
A New Type System for JVM Lock Primitives 1

A New Type System for JVM Lock Prim-
itives

Futoshi IWAMA and Naoki KOBAYASHI

Tohoku University
Aramaki aza Aoba 09, Aoba-ku Sendai Miyagi-pref. 980-8579, Japan

iwama@kb.ecei.tohoku.ac.jp and koba@ecei.tohoku.ac.jp

Abstract A bytecode verifier for the Java virtual machine language
(JVML) statically checks that bytecode does not cause any fatal error.
However, the present verifier does not check correctness of the usage of
lock primitives. To solve this problem, we extend Stata and Abadi’s type
system for JVML by augmenting types with information about how each
object is locked and unlocked. The resulting type system guarantees that
when a thread terminates, it has released all the locks it has acquired and
that a thread releases a lock only if it has acquired the lock previously.
We have implemented a prototype Java bytecode verifier based on the
type system. We have tested the verifier for several classes in the Java
run time library and confirmed that the verifier runs efficiently and gives
correct answers.

Keywords Type System, Java Bytecode Verifier, Lock

§1 Introduction
There has recently been a growing interest in verification of low-level

code: proof-carrying code 23), typed assembly languages 22), Java bytecode veri-
fication 25, 19, 11, 12), to name a few. The verified properties range from memory-
safety to more advanced properties like information flow 1, 17). The verification
of low-level code has several significant advantages over verification of source
programs. First, the correctness of a compiler need not be assumed for the safe
execution of compiled code. Second, source programs may be written in any
programming languages – even the low-level language itself, as long as there ex-
ists a compiler into the low-level language. Third, the safety is guaranteed even

2 Futoshi IWAMA and Naoki KOBAYASHI

in the situation where source programs are not available (as is often the case for
libraries and programs downloaded from the Internet).

As an instance of the research on verification of low-level code, in this
paper, we propose a type-based method for verifying safe usage of JVM lock
primitives. The Java virtual machine language (JVML) has instructions for
acquiring and releasing object locks. The monitorenter instruction acquires the
lock on the object stored in the stack top, while the monitorexit instruction
releases the lock on the object stored in the stack top. Using these instructions,
a synchronized statement synchronized (x){S} in Java is compiled into the
following bytecode:

load x

monitorenter

...

load x

monitorexit

The aim of our verification is to check, for each method, (1) all the locks that
have been acquired will be released within the same method execution, and (2)
non-acquired locks will not be released. Violation of the first property causes a
deadlock; other threads that try to acquire the same lock will be blocked forever.
Violation of the second property causes a run-time exception to be raised and
the program to be aborted. The present Java bytecode verifier does not check
those properties 20).

The safe usage of lock primitives is syntactically guaranteed (by synchro

nized statements) for Java source programs, but it is less trivial for Java byte-
code. For example, consider the six pieces of code in Figure 1. Here, for the
sake of simplicity, we write monitorenter x for the combination of two instruc-
tions load x; monitorenter, and monitorexit x for load x; monitorexit.∗1

Code 1 first locks the object stored in variable x, tests whether the value of y is 0
(by the 2nd and 3rd instructions), and then, depending on the result of the test,
executes the 4th or 6th instruction. Since the lock is released in each branch, the
code is valid. On the other hand, Code 2 is invalid since the lock is not released
if the value of y is not 0. Code 3 is valid; it first locks the object stored in x,
and then move it from x to y by the 2nd and 3rd instructions, and then releases
the object stored in y. On the other hand, Code 4 is invalid, since the value of
x is changed by the 3rd instruction, so that the object that is unlocked by the
4th instruction may not be identical to the object locked by the 1st instruction.

∗1 We use these compound instructions also in the formalization in later sections.

A New Type System for JVM Lock Primitives 3

Code 5 and 6 are both valid. Code 5 corresponds to a Java source program
synchronized(x){ synchorinzed(y){...}}. Code 6 appears in hand-over-
hand locking strategies as provided in java.util.concurrent.locks.

We use a type system to check the safe usage of lock primitives. The
main idea of our type system is to augment the type of an object with a usage,
which expresses how the object is locked and unlocked. For example, we express
by L.L̂.0 the usage of an object that will be locked, unlocked, and then neither
locked nor unlocked afterwards. The usage L&L̂ describes an object that will be
either locked or unlocked. Let us reconsider Code 1 in Figure 1. The following
type is assigned to the object stored in x at each address.

Address Type of x

1 σ/L.L̂.0

2 σ/L̂.0

3 σ/L̂.0

4 σ/L̂.0

5 σ/0

6 σ/L̂.0

7 σ/0

Here, types are of the form σ/U , where σ is the ordinary object type (i.e., the
class name) of x and U is a usage. The type σ/L.L̂.0 at address 1 indicates that
the object stored in x at address 1 will be locked once and then unlocked once in
the method. So, we know that lock primitives are properly used. Based on this
extension of types with usages, we extend Stata and Abadi’s type system 25), so
that any well-typed program uses lock primitives in a safe manner. Thus, the
problem of verifying safe usage of lock primitives is reduced to the type-checking
problem in the extended type system. Our type system accepts Code 1, 3, 5 and
6 in Figure 1, and rejects Code 2 and 4.

Our type system guarantees that well-typed bytecode satisfies the fol-
lowing properties: (1) when a thread terminates it has released all the locks it
has acquired, and (2) a thread releases a lock only if it has acquired the lock
previously. Our type system does not guarantee the absence of deadlocks caused
by conflicting locking orders. The type system neither guarantees that appro-
priate locks are acquired before shared objects are accessed. However, our type
system may be used as a building block for deadlock and race analyses; Once it
is checked by our type system that each lock instruction is followed by an unlock

4 Futoshi IWAMA and Naoki KOBAYASHI

1 monitorenter x
2 load y
3 if 6
4 monitorexit x
5 return

6 monitorexit x
7 return

(code 1)

1 monitorenter x
2 load y
3 if 5
4 return

5 monitorexit x
6 return

(code 2)

1 monitorenter x
2 load x
3 store y
4 monitorexit y
5 return

(code 3)

1 monitorenter x
2 load y
3 store x
4 monitorexit x
5 return

(code 4)

1 monitorenter x
2 monitorenter y
3 monitorexit y
4 monitorexit x
5 return

(code 5)

1 monitorenter x
2 monitorenter y
3 monitorexit x
4 monitorexit y
5 return

(code 6)

Fig. 1 Programs that use lock primitives

instruction, then deadlock and race analyses for JVM become similar to those for
source languages where only structured lock commands (like synchronized in
Java) are used 7, 8, 9). In fact, Permandla and Boyapati 24) have recently proposed
a type system for JVM that guarantees deadlock- and race-freedom, and their
type system is based on a type system (not ours but Laneve’s one, mentioned
below) for checking the correspondence between lock/unlock instructions.

Another type system for checking the safe usage of JVML lock primitives
have already been proposed by Bigliardi and Laneve 2, 19). The idea of their type
system is quite different from ours. We believe that our type system is more
intuitive, and can be more easily applied to languages other than JVML. More
detailed comparison of our type system and theirs is found in Section 8.

The rest of this paper Section 2 introduces our target language. Section 3
defines our type system and Section 4 shows the correctness of the type system.
Section 5 describes a type inference algorithm, and discusses the time complexity
of the algorithm. Based on the type inference algorithm, we have implemented
a prototype verifier for Java bytecode. Section 6 reports on experiments with
that verifier. Our type system checks that each acquired lock is released within
the same method, according to the JVM specification 20). Section 7 discusses an
extension of the type system to lift that restriction. Section 8 discusses related
work and Section 9 concludes.

A New Type System for JVM Lock Primitives 5

§2 The Target Language JVMLL

In this section, we introduce our target language JVMLL and define
its operational semantics. The language JVMLL is a subset of the Java byte-
code language JVML and is similar to JVMLC introduced by Bigliardi and
Laneve 2, 19). For the sake of simplicity, the language JVMLL has only basic
instructions of JVML including lock operations and other main instructions.

2.1 The language JVMLL

In JVMLL, a program is represented by a set of class definitions of the
form:

Class σ {
super: Thread

field: FD
method run(D)

B ;E

}

Here, meta-variable σ denotes a class name and each class is defined as a subclass
of Thread class that has only one method run. Formally, a program is regarded
as a mapping from class names to quadruples of the form (FD , D, B, E), and
denoted by meta-variable P . FD , D, B, and E are called a class field, a method
descriptor, a method body, and an exception table respectively; they are defined
below.

We write Σ for the set of class names σ. The set Ar of array class names,
ranged over by A, is defined by A ::= Int[] | σ[] | A[]. We write N , A, and V
for the set of natural numbers, the set of program addresses, and the set of local
variables, respectively. A and V are finite subsets of N . We use a meta-variable
l to denote an element of A and meta-variables x, y, . . . to denote elements of V.
We write d for an element of {Int} ∪ Σ ∪Ar, and call it a descriptor.

A class field, denoted by FD , is a sequence a1 : d1, . . . , ak : dk, where a is
a field name and d is a descriptor. When P (σ) = (FD, D, B, E), we often write
σP for FD. We also write σP .ai : di if σP is of the the form [. . . , ai : di, . . .].

A method descriptor D is a mapping from the set {0, . . . , n − 1}(⊆ V)
to the set {Int} ∪Σ ∪A, where n is a natural number that denotes the number
of arguments of a method. D(x) denotes the type of the x-th argument of a
method. For example, D(x) = Int means that the type of x-th argument is

6 Futoshi IWAMA and Naoki KOBAYASHI

integer.
A method body B is a mapping from a finite subset of {1, 2, . . . , n} (n ∈

N) of A to the set of instructions Inst, where Inst is defined as follows:

Definition 2.1 (Instruction)

The set Inst of instructions is defined by:

I ::= inc | pop | push0 | load x | store x | if l

| putfield σ.a d | getfield σ.a d | aaload | aastore
| monitorenter x | monitorexit x

| new σ | start σ | athrow | return

These instructions have the same meanings as the corresponding instruc-
tions of JVML. Examples of method bodies are found in Figure 1.

A JVMLL program is executed by threads. Each thread has its own
operand stack and local variables. A thread manipulates its own stack and local
variables, creates new threads, etc, by executing the instructions. We explain
each instruction briefly below. Instruction inc increments the integer stored at
the top of the operand stack. Instruction pop pops a value from the operand
stack and push0 pushes the integer 0 onto the operand stack. Instruction load x

pushes the value stored in the local variable x onto the operand stack, and
store x removes the top value from the operand stack and stores the value into
the local variable x. Instruction if l pops the top value from the operand stack
and jumps to the address l if the value is not 0, and proceeds to the next address
if the value is 0.

Instruction putfield σ.a d pops two values from the operand stack
and stores the first value into the field a of the second value. The first value
must have type d and the second value must be a σ-class object. Instruction
getfield σ.a d pops an object from the operand stack and then pushes the
value stored in field a of the object onto the operand stack, where the object
must be a σ-class object with field a of descriptor d . Instruction aaload pops
two values v1 and v2 from the operand stack, where v1 must be an integer and v2

must be an array object, and pushes the v1-th element of the array v2 onto the
stack. Instruction aastore pops three values v1, v2, and v3 from the operand
stack, where the first value v1 must be a value that is used as a component value
of array v3 and the second value v2 must be a integer, and replaces the v2-th
element of array v3 with v1.

A New Type System for JVM Lock Primitives 7

Instruction new σ allocates a new σ-class object, initializes it, and then
puts a reference to the object on top of the operand stack. If the allocation or
initialization fails, then an exception is raised. Instruction start σ creates a
new σ-class thread and invokes the run method of the thread. Arguments of
the method are taken from the top of the operand stack and stored in the local
variables of the new thread (where the number of arguments is determined by
the class name σ). Instruction athrow raises an exception and jumps to the
address specified by the exception table (see below). Instruction return returns
from the current method.

Instructions monitorenter x and monitorexit x respectively locks and
unlocks the object stored in the local variable x. As in JVML (and unlike the
usual semantics of locks, i.e., unlike non-reentrant locks), a thread can lock the
same object more than once without unlocking it. An object has a lock counter to
record how many times it has been locked. The lock counter is incremented and
decremented respectively when monitorenter and monitorexit are executed,
and the object becomes unlocked when the counter becomes 0.

We assume that every method body is well-formed, i.e., that if B(l) =
if l′ then l′ ∈ dom(B) holds and that if B(l) 6= athrow, return then l + 1 ∈
dom(B).

An exception table E is a total mapping from dom(B)(⊂ A) to A. If
an exception is raised at address l, the control jumps to address E(l). We
do not require that E(l) ∈ dom(B). The case E(l) 6∈ dom(B) expresses that
an exception handler is not defined for the address l. In that case, while the
exception is propagated to the callee of the method in JVML, the thread is just
aborted in our model.

Restriction on our language: As defined above, we assume that each class
has only one method run and it is invoked only by the instruction start .
(Thus, a thread terminates when it executes the instruction return.) In other
words, there is no normal method invocation. Our type system introduced in
the next section checks that all the locks that have been acquired in a method
execution will be released within the same method. It is easy to extend our
model to incorporate method invocations without any significant change of the
type system; as far as locks are considered, a method invocation can be regarded
as a nop. Because of this reason, we have also ignored the subclass relation
(every class is treated as a direct sub-class of Thread). If we were to allow

8 Futoshi IWAMA and Naoki KOBAYASHI

non-structured locking (where a lock acquired in one method may be released
in another method), the restriction above (of not having method invocations)
would be significant. We shall discuss how to deal with non-structured locking
in Section 7.

For the sake of simplicity, we do not consider null pointer and array
bound exceptions, and assume that only new σ and athrow may throw excep-
tions. The athrow instruction always raises an exception and instruction new σ

may throw an exception when allocation or initialization fails. We also assume
that there is only a single kind of exception. Section 6 discusses how those
restrictions are removed in the actual implementation of our verifier.

2.2 The operational semantics of JVMLL

We define an operational semantics of the language in a manner similar
to previous formalizations of JVML 2, 25, 19).

