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Abstract. Model checking of higher-order recursion schemes (HORS,
for short) has been recently studied as a new promising technique for
automated verification of higher-order programs. The previous HORS
model checking could however deal with only simply-typed programs, so
that its application was limited to functional programs. To deal with a
broader range of programs such as object-oriented programs and multi-
threaded programs, we extend HORS model checking to check properties
of programs with recursive types. Although the extended model checking
problem is undecidable, we develop a sound model-checking algorithm
that is relatively complete with respect to a recursive intersection type
system and prove its correctness. Preliminary results on the implemen-
tation and applications to verification of object-oriented programs and
multi-threaded programs are also reported.

1 Introduction

The model checking of higher-order recursion schemes (HORS for short) [33] has
been recently studied as a new technique for automated verification of higher-
order functional programs [22, 30, 34, 29]. HORS is essentially a simply-typed
higher-order functional program with recursion for generating (possibly infinite)
trees, and the goal of HORS model checking is to decide whether the tree gen-
erated by a given HORS satisfies a given property. The idea of applying the
HORS model checking is to transform a given functional program M to a HORS
G that generates a tree describing possible outputs or event sequences of the pro-
gram [22]; verification of the program is then reduced to HORS model checking,
to decide whether the tree generated by G represents valid outputs or event se-
quences. Based on this idea, various verification problems for functional programs
have been reduced to it [22, 30, 34, 45]. By combining it with predicate abstrac-
tion, a software model checker for functional programs can be constructed [34,
29]. The reason why HORS model checking works well for verification of func-
tional programs is that HORS is itself a kind of functional program, so that
the control structures (higher-order functions and recursion, in particular) of
functional programs can be naturally and precisely modeled.

The above approach to automated verification of functional programs, how-
ever, cannot be smoothly extended to support other important programming
language features, such as objects and concurrency. Object-oriented programs



often use (mutually) recursive interfaces, which cannot be naturally modeled by
HORS (which are simply-typed functional programs). In fact, even Featherweight
Java (FJ) [15] (with only objects as primitive data) is Turing complete [41]. As
for concurrency, the model checking of concurrent pushdown systems [38] is un-
decidable. These imply that there cannot be a sound and complete reduction
from verification problems for object-oriented or recursive concurrent programs
to HORS model checking. These situations are in sharp contrast to the case
for functional programs, for which we have a sound and complete reduction to
HORS model checking, as long as the programs use only finite base types (such
as booleans, but not unbounded integers) [22].

The present paper aims to overcome the above limitations by introducing an
extension of HORS model checking, where models, i.e., higher-order recursion
schemes, are extended with recursive types. The extended higher-order recursion
schemes, called µHORS, are essentially the simply-typed λ-calculus extended
with tree constructors, (term-level) recursion, and recursive types, which is Tur-
ing complete. The model checking of µHORS (µHORS model checking for short)
is undecidable, but we can develop a sound (but incomplete) model checking pro-
cedure. The procedure uses the result that HORS model checking can be reduced
to a type checking problem in an intersection type system [22, 27, 46], and solves
the type checking problem. Although the procedure is incomplete (as µHORS
model checking is undecidable) and may not terminate, it is relatively complete
with respect to a certain recursive intersection type system: any program that is
typable in the type system is eventually proved correct. The procedure incorpo-
rates a novel reduction of the intersection type checking to SAT solving, which
may be of independent interest and applicable to ordinary HORS checking.

Being armed with µHORS model checking, we can construct a fully auto-
mated verification tool (or so called a “software model checker”) for various
programming languages, as shown in Figure 1. Given a program, we first apply
a kind of program transformation to get a µHORS that generates a tree describ-
ing all the possible program behaviors of interest, and then use µHORS model
checking to check that the tree describes only valid behaviors. For example,
given an object-oriented program with a specification on method call sequences
like “after a close method of a file object is called, no read/write methods are
called”), we first construct a µHORS that generates a tree describing all the
possible method call sequences. This is achieved by combining functional encod-
ing of objects [6] with the reduction from verification of functional programs to
HO model checking [22]. We then invoke the µHORS model checker to check
whether the tree contains only valid method call sequences. The µHORS model
checking can also be used to verify concurrent, higher-order programs, since we
can write a scheduler in µHORS thanks to recursive types. The idea of apply-
ing program transformation to reduce program verification problems to HORS
model checking problems is the same as our previous framework for automated
verification of functional programs [22], but thanks to the expressive power of
µHORS, we can now deal with other programming language features like objects
and concurrency.
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Fig. 1. The overall structure of our verification method

As a proof of concept, we have implemented a prototype of the µHORS model
checker (which corresponds to the second phase of Figure 1), and a translator
from Featherweight Java (FJ) programs [15] to µHORS (which corresponds to
the first phase of Figure 1). Preliminary experiments show that we can indeed
use the µHORS model checker to verify small but non-trivial object-oriented
programs.

The rest of this paper is structured as follows. Section 2 introduces recursive
intersection types and the µHORS model checking problem, and gives a recursive
intersection type system that is sound with respect to the model checking prob-
lem. Section 3 gives an algorithm for µHORS model checking, and proves that it
is sound and relatively complete with respect to the recursive intersection type
system. Section 4 shows applications of µHORS model checking to verification of
objects and multi-threads. Section 5 reports preliminary experiments. Section 6
discusses related work and limitations of our approach. Section 7 concludes the
paper.

2 Preliminaries

This section introduces µHORS, defines model checking problems for them, and
reduces it to a type-checking problem in a recursive intersection type system.

2.1 Recursive Intersection Types

Before introducing µHORS model checking, we first formalize recursive intersec-
tion types. We fix a finite set Q of base types below, and use the meta-variable
q for its elements. We use the meta-variable α for type variables.

Definition 1. A (recursive intersection) type is a pair (E,α), where E is a
finite set of equations of the form αi = σ1 → · · · → σm → q, and σ is of
the form

∧
{α1, . . . , αk}. Here m and k may be 0. We use the meta-variable τ

for recursive intersection types. We write Tv(τ) for the set of type variables
occurring in τ . A recursive intersection type τ = (E,α) is closed if, for every
α ∈ Tv(τ), (α = θ) ∈ E for some θ. When (α = θ) ∈ E, we write E(α) for θ.

We identify types up to renaming of type variables. For example, ({α = q}, α)
is the same as ({β = q}, β). Thus, for two closed types τ0 and τ1, we always
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assume that Tv(τ0)∩Tv(τ1) = ∅. We often write α1 ∧ · · · ∧ αk or
∧
i∈{1,...,k} αi

for
∧
{α1, . . . , αk} and write > for

∧
∅. Intuitively, (E,α) denotes the (recur-

sive) type α that satisfies the equations in E. For example, ({α = α → q}, α)
represents the recursive type µα.(α → q) in the usual notation. We often use
this term notation for recursive intersection types. By abuse of notation, when
E(α) =

∧
i∈I1 αi → · · · →

∧
i∈Ik αi → q, we write

∧
i∈I1(E,αi) → · · · →∧

i∈Ik(E,αi) → q for (E,α). For example, when E = {α0 = α1 → q0, α1 = q1},
(E,α0) is also written as (E,α1)→ q0 or q1 → q0. The type σ1 → · · · → σm → q
describes functions that take m arguments of types σ1, . . . , σm, and return a
value of type q. The type α1∧ · · ·∧αk describes values that have all of the types
α1, . . . , αk. For example, if Q = {q1, q2}, the identity function on base values
(λx.x in the λ-calculus notation) would have types (q1 → q1) ∧ (q2 → q2).

We define the subtyping relation τ0 ≤ τ1, which intuitively means, as usual,
that any value of type τ0 can be used as a value of type τ1.

Definition 2 (subtyping). Let τ = (E′′, α) and τ ′ = (E′, α′) be closed types,
and let E = E′′∪E′. The type τ is a subtype of τ ′, written τ ≤ τ ′, if there exists
a binary relation R on Tv(τ)∪Tv(τ ′) such that (i) (α, α′) ∈ R and (ii) for every
(α0, α

′
0) ∈ R, there exist σ1, . . . , σm, σ

′
1, . . . , σ

′
m, q such that E(α0) = σ1 → · · · →

σm → q and E(α′0) = σ′1 → · · · → σ′m → q, with (σ′1, σ1), . . . , (σ′m, σm) ∈ R∧.
Here, R∧ is:
{(
∧
{α′1, . . . , α′k′},

∧
{α1, . . . , αk}) | ∀i ∈ {1, . . . , k}.∃j ∈ {1, . . . , k′}.α′jRαi}.

We write τ ∼= τ ′ if τ ≤ τ ′ and τ ′ ≤ τ .

Example 1. Let τ0 = ({α0 = α0 → q}, α0) and τ1 = ({α1 = α2 → q, α2 =
α1 ∧ α3 → q, α3 = q}, α1). τ1 ≤ τ0 holds, with the relation {(α1, α0), (α0, α2)}
as a witness.

2.2 µHORS

We introduce below µHORS and its model checking problem, and reduce the lat-
ter to a type checking problem. To our knowledge, the notion of µHORS is new,
but it is a subclass of the untyped HORS studied by Tsukada and Kobayashi [46],
and the reduction from µHORS model checking to type checking (Theorem 2)
is a corollary of the result of [46]. We shall therefore quickly go through the
definitions and results; more formal definitions (apart from recursive types) and
intuitions are found in [33, 22, 46].

µHORS and model checking problems The set of basic types (called sorts)
is the subset of recursive intersection types, where Q is a singleton set {o} (where
o is the type of trees) and there is no intersection: in σ =

∧
{α1, . . . , αk}, k is

always 1. Below we often use the following term representation of sorts:

κ ::= α | κ1 → · · · → κ` → o | µα.κ.

Let Σ be a ranked alphabet, i.e., a map from symbols to their arities. An
element of dom(Σ) is used as a tree constructor. A sort environment is a map
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from variables to sorts. The set of applicative terms of type κ under a sort
environment K is inductively defined by the following rules:

K, x : κ ` x : κ K ` a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o

K ` t1 : κ1 K ` t2 : κ2 κ1 ∼= (κ2 → κ)

K ` t1 t2 : κ

As usual, applications are left-associative, so that t1 t2 t3 means (t1 t2) t3.
A µHORS G is a quadruple (N , Σ,R, S) where: (i) N is a map from variables

(called non-terminals) to sorts; (ii) Σ is a ranked alphabet, where dom(N ) ∩
dom(Σ) = ∅; (iii) R is a map from non-terminals to a λ-term of the form
λx1. · · ·λx`.t where t is an applicative term; (iv) S, called the start symbol, is a
non-terminal such that N (S) = o. If N (F ) = κ1 → · · · → κk → o and R(F ) =
λx1. · · ·λx`.t, then it must be the case that k = ` and N , x1 :κ1, . . . , x` :κ` ` t : o.

The (possibly infinite) tree generated by G, written by Tree(G), is defined as
the limit of infinite fair reductions of S [33] where the reduction relation −→
is defined by: (i) F t1 · · · t` −→ [t1/x1, . . . , t`/x`]t if R(F ) = λx1. · · ·λx`.t; and
(ii) a t1 · · · t` −→ a t1 · · · ti−1 t′i ti+1 · · · t` if ti −→ t′i for some i ∈ {1, . . . , `}.
See [33] for the formal definition of Tree(G).

Notation 1 We write ũ for a sequence u1 · · ·u`. λx̃.t stands for λx1. · · ·λx`.t,
and [s̃/x̃]t for [s1/x1, . . . , s`/x`]t (with the understanding that s̃ and x̃ have the
same length `). We often write the four components of G as NG , ΣG ,RG , SG,
and omit the subscript if it is clear from context. We often write R as a set
of rewriting rules {F1 x1 · · · x`1 → t1, . . . , Fm x1 · · · x`m → tm} if R(Fi) =
λx1. · · ·λx`i .ti for each i ∈ {1, . . . ,m}.

Example 2. Consider µHORS G1 = (N1, Σ1,R1, S) where

N1 = {S 7→ o, F 7→ (o→ o)}
Σ1 = {a 7→ 2, b 7→ 1, c 7→ 0}
R1 = {S → F c, F x→ ax (F (bx))}

S is rewritten as follows, and the tree in Figure 2 is generated:
S −→ F c −→ a c (F (b c)) −→ a c (a (b c) (F (b (b c))) −→ · · · .

