
Pumping by Typing
Naoki Kobayashi

The University of Tokyo

Abstract—Higher-order recursion schemes (HORS), which are
higher-order grammars for generating infinite trees, have recently
been studied extensively in the context of model checking and its
applications to higher-order program verification. We develop
a pumping lemma for HORS by using a novel but simple
intersection type system for reasoning about reductions of λ-
terms. Our proof is arguably much simpler than the proof of
Kartzow and Parys’ pumping lemma for collapsible pushdown
automata. As an application, we give an alternative proof of
Kartzow and Parys’ result about the strictness of the hierarchy
of trees generated by HORS.

I. INTRODUCTION

Higher-order grammars, where non-terminal symbols can
take higher-order functions as parameters, were actively stud-
ied during 70–80’s [9], [29], [26], and interest has recently
been revived in the context of model checking [15], [21].
Model checking the tree structures generated by higher-
order grammars (known as higher-order recursion schemes
(HORS) [15], [21] in this context) is a natural generaliza-
tion of finite-state and pushdown model checking, and has
recently been applied to automated verification of higher-order
programs [16], [18], [22].

In the present paper, we are interested in developing a
pumping lemma for HORS. Pumping lemmas [1], [11] state
properties about certain “repeated” structures of words or trees
generated by a grammar, and constitute a fundamental tool for
the study of formal languages; for example, pumping lemmas
are used for showing that a certain language does not belong
to a certain class of languages. Pumping lemmas may also be
useful for the optimization of model checking algorithms for
HORS [16], [17], [20], by detecting repeated structures and
avoiding redundant inspection of them.

Pumping lemmas for regular or context-free languages are
well-known, and can be easily understood. If there is a
sufficiently long derivation sequence S −→∗ z of a word z
then it must contain repeated occurrences of a non-terminal
symbol, like: S −→∗ uAy −→∗ uvAwy −→∗ uvxwy =
z; thus, uvnxwny can be generated for any n (≥ 0), by
S −→∗ uAy −→∗ uvAwy −→∗ · · · −→∗ uvnAwny −→∗
uvnxwny. For indexed languages (which correspond to order-
2 grammars), however, the proof of Hayashi’s pumping lemma
is quite involved [11]. For grammars of order-3 or more,
pumping lemmas have not been studied until recently to
our knowledge. Recently, Kartzow and Parys [13] obtained
a pumping lemma for collapsible (higher-order) pushdown
automata (CPDA), which are equivalent to HORS as tree
generators, and used it to show that the hierarchy of trees
generated by HORS is strict: there is a tree that can be
generated by an order-(n+ 1) HORS but cannot be generated

by any order-n HORS. Their proof is, however, long and
hard to understand at least for non-experts on CPDA. When
viewed as a pumping lemma for HORS, it is also disappointing
that one has to make a detour to CPDA; although CPDA
and HORS are known to be equivalent (as tree generators),
translations between them are rather complex [10], [7]. This is
a sharp contrast with the situation for regular and context-free
languages, for which pumping lemmas are obtained directly
by reasoning about grammars, rather than pushdown automata.

Motivated by the observation above, we develop a pumping
lemma for HORS by direct reasoning about grammars, with-
out a detour to CPDA. It turned out that such a pumping
lemma can be easily obtained by combining a novel but
rather simple intersection type system with standard prop-
erties of the λ-calculus. The overall proof of the pumping
lemma is (arguably) simpler than that of Kartzow and Parys’
pumping lemma for CPDA. The obtained pumping lemma is
actually not as strong as those for context-free and indexed
languages [11], but it is strong enough to reprove Kartzow
and Parys’s result that the hierarchy of the classes of trees
generated HORS is strict.

Section II reviews HORS, states our pumping lemma, and
applies it to show the strictness of the hierarchy of the
trees generated by HORS. Section III studies properties of
the λ-calculus, and develops a new intersection type system
for reasoning about reductions of λ-terms. By using those
techniques, Section IV proves the pumping lemma. Section V
discusses related work and Section VI concludes the paper.

II. HORS AND PUMPING LEMMA

A. HORS

A higher-order recursion scheme (HORS) is essentially
a term of the simply-typed λ-calculus with recursion and
tree constructors for generating a (possibly infinite) tree. We
assume a ranked alphabet Σ, which maps a finite set of
symbols (ranged over by a) to their arities. An element of
Σ of arity n is used as an n-ary tree constructor below. For
the sake of simplicity, we assume that there is exactly one
symbol of arity 0, and write e for it.1

The sets of λ-terms and sorts2 are given by:

t (λ-terms) ::= a | x | t0t1 | λx : κ.t
κ (sorts) ::= o | κ1 → κ2.

1This does not lose generality, since any other symbol a of arity 0 can be
expressed by a′(e), where a′ is a new symbol of arity 1.

2We use the term “sorts” instead of “types” to avoid confusion with
intersection types introduced later.

