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Abstract. We extend a previous type system for the π-calculus that
guarantees deadlock-freedom. The previous type systems for deadlock-
freedom either lacked a reasonable type inference algorithm or were not
strong enough to ensure deadlock-freedom of processes using recursion.
Although the extension is fairly simple, the new type system admits type
inference and is much more expressive than the previous type systems
that admit type inference. In fact, we show that the simply-typed λ-
calculus with recursion can be encoded into the deadlock-free fragment
of our typed π-calculus. To enable analysis of realistic programs, we
also present an extension of the type system to handle recursive data
structures like lists. Both extensions have already been incorporated into
the recent release of TyPiCal, a type-based analyzer for the π-calculus.

1 Introduction

Various type systems for the π-calculus have been proposed, some of which can
guarantee that processes are deadlock-free in the sense that certain communi-
cations will eventually succeed unless the process diverges [3, 5–7, 10, 15]. (Some
of them guarantee even a stronger property.) Earlier type systems for deadlock-
freedom [5, 6, 14, 15] required explicit type annotations, so that they were not
suitable for automatic analysis of deadlock-freedom. Kobayashi et al. [7, 10] later
modified the type systems so that the resulting type systems have a type infer-
ence algorithm, and deadlock-freedom of processes can be automatically ana-
lyzed through type inference.

Based on the type system of [7], Kobayashi has implemented the first version
of TyPiCal (ver. 1.0), a type-based analyzer for the π-calculus. Figure 1 shows
a sample input and output of the deadlock analysis of TyPiCal. The first line in
the input program runs two servers, one of which waits for a request on channel
server1 and sends 1 back to the reply channel r, and the other of which waits
for a request on channel server2 and may or may not send a reply, depending on
the value of b. (Here, ?, !, and | represent an input action, an output action, and
parallel composition respectively. O represents an inaction.) The second line runs
a client process, which creates a fresh communication channel r1 for receiving
a reply, sends a request on server1, and waits for a reply. The client process
on the third line behaves similarly, except that it sends a request on server2.
Given that program, TyPiCal’s deadlock analyzer automatically finds input and



output operations that are guaranteed to succeed if they are ever executed and if
the whole process does not diverge, and mark them with ?? and !!. The output
shown in the figure indicates that the first client can eventually receive a reply
(note that r1?x has been replaced by r1??x), while the second client may not
be able to receive a reply (r2?x remains the same).

Input program:
*(server1?r.r!1) | *(server2?r.if b then r!1 else O) /* Servers */

| new r1 in server1!r1.r1?x /* A client for the first server */

| new r2 in server2!r2.r2?x /* A client for the second server */

Output:
*(server1?r.r!!1) | *(server2?r.if b then r!!1 else O)

| new r1 in server1!!r1.r1??x | new r2 in server2!!r2.r2?x

Fig. 1. A sample input and output of the deadlock analysis of TyPiCal

To enable type inference, however, we have traded the strength of the type
system [7, 10]. In particular, the previous type systems for deadlock-freedom
equipped with type inference algorithms cannot well handle recursive processes.
For example, consider the following function server, which computes the factorial:

*fact?(n,r).if n=0 then r!1
else new r1 in (fact!(n-1,r1) | r1?x.r!(x*n))

The server is deadlock-free in the sense that given a request, it will eventually re-
turns a result unless the process diverges (actually, the process does not diverge,
but the termination analysis is out of scope of this paper), but the previous
type systems fail to conclude that. Even the simply-typed λ-calculus (without
recursion) could not be encoded into the deadlock-free fragment of the previous
type systems [7, 10]. On the other hand, an earlier type system of Kobayashi [5]
could handle the above recursive process, but it was so complicated that a type
inference algorithm could not be developed.

In this paper, we introduce a simple extension of the type system for deadlock-
freedom [7, 10], which allows us to handle recursive processes like above, while
keeping the existence of a type inference algorithm. Unlike the previous type
systems which deal with pure polyadic π-calculus, we also extend the target lan-
guage with data structures like pairs and lists. We have already incorporated
those extensions into the recent version of TyPiCal.

The rest of this paper is structured as follows. Section 2 introduces our target
language (with only pairs as data structures). Section 3 introduces our new
type system for deadlock-freedom, and shows its soundness. To demonstrate the
strength of our type system, Section 4 shows that the simply-typed λ-calculus
with recursion can be encoded into the deadlock-free fragment of our typed
calculus. Section 5 informally explains how to deal with list data structures.
Missing definitions and proofs are found in the full version of this paper [8].



2 Target Language

This section introduces the target language of our deadlock analysis, which is a
subset of π-calculus [12] extended with booleans, pairs, and conditionals.