Example 3. Consider µHORS G2 = (N2, Σ1,R2, S) where Σ1 is as given in Ex-
ample 2, and:

N2 = {S 7→ o, F 7→ (o→ o), G 7→ µα.(α→ o→ o)}
R2 = {S → F c, F x→ GGx, G g x→ ax (g g (bx))}

This is the same as G1 except that recursive types are used instead of term-level
recursion. S is reduced as below, and the same tree as Tree(G1) is generated.

S −→ F c −→ GG c −→ a c (GG (b c)) −→ a c (a (b c) (GG (b (b c))) −→ · · ·
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Fig. 2. The tree generated by G1 of Example 2.

Remark 1. A tree node that is never instantiated to a terminal symbol is ex-
pressed by the special terminal symbol ⊥ (with arity 0). For example, for µHORS
G3 = (N3, Σ1,R3, S) where

N3 = {S 7→ o, F 7→ µα.(α→ o)}
R3 = {S → F F, F x→ xx},

Tree(G3) is a singleton tree ⊥. ut

As usual [33, 22], we use (top-down) tree automata to express properties
of the tree generated by higher-order recursion schemes. For a ranked alpha-
bet Σ, a Σ-labeled tree T is a map from sequences of natural numbers (which
represent paths of the tree) to dom(Σ), such that (i) its domain dom(T ) is
non-empty and closed under the prefix operation, and (ii) if π ∈ dom(T ) then
{j | πj ∈ dom(T )} = {1, . . . , Σ(T (π))}. A (deterministic) trivial automa-
ton [1] B is a quadruple (Σ,Q, δ, q0), where Σ is a ranked alphabet, Q is
a finite set of states, δ, called a transition function, is a partial map from
Q × dom(Σ) to Q∗ such that |δ(q, a)| = Σ(a), and q0 is the initial state.
A Σ-labeled tree T is accepted by B if there is a Q-labeled tree R (called a
run tree) such that: (i) dom(T ) = dom(R); (ii) R(ε) = q0; and (iii) for every
π ∈ dom(R), δ(R(π), T (π)) = R(π1) · · ·R(πΣ(T (π))). For a trivial automaton
B = (Σ,Q, δ, q0) (with ⊥ 6∈ dom(Σ)), we write B⊥ for the trivial automaton
(Σ ∪ {⊥ 7→ 0}, Q, δ ∪ {(q,⊥) 7→ ε) | q ∈ Q}, q0). We often write ΣB, QB, δB, qB,0
for the four components of B, and omit the subscript if it is clear from context.
Trivial automata are sufficient for describing safety properties: see [28] for the
logical characterization.

Example 4. Let B1 = (Σ1, {q0, q1}, δ, q0) where Σ1 is as given in Example 2 and
δ is given by:

δ(q0, a) = q0q0, δ(q0, b) = δ(q1, b) = q1 δ(q0, c) = δ(q1, c) = ε.

It accepts a Σ1-labeled (ranked) tree T if and only if a does not occur below b.
In particular, B1 accepts the tree shown in Figure 2. ut
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The µHORS model checking is the problem of checking whether Tree(G) is
accepted by B⊥, given a µHORS G and a trivial automaton B.3 The problem is
in general undecidable.

Theorem 1 ([46]). The model checking problem for µHORS is undecidable.

[46] gives only a proof sketch. An alternative proof can be obtained by using
the reduction from FJ [15] (which is Turing-complete) to µHORS given in Sec-
tion 4.1.

Type system for model checking We give a sound type system for checking
that Tree(G) is accepted by B⊥. The set of recursive intersection types is as given
in Section 2.1, where the set Q of base types is the set of states of B. Intuitively,
a state q is regarded as the type of trees accepted by B⊥ from the state q [22].

The type judgment relations Γ `B t : τ and Γ `B (G, t) : τ (where Γ , called
a type environment, is a set of type bindings of the form x : τ) are defined by:

τ ≤ τ ′

Γ, x : τ `B x : τ ′
δB(q, a) = q1 · · · qk q1 → · · · → qk → q ≤ τ

Γ `B a : τ

Γ `B t1 :
∧
i∈I τi → τ

Γ `B t2 : τ ′i and τ ′i ≤ τi (for every i ∈ I)

Γ `B t1t2 : τ

Γ, x : τ1, . . . , x : τ` `B t : τ
x does not occur in Γ

Γ `B λx.t :
∧
i∈{1,...,`} τi → τ

∀(F : τ) ∈ Γ.(Γ `B R(F ) : τ)

`B R : Γ

`B RG : Γ Γ `B t : τ

Γ `B (G, t) : τ

The following theorem is a special case of the soundness of Tsukada and
Kobayashi’s infinite intersection type system for untyped HORS [46].

Theorem 2 (soundness). Let B be a trivial automaton (Σ,Q, δ, qB,0) and G
be a µHORS. If Γ `B (G, SG) : qB,0, then Tree(G) is accepted by B⊥.

Remark 2. If G does not use recursive sorts, the type system is also complete [22].
The model checking algorithm discussed in this paper is, therefore, complete for
the class of µHORS without recursive sorts.

Example 5. Recall G1 and G2 in Examples 2 and 3, and B1 in Example 4. Γ1 `B1

(G1, S) : q0 and Γ2 `B1 (G2, S) : q0 hold for:

Γ1 = {S : q0, F : (q0 ∧ q1)→ q0}
Γ2 = Γ1 ∪ {G : µα.(α→ (q0 ∧ q1)→ q0)} ut

Given a type environment Γ , a µHORS G, and an automaton B, it is decidable
whether Γ `B (G, SG) : qB,0 holds. Thus, Γ can be used as a certificate for

3 We consider B⊥ instead of B as we are interested in safety properties. G3 in Re-
mark 1 generates no nodes, hence never violates safety properties; indeed, Tree(G3)
is accepted by B⊥ for any B.
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Tree(G) being accepted by B. The converse of the theorem above does not hold,
i.e., there is a µHORS G such that Tree(G) is accepted by B⊥ but Tree(G) is
not well-typed. To establish the converse, we need to replace (finite) recursive
intersection types with infinite intersection types [46]. We have the following
properties on the (un)decidability of type checking.

Theorem 3. 1. Given a type environment Γ , a µHORS G, and a trivial au-
tomaton B, it is decidable whether Γ `B (G, SG) : qB,0 holds.

2. Given a µHORS G and a trivial automaton B, it is undecidable whether
there exists Γ such that Γ `B (G, SG) : qB,0 holds. More precisely, the set
{G | ∃Γ.Γ `B (G, SG) : qB,0} is recursively enumerable but not recursive.

Proof. The first property follows from the fact that the equality and subtyping
relations on (finite) recursive intersection types are decidable. To see that {G |
∃Γ.Γ `B (G, SG) : qB,0} is recursively enumerable, it suffices to observe that for
each G, we can enumerate all the possible candidates of Γ and check whether
Γ `B (G, SG) : qB,0 holds. The set not being recursive follows from the fact that
one can encode a Minsky machine [32] M into a µHORS GM , so that M halts if
and only if GM is typable in the recursive intersection type system. Let B be an
automaton that accepts the singleton language {end}. Given a Minsky machine
M , prepare the following non-terminal symbols:

– The start symbol S, of sort o.
– Zero : N, Succ : N → N, Pred : N → N, Eq : N → N → o → o → o

that simulates constructors and operations on natural numbers. Here, N is
a certain recursive type of terms obtained by encoding natural numbers.

– Fi of sort N→ N→ N→ N→ o, for each program counter i.

The first and second arguments of Fi are the values of two counters. The third
and fourth arguments keep the number of execution steps and they are expected
to be identical. We prepare the following rules:

– S → F0 Zero Zero Zero Zero (assuming that 0 is the initial program
counter).

– Appropriate rules for Zero, Succ, Pred , and Eq that simulate the corre-
sponding constructors and operations on natural numbers (this may involve
additional non-terminals and rules on them). In particular, the following
properties should hold.

Eq t1 t2 t3 t4 −→∗G t3 if [[t1]] = [[t2]] = n for some natural number n
Eq t1 t2 t3 t4 −→∗G t4 if [[t1]] = m 6= [[t2]] = n for some natural numbers m,n

Here, [[ · ]] is a partial function from the set of terms to the set of natural
numbers, defined by:

[[Zero]] = 0 [[ Succ(t)]] = [[t ]] +1

[[Pred(t)]] =

0 if [[ t]] = 0
n− 1 if [[ t]] = n > 0
undefined otherwise
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– For each program counter i, prepare a rule that simulates the instruction Ii
after checking the equivalence of the third and fourth arguments of Fi. So,
• If Ii is “halt,” then

Fi c0 c1 x y → Eq x y end fail

• If Ii is “cj := cj + 1; goto k,” then

Fi c0 c1 x y → Eq x y (Fk t0 t1 (Succ x) (Succ y)) fail,

where tj′ = Succ cj if j′ = j and tj′ = cj′ otherwise, for j′ ∈ {0, 1}.
• If Ii is “if ci = 0 then goto k1 else ci := ci − 1; goto k2,” then

Fi c0 c1 x y → Eq x y
(Eq Zero ci (Fk1 c0 c1 (Succ x) (Succ y))

(Fk2 t0 t1 (Succ x) (Succ y)) )
fail

where tj′ = Pred cj if j′ = j and tj′ = cj′ otherwise, for j′ ∈ {0, 1}.

Let GM be the resulting grammar. We claim that M halts if and only if GM
is typable in the recursive intersection type system. If M halts, then there is a
finite reduction sequence S −→∗GM end. By the result on ordinary higher-order
model checking [24], GM is typable in the intersection type system even without
recursive types. Suppose M does not halt, but Γ `B (G, S) : qB,0 for a finite,
recursive type environment Γ . Then, the set U of applicative terms that have
type qB,0 under Γ must be regular (note that each typing rule can be viewed as a
transition rule for an alternating tree automaton that accept term trees, having
intersection types as states). Furthermore, by the subject reduction property
and the condition S ∈ U , (i) U contains all the terms obtained by reducing
S; and (ii) any element of U cannot be reduced to fail. By condition (ii), if
Fi t1 t2 (Succm Zero) (Succn Zero) ∈ U , then it must be the case that m = n.
By condition (i) and the fact that M does not halt, for every n, there exists
i, t1, t2 such that Fi t1 t2 (Succn Zero) (Succn Zero) ∈ U . But then U cannot be
regular, hence a contradiction. ut

3 Model Checking µHORS

We now describe the main result of this paper: a model checking procedure
for µHORS (the second phase in Figure 1).4 We shall develop a (possibly non-
terminating) procedure Check that satisfies:

Check(G,B) =

{
Γ ′ such that Γ ′ `B (G, SG) : qB,0 if ∃Γ.Γ `B (G, SG) : qB,0
No (with a counterexample) if Tree(G) is not accepted by B⊥

4 Readers who are curious about the relationship between program verification and
µHORS may wish to consult Section 4 and then come back to this section.

9



By Theorem 3, the procedure Check can only be a semi-algorithm: it may not
terminate if Tree(G) is accepted by B⊥ but ∃Γ.Γ `B (G, SG) : qB,0 does not hold.

An obvious approach would be to run (i) a sub-procedure FindCert(G,B) to
enumerate all the finite type environments Γ and output Γ if Γ `B (G, SG) : qB,0
holds, and in parallel, (ii) a sub-procedure FindCE(G,B) to reduce G in a fair
manner and output No if a partially generated tree is not accepted by B⊥. The
first sub-procedure FindCert is, however, too non-deterministic to be used in
practice.

We describe below a more realistic procedure for FindCert(G,B) that out-
puts Γ such that Γ `B (G, SG) : qB,0 if there is any, and may diverge otherwise.
As FindCert can incrementally find the types of non-terminals, we can use
them to improve FindCE as well, by removing well-typed terms from the search
space. As such interaction between FindCert and FindCE is the same as the
case without recursive types [20], we focus on the discussion of FindCert below.

