
Type-Based Automated Verification of
Authenticity in Cryptographic Protocols

Daisuke Kikuchi and Naoki Kobayashi

Graduate School of Information Sciences, Tohoku University
{kikuchi,koba}@kb.ecei.tohoku.ac.jp

Abstract. Gordon and Jeffrey have proposed a type and effect system
for checking authenticity in cryptographic protocols. The type system
reduces the protocol verification problem to the type checking problem,
but protocols must be manually annotated with non-trivial types and ef-
fects. To automate the verification of cryptographic protocols, we modify
Gordon and Jeffrey’s type system and develop a type inference algorithm.
Key modifications for enabling automated type inference are introduc-
tion of fractional effects and replacement of typing rules with syntax-
directed ones. We have implemented and tested a prototype protocol
verifier based on our type system.

1 Introduction

Gordon and Jeffrey [1–3] developed a series of type systems for verifying authen-
ticity in security protocols. The required authenticity properties are described
by using Woo and Lam’s correspondence assertions [4], and Gordon and Jeffrey’s
type systems guarantee that well-typed processes (describing security protocols)
satisfy the correspondence assertions. The type systems reduce the problem of
verifying authenticity properties in security protocols to the type checking prob-
lem. Based on the type systems, Haack and Jeffrey implemented a verifier for
cryptographic protocols [5].

One of the main shortcomings of their type systems was that protocols must
be explicitly annotated with types. Since the types may contain complex in-
formation about how communication channels, cryptographic keys, and nonces
should be used in protocols, it seems difficult for non-expert users (especially
those who are not familiar with the type systems) to supply such annotations.

In our previous work [6], we have extended Gordon and Jeffrey’s type system
for checking correspondence assertions [1] in the π-calculus (without crypto-
graphic primitives), the first and simplest one in the series of their type systems,
and developed a polynomial-time type inference algorithm for it. The key idea
of the extension was to introduce fractional effects, which allowed us to reduce
the type inference problem to linear programming over rational numbers, rather
than integer linear programming.

In this paper, we extend our previous work [6], and show that a similar
technique can be used to develop a type inference algorithm for a variant of

Gordon and Jeffrey’s type system for checking authenticity in cryptographic
protocols [2]. The key technique for enabling efficient type inference is to allow
fractional effects, as in our previous work [6]. Some new challenges, however,
arise in dealing with cryptographic primitives [2]. First, there are two rules for
each message/process constructor in their type system: one for trusted data,
and the other for untrusted data.1 Second, there is an explicit cast operation
for capturing the role of nonces in cryptographic protocols. These features make
even the simple type inference (without effects) non-trivial. We modify Gordon
and Jeffrey’s type system [2] to remove those problems, so that there is only
one rule for each message/process constructor, and no explicit cast operation
is required. That modification allows us to develop a type inference algorithm
in a manner similar to our previous work [6]. Although the expressive power of
our type system is incomparable to that of Gordon and Jeffrey’s type system [2]
(there are processes typable in their type system but not in our type system,
and vice versa), all the examples discussed in [2] are typable in our type system
(modulo an extension with labeled variants).

The rest of this paper is structured as follows. Section 2 introduces SpiCA,
an extension of the Spi-calculus with correspondence assertions, which is used
for describing cryptographic protocols. Section 3 introduces our new type sys-
tem for checking authenticity of cryptographic protocols. Section 4 describes a
type inference algorithm, which serves as an algorithm for automatic verifica-
tion of authenticity in cryptographic protocols. Section 5 reports preliminary
experiments. Section 6 discusses related work and Section 7 concludes. A longer
version of this paper is available from http://www.kb.ecei.tohoku.ac.jp/
~koba/esop09-long.pdf.

2 SpiCA: Spi-Calculus with Correspondence Assertions

In this section, we introduce the language SpiCA, an extension of the Spi-
calculus [8] with correspondence assertions. The language is similar to Gordon
and Jeffrey’s calculus [2]: our language is obtained from it by removing type
annotations and cast operations.

2.1 Syntax

Definition 1 (messages, processes) The sets of messages and processes, ranged
over by M and P respectively, are given by:

K, M, N ::= x | (M1,M2) | inl(M) | inr(M) | {M}K

P, Q ::= 0 | M !N | M?x.P | (P1 |P2) | ∗P | (νx)P | check x is M.P
| decrypt M is {x}K .P | case M is inl(x).P is inr(y).Q
| split M is (x, y).P | begin M.P | end M.P

Here, the meta-variables x and y range over the set N of variables.
1 In a subsequent paper [7], Gordon and Jeffrey uses subtyping and merges the two

rules into one. The subsumption rule still makes type inference difficult.

The variable x is bound in M?x.P , (νx)P and decrypt M is {x}K .P . x
and y are bound in case M is inl(x).P is inr(y).Q and split M is (x, y).P . We
write [M/x]P for the process obtained by replacing x in P with M .

