
Model-Checking Higher-Order Programs with

Recursive Types

Naoki Kobayashi1 and Atsushi Igarashi2

1 The University of Tokyo
2 Kyoto Univeristy

Abstract. Model checking of higher-order recursion schemes (HORS,
for short) has been recently studied as a new promising technique for
automated verification of higher-order programs. The previous HORS
model checking could however deal with only simply-typed programs, so
that its application was limited to functional programs. To deal with a
broader range of programs such as object-oriented programs and multi-
threaded programs, we extend HORS model checking to check properties
of programs with recursive types. Although the extended model checking
problem is undecidable, we develop a sound model-checking algorithm
that is relatively complete with respect to a recursive intersection type
system and prove its correctness. Preliminary results on the implemen-
tation and applications to verification of object-oriented programs and
multi-threaded programs are also reported.

1 Introduction

The model checking of higher-order recursion schemes (HORS for short) [15]
has been recently studied as a new technique for automated verification of
higher-order functional programs [9, 14, 16, 13]. HORS is essentially a simply-
typed higher-order functional program with recursion for generating (possibly
infinite) trees, and the goal of HORS model checking is to decide whether the
tree generated by a given HORS satisfies a given property. The idea of apply-
ing the HORS model checking is to transform a given functional program M
to a HORS G that generates a tree describing possible outputs or event se-
quences of the program [9]; verification of the program is then reduced to HORS
model checking, to decide whether the tree generated by G represents valid out-
puts or event sequences. Based on this idea, various verification problems for
functional programs have been reduced to it [9, 14, 16]. By combining it with
predicate abstraction, a software model checker for functional programs can be
constructed [16, 13].

The above approach to automated verification of functional programs, how-
ever, cannot be smoothly extended to support other important programming
language features, such as objects and concurrency. Object-oriented programs
often use (mutually) recursive interfaces, which cannot be naturally modeled by
HORS (which are simply-typed functional programs). In fact, even Featherweight
Java (FJ) [5] (with only objects as primitive data) is Turing complete [22]. As

for concurrency, the model checking of concurrent pushdown systems [20] is un-
decidable. These imply that there cannot be a sound and complete reduction
from verification problems for object-oriented or recursive concurrent programs
to HORS model checking. These situations are in sharp contrast to the case
for functional programs, for which we have a sound and complete reduction to
HORS model checking, as long as the programs use only finite base types (such
as booleans, but not unbounded integers) [9].

The present paper aims to overcome the above limitations by introducing an
extension of HORS model checking, where models, i.e., higher-order recursion
schemes, are extended with recursive types. The extended higher-order recursion
schemes, called μHORS, are essentially the simply-typed λ-calculus extended
with tree constructors, (term-level) recursion, and recursive types, which is Tur-
ing complete. The model checking of μHORS (μHORS model checking for short)
is undecidable, but we can develop a sound (but incomplete) model checking pro-
cedure. The procedure uses the result that HORS model checking can be reduced
to a type checking problem in an intersection type system [9, 11, 24], and solves
the type checking problem. Although the procedure is incomplete (as μHORS
model checking is undecidable) and may not terminate, it is relatively complete
with respect to a certain recursive intersection type system: any program that is
typable in the type system is eventually proved correct. The procedure incorpo-
rates a novel reduction of the intersection type checking to SAT solving, which
may be of independent interest and applicable to ordinary HORS checking.

Being armed with μHORS model checking, we can construct a fully auto-
mated verification tool (or so called a “software model checker”) for various
programming languages. Given a program, we first apply a kind of program
transformation to get a μHORS that generates a tree describing all the possible
program behaviors of interest, and then use μHORS model checking to check
that the tree describes only valid behaviors. As a proof of concept, we have
implemented a prototype of the μHORS model checker and a translator from
Featherweight Java (FJ) programs [5] to μHORS. Preliminary experiments show
that we can indeed use the μHORS model checker to verify small but non-trivial
object-oriented programs.

For the space restriction, we omit some examples and proofs, which are found
in an extended version [10].

2 Preliminaries

This section introduces μHORS, defines model checking problems for them, and
reduces it to a type-checking problem in a recursive intersection type system.

2.1 Recursive Intersection Types

Before introducing μHORS model checking, we first formalize recursive intersec-
tion types. We fix a finite set Q of base types below, and use the meta-variable
q for its elements. We use the meta-variable α for type variables.

Definition 1. A (recursive intersection) type is a pair (E,α), where E is a
finite set of equations of the form αi = σ1 → · · · → σm → q, and σ is of
the form

∧{α1, . . . , αk}. Here m and k may be 0. We use the meta-variable τ
for recursive intersection types. We write Tv(τ) for the set of type variables
occurring in τ . A recursive intersection type τ = (E,α) is closed if, for every
α ∈ Tv(τ), (α = θ) ∈ E for some θ. When (α = θ) ∈ E, we write E(α) for θ.

We identify types up to renaming of type variables. For example, ({α = q}, α)
is the same as ({β = q}, β). Thus, for two closed types τ0 and τ1, we always
assume that Tv(τ0)∩Tv(τ1) = ∅. We often write α1 ∧ · · · ∧ αk or

∧
i∈{1,...,k} αi

for
∧ {α1, . . . , αk} and write � for

∧ ∅. Intuitively, (E,α) denotes the (recur-
sive) type α that satisfies the equations in E. For example, ({α = α → q}, α)
represents the recursive type μα.(α → q) in the usual notation. We often use
this term notation for recursive intersection types. By abuse of notation, when
E(α) =

∧
i∈I1

αi → · · · → ∧
i∈Ik

αi → q, we write
∧

i∈I1
(E,αi) → · · · →∧

i∈Ik
(E,αi) → q for (E,α). For example, when E = {α0 = α1 → q0, α1 = q1},

(E,α0) is also written as (E,α1) → q0 or q1 → q0. The type σ1 → · · · → σm → q
describes functions that take m arguments of types σ1, . . . , σm, and return a
value of type q. The type α1∧· · ·∧αk describes values that have all of the types
α1, . . . , αk. For example, if Q = {q1, q2}, the identity function on base values
(λx.x in the λ-calculus notation) would have types (q1 → q1) ∧ (q2 → q2).

We define the subtyping relation τ0 ≤ τ1, which intuitively means, as usual,
that any value of type τ0 can be used as a value of type τ1.

Definition 2 (subtyping). Let τ = (E′′, α) and τ ′ = (E′, α′) be closed types,
and let E = E′′∪E′. The type τ is a subtype of τ ′, written τ ≤ τ ′, if there exists
a binary relation R on Tv(τ)∪Tv(τ ′) such that (i) (α, α′) ∈ R and (ii) for every
(α0, α

′
0) ∈ R, there exist σ1, . . . , σm, σ

′
1, . . . , σ

′
m, q such that E(α0) = σ1 → · · · →

σm → q and E(α′
0) = σ′

1 → · · · → σ′
m → q, with (σ′

1, σ1), . . . , (σ
′
m, σm) ∈ R∧.

Here, R∧ is:
{(∧{α′

1, . . . , α
′
k′},∧{α1, . . . , αk}) | ∀i ∈ {1, . . . , k}.∃j ∈ {1, . . . , k′}.α′

jRαi}.
We write τ ∼= τ ′ if τ ≤ τ ′ and τ ′ ≤ τ .

Example 1. Let τ0 = ({α0 = α0 → q}, α0) and τ1 = ({α1 = α2 → q, α2 =
α1 ∧ α3 → q, α3 = q}, α1). τ1 ≤ τ0 holds, with the relation {(α1, α0), (α0, α2)}
as a witness.