We write FV(t) for the set of free variables in t. As usual,
we identify λ-terms up to α-conversion. We call a term t0 the
head of a term t if t is of the form t0 t1 · · · tm and t0 is not
an application (of the form t00t01). The sort o describes trees,
and the sort κ1 → κ2 describes functions from κ1 to κ2. The
order of sort κ, written ord(κ), is defined by

ord(o) = 0 ord(κ1 → κ2) = max(ord(κ1) + 1, ord(κ2))

We often omit sorts and just write λx.t for λx :κ.t, but please
keep in mind that every variable is implicitly sorted.

We use the following simple type system to assign a sort
to a term.

Σ(a) = n

K `Σ a : o→ · · · → o︸ ︷︷ ︸
n

→ o K, x : κ `Σ x : κ

K `Σ t0 : κ1 → κ
K `Σ t1 : κ1

K `Σ t0t1 : κ

K, x : κ1 `Σ t : κ2

K `Σ λx : κ1.t : κ1 → κ2

Here K, called a sort assignment, maps variables to sorts.
For a term t such that K `Σ t : κ, the order of t (with respect

to K), written ordK(t) (or simply ord(t)), is the largest order
of sorts occurring in K, t, and κ. (Here, note that the sort κ
of t is determined uniquely by K and t.) We write dom(f)
for the domain of a map f below.

Definition 2.1: A higher-order recursion scheme (HORS,
for short) G is a quadruple (Σ,N ,R, S), where Σ is a ranked
alphabet, N is a map from variables (called non-terminals)
to their sorts, R is a map from non-terminals to λ-terms in
β-normal form (where non-terminals are treated as variables),
and S(∈ dom(N)) is a special non-terminal called a start
symbol. We require that N `Σ R(F) : N (F) for each F ∈
dom(N), and N (S) = o. The order of HORS G, written
ord(G), is the largest order of the sorts of non-terminals, i.e.,
max({ord(N (F)) | F ∈ dom(N)}).3

We often write ΣG ,NG ,RG , SG for the four elements of
HORS G. Intuitively, a HORS (Σ,N ,R, S) with R =
{F1 7→ t1, . . . , Fn 7→ tn} can be understood as mutually
recursive function definitions F1 = t1, . . . , Fn = tn with
S ∈ {F1, . . . , Fn} being the “main” function.

We define a labeled transition relation t α−→G t′ for HORS
(where α is ε or of the form (a, i)), following Carayol and
Serre’s labeled recursion schemes [7].

F s1 · · · sn
ε−→G RG(F) s1 · · · sn (R-NT)

(λx.t)s1 · · · sn
ε−→G ([s1/x]t) s2 · · · sn (R-BETA)

Σ(a) = n 1 ≤ i ≤ n

a t1 · · · tn
(a,i)−→G ti

(R-CONST)

Here [s/x]t denotes the term obtained from t by replacing all
the free occurrences of x with s. We write t α1···αn=⇒ t′ if t α1−→

3By the assumption that R(F) is in β-normal form, it is equivalent to
max({ordN (R(F)) | F ∈ dom(N)}).

t1
α2−→ · · · αn−→ t′ (where ε is treated as an empty sequence).

For example, a((λx.b e)y)
(a,1)(b,1)

=⇒ G e. We sometimes omit
the subscript G or drop the second component of a label; so,
we may write a((λx.b e)y)

(a,1)(b,1)
=⇒ e or a((λx.b e)y)

ab
=⇒ e.

The labels of a reduction sequence correspond to a path
of the tree generated by HORS [21]. A Σ-labeled (ranked)
tree T is a partial map from {1, . . . ,m}∗ (where m is the
largest arity of symbols in Σ) to dom(Σ) such that dom(T)
is prefix-closed and ∀π ∈ dom(T).{i | πi ∈ dom(T)} = {i |
1 ≤ i ≤ Σ(T (π))}. We define the (Σ ∪ {⊥ 7→ 0})-labeled
tree generated by HORS, written Tree(G), by:

Tree(G) =

{i1 · · · in−1 7→ an | SG
(a1,i1)···(an−1,in−1)(an,in)

=⇒ G t}
∪{i1 · · · in 7→ e | SG

(a1,i1)···(an,in)
=⇒ G e}

∪{i1 · · · in 7→ ⊥ | SG
(a1,i1)···(an,in)

=⇒ G t

but t 6= e and there is no t′ such that t
(a,i)
=⇒ t′ }.

This coincides with the usual definition of the tree generated
by G [21] and that of the Böhm tree [4] of the λ-term corre-
sponding to G (where recursion is expressed by a fixedpoint
combinator).

Example 2.1: Consider HORS G1 = (N ,Σ,R, S) where:

N = {S : o, F : o→ o}
Σ = {a : o→ o→ o, b : o→ o, e : o}
R = {S 7→ F e, F 7→ λx.a (F (bx))x}.

The start symbol S has the reduction sequence:

S
(a,1)m(a,2)

=⇒ G (bm e)
(b,1)m

=⇒ G e

for each m ≥ 0. Here, αm stands for m repetitions of α. Thus
Tree(G1) is:

a

a

a

a

· · · · · ·

b2

e

b

e

e

Example 2.2: Consider HORS G2 = (N ,Σ,R, S) where:

N = {S : o, F : (o→ o)→ o,Two : (o→ o)→ (o→ o)}
Σ = {a : o→ o→ o, b : o→ o, e : o}
R = {S 7→ F b, Two 7→ λf.λx.f (f x),

F 7→ λf.a (F (Two f)) (f e)}
The non-terminal S has the following reduction sequences.