To define the semantics formally, we define several notations. First, we
define notations about functions and stacks. we write dom(f) and codom(f) for
the domain and the co-domain of function f , respectively. Let f{x 7→ v} denotes
the function such that dom(f{x 7→ v}) = dom(f) ∪ {x}, (f{x 7→ v})(y) =
f(y) if y 6= x, and (f{x 7→ v})(x) = v. f \x denotes the function such that
dom(f \x) = dom(f) \{x} and (f \x)(y) = f(y) for each y ∈ dom(f \x). A
stack is a partial mapping from N to VAL whose domain is of the form {i ∈
N | 0 ≤ i < n} for some n ∈ N . If s is a stack, s(i) denotes the value stored at
the i-th position of the stack. If s is a stack and v is a value, we write v · s for
the stack defined by (v · s)(n + 1) = s(n) and (v · s)(0) = v. We write ε for the
stack whose domain is empty.

Next, we define values,objects, and array objects. We write I for the set
of integers. We assume that there is a countably infinite set O of references (to
objects or arrays). A value is either an integer or a reference. We write VAL

for the set I∪O of values. An object is a record of the form [class = σ, flag =
b, a1 = v1 : d1, · · · , am = vm : dm], where σ denotes the class name of the object,
and b is either 0, indicating that the object is not locked, or 1, indicating that the
object is locked. If ρ = [class = σ, flag = b, a1 = v1 : d1, · · · , am = vm : dm],
we write ρ.class, ρ.flag and ρ.ai for σ, b and vi respectively. We also write
ρ{a 7→ v} (ρ{flag 7→ b}, resp.) for the record obtained by replacing a value
stored in field a (flag, resp.) of record ρ with v (b, resp.). An array is a record of
the form [class : A, flag : b, 1 = v1 : d, · · · , m = vm : d], where A is of the form

A New Type System for JVM Lock Primitives 9

d[] and denotes the array class name of the array, and m is the length of the
array. We write RCD for the set of objects and arrays and use a meta-variable
ρ to denote an element of the set.

As stated in Section 2.1, a JVMLL program is executed by threads. We
express a thread state with a tuple

〈l, f, s, z, σ〉.
Here, l(∈ A) denotes the current program counter, f maps each local variable
to the value stored in the variable, s is a stack, and z maps each heap address o

to a natural number expressing how many locks the thread holds for the object
pointed to by o (in other words, how many locks of the object the thread needs
to release in future). σ is the class name of the thread.

We write T for the set of thread states. We extend a partial mapping z

to a total mapping z# by:

z#(o) =

{
z(o) o ∈ dom(z)
0 o 6∈ dom(z)

Unless it is confusing, we write z for z#.
A machine state is a pair

〈Ψ,H〉
where Ψ is a partial mapping from the set of natural numbers to T, and H is a
partial mapping from O to the set RCD of objects. Ψ(i) represents the state of
the thread whose identifier is i. H(o) denotes the object pointed to by reference
o. We assume that the execution of a program starts when the method of class
main is invoked, and that the method has no argument. So, the initial machine
state is represented by

〈{0 7→ 〈1, ∅, ε, ∅, mainP 〉}, ∅〉.
where, address 1 denotes the first instruction of the method run of the main
class defined in program P .

We define the operational semantics of JV MLL using a one-step reduc-
tion relation

P ` 〈Ψ,H〉 → 〈Ψ′,H ′〉
The relation P ` 〈Ψ,H〉 → 〈Ψ′,H ′〉 means that a machine state 〈Ψ, H〉

changes to 〈Ψ′,H ′〉 in one-step execution of program P . It is defined as the
least relation closed under the rules in Figures 3 and 4. In the figures, P [σ](l)

10 Futoshi IWAMA and Naoki KOBAYASHI

denotes the instruction at address l of the method of σ-class thread in P , i.e.,
B(l) if P (σ) = (FD, D,B,E), and 1σ′ denotes the address of the first instruction
of the method run of the σ class. We denote by t̄ an element of the set T. If
i 6∈ dom(Ψ) then Ψ]{i 7→ t̄} denotes a mapping defined by:

Ψ]{i 7→ t̄}(i′) =

{
t̄ i′ = i

Ψ(i′) i′ 6= i

We explain some key rules.

Rules (ment1), (ment2): These are the rules for acquiring a lock. The
rule (ment1) states that a thread can acquire the lock of an object if the object
is not locked. The rule (ment2) states that a thread can acquire the lock of an
object if the lock is held by the same thread.

Rules (mext1), (mext2): These are the rules for releasing a lock. The
rule (mext1) covers the case where the thread has acquired the lock only once
before; in this case, the object becomes unlocked. The rule (mext2) covers the
other case, where a thread has acquired the lock more than once; in this case,
the lock counter is just decremented.

Rules (new), (newexc): These are the rules for creating (and initializing)
a new object. The rule (new) covers the case where the object creation succeeds.
Unlike JVM, the created object is also initialized by the instruction. The relation
P ` H ok is defined in Figure 2. The rule (newexc) covers the case where the
object creation fails and an exception is raised.

In the operational semantics, a thread may get stuck in the following
situations

• Type mismatch : The type of an operand does not math the type specified
by the current instruction (e.g. the rule (putfield)). ∗2

• Uncaught exceptions : An exception is raised by the current instruction,
but, there is no handler. This occurs when P [σ](l) is undefined after an
application of the rule (newexc) or (throw).

• Lock error : The current instruction is return, but the thread has not
released the lock and the current instruction is monitorexit, but the

∗2 In the actual JVM, a type mismatch raises an exception instead of the execution getting
stuck; This discrepancy is not important since such programs are rejected by the original
bytecode verifier as well as by the type system we describe later.

A New Type System for JVM Lock Primitives 11

H(c).class = d ∨ (c ∈ I ∧ d = Int)

`H o : d

σP = a1 : d1, . . . , am : dm `H v1 : d1, . . . ,`H vm : dm

P,H ` [class = σ, flag = b, a1 = v1 : d1, · · · , am = vm : dm] ok

`H v1 : d, . . . ,`H vm : d

P, H ` [class = d[], flag = b, 1 = v1 : d, · · · ,m = vm : d] ok

∀x ∈ dom(H).P, H ` H(x) ok

P ` H ok

Fig. 2 Definition of P ` H ok

thread has not acquired the lock.
Our type system in this paper guarantees that, during the execution of a well-
typed program, no thread gets stuck because of “type mismatch” or “lock error”
and a thread may get stuck because of “uncaught exceptions”, but at that time,
the thread has released all the locks it acquired.

§3 Type System
In this section, we give a type system for checking that programs use

lock primitives safely. As mentioned in Section 1, we extend an object type with
a usage expression, which represents in which order the object is locked and
unlocked. We first introduce usages and types in Section 3.1. In Section 3.2, we
define relations on usages and types. In Section 3.3 and 3.4, we give typing rules
for the extended types. Our type system is an extension of Stata and Abadi’s
type system 25) for JVML.

3.1 Usages and types
As mentioned above, we augment the type of an object with a usage

expression, which expresses how the object will be locked and unlocked.

Definition 3.1 (usages)

The set U of usage expressions (usages, in short) is defined by:

U ::= 0 | α | L.U | L̂.U | U1 ⊗U2 | U1&U2 | µα.U | ⊥rel

12 Futoshi IWAMA and Naoki KOBAYASHI

P [σ](l) = inc c ∈ I

P ` 〈Ψ]{i 7→ 〈l, f, c · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, c + 1 · s, z, σ〉}, H〉 (inc)

P [σ](l) = push0

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, 0 · s, z, σ〉}, H〉 (push0)

P [σ](l) = pop

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H〉 (pop)

P [σ](l) = if l′ c ∈ I

P ` 〈Ψ]{i 7→ 〈l, f, 0 · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H〉 (ifproceed)

P [σ](l) = if l′ c ∈ I c 6= 0

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, s, z, σ〉}, H〉 (ifbranch)

P [σ](l) = load x

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, f(x) · s, z, σ〉}, H〉 (load)

P [σ](l) = store x

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f{x 7→ v}, s, z, σ〉}, H〉 (store)

P [σ](l) = new σ′ H ′(o).class = σ′ ∀x ∈ dom(H ′).H ′(x).flag = 0 P ` H ′
ok

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, o · s, z, σ〉}, H]H ′〉 (new)

P [σ](l) = new σ′ P (σ) = (FD, D, B, E) E(l) = l′

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, ε, z, σ〉}, H〉 (newexc)

P [σ](l) = start σ′ P (σ) = (FD, D, B, E) j 6∈ dom(Ψ) ∪ {i}
o ∈ dom(H) H(o).class = σ′ dom(D) = {0, . . . , n− 1} f ′ = ø{0 7→ v0, . . . , n− 1 7→ vn−1}

P ` 〈Ψ]{i 7→ 〈l, f, v0·, . . . , ·vn−1 · o · s, z, σ〉}, H〉 →
〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}]{j 7→ 〈1σ′ , f

′, ε, ø, σ′〉}, H〉
(start)

P [σ](l) = athrow P (σ) = (FD, D, B, E) E(l) = l′

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, ε, z, σ〉}, H〉 (throw)

P [σ](l) = return ∀o ∈ dom(H).z#(o) = 0

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ, H〉 (return)

Fig. 3 Operational semantics

A New Type System for JVM Lock Primitives 13

P [σ](l) = monitorenter x f(x) ∈ dom(H) z#(f(x)) = 0
H(f(x)).f lag = 0 H ′ = H{f(x) 7→ ρ} ρ = H(o){flag 7→ 1}

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ 1}, σ〉}, H ′〉 (ment1)

P [σ](l) = monitorenter x f(x) ∈ dom(H) z#(f(x)) = n ≥ 1 H(f(x)).f lag = 1

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ n + 1}, σ〉}, H〉 (ment2)

P [σ](l) = monitorexit x f(x) ∈ dom(H) z#(f(x)) = 1
H(f(x)).f lag = 1 H ′ = H{f(x) 7→ ρ} ρ = H(o){flag 7→ 0}

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z \ f(x), σ〉}, H ′〉 (mext1)

P [σ](l) = monitorexit x f(x) ∈ dom(H) z#(f(x)) = n ≥ 2 H(f(x)).f lag = 1

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ n− 1}, σ〉}, H〉 (mext2)

P [σ](l) = getfield σ′.a d o ∈ dom(H) H(o).class = σ′ H(o).a = v

P ` 〈Ψ]{i 7→ 〈l, f, o · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, v · s, z, σ〉}, H〉 (getfld)

P [σ](l) = putfield σ′.a d o ∈ dom(H) H(o).class = σ′

H ′ = H{o 7→ ρ} ρ = H(o){a 7→ v}
P ` 〈Ψ]{i 7→ 〈l, f, v · o · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H ′〉 (putfld)

P [σ](l) = aaload o ∈ dom(H) H(o).class = d [] H(o).c = v

P ` 〈Ψ]{i 7→ 〈l, f, c · o · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, v · s, z, σ〉}, H〉 (aload)

P [σ](l) = aastore o ∈ dom(H) H(o).class = d []
H ′ = H{o 7→ ρ} ρ = H(o){c 7→ v}

P ` 〈Ψ]{i 7→ 〈l, f, v · c · o · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H ′〉 (astore)

Fig. 4 Operational semantics

14 Futoshi IWAMA and Naoki KOBAYASHI

Usage 0 describes an object that cannot be locked or unlocked at all.
α denotes a usage variable, which is bound by a constructor µα. Usage L.U
describes an object that is first locked and then used according to U . Usage
L̂.U describes an object that is first unlocked and then used according to U .
Usage U1 ⊗ U2 describes an object that is used according to U1 and U2 in
an interleaved manner. For example, L ⊗ L̂ describes an object that will be
either locked and then unlocked, or unlocked and then locked. The constructor
⊗ is used to approximate the whole locking behavior when an object is locked
through aliases. For example, if an object is locked and unlocked according to U1

through variable x, and if the same object is also locked and unlocked according
to U2 through variable y, then, the whole locking behavior is approximated
by U1 ⊗ U2. Note that without such approximation, one has to analyze the
program for every possible alias pattern. ∗3 U1&U2 describes an object that
can be used according to either U1 or U2. Usage µα.U describes an object that
can be recursively used according to [µα.U /α]U (where [U1/α]U2 denotes the
usage obtained by replacing every free occurrence of α with U1). For example,
µα.(0&L.α) describes an object that is locked an arbitrary number of times.
Usage ⊥rel describes an object that is locked and unlocked properly. We will
assign ⊥rel to elements of arrays and object fields to ensure that after they
are extracted from objects or arrays, they are properly locked and unlocked.
Although the usage expression ⊥rel is equal to µα.(0&(L.L̂⊗ α)), we introduce
⊥rel for a technical reason.

We often write L and L̂ for L.0 and L̂.0 respectively. We give higher
precedence to unary operators L., L̂., and µα. than to binary operators, so that
L.L̂&L.L̂ means (L.L̂)&(L.L̂) rather than L.(L̂&L.L̂).

A usage context is an expression obtained by replacing some sub-expressions
of a usage with holes []. We use a meta-variable C to denote a usage context. The
expression C [U1, . . . ,Un] denotes the usage obtained by substituting U1, . . . ,Un

for the holes in the context C from left to right. For example, if C = []⊗ [], then
C[U1,U2] = U1⊗U2. We assume that the free usage variables of U1, . . . ,Un are
different from the bound variables in C . So, if C = µα.[], then C[α] = µα′.α.

Definition 3.2

The binary relation ≡ on usages is the least congruence relation that satisfies
∗3 In some cases, alias analysis may be able to determine that a single alias pattern is possible;

in that case, the approximation can be avoided. That is not always possible, however:
consider a case where a method is called in multiple alias patterns such as m(o1, o2) and
m(o1, o1).

A New Type System for JVM Lock Primitives 15

the associativity and commutativity laws on ⊗ and &, and the rules U ⊗0 ≡ U
and µα.U ≡ [µα.U /α]U .

Remark 3.1

Usage expressions form a small process calculus. In fact, usages can be regarded

as basic parallel processes 4) with two labels L and L̂. The usage constructors ⊗
and & correspond to parallel composition and choice. Our usage expressions are
more expressive than regular expressions because of the constructor ⊗, which
corresponds to the shuffle operator in formal languages.

