
Type-Based Analysis of Deadlock for
a Concurrent Calculus with Interrupts

Kohei Suenaga1 and Naoki Kobayashi2

1 University of Tokyo
2 Tohoku University

Abstract. The goal of our research project is to establish a type-based
method for verification of certain critical properties (such as deadlock-
and race-freedom) of operating system kernels. As operating system ker-
nels make heavy use of threads and interrupts, it is important that the
method can properly deal with both of the two features. As a first step
towards the goal, we formalize a concurrent calculus equipped with prim-
itives for threads and interrupts handling. We also propose a type system
that guarantees deadlock-freedom in the presence of interrupts. To our
knowledge, ours is the first type system for deadlock-freedom that can
deal with both thread and interrupt primitives.

1 Introduction

The goal of our research project is to establish a type-based method for verifi-
cation of certain critical properties (such as deadlock- and race-freedom) of op-
erating system kernels. As operating system kernels make heavy use of threads
and interrupts, it is important that the method can properly deal with both of
the two features. Though several calculi that deal with either interrupts [3, 14]
or concurrency [12, 13] have been proposed, none of them deal with both.

Combination of those two features can actually cause errors which are very
difficult to find manually. For example, consider the program in Figure 1. The
example is taken from an implementation of a protocol stack used in an ongoing
research project on cluster computing [11]. Though the original source code
is written in C, the example is shown in an ML-style language. The function
flush buffer flushes the local buffer and sends pending packets to appropriate
destinations. The function receive data is called when a packet arrives. That
function works as an interrupt handler (as specified in the main expression) and
is asynchronously called whenever a packet arrives. Since receive data calls
flush buffer in order for the local buffer to be flushed as soon as the function
knows there is a room in the remote buffer (a similar mechanism called congestion
control is used in TCP), the following control flow causes deadlock:

Call to flush buffer→ lock(devlock)
→ an interrupt (call to receive data)
→ call to flush buffer → lock(devlock)

let flush_buffer devlock =

let data = dequeue () in

while !data != NULL do

(* Interrupts should be forbidden before this lock operation *)

lock(devlock);

... (* send data to the device *) ...

unlock(devlock);

data := dequeue ()

done

(* interrupt handler *)

let receive_data packettype data devlock =

...

(* If there is room in the remote buffer, flush the local buffer *)

if packettype = RoomInBuffer then

flush_buffer devlock

...

(* main *)

let _ =

(* set receive_data as an interrupt handler *)

request_irq(receive_data);

flush_buffer (get_devlock ())

Fig. 1. An example of program which cause deadlock.

Note that an interrupt handler does not voluntarily yield. To prevent the dead-
lock, flush buffer has to forbid interrupts before it acquires the device lock as
shown in Figure 2.

In order to statically detect such a deadlock, we propose (1) a calculus which
is equipped with both interrupts and concurrency and (2) a type system for
verifying deadlock-freedom. To our knowledge, ours is the first type system for
deadlock-freedom that can deal with both thread and interrupt primitives.

Our type system associates a totally-ordered lock level to each lock and guar-
antees that locks are acquired in an increasing order of the levels even if inter-
rupts occur. To achieve this, the type system tracks (1) a lower bound of the
levels of locks acquired during evaluation and (2) an upper bound of the levels of
locks acquired while interrupts are enabled. With our type system, the example
in Figure 1 is rejected. On the other hand, if flush buffer forbids interrupts
before it acquires the device lock (as in Figure 2), our type system accepts the
program.

The outline of this paper is as follows. Section 2 introduces the syntax and
the semantics of our calculus. Section 3 shows our type system and states the
type soundness theorem. After discussing related work in Section 4, we conclude
in Section 5.

let flush_buffer devlock =

let data = dequeue () in

while !data != NULL do

disable_interrupt(); lock(devlock);

... (* send data to the device *) ...

unlock(devlock); enable_interrupt(); data := dequeue ()

done

Fig. 2. A correct version of flush buffer.

x, y, z, f . . . ∈ Var
lck ::= acquired | released
P ::= eDM
D ::= x(ey) = M
M ::= () | n | x | true | false

| x(ev) | let x = M1 in M2 | if v then M1 else M2

| let x = ref v in M | x := v |!v
| (M1 | M2) | let x = newlock () in M
| sync x in M | in sync x in M
| M1 ¤ M2 | M1 JM M2 | disable int M | in disable int M

v ::= () | true | false | n | x
E ::= [] | let x = E in M

| (E | M) | (M | E)
| in sync x in E | in disable int E
| E ¤ M | M1 JM E

I ::= enabled | disabled

Fig. 3. The Syntax of Our Language.