2.1 Syntax

Definition 21 The set of processes, ranged over by P , is defined by:

P ::= 0 | x!tv. P | x?ty. P
| (P |Q) | ∗P | (νx) P | if v then P else Q | let x = e in P

e ::= true | false | x | 〈e1, e2〉 | proj1(e) | proj2(e)
v ::= true | false | x | 〈v1, v2〉

Here, x and y range over a countably infinite set Var of variables. t ranges over
Nat ∪ {∞}.

Notation 21 The prefix x?y binds variables y and (νx) binds x. As usual,
we identify processes up to α-conversions (renaming of bound variables), and
assume that α-conversions are implicitly applied so that bound variables are al-
ways different from each other and from free variables. We write [x �→ v]P for
the process obtained by replacing all the free occurrences of x in P with v. We
often omit 0 and write x!v and x?y for x!v.0 and x?y.0 respectively.

We assume that prefixes (x!v, x?y, (νx) , and ∗) bind tighter than the parallel
composition operator | , so that x!y. P |Q means (x!y. P ) |Q, not x!y. (P |Q). We
often write x?(y, z). P for x?p. let y = proj1(p) in let z = proj2(p) in P (where
we assume p does not appear in P ).

Process 0 does nothing. Process x!tv. P sends v on x, and then (after v is re-
ceived by some process) the process behaves like P . The label t indicates whether
the output operation is deadlock-free: If t �= ∞, then the output is deadlock-free,
i.e., if it is ever executed, v will eventually be received by some process or the
whole process diverges. The exact value of t can be ignored at this moment; it
will only be used in the type system. We call t a capability annotation. Note
that programmers actually need not supply capability annotations; They are
automatically inferred through type inference. We often omit t when it is unim-
portant. Process x?ty. P waits to receive a value v on x and then behaves like
[y �→ v]P . The label t indicates whether the input operation is deadlock-free: If
t �= ∞, then the input is deadlock-free, i.e., if it is ever executed, the process will
eventually be able to receive a message on x or the whole process diverges. P |Q
represents concurrent execution of P and Q. ∗P represents infinitely many copies
of the process P running in parallel, and (νx) P denotes a process that creates
a fresh communication channel x and then behaves like P . if v then P else Q
behaves like P if v is true, and behaves like Q if v is false. let x = e in P
evaluates e to some value v, binds x to it, and then behaves like P .

As usual, we define the operational semantics using a structural relation
P 	 Q, and a reduction relation P −→ Q. The former relation means that P



can be restructured to Q by using the commutativity and associativity laws on
| , etc. The latter relation means that P is reduced to Q by one communication
on a channel. The formal definition of the relations are given in the full paper [8].
We write −→∗ for the reflexive and transitive closure of −→.

3 Type System

3.1 Overview

We first review the idea of previous type systems for deadlock-freedom [7, 10],
identify the weakness of them, and then explain how to get rid of the weakness.

Ideas of previous type systems for deadlock-freedom The main idea of
previous type systems for deadlock-freedom was to extend channel types with
the following information:

– Channel-wise usage information, which describes how often and in which
order each channel is used for input and output.

– Capability and obligation of each input/output action, which captures cer-
tain inter-channel dependency information.

We express channel-wise usage information by using a small, CCS-like process
calculus, which has two primitive actions ? and !. For example, usage of x in
the process x?y |x!1 |x!2 is expressed by ? | ! | !, which means that x is used once
for input and twice for output possibly in parallel. The usage of x in x?y. x!y is
expressed by ?.!, which means that x is first used for input, and then used for
output. The usage conveys some information about whether each action succeeds
or not. For example, x having usage ? | ! | ! indicates that at least one of the two
outputs fails to succeed. Similarly, x having usage ?.! (in the whole process)
indicates that neither an input action nor an output action succeeds, since the
input and output do not occur in parallel.

Channel-wise usage information alone is not sufficient for the analysis of
deadlock. For example, it cannot distinguish between a deadlocked process
x?z. y!z | y?z. x!1 and a non-deadlocked process x?z. y!z |x!1. y?z. . To control
the dependency between communications on different channels, we have in-
troduced the notion of capabilities and obligations [6, 7]. Let us explain why
x?z. y!z | y?z. x!1 deadlocks in terms of capabilities (to successfully receive or
send a message) and obligations (to wait for or to send a message). In order
for the left sub-process x?z. y!z to succeed in receiving a message on x, some
process has to fulfill an obligation to send a message on x. The right sub-process,
however, tries to exercise a capability to receive a message on y before fulfilling
the obligation. In order for the right sub-process to be able to exercise a ca-
pability, the left process must fulfill an obligation to send a message on y, but
the left process tries to exercise a capability to receive a message on x before
fulfilling the obligation. Thus, the capability/obligation dependency is circular,
so that no communication can succeed. To avoid such circular dependency, each



action (? or !) in the channel-wise usage is associated with the levels of obliga-
tions and capabilities, which range over {0, 1, 2, . . .} ∪ {∞}. The capability and
obligation levels impose the following rules on the behavior of a process and its
environment.