S
ε−→G F b

ε
=⇒G a (F (Two b)) (b e)

(a,2)−→G b e
(b,1)
=⇒G e

S
(a,1)m(a,2)

=⇒ G (Twom b e)
(b,1)2

m

=⇒ G e (for each m ≥ 1)

Thus Tree(G2) consists of paths labeled by am+1b2m

e. �
Remark 2.1: A HORS can also be regarded as a generator

of word or tree languages, by interpreting a special terminal
symbol br of arity 2 as a non-deterministic choice. For

2

example, the word language defined by G can be defined as
{a1 · · · an↑br | SG

(a1,i1)···(an,in)
=⇒ G e}, where w ↑br denotes

the word obtained from w by removing br. �

B. Pumping Lemma

We write s̃ for a sequence s1 · · · sk of terms, and write
|w| for the length of a sequence w. We define expn(x) by
exp0(x) = x and expn+1(x) = 2expn(x).

Our pumping lemma for HORS is stated as follows.
Theorem 2.1 (Pumping):

Let G be an order-n HORS (Σ,N ,R, S) with n ≥ 1. Then
there exist constants c1 and c2 (that depend on G) such that if
S

w
=⇒R e and |w| > expn−1(c1), then there exist

F ∈ dom(N), {s̃i | i ≥ 1}, {wi | i ≥ 1}, and {vi | i ≥ 1}
that satisfy the following conditions.

• S
w1=⇒G F s̃1

w2=⇒G F s̃2
w3=⇒G · · ·

wm=⇒G F s̃m
vm=⇒G e

for every m ≥ 1;
• |w1 · · ·wmvm| ≤ expn−1((m+ 1)c21); and
• w1 · · ·wm1vm1 6= w1 · · ·wm2vm2 for every m1,m2 such

that m2 ≥ m1 + c2.

The theorem states that if G has a sufficiently long reduc-
tion sequence, then one can construct a series of reduction
sequences in which the same non-terminal (F above) may
occur arbitrarily many times in the head position, and the
length of the m-th reduction sequence is bounded by (n− 1)-
fold exponential of m+ 1. Proving this theorem is the goal of
Sections III and IV.

Example 2.3: Recall the order-2 HORS G2 from Exam-
ple 2.2. Let c1 = c2 = 1. Then, the required conditions hold
for w1 = ε, wi = (a, 1) (for i ≥ 2), and vi = (a, 2)(b, 1)2i−1

.

C. Application

As an application of the pumping lemma, we give an
alternative proof of Kartzow and Parys’ result that there is
a tree that can be generated by an order-(n + 1) HORS, but
cannot be generated by any order-n HORS [13].

Consider the following tree Tn, which has the paths of the
form am+1bexpn(m)e for m ≥ 0.

a

a

a

a

· · · · · ·

bexpn(2)

e

bexpn(1)

e

bexpn(0)

e

This is the same as the tree used by Kartzow and Parys [13].
The trees T0 and T1 are generated by G1 and G2 in

Examples 2.1 and 2.2 respectively. For n ≥ 2, Tn can be

generated by the order-(n+ 1) HORS (N ,Σ,R, S) where:

N = {S : o, F : κn → o} ∪ {Twok : κk → κk | 1 ≤ k ≤ n}
(κ0 = o, κk = κk−1 → κk−1 for 1 ≤ k ≤ n)

Σ = {a : o→ o→ o, b : o→ o, e : o}
R = {S 7→ F Twon−1,

F 7→ λf.a (F (Twonf)) (f Twon−2 · · · Two1 b e)}
∪{Twok 7→ λf : κk.λx : κk−1.f(f(x)) | 1 ≤ k ≤ n}.

Note that we have:

S
(a,1)m(a,2)

=⇒ Twomn Twon−1 · · · Two1 b e
(b,1)expn(m)

=⇒ e.

Theorem 2.2: There is no order-n HORS that generates Tn.
Proof: If n = 0, then the result follows from the fact

that an order-0 HORS can generate only a regular tree, but
T0 is non-regular. For n ≥ 1, the proof is by contradiction.
Suppose that there is an order-n HORS G that generates Tn.

Since S
(a,1)k(a,2)bexpn(k)

=⇒ G e for every k ≥ 0, we can apply
Pumping Lemma (Theorem 2.1) to get words {wi | i ≥ 1}
and {vi | i ≥ 1} such that:

(i) S w1···wmvm=⇒ G e for every m ≥ 1;
(ii) |w1 · · ·wmvm| ≤ expn−1((m+ 1)c21); and

(iii) w1 · · ·wm1
vm1
6= w1 · · ·wm2

vm2
for every m1,m2 such

that m2 ≥ m1 + c2.
Let um = w1 · · ·wmvm. Pick an arbitrary number m′ ≥ 1,
and consider the words: u1, uc2+1, . . . , um′c2+1. By condition
(iii), all the words are different from each other. Since the
(m′ + 1)-th shortest path of Tn (leading to e) is labeled by
am
′+1bexpn(m′), by condition (ii) above, we have:

expn−1((m′c2 + 2)c21) ≥ max(|u1|, |uc2+1|, . . . , |um′c2+1|)
≥ |am′+1bexpn(m′)| = m′ + 1 + expn(m′)

for every m′ ≥ 1. This does not hold, however, for a
sufficiently large m′ such that (m′c2 + 2)c21 < 2m

′
, hence

a contradiction.
Corollary 2.3:

The hierarchy of the trees generated by HORS is strict, i.e.,
{Tree(G) | ord(G) = n} ({Tree(G) | ord(G) = n + 1}
for all n(≥ 0).