2 Target Language

2.1 Syntax

The syntax of our target language is defined in Figure 3. Our language is an
imperative language which is equipped with concurrency and interrupt handling.

A program P consists of a sequence of function definitions D̃ and a main
expression M . A function definition is constructed from a function name x, a
sequence of formal arguments ỹ and a function body. Function definitions can be
mutually recursive. Note that a function name belongs to the class of variables,
so that one can use a function name as a first-class value.

Expressions are ranged over by a meta-variable M . ¤ and J are left-associative.
For the sake of simplicity, we have only block-structured primitives (sync x in M
and disable int M) for acquiring/releasing locks and disabling/enabling inter-
rupts. We explain intuition of several non-standard primitives below.

– let x = ref v in M creates a fresh reference to v, binds x to the reference
and evaluates M .

flush buffer iter(devlock , data) =
if !data = Null then () else

(sync devlock in ());flush buffer iter(devlock , dequeue())
flush buffer(devlock) = flush buffer iter(devlock , dequeue())
receive data(packettype, data, devlock) =

if packettype = Room then flush buffer(devlock) else ()
(* Main expression *)
let devlock = newlock() in
let data = ref Null in

flush buffer(devlock) ¤ receive data(Room, data, devlock)

Fig. 4. An Encoding of the Program in Figure 1

– M1 | M2 is concurrent evaluation of M1 and M2. Both of M1 and M2 should
evaluate to ().

– let x = newlock () in M generates a new lock, binds x to the lock and
evaluates M .

– sync x in M attempts to acquire the lock x and evaluates M after the lock
is acquired. After M is evaluated to a value, the lock x is released.

– M1 ¤ M2 installs an interrupt handler M2 and evaluates M1. Once an in-
terrupt occurs, M1 is suspended until M2 evaluates to a value. When M1

evaluates to a value v, M1 ¤ M2 evaluates to v.
– disable int M disables interrupts during an evaluation of M .

The following three primitives only occur during evaluation and should not
be included in programs.

– in sync x in M represents the state in which M is being evaluated with the
lock x acquired. After M evaluates to a value, the lock x is released.

– M1 JM M2 represents the state in which the interrupt handler M2 is being
evaluated. After M2 evaluates to a value, the interrupted expression M1 and
the initial state of interrupt handler M are recovered.

– in disable int M represents the state in which M is being evaluated with
interrupts disabled. After M evaluates to a value, interrupts are enabled.

We write M1; M2 for let x = M1 in M2 where x is not free in M2.
Figure 4 shows how the example in Figure 1 is encoded in our language.

Though that encoding does not strictly conform to the syntax of our language
(e.g., flush buffer iter is applied to an expression dequeue(), not to a value), one
can easily translate the program into one that respects our syntax.

Our interrupt calculus is very expressive and can model various interrupt
mechanisms, as discussed in Examples 1–4 below.

Example 1. In various kinds of CPUs, there is a priority among interrupts. In
such a situation, if an interrupt with a higher priority occurs, interrupts with

lower priorities do not occur. We can express such priorities by connecting several
expressions with ¤ as follows.

do something(. . .) ¤ interrupt low(. . .) ¤ interrupt high(. . .)

If an interrupt occurs in do something(. . .) ¤ interrupt low(. . .) (note that ¤ is
left-associative), the example above is reduced to

(do something(. . .) Jinterrupt low(...) interrupt low(. . .)) ¤ interrupt high(. . .).

That state represents that interrupt low interrupted do something . From that
state, interrupt high can still interrupt.

(do something(. . .) Jinterrupt low(...) interrupt low(. . .))
Jinterrupt high(...) interrupt high(. . .).

interrupt high can interrupt also from the initial state.

(do something(. . .) ¤ interrupt low(. . .)) Jinterrupt high(...) interrupt high(. . .)

From the state above, interrupt low cannot interrupt until interrupt high(. . .)
evaluates to a value.

Example 2. In our calculus, we can locally install interrupt handlers. Thus, we
can express a multi-threaded program in which an interrupt handler is installed
on each thread.

(thread1 (. . .) ¤ handler1 (. . .)) | (thread2 (. . .) ¤ handler2 (. . .)) . . .

This feature is useful for modeling a multi-CPU system in which even if an
interrupt occurs in one CPU, the other CPUs continue to work in non-interrupt
mode.

