈α · i, q′〉 ∈
⋃
j∈[rR(β)]{R(β · j)}} is671

set to true. A run R is accepting if every infinite path β in R satisfies the parity condition:672

let β = j1j2 · · · and for each l ≥ 1, let ql be such that R(j1j2 . . . jl) = 〈α, ql〉 (for some α);673

then the largest priority that occurs infinitely often in Ω(q0)Ω(q1)Ω(q2) · · · is even. A accepts674

T if there is an accepting run of A over T .675

B Proof of Lemma 18676

To prove Lemma 18, we firstly introduce three lemmas.677

I Lemma 27. Let Σ be a finite ranked alphabet with #(dom(Σ)) = γ. The number of all678

Σ-trees of size n is bounded by γn for each n ∈ N.679

Proof. It is well-known that any ranked tree can be represented without using parenthesis680

(cf.Polish notation). For example, a {a 7→ 0, b 7→ 2, c 7→ 1}-tree t = c(b(a, c(a))) can be681

represented just as a word over dom(Σ): cbaca, which is the depth-first left-to-right traversal682

of t. Hence one can easily observe that there is an injection from the set of all Σ-trees683

of size n into the set dom(Σ)n of all words over dom(Σ) of length n. The latter satisfies684

dom(Σ)n = γn. J685

Since every linear contexts of size n over Σ can be regarded as a tree over Σ ·∪ {[]} of size686

n+ 1, the following is deduced.687

I Corollary 28. For any ranked alphabet Σ, there exists some real number γ such that the688

number of all affine contexts over Σ of size at most n is bounded by γn for each n ∈ N.689

I Lemma 29. Let A be a finite sequence of non-negative real numbers and B be a sequence690

of positive real numbers of the same length #(A) = #(B) = n.
∑

i∈[n]
A(i)∑

i∈[n]
B(i)

is bounded by691

c = max
{
A(1)
B(1) , · · · ,

A(n)
B(n)

}
.692

Proof.∑
i∈[n]A(i)∑
i∈[n]B(i) =

∑
i∈[n]

A(i)
B(i) ·B(i)∑

i∈[n]B(i) ≤
∑
i∈[n] c ·B(i)∑
i∈[n]B(i) = c.693

694

J695

The last lemma is similar to Lemma 13, but is modified for good affine contexts.696

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:19

I Lemma 30. Let k ≥ 1. For each k, let ι and ξ be sufficiently large natural numbers.697

There is m such that the following holds: Let E be any second-order linear context and C be698

any affine context good for m such that E[C] ∈ Λ̂n(k, ι, ξ). Then there is an affine context699

D � tHard,k good for m such that E[D] ∈ Λ̂n(k, ι, ξ).700

Proof. Let m0 be the natural number obtained by Lemma 13 and let m = 1 + m0 ×701

max({2} ∪ rng(Σ)). We only write the case C = a(C1, . . . , CΣ(a)). (Other cases are702

proved in the same way.) Let Ci be such that |Ci| = max{|C1|, . . . , |CΣ(a)|}. Let E′ be703

E[a(C1, . . . , Ci−1, JK, Ci+1, . . . , CΣ(a))]. Then |Ci| ≥ m0 and E[C] = E′[Ci], so by Lemma 13,704

there is C ′i � tHard,k such that E′[C ′i] ∈ Λ̂n(k, ι, ξ). ThenD = a(C1, . . . , Ci−1, C
′
i, Ci+1, . . . , CΣ(a))705

is an affine context good for m and E[D] ∈ Λ̂n(k, ι, ξ) (since E[D] = E′[C ′i]). J706

The following is an immediate consequence of the last lemma.707

I Corollary 31. For any t ∈ Λ̂ and i ∈ [shn (Etm)], there exists a good affine context C such708

that (1) tHard,k � C; (2) C : Etm�i; and (3) Etm[−→C] ∈ Λ̂, where −→C is a sequence of contexts709

obtained by replacing the i-th component of −→C t
m by C.710

Then, we will prove that Lemma 18 is true if we take γ as a constant stated in Corollary 28711

for ΣΛ(k,ι,ξ). By Lemma 29,712

∑
E∈En

m
#
(
SEshn(E)

)
∑
E∈En

m
#
(
SE0
) ≤

#
(
SEshn(E)

)
#
(
SE0
)713

holds for some E ∈ Enm, thus it is suffice to show the following inequation for such E:714

#
(
SEshn(E)

)
#
(
SE0
) ≤ 1− γ−rm. (1)715

716

If SEshn(E) = ∅ the inequality (1) holds obviously, thus we assume SEshn(E) is non-empty. Since717

#
(
SEshn(E)

)
#
(
SE0
) =

#
(
SE1
)

#
(
SE0
) × #

(
SE2
)

#
(
SE1
) × · · · × #

(
SEshn(E)

)
#
(
SEshn(E)−1

) ,718

it is suffice to show that719

#
(
SEi
)

#
(
SEi−1

) ≤ 1− γ−rm (2)720

721

holds for each i ∈ [shn (E)].722

For i ∈ [shn (E)], we define:723

Dm(E, i) , {C ∈ Cm(E, i) | tHard,k 6� C}724

−→
Dm(E, i) ,

 (Cj)j 6=i ∈
i−1∏
j=1
Dm(E, j)×

shn(E)∏
j=i+1

Cm(E, i)

∣∣∣∣∣∣ Cm(t, j) = Cj (j 6= i) for some t ∈ Φ−1
m (E)

 .725

726

Intuitively, Dm(E, i) consists of “non-hard” contexts appeared in i-th decomposed part of727

some minimal term in Φ−1
m (E). For (Cj)j 6=i ∈ Dm(E, j), we further define the number of728

CVIT 2016

23:20 On Average-Case Hardness of Higher-Order Model Checking

“possible” contexts NCm ((Cj)j 6=i) and the number of non-hard contexts NDm ((Cj)j 6=i) that729

consistent with (Cj)j 6=i in minimal terms as follows:730

NCm ((Cj)j 6=i) , #
({
Ci ∈ Cm(E, i) | −→C t

m = C1 · · ·Cn−1CiCi+1 · · ·Cj for some t ∈ Φ−1
m (E)

})
731

NDm ((Cj)j 6=i) , #
({
Ci ∈ Dm(E, i) | −→C t

m = C1 · · ·Cn−1CiCi+1 · · ·Cj for some t ∈ Φ−1
m (E)

})
732733

Since SEi−1 is non-empty, −→Dm(E, i) is also non-empty. Further, by the definition of734
−→
Dm(E, i), NCm ((Cj)j 6=i) is always positive. By regarding each t ∈ Φ−1

m (E) as a sequence of735

extracted contexts (it is one-to-one if we fix E), we have736

#
(
SEi
)

=
∑

(Cj)j 6=i∈
−→
Dm(E,i)

NDm ((Cj)j 6=i)737

#
(
SEi−1

)
=

∑
(Cj)j 6=i∈

−→
Dm(E,i)

NCm ((Cj)j 6=i)738

739

For each −→Dm(E, i), by Corollary 31, there exists some C ∈ Cm(E, i) \ Dm(E, i) such that740
−→
C t
m = C1 · · ·Ci−1CCi+1 · · ·Cshn(E) for some t ∈ Φ−1

m (E). Thus we have741

NDm

(−→
Dm(E, i)

)
≤ NCm

(−→
Dm(E, i)

)
− 1.742

Moreover, because of the goodness for m, each element C ∈ Cm(E, i) satisfies |C| ≤ r(m−743

1) + 1 ≤ rm hence744

#(Cm(E, i)) ≤ γrm745

by Corollary 28. Combining these two facts, the following holds746

NDm ((Cj)j 6=i)
NCm ((Cj)j 6=i)

≤ 1− 1
NCm ((Cj)j 6=i)

≤ 1− 1
#(Cm(E, i)) ≤ 1− γ−rm.747

Therefore, by Lemma 29, we obtain the inequality (2) as follows:748

#
(
SEi
)

#
(
SEi−1

) =
∑

(Cj)j 6=i∈Dm(E,i)N
D
m ((Cj)j 6=i)∑

(Cj)j 6=i∈Dm(E,i)N
C
m ((Cj)j 6=i)

≤ 1− γ−rm749

for each i ∈ [shn (E)].750

C Proof of Lemma 24751

The size of a simple type κ and a simple type environment Γ, written |κ| and |Γ| respectively, is752

defined by: |κ| , 1 if κ = o, |κ| , 1+|κ1|+|κ2| if κ = κ1 → κ2, and |Γ| , 1+
∑
x∈dom(Γ) |Γ(x)|.753

754

I Definition 32. The term tΓ,κ is inductively defined as follows, where in the second case,755

l = min{i ∈ [ξ] | zi ∈ dom(Γ)}; and in the third case, l = min{i ∈ [ξ] | zi 6∈ dom(Γ)}:756

tΓ,κ ,

a (κ = o and Γ = ∅)
b(zlt∅,κ1 . . . t∅,κm , tΓ′,o) (κ = o and Γ = (Γ′, zl : κ1 → . . .→ κm → o))
λzl.t(Γ,zl:κ′),κ′′ (κ = κ′ → κ′′ and #(dom(Γ)) < ξ)
(λz1.t(z1:o),κ) tΓ,o (κ = κ′ → κ′′ and ar (κ) < ι)
undefined (otherwise)

.757

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:21

I Proposition 33. Suppose that 〈Γ, κ〉 is (〈k, ι, ξ〉-)bounded. If #(dom(Γ)) < ξ or ar (κ) < ι,758

then (1) tΓ,κ is defined, (2) Γ `ST tΓ,κ : κ, and (3) tΓ,κ is bounded.759

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J760

We now extend the above for intersection types.761

I Definition 34. The term tΘ,θ̄ is inductively defined as follows, where in the second case,762

l = min{i ∈ [ξ] | zi ∈ dom(Θ)}; and in the third case, l = min{i ∈ [ξ] | zi 6∈ dom(Θ)}:763