Remark 2.2: Theorem 2.1 is not strong enough to show
that the word language (as defined in Remark 2.1)
{am+1bexpn(m) | m ≥ 0} cannot be generated by any order-n
HORS. Note that in the third condition of the theorem, even
if w1 · · ·wm1vm1 6= w1 · · ·wm2vm2 holds, it may be the case
that (w1 · · ·wm1vm1)↑br = (w1 · · ·wm2vm2)↑br. �

III. PROPERTIES OF THE SIMPLY-TYPED λ-CALCULUS

In this section we prepare properties of λ-terms required
for proving Theorem 2.1. Before doing so, we explain our
proof strategy for the theorem. The basic idea is the same
as the argument for context-free languages: in a sufficiently
long reduction sequence S

w
=⇒G e, there must be repeated

occurrences of the same non-terminal in the head position:

S
w1=⇒G F s̃

w2=⇒G F t̃
v2=⇒G e

3

and the part F s̃ w2=⇒G F t̃ can be repeated (or “pumped”).
Obviously, not all such sequences can be pumped, however.
For example, consider the rewriting rules

{S 7→ F (F e), F 7→ λx.x}.

Then
S

ε−→ F (F e)
ε

=⇒ F e
ε−→ e,

but the part F (F e)
ε

=⇒ F e cannot be repeated. This is due
to the fact that the third term F e comes from the argument
position of the second term; thus, F may not be obtained again
by unfolding F . This observation leads to the requirement
that the second F in F s̃

w2=⇒G F t̃ must have been obtained
by unfolding the first F , not from the argument s̃. This
requirement is still insufficient. For example, consider

{S 7→ F (λx.x), F 7→ λf.f(F (λx.e))}.

We have:

S
ε−→ F (λx.x)

ε
=⇒ (λx.x)(F (λx.e))

ε−→ F (λx.e)
ε

=⇒ e,

but the part F (λx.x)
ε

=⇒ F (λx.e) cannot be repeated. This
can be attributed to the fact that the reduction behaviors of
the arguments λx.x and λx.e are different: the former uses
the argument x, while the latter ignores it. In Section III-B,
we shall develop an intersection type system that captures
this kind of behavior of λ-terms. By using it, we can ensure
that if F s̃ w2=⇒G F t̃ (where the second F must come from
the first F) and if s̃ and t̃ have the same intersection types,
then that part can be “pumped” (as stated in Theorem 2.1).
In Section III-A, we give a bound on the length of words
generated by a λ-term, which will be used to give the bound
of |w1 · · ·wmvm| in Theorem 2.1.

We define the labeled reduction relations α−→λ (where α is
either ε or (a, i) with a ∈ dom(Σ) and i ∈ {1, . . . ,Σ(a)})
and w

=⇒λ (where w ranges over a sequence of elements of the
form (a, i)) on λ-terms as the restrictions of α−→G and w

=⇒G
obtained by removing rule R-NT.

A. Bounding the Length of Reductions

This subsection gives the length of non-ε reductions by
using some standard results on the size of β-normal forms [5],
[25]. Since the technique is rather standard, we defer some of
the proofs to Appendix VII.

We write −→β for the standard β-reduction relation. For a
binary relation R, we write R∗ for the reflexive and transitive
closure of R. We first define the length of non-ε reductions.

Definition 3.1: Let t be a λ-term. The measure R(t) is
defined as max({|w| | t w

=⇒λ u}), and ∞ if there is no
bound on |w|.

The following lemma follows immediately from the strong
normalization of the simply-typed λ-terms.

Lemma 3.1: If K ` t : o, then there is no infinite reduction
sequence t α1−→λ t1

α2−→λ t2
α3−→λ · · ·.

Proof: Suppose that there is an infinite reduction se-
quence: t α1−→λ t1

α2−→λ t2
α3−→λ · · ·. Since the reduction

sequence consisting of only applications of R-CONST must
terminate, the infinite sequence must contain infinitely many
applications of R-BETA. Since t

(a,i)−→λ t′
ε−→λ t′′ implies

t −→β t
′ (a,i)−→λ t

′′ (where −→β is the β-reduction relation),
we obtain an infinite β-reduction sequence, which contradicts
with the strong normalization of the simply-typed λ-terms.

The following lemma ensures that, in order to obtain a
bound for t, it suffices to consider the bound for its β-normal
form.