3.1 Type Inference Procedure

We first give an informal overview of the idea of FindCert. Since it is easy to
check whether a given Γ is a valid certificate (i.e. whether Γ `B (G, SG) : qB,0
holds), the main issue is how to find candidates for Γ . As in the algorithm for
HORS without recursive types [20], the idea of finding Γ is to extract type
information by partially reducing a given recursion scheme, and observing how
each non-terminal symbol is used. For example, suppose that S is reduced as
follows. S : q0 −→∗ C1[F G : q1] −→∗ C2[Gt : q2] −→∗ C3[t : q1]. Here, we have
annotated each term with a state of the property automaton; t : q means that
the tree generated by t should be accepted from q. From the reduction sequence,
we know t should have type q1, from which we can guess that G should have
type q1 → q2, and we can further guess that F should have type (q1 → q2)→ q1.
This way of guessing types is complete for HORS (without recursive types) [20].
In the presence of recursive types, however, we need a further twist, to obtain
(relative) completeness. For example, suppose S is reduced as follows. S :q0 −→∗
C1[F t1 : q1] −→∗ C2[t1 t2 : q0] −→∗ C3[t2 t3 : q1] −→∗ C4[t3 t4 : q0] −→∗ · · ·. This
kind of calling chain terminates for ordinary HORS (since the terms are simply-
typed), but may not terminate for µHORS because of recursive types. (For
example, consider a variation of G3 in Remark 1, where the rule for F is replaced
by F x → x (I x), with the new rule I x → x. Then, we have an infinite calling
chain: S −→∗ F (I F ) −→∗ (I F ) (I (I F )) −→∗ (I (I F )) (I (I (I F ))) −→∗ · · ·.)
Thus, we would obtain an infinite set of type equations:
αF = αt1 → q1 αt1 = αt2 → q0 αt2 = αt3 → q1 αt3 = αt4 → q0 · · ·
(where αt represents the type of term t). To address this problem, we introduce
an equivalence relation ∼ on terms, and consider reductions modulo ∼. In the
example above, if we choose ∼ so that t2n−1 ∼ t2n+1 and F ∼ t2n ∼ t2n+2, then
we would have finite equations α[F ] = α[t1] → q1 and α[t1] = α[F ] → q0 (where [t]
is the equivalence class containing t), from which we can infer µα.(α→ q0)→ q1
as the type of F . As we show in Theorem 4 later, this way of type inference
is complete if a proper equivalence relation ∼ is given as an oracle. It is not
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complete in general, but Theorem 5 ensures that no matter how ∼ is chosen, we
can “amend” the inferred type environment to obtain a correct type environment.
Based on the theorem, we can develop a complete procedure for FindCert.

We now turn to describe the idea more formally. Let Tm be the set of (well-
sorted) closed terms constructed from non-terminals and terminals of G, and ∼
be an equivalence relation on Tm that induces a finite set of equivalence classes.
We write [t]∼ for the equivalence class containing t, i.e., {t′ | t ∼ t′}, and omit
the subscript if clear from context. Intuitively, the equivalence relation t1 ∼ t2
means that t1 and t2 behave similarly with respect to the given automaton B.
For the moment, we assume that ∼ is given as an oracle. Throughout the paper,
we consider only equivalence relations that equate terms of the same sort, i.e.,
t ∼ t′ implies N ` t : κ⇐⇒ N ` t′ : κ for every κ.

We define the extended reduction relation (X ,U) −→∼ (X ′,U ′) as the least
relation closed under the rules below, where X is a set of terms and U is a set
of pairs consisting of a term and an automaton state or a special element fail.
In rule R-NT, STm(t) denotes the set of all subterms of t.

(a t1 · · · t`, q) ∈ U δ(q, a) = q1 · · · q`
(X ,U) −→∼ (X ,U ∪ {(t1, q1), . . . , (t`, q`)})

(R-Const)

(a t1 · · · t`, q) ∈ U δ(q, a) is undef. or |δ(q, a)| 6= `

(X ,U) −→∼ (X ,U ∪ {fail})
(R-F)

(F t̃, q) ∈ U R(F ) = λx̃.u

(X ,U) −→∼ (X ∪ STm([t̃/x̃]u),U ∪ {([t̃/x̃]u, q)})
(R-NT)

(t t1 · · · tk, q) ∈ U t ∼ t′ t′ ∈ X
(X ,U) −→∼ (X ,U ∪ {(t′ t1 · · · tk, q)})

(R-Eq)

The main differences from the reduction relation t −→ t′ in Section 2.2 are:
(i) each term t (of sort o) is coupled with its expected type, (ii) such pairs are
kept in the U component after reductions (in other words, (t, q) ∈ U means that
t should generate a tree accepted by B from state q), (iii) the X component keeps
all the sub-terms that have occurred so far, and (iv) a subterm in a head position
can be replaced by another term belonging to the same equivalence class (see
rule R-Eq above). In rule R-Const, (a t1 · · · t`, q) being an element of U means
that a t1 · · · t` should generate a tree of type q (i.e., should be accepted by B
from the state q). The premise δ(q, a) = q1 · · · q` means that the i-th subtree
should have type qi, so that we add (ti, qi) to the second component. Rule R-F
is applied when (a t1 · · · t`, q) is in the second set but no tree having a as its
root can be accepted from the state q. The condition |δ(q, a)| 6= ` actually never
holds, by the assumption that ∼ equates only terms of the same sort. R-NT is
the rule for reducing non-terminals. As mentioned above, rule R-Eq is used to
replace a head of a term with an equivalent term with respect to ∼. Extended
reduction sequences are in general infinite, and non-deterministic.
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Example 6. Recall G2 in Example 3. Let ∼(1) be the least congruence relation
that satisfies b(c) ∼ c. Then, by using ∼(1) as ∼, we can reduce ({S}, {(S, q0)})
as follows:

(S, q0) (F c, q0) (G G c, q0) (a c (G G (b c)), q0) (G G (b c), q0)

(c, q0) (a (b c)  (G G (b (b c))), q0)(b c, q0)(c, q1)
...

Here, we have omitted the X -component, and shown only elements relevant
to reductions instead of the whole U-component. In the figure, dashed arrows
represent reductions by using rule R-Eq, and solid arrows represent reductions
obtained by the other rules. The figure shows a state obtained by a finite number
of reductions. From an infinite fair reduction sequence, we obtain the following
set as U :

{(F (bk c), q0), (GG (bk c), q0), (bk c, q0), (bk c, q1) | k ≥ 0}
∪{(S, q0)} ∪ {(a (bk c) (GG (b` c)), q0) | k, ` ≥ 0} ut

The goal below is to construct a candidate of type environment Γ that satisfies
Γ `B G : q0, from a fair reduction sequence (where a reduction sequence is fair if
every enabled reduction is eventually reduced). The idea of the construction of Γ
is similar to the case for ordinary HORS [20]. For example, in Example 6 above,
from the pairs (c, q0) and (c, q1), we can guess that the type of c is q0∧ q1. From
the pair (F c, q0), we guess that the return type of F is q0, so that the type of
F is q0 ∧ q1 → q0. The actual construction is, however, more involved than [20]
because of the presence of recursive types and the term equivalence relation ∼.

Let (X0,U0) −→∼ (X1,U1) −→∼ (X2,U2) −→∼ · · · be a fair reduction se-
quence where X0 = {S} and U0 = {(S, q0)}, and let X and U be

⋃
i∈ω Xi and⋃

i∈ω Ui respectively. We prepare a type variable α[t0],...,[tk],q for each (t0t1 · · · tk, q) ∈
U . Intuitively, α[t0],...,[tk],q is the type of t0 in t0 t1 · · · tk : q. Let E be:

{α[t0],[t1],...,[tk],q = σ[t1] → · · · → σ[tk] → q | (t0 t1 · · · tk, q) ∈ U},

where σ[t] =
∧
{α[t],[t′1],...,[t

′
`],q

′ | (t t′1 · · · t′`, q′) ∈ U}. We define the type environ-
ment ΓX ,U,∼ as {F : (E,α[F ],[t1],...,[tk],q) | (F t1 · · · tk, q) ∈ U}. By the condition
that ∼ induces a finite number of equivalence classes, ΓX ,U,∼ is finite.

By the definition above, we have:

Lemma 1. If the number of equivalence classes induced by ∼ is finite, then
ΓX ,U,∼ is also finite. Furthermore, there exists m such that ΓXm,Um,∼ = ΓX ,U,∼ .

Although ΓX ,U,∼ above is defined for a fair reduction sequence that is usually
infinite, Lemma 1 above says that ΓX ,U,∼ can be computed from a finite prefix
of the fair reduction sequence.

Example 7. From the reductions in Example 6, we get the following type equa-
tions:

αS,q0 = q0 αF,c,q0 = αc,q0 ∧ αc,q1 → q0 αc,q0 = q0 αc,q1 = q1
αG,G,c,q0 = αG,G,c,q0 → αc,q0 ∧ αc,q1 → q0

12



Thus, the extracted type environment (in the usual term representation) is:

{S : q0, F : (q0 ∧ q1)→ q0, G : µα.(α→ (q0 ∧ q1)→ q0)}. ut

Even if G is typable, ΓX ,U,∼ may not be a proper witness, i.e., ΓX ,U,∼ `B (G, SG) :
qB,0 may not hold in general. The theorem below (Theorem 4), however, ensures
that if G is typable and if ∼ is properly chosen, ΓX ,U,∼ is indeed a proper
witness. For a type environment Γ , we define the equivalence relation ∼Γ by:
∼Γ= {(t1, t2) | ∀τ.(Γ ` t1 : τ ⇐⇒ Γ ` t2 : τ)}.
Theorem 4. If Γ `B (G, SG) : qB,0 and ∼⊆∼Γ , then ΓX ,U,∼ `B (G, SG) : qB,0.

Proof. See Appendix A.1.

Example 8. Recall G2 in Example 3, and Γ2 = {S : q0, F : (q0 ∧ q1) → q0, G :
µα.(α→ (q0 ∧ q1)→ q0)} in Example 5.∼Γ2

is a congruence that satisfies bc ∼Γ2

c, S ∼Γ2
F c, and F ∼Γ2

GG. The relation ∼ in Example 6 satisfies the
assumption ∼⊆∼Γ2 of Theorem 4, and ΓX ,U,∼ `B1 (G2, S) : q0 holds indeed.

Theorem 4 cannot be directly used for type inference, since we do not know
∼Γ in advance. We shall prove below (in Theorem 5) that even if ∼ is not a
subset of ∼Γ , we can “amend” the type environment to get a valid one, by using
the refinement relation v below. Intuitively, τ1 v τ2 means that τ1 is obtained
from τ2 by removing some intersection types. Note that unlike subtyping, the
refinement relation is co-variant in the function type constructor (→).

Definition 3 (refinement). Let τ0 = (E0, α0) and τ1 = (E1, α1) be closed
types, and let E = E0 ∪ E1. The type τ0 is a refinement of τ1, written τ0 v τ1,
if there exists a binary relation R on Tv(τ1)∪Tv(τ2) such that (i) (τ0, τ1) ∈ R
and (ii) for every (τ ′0, τ

′
1) ∈ R, there exist σ1, . . . , σm, σ

′
1, . . . , σ

′
m, q such that

E(α′0) = σ1 → · · · → σm → q and E(α′1) = σ′1 → · · · → σ′m → q, with
(σ1, σ

′
1), . . . , (σm, σ

′
m) ∈ Rv. Here, Rv is defined as:

{(
∧
{α1, . . . , αk},

∧
{α′1, . . . , α′k′}) | ∀i ∈ {1, . . . , k}.∃j ∈ {1, . . . , k′}.αiRα′j}.

We write Γ1 v Γ2 if dom(Γ1) ⊆ dom(Γ2) and for every x : τ1 ∈ Γ1, there exists
τ2 such that x : τ2 ∈ Γ2 and τ1 v τ2.

Example 9. Let τ1 be q1 → q2 and τ2 be (q1 ∧ q0) → q2. Then τ1 v τ2 and
τ1 → q0 v τ2 → q0 hold. Note that τ1 ≤ τ2 but τ1 → q0 6≤ τ2 → q0. For τ0 and
τ1 in Example 1, τ0 v τ1 but τ1 6v τ0. R2 = {(τ0, τ1), (τ0, τ2)} is a witness for
τ0 v τ1. ut

Theorem 5. Suppose Γ `B (G, SG) : qB,0. Let ∼ be an equivalence relation on
Tm and (X0,U0) −→∼ (X1,U1) −→∼ (X2,U2) −→∼ · · · be a fair reduction
sequence, with (X0,U0) = ({S}, {(S, qB,0)}). Let U =

⋃
i Ui and X =

⋃
i Xi.