A. An obligation of level n(�= ∞) must be fulfilled by using only capabilities
of level less than n. For example, suppose that x has usage ?0

0 and y has
usage !11, where the subscript of an action describes its capability level and
the superscript describes its obligation level. Then, x?z. y!z and x?z | y!1 are
valid, but y!1. x?z is invalid: the last process tries to exercise a capability of
level 1 before fulfilling the obligation of lower level.

B. For an action of capability level n(�= ∞), there must exist a co-action of
obligation level less than or equal to n (so as to guarantee that the capability
can be eventually exercised).

Therefore, the obligation level describes a requirement for the process being
concerned, while the capability level describes an assumption about the environ-
ment of the process being concerned. The two rules above ensure that there is
no cyclic dependency between capabilities and obligations of finite levels; thus,
deadlock-freedom is ensured for any action of a finite capability level.

Let us come back to the deadlocked process x?z. y!z | y?z. x!1. Suppose that
the usages of x and y are ?ox1

cx1
| !ox2

cx2
and ?oy1

cy1 | !
oy2
cy2 , where cx1 and cy1 are finite.

Rule A above implies that cx1 < oy2 and cy1 < ox2, while rule B implies that
ox2 ≤ cx1, ox1 ≤ cx2, oy2 ≤ cy1, and oy1 ≤ cy2. So, we get cx1 < oy2 ≤ cy1 <
ox2 ≤ cx1, a contradiction.

Weakness of previous type systems The main weakness of the previous
type systems based on the idea above was that they cannot handle recursive
processes well. Consider the following function server computing the factorial:

∗fact?(n, r). if n = 0 then r!1 else (νr′) (fact !(n − 1, r′) | r′?m. r!(m × n))

The second argument r of fact is assigned a type of the form chan(int , !to
tc

),
which says that the channel is used for sending an integer, and the levels of the
obligation and capability to do so are to and tc respectively. Since r′ is sent on
fact , it is also assigned the type chan(int , !to

tc
). Then, because of rule B, however,

the capability level of the input action on r′ in r′?m. · · · must be greater than to.
So, the sub-process r′?m. r!(m × n) violates rule A (if to is not ∞). The same
problem arises even in handling a process simulating a term of the simply-typed
λ-calculus (without recursion). One way to overcome the problem above is to
use dependent types, so that the obligation level of the second argument r can
depend on the value of the first argument n [6]. The resulting type system would,
however, require heavy type annotations.

The idea of the extension To get rid of the weakness mentioned above, we
weaken rule A as follows:



A′. An obligation of level n on a channel x must be fulfilled by using only
capabilities of level less than or equal to n, and if the capability level is n,
the capability must be on a channel which has been created more recently
than x.

For example, in the factorial server above, the level of an obligation to return
a value on r and that of a capability to receive a value on r′ are the same,
but since r′ has been created more recently, r′?m. r!(m × n) conforms to rule
A′. Rule A′ is sufficient to prevent deadlock by avoiding circular dependency
between different channels. Since information about which channels has been
created more recently is dynamic, a static analysis is required to estimate the
information. In this paper, we use a simple syntactic analysis, which concludes
that, in the process (νx) P , x has been created more recently than any other free
channel of P . Fortunately, that turns out to be sufficient for handling recursive
processes like the factorial server and processes simulating λ-terms.

In the formal operational semantics, a channel x being created more recently
than another channel y corresponds to the condition that the prefix (νx) is inside
the scope of the prefix (νy) . Note that our operational semantics disallows the
usual structural rule (νx) (νy) P ≡ (νy) (νx) P . The condition in A′ could be
the other way around; we could require that the capability must be on a channel
which has been created less recently than x. We, however, found the condition
above more useful than this alternative requirement. That is because one of the
common channel creation patterns is (νx) (P |x?y. Q), where P performs some
sub-computation and sends the result on x.

3.2 Usages

This subsection introduces the syntax and semantics of usages more formally.
They are almost identical to those of the previous type system [7].

Definition 31 (usages) The set U of usages, ranged over by U , is given by:

U ::= 0 | αt1
t2 .U | (U1 |U2) | ∗U | ↑tU | U1 & U2 | ρ | µρ.U

α ::=? |!

Here, t ranges over Nat ∪ {∞} (where Nat is the set of natural numbers).