(M1,M2) is a pair consisting of M1 and M2. inl(M) and inr(M) are con-
structors for sums. {M}K is the message obtained by encrypting M with key K.
Here, we assume perfect encryption; information about an encrypted message
can be obtained only if the key is known.

The process 0 is an inaction. The process M !N sends the message N on
the channel M . The process M?x.P waits to receive a message on channel
M , binds x to it, and then behaves like P . (P1 |P2) runs P1 and P2 in par-
allel, while ∗P runs infinitely many copies of P in parallel. The process (νx)P
creates a fresh name (which may be used as a channel, a nonce, or a sym-
metric key), binds x to it, and behaves like P . The process check x is M.P
behaves like P if the values of x and M are the same; otherwise the process
is aborted. The process decrypt M is {x}K .P decrypts the message M with
the symmetric-key K. If the decryption succeeds, the process binds x to the
decrypted message, and behaves like P ; otherwise, the process is aborted. The
process case M is inl(x).P is inr(y).Q behaves like [N/x]P if M is of the
form inl(N), and behaves like [N/y]Q if M is of the form inr(N). The process
split M is (x, y).P splits the pair M = (M1,M2), binds x to M1 and y to M2,
and behaves like P .

The processes begin M.P and end M.P are special processes for declaring
correspondence assertions; begin M.P raises a “begin M” event and then be-
haves like P , while end M.P raises an “end M” event and then behaves like
P . It is expected (and will be guaranteed by our type system) that whenever
an end-event occurs, a corresponding begin-event must have occurred before.
Authenticity properties (like “if Alice receives a message m, then Bob must have
sent the message”) are reduced to such relations between begin- and end-events:
See Example 1 below.

Example 1. Consider the following process System, taken from [2]:

System
4
= (νkey)(∗Sender(ch, key) | ∗Receiver(ch, key))

Sender(ch, key)
4
= ch?n.(νmsg)begin msg .ch!{(msg , n)}key

Receiver(ch, key)
4
= (νnon)(ch!non | ch?ctext .decrypt ctext is {x}key .

split x is (m,non ′).check non is non ′.end m)

System creates a shared key key , and runs infinitely many copies of Sender(ch, key)
and Receiver(ch, key) in parallel. Here, ch is a public communication channel, on
which an attacker may also send/receive messages. The process Receiver(ch, key)
creates a fresh name non (which is often called a nonce in the terminology of
security protocols) and sends it on ch. The process Sender(ch, key) then receives
the nonce and creates a new message. It then raises a “begin msg”-event and
sends the cyphertext {(msg ,non)}key on ch. Here, the event “begin msg” repre-
sents the fact that the process certainly sent the message msg . Receiver(ch, key)
then receives the cyphertext, decrypts it (as a result, m and non ′ are bound

to msg and non), and checks that the second element of the decrypted message
matches the nonce it has sent before. The receiver then raises the event end msg ,
meaning that it has received the message msg . The correspondence between
end msg and begin msg , (i.e., the property that whenever an “end msg”-event
happens, a “begin msg”-event must have occurred before) assures that each
time Receiver(ch, key) executes end msg , the message msg has certainly been
sent by Sender(ch, key).

Note that the nonce check “check non is non ′. · · ·” in the protocol above
is essential; if there is no such check, then an attacker can confuse the receiver
by duplicating a message {(msg ,non)}key (by running ch?x.(ch!x | ch!x), for
instance). ut

2.2 Semantics

The operational semantics is given in Figure 1. (The rules for split, case and
replications are omitted.) Here, a state is represented as a triple 〈Ψ,E, N〉, where
Ψ is a multiset of processes, N is a set of names, and E is a multiset of messages
M such that the event begin M has been raised but end L has not. In other
words, E describes capabilities (or, permissions) to raise end-events.

〈Ψ] {x?y.P, x!M}, E, N〉 −→ 〈Ψ] {[M/y]P}, E, N〉
〈Ψ] {P |Q}, E, N〉 −→ 〈Ψ] {P, Q}, E, N〉

〈Ψ] {(νx)P}, E, N〉 −→ 〈Ψ] {[y/x]P}, E, N ∪ {y}〉 (y /∈ N)
〈Ψ] {check x is x.P}, E, N〉 −→ 〈Ψ] {P}, E, N〉

〈Ψ] {decrypt {M}K is {x}K .P}, E, N〉 −→ 〈Ψ] {[M/x]P}, E, N〉
〈Ψ] {begin L.P}, E, N〉 −→ 〈Ψ] {P}, E] {L}, N〉
〈Ψ] {end L.P}, E] {L}, N〉 −→ 〈Ψ] {P}, E, N〉

Fig. 1. Operational Semantics

We write 〈Ψ, E,N〉 −→ Error if end L.P ∈ Ψ but L /∈ E. We write −→∗ for
the reflexive and transitive closure of −→. The required correspondence between
begin-events and end-events is stated as follows.