Example 3. In the example in Figure 4, we assume that no interrupt occur in
the body of receive data. One can express that an interrupt may occur during
an execution of receive data by re-installing an interrupt handler as follows.

receive data(packettype, data, devlock) =
(if packettype = Room then flush buffer(devlock) else ())¤

receive data(Room, data, devlock)

Example 4. Since many operating system kernels are written in C, we make
design decisions of our language based on that of C. For example, names of
functions are first-class values in our language because C allows one to use a
function name as a function pointer and because operating system kernels heavily
use function pointers. With this feature, we can express a runtime change of
interrupt handler as follows:

let x = ref f in ((. . . ; x := g; . . .) ¤ (!x)())

Until g is assigned to the reference x, the installed interrupt handler is f . After
the assignment, the interrupt handler is g. This characteristic is useful for mod-
eling operating system kernels in which interrupt handlers are changed when,
for example, device drivers are installed.

2.2 Operational Semantics

The semantics is defined as rewriting of a configuration (D̃,H, L, I,M). H is a
heap, which is a map from variables to values. (Note that references are repre-
sented by variables.) L is a map from variables to {acquired, released}. I is
an interrupt flag, which is either enabled or disabled 3.

Figure 5 shows the operational semantics of our language. We explain several
important rules.

– In (E-Ref) and (E-LetNewLock), newly generated references and locks
are represented by fresh variables.

– Reduction with the rule (E-Lock) succeeds only if the lock being acquired
is not held. (E-Unlock) is similar.

– disable int changes the interrupt flag only when the flag was enabled
(rule (E-DisableInterrupt1)). Otherwise, disable int does nothing (rule
(E-DisableInterrupt2)).

– If the interrupt flag is enabled, then a handler M2 can interrupt M1 any-
time with the rule (E-Interrupt). When the interrupt occurs, the initial
expression of interrupt handler M2 is saved. After the handler terminates,
the saved expression is recovered with (E-ExitInterrupt).

The following example shows how the program in Figure 4 leads to a dead-
locked state. We write Lu for {devlock ′ 7→ released} and Ll for {devlock ′ 7→ acquired}.
We omit D̃, H and I components of configurations.

(Lu,flush buffer(devlock ′) ¤ receive data(Room, data, devlock ′))
→∗ (Lu, sync devlock ′ in () ¤ receive data(Room, data, devlock))
→ (Ll, in sync devlock ′ in () ¤ receive data(Room, data, devlock))
→ (Ll, in sync devlock ′ in () Jreceive data(...) receive data(Room, data, devlock))
→∗ (Ll, in sync devlock ′ in () Jreceive data(...) flush buffer(devlock ′))
→∗ (Ll, in sync devlock ′ in () Jreceive data(...) sync devlock ′ in ())

The last configuration is in a deadlock because the attempt to acquire devlock ′,
which is already acquired in Ll, never succeeds and because the interrupt handler
sync devlock ′ in () does not voluntarily yield.

3 Type System

3.1 Lock Levels

In our type system, every lock type is associated with a lock level, which is
represented by a meta-variable lev . The set of lock levels is {−∞,∞}∪N, where
N is the set of natural numbers. We extend the standard partial order ≤ on N
to that on {−∞,∞} ∪ N by ∀lev ∈ {−∞,∞} ∪ N. −∞ ≤ lev ≤ ∞. We write
lev1 < lev2 for lev1 ≤ lev2 ∧ lev1 6= lev2.
3 We do not assign an interrupt flag to each interrupt handler in order to keep the

semantics simple. Even if we do so, the type system introduced in Section 3 can be
used with only small changes.

x(ey) = M ′ ∈ eD
(eD, H, L, I, E[x(ev)]) → (eD, H, L, I, E[[ev/ey]M ′])

(E-App)

(eD, H, L, I, E[let x = v in M]) → (eD, H, L, I, E[[v/x]M]) (E-Let)

(eD, H, L, I, E[if true then M1 else M2]) → (eD, H, L, I, E[M1])
(E-IfTrue)

(eD, H, L, I, E[if false then M1 else M2]) → (eD, H, L, I, E[M2])
(E-IfFalse)

x′ is fresh

(eD, H, L, I, E[let x = ref v in M]) → (eD, H[x′ 7→ v], L, I, E[[x′/x]M])
(E-Ref)

(eD, H[x 7→ v′], L, I, E[x := v]) → (eD, H[x 7→ v], L, I, E[()]) (E-Assign)

(eD, H[x 7→ v], L, I, E[!x]) → (eD, H[x 7→ v], L, I, E[v]) (E-Deref)

x′ is fresh

(eD, H, L, I, E[let x = newlock () in M]) →
(eD, H, L[x′ 7→ released], I, E[[x′/x]M])