2.2 µHORS

We introduce below μHORS and its model checking problem, and reduce the lat-
ter to a type checking problem. To our knowledge, the notion of μHORS is new,
but it is a subclass of the untyped HORS studied by Tsukada and Kobayashi [24],
and the reduction from μHORS model checking to type checking (Theorem 1)
is a corollary of the result of [24]. We shall therefore quickly go through the
definitions and results; more formal definitions (apart from recursive types) and
intuitions are found in [15, 9, 24].

µHORS and model checking problems The set of basic types (called sorts)
is the subset of recursive intersection types, where Q is a singleton set {o} (where
o is the type of trees) and there is no intersection: in σ =

∧{α1, . . . , αk}, k is
always 1. Below we often use the following term representation of sorts:

κ ::= α | κ1 → · · · → κ� → o | μα.κ.
Let Σ be a ranked alphabet, i.e., a map from symbols to their arities. An

element of dom(Σ) is used as a tree constructor. A sort environment is a map
from variables to sorts. The set of applicative terms of type κ under a sort
environment K is inductively defined by the following rules:

K, x : κ
 x : κ K
 a : o → · · · → o︸ ︷︷ ︸
Σ(a)

→ o

K
 t1 : κ1 K
 t2 : κ2 κ1 ∼= (κ2 → κ)

K
 t1 t2 : κ

As usual, applications are left-associative, so that t1 t2 t3 means (t1 t2) t3.
A μHORS G is a quadruple (N , Σ,R, S) where: (i) N is a map from variables

(called non-terminals) to sorts; (ii) Σ is a ranked alphabet, where dom(N) ∩
dom(Σ) = ∅; (iii) R is a map from non-terminals to a λ-term of the form
λx1. · · ·λx�.t where t is an applicative term; (iv) S, called the start symbol, is a
non-terminal such that N (S) = o. If N (F) = κ1 → · · · → κk → o and R(F) =
λx1. · · ·λx�.t, then it must be the case that k =
 and N , x1 :κ1, . . . , x� :κ�
 t : o.

The (possibly infinite) tree generated by G, written by Tree(G), is defined as
the limit of infinite fair reductions of S [15] where the reduction relation −→
is defined by: (i) F t1 · · · t� −→ [t1/x1, . . . , t�/x�]t if R(F) = λx1. · · ·λx�.t; and
(ii) a t1 · · · t� −→ a t1 · · · ti−1 t

′
i ti+1 · · · t� if ti −→ t′i for some i ∈ {1, . . . ,
}.

See [15] for the formal definition of Tree(G).
Notation 1 We write ũ for a sequence u1 · · ·u�. λx̃.t stands for λx1. · · ·λx�.t,
and [s̃/x̃]t for [s1/x1, . . . , s�/x�]t (with the understanding that s̃ and x̃ have the
same length
). We often write the four components of G as NG , ΣG ,RG , SG,
and omit the subscript if it is clear from context. We often write R as a set
of rewriting rules {F1 x1 · · · x�1 → t1, . . . , Fm x1 · · · x�m → tm} if R(Fi) =
λx1. · · ·λx�i .ti for each i ∈ {1, . . . ,m}.
Example 2. Consider μHORS G1 = (N1, Σ1,R1, S) where N1 = {S �→ o, F �→
(o → o)}, Σ1 = {a �→ 2, b �→ 1, c �→ 0}, and R1 = {S → F c, F x →
a x (F (b x))}. S is rewritten as follows, and the tree in Figure 1 is generated:
S −→ F c −→ a c (F (b c)) −→ a c (a (b c) (F (b (b c))) −→ · · · .
Example 3. Consider μHORS G2 = (N2, Σ1,R2, S) where Σ1 is as given in
Example 2, and: N2 = {S �→ o, F �→ (o → o), G �→ μα.(α → o → o)} and
R2 = {S → F c, F x → GGx, Gg x → a x (g g (b x))}. This is the same as G1

except that recursive types are used instead of term-level recursion. S is reduced
as below, and the same tree as Tree(G1) is generated.

S −→ F c −→ GG c −→ a c (GG (b c)) −→ a c (a (b c) (GG (b (b c))) −→ · · ·

a

c a

b

c

a

b2

c

a

· · · · · ·

Fig. 1. The tree generated by G1 of Example 2.

Remark 1. A tree node that is never instantiated to a terminal symbol is ex-
pressed by the special terminal symbol ⊥ (with arity 0). For example, for μHORS
G3 = (N3, Σ1,R3, S) where N3 = {S �→ o, F �→ μα.(α → o)} and R3 = {S →
F F, F x→ xx}, Tree(G3) is a singleton tree ⊥. ��

As usual [15, 9], we use (top-down) tree automata to express properties of
the tree generated by higher-order recursion schemes. For a ranked alphabet Σ,
a Σ-labeled tree T is a map from sequences of natural numbers (which repre-
sent paths of the tree) to dom(Σ), such that (i) its domain dom(T) is non-
empty and closed under the prefix operation, and (ii) if π ∈ dom(T) then
{j | πj ∈ dom(T)} = {1, . . . , Σ(T (π))}. A (deterministic) trivial automa-
ton B is a quadruple (Σ,Q, δ, q0), where Σ is a ranked alphabet, Q is a fi-
nite set of states, δ, called a transition function, is a partial map from Q ×
dom(Σ) to Q∗ such that |δ(q, a)| = Σ(a), and q0 is the initial state. A Σ-
labeled tree T is accepted by B if there is a Q-labeled tree R (called a run
tree) such that: (i) dom(T) = dom(R); (ii) R(ε) = q0; and (iii) for every
π ∈ dom(R), δ(R(π), T (π)) = R(π1) · · ·R(πΣ(T (π))). For a trivial automa-
ton B = (Σ,Q, δ, q0) (with ⊥ �∈ dom(Σ)), we write B⊥ for the trivial automaton
(Σ ∪ {⊥ �→ 0}, Q, δ ∪ {(q,⊥) �→ ε) | q ∈ Q}, q0). We often write ΣB, QB, δB, qB,0

for the four components of B, and omit the subscript if it is clear from context.
Trivial automata are sufficient for describing safety properties: see [12] for the
logical characterization.

Example 4. Let B1 = (Σ1, {q0, q1}, δ, q0) where Σ1 is as given in Example 2 and
δ is given by: δ(q0, a) = q0q0, δ(q0, b) = δ(q1, b) = q1, and δ(q0, c) = δ(q1, c) = ε.
It accepts a Σ1-labeled (ranked) tree T if and only if a does not occur below b.
In particular, B1 accepts the tree shown in Figure 1. ��

The μHORS model checking is the problem of checking whether Tree(G) is
accepted by B⊥, given a μHORS G and a trivial automaton B. The problem
is in general undecidable [24]. We give a sound type system for checking that
Tree(G) is accepted by B⊥. The set of recursive intersection types is as given in
Section 2.1, where the set Q of base types is the set of states of B. Intuitively, a
state q is regarded as the type of trees accepted by B⊥ from the state q [9].

The type judgment relations Γ
B t : τ and Γ
B (G, t) : τ (where Γ , called
a type environment, is a set of type bindings of the form x : τ) are defined by:

τ ≤ τ ′

Γ, x : τ
B x : τ ′
δB(q, a) = q1 · · · qk q1 → · · · → qk → q ≤ τ

Γ
B a : τ

Γ
B t1 :
∧

i∈I τi → τ
Γ
B t2 : τ ′i and τ ′i ≤ τi (for every i ∈ I)

Γ
B t1t2 : τ

Γ, x : τ1, . . . , x : τ�
B t : τ
x does not occur in Γ

Γ
B λx.t :
∧

i∈{1,...,�} τi → τ

∀(F : τ) ∈ Γ.(Γ
B R(F) : τ)

B R : Γ

B RG : Γ Γ
B t : τ
Γ
B (G, t) : τ

The following theorem is a special case of the soundness of Tsukada and
Kobayashi’s infinite intersection type system for untyped HORS [24].