Definition 2 (safety) A process P is safe if 〈{P}, ∅, N〉 6−→∗ Error, where N
is the set of free names in P .

For security protocols, the safety of the process running protocols alone is
not sufficient; the robust safety defined below means that the process is safe in
the presence of attackers running in parallel.

Definition 3 (robust safety) A process P is robustly safe if (P |O) is safe for
any process O that contains no begin/end/check-assertions.

Remark 1. In Gordon and Jeffrey’s definition [2], attackers may execute check
operations. We removed them, as the check operations do not increase the power
of attackers. check M is N.P can be simulated by decrypt {x}M is {y}N .P .

3 Type System

3.1 Types and Effects

Definition 4 (effects) The sets of types and effects, ranged over by T and e,
are given by:

T (types) ::= N(e) | Key(T) | T1 × T2 | T1 + T2

e (effects) ::= [A1 7→ r1, . . . , An 7→ rn]
A (atomic effects) ::= end〈M〉 | chk〈α〉

α (extended names) ::= x | i
i (indices) ::= 0 | 1 | 2 | · · ·

Here, r1, . . . , rn ranges over the set of non-negative rational numbers.

The type N(e) describes names used as channels, nonces, or cyphertexts. When
the type describes a nonce, the effect e describes a capability to raise end-events
carried by the nonce. For example, non passed through ch in Example 1 carries a
capability to raise one “end msg”-event, so that its type is N([end〈msg〉 7→ 1]).
We often write Un for N([]). The type Key(T) describes keys used for decrypt-
ing messages of type T .

The type T1 × T2 describes pairs consisting of messages of types T1 and T2.
Indices are used to express dependencies of the second element on the first ele-
ment: For example, Un×N([end〈0〉 7→ 1]) describes a pair (a, b), where b’s type
is N([end〈a〉 7→ 1]). The type corresponds to (x:Un,N([end〈x〉 7→ 1]) in Gordon
and Jeffrey’s notation [2]. The type Un× (Un×N([end〈0〉 7→ 1, chk〈1〉 7→ 1]))
describes a message of the form (a, (b, c)) where a and b have type Un, and c
has type N([end〈b〉 7→ 1, chk〈a〉 7→ 1]). We use the nameless representation of
dependent types just for technical convenience for formalizing type inference; in
terms of the expressiveness of the type system, the nameless dependent types
are equivalent to Gordon and Jeffrey’s name dependent types [2].

The type T1 + T2 describes sums of the form inl(M) (where M is a message
of type T1) or inr(M) (where M is a message of type T2).

An effect [A1 7→ r1, . . . , An 7→ rn] denotes the mapping f from the set of
atomic events to the set of rational numbers such that f(Ai) = ri for i ∈
{1, . . . , n} and f(M) = 0 for M /∈ {A1, . . . , An}. The atomic effect end〈M〉
denotes a capability to execute “end M ,” while the atomic effect chk〈α〉 de-
notes a capability to execute check α is x.P . The latter kind of effect is used
to guarantee that each nonce can be checked at most once. In the rest of this
paper, the words “effects” and “capabilities” are used interchangeably.

Example 2. Names in Example 1 have the following types.

ch : Un x : N([])×N([end〈0〉 7→ 1]) key : Key(N([])×N([end〈0〉 7→ 1]))

A substitution [x1/i1, . . . , xk/ik], denoted by meta-variable θ, is a mapping
from indices to names. The substitution, summation, and binary relation ≤ on

effects are defined by:

(θe)(A) = Σ{e(A′) | θA′ = A} (e1 + e2)(A) = e1(A) + e2(A)
e ≤ e′ ⇔ ∀A.e(A) ≤ e′(A)

The substitution θT on types is defined by:

[x/i]N(e) = N([x/i]e) [x/i]Key(T) = Key([x/i]T)
[x/i](T1 × T2) = [x/i]T1 × [x/(i + 1)]T2 [x/i](T1 + T2) = [x/i]T1 + [x/i]T2

3.2 Typing Rules

We introduce two type judgment forms: Γ ; e ` M : T for messages and Γ ; e `
P for processes. Here, Γ , called a type environment, is a finite sequence of
bindings of names to types. Γ ; e ` M : T means that given names described by
Γ and capabilities described by e, one can construct a message M of type T .
For example, we have

x : Un, y : Un; [end〈x〉 7→ 1] ` (x, y) : Un×N([end〈0〉 7→ 1]).

In this manner, capabilities (to raise end-events or check nonces) can be attached
to a name, and passed to other processes.