764

tΘ,θ̄ ,

a (θ̄ = o and Θ = ∅)
b(
⊔
i∈[n] zlt∅,θ1

i
. . . t∅,θm

i
, tΘ′,o) (θ̄ = o and Θ = (Θ′, zl :

∧
i∈[n] θ

1
i → . . .→ θmi → o))

λzl.t(Θ,zl:θ′),τ ′′ (θ̄ = θ′ → τ ′′ and #(dom(Θ)) < ξ)
(λz1.t(z1:∧{o}),θ̄) tΘ,o (θ̄ = θ′ → τ ′′ and ar (κ) < ι)⊔
i∈[n] tΘ,τi

(θ̄ =
∧
i∈[n] τi and n ≥ 1)

⊥κ (θ̄ = >κ and Θ = ∅)
undefined (otherwise)

.765

I Proposition 35. Suppose that 〈Θ, θ̄〉 :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. If #(dom(Γ)) < ξ,766

ar (κ) < ι, or 〈Θ, θ̄〉 = 〈∅,>〉, then (1) tΘ,θ̄ is defined, (2) tΘ,θ̄ v tΓ,κ, (3) Θ ` tΘ,θ̄ : θ̄, and767

(4) tΘ,θ̄ is bounded.768

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. The existence of the join769

in each case can be ensured by the assumption (2). J770

We now extend the above for context-types (i.e., for Lemma 24).771

I Definition 36. The linear-context Cτ̃ is inductively defined as follows, where in the second772

case, l = min{i ∈ [ξ] | zi 6∈ dom(Θ)}:773

C〈Θ,τ〉 ,

b(tΘ,o, []) (τ = o)
λzl.C〈(Θ,zl:θ′),τ ′′〉 (τ = θ′ → τ ′′ and #(dom(Θ)) < ξ)
(λz1.t(z1:∧{o}),τ) C〈Θ,o〉 (τ = θ′ → τ ′′ and ar (τ) < ι)
undefined (otherwise)

. For each θ̃+ =774

{τ̃1, . . . , τ̃n}, let Cθ̃+ ,
⊔
i∈[n] Cτ̃i . This is well-defined by using Proposition 35(2).775

I Proposition 37. Suppose that θ̃+ :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. If #(dom(Γ)) < ξ or776

ar (κ) < ι, then (1) Cθ̃+ is defined, (2) Cθ̃+ C {〈∅, o〉}V θ̃, and (3) Cθ̃+ is bounded.777

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J778

I Definition 38. The linear-context Dτ̃ is defined as follows, where in the first case, l =779

min{i ∈ [ξ] | zi ∈ dom(Θ)}; and in the second case, τ = θ1 → . . .→ θm → o:780

D〈Θ,τ〉 ,

{
(λzl.D〈Θ′,τ〉) t∅,θl

(Θ = (Θ′, zl : θl))
c([] t∅,θ1 . . . t∅,θm) (Θ = ∅)

. Let Dθ̃+ ,
⊔
i∈[n]Dτ̃i

for each θ̃+ =781

{τ̃1, . . . , τ̃n}. This is well-defined by using Proposition 35(2). Also, specially, let D∅ , a.782

I Proposition 39. Suppose that θ̃ :: 〈Γ, κ〉 for some bounded 〈Γ, κ〉. Then, (1) Dθ̃ is defined,783

(2) Dθ̃ C θ̃ V {〈∅, o〉}, and (3) Dθ̃ is bounded.784

Proof. By a straightforward induction on the parameter 〈|κ|, |Γ|〉. J785

As a consequence of Proposition 37 and 39, Lemma 24 has been proved.786

CVIT 2016

23:22 On Average-Case Hardness of Higher-Order Model Checking

C.1 On the Boundary Case for Lemma 24(1)787

Here, we consider the boundary case for Lemma 24(1), i.e., Γ `ST t : κ, t is 〈k, ι, ξ〉-bounded,788

#(dom(Γ)) = ξ, and ar (κ) = ι. Actually in this case, t should be of a special form.789

I Lemma 40. Suppose that (1) Γ `ST t : κ, (2) t is 〈k, ι, ξ〉-bounded, (3) #(dom(Γ)) = ξ,790

and (4) ar (κ) = ι. Then, t is α-equivalent to a term of the form λ_.t1.791

Proof. By ξ > 1, t 6= x and t 6= ⊥. By ι > 0, t 6= a(t1, . . . , tΣ(a)). By ar (κ) = ι, t 6= t1t2792

and t 6= Yt1. Therefore t is of the form λx̄.t1. By that t is bounded and #(dom(Γ)) = ξ,793

the last rule of Γ `ST λx̄.t1 : κ should be (Abs2), so Γ `ST t1 : κ′′, where κ = κ′ → κ′′. Then794

x̄ does not occur in t1 as a free variable. Therefore t is α-equivalent to the term λ_.t1. J795

D Proof of Proposition 22 and 23796

I Lemma 41. Suppose that C is a linear-context. If C C θ̃′ V τ̃ and C ′ C θ̃′′ V θ̃′, then797

C[C ′] C θ̃′′ V {τ̃}.798

Proof. Let θ̃′ = {τ̃ ′1, . . . , τ̃ ′n}. By C ′ C θ̃′′ V θ̃′, there exists {〈θ̃′′i,j , C ′i,j〉}i∈[n],j∈[ki] such that799

C ′ =
⊔
i∈[n],j∈[ki] C

′
i,j , θ̃′′ =

⋃
i∈[n],j∈[ki] θ̃

′′
i,j , and C ′i,j C θ̃′′i,j V τ̃ ′i . Here, we can assume that800

k1 = · · · = kn (so, we denote them by k). Then from the derivation tree of C C θ̃′ V τ̃ (see801

the left-hand side below), we can construct a derivation tree of C[C ′] C θ̃′′ V τ̃ (see the802

right-hand side below) as follows, where τ̃ = 〈Θ, τ〉 and f : [m]→ [n′] is a surjective map:803

x C τ̃ ′f(1) . . . x C τ̃ ′f(m)
T

Θ ` C[x] : τ

C ′f(1),1 C θ̃
′′
f(1),1 V τ̃ ′f(1) . . . C ′f(m),1 C θ̃

′′
f(m),1 V τ̃ ′f(m)

T
Θ ` C[

⊔
i∈[n] C

′
i,1] : τ . . .

. . . T
Θ ` C[

⊔
i∈[n] C

′
i,k] : τ

(∧)
Θ ` C[C ′] : τ

. J804

Proof of Proposition 22. Let θ̃′ = {τ̃ ′1, . . . , τ̃ ′n′} and θ̃ = {τ̃1, . . . , τ̃n}. By C C θ̃′ V θ̃, there805

exists {〈θ̃′i, Ci〉}i∈[m] such that C =
⊔
i∈[m] Ci, θ̃′ =

⋃
i∈[m] θ̃

′
i, and Ci C θ̃′i V τ̃f(i). By806

C ′ C θ̃′′ V θ̃′, there exists {〈θ̃′′j , C ′′j 〉}j∈[n′] such that C ′ =
⊔
j∈[n′] C

′′
j , θ̃′′ =

⋃
j∈[n′] θ̃

′′
j , and807

C ′′j C θ̃
′′
j V {τ̃j}. Let C ′i =

⊔
j∈[n′];τ̃ ′

j
∈θ̃′

i
C ′′j and let θ̃′′i =

⋃
j∈[n′];τ̃ ′

j
∈θ̃′

i
θ̃′′j . Then C ′i C θ̃′′i V θ̃′i.808

By Lemma 41, Ci[C ′i] C θ̃′′i V τ̃f(i). Therefore, C[C ′] C θ̃′′ V θ̃. J809

I Lemma 42. Suppose that C is a linear-context. If C[C ′] C θ̃′′ V τ̃ , then C C θ̃′ V τ̃ and810

C ′ C θ̃′′ V θ̃′ for some θ̃′.811

Proof. Then (the derivation tree of) C[C ′] C θ̃′′ V τ̃ should be of the form in the right-hand812

side below, where τ̃ = 〈Θ, τ〉, C ′ =
⊔
i∈[m] C

′
i, and θ̃′′ =

⋃
i∈[m] θ̃

′′
i . We let θ̃′ = {τ̃ ′1, . . . , τ̃ ′m}.813

Then, C ′ C θ̃′′ V θ̃′ is immediate and C C θ̃′ V τ̃ is shown by replacing each subterm arise814

from t to x (see the left-hand side below).815

x C τ̃ ′1 . . . x C τ̃ ′m

Θ ` C[x] : τ

C ′1 C θ̃
′′
1 V τ̃ ′1 . . . C ′m C θ̃

′′
m V τ̃ ′m

Θ ` C[C ′] : τ
. J816

Proof of Proposition 23. Let θ̃′′ = {τ̃ ′′1 , . . . , τ̃ ′′n′′} and θ̃ = {τ̃1, . . . , τ̃n}. By C[C ′] C θ̃′′ V θ̃,817

there are a surjective map f : [m]→ [n] and a sequence {〈Ci, C ′i, θ̃′′i 〉}i∈[m] such that Ci[C ′i] C818