Lemma 3.2: If t −→∗β u, then R(t) ≤ R(u).4

Next, we bound the size of a term obtained by certain β-
reductions. The order of a β-redex (λx : κ.t1)t2 is the order
of the type of λx :κ.t1. We write rord(t) for the largest order
of β-redexes in t. We write t −→n

β t
′ if t −→β t

′ is obtained
by reducing an inner-most order-n redex. We define the size
and the height of a term t, written |t| and H(t) respectively,
by:

|x| = |a| = 1 |λx.t| = |t|+ 1 |t1t2| = |t1|+ |t2|+ 1
H(x) = H(a) = 0 H(λx.t) = H(t) + 1
H(t1t2) = max (H(t1),H(t2) + 1)

The following is a standard result [25]; the self-contained
proof is also given in Appendix VII.

Lemma 3.3: If rord(t) ≤ n and t(−→n
β)∗u, then |u| ≤ 2|t|.

The following lemma bounds the height of the tree gener-
ated by a term.

Lemma 3.4:
If rord(t) ≤ 1 and t(−→1

β)∗u, then H(u) ≤ |t| holds.

Proof: The proof proceeds by induction on t.
• Case t = x or t = a: Trivial, as u = t.
• Case t = λx.t1: We have t1(−→1

β)∗u1 with u = λx.u1.
By using the induction hypothesis, we obtain
H(u) = H(u1) + 1 ≤ |t1|+ 1 = |t| as required.
• Case t = t1t2: We have either (i) t1(−→1

β)∗u1 and
t2(−→1

β)∗u2 with u = u1u2, or (ii) t1(−→1
β)∗λx : o.u3

and t2(−→1
β)∗u2 with u = [u2/x]u3, and u2, u3 are β-

normal forms. By using the induction hypothesis we obtain
H(u) = max(H(u1),H(u2) + 1) ≤ max(|t1|, |t2| + 1) ≤ |t|
in case (i), and H(u) ≤ H(u3) +H(u2) ≤ |t1|+ |t2| ≤ |t| in
case (ii), as required.

We are now ready to derive a bound for R(t).
Theorem 3.5: If K ` t : o and rord(t) = n, then R(t) ≤

expn−1(|t|).
Proof: By Lemma 3.3, we can reduce all the order-

k (> 1) redexes of t in the decreasing order of k, and obtain
a term s such that rord(s) ≤ 1 and |s| ≤ expn−1(|t|).
By Lemma 3.4, we get a β-normal form u of s such that
H(u) ≤ |s| ≤ expn−1(|t|). Since an application of the rule
R-CONST strictly decreases the height of a term, we have
R(u) ≤ H(u) ≤ expn−1(|t|). By Lemma 3.2, we obtain
R(t) ≤ expn−1(|t|) as required.

4Actually R(t) = R(u) holds, but we only need R(t) ≤ R(u) below.

4

B. Intersection Types for Reduction Properties

Next, we shall develop an intersection type system for rea-
soning about properties of reductions. Intersection types [2],
[8], [27] have been used for characterizing normalization
properties of the λ-calculus, but we use them here for rea-
soning about the shape of terms that may/must occur during
reductions. For example, a typical question to be addressed by
the type system is: given a λ-term s t, may t eventually occur
in a head position, and if so, what kind of argument is given
to it? To reason about such a property, we assume a set Lab
of labels that is disjoint from the set Var of variables, and
extend λ-terms with labeled terms.

t ::= · · · | t`

Here ` ranges over Lab. The sort assignment system is
accordingly extended, just ignoring labels.

K `Σ t : κ

K `Σ t` : κ

The reduction relation is extended by the following rule, which
allows any label to be removed during reductions.

C[t`]
ε−→ C[t] (R-LAB)

Here C, called a context, is an expression obtained by replac-
ing a free variable of a term with a hole [], and C[t] is the
term obtained by replacing the hole with t.

The syntax of (intersection) types is given by:

τ ::= r |
∧
{τ1, . . . , τn} → τ

Following van Bakel [27], we only allow intersection on the
lefthand side of →. In the type

∧
{τ1, . . . , τn} → τ , n can be

0, in which case we write > → τ . We also write τ1 ∧ · · · ∧
τk → τ for

∧
{τ1, . . . , τk} → τ , and write

∧
i∈I τi → τ for∧

{τi | i ∈ I} → τ . When we write τ1 ∧ · · · ∧ τk → τ , the
constructor ∧ binds tighter than →.

Intuitively, the type r describes terms of sort o that can be
reduced to e. For example, under the empty type environment,
a ex has type r (assuming that Σ(a) = 2), but axx does not.
The type

∧
{τ1, . . . , τn} → τ describes functions that take an

argument that has type τi for every i ∈ {1, . . . , n} and return
an element of type τ , by using the argument as values of types
τ1, . . . , τn. For example, λx.x has type r→ r because, given
a term t that is reducible to e, (λx.x)t is reducible to e by
using t. The term λx.e, however, has type > → r but not
r→ r. Although (λx.e)t is reducible to e, t is not used in the
reduction. Thus, a closed term t having type r→ r implies that
t s has a reduction sequence of the form t s

w1=⇒λ s
w2=⇒λ e

for every term s of type r.
More generally, a term t having a type τ → r means that

for any term s of type τ , t s can be reduced to a term of
the form s ũ where s in the head position has type τ . For
example, a term t having type (r → r) → r means that for
any term s of type r → r, t has a reduction sequence of the

form t s
w1=⇒λ s u

w2=⇒λ u. In this manner, types can be used
for reasoning about the shape of terms in reductions.

