
Exact Flow Analysis
by Higher-Order Model Checking

Yoshihiro Tobita, Takeshi Tsukada, and Naoki Kobayashi

Tohoku University, Japan

Abstract. We propose a novel control flow analysis for higher-order
functional programs, based on a reduction to higher-order model check-
ing. The distinguished features of our control flow analysis are that, un-
like most of the control flow analyses like k-CFA, it is exact for simply-
typed λ-calculus with recursion and finite base types, and that, unlike
Mossin’s exact flow analysis, it is indeed runnable in practice, at least for
small programs. Furthermore, under certain (arguably strong) assump-
tions, our control flow analysis runs in time cubic in the size of a program.
We formalize the reduction of control flow analysis to higher-order model
checking, prove the correctness, and report preliminary experiments.

1 Introduction

Control flow analysis (CFA) is among the most important and popular static
analyses for functional programs. It computes a set of functions that may be
called from each call site, and the result of CFA is used as a basis of more complex
static analyses and also for compiler optimizations. Various CFA methods, with
varying degrees of precision and efficiency, have been proposed, including Shiver’s
k-CFA [22]. Most of the existing CFA algorithms compute an over-approximation
of the control flow set, even when the target language is restricted to a decidable
fragment. To our knowledge, the only exception is Mossin’s exact analysis [17],
which is however impractical and not runnable in practice.

We propose a novel control flow analysis based on higher-order model check-
ing [18, 9]. We reduce CFA to a decision problem on the tree generated by a
simply-typed, higher-order functional program, which can be decided by us-
ing higher-order model checking. Our method has the following nice properties.
First, like Mossin’s analysis [17] (and unlike other CFAs), our CFA is exact for
simply-typed λ-calculus with recursion and finite base types.1 Secondly, unlike
Mossin’s [17], our CFA is runnable despite its extreme precision, thanks to the
recent advances in higher-order model checking [7, 11]. Thus, even if our anal-
ysis is still too slow compared with the state-of-the-art CFA methods, it may
be useful for evaluating and comparing the precision of other methods. Thirdly,
under the (rather strong) assumptions that the largest size of types is fixed and

1 With infinite base types like integers, our CFA is of course inexact, as the language
becomes Turing-complete.

that the nesting depth of function definitions is fixed, our CFA runs in time cu-
bic in the size of a program. Lastly, like Heintze and McAllester’s subtransitive
CFA [6], our CFA is on-demand, in the sense that it can answer each flow query:
“May a function created at `1 be called at the call site `2?” in linear time (with
the same assumptions as above). Thus, one can invoke our CFA only for critical
flow queries that cannot be answered by a faster (but more imprecise) CFA.

Our CFA based on higher-order model checking has been already hinted by
Kobayashi [9, 10], but it has not been formalized before. The contributions of
the present paper include the formalization, a proof of its correctness, imple-
mentation and preliminary experiments.

The rest of this paper is structured as follows. Section 2 reviews higher-order
model checking, specialized for the purpose of this paper. Section 3 introduces
the source language and defines CFA. Section 4 shows the reduction from CFA to
higher-order model checking. Section 5 describes extensions of our CFA. Section 6
reports experiments. Section 7 discusses related work, and Section 8 concludes.

2 Review of Higher-Order Model Checking

This section briefly reviews (a subclass of) higher-order model checking problems
(HO model checking, for short) [18, 9], to which we reduce CFA in Section 4.
The aim of HO model checking is to check whether the tree generated by a given
program satisfies a given property. The usual HO model checking uses higher-
order recursion schemes [18] as the target, but we consider here a simply-typed
λ-calculus with recursion and tree constructors, called λT . For tree-generating
programs, λT has the same expressive power as higher-order recursion schemes.

Let Σ be a finite set of tree constructors. We write a for an element of Σ,
and Σ(a) for its arity (which is a non-negative integer). The set of λT -terms is
given by the grammar: e ::= a | x | fun(f, x, e) | e1e2, where f and x range over
variables. The term fun(f, x, e) represents a recursive function f defined by the
equation f(x) = e. The term constructor fun(f, x,) binds f and x. As usual, we
implicitly rename bound variables as necessary. We write λx.e for fun(f, x, e) if
f does not occur in e.

We assume that the terms are well-typed in the standard simple type system,
where there is only a single base type o for trees, and a tree constructor of arity
n has type o→ · · · → o︸ ︷︷ ︸

Σ(a)

→ o. See [24] for more details. We call a closed term

(i.e. a term containing no free variables) of type o a tree-generating program.
The operational semantics of λT is the standard call-by-name semantics,

which evaluates a program to a (possibly infinite) tree: see [24]. Actually we are
only concerned with the set of paths of the tree generated by a program. Thus, we

introduce an alternative semantics for describing the paths. We define e
l−→ e′

as the least relation satisfying (i) (fun(f, x, e))e′
ε−→ [e′/x, fun(f, x, e)/f]e, (ii)

a e1 · · · eΣ(a)
a−→ ei for every i ∈ {1, . . . , Σ(a)}, and (iii) e1

l−→ e′1 implies

e1e2
l−→ e′1e2.