Theorem 1 (soundness). Let B be a trivial automaton (Σ,Q, δ, qB,0) and G
be a μHORS. If Γ
B (G, SG) : qB,0, then Tree(G) is accepted by B⊥.

Example 5. Recall G1 and G2 in Examples 2 and 3, and B1 in Example 4. Γ1
B1

(G1, S) : q0 and Γ2
B1 (G2, S) : q0 hold for Γ1 = {S : q0, F : (q0 ∧ q1) → q0} and
Γ2 = Γ1 ∪ {G : μα.(α → (q0 ∧ q1) → q0)}. ��
Given a type environment Γ , a μHORS G, and an automaton B, it is decidable
whether Γ
B (G, SG) : qB,0 holds. Thus, Γ can be used as a certificate for
Tree(G) being accepted by B. The converse of the theorem above does not hold,
i.e., there is a μHORS G such that Tree(G) is accepted by B⊥ but Tree(G) is
not well-typed. We have the following properties on the (un)decidability of type
checking. See [10] for a proof.

Theorem 2. 1. Given a type environment Γ , a μHORS G, and a trivial au-
tomaton B, it is decidable whether Γ
B (G, SG) : qB,0 holds.

2. Given a μHORS G and a trivial automaton B, it is undecidable whether there
exists Γ such that Γ
B (G, SG) : qB,0 holds.

3 Model Checking µHORS

We now describe the main result of this paper: a model checking procedure for
μHORS. We shall develop a procedure Check that satisfies:

Check(G,B) =
{
Γ ′ such that Γ ′
B (G, SG) : qB,0 if ∃Γ.Γ
B (G, SG) : qB,0

No (with a counterexample) if Tree(G) is not accepted by B⊥

By Theorem 2, the procedure Check can only be a semi-algorithm: it may not
terminate if Tree(G) is accepted by B⊥ but ∃Γ.Γ
B (G, SG) : qB,0 does not hold.

An obvious approach would be to run (i) a sub-procedure FindCert(G,B) to
enumerate all the finite type environments Γ and output Γ if Γ
B (G, SG) : qB,0

holds, and in parallel, (ii) a sub-procedure FindCE(G,B) to reduce G in a fair
manner and output No if a partially generated tree is not accepted by B⊥. The
first sub-procedure FindCert is, however, too non-deterministic to be used in
practice.

We describe below a more realistic procedure for FindCert(G,B) that out-
puts Γ such that Γ
B (G, SG) : qB,0 if there is any, and may diverge otherwise.
As FindCert can incrementally find the types of non-terminals, we can use
them to improve FindCE as well, by removing well-typed terms from the search
space. As such interaction between FindCert and FindCE is the same as the
case without recursive types [8], we focus on the discussion of FindCert below.

3.1 Type Inference Procedure

We first give an informal overview of the idea of FindCert. Since it is easy to
check whether a given Γ is a valid certificate (i.e. whether Γ
B (G, SG) : qB,0

holds), the main issue is how to find candidates for Γ . As in the algorithm
for HORS without recursive types [8], the idea of finding Γ is to extract type
information by partially reducing a given recursion scheme, and observing how
each non-terminal symbol is used. For example, suppose that S is reduced as
follows. S : q0 −→∗ C1[F G : q1] −→∗ C2[Gt : q2] −→∗ C3[t : q1]. Here, we have
annotated each term with a state of the property automaton; t : q means that
the tree generated by t should be accepted from q. From the reduction sequence,
we know t should have type q1, from which we can guess that G should have
type q1 → q2, and we can further guess that F should have type (q1 → q2) → q1.
This way of guessing types is complete for HORS (without recursive types) [8].
In the presence of recursive types, however, we need a further twist, to obtain
(relative) completeness. For example, suppose S is reduced as follows. S :q0 −→∗

C1[F t1 : q1] −→∗ C2[t1 t2 : q0] −→∗ C3[t2 t3 : q1] −→∗ C4[t3 t4 : q0] −→∗ · · ·. This
kind of calling chain terminates for ordinary HORS (since the terms are simply-
typed), but may not terminate for μHORS because of recursive types. (For
example, consider a variation of G3 in Remark 1, where the rule for F is replaced
by F x → x (I x), with the new rule I x → x. Then, we have an infinite calling
chain: S −→∗ F (I F) −→∗ (I F) (I (I F)) −→∗ (I (I F)) (I (I (I F))) −→∗ · · ·.)
Thus, we would obtain an infinite set of type equations:
αF = αt1 → q1 αt1 = αt2 → q0 αt2 = αt3 → q1 αt3 = αt4 → q0 · · ·
(where αt represents the type of term t). To address this problem, we introduce
an equivalence relation ∼ on terms, and consider reductions modulo ∼. In the
example above, if we choose ∼ so that t2n−1 ∼ t2n+1 and F ∼ t2n ∼ t2n+2, then
we would have finite equations α[F] = α[t1] → q1 and α[t1] = α[F] → q0 (where [t]
is the equivalence class containing t), from which we can infer μα.(α → q0) → q1
as the type of F . As we show in Theorem 3 later, this way of type inference
is complete if a proper equivalence relation ∼ is given as an oracle. It is not
complete in general, but Theorem 4 ensures that no matter how ∼ is chosen, we
can “amend” the inferred type environment to obtain a correct type environment.
Based on the theorem, we can develop a complete procedure for FindCert.

We now turn to describe the idea more formally. Let Tm be the set of (well-
sorted) closed terms constructed from non-terminals and terminals of G, and ∼
be an equivalence relation on Tm that induces a finite set of equivalence classes.
We write [t]∼ for the equivalence class containing t, i.e., {t′ | t ∼ t′}, and omit
the subscript if clear from context. Intuitively, the equivalence relation t1 ∼ t2

means that t1 and t2 behave similarly with respect to the given automaton B.
For the moment, we assume that ∼ is given as an oracle. Throughout the paper,
we consider only equivalence relations that equate terms of the same sort, i.e.,
t ∼ t′ implies N
 t : κ⇐⇒ N
 t′ : κ for every κ.

We define the extended reduction relation (X ,U) −→∼ (X ′,U ′) as the least
relation closed under the rules below, where X is a set of terms and U is a set
of pairs consisting of a term and an automaton state or a special element fail.
In rule R-NT, STm(t) denotes the set of all subterms of t.

(a t1 · · · t�, q) ∈ U δ(q, a) = q1 · · · q�
(X ,U) −→∼ (X ,U ∪ {(t1, q1), . . . , (t�, q�)})

(R-Const)

(a t1 · · · t�, q) ∈ U δ(q, a) is undef. or |δ(q, a)| �=

(X ,U) −→∼ (X ,U ∪ {fail}) (R-F)

(F t̃, q) ∈ U R(F) = λx̃.u

(X ,U) −→∼ (X ∪ STm([t̃/x̃]u),U ∪ {([t̃/x̃]u, q)}) (R-NT)

(t t1 · · · tk, q) ∈ U t ∼ t′ t′ ∈ X
(X ,U) −→∼ (X ,U ∪ {(t′ t1 · · · tk, q)}) (R-Eq)

The main differences from the reduction relation t −→ t′ in Section 2.2 are:
(i) each term t (of sort o) is coupled with its expected type, (ii) such pairs are
kept in the U component after reductions (in other words, (t, q) ∈ U means that
t should generate a tree accepted by B from state q), (iii) the X component keeps
all the sub-terms that have occurred so far, and (iv) a subterm in a head position
can be replaced by another term belonging to the same equivalence class (see
rule R-Eq above). In rule R-Const, (a t1 · · · t�, q) being an element of U means
that a t1 · · · t� should generate a tree of type q (i.e., should be accepted by B
from the state q). The premise δ(q, a) = q1 · · · q� means that the i-th subtree
should have type qi, so that we add (ti, qi) to the second component. Rule R-F
is applied when (a t1 · · · t�, q) is in the second set but no tree having a as its
root can be accepted from the state q. The condition |δ(q, a)| �=
 actually never
holds, by the assumption that ∼ equates only terms of the same sort. R-NT is
the rule for reducing non-terminals. As mentioned above, rule R-Eq is used to
replace a head of a term with an equivalent term with respect to ∼. Extended
reduction sequences are in general infinite, and non-deterministic.