(E-LetNewlock)

(eD, H, L, I, E[() | ()]) → (eD, H, L, I, E[()]) (E-ParEnd)

(eD, H, L[x 7→ released], I, E[sync x in M]) →
(eD, H, L[x 7→ acquired], I, E[in sync x in M])

(E-Lock)

(eD, H, L[x 7→ acquired], I, E[in sync x in v]) → (eD, H, L[x 7→ released], I, E[v])
(E-Unlock)

(eD, H, L, enabled, E[M1 ¤ M2]) → (eD, H, L, enabled, E[M1 JM2 M2])
(E-Interrupt)

(eD, H, L, I, E[M1 JM2 v]) → (eD, H, L, I, E[M1 ¤ M2])
(E-ExitInterrupt)

(eD, H, L, I, E[v ¤ M]) → (eD, H, L, I, E[v])
(E-NoInterruptValue)

(eD, H, L, enabled, E[disable int M]) → (eD, H, L,disabled, E[in disable int M])
(E-DisableInterrupt1)

(eD, H, L,disabled, E[disable int M]) → (eD, H, L,disabled, E[M])
(E-DisableInterrupt2)

(eD, H, L, I, E[in disable int v]) → (eD, H, L, enabled, E[v])
(E-EnableInterrupt)

Fig. 5. The Operational Semantics of Our Language.

3.2 Effects

Our type system guarantees that a program acquires locks in a strict increasing
order of lock levels. To achieve this, we introduce effects which describe how a
program acquires locks during evaluation.

An effect, represented by a meta-variable ϕ, is a pair of lock levels (lev1, lev2).
The meaning of each component is as follows.

– lev1 is a lower bound of the lock levels of locks that may be acquired.
– lev2 is an upper bound of the lock levels of locks that may be acquired or

have been acquired while interrupts are enabled.

τ ::= unit | int | bool | eτ1
ϕ→ τ2 | τ ref | lock(lev)

lev ∈ {−∞,∞} ∪ N
ϕ ::= (lev1, lev2)

Fig. 6. Syntax of types.

For example, an effect (0,−∞) means that locks whose levels are more than or
equal to 0 may be acquired and that no locks are acquired while interrupts are
enabled. An effect (0, 1) means that locks whose levels are more than or equal
to 0 may be acquired and that a lock of level 1 may be acquired or has already
been acquired while interrupts are enabled. We write ∅ for (∞,−∞).

We define the subeffect relation and the join operator for effects as follows.

Definition 1 (Subeffect Relation). (lev1, lev2) ≤ (lev ′1, lev
′
2) holds if and

only if lev ′1 ≤ lev1 and lev2 ≤ lev ′2.

(lev1, lev2) ≤ (lev ′1, lev
′
2) means that an expression that acquires locks ac-

cording to the effect (lev1, lev2) can be seen as an expression with the effect
(lev ′1, lev

′
2). For example, (1, 2) ≤ (0, 3) holds. ∅ is the bottom of ≤.

Definition 2 (Join). (lev1, lev2)t(lev ′1, lev
′
2) = (min(lev1, lev ′1),max (lev2, lev ′2))

For example, (1, 2)t (0, 1) = (0, 2) and (0,−∞)t (1, 2) = (0, 2) hold. ∅ is an
identity of t.

3.3 Syntax of Types

Figure 6 shows the syntax of types and effects. A type, represented by a meta-
variable τ , is either unit, int, bool, τ̃1

ϕ→ τ2, τ ref or lock(lev). We write τ̃ for
a sequence of types. τ ref is the type of a reference to a value of type τ . τ̃1

ϕ→ τ2

is the type of functions which take a tuple of values of type τ̃1 and return a value
of type τ2. ϕ is the latent effect of the functions.

3.4 Type Judgment

The type judgment form of our type system is Γ ` M : τ & ϕ where Γ is a map
from variables to types. The judgment means that the resulting value of the eval-
uation of M has type τ if an evaluation of M under an environment described by
Γ terminates, and that locks are acquired in a strict increasing order of lock levels
during the evaluation. The minimum and maximum lock levels acquired are con-
strained by ϕ. For example, x : lock(0), y : lock(1) ` sync x in sync y in () :
unit & (0, 1) and x : lock(0), y : lock(1) ` sync x in (disable int sync y in ()) :
unit & (0, 0) hold.