We often omit 0 and write αt1
t2 for αt1

t2 .0. We extend the usual binary relation
≤ on Nat to that on Nat ∪ {∞} by ∀t ∈ Nat ∪ {∞}.t ≤ ∞. We also extend
+ by ∞ + t = t + ∞ = ∞. We write min(x1, . . . , xn) for the least element of
{x1, . . . , xn} (∞ if n = 0) with respect to ≤ and write max(x1, . . . , xn) for the
greatest element of {x1, . . . , xn} (0 if n = 0). We assume that µρ binds ρ. We
write [ρ �→ U1]U2 for the usage obtained by replacing the free occurrences of ρ
in U2 with U1. We write FV (U) for the set of free usage variables. A usage is
closed if FV (U) = ∅.

Intuitive meaning of usages is summarized in Table 1. If to is finite, a channel
of usage αto

tc
.U must be used for the action α, while if to is ∞, the action need



Usages Interpretation

0 Cannot be used at all

?to
tc

.U Used once for input, and then used according to U

!to
tc

.U Used once for output, and then used according to U

U1 |U2 Used according to U1 and U2, possibly in parallel

∗U Used according to U by infinitely many processes

↑tU The same as U , except that input and output obligation levels
are lifted to t.

U1 & U2 Used according to either U1 or U2

ρ Usage variable (used in combination with recursive usages below)

µρ.U Recursively used according to [ρ �→ µρ.U ]U .

Table 1. Meaning of Usage Expressions

not be performed. When tc is finite, the action will eventually succeed if it is
ever executed and the whole process does not diverge. If tc is ∞, there is no
such guarantee. Note that a channel of usage αto

tc
.U must be used according to

U only if it has been used for the action α and the action succeeds. For example,
a channel of usage ?∞0 .!0∞ can be used for input (but need not be used), and if it
has been used for input and the input has succeeded, it must be used for output.
That is similar to the usage of a lock: a lock may be acquired (but need not be
acquired), and after the lock has been acquired, the lock must be released. In
fact, a lock can be expressed as a channel of such usage: see Example 1. Usage
↑tU lifts the obligation levels occurring in U (except for those guarded by ? or
!) so that the input obligations and output obligations become greater than or
equal to t. For example, ↑1(?0

0.!
0
∞) is the same as ?1

0.!
0
∞.

We give a higher precedence to prefixes (αto
tc

and ∗) than to | . We write α

for the co-action of α (? =! and ! =?).

Example 1. Linear channels [9] are given a usage of the form ?n1
n2

| !n3
n4

. Affine
channels, which can be used at most once, are given a usage ?∞∞ | !∞∞. A reference
cell can be implemented as a channel holding the current value as a message.
Then, the read operation is expressed as x?y. (x!y | · · ·), while the write operation
is expressed as x?y. (x!v | · · ·). The usage of a reference cell is thus represented as
!0∞ | ∗?∞0 .!0∞. Similarly, a binary semaphore can be expressed as a channel holding
at most one message. The semaphore can be acquired by receiving the message,
and released by sending the message back to the channel. Thus, the usage of a
semaphore is represented as !0∞ | ∗?∞n .!n∞. Here, the level n controls which locks
should be acquired first when multiple locks need to be acquired.

Next, we define capability/obligation levels of a usage.

Definition 32 (capabilities) cap?(U) and cap!(U) are defined by:

capα(0) = capα(αto
tc

.U) = capα(ρ) = ∞ capα(αto
tc

.U) = tc
capα(∗U) = capα(↑tU) = capα(µρ.U) = capα(U)
capα(U1 |U2) = capα(U1 & U2) = min(capα(U1), capα(U2))



Definition 33 (obligations) ob?(U) and ob!(U) are defined by:

obα(0) = obα(αto
tc

.U) = ∞ obα(ρ) = 0
obα(αto

tc
.U) = to obα(U1 |U2) = min(obα(U1), obα(U2))

obα(↑tU) = max(t, obα(U)) obα(U1 & U2) = max(obα(U1), obα(U2))
obα(∗U) = obα(µρ.U) = obα(U)

We write ob(U) for max(ob?(U), ob!(U)).

We next introduce the usage reduction relation U −→ U ′. Intuitively, U −→
U ′ means that if a channel of usage U has been used for a communication, then
it should be used according to U ′ afterwards. For example, !0∞ | ?∞0 .!0∞ −→!0∞
holds. The formal definition of the relation is given in the full paper [8].

Relations and operations on usages As described in rule B in Subsec-
tion 3.1, if some action has a capability of level n, the obligation level of its
co-action should be at most n. The relation rel(U) defined below ensures that
condition.

Definition 34 (reliability) We write conα(U) when obα(U) ≤ capα(U). A
usage U is reliable, written rel(U), if con?(U ′) and con!(U ′) hold for any U ′

such that U −→∗ U ′.

The subusage relation U1 ≤ U2 defined below means that U1 expresses more
liberal usage of channels than U2, so that a channel of usage U1 may be used
as that of usage U2. The first and second conditions require that the subusage
relation is closed under contexts and reduction. The third and fourth conditions
allow capabilities to be weakened and obligations to be strengthened.