We define types as follows:

Definition 3.3 (Types)

The set T of types is defined by:

(types) τ ::= Int | σ/U | ξ[]/U | Top

(element types) ξ ::= Int | σ | ξ[] | Top

Int is the type of integers. Top is the type of objects that cannot be
used at all. Type σ/U describes an object of class σ that is locked and unlocked
according to the usage U . Type ξ[]/U describes an array that has elements of
type ξ and is locked/unlocked according to U .

Example 3.1

Type Counter/L.L̂ describes an object of Counter class that is first locked

and then unlocked. Type Account/L.(L̂&0) describes an object of Account

class that is first locked and then either unlocked or no longer accessed. Type
Counter[]/L.L̂ is the type of an array that is first locked and then unlocked
and have Counter class objects that are locked and unlocked properly as its
elements.

3.2 Reliability of usages and relation on types
As is understood from Example 3.1, the usage of an object expresses

whether the object is locked and unlocked properly. The usage of the Counter

object in the example expresses a proper usage. On the other hand the usage of
the Account object expresses an incorrect usage: The lock of the object may not
be released. We say that a usage U is reliable and write rel(U) if it expresses

16 Futoshi IWAMA and Naoki KOBAYASHI

safe usage of lock primitives, in the sense that each lock operation is followed
by an unlock operation and that each unlock operation is preceded by a lock
operation.

To formally define rel(U), we consider reduction of pairs 〈U , n〉 consist-
ing of a usage U and a natural number n. A pair 〈U, n〉 represents the state
of an object that has been locked n times by a thread so far and will be used
according to usage U by the thread from now.

Definition 3.4

The usage pair reduction →rel is the least binary relation on U×N closed under
the following rules.

〈L.U , n〉 →rel 〈U , n + 1〉 〈L̂.U , n〉 →rel 〈U , n− 1〉 〈⊥rel, n〉 →rel 〈0, n〉

〈U1, n〉 →rel 〈U ′
1, n

′〉
〈U1&U2, n〉 →rel 〈U ′

1, n
′〉

〈U2, n〉 →rel 〈U ′
2, n

′〉
〈U1&U2, n〉 →rel 〈U ′

2, n
′〉

〈U1, n〉 →rel 〈U ′
1, n

′〉
〈U1 ⊗U2, n〉 →rel 〈U ′

1 ⊗U2, n′〉
U1 ≡ U ′

1 〈U ′
1, n〉 →rel 〈U ′

2, n
′〉 U ′

2 ≡ U2

〈U1, n〉 →rel 〈U2, n′〉

Let →∗
rel be the reflexive and transitive closure of →rel.

We can now define the reliability of usages as follows:

Definition 3.5 (Reliability of usages)

rel(U , n) is defined to hold if the following all conditions hold whenever 〈U, n〉 →∗
rel

〈U ′, n′〉:

1. if U ′ ≡ 0 or U ′ ≡ 0 &U1 for a usage U1, then n′ = 0
2. if U ′ ≡ (L̂.U1 ⊗ U2) or U ′ ≡ (L̂.U1 ⊗ U2)&U3 for some usages U1,U2,

and U3, then n′ ≥ 1

A usage U is reliable, written rel(U), if rel(U , 0) holds.

The condition 1 in Definition 3.5 states that if an object may no longer
be locked or unlocked by a thread (i.e. if U ′ ≡ 0 or U ′ ≡ 0&U1), the lock
of the object is not held by the thread (i.e. n′ = 0). The condition 2 in the
definition states that when the lock of an object may be released by a thread
(i.e. U ′ ≡ (L̂.U1 ⊗ U2) or U ′ ≡ (L̂.U1 ⊗ U2)&U3), the lock is currently held

A New Type System for JVM Lock Primitives 17

by the thread (i.e. n′ ≥ 1). These conditions guarantee the proper use of lock
primitives: (1) when a thread terminates normally or abruptly, it has released
all the locks it has acquired, (2) a thread releases a lock only if it holds the lock.

Example 3.2

L.L.(L̂⊗ L̂), (L.L̂)&(L.L̂), L.L̂.⊥rel and L.µα.((L̂.L.α)&L̂) are reliable.
Neither L.(L⊗ L̂) nor L.L̂.L̂ is reliable.

We extend the predicate rel to a predicate rel t on types. It is defined as
the least unary relation closed under the following rules:

rel t(Int) rel t(Top)
rel(U)

rel t(σ/U)
rel(U)

rel t(ξ[]/U)

The following relation U1&U2 means that U1 expresses a more general
usage than U2, so that an object of usage U1 may be used according to U2.∗4

Definition 3.6

The sub-usage relation ≤ is the least preorder on usages that includes the relation
≡ and is closed under the following rules:

U1&U2 ≤ U1
rel(U)
⊥rel ≤ U

Ui ≤ U ′
i

C[U1, . . . ,Un] ≤ C[U ′
1, . . . ,U ′

n]

Here, we define several relations and operations on types to simplify
our type system. At first, we extend the congruence relation on usages to the
congruence relation τ1 ≡ τ2 on types.

Definition 3.7

The binary relation ≡ on types is the least equivalence relation that satisfies the
following rules:

U1 ≡ U2

σ/U1 ≡ σ/U2

ξ1 = ξ2 U1 ≡ U2

ξ1[]/U1 ≡ ξ2[]/U2

Similarly, we extend the sub-usage relation to a subtype relation τ1 ≤ τ2

on types. By τ1 ≤ τ2 we denote that a value of type τ1 can be used as a value
of type τ2.

∗4 Since usages can be regarded as processes, an alternative approach is to define U1&U2 as
a simulation relation or a trace inclusion relation. We preferred the axiomatic definition
in this paper for a technical convenience.

18 Futoshi IWAMA and Naoki KOBAYASHI

Definition 3.8

The subtype relation is the least preorder that includes the relation ≡ on types
and is closed under the following rules:

Int ≤ Top
U ≤ 0

σ/U ≤ Top
U1 ≤ U2

σ/U1 ≤ σ/U2

U ≤ 0
ξ[]/U ≤ Top

U1 ≤ U2

ξ[]/U1 ≤ ξ[]/U2

Note that by the definition, σ1/U1 ≤ σ2/U2 implies σ1 = σ2. This is
because we do not have a subclass relation between elements of Σ. If there is a
subclass relation, the subtyping relation above should be accordingly refined.

Next, we define several operations on types. To simplify these defini-
tions, we use ∗ to represent a binary operator ⊗ or & and use L̇. to represent a
unary operator L. or L̂..

Definition 3.9

We define τ1 ∗ τ2, L̇.τ by:

Top ∗Top = Top

Int ∗ Int = Int

(σ/U1) ∗ (σ/U2) = σ/(U1 ∗U2)
(ξ[]/U1) ∗ (ξ[]/U2) = ξ[]/(U1 ∗U2)
L̇.(σ/U) = σ/(L̇.U)
L̇.(ξ[]/U) = ξ[]/(L̇.U)

The operation is undefined for the arguments that do not match the above
definition.

Definition 3.10

We define τ1 ≤L̇ τ2 by:

τ1 ≤L̇ τ2 ⇔

(τ1 ≤ L̇.τ2)
∨ (τ2 = Top ∧ ∃σ.τ1 = σ/L̇.0)
∨ (τ2 = Top ∧ ∃ξ.τ1 = ξ[]/L̇.0)

The relations τ1 ≤L τ2 and τ1 ≤bL τ2 above mean that after values of type
τ1 are locked or unlocked respectively, these values will be used as values of type

A New Type System for JVM Lock Primitives 19

τ2. For example, Counter/L.L̂.0 ≤L Counter/L̂.0 and Counter/L̂.0 ≤bL Top

and Counter[]/L̂.0 ≤bL Top hold.
We also define the function Use(τ) on types as follows:

Use(τ) =

U τ = σ/U
U τ = ξ[]/U
0 τ = Top

undefined otherwise

3.3 Type environments
A frame type, denoted by a meta-variable F , is a partial mapping from

V to T . F (x) denotes the type of the value stored in the local variable x.
A stack type, denoted by a meta-variable S, is a partial mapping from

N to T . S(n) denotes the type of the n-th value stored in the operand stack.
We write ε for the type of the empty stack. A stack type τ · S is defined by
(τ · S)(n + 1) = S(n) and (τ · S)(0) = τ .

A frame type environment, denoted by a meta-variable F , is a mapping
from A to the set of frame types. F(l) describes the types of values stored in
local variables just before the program address l is executed. Similarly, a stack
type environment, denoted by a meta-variable S, is a mapping form A to the set
of stack types. S(l) describes the types of values stored in the operand stack just
before the program address l is executed. For example, F(l)(x) = σ/L̂ means
that σ-class object is stored in the local variable x at program address l, and
the lock on the object will be released afterwards. We often write Fl and Sl for
F(l) and S(l) respectively.

We extend some operations and relations on types to those on frame
types or stack types.

Definition 3.11

Suppose that dom(F1) = dom(F2). Then F1 ∗ F2 is defined by:

dom(F1 ∗ F2) = dom(F1)

∀x ∈ dom(F1).(F1 ∗ F2)(x) = (F1(x)) ∗ (F2(x))

20 Futoshi IWAMA and Naoki KOBAYASHI

Definition 3.12

A frame type F1 is a subtype of F2, written F1 ≤ F2, if:

dom(F1) = dom(F2)

∀x ∈ dom(F1).(F1(x) ≤ F2(x))

We also write F ≤ Top if F (x) ≤ Top holds for each x ∈ dom(F).
The operations S1 ∗ S2 and the relations S1 ≤ S2 and S ≤ Top are

defined in a similar manner.

3.4 Typing rules
We consider a judgment of the form 〈F ,S〉 `P (D, B,E). It means that

the method (D, B, E) is well-typed under the assumption that the values stored
in local variables and the operand stack have the types described by F and S
and the values in object fields have the types indicated by class definitions in
program P .

To define the relation above, we introduce relations F ,S, l `P (D, B,E).
Intuitively, it means that the instruction at l can be safely executed on the
assumption that the values stored in local variables and the operand stack have
the types described by F and S and the values in object fields have the types
indicated by class definitions in program P .

Definition 3.13

F ,S, l `P (D, B, E) is the least relation closed under the rules in Figure 5.

In Figure 5 and 6 , Fl and Sl are shorthand notations for F(l) and S(l)
respectively.

We explain several rules below:

Rule (MENTR): The first line states that the instruction at address
l is monitorenter. The second line states that an instruction exists at the
next address l + 1. Since the object stored in local variable x is locked at this
address and then used according to Fl+1(x), the object is accessed according to
L.Fl+1(x) in total. The fourth line expresses this condition. The third line also
says that the types of the values stored in the other local variables at address l

are subtypes of those at address l + 1, since those values are not accessed at l.
Similarly, since the stack is not accessed, the stack type at l should be a subtype

A New Type System for JVM Lock Primitives 21

the stack type at l + 1.

Rule (IF): The first line states that the instruction at address l is if l′.
The second line states that there are instructions at addresses l′ and l + 1.
Since the values stored in local variables are not accessed at l, they are accessed
according to either Fl+1 or Fl′ , depending on which branch is taken. The third
line expresses this condition. The fourth line expresses the condition that the
stack top at address l must be an integer and the condition that the other values
stored in the stack are accessed according to either Sl+1 or Sl′ .

Rule (ATHROW): The first line states that the instruction at address l is
athrow. Since the control jumps to E(l), it must be the case that E(l) ∈ dom(B),
as specified in the second line. The values stored in local variables are not
accessed at l and they are accessed according to E(l). This condition is expressed
by the third line. The fourth line expresses the condition that all values stored
in the stack are not accessed afterwards, since the operand stack becomes empty
when the exception is raised.

Rule (PUTFIELD): The first and second lines state that the instruction
at address l is putfield σ.a d and σ-classes definition in program P has field
a of descriptor d (d 6= Int). This instruction pops two values form the operand
stack and stores the first value into field a of the second value. Here, the first
value must be an object or an array that will be locked and unlocked properly,
because we assume that elements of objects and arrays are locked and unlocked
properly after they are extracted from objects or arrays. The fifth line expresses
this condition.

Rule (NEW): The third line states that the values stored in local vari-
ables are not accessed at l, they are accessed according to either Fl+1 or FE(l),
depending on whether an asynchronous exception is raised or not. The condition
rel(U) in forth line states that an object created by the new σ instruction have
to locked and unlocked properly later. The condition Sl ≤ Top states that the
values stored in the operand stack may be not accessed later. Actually, if an
exception is raised, then all values in the operand stack are popped, therefore,
this condition is necessary.

Now we define the type judgment relation for methods.

22 Futoshi IWAMA and Naoki KOBAYASHI

Definition 3.14 (Type judgment for methods)

The relation 〈F ,S〉 `P (B, E, D) is defined by the following rule:

∀x ∈ dom(F1). relt(F1(x))

Raw(F1(x)) =

{
D(x) if x ∈ dom(D)
Top otherwise
S1 = ε

∀l ∈ codom(E).(S(l) = ε)
∀l ∈ dom(B). F ,S, l `P (D, B, E)

∀l 6∈ dom(B).(Fl ≤ Top ∧ Sl ≤ Top)

〈F ,S〉 `P (D, B, E)

Here, Raw(τ) is defined by:

Raw(Int) = Int

Raw(Top) = Top

Raw(σ/U) = σ

Raw(ξ[]/U) = ξ[]

In the rule above, the first premise enforces that all objects stored in
local variables at the beginning of the method are safely used in the sense that
a lock that is acquired during execution of the method is always released during
the same method execution. The second premise states that the values stored in
local variables at the beginning of the method must have the types specified by
the method descriptor. The third and fourth premises state that the operand
stack at the beginning of the method or at the beginning of an exception handler
is empty. The fifth premise states that the method is well-typed at each address.
The last premise covers the case when an exception handler is not defined within
the method. In that case, the execution abruptly terminates (or in the real
JVM, the exception is passed to the callee), so that there should be no locks to
be released in the local variables and stack.

Definition 3.15 (Well-typed program)

A program P is well-typed if for each class name σ ∈ dom(P), there exist F and
S such that P (σ) = (FD , D,B,E) and 〈F ,S〉 `P (D,B,E) holds.