Definition 3. The relation Γ ` M : τ & ϕ is the smallest relation closed under
the rules in Figures 7 and 8. The predicate noIntermediate(M) in Figure 8 holds
if and only if M does not contain in sync x in M ′, in disable int M ′ or
M1 JM ′ M2 as subterms.

We explain several important rules.

– (T-Sync): If the level of x is lev , then M can acquire only locks whose levels
are more than lev . That is guaranteed by the condition lev < lev1 where lev1

is a lower bound of the levels of locks that may be acquired by M .
– (T-DisableInterrupt): The second component of the effect of disable int M

is changed to −∞ because no interrupt occurs in M , so that no locks are
acquired by interrupt handlers.

– (T-InstHandler): The second component of the effect of M1 should be less
than the first component of the effect of M2 because M2 can interrupt M1

at any time. This is why we need to include the maximum level in effects.
– (T-Fundef): The condition ϕ′ ≤ ϕi guarantees that the latent effect of the

type of the function being defined soundly approximates the runtime locking
behavior.

We show how the program in Figure 4 is rejected in our type system. From

the derivation tree in Figure 9, flush buffer iter has a type (lock(1), τd ref)
(1,1)→

unit, where τd is the type of the contents of the reference data. Thus, flush buffer

has a type lock(1)
(1,1)→ unit and receive data has a type (τp, τd, lock(1))

(1,1)→
unit, where τp is the type of packettype.

Consider the main expression of the example. Let Γ be devlock : lock(1), data :
τd ref . Then, we have

– Γ ` flush buffer(devlock) : unit & (1, 1) and
– Γ ` receive data(Room, data, devlock) : unit & (1, 1).

However, the condition lev2 < lev ′1 of the rule (T-InstHandler) prevents the
main expression to be well-typed (1 < 1 does not hold).

Suppose that sync devlock in () in the body of flush buffer iter is replaced by

disable int sync devlock in (). Then, flush buffer iter has a type (lock(1), τd ref)
(1,−∞)→

unit Thus, because Γ ` flush buffer(devlock) : unit & (1,−∞) and −∞ < 1
hold, the program is well-typed.

3.5 Type Soundness

We prove the soundness of our type system. Here, type soundness means that a
well-typed program does not get deadlocked if one begins an evaluation of the
program under an initial configuration (i.e., under an empty heap, an empty
lock environment and enabled interrupt flag).

We first define deadlock. The predicate deadlocked(L,M) defined below means
that M is in a deadlocked state under L.

Γ ` () : unit & ∅ (T-Unit) Γ ` n : int & ∅ (T-Int)

Γ ` true : bool & ∅
(T-True)

Γ ` false : bool & ∅
(T-False)

Γ (x) = τ

Γ ` x : τ & ∅ (T-Var)

x : (τ1, . . . , τn)
ϕ′→ τ ∈ Γ

Γ ` vi : τi & ∅ (i = 1, . . . , n)

Γ ` x(v1, . . . , vn) : τ & ϕ′

(T-App)

Γ ` M1 : τ1 & ϕ1

Γ, x : τ1 ` M2 : τ & ϕ2

Γ ` let x = M1 in M2 : τ & ϕ1 t ϕ2

(T-Let)

Γ ` v : bool & ∅
Γ ` M1 : τ & ϕ1

Γ ` M2 : τ & ϕ2

Γ ` if v then M1 else M2 : τ & ϕ1 t ϕ2

(T-If)

Γ ` v : τ & ∅
x : τ ref , Γ ` M : τ ′ & ϕ

Γ ` let x = ref v in M : τ ′ & ϕ
(T-Ref)

x : τ ref ∈ Γ
Γ ` v : τ & ∅

Γ ` x := v : unit & ∅
(T-Assign)

x : τ ref , Γ ` !x : τ & ∅
(T-Deref)

Γ ` M1 : unit & ϕ1

Γ ` M2 : unit & ϕ2

Γ ` M1 | M2 : unit & ϕ1 t ϕ2

(T-Par)

x : lock(lev), Γ ` M : τ & (lev1, lev2)

Γ ` let x = newlock () in M : τ & (lev1, lev2)
(T-Newlock)

x : lock(lev) ∈ Γ
Γ ` M : τ & (lev1, lev2)

lev < lev1 ϕ = (lev , lev) t (lev1, lev2)

Γ ` sync x in M : τ & ϕ
(T-Sync)

x : lock(lev) ∈ Γ
Γ ` M : τ & (lev1, lev2)

lev < lev1 ϕ = (∞, lev) t (lev1, lev2)

Γ ` in sync x in M : τ & ϕ
(T-Insync)

Γ ` M : τ & (lev1, lev2)