Definition 35 (subusage) The subusage relation ≤ on closed usages is the
largest binary relation on usages such that the following conditions hold whenever
U1 ≤ U2.

1. [ρ �→ U1]U ≤ [ρ �→ U2]U for any usage U such that FV (U) = {ρ}.
2. If U2 −→ U ′

2, then there exists U ′
1 such that U1 −→ U ′

1 and U ′
1 ≤ U ′

2.
3. For each α ∈ {?, !}, capα(U1) ≤ capα(U2) holds.
4. For each α ∈ {?, !}, if conα(U1), then obα(U1) ≥ obα(U2).

3.3 Types

Definition 36 (types) The set of types is given by:

τ (types) ::= bool | τ1 × τ2 | chan(τ, U)

Type bool is the type of booleans. The type τ1 × τ2 describes pairs consisting of
a value of type τ1 and a value of type τ2. The type chan(τ, U) describes channels
that should be used according to U for transmitting values of type τ .

We extend relations and operations on usages to those on types.

Definition 37 (subtyping) A subtyping relation ≤ is the least reflexive rela-
tion closed under the following rule:



U ≤ U ′

chan(τ, U) ≤ chan(τ, U ′)
τ1 ≤ τ ′

1 τ2 ≤ τ ′
2

τ1 × τ2 ≤ τ ′
1 × τ ′

2

Definition 38 The obligation level of type τ , written ob(τ), is defined by:
ob(bool) = ∞, ob(τ1×τ2) = min(ob(τ1), ob(τ2)), and ob(chan(τ, U)) = ob(U).

Definition 39 Unary operations ∗ and ↑t on types is defined by:
∗bool = ↑tbool = bool, ∗(τ1 × τ2) = (∗τ1)×(∗τ2), ↑t(τ1 × τ2) = (↑tτ1)×(↑tτ2),
∗(chan(τ, U)) = chan(τ, ∗U), and ↑t(chan(τ, U)) = chan(τ, ↑tU),

Definition 310 A (partial) binary operation | on types is defined by:
bool |bool = bool, (τ11 × τ12) | (τ21 × τ22) = (τ11 | τ21) × (τ12 | τ22), and
(chan(τ, U1)) | (chan(τ, U2)) = chan(τ, (U1 |U2)). τ1 | τ2 is undefined if it does
not match any of the above rules.

3.4 Type Environment

A type environment is a mapping from a finite set of variables to types. We
use metavariables Γ and ∆ for type environments. We write ∅ for the type
environment whose domain is empty. When x �∈ dom(Γ ), we write Γ, x : τ for
the type environment Γ ′ such that dom(Γ ′) = dom(Γ ) ∪ {x}, Γ ′(x) = τ , and
Γ ′(y) = Γ (y) for all y ∈ dom(Γ ).

The operations and relations on types are pointwise extended to those on
type environments below.

Definition 311 A binary relation ≤ on type environments is defined by: Γ1 ≤
Γ2 if and only if (i) dom(Γ1) ⊇ dom(Γ2), (ii) Γ1(x) ≤ Γ2(x) for each x ∈
dom(Γ2), and (iii) ob(Γ1(x)) = ∞ for each x ∈ dom(Γ1)\dom(Γ2).

Definition 312 The operations | and ∗ on type environments are defined by:

(Γ1 |Γ2)(x) =




Γ1(x) |Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)
Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)

(∗Γ )(x) = ∗(Γ (x))

3.5 Typing Rules

We have two kinds of judgments: Γ � e : τ for expressions, and Γ �≺ P for
processes. The latter means that P uses free variables as specified by Γ . ≺ is a
partial order that statically estimates the order between the times when channels
are created. x ≺ y means that x must have been created more recently than y.
Because of rule A′, x : chan(bool, ?0

1), y : chan(bool, !1∞) �{(x,y)} x?z. y!z and
x : chan(bool, ?0

0), y : chan(bool, !1∞) �∅ x?z. y!z are valid judgments, while
x : chan(bool, ?0

1), y : chan(bool, !1∞) �∅ x?z. y!z is invalid.
We assume that α-conversion is implicitly applied so that the variables in Γ

and ≺ are always different from the bound variables in P . The typing rules for
deriving valid type judgments are given in Figure 2.