A New Type System for JVM Lock Primitives 23

(INC)
B(l) = inc

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl(0) ≤ Int Sl ≤ Sl+1

F ,S, l `P (D, B, E)

(PUSH)
B(l) = push0

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Int · Sl ≤ Sl+1

F ,S, l `P (D, B, E)

(POP)
B(l) = pop

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ Top · Sl+1

F , S, l `P (D, B, E)

(IF)
B(l) = if l′

l′, l + 1 ∈ dom(B)
Fl ≤ Fl+1&Fl′

Sl ≤ Int · (Sl+1&Sl′)

F ,S, l `P (D, B, E)

(LOAD)
B(l) = load x
l + 1 ∈ dom(B)

Fl ≤ Fl+1{x 7→ Fl+1(x)⊗ Sl+1(0)}
Sl+1(0) · Sl ≤ Sl+1

F ,S, l `P (D, B, E)

(STORE)
B(l) = store x
l + 1 ∈ dom(B)

Fl ≤ Fl+1{x 7→ Top}
Sl ≤ Fl+1(x) · Sl+1

F ,S, l `P (D, B, E)

(NEW)
B(l) = new σ

l + 1 ∈ dom(B)
Fl ≤ Fl+1&FE(l)

(σ/U) · Sl ≤ Sl+1 rel(U)
Sl ≤ Top

F ,S, l `P (D, B, E)

(START)
B(l) = start σ
l + 1 ∈ dom(B)
Fl ≤ Fl+1

∀ i ∈ dom(Dσ).Dσ(x) = τi

dom(Dσ) = {0, . . . , n− 1}
Sl ≤ τ0·, . . . , ·τn−1 · σ/0 · Sl+1

F ,S, l `P (D, B, E)

(RETURN)
B(l) = return

Fl ≤ Top
Sl ≤ Top

F ,S, l `P (D, B, E)

(MENTR)
B(l) = monitorenter x

l + 1 ∈ dom(B)
Fl \x ≤ Fl+1 \x
Fl(x) ≤L Fl+1(x)

Sl ≤ Sl+1

F ,S, l `P (D, B, E)

(MEXT)
B(l) = monitorexit x

l + 1 ∈ dom(B)
Fl \x ≤ Fl+1 \x
Fl(x) ≤bL Fl+1(x)

Sl ≤ Sl+1

F ,S, l `P (D, B, E)

(ATHROW)
B(l) = athrow

E(l) ∈ dom(B)
Fl ≤ FE(l)

Sl ≤ Top

F ,S, l `P (D, B, E)

Fig. 5 Typing rules

24 Futoshi IWAMA and Naoki KOBAYASHI

(PUTFLDInt)
B(l) = putfield σ.a Int

σP .a : Int
l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ Int · (σ/0) · Sl+1

F ,S, l `P (D, B, E)

(PUTFLD)
B(l) = putfield σ.a d

d 6= Int σP .a : d
l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ (d/⊥rel) · (σ/0) · Sl+1

F ,S, l `P (D, B, E)

(GETFLDInt)
B(l) = getfield σ.a Int

σP .a : Int
l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ (σ/0) · S ′ Int · S ′ ≤ Sl+1

F ,S, l `P (D, B, E)

(GETFLD)
B(l) = getfield σ.a d

d 6= Int σP .a : d
l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ (σ/0) · S ′ (d/U) · S ′ ≤ Sl+1

rel(U)

F ,S, l `P (D, B, E)

(ALOADInt)
B(l) = aaload

l + 1 ∈ dom(B)
Fl ≤ Fl+1

ξ = Int or ξ = Top
Sl ≤ Int · (ξ[]/0) · S ′

ξ · S ′ ≤ Sl+1

F ,S, l `P (D, B, E)

(ALOAD)
B(l) = aaload

l + 1 ∈ dom(B)
Fl ≤ Fl+1

ξ 6= Int and ξ 6= Top
Sl ≤ Int · (ξ[]/0) · S ′

(ξ/U) · S ′ ≤ Sl+1 rel(U)

F ,S, l `P (D, B, E)

(ASTOREInt)
B(l) = aastore

l + 1 ∈ dom(B)
Fl ≤ Fl+1

ξ = Int or ξ = Top
ξ · Int · (ξ[]/0) · Sl ≤ Sl+1

F ,S, l `P (D, B, E)

(ASTORE)
B(l) = aastore

l + 1 ∈ dom(B)
Fl ≤ Fl+1

ξ 6= Int and ξ 6= Top
(ξ/⊥rel) · Int · (ξ[]/0) · Sl ≤ Sl+1

F ,S, l `P (D, B, E)

Fig. 6 Typing rules for instructions related to the object/array field

A New Type System for JVM Lock Primitives 25

l instruction Fl(0) Fl(1) S
1 monitorenter 0 S/L.(bL.0&bL.0) Int ε

2 load 1 S/bL.0&bL.0 Int ε

3 if 6 S/bL.0&bL.0 Int Int · ε
4 monitorexit 0 S/bL.0 Int ε
5 return S/0 Int ε

6 monitorexit 0 S/bL.0 Int ε
7 return S/0 Int ε

Fig. 7 Typing for code 4 in the figure 1

Example 3.3

Code 4 in Figure 1 is well-typed as shown in Figure 7.

Example 3.4

The method in Figure 8 is well-typed. The method first locks the A-class object
given as the first argument, creates a new B-class object, stores it into the b-field
and then unlocks the A-class object. In the code, Exc denotes the type of an
exception.

The exception table in the method is interpreted as the following func-
tion E in our model.

E(l) =

{
7 l = 2, 3, 4, 5
12 otherwise

Note that we assume new B instruction may raise a exception. For this reason,
we must assign type A/L̂.0&L̂.0 to F3(0) according to typing rule (NEW) so
that F3 ≤ F4&F7 hold.

Example 3.5

The method in Figure 9 is well-typed. In the code, the S-class object in local
variable 1 is stored into the array in variable 0. Then an S-class object is retrieved
from the array and is locked and unlocked.

§4 Soundness of the type system
We have proved that our type system is sound in the sense that if a well-

typed program is executed, any thread that has acquired a lock will eventually
release the lock (provided that the thread terminates), and any thread that tries
to release a lock has previously acquired the lock.

The soundness of our type system is stated formally as follows:

26 Futoshi IWAMA and Naoki KOBAYASHI

l instruction Fl(0) Fl(1) S
1 monitorenter 0 A/L.(bL.0&bL.0) Top ε

2 load 0 A/(bL.0&bL.0) Top ε

3 new B A/(bL.0&bL.0) Top A/0 · ε
4 putfield A.b B A/bL.0 Top B/⊥rel · A/0 · ε
5 monitorexit 0 A/bL.0 Top ε
6 return A/0 Top ε

7 store 1 A/bL.0 Top Exc/0 · ε
8 monitorexit 0 A/bL.0 Exc/0 ε
9 load 1 A/0 Exc/0 ε
10 athrow A/0 Exc/0 Exc/0 · ε
11 return A/0 Exc/0 ε

Exception table: E

from to target type

2 5 7 any

10 10 11 any

Fig. 8 Typing for an example code

l instruction Fl(0) Fl(1) Fl(2) S
1 monitorenter 0 S[]/L.bL.0 S/⊥rel Int ε

2 load 0 S[]/bL.0 S/⊥rel Int ε

3 load 2 S[]/bL.0 S/⊥rel Int S[]/0 · ε
4 load 1 S[]/bL.0 S/⊥rel Int Int · S[]/0 · ε
5 aastore S[]/bL.0 S/0 Int S/⊥rel · Int · S[]/0 · ε
6 · · · S[]/bL.0 S/0 Int ε

7 load 0 S[]/bL.0 S/0 Int ε

8 load 2 S[]/bL.0 S/0 Int S[]/0 · ε
9 aaload S[]/bL.0 S/0 Int Int · S[]/0 · ε
10 store 1 S[]/bL.0 S/0 Int S/L.bL.0 · ε
11 monitorexit 0 S[]/bL.0 S/L.bL.0 Int ε

12 monitorenter 1 S[]/0 S/L.bL.0 Int ε

13 · · · S[]/0 S/bL.0 Int ε

14 monitorexit 1 S[]/0 S/bL.0 Int ε
15 return S[]/0 S/0 Int ε

Fig. 9 Typing for an example code

A New Type System for JVM Lock Primitives 27

Theorem 4.1

Suppose that a program P is well-typed, and that
P ` 〈{0 7→ 〈1, ∅, ε, ∅,mainP 〉}, ∅〉 →∗ 〈Ψ,H〉.
For each i ∈ dom(Ψ), if Ψ(i) = 〈l, f, s, z, σ〉, then the following properties

hold:

1. If P (σ) = (FD , D, B, E) and B(l) = return, then z(o) = 0 for all
o ∈ dom(H).

2. If P (σ) = (FD , D, B, E) and l 6∈ dom(B), then z(o) = 0 for all o ∈
dom(H).

3. If P (σ) = (FD , D,B,E) and B(l) = monitorexit x , then z(f(x)) ≥ 1.

In this theorem, the first and second properties state that when a thread
terminates normally or abruptly, it has released all the locks it acquired. The
third property states that when a thread tries to release a lock, it has acquired
the lock before.

We give an outline of the proof of the theorem below.

First, we introduce a program type environment, denoted by Γ, as a
mapping from a class name to a pair 〈F ,S〉. We write Γ ` P if the run method
of each σ-class in program P (i.e. (B, D, E) such that P (σ) = (FD , (B, D,E)))
is well-typed under the type environment Γ(σ) (in the sense of Definition 3.14).

We also define a type judgment relation (Γ, P) ` 〈Ψ,H〉 for machine
states. It means that the threads Ψ and the heap H are consistent with the
type assumption Γ and the class definition in program P . (These relations are
formally defined in appendix.)

We can prove that if a machine state is well typed, invalid usage of a lock
does not occur immediately (Lemma 4.1 below), and that the well-typedness of a
machine state is preserved during execution of a well-typed program (Lemma 4.2
below). Theorem 4.1 follows immediately from these properties and the fact that
the initial machine state is well-typed (Lemma 4.3 below).

Lemma 4.1 (Lack of immediate lock errors)

If (Γ, P) ` 〈Ψ,H〉 and Ψ(i) = 〈l, f, s, z, σ〉, then the following properties
hold:

1. If P (σ) = (FD , B, D, E) and B(l) = return, then z(o) = 0 for all

28 Futoshi IWAMA and Naoki KOBAYASHI

o ∈ dom(H).
2. If P (σ) = (FD , B,D, E) and l 6∈ dom(B), then z(o) = 0 for all o ∈

dom(H).
3. If P (σ) = (FD , B, D,E) and B(l) = monitorexit x , then z(f(x)) ≥ 1.

Lemma 4.2 (Subject reduction)

Suppose that Γ ` P and (Γ, P) ` 〈Ψ,H〉 hold. If P ` 〈Ψ,H〉 → 〈Ψ′,H ′〉,
then (Γ, P) ` 〈Ψ′,H ′〉 holds.

Lemma 4.3 (Well-typedness of initial state)

If Γ ` P , then (Γ, P) ` {〈0 7→ 〈1, ø, ε, ø, mainP 〉}, ø〉 holds.

The proofs of the above lemmas and the definitions of the relations Γ ` P

and (Γ, P) ` 〈Ψ,H〉 are given in Appendix B.
We can also show the following, usual type safety property (i.e., the

progress property, meaning that a well-typed program never gets stuck).

Theorem 4.2 (Progress)

If (Γ, P) ` 〈Ψ,H〉, then one of the following conditions holds.

1 For all i ∈ dom(Ψ), if Ψ(i) = 〈l, f, s, z, σ〉 and P (σ) = (FD , B, D,E),
then either B(l) = return or l 6∈ dom(B) holds.

2 For a 〈Ψ′,H ′〉, P ` 〈Ψ, H〉 → 〈Ψ′,H ′〉 holds

The theorem above together with Lemmas 4.2 and 4.3 imply that all threads
terminate normally or abruptly. (The latter happens when an exception handler
is not defined.) We omit the proof of the above theorem, since it follows imme-
diately from the fact that our type system is essentially the same as Stata and
Abadi’s type system if we ignore conditions on usages (except some difference
of supported instructions), and the fact that Stata and Abadi’s type system
guarantees the progress property.

§5 Type inference

5.1 Type inference algorithm
Because of the soundness of the type system, we can statically verify

that a program properly uses lock primitives by checking that the program is

A New Type System for JVM Lock Primitives 29

well-typed. To check whether a program P is well-typed, it is sufficient to check,
for each method (D, B, E) of the program, whether there exist F and S such that
〈F ,S〉 `P (D, B, E) by performing type inference. The type inference proceeds
as follows.

1. Step 1: Based on the typing rules, generate constraints on usages and
types.

2. Step 2: Reduce the constraints and check whether they are satisfiable.

We do not show details of the algorithm since it is fairly standard 21, 15)

except for the last step. We illustrate how type inference works using an example.
Consider Code 1 in Figure 1 with an empty exception table and the method
descriptor {0 7→ σ, 1 7→ Int}. For simplicity, we assume that type information
except for usages has been already obtained (for example, based on Stata and
Abadi’s type system 25)). The frame type environment F and the stack type
environment S of the method are given as:

F [l](0) = σ/αl for each l ∈ {1, . . . , 7}
F [l](1) = Int for each l ∈ {1, . . . , 7}

S[l] =

{
Int · ε if l = 3
ε otherwise

Here, each αl is a usage variable to denote unknown usages. It expresses how
the object stored in local variable 0 will be locked and unlocked at address l or
later.

From the typing rule for the method (Definition 3.14), we obtain the
following constraints:

rel(α1)
α1 ≤ L.α2

α2 ≤ α3

α3 ≤ α4&α6

α4 ≤ L̂.α5

α5 ≤ 0

α6 ≤ L̂.α7

α7 ≤ 0

From the constraints except for the first one, we obtain a solution (that is max-
imal with respect to ≤) α1 = L.((L̂.0)&(L̂.0)). By substituting it for the first

30 Futoshi IWAMA and Naoki KOBAYASHI

constraint, we get the constraint

rel(L.((L̂.0)&(L̂.0))).