Example 6. Recall G2 in Example 3. Let ∼(1) be the least congruence relation
that satisfies b(c) ∼ c. Then, by using ∼(1) as ∼, we can reduce ({S}, {(S, q0)})
as follows:

(S, q0) (F c, q0) (G G c, q0) (a c (G G (b c)), q0) (G G (b c), q0)

(c, q0) (a (b c) (G G (b (b c))), q0)(b c, q0)(c, q1) ...

Here, we have omitted the X -component, and shown only elements relevant
to reductions instead of the whole U-component. In the figure, dashed arrows

represent reductions by using rule R-Eq, and solid arrows represent reductions
obtained by the other rules. From an infinite fair reduction sequence, we obtain
the following set as U :

{(F (bk c), q0), (GG (bk c), q0), (b
k c, q0), (b

k c, q1) | k ≥ 0}
∪{(S, q0)} ∪ {(a (bk c) (GG (b� c)), q0) | k,
 ≥ 0} ��

The goal below is to construct a candidate of type environment Γ that satisfies
Γ
B G : q0, from a fair reduction sequence (where a reduction sequence is fair if
every enabled reduction is eventually reduced). The idea of the construction of
Γ is similar to the case for ordinary HORS [8]. For example, in Example 6 above,
from the pairs (c, q0) and (c, q1), we can guess that the type of c is q0∧q1. From
the pair (F c, q0), we guess that the return type of F is q0, so that the type of
F is q0 ∧ q1 → q0. The actual construction is, however, more involved than [8]
because of the presence of recursive types and the term equivalence relation ∼.

Let (X0,U0) −→∼ (X1,U1) −→∼ · · · be a fair reduction sequence where X0 =
{S} and U0 = {(S, q0)}, and let X and U be

⋃
i∈ω Xi and

⋃
i∈ω Ui respectively.

We prepare a type variable α[t0],...,[tk],q for each (t0t1 · · · tk, q) ∈ U . Intuitively,
α[t0],...,[tk],q is the type of t0 in t0 t1 · · · tk : q. Let E be:

{α[t0],[t1],...,[tk],q = σ[t1] → · · · → σ[tk] → q | (t0 t1 · · · tk, q) ∈ U},
where σ[t] =

∧{α[t],[t′1],...,[t
′
�],q

′ | (t t′1 · · · t′�, q′) ∈ U}. We define the type environ-
ment ΓX ,U ,∼ as {F : (E,α[F],[t1],...,[tk],q) | (F t1 · · · tk, q) ∈ U}. By the condition
that ∼ induces a finite number of equivalence classes, ΓX ,U ,∼ is finite.

Example 7. From the reductions in Example 6, we get the following type equa-
tions:

αS,q0 = q0 αF,c,q0 = αc,q0 ∧ αc,q1 → q0 αc,q0 = q0 αc,q1 = q1
αG,G,c,q0 = αG,G,c,q0 → αc,q0 ∧ αc,q1 → q0

Thus, the extracted type environment (in the usual term representation) is:

{S : q0, F : (q0 ∧ q1) → q0, G : μα.(α → (q0 ∧ q1) → q0)}. ��
The theorem below (see [10] for a proof) ensures that if G is typable and if ∼ is
properly chosen, ΓX ,U ,∼ is a proper witness. For a type environment Γ , we define
the equivalence relation ∼Γ by: ∼Γ= {(t1, t2) | ∀τ.(Γ
 t1 : τ ⇐⇒ Γ
 t2 : τ)}.
Theorem 3. If Γ
B (G, SG) : qB,0 and ∼⊆∼Γ , then ΓX ,U ,∼
B (G, SG) : qB,0.

Example 8. Recall G2 in Example 3, and Γ2 = {S : q0, F : (q0 ∧ q1) → q0, G :
μα.(α → (q0 ∧ q1) → q0)} in Example 5. The relation ∼ in Example 6 satisfies
the assumption ∼⊆∼Γ2 of Theorem 3, and ΓX ,U ,∼
B1 (G2, S) : q0 holds indeed.

Theorem 3 cannot be directly used for type inference, since we do not know
∼Γ in advance. We shall prove below (in Theorem 4) that even if ∼ is not a
subset of ∼Γ , we can “amend” the type environment to get a valid one, by using
the refinement relation � below. Intuitively, τ1 � τ2 means that τ1 is obtained
from τ2 by removing some intersection types. Note that unlike subtyping, the
refinement relation is co-variant in the function type constructor (→).

Definition 3 (refinement). Let τ0 = (E0, α0) and τ1 = (E1, α1) be closed
types, and let E = E0 ∪ E1. The type τ0 is a refinement of τ1, written τ0 � τ1,
if there exists a binary relation R on Tv(τ1)∪Tv(τ2) such that (i) (τ0, τ1) ∈ R
and (ii) for every (τ ′0, τ

′
1) ∈ R, there exist σ1, . . . , σm, σ

′
1, . . . , σ

′
m, q such that

E(α′
0) = σ1 → · · · → σm → q and E(α′

1) = σ′
1 → · · · → σ′

m → q, with
(σ1, σ

′
1), . . . , (σm, σ

′
m) ∈ R�. Here, R� is defined as:

{(∧{α1, . . . , αk},
∧{α′

1, . . . , α
′
k′}) | ∀i ∈ {1, . . . , k}.∃j ∈ {1, . . . , k′}.αiRα′

j}.
We write Γ1 � Γ2 if dom(Γ1) ⊆ dom(Γ2) and for every x : τ1 ∈ Γ1, there exists
τ2 such that x : τ2 ∈ Γ2 and τ1 � τ2.

Example 9. Let τ1 be q1 → q2 and τ2 be (q1 ∧ q0) → q2. Then τ1 � τ2 and
τ1 → q0 � τ2 → q0 hold. Note that τ1 ≤ τ2 but τ1 → q0 �≤ τ2 → q0. ��
Theorem 4. Suppose Γ
B (G, SG) : qB,0. Let ∼ be an equivalence relation on
Tm and (X0,U0) −→∼ (X1,U1) −→∼ (X2,U2) −→∼ · · · be a fair reduction
sequence, with (X0,U0) = ({S}, {(S, qB,0)}). Let U =

⋃
i Ui and X =

⋃
i Xi.

Then, there exists Γ ′ such that Γ ′ � ΓX ,U ,∼ and Γ ′
 (G, S) : qB,0,

The proof is given in the extended version [10]. Intuitively, Theorem 4 holds
because, if ∼ is not a subset of ∼Γ , we only get extra reduction sequences, whose
effect is only to add extra type bindings and elements in intersections. Thus, by
removing the extra nodes and edges (using the refinement relation from right to
left), we can obtain a proper type environment.