For expressions

x : τ � x : τ
(Tv-Var)

b ∈ {true, false}
∅ � b : bool

(Tv-Bool)

Γ1 � e1 : τ1 Γ2 � e2 : τ2

Γ1 |Γ2 � 〈e1, e2〉 : τ1 × τ2

(Tv-Pair)

Γ � e : τ1 × τ2 i ∈ {1, 2}
ob(τ3−i) = ∞

Γ � proji(e) : τi

(Tv-Proj)

Γ � e : τ Γ ′ ≤ Γ

Γ ′ � e : τ
(Tv-Weak)

For Processes

Γ, x : chan(τ, U) �≺∪{(x,y)|y∈FV (P )\{x}} P rel(U)

Γ �≺ (νx) P
(T-New)

∅ �≺ 0
(T-Zero)

Γ1 �≺ P1 Γ2 �≺ P2

Γ1 |Γ2 �≺ P1 |P2

(T-Par)

Γ1 �≺ P Γ2 � v : τ

x : chan(τ, !0tc
);≺(Γ1 |Γ2) �≺ x!tcv. P

(T-Out)

Γ1 � e : τ Γ2, x : τ �≺ P

Γ1 |Γ2 �≺ let x = e in P
(T-Let)

Γ ′ �≺ P Γ ≤ Γ ′

Γ �≺ P
(T-Weak)

Γ �≺ P

∗Γ �≺ ∗P (T-Rep)

Γ, y : τ �≺ P

x : chan(τ, ?0
tc

);≺Γ �≺ x?tcy. P
(T-In)

Γ1 � v : bool
Γ2 �≺ P Γ2 �≺ Q

Γ1 |Γ2 �≺ if v then P else Q
(T-If)

Fig. 2. Typing Rules



We explain some key rules. In T-New, ≺ is extended with the assumption
that x has been created more recently than any other free channels in P .

In T-Out and T-In, we use the operation x : chan(τ, αto
tc

);≺Γ on type envi-
ronments. It represents the type environment ∆ defined by:

dom(∆) = {x} ∪ dom(Γ )

∆(x) =
{

chan(τ, αto
tc

.U) if Γ (x) = chan(τ, U)
chan(τ, αto

tc
) if x �∈ dom(Γ )

∆(y) =
{
↑tcΓ (y) if y �= x ∧ x ≺ y

↑tc+1Γ (y) if y �= x ∧ x �≺ y

For example, x : chan(τ, ?0
2);{(x,y)}(x : chan(τ, !00), y : chan(τ1, !00), z : chan(τ2, !00))

is x : chan(τ, ?0
2.!

0
0), y : chan(τ1, !20), z : chan(τ2, !30)).

Intuitively, the environment x : chan(τ, αto
tc

);≺Γ means that x may be first
used for the action α, and then communications can be performed according to
Γ . Since the capability of level tc is exercised before fulfilling obligations in Γ ,
the level of each obligation in Γ are lifted either to tc or tc +1, depending on ≺.

In rule T-In, the premise means that P performs communications according
to Γ . Since x?tcy. P tries to exercise a capability of level tc to receive a value on
x, the process is well-typed under x : chan(τ, ?0

tc
);≺Γ .

Example 2. Let us consider the following process P :

∗f?r. (if b then r!true else (νr′) (f !r′ | r′?x. r!x)).

It is typed as follows.

Γ �∅ r!true Γ �∅ (νr′) · · ·
Γ �∅ if b then r!true else · · ·

f : chan(chan(bool, !1∞), ?0
∞.!∞0 ), b :bool �∅ f?r. · · ·

f : chan(chan(bool, !1∞), ∗?0
∞.!∞0 ), b :bool �∅ P

Here, Γ is f : chan(chan(bool, !1∞), !∞0 ), b :bool, r : chan(bool, !1∞), and
Γ �∅ (νr′) · · · is derived by:

Γ1 �{(r′,r)} f !r′ r : chan(bool, !1∞), r′ : chan(bool, ?0
1) �{(r′,r)} r′?x. r!x

Γ, r′ : chan(bool, !1∞ | ?0
1) �{(r′,r)} f !r′ | r′?x. r!x

Γ �∅ (νr′) · · ·

Here, Γ1 = f : chan(chan(bool, !1∞), !∞0 ), r′ : chan(bool, !1∞). Note that if r′ ≺ r
did not hold, we could only obtain r : chan(bool, !2∞), r′ : chan(bool, ?0

1) �∅
r′?x. r!x, so that f : chan(chan(bool, !1∞), ∗?0

∞.!∞0 ), b :bool �∅ P were not
derivable.

3.6 Type Soundness

The following theorems imply that if a process is well-typed in our type system,
an input or output process that is annotated with a finite capability level is



deadlock-free, in the sense that if the process is ready (i.e., it appears at the
top-level, without being guarded by any other input or output prefix), the whole
process can be reduced further.

We write Γ −→ Γ ′ when Γ = Γ1, x : chan(τ, U) and Γ ′ = Γ1, x : chan(τ, U ′)
with U −→ U ′ for some Γ1, x, τ, U , and U ′.

Theorem 1 (type preservation). If Γ �≺ P and P −→ Q, then Γ ′ �≺ Q for
some Γ ′ such that Γ ′ = Γ or Γ −→ Γ ′.