Since it is satisfied, we know that lock primitives are safely used.
On the other hand, suppose that the instruction at address 3 is if 7.

Then the constraint α3 ≤ α4&α7 is generated instead of the constraint α3 ≤
α4&α6. In this case, we get the constraint rel(L.((L̂.0)&0)). Since it does not
hold, we know that lock primitives may be used incorrectly.

As in the above example, the type-checking problem is reduced to the
problem of deciding whether constraints of the form rel(U) hold. Deciding
whether rel(U) is a kind of model checking problem. As in type systems for
deadlock-freedom 16), the problem can be reduced to the reachability problem of
Petri nets 6), and hence the problem is decidable. A more efficient algorithm for
judging the reliability is given in Appendix A.

5.2 Complexity of the inference algorithm
We discuss the complexity of our type inference algorithm. Suppose that

the size of the method (i.e. the number of instructions) is k and that the size
of local variables and stack frames is O(k). Then, the number of constraints
generated in Step 1 is O(k2) and the time complexity of this step is also O(k2).

In Step 2, we use the algorithm in Appendix A for checking the satisfi-
ability of the constraints. It takes O((l + 1) ·N2) time as discussed in Appendix
A, where l is the number of occurrences of the usage constructor L (which cor-
responds to the number of monitorenter instructions in the method) and N is
the size of constraints generated in Step 1. Furthermore, since l is O(k) and N

is O(k2), the total time complexity is O(k5).
However, if we assume that the number of local variables and the stack

frame size are bound by a constant and that the number of monitorenter in-
structions in the method is also a constant, the time complexity is O(k2).

§6 Implementation
Based on the type system in this paper, we have implemented a Java

bytecode verifier for the full JVML. We first describe the main differences be-
tween the formal system presented so far and the actual implementation in Sec-
tion 6.1, and explain how we have dealt with the differences. We then introduce
our verifier and report on experiments in Section 6.2.

A New Type System for JVM Lock Primitives 31

6.1 Differences between the formal system and the imple-
mentation

Monitorenter/monitorexit instructions In the formal system, we have
treated a combination of instructions load x; monitorenter as a single in-
struction monitorenter x and load x; monitorexit as monitorexit x. In
the implementation, the verifier first performs these replacements. An occur-
rence of monitorenter which does not match with the above pattern can be
expanded to store z; monitorenter z, where z is a fresh variable name.

Multiple exceptions We have so far considered only a single kind of excep-
tion. To deal with multiple kinds of exceptions in the real JVML, it is sufficient
to extend an exception table E to a mapping from pairs consisting of an address
l ∈ dom(B) and an exception name to A. We assume that standard bytecode
verification is performed to check that exceptions are properly defined.

Other exception-raising instructions In our formal language JVMLL, only
new σ and athrow instructions raise an exception. In the actual JVML, how-
ever, many other instructions may raise an exception. For example, aaload

and aastore instructions may raise an ArrayIndexOutOfBoundsException ex-
ception, when the index (on the top of the operand stack) is out of the array
bounds. The rules for such instructions are similar to (NEW): we enforce the
constraints Fl ≤ FE(l) and Sl ≤ Top on the frame and stack type environments.
For example, the rule for aaload is refined as follows.

(ALOADEXC
Int)

B(l) = aaload

l + 1 ∈ dom(B)
Fl ≤ Fl+1&FE(l)

ξ 6= Int and ξ 6= Top
Sl ≤ Int · (ξ[]/0) · S ′ Sl ≤ Top

(ξ/U) · S ′ ≤ Sl+1 rel(U)

F ,S, l `P (B, E, D)

Instructions that may raise null pointer exceptions can be handled in a similar
manner.

Subroutines JVML has instructions for subroutines: jsr l and ret x. In-
struction jsr l pushes the return address (i.e the address of the next instruction

32 Futoshi IWAMA and Naoki KOBAYASHI

of jsr l) of type returnAddress on the operand stack, and jumps to the address
l. Instruction ret x returns to the address stored in the local variable x.

We explain how to deal with subroutines through an example. Consider
the bytecode in Figure 10. The instructions from address 5 to 9 is a subroutine.
When the subroutine is called, the return address is first stored in variable 2.
Then, the object stored in variable 0 is locked and unlocked, and the execution
returns from the subroutine.

The code is typed in the usual type system 25) as shown in Figure 10.
Here, since variable 1 is not used in the subroutine, it is given type undef ; it
is treated as polymorphic (i.e., may be instantiated to different types for each
subroutine call).

In our type system, a subroutine is given a function type of the form

∀~β.(F s, Ss) → (F r, Sr),

where F s and Ss are the frame and stack type environments at the beginning
of the subroutine, and F r and Sr are the type environments at the end of the
subroutine. The types are polymorphic on usages variables ~β. For example, for
the subroutine in Figure 10, the following type is assigned.

∀β.(F s, Ss) → (F r, Sr)

where

F s(0) = A/L.L̂.β

F s(1) = undef
F s(2) = Top

Ss = radd · ε

F r(0) = A/β

F r(1) = undef
F r(2) = radd

Sr = ε

Since β in F r(0) describes how the object in variable 0 will be used after the
subroutine call, the type of the subroutine is polymorphic on β. Figure 11
shows the frame and stack environments for each address. Note that those
types, including the types of subroutines, are automatically inferred as in the
formal system.

6.2 Experiments
Our verifier takes a Java class file as an input, and checks whether each

method in the class file uses lock primitives safely base on our type system. The
verifier has two modes. In one mode, the verifier gives only a yes/no answer on
whether each method is correct. In the other mode, the verifier pretty-prints

A New Type System for JVM Lock Primitives 33

l instruction Fl(0) Fl(1) Fl(2) S
1 jsr 6 B B Top ε

2 load 1 B B radd ε

3 store 0 B B radd S · ε
4 jsr 6 B B radd ε

5 return B B radd ε

6 store 2 B undef Top radd · ε
7 monitorenter 0 B undef radd ε

8 monitorexit 0 B undef radd ε

9 ret 2 B undef radd ε

Fig. 10 An example of subroutine

l instruction Fl(0) Fl(1) Fl(2) S
1 jsr 6 B/L.L̂.0 B/L.L̂.0 Top ε

2 load 1 B/0 B/L.L̂.0 radd ε

3 store 0 B/0 B/0 radd B/L.L̂.0 · ε
4 jsr 6 B/L.L̂.0 B/0 radd ε

5 return B/0 B/0 radd ε

6 store 2 B/L.L̂.β undef Top radd · ε
7 monitorenter 0 B/L.L̂.β undef radd ε

8 monitorexit 0 B/L̂.β undef radd ε

9 ret 2 B/β undef radd ε

Fig. 11 Type assignment for the subroutine

34 Futoshi IWAMA and Naoki KOBAYASHI

inferred types; that procedure includes simplification of inferred usages, and
hence takes longer than the first mode. We use the second mode in describing
examples below, and the first mode in measuring the verification time.

For example, let us consider the deposit method written by Java lan-
guage as Account.java in Figure 12. The deposit method is compiled into
code Dep in the figure.

Given the class file generated from Account.java in Figure 12, our
prototype verifier outputs the following message:

Class name: Account

Class type: Account

Fileld types:

balance: int

Number: 0

Method name: <init>

Argument types:(Account/0 Int)

Return type: void

Lock Check : true

Number: 1

Method name: deposit

Argument types:(Account/L.UL.0, Int)

Return type: void

Lock Check : true

Here, Argument types: and Return type: indicate the types of arguments
and the type of a return value. Lock Check : indicates whether the method
uses lock primitives properly.

The message for the deposit method (the last five lines) states that the
first argument of the method is Account-class object, which is locked (L.) and
then unlocked(UL.), while the second argument of the method is of type Int and
that the method returns no value. The line “Lock Check : true” indicates
that every object in method is properly locked and unlocked.

If we remove the monitorexit 2 instruction at program address 13 in
code Dep in Figure 12, our verifier outputs the following message:

Method name: deposit

Argument types:(Account/L.(UL.0 & 0), Int)

Return type: void

Lock Check : false

The message above says that the modified code does not use lock primi-
tives properly. The type Account/L.(UL.0 & 0) of the first argument indicates

A New Type System for JVM Lock Primitives 35

class Account {

int balance;

Account(int n) {

this.balance = n;

}

void deposit(int n) {

synchronized (this) {

this.balance

= this.balance + n;

}

}

}

(Account.java)

Method deposit:

1 load 0
2 store 2
3 monitorenter 2
4 load 0
5 load 0
6 getfield Account.balance int

7 load 1
8 add

9 putfield Account.balance int

10 monitorexit 2
11 goto 16

12 store 3
13 monitorexit 2
14 load 3
15 athrow

16 return

Exception table:

from to target type

4 10 12 any

(code Dep)

Fig. 12 Java source code for an Account class and JVMLL code for the deposit method

that the argument is an Account-class object, which is first locked (L.) and then
may or may not be unlocked (UL.0 & 0).

We have tested our verifier using several class files in Java run time class
libraries. All the classes were verified successfully. The column “Size” shows
the size of each class file, and the column NLM shows the number of methods
that use lock instructions. The rightmost column in Table 1 shows the time
spent for the verification of each class. For comparison, we have also measured
the running time of our verifier with lock checking turned off; the result is
shown in the column Timeno. As the table shows, the verification time for lock
checking is 5-30 times longer than that for ordinary type checking in the present
implementation.

36 Futoshi IWAMA and Naoki KOBAYASHI

Class name
Size

(bytes)
NLM

Timeno

(seconds)
Time

(seconds)

java.lang.Throwable 1559 3 0.0006 0.003

java.io.StringReader 1905 6 0.0009 0.019

java.lang.ref.ReferenceQueue 2320 6 0.0018 0.026

java.lang.Pakage 6490 2 0.0031 0.009

java.lang.Thread 7095 1 0.0061 0.007

java.net.InetAddress 7647 4 0.0081 0.018

java.lang.ThreadGroup 7274 14 0.0055 0.172

java.util.ResourceBundle 8655 4 0.0028 0.053

java.net.URL 9012 4 0.0066 0.075

java.lang.SecurityManager 9128 3 0.0042 0.037

java.lang.ClassLoader 14233 6 0.0104 0.119

Table 1 Verification time for each class file

We show more details for each method that includes lock primitives
in java.lang.ThreadGroup and java.lang.ClassLoader classes in Table 2. The
column “Insts” indicates the number of instructions in each method, and the
column “Maximal frames” is the sum of the number of used local variables and
the maximum stack frame size for each method. The column NLP shows the
number of lock instructions in each method.

§7 Discussion
Our type system presented so far ensures that a lock that has been ac-

quired in a method execution will be released within the same method execution.
Although the JVM specification 20) allows a verifier to enforce such a restric-
tion, and bytecode programs compiled from Java source programs usually satisfy
such constraints, the restriction may sometimes be too restrictive. For example,
the bytecode in Figure 13 is rejected by our type system, although the method
delegate safely locks and unlocks the object stored in variable 1.

Actually, because of the generality of our approach, it is not difficult to
extend our type system to allow a bytecode like Figure 13. To do that, we just
need to remove the condition ∀x ∈ dom(F1). relt(F1(x)) in Definition 3.14, and

A New Type System for JVM Lock Primitives 37

java.lang.ClassLoader

Method name Insts
Maximal
frames

NLP
Time

(seconds)

getPackage 44 9 3 0.009

difinePackage 45 23 3 0.021

getDefaultDomain 50 9 3 0.004

findNative 50 16 3 0.010

getPackages 62 10 4 0.012

loadLibrary0 193 22 11 0.075

java.lang.ThreadGroup

Method name Insts
Maximal
frames

NLP
Time

(seconds)

interrupt 58 11 3 0.008

resume 58 11 3 0.008

activeGroupCount 58 11 4 0.008

activeCount 59 12 4 0.008

setMaxPriority 60 9 3 0.009

add∗2 63 10 3 0.011

add∗3 63 10 3 0.011

remove∗4 78 11 4 0.012

remove∗5 78 11 4 0.012

destroy 80 10 3 0.013

list 83 15 3 0.017

stopOrSuspend 87 14 3 0.017

enumerate 92 14 3 0.019

enumerate 100 15 4 0.022

Table 2 Verification time for each method

∗2
add(ThreadGroup, Thread), ∗3add(ThreadGroup, ThreadGroup), ∗4remove(ThreadGroup,

Thread), ∗5remove(ThreadGroup, ThreadGroup).

38 Futoshi IWAMA and Naoki KOBAYASHI

Method A.delegate

1 monitorexit 1
2 load 0
3 load 1
4 invoke B.unlock

5 return

Method B.unlock

1 monitorexit 1
2 return

Fig. 13 Inter-method locking/unlocking

add the following rule for method invocation:

(INVOKE)
B(l) = invoke σ.m

σ.m : (τ1, . . . , τn) → τ

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ τ1 · · · , . . . , ·τn · σ/0 · S ′ τ · S ′ ≤ Sl+1

F ,S, l `P (B, E, D)

Here, (τ1, . . . , τn) → τ on the second line includes usage expressions and de-
scribes how the invoked method will lock/unlock the argument objects. It is as-
sumed that such method interface (except the interface of the current method) is
either inferred by pre-analyzing the invoked method, or by user annotations.∗5 If
there is a recursive call to the current method, fresh usage variables are assinged
to the usage part of the interface, and constraints on them are generated and
solved as in the type inference algorithm discussed in Section 5. Figure 14 shows
how the bytecode in Figure 13 is typed in the extended type system.

§8 Related Work
Bigliardi and Laneve 2, 19) have proposed a type system for the same

purpose as ours, but their type systems are quite different from ours. The
type system 19) uses indexed object types, which are singleton types obtained by
annotating a normal object type (i.e. class name) with a program address where
the object is copied to the operand stack from a local variable. A multiset of the
indexed object types is used to express the set of locked objects at each program
address. For example, σl is a σ-class object that is copied to the operand stack
∗5 The user annotations will not be so heavy a burden if we adopt ⊥rel as default usage

annotations, and require user annotations only if default usage annotations are incorrect.