θ̃′′i V τ̃f(i), C =
⊔
i∈[m] Ci, C ′ =

⊔
i∈[m] C

′
i, and θ̃′′ =

⋃
i∈[m] θ̃

′′
i (see also Proposition 45 in819

the full version [20]). By Lemma 42, Ci C θ̃′i V τ̃f(i) and C ′i C θ̃′′i V θ̃′i for some θ̃′i. We now820

let θ̃′ =
⋃
j∈[m] θ̃

′
i. Then, both C ′ C θ̃′′ V θ̃′ and C C θ̃′ V θ̃ are immediate. J821

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:23

E Properties of the Approximate Relation822

In this section we list some properties of the approximate relation w.823

I Proposition 43.824

(1) If s w s′, then t{s/x} w t{s′/x}.825

(2) If s A s′ and x ∈ FV(t), then t{s/x} A t{s′/x}.826

(3) If t′ w t, then t′{s/x} w t{s/x}.827

(4) If t′ A t and s 6= ⊥, then t′{s/x} A t{s/x}.828

Proof. By simple induction on the structure of t. J829

I Proposition 44. If s, u v t for some t, then the join s t u is defined.830

Proof. By induction on the structure of t. If s = ⊥ or u = ⊥, then the existence of s t u831

is obvious. Otherwise we do case analysis on the structure of t. We only write the case of832

t = t1 t2 (Other cases are shown in the same way). By t w s 6= ⊥, s is of the form s1 s2. As833

well for u, u is of the form u1 u2. For each l ∈ [2], by sl, ul v tl and I.H., sl t ul is defined.834

Then t′ = (s1tu1) (s2tu2) is the join of s and u, i.e, for every t′′ such that s, u v t′′, t′ v t′′.835

We now show it. By s, u v t′′, t′′ is of the form t′′1 t
′′
2 and also s1, u1 v t′′1 and s2, u2 v t′′2836

hold. Therefore by s1 t u1 v t′′1 and s2 t u2 v t′′2 , t′ v t′′ has been proved. J837

We write FVCx(t) for the number of occurrences of x in t as a free variable. We say that838

a substitution t{s/x} (more formally, a tuple 〈t, s, x〉) is conservative if the following holds:839

(1) FVCx(t) ≤ 1; and (2) if x 6∈ FV(t), then s = ⊥. By this restriction, the following useful840

proposition holds.841

I Proposition 45.842

(1) If t{s/x} =
⊔
l∈[n] ul and t{s/x} is a conservative substitution, then there is {〈tl, sl〉}l∈[n]843

such that (a) for each l ∈ [n], tl{sl/x} = ul and tl{sl/x} is a conservative substitution;844

(b) t =
⊔
l∈[n] tl; and (c) s =

⊔
l∈[n] sl.845

(2) If (a) for each l ∈ [n], tl{sl/x} = ul and tl{sl/x} is a conservative substitution; (b)846

t =
⊔
l∈[n] tl; and (c) s =

⊔
l∈[n] sl, then t{s/x} =

⊔
l∈[n] ul (and t{s/x} is a conservative847

substitution).848

Proof. (1): By induction on the structure of t. Without loss of generality, we can assume849

that, for each l ∈ [n], ul 6= ⊥ (if ul = ⊥, let 〈tl, sl〉 = 〈⊥,⊥〉).850

Case t = x: For each l, let 〈tl, sl〉 = 〈x, ul〉. Then (a)(b)(c) hold.851

Case t = x (for x 6= x) or t = ⊥: By x 6∈ FV(t), s = ⊥. For each l, let 〈tl, sl〉 = 〈ul,⊥〉.852

Then (a)(b)(c) hold.853

Case t = t1 t2: Then (i) t{s/x} = (t1{s/x}) t2; or (ii) t{s/x} = t1 (t2{s/x}) holds,854

because FVCx(t) ≤ 1. We only write case (i) (in the same way for (ii)). For each l, by855

(t1{s/x}) t2 w ul 6= ⊥, ul is of the form u1
l u

2
l . Then t1{s/x} =

⊔
l∈[n] u

1
l and t2 =

⊔
l∈[n] u

2
l .856

By I.H., there is {〈t1l , s′l〉}l∈[n] such that (a’) for each l ∈ [n], t1l {s′l/x} = u1
l and t1l {s′l/x}857

is a conservative substitution; (b’) t1 =
⊔
l∈[n] t

1
l ; and (c’) s =

⊔
l∈[n] s

′
l. For each l, let858

〈tl, sl〉 = 〈t1l u2
l , s
′
l〉. Then (a)(b)(c) hold by using the above (a’)(b’)(c’).859

Case t = λx.t1, t = Yt1, or t = a(t1, . . . , tΣ(a)): In the same way as Case t = t1 t2.860

(2): It suffices to show the case when n = 2. t{s/x} w
⊔
l∈[2] ul is shown by Proposition861

43. We now show t{s/x} v
⊔
l∈[2] ul by induction on the structure of t. If x 6∈ FV(t1), then862

by this and s1 = ⊥, (tl t t2){s1 t s2/x} = t1 t t2{s2/x} = u1 t u2. Similar for x 6∈ FV(t2).863

Otherwise we can assume that, x ∈ FV(t). We now do case analysis on the structure of t.864

CVIT 2016

23:24 On Average-Case Hardness of Higher-Order Model Checking

Case t = x (for x 6= x) or t = ⊥: This case does not occur by x 6∈ FV(t).865

Case t = x: Then t1 = t2 = x, so t{s/x} = s = t1{s1/x} t t2{s2/x}.866

Case t = t1 t2: Then (i) t{s/x} = (t1{s/x}) t2; or (ii) t{s/x} = t1 (t2{s/x}) holds, because867

FVCx(t) ≤ 1. We only write case (i) (in the same way for (ii)). For each l, by t1 t2 w tl 6= ⊥, tl868

is of the form t1l t
2
l . By I.H., t1{s/x} = t11{s1/x}tt12{s2/x}. Therefore t{s/x} = (t1{s/x}) t2 =869

(t11{s1/x} t t12{s2/x}) t2 = (t11{s1/x} t21) t (t12{s2/x} t22) = t1{s1/x} t t2{s2/x}.870

Case t = λx.t1, t = Yt1, or t = a(t1, . . . , tΣ(a)): In the same way as Case t = t1 t2. J871

The following is immediate from Proposition 45(1).872

I Proposition 46 (Cor. of Prop. 45(1)). Assume that u v t{s/x} and t{s/x} is a conservative873

substitution. Then there is 〈t′, s′〉 such that (a) u = t′{s′/x} and t′{s′/x} is a conservative874

substitution, (b) t′ v t, and (c) s′ v s.875

In fact Proposition 45 holds even for the substitution in non-capture avoiding manner (the876

proof is proceeded in the same manner). We write t[s/x] for the term obtained from t by877

substituting s for all the free occurrences of x in non-capture-avoiding manner. The following878

proposition is used for the substitution in linear contexts (see Proposition 23).879

I Proposition 47.880

(1) If t[s/x] =
⊔
l∈[n] ul and t[s/x] is a conservative substitution, then there is {〈tl, sl〉}l∈[n]881

such that (a) for each l ∈ [n], tl[sl/x] = ul and tl[sl/x] is a conservative substitution; (b)882

t =
⊔
l∈[n] tl; and (c) s =

⊔
l∈[n] sl.883

(2) If (a) for each l ∈ [n], tl[sl/x] = ul and tl[sl/x] is a conservative substitution; (b)884

t =
⊔
l∈[n] tl; and (c) s =

⊔
l∈[n] sl, then t[s/x] =

⊔
l∈[n] ul (and t[s/x] is a conservative885

substitution).886

The following is a proposition between w and −→. We write −→≤1 for the relation887

(−→) ∪ (=).888

I Proposition 48.889

(1) If s w t and t −→ t′, then s −→≤1 s′ and s′ w t′ for some s′, i.e., (w−→) ⊆ (−→≤1w)890

holds.891

(2) If t w s and t −→ t′, then s −→≤1 s′ and t′ w s′ for some s′.892

Proof. By simple induction on the derivation tree of t −→ t′. J893

I Proposition 49. If t w s, then T (t) w T (s).894

Proof. It suffices to show that, for every Σ⊥-tree V , if s −→∗w V , then t −→∗w V . It is895

shown by t w s −→∗w V and Proposition 48. J896

F An Alternative Definition of the Minimality897

In this section, we introduce an alternative definition of the minimality using label and we898

show that the minimality is equivalent to the minimality of Definition 8. This definition will899

be used to prove Theorem 19 (Appendix H) and Proposition 10 (Appendix G).900

To define it, we introduce the special tree constructor ` (disjoint with Σ) of arity 1, called
label. Let Σ` , Σ ·∪ {`}. We say that a term is labelled if ` occurs in the term. For each term
t, we define the term t` as follows, where Γ `ST t : κ1 → . . .→ κk → o:

t` ::= λzκ1
1 λzκk

k .`(tz1 . . . zk).

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:25

901

We define the following operation \. Intuitively \(t) denotes the term obtained from t by902

replacing each occurrence of the form `(u) to u, repeatedly.903

I Definition 50. The term \(t) is inductively defined as follows:904

\(x) = x905

\(λx̄.t) = λx̄.\(t)906

\(t1 t2) = \(t1) \(t2)907

\(Yt1) = Y\(t1)908

\(⊥) = ⊥909

\(a(t1, . . . , tΣ(a))) = a(\(t1), . . . , \(tΣ(a))) (a ∈ Σ)910

\(`(t1)) = \(t1)911

The following proposition can be shown by a straightforward induction.912

I Proposition 51.913

(1) If t −→∗w t′, then \(t) −→∗w \(t′).914

(2) If \(t) = s and s −→∗w s′, then t −→∗w t′ and s′ = \(t′) for some t′.915

We say that a term t is tracked (by `) if there is 〈C, u〉 such that t = C[`(u)] and \u 6= ⊥.916

Then, the goal of this section is to show the following.917

I Theorem 52 (Alternative definition of the minimality). Let t be a closed and ground-typed918

term over Σ. Then, t is minimal if and only if for every 〈C, s〉 that t = C[s] and s 6= ⊥,919

there is a tracked finite tree V such that C[s`] −→∗w V .920

F.1 Proof of Theorem 52921

In this subsection, we prove Theorem 52. First, the following holds for the minimality.922