Then, there exists Γ ′ such that Γ ′ v ΓX ,U,∼ and Γ ′ ` (G, S) : qB,0,

The proof is given in Appendix A. Intuitively, Theorem 5 holds because, if ∼
is not a subset of ∼Γ , we only get extra reduction sequences, whose effect is only
to add extra type bindings and elements in intersections. Thus, by removing the
extra nodes and edges (using the refinement relation from right to left), we can
obtain a proper type environment.
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Example 10. Recall Example 6. Let∼(2) be the equivalence relation:∼(1) ∪{(GG, b), (b, GG)}.
By using ∼(2), we get the reductions as shown in Figure 3. In the figure, the

(S, q0)

(F c, q0)

(G G c, q0)

(a c (G G (b c)), q0)

(G G (b c), q0)
(c, q0)

(a (b c)  (G G (b (b c))), q0)(b c, q0)

(c, q1) ...

(G G c, q1)

(a c (G G (b c)), q1)

fail

(b c, q1)

Fig. 3. Reductions based on ∼(2)

extra nodes caused by using ∼(2) instead of ∼(1) are surrounded by boxes. From
the reductions, we obtain the following type equations:

αS,q0 = q0 αF,c,q0 = αc,q0 ∧ αc,q1 → q0 αc,q0 = q0 αc,q1 = q1
αG,G,c,q0 = αG,G,c,q0∧αG,G,c,q1 → αc,q0 ∧ αc,q1 → q0
αG,G,c,q1 = αG,G,c,q1 ∧ αG,G,c,q1 → αc,q0 ∧ αc,q1 → q1

The part obtained from the extra reduction sequence is underlined. By ignoring
that part, we get the same equations as Example 7, hence obtaining the correct
type environment: {S : q0, F : (q0 ∧ q1)→ q0, G : µα.(α→ (q0 ∧ q1)→ q0)}. ut

Theorem 5 yields the procedure FindCert in Figure 4. We assume that
expandEq(∼,X ′) in Figure 4 returns an equivalence relation ∼′ on X ′ such that
∼⊆∼′ and |X ′/ ∼′ | ≤ n. for some fixed n. The condition ∃Γ ′.Γ ′ `B (G, S) :
qB,0∧Γ ′ v Γ is in general undecidable because of the presence of recursive types.
Thus, we bound the size (i.e., the number of type constructors) of Γ ′ by v, and
gradually increase the bound. An algorithm to check whether there exists Γ ′

such that |Γ ′| < v and Γ ′ `B (G, S) : qB,0 ∧ Γ ′ v Γ is discussed in Section 3.2.
By Theorem 5, we have:

Theorem 6 (relative completeness). If Γ `B (G, S) : qB,0 for some finite
recursive type environment Γ , then FindCert(G, S, qB,0) eventually terminates
and outputs Γ ′ such that Γ ′ `B (G, S) : qB,0.

The termination is ensured by Lemma 1.

3.2 Type Checking by SAT Solving

We now discuss the sub-algorithm for FindCert, to check whether there exists
Γ ′ such that |Γ ′| ≤ v and Γ ′ `B (G, S) : qB,0 ∧ Γ ′ v Γ .
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FindCert(G,B) = Rep(G,B, {S}, {(S, qB,0)}, {(S, S)}, 1)
Rep(G,B,X ,U ,∼, v) =

let (X ,U) −→`
∼ (X ′,U ′) in let ∼′ = expandEq(∼,X ′) in

if Γ ′`B(G, S):qB,0 for some Γ ′vΓX ′,U′,∼′ and |Γ ′| ≤ v then return Γ ′

else Rep(G,B,X ′,U ′,∼′, v + 1)

Fig. 4. A type inference procedure. (|Γ | denotes the largest type size in Γ . )

We first rephrase the condition |Γ ′| ≤ v ∧ Γ ′ v Γ . For a set E = {α1 =
σ1,1 → · · ·σ1,m1 → q1, . . . , αn = σn,1 → · · ·σn,mn → qn}, we write E(k) for:

{α(1)
1 = σ

(k)
1,1 → · · ·σ

(k)
1,m1

→ q1, . . . , α
(1)
n = σ

(k)
n,1 → · · ·σ

(k)
n,mn → qn, . . . ,

α
(k)
1 = σ

(k)
1,1 → · · ·σ

(k)
1,m1

→ q1, . . . , α
(k)
n = σ

(k)
n,1 → · · ·σ

(k)
n,mn → qn, },

obtained by preparing k copies for each type variable. Here, for σ =
∧
{α1, . . . , α`},

σ(k) represents
∧
{α(1)

1 , . . . , α
(1)
` , . . . , α

(k)
1 , . . . , α

(k)
` }. Clearly, (E,αi) ∼= (E(k), α

(1)
i ).

We write Γ (k) for {x : (E(k), α(i)) | x : (E,α) ∈ Γ, 1 ≤ i ≤ k}.
We write E vs E

′ if E is obtained from E′ by removing some elements from
intersections, i.e., if E = {α1 =

∧
S1,1 → · · ·

∧
S1,m1

→ q1, . . . , αn =
∧
Sn,1 →

· · ·
∧
Sn,mn → qn} and E′ = {α1 =

∧
S′1,1 → · · ·

∧
S′1,m1

→ q1, . . . αn =∧
S′n,1 → · · ·

∧
S′n,mn

→ qn} with Si,j ⊆ S′i,j for every i, j. It is pointwise
extended to Γ vs Γ

′ by: Γ vs Γ
′ ⇐⇒ ∀x : (E,α) ∈ Γ,∃x : (E′, α) ∈ Γ ′.E vs E

′.
Then, Γ ′ v Γ is equivalent to ∃k.Γ ′ vs Γ

(k) (up to renaming of type variables).
Thus, the condition |Γ ′| ≤ v ∧ Γ ′ v Γ in the algorithm can be replaced by
Γ ′ vs Γ

(v) without losing completeness.
To check whether there exists Γ ′ such that Γ ′ `B (G, S) : qB,0 and Γ ′ vs

Γ (k), we attach a boolean variable to each type binding and each element of
an intersection in Γ (k), to express whether Γ ′ has the corresponding binding or
element. Thus, an annotated type environment is of the form {x1 :b1 τ1, . . . , xm :bm

τm}, where each type equation in τ1, . . . , τm is now of the form:
α =

∧
i∈I1 b1,iα1,i → · · · →

∧
k∈Ik bk,iαk,i → q.

Given an assignment function f for boolean variables, the type environment
f(∆) is given by:

f(∆) = {xi : f(ρi) | xi :bi ρi ∈ ∆ ∧ f(bi) = true}
f(E,α) = ({α = f(ξ1)→ · · · → f(ξk)→ q | (α = ξ1 → · · · → ξk → q) ∈ E}, α)
f(
∧
i∈I biαi) =

∧
{αi | i ∈ I, f(bi) = true}

Let ∆ be the type environment obtained by attaching boolean variables to
Γ (k). Then, the condition Γ ′ vs Γ

(k)∧Γ ′ `B (G, S) : qB,0 is reduced to: “Is there
a boolean assignment f such that f(∆) `B (G, S) : qB,0?” It can be expressed as
a SAT problem as follows. We first introduce additional boolean variables: (i) For
each rule F 7→ λx1. · · ·λxk.t ∈ R, a subterm s of t, a type binding F :b ξ1 →
· · · → ξk → q ∈ ∆, and a type ρ in ∆, we prepare a variable b∆,x1:ξ1,...,xk:ξk`s:ρ,
which expresses whether f(∆,x1 : ξ1, . . . , xk : ξk) `B s : f(ρ) should hold. (ii) For
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each pair (ρ1, ρ2) of types occurring in ∆, we introduce bρ1≤ρ2 , which expresses
whether f(ρ1) ≤ f(ρ2) should hold. Now, the existence of a boolean assignment
function f such that f(∆) `B (G, S) : qB,0 is reduced to the satisfiability of the
conjunction of all the following boolean formulas. We write F :

∧
j∈{1..n} bjρj ∈ ∆

for F :b1 ρ1, . . . , F :bn ρn ∈ ∆ below. For simplicity, we omit type equations E
and identify α and E(α) below.

(i)
∨
{bi | S :bi qB,0 ∈ ∆}.

(ii) b⇒ b∆,x1:ξ1,...,xk:ξk`t:q
for each F :b ξ1 → · · · → ξk → q ∈ ∆ such that R(F ) = λx1, . . . , xk.t.

(iii) b∆′,x:
∧

j∈J bjρj`x:ρ ⇒
∨
j∈J(bj ∧ bρj≤ρ), for each b∆′,x:

∧
j∈J bjρj`x:ρ.

(iv) b∆′`a:ρ ⇒
∨
{bq1→···→qk→q≤ρ | δ(a, q) = q1 · · · qk}, for each b∆′`a:ρ.

(v) b∆′`t1t2:ρ ⇒
∨

(b∆′`t1:(
∧

j∈J bjρj)→ρ ∧ (
∧
j∈J(bj ⇒

∨
(b∆′`t2:ρ′ ∧ bρ′≤ρj )))),

for each b∆′`t1t2:ρ.
(vi) b(

∧
i∈I biρi)≤(

∧
j∈J bjρ

′
j)
⇒
∧
j∈J(bj ⇒

∨
i∈I(bi ∧ bρi≤ρ′j )),

for each b(
∧

i∈I biρi)≤(
∧

j∈J bjρ
′
j)

.

(vii) bξ1→···→ξk→q≤ξ′1→···→ξ′m→q′ ⇒ k = m ∧ q = q′ ∧
∧
i∈{1,...,k} bξ′i≤ξi ,

for each bξ1→···→ξk→q≤ξ′1→···→ξ′m→q′ .

The first condition (i) ensures that S :qB,0 ∈ f(∆). The condition (ii) ensures that
each type binding in f(∆) is valid (i.e., `B R : f(∆)). The next three conditions
(iii)-(v) express the validity of a type judgment f(∆,x1:ξ1, . . . , xk:ξk) `B t : f(ρ),
corresponding to the typing rules for variables, constants, and applications. The
last two conditions express the validity of a subtype relation.

By the above construction, there exists a boolean assignment function f such
that f(∆) ` (G, S) : qB,0 if and only if the conjunction of the above boolean
formulas is satisfiable. The latter can be solved by using a SAT solver.

Example 11. Recall ΓX (2),U(2),∼(2) in Example 10:

ΓX (2),U(2),∼(2) = {S : q0, F : (q0 ∧ q1)→ q0, G : τ0, G : τ1},

where τi = (τ1∧τ2)→ (q0∧q1)→ qi for i ∈ {0, 1}. To find a type environment Γ
such that Γ v ΓX (2),U(2),∼(2) and Γ `B1

(G2, S) : q0, let us add boolean variables
to type bindings and types as follows:

∆ = {S : q0, F : (q0 ∧ q1)→ q0, G :b0 α0, G :b1 α1)}
αi = (b2α0 ∧ b3α1)→ (q0 ∧ q1)→ qi (i ∈ {0, 1})

(Here, for the sake of simplicity, we have added boolean variables only to critical
parts, assuming that the values of other boolean variables are true; we also
apply various simplifications below.) From the typing of G, we get the following
boolean constraints:

bi ⇒ b∆′`a x (g g (b x)):qi (for i ∈ {0, 1}) b∆′`a x (g g (b x)):q0 ⇒ b∆′`g g:q0∧q1→q0
b∆′`a x (g g (b x)):q1 ⇒ false b∆′`g:τ0 ⇒ b2 b∆′`g:τ1 ⇒ b3
b∆′`g g:q0∧q1→q0 ⇒ (b∆′`g:τ0 ∧ (b2 ⇒ b∆′`g:τ0) ∧ (b3 ⇒ b∆′`g:τ1))
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Here, ∆′ = ∆∪ {g :b2 τ0, g :b3 τ1, x : q0, x : q1}. The above conditions are satisfied
by f such that f(b0) = f(b2) = true and f(b1) = f(b3) = false. Thus, we get

Γ ′ = f(∆) = {S : q0, F : (q0 ∧ q1)→ q0, G : τ0}
τ0 = τ0 → (q0 ∧ q1)→ q0.