The path language generated by a program e, written Path(e), is defined by:

Path(e) = {l1 · . . . · lm | e
l1−→ e1

l2−→ · · · lm−→ em}.

Here, · denotes the concatenation and ε is treated as an empty sequence.

Example 1. Let F be fun(f, x, a x (f (b x))) and e be F c. Types for tree
constructors and variables are given by a : o → o → o, b : o → o, c : o, f : (o →
o), and x : o. Then e has the following reduction sequence:

e = F c
ε−→ a c (F (b c))

a−→ F (b c)
ε−→ a (b c) (F (b (b c)))

a−→ b c
b−→ c .

Thus ε, a, aa, aab ∈ Path(e). The path language Path(e) is {anbm | n > m ≥
0} ∪ {ε}, where an is a sequence of length n consisting of a. ut

We are interested in the decision problem: “given a program e and a regular
language R, is Path(e) a subset of R?” It can be considered an instance of
higher-order model checking, and its decidability follows from Ong’s result [18].

Theorem 1. Let e be a tree-generating program and R a regular word language.
Then whether Path(e) ⊆ R is decidable.

In the rest of this paper, we just call the decision problem Path(e)
?
⊆ R above

a HO model checking problem. It can be solved by using existing higher-order
model checkers [7, 11, 15].2 Note that higher-order model checking [18, 9] is a
generalization of conventional (finite-state or pushdown) model checking, and
that finite state model checkers cann The worst-case complexity is in general
non-elementary [18, 12]. Under certain assumptions, however, it is linear time in
the program size [9]. It is rephrased for our language as follows.

Theorem 2. Suppose (i) R is fixed and (ii) the largest type size of a variable in
e and the nesting depth of function definitions are bounded above by a constant.

Then, Path(e)
?
⊆ R can be decided in time linear in the size of e.

The constant factor is, however, huge: It is non-elementary in the parameters
that have been assumed to be bounded by constants above.

3 Source Language and CFA Problem

3.1 Source Language λS

Our source language λS is a simply-typed λ-calculus extended with recursions
and non-deterministic branches. Its syntax is defined by:

t (terms) ::= v | x | t1 @` t2 | if* t1 t2 v (value) ::= () | fun`(f, x, t)
T (types) ::= Unit | T1 → T2.

2 Higher-order model checking [18, 9] should not be confused with ordinary (finite
state) model checking. The former can be considered a generalization of the latter.

Here, fun`(f, x, t) describes a recursion function f given by f(x) = t. We often
write λ`x.t for fun`(f, x, t) when f does not occur in t. The term t1 @` t2 applies
the function t1 to t2, and if* t1 t2 reduces to t1 or t2 in a non-deterministic
manner. The non-determinism will be used to abstract values in Section 5. To
talk about flows of functions, we attach a label ` to each function and application.
We use a special dummy label `? for an unimportant label and often omit it. We
write L for the set of all labels, and L− for L \ {`?}.

The evaluation strategy of λS is call-by-value3. The evaluation context (E)
and the reduction relation (−→) are defined by:

E (evaluation contexts) ::= [] | E@`t | v@`E.

E[fun`(f, x, t1)@`′v2] −→ E[[v2/x, fun
`(f, x, t1)/f]t1]

E[if* t1 t2] −→ E[t1] E[if* t1 t2] −→ E[t2].

Here, E[t] is the expression obtained by replacing the hole [] in E with t, and
[t1/x1, . . . , tk/xk]t denotes the term obtained by replacing every free occurrence
of xi in t with ti. We write −→+ for the transitive closure and −→∗ for the
reflexive and transitive closure of −→.

As usual, the type judgment relation Γ ` t : T is defined as the least relation
closed under the rules below. We call a closed λS-term of type Unit (i.e., a term
t such that ∅ ` t : Unit) a source program.

Γ ` () : Unit Γ, x : T ` x : T
Γ ` t1 : T1 Γ ` t2 : T1

Γ ` if* t1 t2 : T1
Γ, f : T1 → T2, x : T1 ` t1 : T2

Γ ` fun`(f, x, t1) : T1 → T2

Γ ` t1 : T1 → T2 Γ ` t2 : T2

Γ ` t1 @` t2 : T2

3.2 CFA Problem

We define CFA as a decision problem to check whether a given function may be
called at a given call site.

Definition 1 (Control-flow relation and CFA problem). For a source pro-
gram t, the control-flow relation CF (t) is given by:

CF (t) = {(`1, `2) ∈ L− × L− | ∃t1, v2, f, x, E. t −→∗ E[(fun`2(f, x, t1))@`1v2]}.

CFA is the problem of deciding whether (`1, `2) ∈ CF (t), for a given program t
and labels `1, `2 ∈ L−.

A usual flow analysis aims to compute an over-approximation of the set CF (t).
In the next section, we shall give an exact flow analysis algorithm for solving
the above decision problem. It is non-trivial even for λS , as it has recursion and
non-determinism.