Theorem 2. If ∅ �≺ P and either P 	 (νx̃) (x!nv. Q1 | Q2) or
P 	 (νx̃) (x?ny. Q1 | Q2) with n ∈ Nat, then P −→ R for some R.

Corollary 1. Suppose ∅ �≺ P . If P −→∗ Q, and either Q 	 (νx̃) (x!nv. Q1 |
Q2) or Q 	 (νx̃) (x?ny. Q1 | Q2) with n ∈ Nat, then Q −→ R for some R.

3.7 Type Inference

Given a closed process P (without any capability annotations on input and out-
put processes), there is a complete algorithm to decide whether there exists P ′

such that ∅ �∅ P ′ holds and P and P ′ coincide except for capability annota-
tions. Moreover, such an algorithm tries to infer the least capability for each
input/output process. Since the algorithm is almost the same as that of the pre-
vious type system [7], we do not re-describe the algorithm here; The algorithm
first extract constraints on types, reduce them step by step to obtain constraints
of the form rel(U), and then solve rel(U) by reduction to Petri net reachability
problems [7]. The only extra work compared with the previous one is to expand
the relation ≺ when the algorithm encounters the ν-prefix. We have already
implemented the algorithm in TyPiCal [4].

4 Encoding of λ-calculus

To demonstrate the power of the new type system, we show that the call-by-value
simply-typed λ-calculus with recursion can be encoded into the deadlock-free
fragment. Concurrent objects can also be encoded as in our previous paper [5].

Definition 41 The sets of types and terms of λ→,fix are given by the following
syntax:

θ (types) ::= bool | θ1 → θ2

M (terms) ::= x | fix(f, x, M) | M1M2

Here, fix(f, x, M) represents a recursive function f defined by f(x)
�
= M . If f

does not appear in M , it is the same as the usual λ-abstraction λx.M .
Typing rules are given as follows.

T , x : θ � x : θ
(TL-Var)



T , f : θ1 → θ2, x : θ1 � M : θ2

T � fix(f, x, M) : θ1 → θ2

(TL-Fix)

T � M1 : θ1 → θ2 T � M2 : θ1

T � M1M2 : θ2

(TL-App)

We encode terms, types, and type environments into our typed π-calculus as
follows, in a standard manner [5, 11, 13].

[[ x ]]r = r!x
[[fix(f, x, M) ]]r = (νy) (r!y | ∗y?(x, r′). [[ M ]]r

′
)

[[ M1M2 ]]r = (νr1) (νr2) ([[ M1 ]]r1 | [[ M2 ]]r2 | r1?f. r2?x. f !(x, r))

[[bool ]] = bool
[[ θ1 → θ2 ]] = chan( [[ θ1 ]] ×chan( [[ θ2 ]] , !1∞), ∗!∞0 )

[[ x1 : θ1, . . . , xn : θn ]] = x1 : [[ θ1 ]] , . . . , xn : [[ θn ]]

Intuitively, a term M is encoded into [[ M ]]r which evaluates M and sends the
result on channel r. The usage ∗!∞0 in the encoding of function types means that
a function can be invoked an arbitrary number of times, and the usage !1∞ means
that the function will eventually returns a result (or diverge).

It is easy to check that the typing is preserved by encoding.

Lemma 1. If T � M : θ, then [[ T ]] , r : chan( [[ θ ]] , !1∞) �∅ [[ M ]]r .

The following is an immediate corollary of the above lemma, which means
that a process that simulates functional computation does not get deadlocked
before returning a result.

Corollary 2. If ∅ � M : θ and [[ M ]]r −→∗ P , then P −→ Q for some Q or
P 	 (νx̃) (r!v. Q1 |Q2) for some v, Q1, Q2.

Proof. Suppose ∅ � M : θ and [[ M ]]r −→∗ P . By Lemma 1, r : chan( [[ θ ]] , !1∞) �∅
[[ M ]]r . By Theorem 1, we have r : chan( [[ θ ]] , !1∞) �∅ P . Let R = (νr) (P | r?1x.0).
Then, ∅ �∅ R. By Theorem 2, we have R −→ R′, which implies either P −→ Q
or P 	 (νx̃) (r!v. Q1 |Q2).

5 Extension for Recursive Data Structures

The language discussed so far is the π-calculus extended with pairs. We briefly
discuss a subtle point that arises when dealing with recursive data structures,
using the list data structure as an example.

Let us consider the following process, which waits to receive a list l of chan-
nels, and sends true to all the channels in the list.