Γ ; e ` P means that given names described by Γ and capabilities described
by e, the process P can be safely executed. For example, x:Un, y :Un; [end〈x〉 7→
1] ` end x is a valid judgment, but x:Un, y :Un; [end〈x〉 7→ 1] ` end y is invalid
since there is no capability to execute end y. When we write Γ ; e ` M : T or
Γ ; e ` P , we implicitly assume that Γ , e, and T are well-formed, in the sense
that they do not contain undefined names. For example, when we write “Γ, x:T ,”
only the names bound in Γ may occur in T .

The typing rules for messages are given in Figure 2. In rule MT-Var, T + e
is defined as N(e′ + e) if T is of the form N(e′); otherwise T + e is T . The
capabilities e are transferred from the environment to x if x has type N(e′).
The role of the rule is similar to that of Gordon and Jeffrey’s typing rule for
cast-operations [2]. Unlike in Gordon and Jeffrey’s type system, however, the
transfer of capabilities from the environment to a name is implicitly performed
by MT-Var. The capabilities attached to a name can be extracted at most once
by a check operation: see the rule T-Check given later.

In rule MT-Pair, the index 0 in T2 refers to the first element, so that N
must have type [M/0]T2. The other rules are standard.

The typing rules for processes are given in Figure 3. Note that we have only
one rule for each process constructor (except T-SubEf, which can be easily
eliminated), while Gordon and Jeffrey’s type system [2] had two rules for each
process constructor: one for trusted data and the other for untrusted data.

In the figure, FN (e) denotes the set
⋃{FN (A) | e(A) > 0}, where FN (A)

is the set of extended names occurring in A. For example, FN ([end〈(x, y)〉 7→
0.5, end〈(y, z)〉 7→ 0]) = {x, y}.

The predicate pub(T) used in the figure is defined inductively by:

pub(N([]))
pub(T)

pub(Key(T))
pub(T1) pub(T2)

pub(T1 × T2)
pub(T1) pub(T2)

pub(T1 + T2)

In other words, pub(T) holds if T does not carry any effects. The predicate
gen(T) means that T is of the form N([]) or Key(T ′).

We explain some of the key typing rules below. A communication channel
in our calculus is an untrusted communication device, on which attackers may
intercept, duplicate messages, etc. In rules T-Out and T-In, therefore, the type
of messages sent on a channel must be public, meaning that they must not
contain effects. To send a name carrying effects, one must encrypt it; otherwise,
an attacker may abuse the effects (or, capabilities) carried by the name. Besides
the requirement that it must be public, there is no restriction on the type of
messages; thus, well-typed processes may suffer from type mismatch errors at
run-time (when executing split and case expressions).

The rule T-Par splits the capabilities e1 + e2 into e1 and e2 for P1 and P2

respectively. In rule T-Res, x is a fresh name, so that a capability to use x as a
nonce and check x is added to P .

The rule T-Check says that the check-expression extracts the capability e′

carried by N , by consuming the capability to check x; the consumption of the
capability chk〈x〉 ensures that the capability e′ can no longer be extracted. The
rules T-Begin and T-End say that the begin-expression adds the capability to
raise an end-event, while the end-expression consumes the capability to raise an
end-event. The rule T-SubEf allows some capabilities not to be used (so that
for a begin-event, there may be no corresponding end-event).

Γ, x : T ; e ` x : T + e
(MT-Var)

Γ ; e1 ` M : T1 Γ ; e2 ` N : [M/0]T2

Γ ; e1 + e2 ` (M, N) : T1 × T2

(MT-Pair)

Γ ; e ` M : T1

Γ ; e ` inl(M) : T1 + T2

(MT-Inl)

Γ ; e ` M : T2

Γ ; e ` inr(M) : T1 + T2

(MT-Inr)

Γ ; e ` M : T Γ ; [] ` K : Key(T)

Γ ; e ` {M}K : Un
(MT-Encrypt)

Fig. 2. Typing for Messages

Γ ; [] ` 0
(T-Zero)

Γ ; [] ` x : Un Γ ; e ` N : T pub(T)

Γ ; e ` x!N
(T-Out)

Γ ; [] ` x : Un Γ, y : T ; e ` P pub(T) y /∈ FN (e)

Γ ; e ` x?y.P
(T-In)

Γ ; e1 ` P1 Γ ; e2 ` P2

Γ ; e1 + e2 ` P1 |P2

(T-Par)

Γ ; [] ` P

Γ ; [] ` ∗P (T-Rep)

Γ, x : T ; e + [chk〈x〉 7→ 1] ` P x /∈ FN (e) gen(T)

Γ ; e ` (νx)P
(T-Res)

Γ ; [] ` x : Un Γ ; [] ` N : N(e′) Γ ; e + e′ ` P

Γ ; e + [chk〈x〉 7→ 1] ` check x is N.P
(T-Check)

Γ ; [] ` M : Un Γ ; [] ` K : Key(T) Γ, y : T ; e ` P y /∈ FN (e)