I Proposition 53. Let t be a closed and ground-typed term over Σ. Then, t is minimal if923

and only if for every 〈C, s〉 that t = C[s] and s 6= ⊥, T (C[⊥]) @ T (C[s]).924

Proof. (=⇒): By C[⊥] @ C[s]. (⇐=): It suffices to show the following: If t = C[t1, . . . , tn]925

and ti 6= ⊥ holds for some i, then T (C[⊥, . . . ,⊥]) @ T (C[t1, . . . , tn]). It is shown by926

using the assumption as follows: T (C[⊥, . . . ,⊥]) v T (C[t1, . . . , ti−1,⊥, ti+1, . . . , tn]) @927

T (C[t1, . . . , tn]). J928

From this, to prove Theorem 52, it suffices to show the following (1) ⇔ (3).929

I Lemma 54. For each closed and ground-typed term C[s] over Σ, the following are equivalent:930

(1) T (C[⊥]) @ T (C[s]);931

(2) T (\C[⊥`]) @ T (\C[s`]); and932

(3) there is a tracked finite tree V such that C[s`] −→∗w V .933

To prove Lemma 54, we introduce the following operation [. Intuitively, [(t) denotes the934

term obtained from t by replacing each occurrence of the form `(u) to `(⊥).935

I Definition 55. The term [(t) is inductively defined as follows:936

[(x) = x937

[(λx̄.t) = λx̄.[(t)938

CVIT 2016

23:26 On Average-Case Hardness of Higher-Order Model Checking

[(t1 t2) = [(t1) [(t2)939

[(Yt1) = Y[(t1)940

[(⊥) = ⊥941

[(a(t1, . . . , tΣ(a))) = a([(t1), . . . , [(tΣ(a))) (a ∈ Σ)942

[(`(t1)) = `(⊥)943

The following proposition can be shown by a straightforward induction.944

I Proposition 56.945

(1) If t −→∗w t′, then [(t) −→∗w [(t′).946

(2) If [(t) = s and s −→∗w s′, then t −→∗w t′ and s′ = [(t′) for some t′.947

Also the following holds between \ and [.948

I Proposition 57. If t is not tracked, then \([(t)) = \(t).949

Proof. By induction on t. We only write the case t = `(t1). Then note that \(t1) = ⊥ holds,950

because t is not tracked. From this, \([(t)) = \(`(⊥)) = ⊥ = \(t1) = \(t). J951

We now prove Lemma 54.952

Proof of Lemma 54. (1)⇐⇒ (2): By η-conversion (note that T (C[u]) = T (\C[u`]) holds, for953

every Σ-term C[u]). (3) =⇒ (2): Without loss of generality, we can take a tracked finite tree V954

such that V = D[`(u)] and ` does not occur in D. By C[s`] −→∗w D[`(u)] (and Proposition955

51(1)), \(C[s`]) −→∗w \(D[`(u)]), so \(C[s`]) −→∗w D[\u]. Assume (towards contradiction)956

that T (\(C[⊥`])) w T (\(C[s`])). By T (C[⊥`]) w T (\(C[⊥`])) and this assumption, and957

\(C[s`]) −→∗w D[\u], C[⊥`] −→∗w D[\u] . . . (?1). Also by C[s`] −→∗w D[`(u)] (and958

Proposition 56(1)), [(C[s`]) −→∗w [(D[`(u)]), so C[⊥`] −→∗w D[`(⊥)] . . . (?2). By (?1)959

and (?2), D[\u] t D[`(⊥)] is defined, but it is contradiction because \u 6= ⊥ (since V is960

tracked). Therefore T (C[\(C[⊥`])]) 6w T (\(C[s`])), and thus T (C[\(C[⊥`])]) 6= T (\(C[s`]).961

Hence T (C[\(C[⊥`])]) @ T (\(C[s`]) has been proved (since T (C[\(C[⊥`])]) v T (\(C[s`]))).962

(2) =⇒ (3): We show the contraposition. It suffices to show that T (\(C[⊥`])) w T (\(C[s`]))963

(since T (\(C[⊥`])) v T (\(C[s`])) holds). Namely, we show that, for every finite tree V , if964

\(C[s`]) −→∗w V , then \(C[⊥`]) −→∗w V . Assume that \(C[s`]) −→∗w V . By Proposition965

51(2), there is V ′ such that C[s`] −→∗w V ′ and \(V ′) = V . Note that V ′ is not tracked by966

the assumption. Therefore,967

\C[⊥`] = \([(C[s`])) −→∗w \([(V ′)) (Prop. 51(1) and 56(1))968

= \(V ′) (Prop. 57)969

= V J970
971

G Proof of Proposition 10972

I Proposition (restatement of Prop. 10). Let t be a closed and ground-typed term. If t is973

minimal, then for every non-⊥, closed and ground-typed subterm s � t, its value tree T (s) is974

a subtree of T (t).975

Proof. Let C be a linear-context such that t = C[s]. Since t is minimal, there is a tracked finite976

tree V such that C[`(s)] −→∗w V (Theorem 52). Let C[`(s)] = t1 −→ t2 −→ . . . −→ tn w V .977

Then let i be the maximum number such that, for every subterm of ti of the form `(u),978

u = s holds; and let D be a linear-context such that ti w D[`(s)] and D[⊥] is a Σ⊥-tree979

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:27

term (such i and D always exist by the existence of V). If we assume s −→∗w W , then980

D[s] −→∗w D[W] (by that D[⊥] is a Σ⊥-tree), so C[s] −→∗w D[W] holds (by Proposition981

48). Therefore T (s) � T (t). J982

H Proof of Theorem 19983

In this section, we prove the soundness and the completeness of the intersection type section984

system (Section 5) via the alternative definition of the minimality (Appendix F). Let us recall985

that ` is a special tree constructor (disjoint with Σ) of arity 1, called label, and Σ` , Σ ·∪ {`}.986

In the following proof, we introduce an alternative intersection type system as follows,987

where we redefine (Θ, x : θ) as Θ ·∪ {x 7→ θ} if θ 6= >, and Θ if θ = >. In a nutshell, the988

system is “the intersection type system (in Section 5)” + (`) − (>). Also, (Abs1) and (Abs2)989

are put together as the rule (Abs) thanks to the redefinition of “(Θ, x : θ)”.

(Var)
x : ∧{τ} ` xκ : τ

Θ, x̄ : θ ` t : τ
(Abs)

Θ ` λx̄.t : θ → τ

Θ ` t : θ → τ ∆ ` s : θ (App)
Θ ∧∆ ` t s : τ

Θ ` t1 (Yt2) : τ
(Y1)

Θ ` Y(t1 t t2) : τ
Θ ` t⊥ : τ (Y2)
Θ ` Yt : τ

Θ1 ` t1 : θ1 . . . Θn ` tn : θn (a)∧
i∈[n] Θi ` a(t1, . . . , tn) : o

Θ1 ` t1 : τ1 . . . Θn ` tn : τn (∧)∧
i∈[n] Θi `

⊔
i∈[n] ti :

∧
i∈[n] τi

Θ ` t : o (`)
Θ ` `(t) : o

Figure 3 An alternative intersection type system.
990

I Proposition 58. Suppose that t is a term over Σ. Then, Θ ` t : θ̄ (in the intersection type991

system of Fig. 2) if and only if Θ\> ` t : θ̄ (in the intersection type system of Fig. 3), where992

Θ\> , {x 7→ Θ(x) | x ∈ dom(Θ) ,Θ(x) 6= >}. In particular, ∅ ` t : θ̄ (in the intersection993

type system of Fig. 2) if and only if ∅ ` t : θ̄ (in the intersection type system of Fig. 3).994

Proof. (⇐): This part is trivial since ` does not occur in t. (⇒): This part is also easy,995

because from a given derivation tree, we can construct a derivation tree such that Θ = Θ\>996

for each environment Θ. J997

For simplicity, we will use this alternative intersection type system to prove Theorem 19.998

H.1 Properties of the Intersection Type System999

In this subsection we list some properties of the intersection type system (and some proposi-1000

tions to show them).1001

I Proposition 59. If Θ ` t : θ̄, then FV(t) = dom(Θ).1002

Proof. By a straight-forward induction on the derivation tree. J1003

I Proposition 60. The following rule (∧′) is admissible:
Θ1 ` t1 : θ̄1 . . . Θn ` tn : θ̄n (∧′)∧

i∈[n] Θi `
⊔
i∈[n] ti :

∧
i∈[n] θ̄i

.1004

Proof. Assume that Θi ` ti : θ̄i for each i ∈ [n]. If θ̄i is not prime, then the derivation tree1005

of Θi ` ti : θi is of the following form (on the left-hand side). If θ̄i is prime, then let mi = 1,1006

Θ1
i = Θi, t1i = ti, and θ̄1

i = θ̄i. Then
∧
i∈[n] Θi `

⊔
i∈[n] ti :

∧
i∈[n] θi is shown by the following1007

derivation tree (on the right-hand side).1008

CVIT 2016

23:28 On Average-Case Hardness of Higher-Order Model Checking

Θ1
i ` t1i : τ1

i . . . Θmi
i ` t

mi
i : τmi

i (∧)∧
j∈[mi] Θj

i `
⊔
j∈[mi] t

j
i :
∧
j∈[mi] θ

j
i

Θi ` ti : θi

1009

Θ1
1 ` t11 : τ1

1 Θ2
1 ` t21 : τ2

1 . . . Θmn
n ` tmn

n : τmn
n (∧)∧

i∈[n]
∧
j∈[mi] Θj

i `
⊔
i∈[n]

⊔
j∈[mi] t

j
i :
∧
i∈[n]

∧
j∈[mi] θ

j
i∧

i∈[n] Θi `
⊔
i∈[n] ti :

∧
i∈[n] θi

1010

J1011

I Proposition 61.1012

(1) If Θ ` t : >, then t = ⊥ and Θ = ∅.1013

(2) If Θ ` ⊥ : θ̄, then θ̄ = > and Θ = ∅.1014

Proof. In these case, the last derivation step should be (∧) and also n = 0 should. J1015