A New Type System for JVM Lock Primitives 39

Typing for A.delegate

l Fl(1) S
1 σ/L.L̂.0 ε

2 σ/L̂.0 ε

3 σ/L̂.0 B/0 · ε
4 σ/0 σ/L̂.0 · B/0 · ε
5 σ/0 ε

Typing for B.unlock

l Fl(1) S
1 σ/L̂.0 ε

2 σ/0 ε

Fig. 14 Typing for the code in Figure 13

at program address l and Zl = {σl′} expresses that at address l a σ-class object
that has been copied at address l′ is locked. The monitorenter instruction adds
the type of the locked object to that multiset and the monitorexit instruction
removes the type of the unlocked object from the multiset. The type system
checks that the multiset of indexed object types is empty at the return address
For example the type system assigns types to the first code in Figure 1 as shown
in Figure 15.

Since object types must be singleton types, their type system cannot
deal with a case where multiple objects flow to the same variable. For example,
consider the code in Figure 16. The code is not well-typed in Laneve’s type
system, since it is not statically known whether the object locked at address 9
has type σ3 or σ6. To solve the problem, Laneve informally discusses introduction
of a subtype relation, without a formal proof. Even with that extension, their
approach does not seem to be able to deal with subroutines in which the same
variable is bound to different objects (as in the code in Figure 10.

On the other hand, there are also some bytecode that can be typed in
Laneve’s type system but not in our type system. Our type system does not keep
track of the order of accesses through different local variables or stack locations,
which causes some correct programs to be rejected. Consider the code in the
lefthand side of Figure 18. It should be considered valid, but it is rejected by
our type system. That is because our type system fails to keep track of precise
information about the order between accesses through different variables, and
assigns L⊗ L̂ to the usage of object S created at address 1. (On the other hand,
our type system does accept the code in the righthand side: the usage L.L̂ is
assigned to object S at address 1.) In order to analyze such code, we need to
extend the type system by using an idea presented in the generic type system
for the π-calculus 14).

40 Futoshi IWAMA and Naoki KOBAYASHI

Address l Instruction Fl(x) Fl(y) Sl Zl

1 load x σ Int ε {}
2 monitorenter σ1 Int σ1 · ε {}
3 load y σ1 Int ε {σ1}
4 if 8 σ1 Int Int · ε {σ1}
5 load x σ1 Int ε {σ1}
6 monitorexit σ1 Int σ1 · ε {σ1}
7 return σ1 Int ε {}
8 load x σ1 Int ε {σ1}
9 monitorexit σ1 Int σ1 · ε {σ1}
10 return σ1 Int ε {}

Fig. 15 Typing for Code 1 in Figure 1 in Laneve’s type system

1 load 2
2 if 6
3 load 0
4 store 3
5 goto 8
6 load 1
7 store 3
8 load 3
9 monitorenter

10 load 3
11 monitorexit

12 return

Fig. 16 A program rejected by Laneve’s type system

Address l Instruction Fl(0) Fl(1) Fl(2) Fl(3) Sl

1 load 2 σ/(L.bL.0)&0 σ/(L.bL.0)&0 Int Top ε

2 if 6 σ/(L.bL.0)&0 σ/(L.bL.0)&0 Int Top Int · ε
3 load 0 σ/L.bL.0 σ/0 Int Top ε

4 store 3 σ/0 σ/0 Int Top σ/L.bL.0 · ε
5 goto 8 σ/0 σ/0 Int σ/L.bL.0 ε

6 load 1 σ/0 σ/L.bL.0 Int Top ε

7 store 3 σ/0 σ/0 Int Top σ/L.bL.0 · ε
8 monitorenter 3 σ/0 σ/0 Int σ/L.bL.0 ε

9 monitorexit 3 σ/0 σ/0 Int σ/bL.0 ε
10 return σ/0 σ/0 Int σ/0 ε

Fig. 17 Typing for the code in Figure 16

A New Type System for JVM Lock Primitives 41

1 new S

2 store x

3 load x

4 store y

5 monitorenter x

6 monitorexit y

7 return

1 new S

2 store x

3 monitorenter x

4 load x

5 store y

6 monitorexit y

7 return

Fig. 18 Programs that lock and unlock an object through different variables

Recently, various methods for statically analyzing usage of lock primi-
tives have been proposed for other languages 5, 10). However, the semantics of
lock primitives treated in those languages are different from the one treated in
this paper, and hence it is not clear whether those methods can be applied to our
target language. In those languages, each lock has only two states: the locked
state and the unlocked state. On the other hand, in our target language, a lock
can have infinitely many states (since each lock has a counter expressing how
many times it has been acquired).

The idea of adding usages to types has its origin in type systems 16, 26)

for the π-calculus. In those type systems, usage expressions are used to express
in which order communication channels are used for input and output.

Igarashi and Kobayashi 15) developed a general type system for analyzing
usage of various resources such as files, memory, and locks. The problem treated
in the present paper is an instance of the general problem treated by them 15).
However, the target language of their analysis is a functional language, while our
target language is a more low-level language. We also gave a concrete algorithm
for checking the reliability of a usage, while the corresponding algorithm is left
unspecified in their work 15).

There are a number of type systems for JVML to verify other properties.
Stata and Abadi 25) was the first to formalize Java byte code verification in the
form of a type system. Our type system has been obtained by extending their
type system with usages. Freund and Mitchell 11) developed a type system
which guarantees that every object is initialized before it is used. There is some
similarity between their soundness proof and ours. Higuchi and Ohori 13) have
proposed a type system for Java bytecode which is more closer to the type system
of λ-calculus. Our treatment of subroutines is partially inspired from their work.

42 Futoshi IWAMA and Naoki KOBAYASHI

Our type-based analysis may be viewed as abstract model checking
where abstract models (which represent the locking behavior for each object)
are first extracted as usage expressions through type inference, and then it is
checked whether the abstract models are valid (i.e., whether rel(U) holds). Sim-
ilar approach has also been taken recently in type-based verification of π-calculus
programs 14, 3, 18).

§9 Conclusion
We have proposed a type system for checking usage of lock primitives for

a subset of JVML 20), which extends types with information about in which order
objects are locked/unlocked. We have proved its correctness and implemented a
prototype verifier for the full JVML based on the type system. We have tested
the verifier for several classes in Java run-time libraries.

References
1) Gilles Barthe and Tamara Rezk. Non-interference for a jvm-like language. In

Proceedings of ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2005), pages 103–112, 2005.

2) Gaetano Bigliardi and Cosimo Laneve. A type system for JVM threads. In Pro-
ceedings of 3rd ACM SIGPLAN Workshop on Types in Compilation (TIC2000),
Montreal, Canada, 2000.

3) Sagar Chaki, Sriram Rajamani, and Jakob Rehof. Types as models:
Model checking message-passing programs. In Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages, pages
45–57, 2002.

4) S. Christensen. Decidability and Decomposition in Process Algebras. PhD the-
sis, University of Edinburgh, 1993.

5) Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-
level software. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 59–69, 2001.

6) J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey. Journal
of Information Processing and Cybernetics, 30(3):143–160, 1994.

7) Cormac Flanagan and Mart́ın Abadi. Object types against races. In CON-
CUR’99, volume 1664 of Lecture Notes in Computer Science, pages 288–303.
Springer-Verlag, 1999.

8) Cormac Flanagan and Mart́ın Abadi. Types for safe locking. In Proceedings of
ESOP 1999, volume 1576 of Lecture Notes in Computer Science, pages 91–108,
1999.

9) Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java.
In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 219–232, 2000.

10) Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type quali-
fiers. In Proceedings of ACM SIGPLAN Conference on Programming Language

A New Type System for JVM Lock Primitives 43

Design and Implementation, 2002.

11) Stephen N. Freund and John C. Mitchell. A type system for object initialization
in the Java bytecode language. In OOPSLA ’98: Proceedings of the 13th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 310–327, New York, NY, USA, 1998. ACM Press.

12) Stephen N. Freund and John C. Mitchell. A type system for the Java bytecode
language and verifier. J. Autom. Reason., 30(3-4):271–321, 2003.

13) Tomoyuki Higuchi and Atsushi Ohori. Java bytecode as a typed term calculus.
In ACM PPDP conference, 2002, pages 201–211. ACM Press, 2002.

14) Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-
calculus. Theoretical Computer Science, 311(1-3):121–163, 2004.

15) Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. ACM Trans-
actions on Programming Languages and Systems, 27(2), 2005. Preliminary
summary appeared in Proceedings of POPL 2002.

16) Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-
free process calculus. In Proceedings of CONCUR2000, volume 1877 of Lecture
Notes in Computer Science, pages 489–503. Springer-Verlag, August 2000. The
full version is available as technical report TR00-01, Dept. Info. Sci., Univ.
Tokyo.

17) Naoki Kobayashi and Keita Shirane. Type-based information flow analysis for
low-level languages. Computer Software, 20(2):2–21, 2003. In Japanese. A
summary written in English appeared in informal proceedings of 2nd Asian
Workshop on Programming Languages and Systems (APLAS’02).

18) Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage analysis
for the pi-calculus. Logical Methods in Computer Science, 2(3:4):1–42, 2006.

19) Cosimo Laneve. A type system for JVM Threads. Theoretical Computer Sci-
ence, 290(1):241–778, 2003.

20) Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification (2nd
edition). Addison Wesley, 1999.

21) Torben Mogensen. Types for 0, 1 or many uses. In Implementation of Func-
tional Languages, volume 1467 of Lecture Notes in Computer Science, pages
112–122, 1998.

22) Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system f to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):528–569, May 1999.

23) George C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langauges
(POPL ’97), pages 106–119, Paris, January 1997.

24) Pratibha Permandla and Chandrasekhar Boyapati. A type system for prevent-
ing data races and deadlocks in the Java virtual machine language. Tecnical
Report.

25) Raymie Stata and Mart́ın Abadi. A type system for Java bytecode subrou-
tines. ACM Transactions on Programming Languages and Systems, 21(1):90–
137, 1999.

26) Eijiro Sumii and Naoki Kobayashi. A generalized deadlock-free process calculus.
In Proc. of Workshop on High-Level Concurrent Language (HLCL’98), volume
16(3) of ENTCS, pages 55–77, 1998.

44 Futoshi IWAMA and Naoki KOBAYASHI

§Appendix A Algorithm for checking whether
usage constraints are satisfiable

In this section, we give an algorithm for checking whether constraints
generated in Step 1 of type inference (see 5.1) are satisfiable and estimate time-
complexity of the algorithm.

Constraints on usages generated in Step 1 can be reduced to the following
set of constraints

{α1 ≤ U1, . . . , αn ≤ Un} ∪ {rel(αr1), . . . , rel(αrh
)}

where {r1, . . . , rh} ⊆ {1, . . . , n} and α1, . . . , αn are different from each other.
We can first solve {α1 ≤ U1, . . . , αn ≤ Un} by repeatedly applying the

following reduction rules to ({α1 ≤ U1, . . . , αn ≤ Un}, ∅):
({α ≤ U } ∪ C , S) → ([µα.U /α]C , {α = µα.U } ∪ [µα.U /α]S).

Here, the first element of the pair is the set of remaining subusage con-
straints and the second element is the solution. When ({α1 ≤ U1, ..., αn <

Un}, ∅) is reduced to (∅, S), S is the solution for {α1 ≤ U1, . . . , αn ≤ Un}.
So, the problem is reduced to that of checking whether the solution satisfies
rel(αr1), . . . , rel(αrh

).
To check whether rel(U) holds for a usage U , we consider two num-

bers MinU and FinU for each closed usage U . MinU is the least n such that
(U , 0) →∗

rel (U ′, n), while FinU is the greatest n such that (U , 0) →∗
rel (U ′, n)

and U ′ ≤ 0 (if no such n exists, FinU = −∞).
Intuitively, MinU expresses the minimum number of locks being acquired

while the object is accessed according to U . Similarly, FinU expresses the max-
imum number of locks being held after the access according to U finishes.

Example A.1

Min bL.L = −1, MinL.bL = 0 and Fin bL.L = FinL.bL = 0, Finµα.(L&L.bL.α) = 1

By Definition 3.5, rel(U) if and only if (1)MinU = FinU = 0. FinU = 0
corresponds to the first condition of Definition 3.5, and guarantees that the
number of locks and unlocks are balanced. MinU = 0 corresponds to the second
condition of Definition 3.5, and guarantees that a lock always occurs before an
unlock. (Actually, the second condition of Definition 3.5 only requires MinU ≥ 0,
but it is equivalent to MinU = 0 since MinU ≤ 0 by the definition of MinU .)

Using the above fact, we can check whether rel(αri) (i = 1, 2, · · · , h)
holds for the solution of {α1 ≤ U1, . . . , αn ≤ Un}.

A New Type System for JVM Lock Primitives 45

First, we check whether Minαri
= 0 (i = 1, . . . , h) holds as follows:

Let x1, . . . , xn be variables denoting Minα1 , . . .Minαn
. Let CMin be the set of

equations

{xi = MinExp(Ui) | αi ≤ Ui is a constraint generated in Step 1}
where MinExp(V) is an expression defined by:

MinExp(0) = 0
MinExp(⊥rel) = 0
MinExp(αi) = xi

MinExp(U1 ⊗U2) = MinExp(U1) + MinExp(U2)
MinExp(U1&U2) = min(MinExp(U1),MinExp(U2))
MinExp(L.U) = min(0,MinExp(U) + 1)
MinExp(L̂.U) = MinExp(U)− 1.

CMin can be expressed in the form

{x1 = F1(x1, . . . , xn),
· · · ,

xn = Fn(x1, . . . , xn)}

where Fi is a monotonic function obtained by composing the operators +, con-
stants 0, 1, −1 and min. Here, min(x, y) denotes the minimum of x and y.

We write V ar(Fi)(⊆ {x1, . . . , xn}) for the set of variables that occur in
Fi(x1, . . . , xn) and define V ar(Fi)(⊂ {x1, . . . , xn}) as the least set that satisfies
the following conditions.

V ar(Fi) ⊇ V ar(Fi) ∪ {x ∈ V ar(Fj) | xj ∈ V ar(Fi)} (i = 1, . . . , n).