3 We can also deal with CFA for call-by-name languages, just by changing the CPS
transformation in Section 4.1

Example 2. Consider the program tp = (λ1x. x@2())@3(λ4z.()). It is evaluated
as: (λ1x. x@2())@3(λ4z.()) −→ (λ4z.())@2() −→ (). The function (labeled
by) 1 is applied at the call site 3, and the function 4 is applied at the call site 2.
By the definition, CF (tp) = {(3, 1), (2, 4)}.

Remark 1. The CFA problem above is defined only for closed programs. CFA is
undecidable for open programs containing higher-order variables [19].

4 Reduction from CFA to HO Model Checking

This section reduces CFA to the HO model checking problem reviewed in Sec-
tion 2. By combining the reduction with a HO model checking algorithm we
obtain a sound and complete algorithm for CFA. The reduction consists of two
steps: we first reduce CFA to call-sequence analysis (CSA), which is the prob-
lem of analyzing the order of function call. We then reduce CSA to HO model
checking, i.e., a verification problem for a tree-generating program.

4.1 From CFA to CSA

We first define the CSA problem.

Definition 2 (CSA problem). For a term t, we define CS (t) by:

CS (t) = {(`1, `2) ∈ L− × L− |
t −→∗ E1[(fun`1(f1, x1, t1)@v1] −→ E2[(fun`2(f2, x2, t2)@v2]}.

CSA is the problem of deciding whether (`1, `2) ∈ CS (t), for a given term t and
labels `1, `2 ∈ L−.

Example 3. Let us consider the following program t0.

t0 = (λ3b.(λ1x.λk1.(λ
2a. x a k1) ()) b (λm.m)) (λ4z.λk2. k2 ()).

We have omitted symbols @ and their labels for readability. t0 is reduced as:

(λ3b.(λ1x.λk1.(λ
2a.x a k1) ()) b (λm.m)) (λ4z.λk2. k2 ())

−→ (λ1x.λk1.(λ
2a. x a k1) ()) (λ4z.λk2. k2 ()) (λm.m)

−→∗ (λ2a.(λ4z.λk2. k2 ()) a (λm.m)) ())
−→ (λ4z.λk2. k2 ()) () (λm.m) −→∗ ().

Thus, CS (t0) = {(3, 1), (2, 4)}. ut

To reduce CFA to CSA, it suffices to apply the following call-by-value continuation-
passing-style (CPS) transformation J·K [2, 20].

J()K = λ`?k.k @`?()

JxK = λ`?k.k @`?x
Jfun`(f, x, t)K = λ`?k.k @`?(fun`(f, x, JtK))

Jt1 @`t2K = λ`?k.Jt1K @`?(λ`?f.Jt2K@`?(λ`z. (f @`?z) @`?k)) (f, z are fresh)
Jif* t1 t2K = λ`?k.(if* (Jt1K@`?k) (Jt2K@`?k)).

t

−→∗ E[t1 @`1t2]

−→∗ E[(λ`2x. t3) @`1t2] (i)

−→∗ E[(λ`2x. t3) @`1v4] (ii)

JtK@(λm.m)

−→∗ Jt1@`1t2K@K

−→∗ Jt2K @ (λ`1z.((λ`2x.Jt3K)@z)@K) (i)

−→∗ (λ`1z.((λ`2x.Jt3K)@z@K)) @ Jv′4K (ii)

−→ (λ`2x.Jt3K)@Jv′4K@K

Fig. 1. Evaluation of an application on source and CPS programs

By the CPS transformation, every term is converted to a function that takes a
continuation (i.e., the rest of the computation) and passes the evaluation result
to it. The CPS transformation above is the same as the standard (simplest)
one [20], except for the treatment of labels. In the third rule, the label ` of the
function fun(f, x, t) is retained in the result fun`(f, x, JtK). In the fourth rule,
the label ` of the function application is moved to the continuation argument
for Jt2K. Dummy labels are attached to all the other functions introduced by the
transformation. Note that the CPS transformation above is type-preserving [16].
If t is a source program (of type Unit), then JtK has type (Unit→ Unit)→ Unit.

The transformation rule for t1@`t2 above is the key for the reduction from
CFA to CSA. In Jt1@`t2K, ` is attached to λz.f@z@k, which is the continua-
tion to call the function f obtained by evaluating t1. Thus, if the value of t1
is labeled by `1 in a source program, then `1 is called immediately after the
continuation function λ`z.f@z@k in the target program. Figure 1 shows a rough
correspondence between reduction sequences of a source program and its target
program.4 The left-hand side shows a reduction sequence of a source program
t that leads to a call of function `2 from a call site `1. t is first evaluated to
E[t1@`1t2], and then t1 is evaluated to a function λ`1x.t3 (see the term marked
by (i)). t2 is then evaluated to a value v4, and the function `2 is called at `1
(see (ii)). The corresponding reduction sequence after the CPS transformation
is shown on the right-hand side. The term (i) shows the state after t1 has been
evaluated and before t2 is evaluated. The term (ii) shows the state after t2 has
been evaluated and its value being passed to the continuation. After that, `1 and
`2 are consecutively called.