Γ ` disable int M : τ & (lev1,−∞)
(T-DisableInterrupt)

Γ ` M : τ & (lev1, lev2)

Γ ` in disable int M : τ & (lev1,−∞)
(T-InDisableInterrupt)

Γ ` M1 : τ & (lev1, lev2)
Γ ` M2 : unit & (lev ′1, lev

′
2)

lev2 < lev ′1 ϕ = (lev1, lev2) t (lev ′1, lev
′
2)

Γ ` M1 ¤ M2 : τ & ϕ
(T-InstHandler)

Γ ` M1 : τ & (lev1, lev2)
Γ ` M2 : unit & (lev ′1, lev

′
2)

Γ ` M : unit & (lev ′′1 , lev ′′2)
lev2 < lev ′1 lev2 < lev ′′1

ϕ′ = ϕ t (lev1, lev2) t (lev ′1, lev
′
2)

Γ ` M1 JM M2 : τ & ϕ′

(T-InInterrupt)

Fig. 7. Typing rules

Γ ⊇ f1 : (τ1,1, . . . , τ1,m1)
ϕ1→ τ1, . . . , fn : (τn,1, . . . , τn,mn)

ϕn→ τn

Γ, xi,1 : τi,1, . . . , xi,mi : τi,mi ` Mi : τi & ϕ′

ϕ′ ≤ ϕi noIntermediate(Mi)

Γ `D fi(xi,1, . . . , xi,mi) = Mi : (τi,1, . . . , τi,mi)
ϕi→ τi

(T-Fundef)

{f1, . . . , fn} is the set of names of functions declared in eD
Γ ⊇ {f1 : (τ1,1, . . . , τ1,m1)

ϕ1→ τ1, . . . , fn : (τn,1, . . . , τn,mn)
ϕn→ τn}

Γ `D Di : (τi,1, . . . , τi,mi)
ϕi→ τi (1 ≤ i ≤ n)

Γ ` M : unit & ϕ noIntermediate(M)

`P
eDM

(T-Prog)

eD = {f1(x1,1, . . . , x1,m1) = M1, . . . , fl(xl,1, . . . , xl,ml) = Ml}
H = {y1 7→ v1, . . . , yk 7→ vk}
L = {z1 7→ lck1, . . . , zn 7→ lckn}

Γ `D (fi(xi,1, . . . , xi,mi) = Mi) : (τi,1, . . . , τi,mi)
ϕi→ τi (1 ≤ i ≤ l)

Γ ` vi : τ ′i & ∅ (1 ≤ i ≤ k)

Γ = f1 : (τ1,1, . . . , τ1,m1)
ϕ1→ τ1, . . . , fl : (τl,1, . . . , τl,ml)

ϕl→ τl,
y1 : τ ′1 ref , . . . , yk : τ ′k ref ,
z1 : lock(lev1), . . . , zn : lock(levn)

`Env (eD, H, L) : Γ
(T-Env)

`Env (eD, H, L) : Γ Γ ` M : τ & (lev1, lev2)

`C (eD, H, L, I, M) : τ
(T-Config)

Fig. 8. Typing Rules for Program and Configuration.

Definition 4 (Deadlock). The predicate deadlocked(L,M) holds if and only
if for all E and i, M = E[i] implies that there exist x and M ′ such that i =
sync x in M ′ ∧ L(x) = acquired. Here, i is defined by the following syntax.

i ::= x(ṽ) | let x = v in M
| if true then M1 else M2 | if false then M1 else M2

| let x = ref v in M | x := v |!x
| let x = newlock () in M | (()|()) | sync x in M | in sync x in v
| M1 JM2 v | v ¤ M | disable int M | in disable int v

In the definition above, i is a term that can be reduced by the rules in Figure 5.
Thus, deadlocked(L,M) means that every reducible subterm in M is a blocked
lock-acquiring instruction. For example,

deadlocked(L, (in sync x in (sync y in 0)) | (in sync y in (sync x in 0)))

holds where L = {x 7→ acquired, y 7→ acquired}.
Note that M1 ¤ M2 is not included in the definition of i because, in the real

world, whether M1 ¤ M2 is reducible or not depends on the external environ-

... T1 T2

Γ ` if . . . then () else (sync devlock in ());flush buffer iter(. . .) : unit & (1, 1)

...

where

T1 =
Γ ` () : unit & ∅ 1 < ∞

Γ ` sync devlock in () : unit & (1, 1)

T2 = Γ ` flush buffer iter : (lock(1), τd)
(1,1)→ unit & ∅

...