I Proposition 62 (substitution). Assume that Θ, x : δ̄ ` t : θ̄, ∆ ` s : δ̄, and FVCx(t) ≤ 1.1016

Then Θ ∧∆ ` t{s/x} : θ̄.1017

Proof. By induction on the derivation tree of Θ, x : δ̄ ` t : θ̄. If δ̄ = >, then x 6∈ FV(t) by x 6∈1018

dom
(
(Θ, x : δ̄)

)
(Proposition 59); and ∆ = ∅ by Proposition 61. Therefore Θ∧∆ ` t{s/x} : θ̄1019

is immediate from Θ, x : δ̄ ` t : θ̄. We let 〈n, {∆i}i∈[n], {si}i∈[n], {σi}i∈[n]〉 be such that, if δ̄ is1020

not prime (note that the last derivation step of ∆ ` s : δ̄ is (∧)), ∆ =
∧
i∈[n] ∆i, δ̄ =

∧
i∈[n] σi,1021

s =
⊔
i∈[n] si, and for every i ∈ [n], ∆i ` si : σi; and if δ̄ is prime, 〈1, {∆}, {s}, {δ̄}〉. Then1022

we do case analysis on the last derivation step.1023

Case (Var): By x ∈ dom
(
(Θ, x : δ̄)

)
(since δ̄ 6= >), t should be x. Also Θ = ∅ and θ̄ = δ̄1024

should hold. Therefore Θ ∧∆ ` t{s/x} : θ̄ is immediate from ∆ ` s : δ̄.1025

Case (Abs): Then t is of the form λx.t1. Without loss of generality, we can assume that
x 6∈ FV(s) by using α-equivalence. The derivation tree is of the following form:

Θ, x : δ̄, x : δ ` t1 : τ
(Abs)

Θ, x : δ̄ ` λx.t1 : δ → τ

Θ, x : δ̄ ` λx.t1 : θ̄

By I.H., Θ ∧∆, x : θ, x : δ ` t1{s/x} : τ . Therefore,

Θ ∧∆, x : δ̄, x : δ ` t1{s/x} : τ
(Abs)

Θ ∧∆, x : δ̄ ` λx.t1{s/x} : δ → τ

Θ ∧∆, x : δ̄ ` (λx.t1){s/x} : θ̄

Case (Y1): Then t is of the form Yt0. The derivation tree is of the following form.

Θ1, x : δ̄1 ` t1 : δ → θ̄ Θ2, x : δ̄2 ` Yt2 : δ
(App)

Θ1 ∧Θ2, x : δ̄1 ∧ δ̄2 ` t1(Yt2) : θ̄
(Y1)

Θ1 ∧Θ2, x : δ̄1 ∧ δ̄2 ` Y(t1 t t2) : θ̄

Θ, x : δ̄ ` Yt0 : θ̄

For each l ∈ [2], let Sl be a subset of [n] such that δ̄l =
∧
i∈Sl

σi if δ̄ is not prime; and
δ̄l = δ̄ otherwise. Then

∧
i∈Sl

∆i `
⊔
i∈Sl

si : δ̄l (by using (∧) if δ̄ is not prime). By I.H.,

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:29

Θ1 ∧
∧
i∈S1

∆i ` t1{
⊔
i∈S1

si} : δ → θ̄. Also by I.H., Θ2 ∧
∧
i∈S2

∆i ` (Yt2){
⊔
i∈S2

si} : δ.
(Note that FVCx(t1) ≤ 1 and FVCx(Yt2) ≤ 1.) Therefore,

Θ1 ∧
∧
i∈S1

∆i ` t1{
⊔
i∈S1

si/x} : δ → θ̄ Θ2 ∧
∧
i∈S2

∆i ` (Yt2){
⊔
i∈S2

si/x} : δ
(App)

Θ1 ∧Θ2 ∧
∧
i∈S1∪S2

∆i ` t1{
⊔
i∈S1

si/x} (Yt2){
⊔
i∈S2

si/x} : θ̄
(Y1)

Θ ∧∆ ` Y(t1{
⊔
i∈S1

si/x} t t2{
⊔
i∈S2

si/x}) : θ̄
Prop. 45

Θ ∧∆ ` Y((t1 t t2){(
⊔
i∈S1

si) t (
⊔
i∈S2

si)/x}) : θ̄

Θ ∧∆ ` (Yt0){s/x} : θ̄

Case (App)(Y2)(a)(`)(∧): In the same way as (Y1). J1026

I Proposition 63 (inverse substitution). Assume that Θ0 ` t{s/x} : θ̄ and FVCx(t) ≤ 1. Also1027

assume that if FVCx(t) = 0, then s = ⊥. Then there is 〈Θ,∆, δ̄〉 such that (a) Θ0 = Θ ∧∆,1028

(b) Θ, x : δ̄ ` t : θ, and (c) ∆ ` s : δ̄.1029

Proof. By induction on the derivation tree of Θ0 ` t{s/x} : θ̄. If θ̄ is not prime, then
the derivation tree is of the following form (using Proposition 45), where t =

⊔
i∈[n] ti,

s =
⊔
i∈[n] si, and for each i ∈ [n], if x 6∈ FV(ti), then si = ⊥.

Θ0
1 ` t1{s1/x} : τ1 . . . Θ0

n ` tn{sn/x} : τn (∧)∧n
i=1 Θ0

i `
⊔
i∈[n] ti{si/x} :

∧n
i=1 τi

Θ0 ` t{s/x} : θ̄

For each i ∈ [n], let 〈Θi,∆i, δ̄i〉 be a tuple obtained by I.H. for Θ0
n ` tn{sn/x} : τn.1030

Then 〈
∧
i∈[n] Θi,

∧
i∈[n] ∆i,

∧
i∈[n] δi〉 satisfies (a)(b)(c). (b) and (c) are shown by using the1031

admissible rule (∧′). Otherwise we do case analysis on the structure of t.1032

Case t = x: Then 〈Θ,∆, δ̄〉 = 〈∅,Θ0, θ̄〉 satisfies (a)(b)(c). (a) is trivial. (b) is directly1033

derived by the rule (Var). (c) is shown by t{s/x} = s.1034

Case t = ⊥ or t = x (where x 6= x): Then 〈Θ,∆, δ̄〉 = 〈Θ0, ∅,>〉 satisfies (a)(b)(c) (note1035

that s = ⊥ by FVCx(t) = 0).1036

Case t = λx.t1: Without loss of generality, we can assume that x 6∈ FV(s) by using
α-equivalence. Then the derivation tree is of the following form:

Θ0, x : δ ` t1{s/x} : τ
(Abs)

Θ0 ` λx.t1{s/x} : δ → τ

Θ0 ` t{s/x} : θ̄

Let 〈Θ1,∆1, δ̄1〉 be a tuple obtained by I.H.. Then by x 6∈ FV(s) and Proposition 59,1037

x 6∈ dom(∆1), and thus Θ1(x) = δ. Let Θ′1 be such that Θ1 = Θ′1, x : δ. Then 〈Θ,∆, δ̄〉 =1038

〈Θ′1,∆1, δ̄1〉 satisfies (a)(b)(c). (a) and (c) are trivial. (b) is derived from Θ′1, x : δ, x : δ̄1 `1039

t1 : τ by applying (Abs).1040

Case t = Yt0 and the last derivation step is (Y1): Then the derivation tree is of the
following form (using Proposition 45), where t0 = t1 t t2, s = s1 t s2, and for each l ∈ [2], if

CVIT 2016

23:30 On Average-Case Hardness of Higher-Order Model Checking

x 6∈ FV(tl), then sl = ⊥:

Θ0
1 ` t1{s1/x} : δ → θ̄ Θ0

2 ` Yt2{s2/x} : δ
(App)

Θ0
1 ∧Θ0

2 ` t1{s1/x}(Yt2{s2/x}) : θ̄
(Y1)

Θ0
1 ∧Θ0

2 ` Y(t1{s1/x} t t2{s2/x}) : θ̄

Θ0
1 ∧Θ0

2 ` Yt0{s/x} : θ̄

Θ0 ` t{s/x} : θ̄

Let 〈Θ1,∆1, δ̄1〉 be a tuple obtained by I.H. for Θ0
1 ` t1{s1/x} : δ → θ̄. Also let 〈Θ2,∆2, δ̄2〉 be1041

a tuple obtained by I.H. for Θ0
2 ` Yt2{s2/x} : δ. Then 〈Θ,∆, δ〉 = 〈Θ1∧Θ2,∆1∧∆2, δ̄1∧ δ̄2〉1042

satisfies (a)(b)(c). (a) is trivial. (b) is derived from Θ1, x : δ̄1 ` t1 : δ → τ and Θ2, x : δ̄2 `1043

Yt2 : δ by applying (App) and then applying (Y1). (c) is shown by using the admissible1044

rule (∧′).1045

Case t = t1 t2, t = a(t1, . . . , tΣ(a)), t = `(t1), or (t = Yt0 and the last derivation step is1046

(Y2)): In the same way as the above case. J1047

I Proposition 64 (subject reduction). Assume that Θ ` t : θ̄.1048

(1) If t −→ t′, then there is s′ v t′ such that (a) Θ ` s′ : θ̄ and (b) if t is labelled, then so is1049

s′.1050

(2) If t −→∗ t′, then there is s′ v t′ such that (a) Θ ` s′ : θ̄ and (b) if t is labelled, then so1051

is s′.1052

Proof. (1): By induction on 〈|t|, |θ̄|〉. If θ̄ is not prime (note that the last derivation step1053

of Θ ` t : θ̄ is (∧)), then let 〈{Θi}i∈[n], {ti}i∈[n], {τi}i∈[n]〉 be such that, for each i ∈ [n],1054

Θi ` ti : τi, Θ =
∧
i∈[n] Θi, t =

⊔
i∈[n] ti, and θ̄ =

∧
i∈[n] τi. By ti v t and t −→ t′1055

(Proposition 48), there is t′i v t′ such that ti −→ t′i. Then by I.H., there is s′i v t′i such1056

that Θi ` s′i : τi. Θ ` s′ : θ̄ has been proved by letting s′ =
⊔
i∈[n] s

′
i. Otherwise we do case1057

analysis on the last derivation step of t −→ t′.1058

Case (β): Then t −→ t′ is of the form (λx.t0{x/x1} . . . {x/xm})u −→ t0{u/x1} . . . {u/xm},
where x1, . . . , xm are all distinct, x1, . . . , xm 6∈ FV(x)∪FV(t)∪FV(u), and each of x1, . . . , xm
occurs in t just once. Also the derivation tree of Θ ` t : θ̄ is of the following form.