Γ ; e ` decrypt M is {y}K .P
(T-Decrypt)

Γ ; [] ` M : T1 + T2 Γ, y : T1 ; e ` P1 Γ, z : T2 ; e ` P2 y, z /∈ FN (e)

Γ ; e ` case M is inl(y).P1 is inr(z).P2

(T-Case)

Γ ; [] ` M : T1 × T2 Γ, y : T1, z : [y/0]T2 ; e ` P y, z /∈ FN (e)

Γ ; e ` split M is (y, z).P
(T-Split)

Γ ; e + [end〈M〉 7→ 1] ` P FN (M) ⊆ dom(Γ)

Γ ; e ` begin M.P
(T-Begin)

Γ ; e ` P FN (M) ⊆ dom(Γ)

Γ ; e + [end〈M〉 7→ 1] ` end M.P
(T-End)

Γ ; e′ ` P e′ ≤ e

Γ ; e ` P
(T-SubEf)

Fig. 3. Typing for Processes

Example 3. Recall Example 1. Sender(ch, key) is typed as follows.

Γ1 ; [] ` ch : Un
Γ1 ; [] ` key : T2

Γ1 ; [] ` msg : Un Γ1 ; e ` n : N(e)
Γ1 ; e ` (msg , n) : T1

Γ1 ; [end〈msg〉 7→ 1] ` {(msg , n)}key : Un
Γ1 ; [end〈msg〉 7→ 1] ` ch!{(msg , n)}key

Γ1 ; [chk〈msg〉 7→ 1, end〈msg〉 7→ 1] ` ch!{msg , n}key
Γ1 ; [chk〈msg〉 7→ 1] ` begin msg . · · ·
ch : Un, key : T, n : Un ; [] ` (νmsg) · · ·
ch : Un, key : T ; [] ` Sender(ch, key)

Here, T1 = Un × N([end〈0〉 7→ 1]), T2 = Key(T1), e = [end〈msg〉 7→ 1] and
Γ1 = ch : Un, key : T, n : Un,msg : Un.

The sub-process ch?ctext . · · · of Receiver(ch, key) is typed as follows.

Γ3 ; [] ` non : Un Γ3 ; [] ` non ′ : N(e′) Γ3 ; e′ ` end m

Γ3 ; [chk〈non〉 7→ 1] ` check non is non ′. · · ·
Γ2, x : Un×N([end〈0〉 7→ 1]) ; [chk〈non〉 7→ 1] ` split x is (m,non ′). · · ·

Γ2 ; [chk〈non〉 7→ 1] ` decrypt ctext is {x}key . · · ·
ch : Un, key : T2,non : Un ; [chk〈non〉 7→ 1] ` ch?ctext . · · ·

Here, e′ = [end〈m〉 7→ 1], Γ2 = ch : Un, key : T,non : Un, ctext : Un and Γ3 =
Γ2, m : Un,non ′ : N([end〈m〉 7→ 1]). From this, we can get ch : Un, key : T ; [] `
Receiver(ch, key).

The entire system System is typed as ch : Un ; [] ` System. ut

3.3 Type Soundness

The soundness of our type system is stated as follows.

Theorem 1 (robust safety). If x1 :Un, . . . xn :Un ; [] ` P , then P is robustly
safe.

The theorem says that if x1:Un, . . . xn:Un:[] ` P holds, then the correspondence
assertions in P hold even in the presence of attackers.

The rest of this subsection sketches the proof of the above theorem. Gordon
and Jeffrey [2] proved the robust safety by showing (i) any well-typed process
is safe, and (ii) any attacker (an opponent process) is well-typed. Our proof is
similar, but a few modifications are required, because of the following points:

– An attacker process is not necessarily typed in our type system.
– The safety of a well-typed process usually follows from the fact that typing

is preserved by reductions. Our type system does not, however, satisfy the
type preservation property (recall that the rules T-In and T-Out imposes
no restriction on the type of messages, except the condition pub(T)).

To remedy the problems above, we first extend the type system. We add the
following rules for subtyping and subsumption to the type system presented so
far.

pub(T) pub(T ′)
T ≤ T ′

Γ ; e ` M : T ′ T ′ ≤ T

Γ ; e ` M : T

Let us write Γ ; e `EX M : T if Γ ; e ` M : T is derivable in the extended type
system. Then, we can prove the following lemmas in a manner similar to [2]:

Lemma 1. If Γ ; [] `EX P , then P is safe.

Lemma 2. If O contains no begin/end/check-expressions and
FN (O) ⊆ {x1, . . . , xn}, then x1 : Un, . . . , xn : Un; [] `EX O holds.

We can now prove Theorem 1.

Proof of Theorem 1 Suppose that x1 : Un, . . . , xn : Un; e ` P holds. Let O be
a process such that FN (O) ⊆ {x1, . . . , xn} and O contains no begin/end/check-
expressions. It suffices to show that P |O is safe.