Example 10. Recall Example 6. Let ∼(2) be ∼(1) ∪{(GG, b), (b, GG)}. In ad-
dition to the reductions in Example 6, we obtain the extra reduction sequence:
(b c, q1) → (GG c, q1) → (a c (GG (b c)), q1) → fail. From the reductions, we
obtain the following type equations:

αS,q0 = q0 αF,c,q0 = αc,q0 ∧ αc,q1 → q0 αc,q0 = q0 αc,q1 = q1
αG,G,c,q0 = αG,G,c,q0∧αG,G,c,q1 → αc,q0 ∧ αc,q1 → q0
αG,G,c,q1 = αG,G,c,q1 ∧ αG,G,c,q1 → αc,q0 ∧ αc,q1 → q1

The part obtained from the extra reduction sequence is underlined. By ignoring
that part, we get the same equations as Example 7, hence obtaining the correct
type environment: {S : q0, F : (q0 ∧ q1) → q0, G : μα.(α → (q0 ∧ q1) → q0)}. ��

Theorem 4 yields the procedureFindCert in Figure 2. The condition ∃Γ ′.Γ ′
B
(G, S) : qB,0 ∧ Γ ′ � Γ is in general undecidable because of the presence of re-
cursive types. Thus, we bound the size (i.e., the number of type constructors)
of Γ ′ by v, and gradually increase the bound. An algorithm to check whether
there exists Γ ′ such that |Γ ′| < v and Γ ′
B (G, S) : qB,0 ∧ Γ ′ � Γ is discussed
in Section 3.2. By Theorem 4, we have:

Theorem 5 (relative completeness). If Γ
B (G, S) : qB,0 for some finite
recursive type environment Γ , then FindCert(G, S, qB,0) eventually terminates
and outputs Γ ′ such that Γ ′
B (G, S) : qB,0.

To see the termination, notice that by the condition that ∼ induces a finite
number of equivalence classes, there exists m such that ΓX ,U ,∼ = ΓXm,Um,∼ in
Theorem 4.

FindCert(G,B) = Rep(G,B, {S}, {(S, qB,0)}, {(S, S)}, 1)
Rep(G,B,X ,U ,∼, v) =

let (X ,U) −→�
∼ (X ′,U ′) in let ∼′ = expandEq(∼,X ′) in

if Γ ′�B(G, S):qB,0 for some Γ ′�ΓX ′,U′,∼′ and |Γ ′| ≤ v then return Γ ′

else Rep(G,B,X ′,U ′,∼′, v + 1)

Fig. 2. A type inference procedure. (|Γ | denotes the largest type size in Γ .)

3.2 Type Checking by SAT Solving

We now discuss the sub-algorithm for FindCert, to check whether there exists
Γ ′ such that |Γ ′| ≤ v and Γ ′
B (G, S) : qB,0 ∧ Γ ′ � Γ .

We first rephrase the condition |Γ ′| ≤ v ∧ Γ ′ � Γ . For a set E = {α1 =
σ1,1 → · · ·σ1,m1 → q1, . . . , αn = σn,1 → · · ·σn,mn → qn}, we write E(k) for:

{α(1)
1 = σ

(k)
1,1 → · · ·σ(k)

1,m1
→ q1, . . . , α

(1)
n = σ

(k)
n,1 → · · ·σ(k)

n,mn → qn, . . . ,

α
(k)
1 = σ

(k)
1,1 → · · ·σ(k)

1,m1
→ q1, . . . , α

(k)
n = σ

(k)
n,1 → · · ·σ(k)

n,mn → qn, },
obtained by preparing k copies for each type variable. Here, for σ =

∧{α1, . . . , α�},
σ(k) represents

∧{α(1)
1 , . . . , α

(1)
� , . . . , α

(k)
1 , . . . , α

(k)
� }. Clearly, (E,αi) ∼= (E(k), α

(1)
i).

We write Γ (k) for {x : (E(k), α(i)) | x : (E,α) ∈ Γ, 1 ≤ i ≤ k}.
We write E �s E

′ if E is obtained from E′ by removing some elements from
intersections, i.e., if E = {α1 =

∧
S1,1 → · · ·∧S1,m1 → q1, . . . , αn =

∧
Sn,1 →

· · ·∧Sn,mn → qn} and E′ = {α1 =
∧
S′
1,1 → · · ·∧S′

1,m1
→ q1, . . . αn =∧

S′
n,1 → · · ·∧S′

n,mn
→ qn} with Si,j ⊆ S′

i,j for every i, j. It is pointwise
extended to Γ �s Γ

′ by: Γ �s Γ
′ ⇐⇒ ∀x : (E,α) ∈ Γ, ∃x : (E′, α) ∈ Γ ′.E �s E

′.
Then, Γ ′ � Γ is equivalent to ∃k.Γ ′ �s Γ

(k) (up to renaming of type variables).
Thus, the condition |Γ ′| ≤ v ∧ Γ ′ � Γ in the algorithm can be replaced by
Γ ′ �s Γ

(v) without losing completeness.
To check whether there exists Γ ′ such that Γ ′
B (G, S) : qB,0 and Γ ′ �s

Γ (k), we attach a boolean variable to each type binding and each element of
an intersection in Γ (k), to express whether Γ ′ has the corresponding binding or
element. Thus, an annotated type environment is of the form {x1 :b1 τ1, . . . , xm :bm

τm}, where each type equation in τ1, . . . , τm is now of the form:
α =

∧
i∈I1

b1,iα1,i → · · · → ∧
k∈Ik

bk,iαk,i → q.
Given an assignment function f for boolean variables, the type environment
f(Δ) is given by:

f(Δ) = {xi : f(ρi) | xi :bi ρi ∈ Δ ∧ f(bi) = true}
f(E,α) = ({α = f(ξ1) → · · · → f(ξk) → q | (α = ξ1 → · · · → ξk → q) ∈ E}, α)
f(
∧

i∈I biαi) =
∧{αi | i ∈ I, f(bi) = true}

Let Δ be the type environment obtained by attaching boolean variables to
Γ (k). Then, the condition Γ ′ �s Γ

(k)∧Γ ′
B (G, S) : qB,0 is reduced to: “Is there
a boolean assignment f such that f(Δ)
B (G, S) : qB,0?” It can be expressed as
a SAT problem as follows. We first introduce additional boolean variables: (i) For

each rule F �→ λx1. · · ·λxk.t ∈ R, a subterm s of t, a type binding F :b ξ1 →
· · · → ξk → q ∈ Δ, and a type ρ in Δ, we prepare a variable bΔ,x1:ξ1,...,xk:ξk	s:ρ,
which expresses whether f(Δ,x1 : ξ1, . . . , xk : ξk)
B s : f(ρ) should hold. (ii) For
each pair (ρ1, ρ2) of types occurring in Δ, we introduce bρ1≤ρ2 , which expresses
whether f(ρ1) ≤ f(ρ2) should hold. Now, the existence of a boolean assignment
function f such that f(Δ)
B (G, S) : qB,0 is reduced to the satisfiability of the
conjunction of all the following boolean formulas. We write F :

∧
j∈{1..n} bjρj ∈ Δ

for F :b1 ρ1, . . . , F :bn ρn ∈ Δ below. For simplicity, we omit type equations E
and identify α and E(α) below.

(i)
∨{bi | S :bi qB,0 ∈ Δ}.

(ii) b⇒ bΔ,x1:ξ1,...,xk:ξk	t:q
for each F :b ξ1 → · · · → ξk → q ∈ Δ such that R(F) = λx1, . . . , xk.t.

(iii) bΔ′,x:
∧

j∈J bjρj	x:ρ ⇒ ∨
j∈J (bj ∧ bρj≤ρ), for each bΔ′,x:

∧
j∈J bjρj	x:ρ.