Intuitively, V ar(Fi) is the set of variables that affect the value of Fi(x1, . . . , xn).
Because we are only interesting in the value of Minαri

(i = 1, . . . , h), we
can remove xi = Fi(x1, . . . , xn) such that xi 6∈ V ar(Fr1) ∪ · · · ∪ V ar(Frh

) from
CMin . Therefore, in the rest of this section, we assume without loss of generality

V ar(Fr1) ∪ · · · ∪ V ar(Frh
) = {x1, · · · , xn}.

Compute (u(j)
1 , . . . , u(j)

n) (j = 0, 1, · · ·) by

u(0)
i = 0

u(j+1)
i = Fi(u

(j)
1 , . . . , u(j)

n)

46 Futoshi IWAMA and Naoki KOBAYASHI

until j = m such that (u(m+1)
1 , . . . , u(m+1)

n) = (u(m)
1 , . . . , u(m)

n) or u(m)
i < 0

for some i ∈ {r1, . . . , rh}. (Note that such an m always exists.) and check
whether u(m)

i = 0 for all i ∈ {r1, . . . , rh}. If this is true , we have Minαr1
=

0, · · · ,Minαrh
= 0 and proceed to the check for Finαi

. If there exists ri such

that u(m)
ri

< 0, the constraints are not be satisfiable.

Whether Finαri
= 0 (i = 1, . . . , h) holds can be checked in a similar

manner. First, observe that it is sufficient to check a weaker condition Finαri
= 0

since we have already Minαri
= 0, hence Finαri

≥ Minαri
= 0. Let y1, . . . , yn

be variables denoting Finα1 , . . . ,Finαn
. Let CFin be the set of equations

{yi = FinExp(Ui) | αi ≤ Ui is a constraint generated in Step 1}
Here, FinExp(U) is the expression defined by:

FinExp(0) = 0
FinExp(αi) = yi

FinExp(⊥rel) = 0
FinExp(U1 ⊗U2) = FinExp(U1) + FinExp(U2)
FinExp(U1&U2) = max(FinExp(U1),FinExp(U2))
FinExp(L.U) = FinExp(U) + 1
FinExp(L̂.U) = FinExp(U)− 1.

CFin can be expressed in the form

{y1 = G1(y1, . . . , yn),
· · · ,

yn = Gn(y1, . . . , yn)}.

As in the previous case, we assume

V ar(Gr1) ∪ · · · ∪ V ar(Grh
) = {y1, . . . , yn}.

We first find i such that the least solution of CFin satisfies yi = −∞ as
follows:

Compute (z (j)
1 , . . . , z (j)

n) by

z (0)
i = −∞

z (j+1)
i = to fin(Gi(z

(j)
1 , . . . , z (j)

n))

A New Type System for JVM Lock Primitives 47

until j = m′ such that (z (m′+1)
1 , . . . , z (m′+1)

n) = (z (m′)
1 , . . . , z (m′)

n) (Such an m′

always exists.) , where function to fin is defined as follows:

to fin(n) =

{
−∞ n = −∞
fin n = fin or n is an integer.

and operations on fin are defined by:

fin + 1 = fin fin − 1 = fin

max(fin,−∞) = max(−∞,fin) = max(fin,fin) = fin.

When the computation stops, if v (m′)
i = −∞ holds, the least solution of

CFin satisfies yi = −∞. So, assigning −∞ to such variable yi in G1, . . . , Gn we
transform CFin to C ′Fin . To define this C ′Fin formally, we define V arfin as {yi ∈
{y1, . . . , yn} | z (m′)

i = fin} and V arinf as {yi ∈ {y1, . . . , yn} | z (m′)
i = −∞}.

C ′Fin is defined by:

G′i = Gi[−∞/yf1 , . . . ,−∞/yfn′′] (i = 1, . . . , n)

where {yf1 , . . . , yfn′′} = V arinf (⊆ {y1, . . . , yn}).
Without loss of generality, we can assume

{yr1 , . . . , yrh
} ⊆ V arfin

V ar(G′r1) ∪ · · · ∪ V ar(G′rh
) = {yi1 , · · · , yin′} (= V arfin).

So, C ′Fin can be expressed in the form:

{yi1 = G′i1(yi1 , . . . , yin′),
· · · ,

yin′ = G′in′ (yi1 , . . . , yin′)}

where {yi1 , . . . , yin′} = V arfin (⊆ {y1, . . . , yn}).
Using this C ′Fin , we compute the value of each yri (i = 1, . . . , h).

Compute (v (j)
i1

, . . . , v (j)
in′

) by

v (0)
i = −∞

v (j+1)
i = Gi

′(v (j)
i1

, . . . , v (j)
in′

)

until j = m such that v (m)
i = v (m+1)

i for all i ∈ {i1, . . . , in′} or v (m)
i > 0 for

some i ∈ {r1, . . . , rh}. (Such an m always exists.) and check whether v (m)
i ≤ 0

48 Futoshi IWAMA and Naoki KOBAYASHI

holds for all i ∈ {r1, . . . , rh}. If this holds, we have FinUr1
≤ 0, · · · ,FinUrh

≤ 0
and constraints generated in Step 1 are satisfiable. Otherwise, the constraints
are not satisfiable.

Time complexity of the algorithm Time complexity of checking whether
the above constrains are satisfiable is O((l + 1) ·N2) where N is the size of con-
strains generated Step 1 and l is the number of occurrences of L. in {U1, . . . ,Un}
(This l may be 0). Moreover, n (This is the number of constraints) is estimated
to be O(N). In the rest of this section, we discuss this time complexity.

First, we calculate time complexity of checking whether Minαri
= 0 (i =

1, . . . , h) holds. It takes time O(N) to transform sub-usage constraints to the
equation system CMin and time O(n · m) to compute (Min(j)

U1
, . . . ,Min(j)

Un
) for

j = 0 to j = m. Therefore, The total time complexity is O(N ·m).
To estimate the number m , we note that u(j)

i has the following property:

(1) We assume u(j)
1 ≤ 0, . . . , u(j)

n ≤ 0. If u(j)
i < −l and xi ∈ V ar(Frk

),
u(j+n)

rk
< 0 holds.

– To prove it, we note that if xi ∈ V ar(Fk) then u(j+1)
k ≤ u(j)

i + #L(Fk)
holds, where #L(Fk) is the number of occurrences of L. in Uk. (This
can be proved by induction of the structure on Uk.) Here, let assume
u(j)

i < −l and xi ∈ V ar(Frk
). Since V ar(Fr1) ∪ · · · ∪ V ar(Frh

) =
{x1, · · · , xn}, we have a series of variables xi, xk1 , . . . , xkp (0 ≤ p ≤ n)
such that kp = rk and the following conditions hold:

xi ∈ V ar(Fk1)
xk1 ∈ V ar(Fk2)

· · ·
xkp−1 ∈ V ar(Fkp).

By the above property, we have

u(j+p)
rk

= u(j+p)
rp

≤ u(j)
i + #L(Fk1) + · · ·+ #L(Fkp) ≤ u(j)

i + l.

By u(j)
i < −l and 0 ≤ p ≤ n, we have u(j+n)

rk
< 0.

So, u(j)
i (j = 0, . . . , m−n− 1) can range over {−l + 1, . . . ,−1, 0}. Since

~u(0)
i , ~u(1)

i , . . . , ~u(m)
i decreases monotonically, m = O(n× l+n+1) = O(n(l+1)),

where ~u(j)
i = (u(j)

1 , . . . , u(j)
n) (note that l may be 0).

A New Type System for JVM Lock Primitives 49

Next, we calculate time complexity of checking whether FinUri
≤ 0 (i =

1, . . . , h) holds. Obviously the number m′ of iterations in the first step is O(n)
and it takes O(N2) to transform CFin to C ′Fin . Therefore, when m is the number
of iterations of the second step, the time complexity is O(m′ ·n)+O(N2)+O(m ·
n) = O(N2 + m · n).

To estimate the number m, we define w (j)
i (i ∈ {1, . . . , n}, j = 0, 1, . . .)

by

w (0)
i = −∞

w (j+1)
i = Gi(w

(j)
1 , . . . ,w (j)

n).

Note that v (j)
i′ = w (j)

i′ for all yi′ ∈ V ar(G′r1) ∪ · · · ∪ V ar(G′rh
).

We note that v (j)
i′ , w (j)

i have following the properties:

(2) For all yi′ ∈ V ar(G′r1) ∪ · · · ∪ V ar(G′rh
), if j > n then v (j)

i′ > −∞.

– This follows from the definition of v (j)
i′ and the fact that z (j)

i′ = fin

holds for j > n.
(3) For any integer c, w (j)

i = c (6= −∞) ⇒ u(j)
i ≤ c

– This follows from the fact that

(w (j)
i = −∞ ∨ w (j)

i ≥ u(j)
i) ∧ αi ∈ FV (Uk)

⇒
(w (j+1)

k = −∞ ∨ w (j+1)
k ≥ u(j+1)

k)

(The proof is by induction on the structure of Uk.)
(4) The following fact holds:

(w (j)
i = −∞ ∨ w (j)

i > u(j)
i) ∧ αi ∈ FV (Uk)

⇒
(w (j+1)

k = −∞ ∨ w (j+1)
k > u(j+1)

k).

– The proof is by induction on the structure of Uk.
(5) We assume that we have checked Minαi = 0 (i = r1, . . . , rh) holds.

If yi′ ∈ V ar(G′rk
) and v (j)

i′ > 0 (j > n), v (j+n)
rk

> 0 holds.
– Since yi′ ∈ V ar(G′rk

), we have a series of variables yi′ , yk1 , . . . , ykp (0 <

50 Futoshi IWAMA and Naoki KOBAYASHI

p ≤ n) such that kp = rk and the following conditions hold:

yi ∈ V ar(G′k1) ⊆ V ar(Gk1)
yk1 ∈ V ar(G′k2) ⊆ V ar(Gk2)

· · ·
ykp−1 ∈ V ar(G′kp

) ⊆ V ar(Gkp
).

We note v (j′)
i′ = w (j′)

i′ and v (j′)
i′ > −∞ (j′ > n) (This follows form

(2).) for i′ ∈ V ar(G′r1) ∪ · · · ∪ V ar(G′rh
). From u(j)

i′ ≤ 0 and the

assumption v (j)
i′ > 0, v (j)

i′ > u(j)
i′ follows. So, By repeatedly applying

(4), we have v (j+p)
rk

> u(j+p)
rk

. From the assumption MinUrk
= 0,

v (j+n)
rk

≥ v (j+p)
rk

> u(j+p)
rk

≥ MinUrk
= 0 follows.

From (1),(3) and the assumption that Minαri
= 0 (i = 1, . . . , h) are

checked, we have v (j)
i 6= −∞ ⇒ v (j)

i ≥ −l. So, from (5), v (j)
i can range over

{−∞,−l, . . . ,−1, 0}. Since ~v (0)
i , ~v (1)

i , . . . , ~v (m)
i increases monotonically, m =

O(n × (l + 1) + n) = O(N(l + 1)) (note that l may be 0), where ~v (j)
i =

(v (j)
1 , . . . , v (j)

n).
Therefore, the time complexity of the algorithm for checking whether

above usage constraints are satisfiable is O((l + 1) · N2) as stated at the first
statement of this paragraph.

§Appendix B Proofs of Theorem 4.1
This section complements the proof sketch of type soundness in Sec-

tion 4, by (1) providing concrete definitions of the relations Γ ` P and (Γ, P) `
〈Ψ,H〉, and (2) proving Lemmas 4.1–4.3.

B.1 Definitions of Γ ` P and (Γ, P) ` 〈Ψ, H〉
First, we define the type judgment relation Γ ` P , which states that

program P is well-typed under the program type environment Γ (see Section 4).

Definition B.1

The relation Γ ` P holds if

∀σ ∈ dom(P).(P (σ) = (FD , D, B,E) ⇒ Γ(σ) `P (D,B, E))

Next, we define the type judgment relation (Γ, P) ` 〈Ψ,H〉 for machine

A New Type System for JVM Lock Primitives 51

states.
We first define relations `H v : τ and P `H ρ ok. The relation `H v : τ

says that a value v is an integer or an object reference specified by τ . The relation
P `H ρ ok says that the run-time representation ρ of an object conforms to the
class definition in program P . Those two relations are irrelevant to lock usages,
and are used only to ensure that a runtime machine state conforms to the class
definitions in P .

Definition B.2 (Typing rules for values)

`H v : τ is the least relation closed under the following rules:

v ∈ VAL
`H v : Top

c ∈ I
`H c : Int

o ∈ O H(o).class = σ

`H o : σ/U
o ∈ O H(o).class = A

`H o : A/U

The following subsumption property follows from the above definition
(rather than as an axiom). That is because the above definition does not impose
any condition on usages, and τ1 ≤ τ2 requires either that τ2 is Top or that τ1

and τ2 are identical except usages.

Lemma B.1

If τ1 ≤ τ2 and `H v : τ1, then `H v : τ2.

Definition B.3 (Well-typed record)

The relation P `H ρ ok is defined by:

σP = a1 : d1, . . . , am : dm

`H v1 : τ1, . . . ,`H vm : τm

Raw(τ1) = d1, . . . ,Raw(τm) = dm

P `H [class = σ, flag = b, a1 = v1 : d1, · · · , am = vm : dm] ok

`H v1 : τ1, . . . ,`H vm : τm

Raw(τ1) = d, . . . ,Raw(τm) = d

P `H [class = d[], flag = b, 1 = v1 : d, · · · ,m = vm : d] ok

The first rule above is for an object, while the second one is for an array.

52 Futoshi IWAMA and Naoki KOBAYASHI

Next, we define a type judgment relation for thread states.