Γ ` flush buffer iter(devlock , dequeue()) : unit & (1, 1)

Fig. 9. Derivation Tree of the body of flush buffer iter . Γ = flush buffer iter :

(lock(1), τd ref)
(1,1)→ unit,flush buffer : lock(1)

(1,1)→ unit, receive data :

(τp, τd ref , lock(1))
(1,1)→ unit, devlock : lock(1), data : τd.

ment which is not modeled in our calculus. For example, (sync x in ()) ¤ () is
deadlocked under the environment in which x is acquired.

Theorem 1 (Type Soundness). If `P D̃M and (D̃, ∅, ∅, enabled,M) →∗

(D̃′,H ′, L′, I ′,M ′), then ¬deadlocked(L′,M ′).

The theorem above follows from Lemmas 1–4 below. In those lemmas, we
use a predicate wellformed(L, I,M) which means that L, I and the shape of M
are consistent.

Definition 5. wellformed(L, I, M) holds if and only if

– L(x) = released or x /∈ Dom(L) implies that M does not contain in sync x,
– L(x) = acquired implies AckIn(x,M),
– I = enabled implies that M does not contain in disable int.
– I = disabled implies that there exist E and M ′ such that M = E[in disable int M ′]

and both E and M ′ do not contain in disable int.

Here, AckIn(x,M) is the least predicate that satisfies the following rules.

E and M ′ do not contain in sync x in
AckIn(x,E[in sync x in M ′])

(AckIn-Base)

AckIn(x,M1)
E, M ′ and M2 do not contain

in sync x in
AckIn(x,E[M1 JM ′ M2])

(AckIn-Interrupt)

Lemma 1. If `P D̃M , then wellformed(∅, enabled,M) and `C (D, ∅, ∅, enabled, M).

Lemma 2. If wellformed(L, I, M) and (D̃, H,L, I,M) → (D̃′,H ′, L′, I ′,M ′),
then wellformed(L′, I ′,M ′).

Lemma 3 (Preservation). If `C (D̃, H,L, I, M) : τ and (D̃, H,L, I, M) →
(D̃′,H ′, L′, I ′,M ′), then `C (D̃′,H ′, L′, I ′,M ′) : τ .

Lemma 4 (Deadlock-Freedom). If `C (D̃, H,L, I, M) : τ and wellformed(L, I,M),
then ¬deadlocked(L,M).

Proofs of those lemmas are in the full version of this paper.

3.6 Type Inference

We can construct a standard constraint-based type inference algorithm as fol-
lows. The algorithm takes a program as an input, prepares variables for unknown
types and lock levels, and extracts constraints on them based on the typing rules.
By the standard unification algorithm and the definition of the subeffect rela-
tion, the extracted constraints can then be reduced to a set of constraints of the
form {ρ1 ≥ ξ1, . . . , ρn ≥ ξn} where the grammar for ξ1, . . . , ξn is given by

ξ ::= ρ (lock level variables)
| −∞ | ∞ | min(ξ1, ξ2) | max (ξ1, ξ2) | ξ + 1.

Note that lev < lev1 in (T-Sync) can be replaced by lev + 1 ≤ lev1. The
constraints above can be solved as in Kobayashi’s type-based deadlock analysis
for the π-calculus [7]. We will formalize the algorithm in the full version of the
current paper.

4 Related Work

Chatterjee et al. have proposed a calculus that is equipped with interrupts [3, 14].
They also proposed a static analysis of stack boundedness (i.e., interrupt chains
cannot be infinite) of programs. The main differences between our calculus and
their calculus are as follows. (1) Their calculus is not equipped with concur-
rency primitives. (2) Each handler has its own interrupt flag in their calculus.
(3) Our calculus can express an install, a change and a detach of interrupt
handlers. Due to (1), we cannot use their calculus to discuss deadlock-freedom
analysis. As for (2), their calculus has an interrupt mask register (imr) to con-
trol which handlers are allowed to interrupt and which are not. This feature
is indispensable in the verification of operating system kernels. We can extend
our calculus to incorporate this feature by adding a tag to each interrupt han-
dler (M ¤ {t1 : M1, . . . , tn : Mn}) and by specifying a tag on interrupt disabling
primitives (disable int t in M). A handler with tag t cannot interrupt inside
disable int t in. We also extend effects like (lev , taglevel), where taglevel is a
map from tags to lock levels. taglevel(t) is an upper bound of the lock levels of
locks that may be acquired or have been acquired while interrupts specified by
t is enabled. Typing rules need to be modified accordingly. Concerning (3), our
calculus can express a change of interrupt handlers as shown in Section 2.