(iv) bΔ′	a:ρ ⇒ ∨{bq1→···→qk→q≤ρ | δ(a, q) = q1 · · · qk}, for each bΔ′	a:ρ.
(v) bΔ′	t1t2:ρ ⇒ ∨

(bΔ′	t1:(
∧

j∈J bjρj)→ρ ∧ (
∧

j∈J (bj ⇒ ∨
(bΔ′	t2:ρ′ ∧ bρ′≤ρj)))),

for each bΔ′	t1t2:ρ.
(vi) b(

∧
i∈I biρi)≤(

∧
j∈J bjρ′

j)
⇒ ∧

j∈J (bj ⇒
∨

i∈I(bi ∧ bρi≤ρ′
j
)),

for each b(
∧

i∈I biρi)≤(
∧

j∈J bjρ′
j)
.

(vii) bξ1→···→ξk→q≤ξ′1→···→ξ′m→q′ ⇒ k = m ∧ q = q′ ∧∧
i∈{1,...,k} bξ′i≤ξi ,

for each bξ1→···→ξk→q≤ξ′1→···→ξ′m→q′ .

The first condition (i) ensures that S :qB,0 ∈ f(Δ). The condition (ii) ensures that
each type binding in f(Δ) is valid (i.e.,
B R : f(Δ)). The next three conditions
(iii)-(v) express the validity of a type judgment f(Δ,x1:ξ1, . . . , xk:ξk)
B t : f(ρ),
corresponding to the typing rules for variables, constants, and applications. The
last two conditions express the validity of a subtype relation.

By the above construction, there exists a boolean assignment function f such
that f(Δ)
 (G, S) : qB,0 if and only if the conjunction of the above boolean
formulas is satisfiable. The latter can be solved by using a SAT solver.

Example 11. Recall ΓX (2),U(2),∼(2) in Example 10. By adding it with boolean

variables, we obtain Δ = {S : q0, F : (q0 ∧ q1) → q0, G :b0 τ0, G :b1 τ1)}, where
τi = (b2τ0∧b3τ1) → (q0∧q1) → qi for i ∈ {0, 1}. (Here, for the sake of simplicity,
we have added boolean variables only to critical parts.) From the typing of G,
we get the following boolean constraints:

bi ⇒ bΔ′	a x (g g (bx)):qi (for i ∈ {0, 1}) bΔ′	ax (g g (bx)):q0 ⇒ bΔ′	g g:q0∧q1→q0

bΔ′	ax (g g (bx)):q1 ⇒ false bΔ′	g:τ0 ⇒ b2 bΔ′	g:τ1 ⇒ b3
bΔ′	g g:q0∧q1→q0 ⇒ (bΔ′	g:τ0 ∧ (b2 ⇒ bΔ′	g:τ0) ∧ (b3 ⇒ bΔ′	g:τ1))

Here, Δ′ = Δ∪ {g :b2 τ0, g :b3 τ1, x : q0, x : q1}. The above conditions are satisfied
by f such that f(b0) = f(b2) = true and f(b1) = f(b3) = false. Thus, we get
Γ ′ = f(Δ) = {S : q0, F : (q0 ∧ q1) → q0, G : τ0} where τ0 = τ0 → (q0 ∧ q1) → q0.
We have Γ ′
B1 (G2, S) : q0 as required. ��

4 Applications

This section discusses two applications of μHORS model checking: verification of
(functional) object-oriented programs and that of higher-order multi-threaded
programs. Those programs can be verified via reduction to μHORS model check-
ing. In both applications, the translation from a source program to μHORS is
just like giving the semantics of the source program (in terms of the λ-calculus).
This comes from the expressive power of the model of μHORS model checking
(i.e., μHORS), which is the main advantage of our approach.

4.1 Model-Checking Functional Objects

In this section, we discuss how to reduce verification problems for (functional)
object-oriented programs. The idea is to transform a program into μHORS that
generates a tree representing all the possible action sequences3 of the source
program. The translation is sound and complete in the sense that all and only
action sequences that occur are represented in the tree. Properties that can be
checked include: reachability (i.e., whether program execution reaches certain
program points), order of method invocations, and whether downcasts may fail.
In a full version [10], we give a formal translation from (a call-by-value variant
of) Featherweight Java (FJ) [5] to μHORS.

We use the following classes that represent natural numbers with methods
for addition (add) and predecessors (pred) as a running example. The state-
ment fail; signals a global action that denotes a failure. Method rand non-
deterministically returns a natural number that is equal to or greater than the
argument; � denotes a non-deterministic choice operator. The main expression
to be executed takes a predecessor of a (non-deterministically chosen) non-zero
natural number.

class Nat extends Object {
Nat add(Nat n) { fail; }
Nat pred() { fail; }
Nat rand(Nat n) { return n�new S(this.rand(n)); } }

class Z extends Nat { Nat add(Nat n) { return n; } }
class S extends Nat {
Nat p;

Nat add(Nat n) { Nat p’ = this.p.add(n); return new S(p’); }
Nat pred() { return this.p; } }

// main expression

new Z().rand(new Z()).add(new S(new Z())).pred();

To verify program execution does not fail, we translate the program to a
μHORS that generates the tree representing all the possible global events, like:
br e (br e · · ·). Here, br and e represent non-deterministic branch (caused by

3 The source language has a construct to signal a global action, as well as a non-
deterministic choice operator.

�) and program termination, respectively. Then, it suffices to check that the
tree does not contain fail by using μHORS model checking.

Translation to μHORS. The main ideas of translation are: (i) to express an
object as a record (or tuple) of functions that represent methods [2], and (ii)
to represent each method in the continuation passing style (CPS) in order to
correctly reflect the evaluation order and action sequences to μHORS. For ex-
ample, an object of class S is expressed by a tuple 〈S add , S pred , S rand〉 of
functions S add , S pred and S rand that represent methods add, pred, and rand

defined or inherited in class S, respectively.4 A function that represents a method
takes an argument that represents “self” and a continuation argument, as well
as ordinary arguments of the method. In general, a method of the form

C0 m(C1 x1, ..., Cn xn) { return e; }
is represented by the λ-term λx1. · · ·λxn.λthis .λk. [[e]]k where k is the continu-
ation parameter and [[e]]k denotes the translation of e, which passes the result
of method execution to k. For example, method add in class S is represented by
non-terminal S add , whose body is

λn.λthis.λk. [[Nat p’ = ...; return new S(p’);]]k

Then, method invocation is expressed as self-application [7]. For example,
invocation of add on an S object with a Z object as an argument is expressed by

S add 〈Z add , Z pred , Z rand〉 〈S add , S pred , S rand〉 k
where k is the current continuation. Note that S add is applied to a tuple that
contains itself.

To deal with fields, each method is further abstracted by values of fields of
this. So, the body of S add is in fact

λp.λn.λthis.λk. [[Nat p’ = ...; return new S(p’);]]k,

where p stands for this.p inside the method body. Although this scheme only
supports field access of the form this.f, field access to any expressions other
than this can be expressed by using “getter” methods. A non-terminal rep-
resenting a method will be applied to initial field values when an object is
instantiated. For example, object instantiation new S(p’) is represented by
〈S add p′, S pred p′, S rand p′〉. By using pattern-matching for λ, method add

in class S is expressed by the following two rules:

S add �→ λ〈pa, pp, pr〉.λ〈na, np, nr〉.λ〈thisa, thisp, thisr〉.λk.
pa 〈na, np, nr〉 〈pa, pp, pr〉 (F k),

F �→ λk′.λ〈p′a, p′p, p′r〉.
k′ 〈S add 〈p′a, p′p, p′r〉, S pred 〈p′a, p′p, p′r〉, S rand 〈p′a, p′p, p′r〉〉

4 μHORS does not have tuples as primitives but all the tuples can be eliminated.
Tuples as function arguments can be eliminated by currying and there is no function
that returns tuples, thanks to the CPS representation. See the full version for details.

where F stands for the continuation of the variable definition Nat p’ = ...;.