We define the relation τ :: κ, which should be read “τ is a
refinement of κ”, by:

r :: o
τ :: κ2 τi :: κ1 for each i ∈ I

(
∧
i∈I τi → τ) :: κ1 → κ2

The relation τ :: κ is used to exclude ill-formed types like
r ∧ (r→ r)→ r.

A type judgment is of the form Γ `Σ t : τ , where Γ, called
a type environment, is a set of bindings of the form x : τ
or ` : τ (where x is a variable and ` is a label). We often
omit the subscript Σ below. Γ may have multiple bindings
for the same variable or label. We write Γ(v) (where v is a
variable or a label) for the set {τ | v : τ ∈ Γ}. We write
dom(Γ) for the set {v | v : τ ∈ Γ}. We write ΓV for the set
{x : τ ∈ Γ | x ∈ Var} of the bindings on variables, and ΓL
for the set {` : τ ∈ Γ | ` ∈ Lab} of those on labels in Γ.

Intuitively, Γ `Σ t : τ means that if each variable x in t is
bound to a term having all the types in Γ(x), then t behaves
like a term of type τ , and each term labeled by ` behaves like
a term of types Γ(`). For example, if x :τ1, ` :τ2 `Σ t : r, then
for any term t1 with ∅ `Σ t1 : τ1, there exist w, t2, and s̃ such
that [t1/x]t

w
=⇒λ (t2)` s̃ and t2 has type τ2. (Such properties

are formally stated later in Theorems 3.6 and 3.7 below.)
The type system consists of the following rules.

x : τ `Σ x : τ (T-VAR)

∅ `Σ e : r (T-CONSTE)

Σ(a) = k τj = r for some j ∈ {1, . . . , k}
τi = > for every i ∈ {1, . . . , k} \ {j}
∅ `Σ a : τ1 → · · · → τk → r

(T-CONST)

Γ0 `Σ t0 :
∧
i∈I τi → τ Γi `Σ t1 : τi for every i ∈ I

Γ0 ∪ (
⋃
i∈I Γi) `Σ t0t1 : τ

(T-APP)

Γ ∪ {x : τi | i ∈ I} `Σ t : τ
τi :: κ for every i ∈ I x 6∈ dom(Γ)

Γ `Σ λx : κ.t :
∧
i∈I τi → τ

(T-ABS)

Γ `Σ t : τ

Γ ∪ {` : τ} `Σ t` : τ
(T-LAB)

The typing rules above are fairly standard, except the
following points.

1) The type of a constant is determined by its arity; if
Σ(a) = n > 0, then a has n types r→ >→ · · · → > → r,
> → r → >→ · · · → > → r, . . . ,> → · · · → > → r → r.
This reflects the fact that a t1 · · · tn can be reduced to any
one of t1, . . . , tn.

2) Weakening of a type environment is disallowed (i.e.,
Γ `Σ t : τ does not necessarily imply Γ, x : τ ′ `Σ t : τ)
but contraction is allowed (i.e., Γ, x : τ ′, x : τ ′ `Σ t : τ implies

5

Γ, x : τ ′ `Σ t : τ , since a type environment is a set of type
bindings); therefore, x : τ ∈ Γ means that x is used as a value
of type τ at least once in some reduction sequence of t. If
weakening were allowed, we would obtain ∅ `Σ λx.e : r→ r,
but (λx.e)s cannot be reduced to s.

3) In rule T-APP, it may be the case that τi = τj even if
i 6= j for i, j ∈ I . Thus, x : r, y : r ` (λz.z)(ax y) : r is
derivable from x : r ` ax y : r and y : r ` ax y : r. Note that
x : r, y : r ` ax y : r is not derivable.

Remark 3.1: If Γ ` t : τ , then dom(ΓV) ⊆ FV(t) (be-
cause weakening is disallowed), but the converse dom(ΓV) ⊇
FV(t) may not hold. For example, ∅ ` a ex : r is obtained
by assigning r→ >→ r to a constant a of arity 2. �

Example 3.1: Let t be (λf.f(f `(x)))(λz.a z e). Then, we
can obtain ` :> → r ` (λf.f(f `(x)))(λz.a z e) : r from

` :> → r ` (λf.f(f `(x))) : (> → r) ∧ (r→ r)→ r
∅ ` λz.a z e : > → r ∅ ` λz.a z e : r→ r.