We have Γ ′ `B1 (G2, S) : q0 as required. ut

4 Applications

This section discusses two applications of µHORS model checking: verification of
(functional) object-oriented programs and that of higher-order multi-threaded
programs. Those programs can be verified via reduction to µHORS model check-
ing. In both applications, the translation from a source program to µHORS is
just like giving the semantics of the source program (in terms of the λ-calculus).
This comes from the expressive power of the model of µHORS model checking
(i.e., µHORS), which is the main advantage of our approach.

4.1 Model-Checking Functional Objects

In this section, we discuss how to reduce verification problems for (functional)
object-oriented programswritten in (a call-by-value variant of) Featherweight
Java (FJ) [15] to µHORS model checking problems. The idea is to transform an
FJ source program into µHORS that generates a tree representing all the possible
action sequences of the source program. The translation is sound and complete
in the sense that all and only action sequences that occur are represented in the
tree. Properties that can be checked include:

– reachability, that is, whether program execution reaches certain program
points;

– order of method invocations; and
– whether downcasts may fail.

After we introduce the source language FJ-- briefly, we give a formal transla-
tion from FJ-- to µHORS and discuss how the properties above can be model-
checked.

FJ-- We first describe main differences of FJ-- from FJ. In FJ--, there is
a construct to signal certain actions, which correspond to terminal symbols in
µHORS. So, (multi-step) reduction relation is augmented with a sequence of
actions that occur during reduction. We also add a non-deterministic choice
operator, which will be necessary when we apply predicate abstractions [29].

To ease presentation, FJ-- assumes a few simplifications:

– Methods are called by value.
– Field access is allowed only in the form this.f .
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– For each method name, its arity (the number of arguments) is globally fixed.

Not only is the language call-by-value, but also the order of evaluation of subex-
pressions is fixed. The second restriction is not essential because we can add
getter methods and replace any field access to an invocation of a corresponding
getter method. The third restriction is an artifact of our translation but does
not weaken the expressive power of the language.

Now we briefly introduce FJ--. As usual, we assume class names, ranged
over by C,D, . . ., field names, ranged over by f, g, method names, ranged over
by m. Let the set of action names, ranged over by a, be Actions. The syntax of
FJ-- is given as follows:

L ::= class C extends C {C̃ f̃ ;K M̃} (classes)

K ::= C(C̃ f̃){super(f̃); this.f̃ = f̃ ; } (constructors)

M ::= C m(C̃ x̃){s} (methods)
v ::= x | this.f | new C(ṽ) (values)
s ::= return v; | C x = v0.m(ṽ); s (statements)
| a; s | s1�s2 | fail;

Unlike the original definition of FJ, a method body is required to be written
in A-normal form [10] to make the definition of the translation more concise.
The statement of the form C x = v0.m(ṽ); s first invokes method m on v0,
bind x to the result, and executes s. The statement of the form a; s signals a
and executes s. The statement s1�s2 executes s1 or s2 in a non-deterministic
manner. The statement fail ; causes abnormal termination of the execution. We
omit downcasts from FJ-- but it is easy to add (see also Section 4.1). We denote
the set of free variables in a statement s by FV (s). An FJ-- program is a pair
(CT, s) of a class table (a mapping from class names to classes) and a statement,
which corresponds to the body of the main method. We assume the same sanity
conditions on the class table as in FJ.

The definitions of auxiliary functions fields(C), mtype(m,C), mbody(m,C) to
look up fields, method types, and method bodies are essentially the same as those
of FJ and so omitted. The type system of FJ-- is a straightforward adaptation
of that of FJ and so we omit typing rules but write ` (CT, s) : C to mean that
CT is a well-formed class table and s is given type C under CT . Operational
semantics is given by a multi-step reduction relation written s

a1···an−−−−→ r, where
r is either a statement s′ or a special symbol •, which means termination. The
relation means that statement s is reduced to r in multiple steps and actions
a1, . . . , an occur during reduction in this order. When r is •, the last action is
either e, which stands for normal termination by returning a value, or fail

for abnormal termination caused by fail or NoSuchMethodError. We also omit
reduction rules, which are also straightforward.

We use the following classes that represent natural numbers with methods
for addition (add) and predecessors (pred) as a running example. Method rand

non-deterministically returns a natural number that is equal to or greater than
the argument. The main expression to be executed takes a predecessor of a
(non-deterministically chosen) non-zero natural number.
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class Nat extends Object {
Nat add(Nat n) { fail; }
Nat pred() { fail; }
Nat rand(Nat n) {
return n; � return new S(this.rand(n));

}
}
class Z extends Nat { // Zero

Nat add(Nat n) { return n; }
}
class S extends Nat { // Successor

Nat p;

Nat add(Nat n) {
Nat p’ = this.p.add(n);

return new S(p’);

}
Nat pred() { return this.p; }

}
// main expression

new Z().rand(new Z()).add(new S(new Z())).pred();

To verify program execution does not fail, we translate the program to a
µHORS that generates the tree representing all the possible global events, like:

br

e br

e ..

Here, br and e represent non-deterministic branch (caused by �) and program
termination, respectively. Then, it suffices to check that the tree does not contain
fail by using µHORS model checking.

Translation to µHORS The main ideas of translation are: (i) to express
an object as a record (or tuple) of functions that represent methods [7], and
(ii) to represent each method in the continuation passing style (CPS) in order
to correctly reflect the evaluation order and action sequences to µHORS. For
example, an object of class S is expressed by a tuple 〈S add , S pred , S rand〉
of functions S add , S pred and S rand that represent methods add, pred, and
rand defined or inherited in class S, respectively.A function that represents a
method takes an argument that represents “self” and a continuation argument,
as well as ordinary arguments of the method. In general, a method of the form

C0 m(C1 x1, ..., Cn xn) { return e; }

in class C is represented by a non-terminal C m, whose body is

λx1. · · ·λxn.λthis.λk. [[ e]]k
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where k is the continuation parameter and [[e]]k denotes the translation of e,
which passes the result of method execution to k. For example, method add in
class S is represented by non-terminal S add , whose body is

λn.λthis.λk. [[ Nat p’ = ...; return new S(p’);]]k

Then, method invocation is expressed as self-application [18]. For example,
invocation of add on an S object with a Z object as an argument is expressed by

S add 〈Z add , Z pred , Z rand〉 〈S add , S pred , S rand〉 k

where k is the current continuation. Note that S add is applied to a tuple that
contains itself.

To deal with fields, each method is further abstracted by values of fields of
this. So, the body of S add is in fact

λp.λn.λthis.λk. [[ Nat p’ = ...; return new S(p’);]]k,

where p stands for this.p inside the method body. Although this scheme only
supports field access of the form this.f, field access to any expressions other
than this (as allowed in FJ) can be expressed by using “getter” methods. A
non-terminal representing a method will be applied to initial field values when an
object is instantiated. For example, object instantiation new S(p’) is represented
by 〈S add p′, S pred p′, S rand p′〉. By using pattern-matching for λ, method add

in class S is expressed by the following two rules:

S add 7→ λ〈pa, pp, pr〉.λ〈na, np, nr〉.λ〈thisa, thisp, thisr〉.λk.
pa 〈na, np, nr〉 〈pa, pp, pr〉 (F k),

F 7→ λk′.λ〈p′a, p′p, p′r〉.
k′ 〈S add 〈p′a, p′p, p′r〉, S pred 〈p′a, p′p, p′r〉, S rand 〈p′a, p′p, p′r〉〉

where F stands for the continuation of the local variable definition Nat p’ =

...;.
A global action a is represented by a tree node a; non-deterministic choice is

by the node br of arity 2. The (translation of the) main expression is given as
the initial continuation a constant function that returns the tree node e of arity
0. So, in order to verify that the program does not fail, it suffices to verify that
the generated tree consists only of nodes br and e.

There are some further twists in giving encoding:
– We address the problem of the lack of subtyping in µHORS as follows. We

represent every object as a tuple of the same length `, where ` is the number
of the methods defined in the whole program. If a certain method is undefined,
we just insert a dummy function λx̃.λk.fail in the corresponding position of
the tuple. The dummy function just outputs fail to signal NoSuchMethodError
whenever it is called. For example, for our running example, if there is another
class that defines a method print , a Z object would be expressed as a tuple
〈Zadd , Zpred , Zrand , Zprint〉 where Zprint = λthis.λk.fail.
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– As careful readers may recall, µHORS does not have tuples as primitives.
Thus, we actually curry all the functions that take tuples as arguments. For
example, the example of method invocation shown above is replaced with

S add Z add Z pred Z rand S add S pred S rand k

Thanks to the CPS representation, tuples occur only in the argument positions,
so that currying transformation eliminates all the tuples. Thus, we can assume
below, without loss of generality, that µHORS has been extended with tuples
and tuple types.

It is easy to see that the resulting encoding of an object is well-typed. Let
{m1, . . . ,m`} be all the method names in the program, and {n1, . . . , n`} be their
arities. Then, the encoding of every object would have the same recursive sort
κo, given by:

κo = κm1
× · · · × κm`

κmi
= κo → · · ·κo︸ ︷︷ ︸

ni

→ κo → (κo → o)︸ ︷︷ ︸
type of continuation

→ o

Now, we develop translation formally. Let ` be the number of defined method
names and Meth = {m1, . . . ,m`} be the set of defined method names, i.e., {m |
∃C.mbody(m,C) = x̃.s}, in a given class table. We write arity(m) for the number
of arguments to method m and 〈x〉 for 〈x1, . . . , x`〉.

[[x]] = 〈x〉
[[this.f ]] = 〈f〉
[[new C(ṽ)]] = 〈C m1 [[ v1 ]] · · · [[ vn]], . . . , C m` [[ v1 ]] · · · [[ vn]]〉

[[return v]]k = (k [[ v]], ∅)
[[C x = v0.mi(ṽ); s]]k = (ti [[ v1 ]] · · · [[ vn ]] [[v0 ]] (F 〈z1〉 · · · 〈zm〉 k),R∪ {F 7→ λ〈z1〉 · · ·λ〈zm〉.λk′.λ〈x〉.t})

where 〈t1, . . . , t`〉 = [[v0]],
(t,R) = [[s]]k′ , {z1, . . . , zm} = FV (s) \ {x} for fresh F and k′,

[[a; s]]k = (a (t k),R) where (t,R) = [[s]]k
[[s1�s2]]k = (br (t1 k) (t2 k),R1 ∪R2) where (ti,Ri) = [[si ]]k for i = 1, 2
[[fail;]]k = (fail, ∅)

Fig. 5. Translation of values and statements.

Translation of Values and Statements. We first show how values and statements
are translated in Figure 5. A value is translated to a tuple of methods. A vari-
able or field access is expressed by a tuple of variables of length `. An object
instantiation new C(ṽ) is expressed by a tuple of applications of methods to field
values. As we have mentioned, C mi is a non-terminal that expresses the body
of method mi in class C. For example,

[[new S(p’)]] =
〈S add 〈p′a, p′p, p′r〉, S pred 〈p′a, p′p, p′r〉, S rand 〈p′a, p′p, p′r〉〉 .
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(We use subscripts a, p and r to mean methods add, pred and rand, rather than
numbers.)

A statement is translated to a pair (t,R) of a λ-term and a set of rewriting
rules. Translation is essentially call-by-value CPS-translation and the definitions
of continuation functions are returned as the set of rewriting rules. A statement
return v; is translated to an application of the given continuation to the value
v; no continuation function is generated. In translation of a method invocation,
ti, the i-th element of v0, represents the method to be invoked. It is applied
to the formal arguments, the receiver object, and then the continuation F of
the invocation. The body of F is obtained by translating s; since s may refer
to other variables than x (the result of method invocation), F takes values of
those free variables as arguments. So, the translation combines CPS translation
and λ-lifting [16]. Translation of action signaling, non-deterministic choice, and
failure is straightforward.

For example, given k, the body of add in class S is translated to

(pa 〈na, np, nr〉 〈pa, pp, pr〉 (F k),
{F 7→ λk′.λ〈p′a, p′p, p′r〉.

k′ 〈S add 〈p′a, p′p, p′r〉,
S pred 〈p′a, p′p, p′r〉, S rand 〈p′a, p′p, p′r〉〉}).