By the definition of the extended type system, we have x1 : Un, . . . , xn :
Un; [] `EX P . By Lemma 2, we have x1 : Un, . . . , xn : Un; [] `EX O. By rule
T-Par, we obtain x1 : Un, . . . , xn : Un; [] `EX P |O. By Lemma 1, P |O is safe.
¤

3.4 On the Expressive Power of the Type System

The expressive power of our type system is incomparable to that of Gordon and
Jeffrey’s type system [2]. On one hand, the following process, which uses the
name x both as a pair and a sum, is typed under x :Un in Gordon and Jeffrey’s
type system, but not in our type system (without the extension).

split x is (y, z).case x is inl(y).0 is inr(z).0

On the other hand, consider the following process HalfCap.

(νy)(νz)(begin x.(c!{y}k | d!{z}k)
| c?u.d?v.decrypt u is {y′}k.decrypt v is {z′}k.

check y is y′.check z is z′.end x.)

The first process raises a begin-event, and passes the capability to raise an end-
event through the names y and z. The above process HalfCap is typed as follows
in our type system:

x : Un, c : Un, d : Un, k : Key(N([end〈x〉 7→ 0.5])) ; [] ` HalfCap.

P is not, however, typable in Gordon and Jeffrey’s type system.
Despite the difference of the expressive power, however, we expect that both

the type systems are equally effective for realistic protocols. First, with the

extension discussed in Section 3.3, our type system is strictly more expressive
than Gordon and Jeffrey’s type system: If P is well-typed in their type system,
then the process obtained from P by removing type annotations and casts is well-
typed in our type system. Second, HalfCap given above is an artificial example,
and we are not aware of realistic protocols that use fractional capabilities.

4 Type Inference Algorithm

A type inference algorithm can be obtained in the same manner as in our previous
work [6]. The algorithm consists of the following steps.

– Step 1: Generate constraints on effects based on the typing rules.
– Step 2: Reduce the constraints on effects into linear inequalities on rational

numbers.
– Step 3: Check whether the linear inequalities have a solution.

The algorithm is sound and complete: Given a process P , the algorithm always
terminates, and it outputs a type-annotated process if and only if x1 :Un, . . . , xn :
Un; [] ` P .

For the first step, we first eliminate the rule T-SubEf by combining it with
other rules. For example, the rule T-End can be replaced by:

Γ ; e′ ` P FN (M) ⊆ dom(Γ) e′ + [end〈M〉 7→ 1] ≤ e

Γ ; e ` end M.P
(T-End’)

The resulting typing rules are syntax-directed: there is exactly one rule for each
message/process constructor. Based on the typing rules, we can easily generate
constraints on type and effect variables, and then reduce them to constraints on
effect variables of the following forms:

e ≤ e′ FN (e) ⊆ {α1, . . . , αn} α 6∈ FN (e)

Here, e is an expression constructed from effects, effect variables, +, and substi-
tutions.

The second step is also straightforward. We first obtain a set of atomic effects
{A1, . . . , Am} that may occur in effects. We then replace each effect variable ρ
with [A1 7→ ηρ,1, . . . , Am 7→ ηρ,m] by preparing variables ηρ,1, . . . , ηρ,m ranging
over rational numbers. We can then reduce each effect to linear inequalities. For
example, ρ1 ≤ ρ2 is reduced to the set of constraints {ηρ1,1 ≤ ηρ2,1, . . . , ηρ1,m ≤
ηρ2,m}. α /∈ FN (e) is replaced by: {ηρ,i = 0 | α occurs in Ai}.

As in [6], the type inference algorithm runs in time polynomial in the size of
a process under the following assumptions:

1. The simple type of each message occurring in the process is bound by a
constant.

2. The arguments of begin/end-events cannot contain encrypted messages (of
the form {M}K).

Note that the first assumption ensures that the size of the effect constraints in
step 1 is polynomial in the size of the given process. The first and second condi-
tions ensure that the size of the set of relevant atomic effects is also polynomial,
hence so is the size of the linear inequalities.

Example 4. Recall Example 1. In step 1, we first prepare the following template
of type derivation for Sender(ch, key):

Γ2; ρ4 ` ch : Un
Γ2; ρ6 ` key : T

Γ2; ρ8 ` msg : N(ρ14) Γ1; ρ9 ` n : N(ρ13)
Γ2; ρ7 ` (msg , n) : N(ρ11)×N(ρ12)

Γ2; ρ5 ` {(msg , n)}key : N(ρ10)
Γ2; ρ3 ` ch!{msg , n}key
Γ2; ρ2 ` begin msg . · · ·

Γ1; ρ1 ` (νmsg) · · ·
Γ0; ρ0 ` Sender(ch, key)

Here, T, Γ0, Γ1, and Γ2 are given by:

T = Key(N(ρ15)×N(ρ16)) Γ0 = ch : Un, key : T
Γ1 = Γ0, n : N(ρn) Γ2 = Γ1,msg : N(ρmsg)

From the derivation tree, we obtain the following constraints:

ρ1 ≤ ρ0 ρ2 ≤ ρ1 + [chk〈msg〉 7→ 1] ρ3 ≤ ρ2 + [end〈msg〉 7→ 1]
ρ4 = ρ6 = [] ρ7 ≤ ρ5 ≤ ρ3 ρ8 + ρ9 ≤ ρ7

pub(N(ρn)) gen(N(ρmsg)) N(ρ15)×N(ρ16) = N(ρ11)×N(ρ12)
N(ρ11) = N(ρ14) N(ρ13) = [msg/0]N(ρ12) ρn + ρ9 = ρ13

FN (ρ15) ⊆ {ch} FN (ρ16) ⊆ {ch, 0} FN (ρn) ⊆ {ch, key} · · ·

(The constraints on the last line come from the well-formedness conditions of
type judgments.) The constraints on types can be easily reduced to those on
effects: for example, pub(N(ρn)) is replaced by ρn = [].

By analyzing the effect constraints generated from the whole process System,
we can infer that the relevant atomic effects are S = {end〈α〉, chk〈α〉 | α ∈
{0,msg ,non,non ′,m}}. Let ρi(A) = ηi,A for A ∈ S. Then, we can generate linear
inequalities from the effect constraints. For example, from ρ2 ≤ ρ1+[chk〈msg〉 7→
1], we obtain the following linear inequalities:

η2,chk〈msg〉 ≤ η1,chk〈msg〉 + 1 ∀A ∈ S \ {chk〈msg〉}.η2,A ≤ η1,A

5 Experiments

We have implemented a prototype protocol verifier SpiCA based on our type
system. The implementation is available from http://www.kb.ecei.tohoku.
ac.jp/~koba/spica/. The system takes a protocol description without type
annotations as an input. If the input is well-typed, the system annotates it with

Processes Typing #EC #LC Time (ms)

nonce-handshake yes 49 13 20

flawed-handshake no 45 0 20

HalfCap yes 60 14 30

woo-lam yes 273 311 50

flawed-wide-mouth no 239 1208 90

wide-mouth yes 349 1328 100

otway-ree yes 462 2143 180

Table 1. Benchmark results

types and effects; otherwise, it just reports that the input is ill-typed. The current
system uses simplex method routines of the GLPK library [9] (via ocaml-glpk,
http://ocaml-glpk.sourceforge.net/) to solve linear inequalities; thus, the
implementation may suffer from exponential time complexity in the worst-case.

Table 1 summarizes the results of preliminary experiments. The experiments
are conducted on a machine with an Intel(R) Pentium(R) 1.2GHz processor and
500MB memory. The column “Typing” shows whether or not the processes were
judged to be well-typed. The columns “#EC” and “#LC” respectively show the
number of effect constraints and that of linear inequalities generated in Steps 1
and 2 of the algorithm. The column “Time” shows the running time. The pro-
cess nonce-handshake is the system in Example 1, while flawed-handshake is
a flawed version obtained from nonce-handshake by removing the check opera-
tion. The process HalfCap is the one discussed in Section 3.4. The other protocols
were taken from Gordon and Jeffrey’s paper [2]. The process woo-lam is a cor-
rected version of Woo and Lam’s protocol. The processes flawed-wide-mouth
and wide-mouth are flawed and corrected versions of Abadi and Gordon’s vari-
ant of wide mouth frog. The process otway-ree is Abadi and Needham’s variant
of Otway and Ree’s key exchange protocol.

All the processes were correctly verified (or rejected as ill-typed in the case
for the flawed protocols), and the inferred types and effects were as expected:
for example, Key(N([end〈x〉 7→ 0.5])) was automatically inferred as the type of
k in HalfCap.

In some cases, the number of linear constraints is smaller than that of ef-
fect constraints. That is because constraints (such as unification constraints)
are simplified before the translation into linear constraints. In particular, for
flawed-handshake, inconsistency is detected in the simplification phase for ef-
fect constraints.

6 Related Work

This paper combines Gordon and Jeffrey’s work [2] on the type system for check-
ing authenticity with our previous work [6] of using fractional effects to enable
polynomial-time type inference for π-calculus with correspondence assertions.

The combination is non-trivial, however. Since Gordon and Jeffrey’s type sys-
tem has explicit type annotations and cast operations, non-trivial modifications
of the type system were necessary to adapt our previous technique.

Gordon and Jeffrey later extended their type system to deal with asymmetric
cryptographic protocols [7]. We expect that our approach can also be extended
to deal with them.