Here, the three judgments can be derived as follows.

f : r→ r ` f : r→ r

f :> → r ` f : > → r

f :> → r, ` :> → r ` f ` : > → r

f :> → r, ` :> → r ` f `(x) : r

f :> → r, f : r→ r, ` :> → r ` f(f `(x)) : r

` :> → r ` (λf.f(f `(x))) : (> → r) ∧ (r→ r)→ r

∅ ` a : > → r→ r
∅ ` a z : r→ r ∅ ` e : r

∅ ` a z e : r
∅ ` λz.a z e : > → r

∅ ` a : r→ >→ r z : r ` z : r
z : r ` a z : > → r
z : r ` a z e : r

∅ ` λz.a z e : r→ r

�
We use meta-variable σ for

∧
{τ1, . . . , τn}, and we write

Γ ` t :
∧
{τ1, . . . , τn} if Γi ` t : τi for every i ∈ I , with

Γ =
⋃
i∈{1,...,n} Γi.

The type system ensures certain properties of reductions
of λ-terms, as stated in the following theorems. They follow
from standard properties of intersection type systems, like (a
restricted form of) subject reduction (typing is preserved by
reduction: see Lemma 3.9) and subject expansion (typing is
preserved by the inverse of reduction: see Lemma 3.11).

Theorem 3.6 (soundness and completeness I):
If K `Σ t : o, then the following are equivalent.

(i) Γ ∪ {` : σ1 → · · ·σk → r} ` t : r for some Γ such that
ΓV = ∅.

(ii) There exist s0, s1, . . . , sk, w, Γ0,Γ1, . . . ,Γk such that
t

w
=⇒λ (s0)`s1, . . . , sk, Γ0 ` s0 : σ1 → · · · → σk → r

and Γi ` si : σi for every i ∈ {1, . . . , k}
with (Γ0 ∪ · · · ∪ Γk)V = ∅.

Theorem 3.7 (soundness and completeness II):
If K `Σ t : o, then the following are equivalent.

(i) Γ ` t : r for some Γ such that ΓV = ∅.

(ii) t w
=⇒λ e for some w.

We prove Theorem 3.6 below, and defer the proof of
Theorem 3.7 to Section VIII in Appendix.

We first state the substitution lemma: see Appendix for a
proof.

Lemma 3.8 (substitutions): Suppose that τ1, . . . , τn are dif-
ferent from each other. If Γ0 ∪ {x : τ1, . . . , x : τn} ` t : τ and
Γi ` s : τi for each i ∈ {1, . . . , n} with x 6∈ dom(Γ0), then
Γ0 ∪ Γ1 ∪ · · · ∪ Γn ` [s/x]t : τ .

The following lemma states soundness of the type system,
of which the direction from (i) to (ii) of Theorem 3.6 is an
immediate corollary.

Lemma 3.9: If Γ ∪ {` : σ1 → · · · → σk → r} ` t : r and
ΓV = ∅, then either (i) t = (s0)`s1, . . . , sk, Γ0 ` s0 : σ1 →
· · · → σk → r and Γi ` si : σi for each i ∈ {1, . . . , k} with
(Γ0∪· · ·∪Γk)V = ∅; or (ii) t α−→λ t

′ and Γ′ ` t′ : r for some
t′ and Γ′ such that Γ′V = ∅ and ` : σ1 → · · · → σk → r ∈ Γ′.

Proof: We show the lemma by case analysis on the shape
of t. Since ΓV = ∅, the head term of t cannot be a variable.
• Case where t ≡ (λx.t0)t1 · · · tm: We have:

Γ0 ∪ {x : τ1, . . . , x : τn} ` t0 : τ
Γj ` t1 : τpj for each j ∈ J {pj | j ∈ J} = {1, . . . , n}
Γ ∪ {` : σ1 → · · · → σk → r} = Γ0 ∪ (

⋃
j∈J Γj)

τ1, . . . , τn are different from each other.

For each i ∈ {1, . . . , n}, pick ji ∈ J so that pji = i and
Γ0 ∪ (

⋃
i∈{1,...,n} Γji) 3 ` : σ1 → · · · → σk → r. By

Lemma 3.8, condition (ii) holds for t′ = ([t1/x]t0)t2 · · · tm
and Γ′ = Γ0 ∪ (

⋃
i∈{1,...,n} Γji) with α = ε.

• Case where t ≡ a t1 · · · tm: We have m > 0 and

Γj ` ti : r for j ∈ {1, . . . , n}
Γ1 ∪ · · · ∪ Γn = Γ ∪ {` : σ1 → · · · → σk → r}

for some i ∈ {1, . . . ,m}. Pick j ∈ {1, . . . , n} such that ` :
σ1 → · · · → σk → r ∈ Γj . Then, condition (ii) holds for
t′ = ti and Γ′ = Γj with α = (a, i).
• Case where t ≡ t`′0 t1 · · · tm: We have:

Γ0 ` t0 : σ′1 → · · · → σ′m → r
Γi ` ti : σ′i for each i ∈ {1, . . . ,m}
Γ ∪ {` : σ1 → · · · → σk → r} =

Γ0 ∪ Γ1 ∪ · · · ∪ Γm ∪ {`′ : σ′1 → · · · → σ′m → r}

If `′ : σ′1 → · · · → σ′m → r = ` : σ1 → · · · → σk → r,
we have condition (i). Otherwise, condition (ii) holds for t′ =
t0 t1 · · · tm and Γ′ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm with α = ε.

The following lemmas state that typing is preserved by the
inverse of substitutions and reductions.