Definition B.4

The relation (Γ, P) ` 〈〈l, f, s, z, σ〉, H〉 is defined by:

Γ(σ) = 〈F ,S〉
P (σ) = (FD , D, B, E) l ∈ dom(B) ∪ codom(E)

∀x ∈ dom(Fl).(`H f(x) : Fl(x)) ∀n ∈ dom(Sl).(`H s(n) : Sl(n))
∀o ∈ dom(H).(P `H H(o) ok)

∀o ∈ dom(H).relt(Θ[F ,S, f, s][l](o), z(o))

(Γ, P) ` 〈〈l, f, s, z, σ〉,H〉

Here, Θ[F ,S, f, s][l](o) stands for
⊗

({Fl(x)|f(x) = o} ∪ {Sl(n)|s(n) = o}),
where

⊗
{τ1, . . . , τn} is defined by:

⊗
∅ = Top

⊗
(ϕ ∪ {τ}) =

{ ⊗
ϕ if τ = Top

(
⊗

ϕ)⊗ τ otherwise

(Strictly speaking,
⊗

is not a function since the result of the second clause de-
pends on the choice of τ . Nevertheless, the result is unique up to the equivalence
relation ≡ on usages in Definition 3.2, hence the choice of τ actually does not
matter.)

The relation relt(U , n) is defined by:

rel t(Top, 0)
rel(U , n)

relt(σ/U , n)
rel(U , n)

relt(ξ[]/U , n)

The third and fourth lines of the rule of Definition B.4 only state that the
shapes of values in the local variables, the stack, and the heap match the types
specified by Γ. The most important condition is the last premise, which guaran-
tees that each object is in an intended lock state; The type Θ[F ,S, f, s][l](o) spec-
ifies how the object o will be locked/unlocked in the rest of the thread execution,
and z(o) specifies the current locking state of o. Thus, relt(Θ[F ,S, f, s][l](o), z(o))
ensures that the object o will be locked/unlocked safely, and return to the state
where all the locks on o are released when the thread terminates.

Now, the following relation Γ ` 〈Ψ,H〉 means that every thread in Ψ is
well-typed.

A New Type System for JVM Lock Primitives 53

Definition B.5 ((Γ, P) ` 〈Ψ,H〉)

∀i ∈ dom(Ψ).((Γ, P) ` 〈Ψ(i),H〉)
(Γ, P) ` 〈Ψ,H〉

B.2 Proofs of the Main Lemmas and Theorem
We first prepare some lemmas.

Lemma B.2

U1 ≤ U2 ∧ rel(U1, n) ⇒ rel(U2, n)

Proof This follows immediately from the fact that U1 ≤ U2 and 〈U2, n〉 →rel

〈U ′
2, n

′〉 imply 〈U1, n〉 →rel 〈U ′
1, n

′〉 for some U ′
1 (which can be proved by induc-

tion on derivation of U1 ≤ U2). ¤

Lemma B.3

τ1 ≤ τ2 ∧ rel t(τ1, n) ⇒ rel t(τ2, n)

Proof This follows directly from Definition 3.8 and Lemma B.2. ¤
The following lemma follows immediately from the definition of rel (Def-

inition 3.5).

Lemma B.4

If rel(U1, n) and rel(U2, 0), then rel(U1 ⊗U2, n).

Now we prove the main lemmas.

Proof of Lemma 4.1 Suppose that Γ ` P , (Γ, P) ` 〈Ψ,H〉 and Ψ(i) =
〈l, f, s, z, σ〉 hold.

• Suppose P (σ) = (FD , D, B,E) and B(l) = return.
Because Γ ` P holds, we obtain the following conditions from rule (RE-
TURN):

∀o ∈ dom(H).({Fl(x)|f(x) = o} ≤ Top) (1)

∀o ∈ dom(H).({Sl(n)|s(n) = o} ≤ Top) (2)

54 Futoshi IWAMA and Naoki KOBAYASHI

Moreover, (Γ, P) ` 〈〈l, f, s, z, σ〉,H〉 follows from (Γ, P) ` 〈Ψ, H〉. There-
fore, the following condition holds:

∀o ∈ dom(H).relt(Θ[F ,S, f, s][l](o), z(o)) (3)

From (1), (2) and Definition of Θ[F ,S, f, s][l](o), we get Θ[F ,S, f, s][l](o) ≤
Top. By Lemma B.3 and (3), we obtain rel t(Top, z(o)), which implies
z(o) = 0 as required.

• Suppose P (σ) = (FD , D, B,E) and l 6∈ dom(B).
From (Γ, P) ` 〈Ψ,H〉 and l 6∈ dom(B) and Γ ` P , the following condition
follows:

∀o ∈ dom(H).({Fl(x)|f(x) = o} ≤ Top)

∀o ∈ dom(H).({Sl(n)|s(n) = o} ≤ Top)

The rest of the proof in this case is similar to the previous case.
• Suppose P (σ) = (FD , D, B,E) and B(l) = monitorexit x .

Because Γ ` P holds, we get the following conditions from rule (MEXT):

Fl(x) ≤bL Fl+1(x)

From this, we obtain the following conditions for some class σ′ and usages
Ux and U .

Fl(x) = σ′/Ux Ux ≤ L̂.U

Since (Γ, P) ` 〈Ψ,H〉 holds, we have:

rel t(Θ[F ,S, f, s][l](f(x)), z(f(x))).

So, we have

rel(Ux ⊗U ′, z(f(x)))

for some Ux.
By Ux ≤ L̂.U and Lemma B.2, the following condition holds:

rel(L̂.U ⊗U ′, z(f(x)))

So, we obtain z(f(x)) ≥ 1 from the second condition of Definition 3.5. ¤

Proof of Lemma 4.2 We show this by induction on derivation of P `
〈Ψ,H〉 → 〈Ψ′,H ′〉, with case analysis on the last rule used. Suppose Γ ` P

and (Γ, P) ` 〈Ψ,H〉.
We show only main cases: The other cases are similar.

A New Type System for JVM Lock Primitives 55

• Case rule (inc) : It must be the case that

Ψ = Ψ1] {i 7→ 〈l, f, c · s, z, σ〉}
Ψ′ = Ψ1] {i 7→ 〈l + 1, f, c + 1 · s, z, σ〉}
P [σ](l) = inc

Because, Γ ` P holds, F ,S, l `P (D,B, E) holds for F ,S, B,E and D

such that Γ(σ) = 〈F ,S〉, P (σ) = (FD , D, B,E). From this, P [σ](l) =
B(l) = inc, and rule (INC), we obtain the following conditions:

Fl ≤ Fl+1

Sl(0) ≤ Int

Sl ≤ Sl+1

(4)

Moreover, (Γ, P) ` 〈〈l, f, c · s, z, σ〉},H〉 follows from the condition (Γ, P) `
〈Ψ,H〉. Therefore, the following conditions follow from Definition B.4.

∀x ∈ dom(f).(`H f(x) : Fl(x))
∀n ∈ dom(c · s).(`H (c · s)(n) : Sl(n))
∀o ∈ dom(H).relt(Θ[F ,S, f, c · s][l](o), z(o))

(5)

By (4), (5), and Lemma B.1, the following condition holds:

∀x ∈ dom(f).(`H f(x) : Fl(x))
∀n ∈ dom(c + 1 · s).(`H (c + 1 · s)(n) : Sl(n))
∀o ∈ dom(H).
(Θ[F ,S, f, c · s][l](o) ≤ Θ[F ,S, f, c + 1 · s][l + 1](o))

(6)

Moreover, from the last conditions of (5) and (6), we obtain ∀o ∈ dom(H).rel t(Θ[F ,S, f, c + 1·
s][l+1](o), z(o)) by using Lemma B.3. Thus, we have (Γ, P) ` 〈{〈l + 1, f, c + 1 · s, z, σ〉},H〉
From this and (Γ, P) ` 〈Ψ1,H〉, the relation (Γ, P) ` 〈Ψ1]{i 7→ 〈l + 1, f, c + 1 · s, z, σ〉},H〉
follows as required.

• Case rule (ment2) : It must be the case that

Ψ = Ψ1] {i 7→ 〈l, f, s, z, σ〉
Ψ′ = Ψ1] {i 7→ 〈l + 1, f, s, z′, σ〉}
z′ = z{f(x) 7→ n + 1}
f(x) ∈ dom(H) z(f(x)) = n ≥ 1 H(f(x)).f lag = 1
P (σ)(l) = monitorenter x

H ′ = H

56 Futoshi IWAMA and Naoki KOBAYASHI

By the assumption Γ ` P , the following conditions hold:

y ∈ dom(Fl) \ {x}.(Fl(y) ≤ Fl+1(y))
Fl(x) ≤L Fl+1(x)

Sl ≤ Sl+1

(7)

where Γ(σ) = 〈F ,S〉. Moreover, by the condition (Γ, P) ` 〈Ψ,H〉, the
following conditions also hold:

∀x ∈ dom(f).(`H f(x) : Fl(x))
∀n ∈ dom(s).(`H s(n) : Sl(n))
∀o ∈ dom(H).relt(Θ[F ,S, f, s][l](o), z(o))

(8)

From (7) and (8), we obtain the following conditions by using Lemmas B.1
and B.3.

∀y ∈ dom(f).(`H f(y) : Fl+1(y))
∀n ∈ dom(s).(`H s(n) : Sl+1(n))
∀o ∈ dom(H).(f(x) 6= o ⇒ relt(Θ[F ,S, f, s][l + 1](o), z(o)))

(9)

So, it remains to show:

relt(Θ[F ,S, f, s][l + 1](f(x)), z′(f(x))).

By the condition Fl(x) ≤L Fl+1(x), there exist σ′ and U such that:

Fl(x) ≤ σ′/L.U σ′/U ≤ Fl+1(x).

Hence, by the conditions (7), we have

σ′/(U ⊗U ′) ≤ Θ[F ,S, f, s][l + 1](f(x)) (10)

Θ[F ,S, f, s][l](f(x)) ≤ σ′/(L.U ⊗U ′) (11)

for some U ′. By Lemma B.3, we have

rel t(σ′/(L.U ⊗U ′), n) (12)

From Definition 3.5 it follows that:

rel t(σ′/(U ⊗U ′), n + 1) (13)

So, by applying Lemma B.3 again, we obtain rel t(Θ[F ,S, f, s][l+1](f(x)), z′(f(x))).
From the above conditions, we obtain (Γ, P) ` 〈Ψ′, H ′〉 as required.

A New Type System for JVM Lock Primitives 57

• Case rule (getfield) : It must be the case that

Ψ = Ψ1] {i 7→ 〈l, f, o · s, z, σ〉
Ψ′ = Ψ1] {i 7→ 〈l + 1, f, v · s, z, σ〉
o ∈ dom(H) H(o).class = σ′ H(o).a = v

P (σ)(l) = getfield σ′.a d

H ′ = H

Here we assume d 6= Int. The proof for the case of d = Int is similar.
By the assumption Γ ` P and rule (GETFLD), the following conditions
hold:

σ′P .a : d

Fl ≤ Fl+1

Sl ≤ (σ′/0) · S ′
(d/U) · S ′ ≤ Sl+1

rel(U)

(14)

where Γ(σ) = 〈F ,S〉. Moreover, by the condition (Γ, P) ` 〈Ψ,H〉, the
following conditions also hold:

∀x ∈ dom(f).(`H f(x) : Fl(x))
∀n ∈ dom(o · s).(`H (o · s)(n) : Sl(n))
∀o1 ∈ dom(H).(P `H H(o1) ok)
∀o1 ∈ dom(H).relt(Θ[F ,S, f, o · s][l](o1), z(o1))

(15)

From (14) and (15), we obtain the following conditions by using Lemma B.1
and B.3.

∀x ∈ dom(f).(`H f(x) : Fl+1(x))
∀n ∈ dom(v · s).(n ≥ 1 ⇒`H (v · s)(n) : Sl+1(n))
∀o1 ∈ dom(H).(o1 6∈ {v, o} ⇒ relt(Θ[F ,S, f, v · s][l + 1](o1), z(o1)))

(16)

So, it remain to show the following three conditions:

`H (v : Sl+1(0))
relt(Θ[F ,S, f, v · s][l + 1](o), z(o))
relt(Θ[F ,S, f, v · s][l + 1](v), z(v))

(17)

The first condition follows from `H (v : d/U), (d/U) · S ′ ≤ Sl+1 and
Lemma B.1. Here, `H (v : d/U) follows immediately from σ′P .a : d and
P `H H(o) ok.

58 Futoshi IWAMA and Naoki KOBAYASHI

We prove the remaining two conditions only for the case when o 6= v: the
proof for the case when o = v is similar. To check the second condition
of (17), observe that the following condition holds:

Θ[F ,S, f, o · s][l](o) ≤ σ′/0⊗Θ[F ,S, f, v · s][l + 1](o).

By using Lemma B.3, we get

rel t(σ′/0⊗Θ[F ,S, f, v · s][l + 1](o), z(o)),

which implies

rel t(Θ[F ,S, f, v · s][l + 1](o), z(o)).

To check the third condition of (17), observe that the following condition
holds:

Θ[F ,S, f, o · s][l](v)⊗ d/U ≤ σ′/0⊗Θ[F ,S, f, v · s][l + 1](v).

By the condition rel(U), rel t(Θ[F ,S, f, o ·s][l](v), z(v)), and Lemma B.4,
we have:

rel t(Θ[F ,S, f, o · s][l](v)⊗ d/U , z(v)).

By using Lemma B.3, we obtain

relt(Θ[F ,S, f, v · s][l + 1](v), z(v))

as required.
Thus, we have (Γ, P) ` 〈Ψ′,H ′〉. ¤

Lemma 4.3 states that the initial machine state of a well-typed program
is also well-typed.

Proof of Lemma 4.3 This lemma follows immediately from Definitions 3.14
and B.4. ¤

We can now prove the soundness of our type system.

Proof of Theorem 4.1 Suppose that P is well-typed and that
P ` 〈0 7→ 〈1, ∅, ε,mainP 〉, ∅〉 →∗ 〈Ψ,H〉 and Ψ(i) = 〈l, f, s, z, σ〉 hold.

Since P is well-typed, there is a type environment Γ that satisfies P `
Γ. From this and Lemma 4.3, we obtain (Γ, P) ` 〈0 7→ 〈1, ∅, ε,mainP 〉, ∅〉.

A New Type System for JVM Lock Primitives 59

Moreover, by Lemma 4.2, (Γ, P) ` 〈Ψ,H〉 holds. Therefore, the three condi-
tions of Theorem 4.1 follow immediately from the relation (Γ, P) ` 〈Ψ,H〉 and
Lemma 4.1. ¤