Gordon, Hüttel, and Hansen [10] have also recently proposed a type inference
algorithm for checking correspondence assertions in π-calculus. The algorithm
checks one-to-many correspondence (in which there may be more than one end-
events for each begin-event), rather than one-to-one correspondence considered
in the present paper and our previous work [6]. Their algorithm is quite different
from ours, and does not handle cryptographic primitives.

Bugliesi, Focardi, and Maffei [11, 12] have proposed type-based static analy-
ses for authentication protocols that are closely related to Gordon and Jeffrey’s
type systems. They [13] later introduced an algorithm for automatically infer-
ring tags (which roughly correspond to Gordon and Jeffrey’s types [2, 7]). Their
inference algorithm is based on exhaustive search of potential taggings by back-
tracking. Our type inference algorithm is therefore more efficient theoretically.
The advantage of our polynomial-time type inference may not be so important
in analyzing abstract descriptions of cryptographic protocols, which are usually
very short. The advantage may be more significant for analyzing the source code
of cryptographic protocols [14].

Blanchet [15] also proposed automated techniques for checking checking cor-
respondence assertions in cryptographic protocols. An advantage of our type-
based approach is that the result of type inference gives a better explanation of
why the protocol is safe. Blanchet [16] has recently proposed a quite different
technique for authenticity verification. His technique can guarantee soundness in
the computational model, rather than in the formal model with the assumption
of perfect encryption.

The idea of using rational numbers in type systems goes back to the work of
Boyland [17], and has been extensively studied by Terauchi [18–20].

7 Conclusion

We have modified Gordon and Jeffrey’s type system for checking correspondence
assertions in cryptographic protocols, and obtained a type inference algorithm,
which serves as an algorithm for automated verification of cryptographic proto-
cols. Under certain reasonable assumptions, the algorithm runs in time polyno-
mial in the size of an input process.

Acknowledgment We would like to thank Koki Nishizawa for comments and
discussions on this work, and Kohei Suenaga for his help in using the GLPK
library.

References

1. Gordon, A.D., Jeffrey, A.: Typing correspondence assertions for communication
protocols. Theor. Comput. Sci. 300 (2003) 379–409

2. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. Journal
of Computer Security 11(4) (2003) 451–520

3. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic proto-
cols. In: 15th IEEE Computer Security Foundations Workshop (CSFW-15). (2002)
77–91

4. Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols. In: RSP:
IEEE Computer Society Symposium on Research in Security and Privacy. (1993)
178–193

5. Haack, C., Jeffrey, A.: Cryptyc. http://www.cryptyc.org/ (2004)
6. Kikuchi, D., Kobayashi, N.: Type-based verification of correspondence assertions

for communication protocols. In: Proceedings of APLAS 2007. Volume 4807 of
LNCS., Springer-Verlag (2007) 191–205

7. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security 12(3-4) (2004) 435–483

8. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Cal-
culus. Information and Computation 148(1) (January 1999) 1–70

9. GNU Linear Programming Kit. http://www.gnu.org/software/glpk

10. Gordon, A.D., Hüttel, H., Hansen, R.R.: Type inference for correspondence types.
In: 6th International Workshop on Security Issues in Concurrency (SecCo 2008).
(2008)

11. Bugliesi, M., Focardi, R., Maffei, M.: Compositional analysis of authentication
protocols. In: ESOP. Volume 2986 of LNCS., Springer-Verlag (2004) 140–154

12. Bugliesi, M., Focardi, R., Maffei, M.: Authenticity by tagging and typing. In: Pro-
ceedings of the 2004 ACM Workshop on Formal Methods in Security Engineering
(FMSE 2004). (2004) 1–12

13. Focardi, R., Maffei, M., Placella, F.: Inferring authentication tags. In: Proceedings
of the Workshop on Issues in the Theory of Security (WITS 2005). (2005) 41–49

14. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. In: Proceedings of the 21st IEEE Computer
Security Foundations Symposium (CSF 2008). (2008) 17–32

15. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In: 9th Inter-
national Static Analysis Symposium (SAS’02). Volume 2477 of LNCS., Springer-
Verlag (2002) 342–359

16. Blanchet, B.: Computationally sound mechanized proofs of correspondence asser-
tions. In: 20th IEEE Computer Security Foundations Symposium (CSF’07). (2007)
97–111

17. Boyland, J.: Checking interference with fractional permissions. In: Proceedings of
SAS 2003. Volume 2694 of LNCS., Springer-Verlag (2003) 55–72

18. Terauchi, T., Aiken, A.: Witnessing side-effects. In: Proc. of ICFP, ACM (2005)
105–115

19. Terauchi, T., Aiken, A.: A capability calculus for concurrency and determinism.
ACM Trans. Prog. Lang. Syst. 30(5) (2008)

20. Terauchi, T.: Checking race freedom via linear programming. In: Proc. of PLDI.
(2008) 1–10