The invocation of add on p is expressed by application of pa to terms that express
the actual argument n, the receiver, and continuation F .

[[class C extends D {C1 f1; · · ·Cn fn;K M̃}]] =
(
⋃
{{C mi 7→ λ〈g1〉. · · ·λ〈gk〉.t} ∪ R |

fields(C) = D1 g1, . . . , Dk gk, C0 mi(C̃ x̃){s} ∈ M̃, (t,R) = [[x̃.s]]})
∪{C mi 7→ λ〈f1〉. · · ·λ〈fn〉.λ〈g1〉. · · ·λ〈gk〉.λk.D mi 〈g1〉 · · · 〈gk〉 k |

mi 6∈ M̃,fields(D) = D1 g1, . . . , Dk gk}
[[x̃.s]] = (λ〈x1〉. · · ·λ〈xn〉.λ〈this〉.λk.t,R) where (t,R) = [[s ]]k for fresh k

[[(CT, s)]] = (N , Σ,R, S)
whereΣ = {br 7→ 2, fail 7→ 0, e 7→ 0} ∪ {a 7→ 1 | a ∈ Actions}

R = {Object mi 7→ λ〈x1〉 · · ·λ〈xn+1〉.λk.fail | mi ∈ Meth, arity(mi) = n}
∪
⋃

C [[CT (C) ]] ∪{S 7→ t,End 7→ λ〈x〉.e} ∪ R′
where (t,R′) = [[s]]End

N = {F 7→ OType(n) | R(F ) = λ〈x1〉 · · ·λ〈xn〉.λk.t} ∪ {S 7→ o,End 7→ κo → o}

where


κo = κ1 × · · · × κ`

OType(0) = (κo → o)→ o

OType(n+ 1) = κo → OType(n)

Fig. 6. Translation of Classes and Programs.
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Translation of Class Definitions and Programs. A class definition is translated
to a set of rules in (the upper half of) Figure 6. For each class C, non-terminals
C m1, . . . , C m` are generated. When mi is defined in C, its body is translated
to t (with a set R of continuation functions) and t is further parametrized by
fields. Otherwise, C mi calls the inherited definition D mi. Since subclass C
may have additional fields, C mi has to be further parametrized by those fields.
As we will see below, Object mi is a function that just signals a failure. So, such
functions will be inherited to subclasses until a subclass gives a definition of mi.

For example, [[class Z · · ·]] includes

Z add 7→ λk.Nat add k

since add is inherited from the superclass and [[class S · · ·]] includes the follow-
ing two rules:

S add 7→ λ〈pa, pp, pr〉.λ〈na, np, nr〉.λ〈thisa, thisp, thisr〉.
λk.pa 〈na, np, nr〉 〈pa, pp, pr〉 (F k),

F 7→ λk′.λ〈p′a, p′p, p′r〉.
k′ 〈S add 〈p′a, p′p, p′r〉,

S pred 〈p′a, p′p, p′r〉, S rand 〈p′a, p′p, p′r〉〉

Here, the formal parameters pa, pp, and pr stand for the value of field p and na,
np, and nr for the parameter to method add.

Finally, we give translation of a whole FJ-- program to a recursion scheme as
in (the lower half of) Figure 6. Terminals include special symbols br, fail and e

to denote branching caused by non-deterministic choice, failure and termination
of program execution, respectively. Actions are terminals of arity 1. Rules are
obtained by collecting all class translations (including Object, which provides
only failing methods) and translation of the main statement. Non-terminal End
stands for an initial continuation, which ends the execution immediately. The
sorts of non-terminals are easily computed by function OType, thanks to the fact
that the bodies of most non-terminals are of the form

λ〈x1〉. · · ·λ〈xn〉.λk.t

for some n and an applicative term t.

Properties of the Translation. We state properties of the translation. First, it
is easy to see that the translation preserves typing, that is, a well typed FJ--
program translates to a well-formed recursion scheme.

Theorem 7. If ` (CT, s) : C, then [[(CT, s)]] is a well-formed µHORS.

Note that even when a given FJ-- program is not well typed, its translation
may be a well-formed recursion scheme.

The resulting µHORS generates a tree that expresses as a path a sequence
a1, a2, . . . of actions that can occur during the FJ-- program execution. More
formally, the translation preserves the semantics of the program in the following
sense:
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Theorem 8. Under a class table CT , s
a1···an−−−−→ r if and only if the tree generated

by [[(CT, s)]] contains a path a1 · · · an from the root (ignoring br).

It is easy to see as a corollary that (1) a program fails with fail; or NoSuchMethodError
if and only if the tree generated by the translated µHORS contains a path that
ends with fail and (2) a program terminates successfully if and only if the tree
generated by the translated µHORS contains a path that ends with e.

We briefly discuss how properties listed at the beginning of the section can
be verified. To verify reachability, we insert a special action to program points
of interest and verify whether the generated tree contains the special action. We
can verify a method invocation order by inserting distinct actions to the head
of each method body. Although this method would be used to verify only a
global method invocation history, it would be possible to modify the translation
to verify an object-wise method invocation history, similarly to resource usage
analysis [14] via HO model checking—see Kobayashi [22] for details.

Downcasts Given a whole FJ-- program with casts, we can transform it into
an FJ-- program without casts, by adding a method castToC to class C, for
every occurrence of (C)e. The definition of castToC for a class C is:

C castToC ( ){return this; }

Note that castToC is defined only in C and its subclasses. So, downcasts will be
transformed into an ill typed method invocation, although the recursion scheme
after translation will be well formed thanks to the generation of failing methods.
(It is easy to modify the translation so that failures due to NoSuchMethodError

and ClassCastException are distinguished.)

4.2 Model-Checking Higher-Order Multi-Threaded Programs

This section discusses how to apply the extended HO model checking to ver-
ification of multi-threaded programs, where each thread may use higher-order
functions and recursion. For the sake of simplicity, we discuss only programs
consisting of two threads, whose syntax is given by:

P (programs) ::= M1 ||M2

M (threads) ::= ( ) | a | x | fun(f, x,M) |M1M2 |M1�M2

A program P = M1 ||M2 executes two threads M1 and M2 concurrently, where
M1 andM2 are (call-by-value) higher-order functional programs with side effects.
The expression a performs a global action a, and evaluates to the unit value ( ).
We keep global actions abstract, so that various synchronization primitives and
shared memory can be modeled (see examples given below). The expression
fun(f, x,M) describes a recursive function f such that f(x) = M . When f does
not occur in M , we write λx.M for fun(f, x,M). We also write let x = M1 in M2

for (λx.M2)M1, and further abbreviate it to M1;M2 when x does not occur in
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M2. M1�M2 evaluates M1 or M2 non-deterministically. The formal semantics of
the language is given in Appendix B. The goal of verification is, given a program
M and a property ψ on global action sequences, to check whether all the possible
action sequences of M satisfy ψ.

Example 12. We can model programs accessing finite shared memory. For a one-
bit shared variable x, prepare actions readx,i and writex,i for i ∈ {0, 1}. Then,
let y =!x inM and x := i;M can be expressed by (readx,0; [0/y]M)�(readx,1; [1/y]M)
and writex,i;M respectively. Then, to check whether every (valid) execution of
P satisfies a property ψ, it suffices to check that ψ is true of any path that
represents valid read/write sequences, i.e. the most recent write action before
each read action readx,i must be writex,i, not writex,1−i.

Example 13. Let M be the following thread:

let sync f = lock; f(); unlock; sync f in let cr x = enter; exit in sync cr,

which models a thread acquiring a global lock before entering a critical section.
We may then wish to verify that the global actions enter and exit can occur
only alternately, as long as lock and unlock occur alternately. ut

We can reduce verification problems for multi-threads to extended HO model
checking problems by transforming a given program to a µHORS that generates
a tree describing all the possible global action sequences. The ideas of the trans-
formation are: (i) transform each thread to CPS (continuation-passing style) to
correctly model the order of actions, as in [22], and (ii) apply each thread to a
scheduler, and let a thread pass the control to the scheduler non-deterministically
after each global action. The translation from programs to µHORS is:5

(M1 ||M2)
†

= br (Sched (M1
† λx.e) (M2

† λx.e)) (Sched (M2
† λx.e) (M1

† λx.e))

( )
†

= λk.λg.k e g x† = λk.λg.k x g fun(f, x,M)
†

= λk.λg.k fun(f, x,M†) g

(M1M2)
†

= λk.λg.M1
† (λf.M2

†λx.f x k) g

(M1�M2)
†

= λk.λg.br (M1
† k g) (M2

† k g) a† = λk.λg.a (br (k e g) (g (k e)))

Here, the non-terminal Sched is defined by the rule Sched x y → x (Sched y),
which schedules x first, passing to it the global continuation Sched y (which will
schedule y next). The terminal symbol br represents a non-deterministic branch.
On the righthand side of the last translation rule, a and e are terminal symbols
of arity 1 and 0 respectively. The program M1 || M2 is translated to a tree-
generating program, which either schedules M1 then M2, or M2 then M1. Apart
from the global action (the last rule), the translation of a thread is essentially the
standard call-by-value CPS transformation except that a global continuation is
passed as an additional parameter (in fact, with η-conversion, the transformation
is exactly the same as the ordinary CPS transformation). The global action a is

5 Here, for the sake of simplicity, we represent µHORS as an ordinary functional
program with tree constructors. By applying λ-lifting, we get a system of top-level
function definitions that conforms to the syntax of µHORS in Section 2.2.
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transformed to a tree node a, followed by a non-deterministic branch (expressed
by br). The first branch evaluates the local continuation, while the second branch
yields the control to the other thread by invoking the global continuation g.

The transformation above preserves typing, in the sense that if P is a simply-
typed program (where the global action a and non-determinism � are given types
( ) and ∀α.(α → α → α) respectively), then P † is a (well-typed) µHORS. To
show this, let us define the translation of (simple) types by:

unit† = o

(τ1 → τ2)
†

= τ1
† → (τ2

† → τAns)→ τAns,

where τAns is the recursive type defined by:

τAns = τGcont → o

τGcont = τAns → o

We extend the encoding to type environments by:

(x1 : τ1, . . . , xn : τn)
†

= x1 : τ1
†, . . . , xn : τn

†.

Then, we have:

Lemma 2. Let M be a thread. If Γ `ST M : τ , then Γ † `M : (τ † → τAns)→ τAns
holds.

Proof. The proof follows by induction on the structure of M . If M = a, then
we have Γ † ` a : o → o (recall that a is a unary terminal symbol after the
translation). We also have k : unit† → τAns, g : τGcont ` k e g and k : unit† →
τAns, g : τGcont ` g (k e). Thus, we have Γ † ` a† : (unit† → τAns) → τAns as
required. The other cases are straightforward; indeed, it is a standard result
about the call-by-value CPS transformation [31].

Please note that in the above lemma, it is essential that we have recursive types;
otherwise a† cannot be typed. By assigning the type τAns → τAns → o to Sched ,
we have:

Corollary 9 Let P be a program (of the form M1 ||M2). If ∅ `ST P : ( ), then
∅ ` P † : o holds.

By the definition of the transformation above, it should be clear that P has
a sequence of global actions a1a2 · · · an if and only if the tree generated by
P † has a path labeled with a1a2 · · · an (with br ignored). Thus, verification of
multi-threaded programs has been reduced to µHORS model checking. Sched is
given type τThread → τThread → o, where τThread = τGcont → o and τGcont =
τThread → o, where τThread and τGcont are the types of threads (which take a
global continuation as an argument) global continuations respectively.

Example 14. Recall Example 13. The following is a hand-optimized version of
µHORS obtained by translating the parallel composition of two copies of M .
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S -> Sched M M. Sched x y -> x (Sched y).

M g -> Sync Cr E g. E g -> end.

Sync f k g -> lock (br (C1 f k g) (g (C1 f k))).

C1 f k g -> f (C2 f k) g.

C2 f k g -> unlock(br (Sync f k g) (g (Sync f k))).

Cr k g -> enter (br (C3 k g) (g (C3 k))).

C3 k g -> exit (br (k g) (g k)).