From the correspondence above, the following theorem should be intuitively
clear. A proof is given in [24].

Theorem 3 (Correctness of the Reduction from CFA to CSA). Let t
be a source program and `1, `2 labels in t. Then, (`1, `2) ∈ CF (t) if and only if
(`1, `2) ∈ CS (JtK@(λm.m)).

4 For the sake of simplicity, we show here an inaccurate reduction sequence on the
right-hand side. See [24] for the exact correspondence.

Example 4. Recall the program tp in Example 2. After the CPS transformation,
the program is reduced as follows (where K = λm.m):

J(λ1x. x@2())@3(λ4y.())K@K −→∗ (λ3z.((λ1x.Jx@2()K)@z)@K)@(λ4y.J()K)

−→ ((λ1x.Jx@2()K)@(λ4y.J()K))@K −→∗ (λ2z′.((λ4y.J()K)@z′)@K)@()

−→ ((λ4y.J()K)@())@K −→∗ ().

Thus, CS (JtpK@K) = {(3, 1), (2, 4)}(= CF (tp)).

4.2 From CSA to HO Model Checking

To reduce CSA to HO model checking, we transform the output of the CPS
transformation into a tree-generating program having tree constructors: Σ =
{` 7→ 1 | ` ∈ L} ∪ {br 7→ 2, e 7→ 0}. Here, ` is a tree constructor for a label,
and br is a tree constructor for conditionals. The translation 〈〈·〉〉 to the tree-
generating program is given by:

〈〈()〉〉 = e 〈〈x〉〉 = x 〈〈t1@`t2〉〉 = 〈〈t1〉〉 @ 〈〈t2〉〉 〈〈if∗ t1 t2〉〉 = br 〈〈t1〉〉 〈〈t2〉〉.
〈〈fun`(f, x, λk.t)〉〉 = fun(f, x, λk.`@〈〈t〉〉) (if t has type Unit)
〈〈λ`x.t〉〉 = λx.`@〈〈t〉〉 (if t has type Unit)

Note that the translation above is well-defined for the image of the CPS trans-
formation: A function occurs only in the form: (i) fun`(f, x, λk.t) (which comes
from a function in a source program) where t has type Unit, or (ii) λ`x.t (which
is a continuation function) where t has type Unit. The translation is also type-
preserving, turning the base type Unit to o.

Whenever a function fun`(f, x, λk.t) or λ`x.t is called in a program in CPS,
a tree node labeled with ` is created in the corresponding λT -program obtained
by the above translation. From this observation, it should be clear that CSA has
now been reduced to HO model checking, as stated below without a proof.

Theorem 4 (Correctness of the Reduction from CSA to HOMC). Let
t be a λS-program, tC be JtK@(λz.z), and `1, `2 be labels in t. Then, (`1, `2) ∈
CS (JtK@(λz.z)) if and only if ∃w1, w2. w1`1`2w2 ∈ Path(〈〈tC〉〉).

From Theorems 3 and 4, we obtain the following corollary.

Corollary 1 (Correctness of the Reduction from CFA to HOMC). Let
t be a source program and `1, `2 labels in t. Then, (`1, `2) ∈ CF (t) if and only if
∃w1, w2. w1`1`2w2 ∈ Path(〈〈JtK@(λm.m)〉〉).

4.3 Complexity

We now discuss the time complexity of our flow analysis with respect the program
size. We assume below that both (i) the largest size of the type of a variable and
(ii) the nesting depth of function definitions are bounded above by a constant.

These are rather strong assumptions, but in realistic programs, these parameters
do not seem to depend much on the program size, so that it would be reasonable
to assume that they are constants when we discuss the parameterized complexity
with respect to the program size. Heintze and McAllester [6] also assume that
the largest type size is bounded by a constant. Without the assumptions above,
the time complexity of our CFA is non-elementary in the program size. We write
|t| for the size of a program t.

Theorem 5. Given a program t and labels `1, `2, the query (`1, `2)
?
∈ CF (t)

can be answered in time O(|t|), under the assumption above. Under the same
assumption, the control flow set CF (t) can be computed in time O(|t|3).

Proof. Under the assumption, the reductions from CFA to CSA and from CSA
to HO model checking can be carried out in time linear in the size of t, and the
size of the tree-generating program is O(|t|). The resulting HO model checking
problem satisfies the assumption of Theorem 2, hence solved in linear time. The

flow set CF (t) can be computed by deciding (`1, `2)
?
∈ CF (t) for every pair

(`1, `2) of labels. As the number of pairs is O(|t|2), the total cost is O(|t|3). ut

The control flow set CF (t) is often sparse, and its size is much smaller than
|t|2. In such a case, we can use a binary search to compute CF (t) in time
O(m|t| log |t|), where m is the size of CF (t). For that purpose, we consider the
following extended CFA problem:

“Given L1, L2(⊆ L−) and a program t, is (L1 × L2) ∩ CF (t) empty?”