Θ1, x :
∧
i∈[n] σi ` t0{x/x1} . . . {x/xm} : τ

(Abs)
Θ1 ` λx.t0{x/x1} . . . {x/xm} :

∧n
i=1 σi → τ

∆1 ` u1 : σ1 . . . ∆n ` un : σn (∧)∧n
i=1 ∆i `

⊔n
i=1 ui :

∧n
i=1 σi (App)

Θ1 ∧
∧n
i=1 ∆i ` (λx.t0{x/x1} . . . {x/xm})u : τ

Θ ` t : τ

By applying inverse substitution lemma (Proposition 63) to Θ1, x :
∧
i∈[n] σi ` t0{x/x1} . . . {x/xm} :1059

τ iteratively, there is 〈δ̄1, . . . δ̄m〉 such that
∧
i∈[n] σi =

∧
j∈[m] δ̄j and Θ1, x1 : δ̄1, . . . , xm :1060

δ̄m ` t0 : τ . Also for each j ∈ [m], there is a subset Sj of [n] such that δ̄j =
∧
i∈Sj

σi. By1061

using (∧),
∧
i∈Sj

∆i `
⊔
i∈Sj

ui : σj . Then s′ = t0{
⊔
i∈S1

ui/x1} . . . {
⊔
i∈Sm

ui/xm} satisfies1062

the conditions: s′ v t′ is shown by Proposition 43 and Θ ` s′ : θ̄ is shown by applying1063

substitution lemma (Proposition 62) to Θ1, x :
∧
i∈[n] σi ` t0{x/x1} . . . {x/xm} : τ iteratively.1064

Case (Y): Then t −→ t′ is of the form Yt0 −→ t0(Yt0). From this, the last derivation1065

rule of Θ ` t : θ̄ is (Y1) or (Y2).1066

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:31

Sub-Case (Y1): The derivation tree is of the following form:

Θ ` u1(Yu2) : θ̄
(Y 1)

Θ ` Y(u1 t u2) : θ̄

Θ ` Yt0 : θ̄

Then s′ = u1(Yu2) satisfies the conditions. s′ v t′ is derived from u1, u2 v t0 and Θ ` s′ : θ̄1067

is immediately shown by using the above derivation tree.1068

Sub-Case (Y2): The derivation tree is of the following form:

Θ ` t0⊥ : θ̄ (Y 2)
Θ ` Yt0 : θ̄

Then s′ = t0⊥ satisfies the conditions. s′ v t′ is derived from ⊥ v Yt0 and Θ ` s′ : θ̄ is1069

immediately shown by using the above derivation tree.1070

Case (⊥): Then t −→ t′ is of the form ⊥t2 −→ ⊥. Also the derivation tree of Θ ` t : θ̄ is
of the following form:

Θ1 ` ⊥ : δ → θ̄ Θ2 ` t2 : δ (App)
Θ1 ∧Θ2 ` ⊥t2 : θ̄

Θ ` t : θ̄
However it is contradiction, because Θ1 6` ⊥ : δ → θ̄ by Proposition 61.1071

Case (App): Then t −→ t′ is of the form t1 t2 −→ t′1 t2 and is derived from t1 −→ t′1.
The derivation tree of Θ ` t : θ̄ is of the following form.

Θ1 ` t1 : δ → θ̄ Θ2 ` t2 : δ (App)
Θ1 ∧Θ2 ` t1 t2 : θ̄

Θ ` t : θ̄

By I.H., there is s′1 v t′1 such that Θ1 ` s′1 : δ → θ̄. Then s′ = s′1t2 satisfies the conditions.1072

Case (a) (a ∈ Σ and a = `): In the same way as case (App).1073

(2): Let t1, . . . , tn be such that t = t1 −→ . . . −→ tn = t′. We prove the following by1074

induction on i (?): there is a term si v ti such that Θ ` si : θ̄. If i = 1, then s1 = t1 satisfies1075

(?). Otherwise by I.H., we have si−1 v ti−1 such that Θ ` si−1 : θ̄. By Proposition 48 (since1076

ti−1 w si−1 and ti−1 −→ ti), there is s′i such that si−1 −→≤1 s′i and ti w s′i. If si−1 −→0 s′i,1077

then si = si−1 satisfies the conditions. If si−1 −→1 s′i, then by (1), there is si v s′i such that1078

Θ ` si : θ̄ (and also if si−1 is labelled, then si is labelled). Indeed this si satisfies (?). Finally,1079

this lemma has been proved by letting s′ = sn. J1080

I Proposition 65 (subject expansion). Assume that s′ v t′ and Θ ` s′ : θ̄.1081

(1) If t −→ t′, then there is s v t such that (a) s −→≤1w s′ and (b) Θ ` s : θ̄.1082

(2) If t −→∗ t′, then there is s v t such that (a) s −→∗w s′ and (b) Θ ` s : θ̄.1083

Proof. By induction on |t|. In the later we only consider the case of that θ̄ is not prime.1084

(The case of that θ̄ is prime can be proved in the same way.) Then note that the last1085

derivation step of Θ ` s′ : θ̄ is (∧)). We let 〈n, {Θi}i∈[n], {s′i}i∈[n], {τi}i∈[n]〉 be such that,1086

Θ =
∧
i∈[n] Θi, θ̄ =

∧
i∈[n] τi, s′ =

⊔
i∈[n] s

′
i, and for every i ∈ [n], Θi ` s′i : τi. If s′ = ⊥, then1087

s = ⊥ satisfies the conditions. Otherwise we do case analysis on the last derivation rule.1088

Case (β): Then t −→ t′ is of the form (λx.t0{x/x1} . . . {x/xm})t1 −→ t0{t1/x1} . . . {t1/xm},
where x1, . . . , xm are all distinct, x1, . . . , xm 6∈ FV(x) ∪ FV(t0) ∪ FV(t1), and each of

CVIT 2016

23:32 On Average-Case Hardness of Higher-Order Model Checking

x1, . . . , xm occurs in t just once. By t0{t1/x1} . . . {t1/xm} w s′ and applying Proposi-
tion 46 iteratively, we have a tuple 〈s0, s1, . . . , sm〉 such that s′ = s0{s1/x1} . . . {sm/xm},
t0 w s0, t1 w s1, . . . , and t1 w sm. By using Proposition 45 iteratively, we have a set
{〈s0

i , s
1
i , . . . , s

m
i 〉}i∈[n] such that for each i ∈ [n], s′i = s0

i {s1
i /x

1} . . . {smi /xm}; and for each
j ∈ [0,m], sj =

⊔
i∈[n] s

j
i . Then for each i, by Θi ` s0

i {s1
i /x

1} . . . {smi /xm} : τi and applying
inverse substitution lemma (Proposition 63) iteratively, there is 〈{Θj

i}j∈[0,m], {δ̄ji }j∈[m]〉 such
that (i) Θi =

∧
j∈[0,m] Θj

i , (ii) Θ0
i , x

1 : δ̄1
i , . . . , x

m : δ̄mi ` s0
i : τi, and (iii) for each j ∈ [m],

Θj
i ` s

j
i : δ̄ji . Then let s = (λx.(

⊔
i∈[n] s

0
i){x/x1} . . . {x/xm}) (

⊔
i∈[n]

⊔
j∈[m] s

j
i). s v t is

shown by s0
i v t0 and sji v t1 (j ≥ 1). Indeed this s satisfies (a)(b). (a) is shown by

s −→ (
⊔
i∈[n] s

0
i){
⊔
i∈[n]

⊔
j∈[m] s

j
i/x

1} . . . {
⊔
i∈[n]

⊔
j∈[m] s

j
i/x

m} w s0{s1/x1} . . . {sm/xm} =
s′. Also (b) is derived from

∧
j∈[0,m] Θj

i ` (λx.s0{x/x1} . . . {x/xm}) (
⊔
j∈[m] s

j
i) : τi (for

i = 1, . . . , n) by applying (∧). Each of them is shown by the following derivation tree, where
(ii’) is shown by (ii) and applying substitution lemma (Proposition 62) iteratively.

(ii’)
Θ0
i , x :

∧
j∈[m] δ̄

j
i ` s0

i {x/x1} . . . {x/xm} : τi
(Abs)

Θ0
i ` λx.s0

i {x/x1} . . . {x/xm} :
∧
j∈[m] δ̄

j
i → τi

(iii)
Θ1
i ` s1

i : δ̄1
i . . .