Much work [2, 7–9] on deadlock-freedom analysis of concurrent programs has
been done. However, none of them deal with interrupts. Kobayashi et al. [7–9]
have proposed type systems for deadlock-freedom of π-calculus processes. Their
idea is (1) to express how each channel is used as a usage expression and (2) to
add capability levels and obligation levels to the inferred usage expression in order
to detect circular dependency among input/output operations to channels. Their
capability/obligation levels correspond to our lock levels. Their usage expressions
are unnecessary in the present framework because our synchronization primitive
is block-structured. That notion would be useful if we allow non-block-structured
lock primitives. Flanagan and Abadi [1, 4] have proposed a type-based deadlock-
freedom and race-freedom analysis for a Java-like language. Though their type
system also uses lock levels, they need to track only a lower bound of acquired
level as an effect because they do not deal with interrupts. In our type system, we
need to track lower and upper bounds of levels as an effect in order to guarantee
deadlock-freedom in the presence of interrupts.

Asynchronous exceptions [5, 10] in Java and Haskell are similar to interrupts
in that both cause an asynchronous jump to an exception/interrupt handler.
Asynchronous exceptions are the exceptions that may be unexpectedly thrown
during an execution of a program as a result of some events such as timeouts or
stack overflows. Marlow et al. [10] extended Concurrent Haskell [6] with support
for handling asynchronous exceptions. However, an asynchronous exception does
not require the context in which the exception is thrown to be resumed after an
exception handler returns, while an interrupt requires the context to be resumed.

5 Conclusion

We have proposed a calculus which is equipped with concurrency and interrupts.
We have also proposed a type system for verification of deadlock-freedom for the
calculus.

There remain much work to be done to make our framework applicable to
verification of real operating system kernels. Since many operating system kernels
are written in C, we need to include records, arrays and pointer arithmetics in
our calculus. For those extensions, we may also need to refine the type system.
In the current lock-level-based approach, a lock level is statically assigned to
each syntactic occurence of a lock, so that the same lock level may be assigned
to different locks. To prevent that problem, we may need to introduce lock-level
polymorphism and run-time ordering of lock levels as proposed in [2].

We also plan to develop type systems for verifying other crucial safety prop-
erties such as race-freedom and atomicity.

Acknowledgement

We are grateful to Eijiro Sumii, Hiroya Matsuba, Toshiyuki Maeda and Yutaka
Ishikawa for the comment on this research. We are also grateful to the anonymous
reviewers for their fruitful comments.

References

1. Mart́ın Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking:
Static race detection for java. ACM Transactions on Programming Languages and
Systems, 28(2):207–255, March 2006.

2. Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In Proceedings of the 2002
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications, (OOPSLA 2002), volume 37 of SIGPLAN Notices, pages 211–
230, November 2002.

3. Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A. Hen-
zinger, and Jens Palsberg. Stack size analysis for interrupt-driven programs. In-
formation and Computation, 194(2):144–174, 2004.

4. Cormac Flanagan and Mart́ın Abadi. Types for safe locking. In Proceedings of
8the European Symposium on Programming (ESOP’99), volume 1576 of Lecture
Notes in Computer Science, pages 91–108, March 1999.

5. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification, Third Edition. Addison-Wesley Professional, June 2005.

6. Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent haskell.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 1996), pages 295–308, January 1996.

7. Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4–5):291–347, 2005.

8. Naoki Kobayashi. A new type system for deadlock-free processes. In Proceedings of
the 17th International Conference on Concurrency Theory, volume 4137 of Lecture
Notes in Computer Science, pages 233–247, August 2006.

9. Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-free
process calculus. In Proceedings of CONCUR 2000, volume 1877 of Lecture Notes
in Computer Science, pages 489–503, August 2000.

10. Simon Marlow, Simon Peyton Jones, and Andrew Moran. Asynchronous exceptions
in haskell. In Proceedings of ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation (PLDI 2001), June 2001.

11. Hiroya Matsuba and Yutaka Ishikawa. Single IP address cluster for internet servers.
In Proceedings of 21st IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS2007), March 2007.

12. Robin Milner. Communication and Concurrency. Prentice Hall, September 1995.
13. Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge

University Press, 1999.
14. Jens Palsberg and Di Ma. A typed interrupt calculus. In Proceedings of 7th

International Symposium on Formal Techniques in Real-Time and Fault Toler-
ant Systems, volume 2469 of Lecture Notes in Computer Science, pages 291–310,
September 2002.