The algorithm for the extended CFA can be obtained by slightly modifying our
algorithm for CFA: in the last step from CSA to HO model checking, we just
need to replace all the labels in L1 with the same tree constructor `1 and those
in L2 with `2. Under the same assumption as for CFA, the extended CFA query
can be answered in time O(|t|).

Figure 2 shows an algorithm to output all elements of CF (t) by using the
extended CFA. In the figure, L@ (Lλ, resp.) is the set of all labels attached
to call sites (functions, resp.) in t. The function div splits a set L into two
disjoint sets L1 and L2 such that L = L1 ∪ L2 and |L2| ≤ |L1| ≤ |L2| + 1.
subCF(L1, L2) outputs all the elements of (L1 × L2) ∩ CF (t). It first checks
whether (L1×L2)∩CF (t) is empty. If (L1×L2)∩CF (t) is non-empty and L1 and
L2 are singleton sets, then subCF(L1, L2) just outputs the flow pair. Otherwise,
it divides L1 or L2 and calls subCF recursively. For each (`1, `2) ∈ CF (t), the
algorithm checks the emptiness of (L1 × L2) ∩ CF (t) for some L1, L2 such that
(`1, `2) ∈ L1 × L2 O(log |t|) times. Thus, the whole algorithm runs in time
O(m|t| log |t|), provided m > 0.

5 Extensions

We have so far considered a simple language having only functions and the unit
value. In this section, we discuss how to extend our CFA to deal with other data
and control structures. We also discuss an extension to compute data flow.

enumCF () = subCF(L@, Lλ)
subCF(L1, L2) = if L1 × L2 ∩ CF (t) = ∅ then ()

else if (L1 = {`1}) ∧ (L2 = {`2}) then output (`1, `2)
else if |L1| ≤ |L2| then

let (L21, L22) = div(L2) in subCF(L1, L21); subCF(L1, L22)
else let (L11, L12) = div(L1) in subCF(L11, L2); subCF(L12, L2)

Fig. 2. Algorithm enumCF for CFA with the binary search technique.

5.1 Booleans and Control Structures

We can extend our exact CFA to deal with booleans and control structures such
as (a restricted form of) exceptions and call/cc, without losing the exactness.

To deal with booleans, we just need to extend the reduction from CFA to
CSA, by combining the CPS transformation with Church encoding to enumerate
booleans. The extended transformation is given as follows.

JtrueK = λk.k@(λt.λf.t) JfalseK = λk.k@(λt.λf.f)
Jif t1 then t2 else t3K = λk.(Jt1K@(λb.b@(Jt2K@k)@(Jt3K@k))).

In the above transformation, we apply the standard CPS transformation (e.g.
to transform true to λk.ktrue) and then encode booleans into functions (e.g.
true to λt.λf.t). The result of the transformation is a well-typed λS-program: an
expression of type Bool is transformed to that of type ((o→ o→ o)→ o)→ o.

As our analysis is precise for higher-order functions, we can also deal with
control structures such as (i) a finite number of exceptions that do not carry
values and (ii) (the simply-typed version of) call/cc of type ((τ → Unit) →
τ)→ τ by encoding them in λS . Exceptions can be encoding by using auxiliary
continuations [1]. For call/cc, it suffices to extend the transformation by:

Jcall/cc tK = λk.JtK@(λf.f@(λx.λk′.k@x)@k).

5.2 Infinite Data Domains

If λS is extended with infinite data domains such as integers and lists, the CFA
problem becomes undecidable. Thus, we have to give up the exact analysis and
apply some abstraction to compute an over-approximation of the actual flow set.
The simplest solution is to ignore all the values except functions and booleans
and replace them with unit values, before applying our CFA. Such a translation
J·KS from the extended language to λS is given by:

JIntKS = Unit Jτ1 → τ2KS = Jτ1KS → Jτ2KS Jτ ListKS = Unit→ JτKS
JnKS = () if n is an integer
J+KS = λx.λy.() J=IntKS = λx.λy.if∗ true false

JnilKS = fun(f, x, f@x) JconsKS = λx.λl.λz.if∗ x (l@())
JhdKS = λl.l@() JtlKS = λl.l
JxKS = x Jt1@`t2KS = Jt1KS@`Jt2KS Jfun`(f, x, t)KS = fun`(f, x, JtKS)

Here, a list of elements of type τ is represented by a non-deterministic function
that takes the unit value as an argument and returns an element of the list.

Example 5. Let tl be (hd (cons (λ1x.()) (cons (λ2y.y) nil))) @3(). JtlKS is
reduced to (if∗ (λ1x.()) ((λu.if∗ (λ2y.y) (fun(f, x, f@()))) @ ())) @3(),
which is then non-deterministically reduced to one of the following terms:

(λ1x.()) @3() (λ2y.y) @3() (fun(f, x, f@())) @3()

Thus, CF (JtlKS) = {(3, 1), (3, 2)}, which is an over-approximation of the actual
flow set CF (tl) = {(3, 1)}. ut

Though information about the order of list elements is lost, our analysis is still
very precise compared with 0CFA, as demonstrated in the following example.