A global action a such as fail is represented by a tree node a; non-deterministic
choice is by the node br of arity 2. The (translation of the) main expression is
given as the initial continuation a constant function that returns the tree node
e of arity 0. So, in order to verify that the program does not fail, it suffices to
verify that the generated tree consists only of nodes br and e.

We address the problem of the lack of subtyping in μHORS as follows. We
represent every object as a tuple of the same length
, where
 is the number
of the methods defined in the whole program. If a certain method is undefined,
we just insert a dummy function λx̃.λk.fail in the corresponding position of
the tuple. The dummy function just outputs fail to signal NoSuchMethodError
whenever it is called.

The resulting encoding of an object is well-typed. Let {m1, . . . ,m�} be all
the method names in the program, and {n1, . . . , n�} be their arities. Then, the
encoding of every object would have the same recursive sort κo, given by:

κo = κm1 × · · · × κm�
κmi = κo → · · ·κo︸ ︷︷ ︸

ni

→ κo → (κo → o)︸ ︷︷ ︸
type of continuation

→ o

The source program execution yields a sequence of global actions a1a2 · · · an
if and only if the tree generated by the translation has a path labeled with
a1a2 · · · an (ignoring br). Thus safety property verification of FJ programs is
reduced to μHORS model checking.

4.2 Model-Checking Higher-Order Multi-Threaded Programs

This section discusses how to apply the extended HO model checking to ver-
ification of multi-threaded programs, where each thread may use higher-order
functions and recursion. For the sake of simplicity, we discuss only programs
consisting of two threads, whose syntax is given by:

P (programs) ::=M1 ||M2

M (threads) ::= () | a | x | fun(f, x,M) | M1M2 |M1�M2

A program P =M1 ||M2 executes two threads M1 and M2 concurrently, where
M1 andM2 are (call-by-value) higher-order functional programs with side effects.
The expression a performs a global action a, and evaluates to the unit value
(). We keep global actions abstract, so that various synchronization primitives
and shared memory can be modeled. The expression fun(f, x,M) describes a
recursive function f such that f(x) = M . When f does not occur in M , we
write λx.M for fun(f, x,M). We also write let x = M1 in M2 for (λx.M2)M1,
and further abbreviate it to M1;M2 when x does not occur in M2. M1�M2

evaluates M1 or M2 non-deterministically. The formal semantics is given in [10].
The goal of verification is, given a programM and a property ψ on global action
sequences, to check whether all the possible action sequences of M satisfy ψ.

Example 12. Let M be the following thread:

let sync f = lock; f(); unlock; sync f in let cr x = enter; exit in sync cr,

which models a thread acquiring a global lock before entering a critical section.
We may then wish to verify that the global actions enter and exit can occur
only alternately, as long as lock and unlock occur alternately. ��

We can reduce verification problems for multi-threads to extended HO model
checking problems by transforming a given program to a μHORS that generates
a tree describing all the possible global action sequences. The ideas of the trans-
formation are: (i) transform each thread to CPS (continuation-passing style) to
correctly model the order of actions, as in [9], and (ii) apply each thread to a
scheduler, and let a thread pass the control to the scheduler non-deterministically
after each global action. The translation from programs to μHORS is:

(M1 ||M2)
†
= br (Sched (M1

† λx.e) (M2
† λx.e)) (Sched (M2

† λx.e) (M1
† λx.e))

()
†
= λk.λg.k e g x† = λk.λg.k x g fun(f, x,M)

†
= λk.λg.k fun(f, x,M †) g

(M1M2)
†
= λk.λg.M1

† (λf.M2
†λx.f x k) g

(M1�M2)
†
= λk.λg.br (M1

† k g) (M2
† k g) a† = λk.λg.a (br (k e g) (g (k e)))

Here, the non-terminal Sched is defined by the rule Sched x y → x (Sched y),
which schedules x first, passing to it the global continuation Sched y (which will
schedule y next). The terminal symbol br represents a non-deterministic branch.
On the righthand side of the last translation rule, a and e are terminal symbols
of arity 1 and 0 respectively. The program M1 || M2 is translated to a tree-
generating program, which either schedules M1 then M2, or M2 then M1. Apart
from the global action (the last rule), the translation of a thread is essentially
the standard call-by-value CPS transformation except that a global continuation
is passed as an additional parameter. The global action a is transformed to a
tree node a, followed by a non-deterministic branch (expressed by br). The
first branch evaluates the local continuation, while the second branch yields the
control to the other thread by invoking the global continuation g.

By the definition of the transformation above, it should be clear that (i) if
P is simply-typed, then P † is a well-typed μHORS, and (ii) P has a sequence
of global actions a1a2 · · ·an if and only if the tree generated by P † has a path
labeled with a1a2 · · · an (with br ignored). Thus, verification of multi-threaded
programs has been reduced to μHORS model checking; see [10] for more details.

Context-bounded model checking Qadeer and Rehof [19] showed that model
checking of concurrent pushdown systems (or multi-threaded programs with
first-order recursion) is decidable if the number of context switches is bounded
by a constant. Our translation given above yields a generalization of the result:
context-bounded model checking of multi-threaded, higher-order recursive pro-
grams is decidable. To obtain the result, it suffices to replace the scheduler Sched
with Sched � given below, which allows only
 context switches:

Sched0 x y → e Sched i+1 x y → x (Sched i y)

Then Sched i’s have the following non-recursive types:

Sched2m : σm → σm → o Sched2m+1 : σm+1 → σm → o

where σ0 = � and σi+1 = (σi → o) → o. Thus, for the modified encoding P †� , we
have: (i) If P is simply-typed, then P †� is a well-typed μHORS without recursive
types, and (ii) P with context-bound
 has a sequence of global actions a1a2 · · · an
if and only if the tree generated by P †� has a path labeled with a1a2 · · · an (with
br ignored). As an immediate corollary of the above properties and the decid-
ability of HORS model checking [15], we obtain that context-bounded model
checking of multi-threaded higher-order programs is decidable.5

5 Implementation and Experiments

We have implemented a prototype model checker RTRecS for μHORS based on
the procedure FindCert described in Section 3. As the underlying SAT solver,
we have used MiniSat 2.2 (http://minisat.se/MiniSat.html). We have also
implemented a translator from FJ programs to μHORS based on Section 4.1.

The implementation is based on the procedure FindCert in Figure 2, except
for the following points. RTRecS first performs an equality-based flow analy-
sis [17] before model checking, and uses it as the equivalence relation ∼. U is also
over-approximated by using the result of the flow analysis; thus, in the current
implementation, the reductions of terms (3rd line in Figure 2) are performed
only for finding a counter-example, without using the rule R-Eq.

Table 1 summarizes the result of preliminary experiments. (For space re-
striction, we omit some results, which are found in [10].) The programs used for
the experiments and the web interface for our prototype are available at http://
www-kb.is.s.u-tokyo.ac.jp/~koba/fjmc/. The columns “#lines” and “#rules”
show the number of lines of the source FJ program (if applicable) and the num-
ber of the rules of μHORS. The column “#states” shows the numer of states of
the property automaton. The column “k” shows k of Γ ′ �s Γ

(k) in Section 3.2.
The column “#sat” shows the number of sat clauses (i.e., the number of disjunc-
tive formulas in conjunctive normal form) for the final call of the SAT solver.
The column “time” shows the running time (excluding the time for translation
from FJ to μHORS, which is anyway quite small).