(iii)
Θm
i ` smi : δ̄mi (∧′)∧

j∈[m] Θj
i `

⊔
j∈[m] s

j
i :
∧
j∈[m] δ̄

j
i
(App)∧

j∈[0,m] Θj
i ` (λx.s0

i {x/x1} . . . {x/xm}) (
⊔
j∈[m] s

j
i) : τi

Case (Y): Then t −→ t′ is of the form Yt0 −→ t0(Yt0). For each i ∈ [n], by t′ w s′i 6= ⊥,1089

s′i is of the form s1
i s

0
i . s0

i is one of the forms (i) ⊥ or (ii) Ys2
i (let s2

i = ⊥ in (i) for1090

convenience). Then let s = Y(
⊔
〈i,l〉∈[n]×[2] s

l
i). s v t is shown by sli v t0. (a) is shown1091

by s −→ (
⊔
〈i,l〉∈[n]×[2] s

l
i) (Y(

⊔
〈i,l〉∈[n]×[2] s

l
i)) w (

⊔
i∈[n] s

1
i) (Y(

⊔
i∈[n] s

2
i)) =

⊔
i∈[n] s

′
i = s′.1092

Also for (b), it suffices to show that, for each i ∈ [n], Θi ` Y(s1
i t s2

i) : τi. It is shown by the1093

following derivation trees, where the left-hand side is for (i) (s0
i = ⊥); and the right-hand1094

side is for (ii) (s0
i = Ys2

i).1095

Θi ` s′i : τi
s′i = s1

i⊥, s2
i = ⊥

Θi ` (s1
i t s2

i)⊥ : τi (Y2)
Θi ` Y(s1

i t s2
i) : τi

Θi ` s′i : τi
s′i = s1

i (Ys2
i)Θi ` s1

i (Ys2
i) : τi (Y1)

Θi ` Y(s1
i t s2

i) : τi

1096

Case (⊥): Then t −→ t′ is of the form ⊥t2 −→ ⊥, but it is contradiction because1097

t′ w s′ 6= ⊥.1098

Case (App): Then t −→ t′ is of the form t0t2 −→ t1t2 and is derived from t0 −→ t1. For
each i ∈ [n], by t′ w s′i 6= ⊥, s′i is of the form s1

i s
2
i . Then the derivation tree of Θi ` s1

i s
2
i : τi

is of the following form:

Θ1
i ` s1

i : δi → τi Θ2
i ` s2

i : δi (App)
Θ1
i ∧Θ2

i ` s1
i s

2
i : τi

Θi ` s1
i s

2
i : τi

Let s1 =
⊔
i∈[n] s

1
i , let Θ1 =

∧
i∈[n] Θ1

i , and let θ̄′ =
∧
i∈[n](δi → τi). Then Θ1 ` s1 : θ̄′ is1099

derived from Θ1
i ` s1

i : δi → τi (i = 1, . . . , n) by applying (∧). By I.H., there is s0 v t01100

such that s0 −→≤1 w s1 and Θ1 ` s0 : θ̄′. Let m and {〈Θ′1i , s0
i , τ
′
i〉}i∈[m] be such that1101

Θ1 =
∧
i∈[m] Θ′1i , θ̄′ =

∧
i∈[m] τ

′
i , s0 =

⊔
i∈[m] s

0
i , and for every i ∈ [m], Θ′1i ` s0

i : τ ′i . Note1102

that for every i ∈ [m], there is j ∈ [n] such that τ ′i = δj → τj , and vice versa. Then let1103

s = (
⊔
i∈[m] s

0
i) (
⊔
j∈[n] s

2
j). s v t is shown by s0

i v t0 and s2
j v t2. (a) is shown by using1104

s0 −→≤1 w s1. (b) is derived from Θ′1i ∧Θ2
j ` s0

i s
2
j : τj by applying (∧), where 〈i, j〉 is all1105

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:33

pairs such that τ ′i = δj → τj . Each Θ′1i ∧Θ2
j ` s0

i s
2
j : τj is derived from Θ′1i ` δj → τj and1106

Θ2
j ` s2

j : τj by applying (App).1107

Case (a) (a ∈ Σ and a = `): In the same way as case (App).1108

(2): Let t1, . . . , tn be s.t. t = t1 −→ . . . −→ tn w s′ and let sn = s′. By using (1)1109

iteratively, there exist sn−1, . . . , s1 s.t. ti w si, si −→≤1 w si+1, and Θ ` si : θ̄ for each1110

i ∈ [n − 1]. Then s = s1 satisfies the conditions. t w s and ` s : θ̄ are obvious from the1111

above. Also s −→∗w s′ is shown by s (−→≤1 w)∗ s′ and (w−→) ⊆ (−→≤1 w) (Proposition1112

48). J1113

H.2 Proof of the Completeness1114

I Proposition 66. Let V be any finite Σ⊥-tree. Then ∅ ` V : θ̄ for some θ̄.1115

Proof. By simple induction on the structure of V . J1116

I Theorem 67 (completeness). Let t be any closed and ground-typed term over Σ. If t is1117

minimal, then ∅ ` t : θ̄ for some θ̄.1118

Proof. Since t is minimal, by Theorem 52, for each 〈C, s〉 such that t = C[s], s is a1119

ground-typed term, and s 6= ⊥, let 〈DC , uC〉 (note s is uniquely determined by C) be1120

such that DC [`(uC)] is a tracked finite tree and C[s`] −→∗w DC [`(uC)] . . . (?1). We can1121

assume that ` does not occur in DC . Also let V =
⊔
C DC [\uC] (where C ranges over1122

linear contexts such that t = C[s] holds for some s 6= ⊥). (Note that V is defined by1123

T (t) = T (\C[s`]) w \DC [`(uC)].) By Proposition 66, ∅ ` V : θ̄ for some θ̄. Then by1124

subject expansion lemma (Proposition 65), there exists t′ v t such that t′ −→∗w V and1125

∅ ` t′ : θ̄. From this. it suffices to show that t′ = t. Assume t′ @ t for contradiction.1126

By the assumption, there is 〈C, s〉 such that t = C[s], s 6= ⊥, and t′ v C[⊥]. Then1127

C[s`] w C[⊥] w t′ −→∗w V w DC [\uC], and thus C[s`] −→∗w DC [\uC] . . . (?2). By (?1)1128

and (?2), DC [`(uC)] tDC [\uC] is defined, but it is contradiction because \uC 6= ⊥ (since1129

DC [`(uC)] is tracked). J1130

H.3 Label-Generation Lemma1131

In this subsection we give a key lemma (Lemma 68) to prove the soundness.1132

I Lemma 68 (label-generation). Assume that t is a closed and ground-typed term and ∅ ` t : θ̄.1133

Then there is a finite tree V such that (a) t −→∗w V ; (b) ∅ ` V : θ̄; and (c) if t is labelled,1134

then V so is.1135

To prove it, we introduce a new reduction relation �Y, for only unfolding Y. Precisely,1136

�Y is the binary relation on terms and Y-free terms defined as the least relation closed1137

under the following rules:1138

(�Y ⊥)
tκ �Y ⊥κ

t(Yκt) �Y s
(�Y Y)

Yκt �Y s
(Var)

xκ �Y xκ
t1 �Y s1 t2 �Y s2 (App)
t1t2 �Y s1s2

1139

t �Y s
(Abs)

λx̄κ.t �Y λx̄κ.s

t1 �Y s1 . . . tΣ(a) �Y sΣ(a)
(a)

a(t1, . . . , tΣ(a)) �Y a(s1, . . . , sΣ(a))
t1 �Y s1 (`)

`(t1) �Y `(s1)
1140

We list some properties with respect to the reduction relation �Y.1141

I Proposition 69.1142

(1) If t w s �Y u, then t �Y u.1143

CVIT 2016

23:34 On Average-Case Hardness of Higher-Order Model Checking

(2) If t �Y s w u, then t �Y u.1144

(3) If s �Y s′, then t{s/x} �Y t{s′/x}.1145

(4) If t �Y t′, then t{s/x} �Y t′{s/x}.1146

(5) If t �Y s −→ u, then t−→∗�Y u.1147

(6) If V is a finite tree and t �Y V , then t −→∗w V .1148

Proof. (1): By simple induction on the derivation tree of s �Y u. (2): By simple induction1149

on the derivation tree of t �Y s. (3)(4): By simple induction on the structure t.1150

(5): By induction on the derivation trees of t �Y s. We do case analysis on the last1151

derivation step of t �Y s.1152

Case (�Y ⊥)(Var)(Abs): These cases does not occur because s −→ u.1153

Case (�Y Y): Then the derivation tree is of the following form.

t1(Yt1) �Y s
(�Y Y)

Yt1 �Y s

t �Y s

By I.H. t1(Yt1) −→∗�Y s, and thus t = Yt1 −→ t1(Yt1) −→∗�Y s.1154

Case (a): Then s is of the form a(s1, . . . , sn), u is of the form a(s1, . . . , si−1, s
′
i, si+1, . . . , sn),1155

and t is of the form a(t1, . . . , tn). By ti �Y si −→ s′i and I.H., ti −→∗�Y s′i. Let ui be1156

ti −→∗ ui �Y s′i. Then t −→∗ a(t1, . . . , ti−1, ui, ti+1, . . . , tn) �Y s′. Hence t −→∗�Y s′.1157

Case (App): We do case analysis on the last rule of the derivation tree of s −→ s′.1158

Sub-Case (⊥): Then u = ⊥, so t −→0 t �Y u by (�Y ⊥).1159

Sub-Case (β): Then s is of the form (λx.s1)s2, u is of the form s1{s2/x}, and t is of the1160

form (λx.t1)t2. Then t −→ t1{t2/x} �Y s1{s2/x} = u by t1 �Y s1, t2 �Y s2, (3) and (4).1161

Sub-Case (App): Then s is of the form s1s2, u is of the form s′1s2, and t is of the1162

form t = t1t2. Then by t1 �Y s1, s1 −→ s′1, and I.H., t1 −→∗�Y s′1. Let u1 be s.t.1163

t1 −→∗ u1 �Y s′1. Then t = t1t2 −→∗ u1t2 �Y s′1s2 = s by t2 �Y s2. Hence t −→∗�Y s′.1164

(6): By induction on the derivation tree. Case (�Y ⊥): Then V = ⊥, and thus t −→∗w V .1165

Case (�Y Y): Then the derivation tree is of the following form.

t1(Yt1) �Y V
(�Y Y)

Yt1 �Y V

t �Y V

By I.H., t1(Yt1) −→∗w V . Therefore t −→∗w V is shown by t = Yt1 −→ t1(Yt1) −→∗w V .1166