Example 6. Consider the following program:

let app = λ(f, x).f@x in map app [(f1, g1); · · · ; (fn, gn)]

where fi = λh.h@`i(). Our method (extended to handle pairs) can infer that
only gi (not gj for j 6= i) may be called at `i. ut

The abstraction above completely throws away information about values
other than functions and booleans. A more precise analysis can be obtained
by using predicate abstractions [13].

5.3 Data Flow Analysis

We can extend our CFA to data flow analysis (DFA), which computes (an over-
approximation of) the flow of not only functions but other data. We add a label
to each sub-expression of the program. The DFA problem is then defined as
a decision problem: “Given a program t and labels `1, `2, may an expression
labeled by `2 evaluate to a value created at program point `1?”. We write DF (t)
for the set of all pairs (`1, `2) that satisfies the condition. The DFA problem is
undecidable in general in the presence of infinite data domains. Thus the goal
here is to compute an over-approximation of the set DF (t).

Example 7. Consider the program: (λx.λy.x`d,0 + y`d,1)@1`s,0@2`s,1 . Here, we
have given a label `s,i for a source of data flow, and `d,j for a destination.
DF (t) = {(`s,0, `d,0), (`s,1, `d,1)}. ut

(An over-approximation of) DF (t) can be computed by a reduction to CFA,
encoding all data into functions. For integers, we modify the encoding J·KS in
Section 5.2 as follows.

JIntKS′ = Unit→ Unit

Jn`sKS′ = λx`s .() if n is an integer J+`sKS′ = λx.λy.λz`s .()
Je`dKS′ = let x = JeKS′ in (x@`d();x) (e has type Int)

Here, both let x = e1 in e2 and e1; e2 are abbreviations for (λx.e2)@e1 where
the latter is a special case of the former, when x does not occur in e2. The label
`s attached to + expresses the value created by the operation. An integer is
turned into a function labelled by its creation point. For an expression with a
destination label `d, we insert an application labeled with `d. Then, it should be
obvious that if (`s, `d) ∈ DF (t) then (`d, `s) ∈ CF (JtKS′).

Example 8. Recall the program in Example 7. It is translated to the following
λS-program JtKS′ :

(λx.λy.(λx′.λy′.λz`s,2 .()︸ ︷︷ ︸
+

) (x@`d,0();x)︸ ︷︷ ︸
x`d,0

(y@`d,1(); y)︸ ︷︷ ︸
y`d,1

)@ (λx`s,0 .())︸ ︷︷ ︸
1`s,0

@ (λx`s,1 .())︸ ︷︷ ︸
2`s,1

Here we have inlined let-expressions in Jx`d,0KS′ and Jy`d,1KS′ . By using our
CFA, we obtain CF (JtKS′) = {(`d,0, `s,0), (`d,1, `s,1)}. Thus, we know DF (t) ⊆
{(`s,0, `d,0), (`s,1, `d,1)}.

6 Experiments

We have implemented our flow analysis for the extension of λS with integers and
lists, as discussed in Section 5. The current implementation analyzes the flow
of functions and integers. For data flow analysis, argument positions of integer
operations (+,=, <, . . .) are taken as destinations of data flow. TRecS [7, 8] is
used as the underlying model checker.5

The results of preliminary experiments are summarized in Table 1. In the
table, the column OS shows the largest order of types in a source program,
where the order of a type is defined by: order(Unit) = order(Int) = 0 and
order(T1 → T2) = max (order(T1) + 1, order(T2)). OT shows the largest order
of types in the tree-generating program (represented in the form of higher-order
recursion schemes [18]) obtained by the two step reductions. For comparison,
the column “0CFA” shows the number of flow queries for which 0CFA answered
yes. As 0CFA outputs an over-approximation of the actual flow set, it is always
greater than or equal to the number in the column “Flow”. The numbers in
parentheses show the number of queries among them for which TRecS timed
out. The first five programs fib–tak have been taken (and slightly modified)
from the benchmark set of MLton (http://mlton.org/Performance), and callcc

has been taken from [26], obtained by encoding call/cc. The other programs
have been handcrafted by ourselves. For space restriction, we explain only some
of the programs below: see [24] for more details. app defines an apply function,
and uses it twice for different pairs of functions and arguments:

let apply = fun f -> fun g -> f g in

let f1 = .. in let f2 = .. in let g1 = .. in let g2 = .. in

(apply f1 g1)+(apply f2 g2)

5 There are a few other higher-order model checkers [11, 15] to date, but TRecS
appears to be the fastest for this type of application.

Our analysis is able to infer that f1 is applied to g1 and f2 is applied to g2,
unlike 0CFA. app div is the same as above, except that the definition of apply
has been replaced by:

let rec apply’ = fun f -> fun g -> (f g; apply’ f g) in ...

Our analysis respects the call-by-value semantics and correctly infers that f2

is never called. map creates a list of integers and applies a function to each
element. map pair is the program discussed in Example 6. map pair2 is the
same as map pair, except that the definition of map is optimized to:

let map f l = if null(l) then nil else f(car(l)),

by taking into account our encoding of list primitives: note that, due to the
over-approximation introduced by our encoding, the flow set remains the same.