G1 and G2 are from Examples 2 and 3, where the checked property is ex-
pressed by B1 in Example 4. Thread is the μHORS obtained from Example 12.
The other programs were obtained from FJ programs, based on the translation
discussed in Section 4.1, and except for Twofiles, we verified that the pro-
grams do not fail (where the meaning of “failure” depends on each program,
as explained below). Pred is the running example in Section 4. The next six
are list-manipulating programs (implemented as objects), which are small but

5 We have considered only programs with two threads, but this restriction can be
easily relaxed by using the same technique as Qadeer and Rehof [19].

programs #lines #rules #states k #sat time

G1 – 2 2 1 27 0.001

G2 – 3 2 1 49 0.002

Thread – 9 5 1 38,171 0.580

Pred 21 15 1 1 157 0.005

L-append 20 30 1 1 165 0.006

L-map 43 182 1 1 738 0.235

L-app-map 43 212 1 1 1,546 0.391

L-even 25 87 1 1 249 0.025

L-filter 59 122 1 2 5,964 0.491

L-risers 73 64 1 2 17,419 0.445

Twofiles 28 21 5 2 739,867 13.86

Table 1. Experimental Results (CPU: Intel(R) Xeon(R) 3GHz, Memory: 8GB). Times
are in seconds.

non-trivial programs. (In fact, L-filter and L-risers are object-oriented ver-
sions of benchmark programs of the PMRS verification tool [16].) For example,
L-filter creates a list of natural numbers in a non-deterministic manner, filters
out 0, and checks that the resulting list consists only of non-zero elements (and
fails if it does not hold). See [10] for more details.

Twofiles was prepared as an example of verification of temporal properties.
It is an object-oriented version of the program that accesses two files: one for
read-only, and the other for write-only [9]. We verify that the read-only (write-
only, resp.) file is closed after some reads (writes, resp.).

Our model checker RTRecS could successfully verify all the programs. The
verification time and the size of SAT formulas were significantly larger for Twofiles
compared with other programs. The explosion of the size of SAT formulas for
Twofiles is due to the size of the automaton for describing the temporal prop-
erty, which blows up the number of candidates of types to be considered. More
optimizations are necessary for avoiding this problem. The number k was sur-
prisingly small for all the benchmark programs; this indicates that our choice
of ∼ based on the equality-based flow analysis provided a good approximation
of types. Overall, the experimental results above are encouraging; we are not
aware of other fully-automated (i.e. requiring no annotations), sound (i.e. no
false negatives) verification tools that can verify all the programs above.

6 Related Work

The model checking of HORS has recently emerged as a new technique for verifi-
cation of higher-order programs [15, 9, 14, 16, 13]. Except Tsukada and Kobayashi’s
work [24], however, all the previous studies dealt with simply-typed recursion
schemes, which are not suitable for modeling objects. Tsukada and Kobayashi [24]
studied model checking of untyped HORS and reduced it to a type checking

problem for an infinite intersection type system. The latter problem is however
undecidable and they did not provide any realistic procedure for model checking.

Several methods for model-checking functional programs have been proposed
recently [21, 9, 14, 16, 25], and some of them [21, 14, 16] support recursive data
structures (like lists). However, it is not clear how to extend them to support gen-
eral recursive types (including negative occurrences of recursive type variables).
Furthermore, many of them require annotations [21, 25] and are less precise.

There are previous studies on model checking of object-oriented programs [3,
4]. To our knowledge, however, they are based on finite state model checking;
Java programs are either (i) abstracted to finite state models and then finite
state model checkers are used to verify the abstract models, or (ii) directly
model checked, but with an incomplete state exploration. In the former case,
because of the huge semantic gap between object-oriented programs and finite
state systems, a lot of information is lost by the translation from Java programs
to models. In the latter case, a “model checker” is used mainly as a bug detec-
tion tool, instead of a verification tool. In contrast, our method uses μHORS as
models, which are as expressive as source programs. No information is lost by the
translation from FJ to μHORS, and no false alarms can be generated (although
the model checker may not terminate for some valid programs). There are also
other methods for verification or static analysis of object-oriented programs [1,
18, 23]. In general, they either require human intervention [1] or are fully auto-
mated but less precise than model checking. See [10] for more detailed discussion.
Rowe and Bakel [22] proposed an intersection type system for reasoning about
object-oriented programs, but did not give an automated verification algorithm.

There are many studies on model checking of recursive parallel programs [19,
6], which obtain decidable fragments by restricting synchronization primitives
or applying approximations. It is interesting to see whether each result can be
extended to higher-order, recursive parallel programs (besides context-bounded
model checking discussed in Section 4.2).

Acknowledgments We thank Noriaki Nakano and anonymous reviewers for
useful comments. This work is partially supported by Kakenhi 23220001.

References

1. M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M. Leino, W. Schulte, and
H. Venter. The spec# programming system: Challenges and directions. In Pro-
ceedings of VSTTE 2005, volume 4171 of LNCS, pages 144–152. Springer-Verlag,
2005.

2. L. Cardelli. A semantics of multiple inheritance. Info. Comput., 76(2/3):138–164,
1988.

3. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: extracting finite-state models from Java source code. In ICSE,
pages 439–448, 2000.

4. K. Havelund and T. Pressburger. Model checking JAVA programs using JAVA
pathfinder. STTT, 2(4):366–381, 2000.

5. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Trans. Prog. Lang. Syst., 23(3):396–450, 2001.

6. V. Kahlon. Reasoning about threads with bounded lock chains. In Proceedings of
CONCUR 2011, volume 6901 of LNCS, pages 450–465. Springer-Verlag, 2011.

7. S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented languages.
In C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented
Programming, chapter 13, pages 463–496. The MIT Press, 1993.

8. N. Kobayashi. Model-checking higher-order functions. In Proceedings of PPDP
2009, pages 25–36. ACM Press, 2009.

9. N. Kobayashi. Types and higher-order recursion schemes for verification of higher-
order programs. In Proc. of POPL, pages 416–428, 2009.

10. N. Kobayashi and A. Igarashi. Model-checking higher-order programs with recur-
sive types. An extended version available from http://www-kb.is.s.u-tokyo.ac.

jp/~koba/fjmc/, 2012.
11. N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-

calculus model checking of higher-order recursion schemes. In Proceedings of LICS
2009, pages 179–188, 2009.

12. N. Kobayashi and C.-H. L. Ong. Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. Logical Methods in Computer Science,
7(4), 2011.

13. N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and cegar for higher-
order model checking. In Proc. of PLDI, 2011.

14. N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In Proc. of POPL, pages
495–508, 2010.

15. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In LICS 2006, pages 81–90, 2006.

16. C.-H. L. Ong and S. Ramsay. Verifying higher-order programs with pattern-
matching algebraic data types. In Proc. of POPL, pages 587–598, 2011.

17. J. Palsberg. Equality-based flow analysis versus recursive types. ACM Trans. Prog.
Lang. Syst., 20(6):1251–1264, 1998.

18. M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance.
In Proc. of POPL, pages 75–86, 2008.

19. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In Proceedings of TACAS 2005, volume 3440 of LNCS, pages 93–107. Springer-
Verlag, 2005.

20. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Prog. Lang. Syst., 22(2):416–430, 2000.

21. P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI 2008, pages
159–169, 2008.

22. R. N. S. Rowe and S. van Bakel. Approximation semantics and expressive predicate
assignment for object-oriented programming - (extended abstract). In Proceedings
of TLCA 2011, volume 6690 of LNCS, pages 229–244, 2011.

23. C. Skalka. Types and trace effects for object orientation. Higher-Order and Sym-
bolic Computation, 21(3):239–282, 2008.

24. T. Tsukada and N. Kobayashi. Untyped recursion schemes and infinite intersection
types. In Proceedings of FOSSACS 2010, volume 6014 of LNCS, pages 343–357.
Springer-Verlag, 2010.

25. H. Unno, N. Tabuchi, and N. Kobayashi. Verification of tree-processing programs
via higher-order model checking. In Proceedings of APLAS 2010, volume 6461 of
LNCS, pages 312–327. Springer-Verlag, 2010.