∗broadcast?l. if null(l) then 0 else
(let x = hd(l) in (x!true | broadcast!tl(l)))

Here, hd(l) is the first element of the list l, and tl(l) is the rest.
A naive way to handle lists is to introduce list types of the form list(τ), which

describes lists whose elements are of type τ , and the following typing rules:



Γ � e : list(τ)
Γ � hd(e) : τ

Γ � e : list(τ)
Γ � tl(e) : list(τ)

However, we have to add the condition that ob(τ) = ∞ in both rules (just like
we had to impose the condition ob(τ3−i) = ∞ in the rule for projections), since
hd(e) throws away the elements other than the head, and tl(e) throws away the
head. Thus, we can only assign list(chan(bool, !∞t )) to l in the above example,
failing to infer that the server eventually sends messages to all the elements in
the list.

To overcome the problem above, we represent list types as list(τ1, τ2), where
τ1 is the type of the first element, and τ2 is the type of the rest of the elements,
and use the following types:

Γ � e : list(τ1, τ2) ob(τ2) = ∞
Γ � hd(e) : τ1

Γ � e : list(τ1, τ2) ob(τ1) = ∞
Γ � tl(e) : list(τ2, τ2)

With these rules, we can assign list(chan(bool, !1∞), chan(bool, !1∞)) to l in
the example above, so that we can infer that the server eventually sends messages
to all the elements in the list.

The replacement of list(τ) with list(τ1, τ2) corresponds to the unfolding of
the recursive type µα.(1 + (τ × α)) to 1 + τ × µα.(1 + (τ × α)). As in the case
of lists above, unfolding of recursive types in general seems to be useful to make
our type system for deadlock-freedom more robust.

6 Related Work

As already mentioned in Section 1, earlier type systems that can guarantee
deadlock-freedom [5, 14, 15] required explicit type annotations, having no rea-
sonable type inference algorithm. We have later modified the type systems to
make type inference tractable [7, 10], with the sacrifice of some expressive power.
The type system proposed in this paper can be considered a reunion of the earlier
type systems [5, 14] and recent ones [7, 10].

Some type systems [6, 7] can guarantee a stronger property that certain com-
munications will eventually succeed no matter whether the process diverges.
There are also type systems that guarantee the termination of processes [1, 16].
Unfortunately, the idea proposed in the present paper does not work for guar-
anteeing those stronger properties.

There are some studies of abstract interpretation for the π-calculus [2]. To
the best of our knowledge, deadlock-freedom analysis has not been studied in
that context. Our type-based analysis relies on a syntactic analysis of the order
in which channels are created. Abstract interpretation [2] might be useful for
obtaining more precise information about the order of channel creation.



7 Conclusion

We have proposed a new type system for deadlock-freedom of π-calculus pro-
cesses. The new type system admits type inference, while it is strictly more
expressive than the previous type systems that admit type inference. We have
also extended the type system to handle data structures like pairs and lists.

References

1. Y. Deng and D. Sangiorgi. Ensuring termination by typability. In Proceedings of
IFIP TCS 2004, pages 619–632, 2004.

2. J. Feret. Abstract interpretation of mobile systems. Journal of Logic and Algebraic
Programming, 63(1), 2005.

3. K. Honda and N. Yoshida. A uniform type structure for secure information flow.
In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Program-
ming Languages, pages 81–92, 2002.

4. N. Kobayashi. TyPiCal: A type-based static analyzer for the pi-calculus. Tool
available at http://www.kb.ecei.tohoku.ac.jp/~koba/typical/.

5. N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions
on Programming Languages and Systems, 20(2):436–482, 1998.

6. N. Kobayashi. A type system for lock-free processes. Information and Computa-
tion, 177:122–159, 2002.

7. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4-5):291–347, 2005.

8. N. Kobayashi. A new type system for deadlock-free processes, 2006. Full version.
Available from http://www.kb.ecei.tohoku.ac.jp/~koba/.

9. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems, 21(5):914–947, 1999.

10. N. Kobayashi, S. Saito, and E. Sumii. An implicitly-typed deadlock-free process
calculus. Technical Report TR00-01, Dept. Info. Sci., Univ. of Tokyo, January 2000.
A summary has appeared in Proceedings of CONCUR 2000, Springer LNCS1877,
pp.489-503, 2000.

11. R. Milner. Function as processes. In Automata, Language and Programming,
volume 443 of Lecture Notes in Computer Science, pages 167–180. Springer-Verlag,
1990.

12. R. Milner. The polyadic π-calculus: a tutorial. In F. L. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag,
1993.

13. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In Pro-
ceedings of IEEE Symposium on Logic in Computer Science, pages 376–385, 1993.

14. E. Sumii and N. Kobayashi. A generalized deadlock-free process calculus. In
Proc. of Workshop on High-Level Concurrent Language (HLCL’98), volume 16(3)
of ENTCS, pages 55–77, 1998.

15. N. Yoshida. Graph types for monadic mobile processes. In FST/TCS’16, volume
1180 of Lecture Notes in Computer Science, pages 371–387. Springer-Verlag, 1996.

16. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi-calculus.
Information and Computation, 191(2):145–202, 2004.