Some observations from the results in Table 1 follow. First, as expected, the
analysis is very slow, compared with the state-of-the-art control flow analyzer
(e.g., see [21]). In fact, our naive implementation of 0CFA terminated in less
than 0.1 second for all the benchmark programs. This point may however be
improved by refining higher-order model checkers and the reduction from CFA
to higher-order model checking. Secondly, for many of the tested programs, all
the flow queries were answered by TRecS, which is encouraging given the ex-
tremely high worst-case complexity (i.e., k-EXPTIME-completeness for order-k
programs) of higher-order model checking [18]. TRecS [7] does not always suf-
fer from the k-EXPTIME bottleneck, and tends to terminate quickly if there is
a small certificate for a verified property. The result suggests that for our bench-
mark programs, certificates of flow or non-flow are small enough. Three flow
queries timed out: one for merge and two for tak. These are due to a limitation
of the current TRecS, rather than that of our approach. In fact, for tak, those
queries are answered “yes” if a parameter of the model checker TRecS is man-
ually adjusted. The query for merge is answered “no” by another higher-order
model checker under development. For imp for, app div, and map pair2, we
can confirm that our analysis is more accurate than 0CFA. Experimental com-
parison with more precise analyses such as k-CFA and CFA2 is left for future
work.

7 Related Work

A number of methods for control flow analysis have been studied, including
k-CFA [22], polymorphic splitting [27], type-based flow analyses [6, 17, 4], and
CFA2 [26, 25]. To our knowledge, ours is the first implementation of a flow analy-
sis that is exact for the simply-typed λ-calculus with recursion. Except Mossin’s
exact flow analysis [17], the previous methods are not exact even for λS in Sec-
tion 3. An advantage brought by the exactness of our analysis for higher-order
functions is that various control structures can be easily handled via encoding
without losing any precision, as discussed in Section 5.1. This is in contrast

Program OS OT Call Fun Dest Op Const Time Flow No Flow TimeOut 0CFA

fib 1 4 7 3 20 8 7 5.56 42 279 0 42
merge 1 8 20 10 29 13 6 85.38 60 690 1 62 (1)

mandelbrot 1 8 18 12 49 22 8 276.94 83 1603 0 83
tailfib 1 8 13 8 17 7 7 3.33 36 306 0 36
tak 1 8 19 6 14 6 6 125.34 58 222 2 60 (2)

callcc 4 5 3 2 7 3 2 0.16 0 41 0 —
imp for 2 9 33 17 8 3 4 13.63 47 570 0 61
app div 3 8 9 6 4 2 2 0.14 6 64 0 15
map 2 8 6 3 8 4 4 1.25 21 61 0 21

map imflist 2 8 9 6 3 2 4 1.30 13 59 0 13
map rand 2 10 13 5 15 7 3 15.91 36 179 0 36
map pair 5 13 15 12 3 2 2 5.80 19 173 0 22
map pair2 5 13 13 12 3 2 2 0.88 17 151 0 20

Machine spec.: Intel(R) Core(TM)2 Duo 3.16GHz CPU and 3.21GB memory.
Columns OS and OT: the order of the source and target programs. Call and Fun: the
number of call sites and functions. Dest: the number of destinations of data flow. Op
and Const: the number of (occurrences of) integer operations and constants. Time:
the total running time (second) of the flow analysis. Flow: the number of flow queries
answered “yes”. No Flow: the number of flow queries answered “no”. TimeOut: the
number of flow queries for which TRecS could not answer in 10 seconds. 0CFA: the
number of flow queries for which 0CFA answers ”yes”.

Table 1. Results of experiments.

with CFA2, which needed to be adapted to deal with call/cc [26]. Our reduc-
tion from CFA to CSA uses CPS transformation. Incidentally, usefulness of CPS
transformation in flow analysis has been already pointed out by Shivers [23].

Mossin’s analysis [17] based on intersection types is exact for the simply-
typed λ-calculus with recursion under the full reduction semantics (i.e., β-reductions
can be applied inside λ-abstractions). To our knowledge, his algorithm has never
been implemented. Given a term e, his algorithm unfolds recursion a certain
(huge) number of times to obtain a recursion-free (thus strongly normalizing)
term e′ that has the same flow set as e, and then fully reduces e′ to obtain the
flow set. Both the number of required unfoldings is huge, so that his algorithm
would not be runnable even for the small benchmark programs in Section 6.

Vardoulakis and Shivers [26, 25], and Earl et al. [3] have recently proposed
new control flow analyses, where programs are modeled as first-order pushdown
systems. Our CFA based on HO model checking may have some connection to
their methods, since we model programs (via the two-step encodings) as higher-
order recursion schemes, which are equivalent to higher-order (collapsible) push-
down systems [5]. It would be interesting to consider something between our CFA
(based on higher-order pushdown in the sense above) and theirs, like “CFA based
on 2nd-order pushdown systems”.

Ong and Tzevelekos [19] studied the (un)decidability of control flow analysis
of open higher-order functional programs (i.e. programs that may have unknown
arguments), and shown that the CFA problem in that setting is undecidable in
general but that it is decidable for a certain fragment. In the present paper, we
considered only closed programs.