As reported in Section 5, our model checker can verify that enter and exit

can occur only alternately, as long as lock and unlock occur alternately, which
implies that the two threads in the source program never enter critical sections
simultaneously. ut

Context-bounded model checking Qadeer and Rehof [37] showed that model
checking of concurrent pushdown systems (or multi-threaded programs with
first-order recursion) is decidable if the number of context switches is bounded
by a constant. Our translation given above yields a generalization of the result:
context-bounded model checking of multi-threaded, higher-order recursive pro-
grams is decidable. To obtain the result, it suffices to replace the scheduler Sched
with Sched ` given below, which allows only ` context switches:

Sched0 x y → e Sched i+1 x y → x (Sched i y)

By the definition of the modified translation above, it should be trivial that P
with context-bound ` has a sequence of global actions a1a2 · · · an if and only if
the tree generated by P †` has a path labeled with a1a2 · · · an (with br ignored).
Furthermore, the modified translation guarantees a stronger type-preservation
property:

Lemma 3. If ∅ `ST P : ( ), then ∅ ` P †` : o is derivable (with intersection types
but) without using recursive types.

Thus, P †` is an ordinary HORS (extended with finite intersection types). As an
immediate corollary of the above properties and the decidability of HORS model
checking [33], we obtain that context-bounded model checking of multi-threaded
higher-order programs is decidable.6

To show Lemma 3, we modify the encoding of types by:

unit†i = o

(τ1 → τ2)
†i = τ1

†i → (τ2
†i → σAns,i)→ σAns,i.

where σAns,i is defined by:

σAns,0 = > σAns,i+1 = τGcont,i → o τGcont,i = σAns,i → o

The encoding is pointwise extended to that on type environments. The following
lemma is analogous to Lemma 2.

6 We have considered only programs with two threads, but this restriction can be
easily relaxed by using the same technique as Qadeer and Rehof [37].
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Lemma 4. Let M be a thread and ` > 0. If Γ `ST M : τ , then Γ †` ` M† :
(τ †` → σAns,`)→ σAns,` holds.

Proof. The proof follows by induction on the structure of M . The only non-
trivial case is when M = a. Let Γ1 = k : unit† → σAns,`, g : τGcont,`−1. Then,
we obtain Γ †` , Γ1 ` k e g : o immediately. As σAns,1 ≤ σAns,0 = >, we have
σAns,` ≤ σAns,`−1. Thus, we also obtain Γ †` , Γ1 ` g(k e) : o. Therefore, we have

Γ †` ` a† : (unit† → σAns,`)→ σAns,` as required.

Lemma 3 follows as a corollary of the above lemma and the fact that Sched i’s
have the following (non-recursive) types:

Sched2m : σAns,m → σAns,m → o

Sched2m+1 : σAns,m+1 → σAns,m → o

5 Implementation and Experiments

We have implemented a prototype model checker RTRecS for µHORS based on
the procedure FindCert described in Section 3. As the underlying SAT solver,
we have used MiniSat 2.2 (http://minisat.se/MiniSat.html). We have reused
some code of the model checker TRecS (for HORS without recursive types),
but the core algorithm has been written from scratch (as the new algorithm is
radically different from that of TRecS). We have also implemented a translator
from FJ programs to µHORS based on Section 4.1.

The implementation is based on the procedure FindCert in Figure 4, except
for the following points. RTRecS first performs an equality-based flow analy-
sis [35] before model checking, and uses it as the equivalence relation ∼. U is also
over-approximated by using the result of the flow analysis; thus, in the current
implementation, the reductions of terms (3rd line in Figure 4) are performed
only for finding a counter-example, without using the rule R-Eq.

Table 1 summarizes the result of preliminary experiments. (For space re-
striction, we omit some results, which are found in [25].) The programs used for
the experiments and the web interface for our prototype are available at http://
www-kb.is.s.u-tokyo.ac.jp/~koba/fjmc/. The columns “#lines” and “#rules”
show the number of lines of the source FJ program (if applicable) and the num-
ber of the rules of µHORS. The column “#states” shows the numer of states of
the property automaton. The column “k” shows k of Γ ′ vs Γ

(k) in Section 3.2.
The column “answer” shows whether the property was judged to be satisfied (Y)
or not (N). (The actual implementation returns recursive intersection types as
a certificate in the former case, and a counter-example in the latter case.) The
column “#sat” shows the number of sat clauses (i.e., the number of disjunctive
formulas in conjunctive normal form) for the final call of the SAT solver. (For
ski1, a counterexample was found before the SAT solver is called.) The column
“time” shows the running time (excluding the time for translation from FJ to
µHORS, which is anyway quite small).
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G1 and G2 are from Examples 2 and 3, where the checked property is ex-
pressed by B1 in Example 4. Thread is the µHORS given in Example 14, and
Thread2 is its variation, obtained by replacing the definition of cr in Exam-
ple 13 by cr x = ( )�(cr x; enter; exit). The other programs were obtained
from FJ programs, based on the translation discussed in Section 4.1, and except
for Twofiles, we verified that the programs do not fail (where the meaning of
“failure” depends on each program, as explained below). Pred is the running
example in Section 4. Ski1 and Ski2 are implementations of SKI combinators
in FJ [41], which were further translated to recursion schemes. Ski1 and Ski2

reduce SII and SII(SII) respectively, and fails if the reduction terminates. As
the reduction of SII terminates but SII(SII) does not, the answers for Ski1

and Ski2 are N and Y respectively. The next six are list-manipulating programs
(implemented as objects), which are small but non-trivial programs. (In fact,
L-filter and L-risers are object-oriented versions of benchmark programs of
the PMRS verification tool [34].) The program L-append repeatedly applies an
append function (and never terminates), and fails if a method hd or tl is called
for a null list object:

List loop_app(List l)

{ return this.loop_app(l.append(l)); }

The program L-map repeatedly applies a successor function to each element of
a list (and never terminates). List constructors are generically defined so that
Object is casted to Nat before each call of the successor function. The program
fails if the successor function is applied to a non-number.

The program L-app-map repeatedly applies map and append functions:

class Main extends Object{ ...

List loop_app_map(List l) {

return this.loop_app_map

(l.append(l).map(new Fun())); }}

main() {

return new Main().loop_app_map

(new Cons(new S(new Z()),new Nil()));}

Here, Fun is an object representing a function that takes a natural number n
and returns n+ n, where natural numbers are also expressed as objects.

The program L-even creates a list of an even length in a non-deterministic
manner7, and fails if its length is odd.

The program L-filter creates a list of natural numbers in a non-deterministic
manner, filters out 0, and checks that the resulting list consists only of non-zero
elements (and fails if it does not hold). L-filter creates a list of natural num-
bers in a non-deterministic manner, filters out 0, and checks that the resulting
list consists only of non-zero elements (and fails if it does not hold). L-risers
creates a list of natural numbers in a non-deterministic manner, splits it into a

7 We have extended FJ with non-deterministic branches.
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programs #lines #rules answer #sat time

G1 – 2 Y 27 0.001

G2 – 3 Y 49 0.002

Thread – 9 Y 38,171 0.580

Pred 21 15 Y 157 0.005

Ski1 40 22 N — 0.002

Ski2 40 25 Y 141 0.002

L-append 20 30 Y 165 0.006

L-map 43 182 Y 738 0.235

L-app-map 43 212 Y 1,546 0.391

L-even 25 87 Y 249 0.025

L-filter 59 122 Y 5,964 0.491

L-risers 73 64 Y 17,419 0.445

Twofiles 28 21 Y 739,867 13.86

Table 1. Experimental Results (CPU: Intel(R) Xeon(R) 3GHz, Memory: 8GB). Times
are in seconds.

list of lists consisting of non-decreasing sequences, and fails if a pattern match
error occurs during the list processing.

Twofiles was prepared as an example of verification of temporal properties.
It is an object-oriented version of the program that accesses two files: one for
read-only, and the other for write-only [22]. We verify that the read-only (write-
only, resp.) file is closed after some reads (writes, resp.).

Our model checker RTRecS could successfully verify all the programs. The
verification time and the size of SAT formulas were significantly larger for Twofiles
compared with other programs. The explosion of the size of SAT formulas for
Twofiles is due to the size of the automaton for describing the temporal prop-
erty, which blows up the number of candidates of types to be considered. More
optimizations are necessary for avoiding this problem. The number k was sur-
prisingly small for all the benchmark programs; this indicates that our choice
of ∼ based on the equality-based flow analysis provided a good approximation
of types. Overall, the experimental results above are encouraging; we are not
aware of other fully-automated (i.e. requiring no annotations), sound (i.e. no
false negatives) verification tools that can verify all the programs above.

To see the effectiveness of the SAT-based approach to HO model checking,
we have also compared RTRecS with two other model checkers for HORS:
TRecS [21, 20] and GTRecS2 [19, 23, 26], which use radically different algo-
rithms and cannot deal with µHORS. The results are summarized in Table 2.

The first two HORS Twofiles-f, Fileocamlc and Order5 have been taken
from [20], obtained by encoding resource usage verification problems [22]. Mc91
and Repeat have been taken from [29], obtained by encoding reachability prob-
lems for functional programs using predicate abstraction. The other programs
Xhtmlf-id, Exp4-5, and Fibstring have been taken from [30], [23], and [26], re-
spectively. RTRecS is generally slower than TRecS for the problems obtained
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from program verification problems. RTRecS, however, outperforms TRecS
for Exp4-5 and Fibstring, which generate huge trees, and are hard cases for
the TRecS algorithm. GTRecS2 has been tuned to deal with such cases, but
RTRecS is actually faster for Exp4-5. Overall, the three model checkers are
complementary to each other, which is encouraging given that the implementa-
tion of RTRecS is premature compared with the other two.

HORS TRecS GTRecS2 RTRecS

Twofiles-f 0.005 0.168 13.092

Fileocamlc 0.01 0.109 1.028

Order5 0.005 – 0.719

Mc91 0.07 0.379 –

Repeat 0.012 0.211 0.024

Xhmtlf-id 0.663 53.675 –

Exp4-5 – 2.422 0.367

Fibstring – 0.210 0.284

Table 2. Comparison of Verification Times (in seconds). “–” indicates a time-out.

6 Discussion

We discuss related work and limitations of our approach.

6.1 Related Work

The model checking of HORS has recently emerged as a new technique for
verification of higher-order programs [33, 22, 30, 34, 29]. Except Tsukada and
Kobayashi’s work [46], however, all the previous studies dealt with simply-typed
recursion schemes, which are not suitable for modeling objects. Tsukada and
Kobayashi [46] studied model checking of untyped HORS and reduced it to a
type checking problem for an infinite intersection type system. The latter prob-
lem is however undecidable and they did not provide any sound (but necessarily
incomplete) realistic procedure for model checking.

Several methods for model-checking functional programs have been proposed
recently [40, 22, 30, 34, 44, 47], proposed recently [40, 22, 30, 34, 47], and some of
them [40, 30, 34] support recursive data structures (like lists). However, it is not
clear how to extend them to support general recursive types (including negative
occurrences of recursive type variables). Furthermore, many of them require
annotations [40, 47] and are less precise.

There are previous studies on model checking of object-oriented programs [9,
12]. To our knowledge, however, they are based on finite state model checking;
Java programs are either (i) abstracted to finite state models and then finite
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state model checkers are used to verify the abstract models, or (ii) directly
model checked, but with an incomplete state exploration (e.g., by identifying
states having the same hash values [12]; see also http://babelfish.arc.nasa.

gov/trac/jpf/wiki/intro/classification, section “State Matching”). In the
former case, because of the huge semantic gap between object-oriented programs
and finite state systems, a lot of information is lost by the translation from Java
programs to models. In the latter case, a “model checker” is used mainly as a
bug detection tool, instead of a verification tool. In contrast, our method uses
µHORS as models, which are as expressive as source programs. No information is
lost by the translation from FJ to µHORS, and no false alarms can be generated
(although the model checker may not terminate for some valid programs).

There is some similarity between the “state matching” used in Java PathFinder
(see the URL above) and the use of equivalence relation ∼ in our model checking
algorithm. Both of them merge states that are “equal”. The fundamental differ-
ence is that Java PathFinder stops the reduction if an “equal” state is already
visited, while our algorithm does not; rather, our algorithm generate even new
states (e.g., t1t

′
2 and t′1t2 if t1t2 and t′1t

′
2 are visited and t1 ∼ t′1) and explore

reductions from them. This difference makes Java PathFinder efficient as a bug
finding tool but not sound as a verification tool, and our tool slow but sound as
a verification tool.