Case (a): Then the derivation tree is of the following form.

t1 �Y V1 . . . tΣ(a) �Y VΣ(a)
(a)

a(t1, . . . , tΣ(a)) �Y a(V1, . . . , VΣ(a))
t �Y V

For each i ∈ [Σ(a)], by I.H., ti −→∗w Vi. Let si be such that ti −→∗ si w Vi. Then1167

t = a(t1, . . . , tΣ(a)) −→∗ a(s1, . . . , sΣ(a)) w a(V1, . . . , VΣ(a)) = V .1168

Case (`): In the same manner as Case (a).1169

Other cases do not occur because V is a finite tree. J1170

I Lemma 70. (1) Assume that t C θ̃. Then there is a Y-free term s such that (a) t �Y s;1171

(b) s C θ̃; and (c) if t is labelled, then s so is.1172

(2) Assume that Θ ` t : θ̄. Then there is a Y-free term s such that (a) t �Y s; (b) Θ ` s : θ̄;1173

and (c) if t is labelled, then s so is.1174

Y. Nakamura, K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada 23:35

Proof. (1): By induction on the minimum sum of the size of derivation trees of t1 C {〈Θ1, τ1〉},1175

. . . , tn C {〈Θn, τn〉} such that t =
⊔
i∈[n] ti and θ̃ =

⋃
i∈[n]{〈Θi, τi〉}. We do case analysis on1176

the structure of t.1177

Case t = x: Then s = x satisfies (a)(b)(c).1178

Case t = t1 t2: Then each ti is of the form t1i t
2
i and the derivation tree of Θi ` ti : τi is of

the following:

Θ1
i ` t1i :

∧
j∈[mi] σi,j → τi

Θ2
i,1 ` t2i,1 : σi,1 . . . Θ2

i,mi
` t2i,mi

: σi,mi (∧)∧
j∈[mi] Θ2

i,j `
⊔
j∈[mi] t

2
i,j :

∧
j∈[mi] σi,j (App)

Θ1
i ∧
∧
j∈[mi] Θ2

i,j ` t1i (
⊔
j∈[mi] t

2
i,j) : τi

Θi ` ti : τi

Let s1 be the Y-free term obtained from I.H. for t1 C
⋃
i∈[n]{〈Θ1

i ,
∧
j∈[mi] σi,j → τi〉}. Also1179

let s2 be the Y-free term obtained from I.H. for t2 C
⋃
i∈[n]

⋃
j∈[mi]{〈Θ

2
i,j , σi,j〉}. Then1180

s = s1 s2 satisfies (a)(b)(c).1181

Case t = λx̄.t1 , t = a(t1, . . . , tΣ(a)), or t = `(t1): In the same way as Case t = t1 t2.1182

Case t = Yt0: Then each ti is of the form Yt0i and the derivation tree of Θi ` ti : τi is1183

one of the following two forms:1184

Θi ` t0i (Yt0i) : τi (Y 1)
Θi ` Yti : τi

Θi ` t0i ⊥ : τi (Y 2)
Θi ` Yt0i : τi

1185

Then let s be the Y-free term obtained from I.H. for (
⊔
i∈[n] t

0
i) (
⊔
i∈[n] t

1
i) C

⋃
i∈[n]{〈Θi, τi〉},

where, for each i, let t1i = Yt0i if the last derivation step is (Y 1) and t1i = ⊥ if the last
derivation step is (Y 2). This s satisfies (a)(b)(c). In particular (a) is shown as follows:

t0 (Yt0) w (
⊔
i∈[n] t

0
i) (
⊔
i∈[n] t

1
i) (

⊔
i∈[n] t

0
i) (
⊔
i∈[n] t

1
i) �Y s

Prop. 69(1)
t0(Yt0) �Y s

(�Y)
Yt0 �Y s

(2): Immediate from (1). J1186

I Lemma 71. Assume that t is a closed and ground-typed term, t is Y-free, and ∅ ` t : θ̄.1187

Then there is a finite tree V such that (a) t −→∗w V ; (b) ∅ ` V : θ̄; and (c) if t is labelled,1188

then V so is.1189

Proof. Let V ′ be the finite tree such that t −→∗ V ′ (note that such V ′ always exists since t1190

is Y-free). By subject reduction lemma (Proposition 64), we have a finite tree V such that1191

V v V ′, ∅ ` V : o, and if t is labelled, then so V is. Hence this V satisfies (a)(b)(c). J1192

Proof of Lemma 68. Assume that t is a closed and ground-typed term and ∅ ` t : θ̄. By1193

Lemma 70(2), there is a Y-free term s such that (a) t �Y s; (b) ∅ ` s : θ̄; and (c) if t is1194

labelled, then s so is. By Lemma 71, there is a finite tree V such that (a) s −→∗w V ; (b)1195

∅ ` V : θ̄; and (c) if s is labelled, then V so is. This V satisfies (a)(b)(c). In particular1196

(a) is shown as follows: By the above two, t �Y−→∗w V . Then by Proposition 69(4)(5),1197

t −→∗�Y V . Therefore by Proposition 69(6), t −→∗w V . J1198

CVIT 2016

23:36 On Average-Case Hardness of Higher-Order Model Checking

H.4 Proof of the Soundness1199

I Proposition 72. If Θ ` C[s] : θ̄ and s 6= ⊥, then Θ ` C[s`] : θ̄.1200

Proof. (Recall context-types introduced in Section 6.1.) Let θ̃ =
⋃
i∈[n]{〈Θi, τi〉} be such

that Θ =
∧
i∈[n] Θi,

∧
θ̄ =

∧
i∈[n] τi, and C[s] C θ̃. By C[s] C θ̃ and inverse substitution

lemma (Proposition 23), there is θ̃′ such that C C θ̃′ V θ̃ and s C θ̃′. If s` C θ̃′ holds, by
substitution lemma (Proposition 22), C[s`] C θ̃, and hence Θ ` C[s`] : θ̄. We now show
s` C θ̃′. Let {〈Θ′i, si, τ ′i〉}i∈[n] be such that θ̃′ =

⋃
i∈[n]{〈Θ′i, τ ′i〉}, s =

⊔
i∈[n] si, and for each

i ∈ [n], Θ′i ` si : τ ′i . Note that n > 0 by s 6= ⊥. For each i, Θ′i ` si` : τ ′i is shown as follows
(where let si` = λz1.λzk.`(siz1 . . . zk) and let τ ′i = δ1 → . . .→ δk → o):

Θ ` si : τ ′i
Θ ` si : δ1 → . . .→ δk → o

(Var)(∧)
x1 : δ1 ` x1 : δ1 . . .

(Var)(∧)
xn : δk ` xk : δk (App)

Θ, x1 : δ1, . . . , xk : δk ` six1 . . . xn : o
(`)

Θ, x1 : δ1, . . . , xk : δk ` `(six1 . . . xn) : o
(Abs)

Θ ` λz1.λzk.`(siz1 . . . zk) : δ1 → . . .→ δk → o

Θ ` si` : τ ′i

Therefore s` C θ̃′ has been proved, because s` =
⊔
i∈[n] s

`
i (note n > 0). J1201

I Proposition 73.1202

(1) If ∅ ` `(u) : θ̄ for some θ̄, then \u 6= ⊥ (i.e., `(u) is tracked).1203

(2) If V is a labelled finite tree and ∅ ` V : θ̄ for some θ̄, then V is tracked.1204

Proof. (1): We show the contraposition. By \u = ⊥, u is of the form `(. . . `(⊥) . . .). Assume
that ∅ ` u : θ̄ for some θ̄ (towards contradiction). We only write the case of that θ̄ is not
prime (the case of that θ̄ is prime is shown in the same way). Then the derivation tree is of
the following.

∅ ` ⊥ : o (`)
∅ ` `(⊥) : o

... (`)
∅ ` `(. . . `(⊥) . . .) : o

(∧)
∅ ` `(. . . `(⊥) . . .) : θ̄

However it is contradiction because ∅ ` ⊥ : o can not be derived.1205

(2): By a straight forward induction on the derivation tree of ∅ ` V : θ̄ using (1). J1206

I Theorem 74 (soundness). Let t be any closed and ground-typed term over Σ. If ∅ ` t : θ̄1207

for some θ̄, then t is minimal.1208

Proof. If θ̄ = >, then t = ⊥o by Proposition 61, and thus t is minimal. Otherwise, by1209

Theorem 52, it suffices to show that, for every 〈C, s〉 such that t = C[s] and s 6= ⊥, there1210

is a tracked finite tree V such that C[s`] −→∗w V . Then by ∅ ` C[s] : θ̄ (Proposition 72),1211

∅ ` C[s`] : θ̄. By label-generation lemma (Lemma 68), there is a labelled finite tree V such1212

that C[s`] −→∗w V and ∅ ` V : θ̄. By ∅ ` V : θ̄ (Proposition 73), V is tracked. Hence it has1213

been proved. J1214

	Introduction
	Preliminaries
	Y-Terms as Tree Generators
	Higher-Order Model Checking

	Main Theorem
	Minimal Terms
	Proof Outline

	Infinite Monkey Theorem for Minimal Terms
	Decomposition of Terms
	Proof of Lemma 12

	Intersection Types for Minimal Terms
	Proof of the Main Lemma (Lemma 13)
	Context-Types
	Proof of Lemma 13

	Related Work
	Conclusion
	Definition of Alternating Parity Tree Automata
	Proof of Lemma 18
	Proof of Lemma 24
	On the Boundary Case for Lemma 24(1)

	Proof of Proposition 22 and 23
	Properties of the Approximate Relation
	An Alternative Definition of the Minimality
	Proof of Theorem 52

	Proof of Proposition 10
	Proof of Theorem 19
	Properties of the Intersection Type System
	Proof of the Completeness
	Label-Generation Lemma
	Proof of the Soundness