Our CFA benefits from recent advances in higher-order model checking [18,
9, 7]. Kobayashi ([10], Section 3.3.2) sketched the reduction from CFA to HO
model checking, but have neither formalized nor implemented it. Kobayashi et
al. [9, 14, 13] have also applied higher-order model checking to other program
analysis/verification problems for functional programs, and implemented tools
for tree-processing programs [14] and reachability verification [13].

8 Conclusions

We have formalized a new method for control flow analysis based on HO model
checking, and proved its correctness. It is exact for the simply-typed λ-calculus
with recursion. We have also implemented the method and carried out prelimi-
nary experiments, to show that it is indeed runnable at least for small programs.
We have to wait for further advances of HO model checking to judge its practi-
cality, but we believe that the present work expands the design space for control
flow analyses, by providing an analysis with the extreme precision.

Acknowledgments We would like to thank ananymous referees for useful com-
ments. This work is partially supproted by Kakenhi 23220001 and 22·3842.

References

1. Blume, M., Acar, U.A., Chae, W.: Exception handlers as extensible cases. In:
Proceedings of APLAS 2008. lncs, vol. 5356, pp. 273–289. springer (2008)

2. Danvy, O., Filinski, A.: Representing control: A study of the CPS transformation.
Mathematical Structures in Computer Science 2(4), 361–391 (1992)

3. Earl, C., Might, M., Horn, D.V.: Pushdown control-flow analysis of higher-order
programs. CoRR abs/1007.4268 (2010)

4. Fähndrich, M., Rehof, J.: Type-based flow analysis and context-free language
reachability. Mathematical Structures in Computer Science 18(5), 823–894 (2008)

5. Hague, M., Murawski, A., Ong, C.H.L., Serre, O.: Collapsible pushdown automata
and recursion schemes. In: Proceedings of 23rd Annual IEEE Symposium on Logic
in Computer Science. pp. 452–461. IEEE Computer Society (2008)

6. Heintze, N., McAllester, D.: Linear-time subtransitive control flow analysis. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation. pp. 261–272 (1997)

7. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009. pp. 25–36. acm (2009)

8. Kobayashi, N.: TRecS: A type-based model checker for recursion schemes.
http://www.kb.ecei.tohoku.ac.jp/˜koba/trecs/ (2009)

9. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proc. of POPL. pp. 416–428 (2009)

10. Kobayashi, N.: Model checking higher-order programs. Submitted for pub-
lication. A revised and extended version of [9] and [7], available at
http://www.kb.ecei.tohoku.ac.jp/˜koba/papers/hmc.pdf. (2010)

11. Kobayashi, N.: A practical linear time algorithm for trivial automata model check-
ing of higher-order recursion schemes. In: Proceedings of FoSSaCS 2011. lncs, vol.
6604, pp. 260–274. springer (2011)

12. Kobayashi, N., Ong, C.H.L.: Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. In: Proceedings of ICALP 2009. lncs, vol.
5556, pp. 223–234. Springer-Verlag (2009)

13. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proc. of PLDI (2011)

14. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Proc. of POPL. pp.
495–508 (2010)

15. Lester, M.M., Neatherway, R.P., Ong, C.H.L., Ramsay, S.J.: THORS hammer.
http://mjolnir.cs.ox.ac.uk/thors (2011)

16. Meyer, A.R., Wand, M.: Continuation semantics in typed lambda-calculi (sum-
mary). In: Logic of Programs. lncs, vol. 193, pp. 219–224. springer (1985)

17. Mossin, C.: Exact flow analysis. Mathematical Structures in Computer Science
13(1), 125–156 (2003)

18. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006. pp. 81–90. IEEE Computer Society Press (2006)

19. Ong, C.H.L., Tzevelekos, N.: Functional reachability. In: Proc. of LICS. pp. 286–
295. IEEE Computer Society (2009)

20. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

21. Prabhu, T., Ramalingam, S., Might, M., Hall, M.W.: EigenCFA: accelerating flow
analysis with gpus. In: Proc. of POPL. pp. 511–522 (2011)

22. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie-Mellon University (May 1991)

23. Shivers, O.: Higher-order control-flow analysis in retrospect: Lessons learned,
lessons abandoned. In: ACM SiGPLAN Notices - Best of PLDI 1979-1999. pp.
257–269 (2003)

24. Tobita, Y., Tsukada, T., Kobayashi, N.: Exact flow analysis by higher-order model
checking. An extended version of this paper, available from the 3rd author’s home
page (2012)

25. Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow analy-
sis. Logical Methods in Computer Science 7(2) (2011)

26. Vardoulakis, D., Shivers, O.: Pushdown flow analysis of first-class control. In: Proc.
of ICFP. pp. 69–80. ACM Press (2011)

27. Wright, A.K., Jagannathan, S.: Polymorphic splitting: An effective polyvariant
flow analysis. ACM Trans. Prog. Lang. Syst. 20(1), 166–207 (1998)