Another major approach to verification of object-oriented programs is to
generate verification conditions from (annotated) programs, and then discharge
them by theorem provers [2, 3]. Although there are some studies to infer in-
variants, this approach basically requires a lot of human intervention, such as
annotations of pre/post-conditions for each method.

There are a number of studies on static analyses of object-oriented programs:
see surveys [36, 8, 13, 39]. There are also studies of type systems [4, 5] and sep-
aration logic [36, 8] for verification of detailed properties about objects, which
usually requires some annotations (e.g., typestate/aliasing annotations and/or
pre/post-conditions of methods). Skalka [43] also proposed a method for auto-
matically verifying temporal properties. His method is a combination of types
and model checking, where a model is extracted through type inference and
then it is model-checked. The first step (for extracting models through type
inference) loses much information about source programs, while the first step
in our method (the transformation of source programs into µHORS) loses no
information. In general, the distinguished features of our method are: (i) it is
fully automated yet very precise, (ii) it can generate a counter-example when a
property is not satisfied, and (iii) it can verify temporal properties. For the last
point, typestates [4, 5] can also verify some temporal properties, but they require
special annotations. On the downside, our method is currently applicable only
to functional objects. Rowe and Bakel [41] proposed an intersection type system
for reasoning about object-oriented programs, but did not give an automated
verification algorithm.

There are many studies on model checking of recursive parallel programs [37,
17, 11], which obtain decidable fragments by restricting synchronization prim-
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itives or applying approximations. It is interesting to see whether each result
can be extended to higher-order, recursive parallel programs (besides context-
bounded model checking discussed in Section 4.2), and if so, whether the decid-
ability can be obtained via reduction to HORS model checking as in Section 4.2,
and whether tight complexity bounds can be obtained in that way. Note that
the encoding in Section 4.2 does not give a good complexity bound (due to the
use of CPS).

The implementation of our model checker uses the result of flow analysis to
choose the equivalence relation ∼ and saturate the set U . Our current imple-
mentation uses an imprecise, equality-based analysis, but in principle, it can be
replaced by the result of any sound flow analysis, such as k-CFA [42].

6.2 Limitations

The fundamental limitations of our approach to automated program verification
are:

1. Incompleteness of the recursive intersection type system with respect to the
µHORS model checking problem.
This means that there are correct programs that are not typable in the type
system, in which case, our model checker never terminates. We have not
yet obtained a clear characterization of such programs, but we expect that
the class of such programs include those whose correctness proofs require
numerical properties on multiple arguments (such as x+ y ≥ z).

2. Undecidability (only semi-decidability) of the typability in the recursive in-
tersection type system (c.f. Theorem 3, 2).
This means that even if a program is typable in the type system, there is no
theoretical upper bound (even non-elementary one) on the time for model-
checking to terminate.

To address the first limitation, we plan to treat numerical values as primitives
and combine our method with predicate abstraction (as we did for verification
of functional programs [29]). Extending the expressive power of recursive inter-
section types (so that we can use non-regular types) is also another interesting
approach to address the first limitation. As for the second limitation, although
we cannot bound the time complexity with respect to the program size, we
can do so with respect to the size of the smallest certificate (i.e., the smallest
witness type environment Γ such that Γ `B (G, SG) : qB,0). Thus, if typical
programs (and properties) have small certificates, then our approach may work
well in practice (and the result of our preliminary experiments seem to indicate
that this may indeed be the case). We should however refine the algorithm and
implementation techniques further.

Our current verification tool for object-oriented programs only support FJ.
The main obstacles to applying our approach to Java would be to support im-
perative field updates and concurrency; we believe that the other features (such
as exceptions) can be easily handled either by encoding into FJ or by the trans-
lation to µHORS (c.f. encoding of control primitives of functional programs into
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HORS [22, 20]). Since µHORS has recursive types, in theory, field updates and
concurrency can also be encoded; we can use state passing for the former, and
explicit representation of a scheduler for the latter, as discussed in Section 4.2.
We expect, however, that more clever encoding and abstraction techniques are
needed to make the whole verification work effectively in practice.

7 Conclusion

We have proposed a model checking procedure for µHORS, an extension of
higher-order recursion schemes with recursive types, and shown its applications
to verification of object-oriented programs and concurrent programs. The model-
checking procedure is incomplete (due to the inherent undecidability of the model
checking problem), but is relatively complete with respect to a type system
with recursive intersection types. We have also implemented a prototype model
checker and carried out preliminary experiments. Although there is a lot of
work to be done to apply the proposed method to practice, we believe this is a
good first step to get a fully-automated (i.e., requiring no annotations), sound
(i.e., usable for verification, not just for bug finding) and precise software model
checker for high-level programming languages that support objects, concurrency,
and higher-order functions.
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Appendix

A Proofs

A.1 Proof of Theorem 4

Below we assume that Γ `B (G, S) : qB,0 and ∼⊆∼Γ . We also assume that
(X0,U0) −→∼ (X1,U1) −→∼ (X2,U2) −→∼ · · · is a fair reduction sequence
where X0 = {S} and U0 = {(S, qB,0)}, and that X and U are

⋃
i∈ω Xi and

⋃
i∈ω Ui

respectively. We let Θt be {α[t],[t′1],...,[t
′
`],q

′ | (t t′1 · · · t′`, q′) ∈ U} in Section 3.1.

Lemma 5. Γ `B t : q holds for every (t, q) ∈ U .

Proof. This follows from the properties that Γ `B S : qB,0 and that ∀(t, q) ∈
Ui.Γ `B t : q implies ∀(t′, q′) ∈ Ui+1.Γ `B t′ : q′. The latter can be shown by
easy case analysis on the rule used for deriving (Xi,Ui) −→∼ (Xi+1,Ui+1).

– Case for (R-Const): It suffices to show that Γ `B a t1 · · · t` : q and δ(q, a) =
q1 · · · q` imply Γ `B ti : qi for every i, which follows immediately from the
typing rules.

– Case for (R-Fail): Trivial, as the reduction does not introduce any new pair
of the form (t, q). (Actually, (R-Fail) is not applicable.)

– Case for (R-NT): This follows from the standard subject reduction property.
– Case for (R-Eq): It suffices to show that Γ `B t t1 · · · t` : q and t ∼ t′ imply
Γ `B t′ t1 · · · t` : q. By the assumption ∼⊆∼Γ , we have Γ `B t : τ if and
only if Γ `B t′ : τ for every τ . Thus, a derivation for Γ `B t′ t1 · · · t` : q can
be constructed from that of Γ `B t t1 · · · t` : q by replacing the derivation
of Γ `B t : τ with that of Γ `B t′ : τ .

ut

We say that a type derivation for Γ `B t : τ is normal if it is derivable by using
only judgments of the form Γ ′ `B u : (E,α) where α ∈ Θu.

Lemma 6. If (t t1 · · · t`, q) ∈ U , then there exists a normal derivation for
ΓX ,U,∼ `B t :

∧
Θt1 → · · · →

∧
Θt` → q.

Proof. By induction on the structure of t.

– Case t = a: By Lemma 5, Γ `B a t1 · · · t` : q holds, so that we have δ(q, a) =
q1 · · · q` with (ti, qi) ∈ U for some q1, . . . , q`. Thus, qi ∈ Θti for each i. By the
typing rule for constants, we have ΓX ,U,∼ `B a :

∧
Θt1 → · · · →

∧
Θt` → q

as required. Furthemore,
∧
Θt1 → · · · →

∧
Θt` → q ∈ Θ[a].

– Case t = F : This follows immediately from the definition of ΓX ,U,∼ .
– Case t = s u: By induction hypothesis, we have a normal derivation for:

ΓX ,U,∼ `B s :
∧
Θu →

∧
Θt1 → · · · →

∧
Θt` → q.
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For each σ1 → · · · → σk → q′ ∈ Θu, there must exist u0, u1, . . . , uk such
that:

(u0u1 · · ·uk, q′) ∈ U u ∼ u0
σi =

∧
Θui

(1 ≤ i ≤ k)

Thus, we have (uu1 · · ·uk, q′) ∈ U . By induction hypothesis, we have a nor-
mal derivation for ΓX ,U,∼ `B u : σ1 → · · · → σk → q′. Therefore, we have a
normal derivation for ΓX ,U,∼ `B su :

∧
Θt1 → · · · →

∧
Θt` → q as required.

ut

Proof of Theorem 4. As S : qB,0 ∈ ΓX ,U,∼ , it suffices to show `B G : ΓX ,U,∼ .
Suppose F : (E,α) ∈ ΓX ,U,∼ , i.e., α ∈ ΘF , and R(F ) = λx1, . . . , x`.u.

Then E(α) is of the form σ1 → · · · → σ` → q. By the definition of ΘF , there
must exist u0, u1, . . . , u` such that:

F ∼ u0 (u0u1 · · ·u`, q) ∈ U σi = σ[ui]

Thus, by the fairness of the reduction sequence, we have: (Fu1 · · ·um, q) ∈ U ,
which also implies:

([u1/x1, . . . , u`/x`]t, q).

By Lemma 6, we have a normal derivation for

ΓX ,U,∼ `B [u1/x1, . . . , u`/x`]t : q.

From the derivation of it, we obtain:

ΓX ,U,∼ , x : σ[u1], . . . , x : σ[u`] `B t : q,

by replacing each node of the form ΓX ,U,∼ `B ui : τi with ΓX ,U,∼ , x :σ[u1], . . . , x :
σ[u`] `B xi : τi. Thus, we have ΓX ,U,∼ `B λx1, . . . , x`.t : τ as required. ut

A.2 Proof of Theorem 5

We first prove the following lemma.

Lemma 7. Let (X0,U0) be ({S}, {(S, qB,0)}). Suppose that ∼′ and ∼ be equiv-
alence relations on Tm such that ∼′⊆∼, and that

(X0,U0) −→∼ (X1,U1) −→∼ (X2,U2) −→∼ · · · , and

(X ′0,U ′0) −→∼′ (X ′1,U ′1) −→∼′ (X ′2,U ′2) −→∼′ · · ·

are fair reduction sequences, with (X ′0,U ′0) = (X0,U0). Then, Γ⋃
i X ′

i ,
⋃

i U ′
i ,∼′ v

Γ⋃
i Xi,

⋃
i Ui,∼ .

Proof. By the condition ∼′⊆∼ and the fairness of the reductions, we have
(
⋃
i X ′i ) ⊆ (

⋃
i Xi) and (

⋃
i U ′i) ⊆ (

⋃
i Ui). Thus, the required condition follows

from the definition of ΓX ,U,∼ . ut

Theorem 5 follows as an immediate corollary of Theorem 4 and Lemma 7.
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Proof of Theorem 5. Let ∼′= (∼ ∩ ∼Γ ), and

(X ′0,U ′0) −→∼′ (X ′1,U ′1) −→∼′ (X ′2,U ′2) −→∼′ · · ·

be a fair reduction sequence with (X ′0,U ′0) = (X0,U0). By Theorem 4, we have
Γ ′ `B (G, SG) : qB,0 for Γ ′ = Γ⋃

i X ′
i ,
⋃

i U ′
i ,∼′ . By Lemma 7, we have Γ ′ v ΓX ,U,∼

as required. ut

B Operational Semantics of Multi-Threaded Programs

We define the transition relation P
`−→ P ′, where ` is either a global action or ε

(which represents an internal computation). It means that program P is reduced
to P ′ in one step, with an action `. The set of values, ranged over by v, is given
by:

v ::= ( ) | fun(f, x,M)

The relation P
`−→ P ′ is inductively defined by:

(fun(f, x,M))V
ε−→ [fun(f, x,M)/f, V/x]M

i ∈ {1, 2}
M1�M2

ε−→Mi

M
`−→M ′

MN
`−→M ′N

N
`−→ N ′

MN
`−→MN ′

M
`−→M ′

M ||N `−→M ′ ||N

N
`−→ N ′

M ||N `−→M ||N ′

We write M
a1···an−→ N if:

M(
ε−→)∗

a1−→ (
ε−→)∗ · · · ( ε−→)∗

an−→ (
ε−→)∗N.
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