Lemma 3.10 (inverse substitution): If Γ ` [t1/x]t0 : τ ,
then there exist a finite set I , types τi(i ∈ I) and type
environments Γi(i ∈ {0} ∪ I) that satisfy the following
conditions.

Γ0 ∪ {x : τi | i ∈ I} ` t0 : τ
Γi ` t1 : τi for each i ∈ I

⋃
i∈{0}∪I Γi = Γ.

6

Lemma 3.11 (subject expansion): If Γ′ ` t′ : r and t α−→λ

t′, then Γ ` t : r for some Γ such that ΓV = Γ′V and ΓL ⊇ Γ′L.

Proof: The proof follows by case analysis on the rule
used for deriving t α−→λ t

′.
• Case R-BETA: In this case, we have:

t = (λx.t0)t1t2 · · · tm t′ = ([t1/x]t0)t2 · · · tm
Γ′1 ` [t1/x]t0 : σ2 → · · · → σm → r
Γ′i ` ti : σi for i ∈ {2, . . . ,m} Γ′ = Γ′1 ∪ · · ·Γ′m.

By applying Lemma 3.10 to Γ′1 ` [t1/x]t0 : τ , we obtain:

Γ0 ∪ {x : τ1, . . . , x : τn} ` t0 : σ2 → · · · → σm → r
Γi ` t1 : τi for each i ∈ {1, . . . , n}
Γ0 ∪ Γ1 ∪ · · · ∪ Γn = Γ′1

By using T-ABS and T-APP, we obtain

Γ′1 ` (λx.t0)t1 : σ2 → · · · → σm → r.

Thus, the required result holds for Γ = Γ′.
• Case R-CONST: In this case, t = a t1 · · · tn and t′ = ti

for some i ∈ {1, . . . , n}. By the assumption, we have Γ′ `
ti : r. Let Γ = Γ′. By using T-CONST and T-APP, we obtain
Γ ` t : r as required.
• Case R-LAB: In this case, t = C[t`0] and t′ = C[t0]. Let

{Γ1 ` t0 : τ1, . . . ,Γn ` t0 : τn} be the set of judgments for t0
occurring in the derivation for Γ′ ` t′ : τ . Then, the required
result holds for Γ = Γ′ ∪ {` : τ1, . . . , ` : τn}. (More formally,
this follows by induction on the structure of C.)

We are now ready to prove Theorem 3.6.
Proof of Theorem 3.6:

• (i)⇒(ii): Suppose that (i) holds but (ii) does not hold.
Then, by Lemma 3.9, there must be an infinite reduction
sequence t

α1−→λ t1
α2−→λ t2

α3−→λ · · ·. Let t′ be the term
obtained from t by removing all the labels. Then from the
sequence above, we have an infinite reduction sequence

t′
α′1−→λ t

′
1

α′2−→λ t
′
2

α′3−→λ · · ·

that does not use R-LAB. (Note that consecutive applications
of R-LAB must be finite in the reduction sequence of t.)
However, this cannot be the case by Lemma 3.1.
• (ii)⇒(i): If (ii) holds, then we have

` : σ1 → · · ·σk → r ` (s0)`s1, . . . , sk : r.

Condition (i) follows by repeated applications of Lemma 3.11.

IV. PROOF OF PUMPING LEMMA (THEOREM 2.1)

This section proves Theorem 2.1 by using the techniques
developed in Section III. We fix G = (Σ,N ,R, S) below. We
first give the constants c1 and c2 in the theorem. We define a
few constants determined by G.
• BG : the largest size of the body of a rewriting rule, i.e.,

max({|R(F)| | F ∈ dom(N)}).

• TG : the number of type bindings of the form F : τ that
conform to N , i.e., |{F : τ | F ∈ dom(N), τ ::N (F)}|.
Note that it is finite.

The constants c1 and c2 are given by: c1 = BTGG and c2 =
TG + 1.

As explained at the beginning of Section III, the key obser-
vation for the proof of the theorem is that for a sufficiently
long reduction sequence S w

=⇒ e, there exists a sub-sequence
of the form F s̃

w′
=⇒ F t̃ such that (i) the second F comes

from the first F (instead of s̃), and (ii) the types of the two F
are the same, so that the part F s̃ w′

=⇒ F t̃ can be pumped. In
order to talk about condition (i), we first extend the reduction
relation α−→G .

(F `
′
s1 · · · sn,≺)

ε−→G
(([F `1/F1, . . . , F

`
k/Fk]R(F))s1 · · · sn,≺ ∪{(`′, `)})

(` fresh)

(t,≺)
α−→G (t′,≺) if t α−→λ t

′

Here, we assume that dom(N) = {F1, . . . , Fk}. The relation
w

=⇒G is extended accordingly. The label (`, `′ above) for a
non-terminal is used to express how a non-terminal has been
introduced; when (S`0 , ∅) w

=⇒G (t,≺), the relation `′ ≺ `
intuitively means that the non-terminals labeled by ` have
been introduced by expanding a non-terminal labeled by `′. If
(S`0 , ∅) w

=⇒G (t,≺) and ` occurs in ≺, then there is exactly
one sequence of the form `0 ≺ `1 ≺ · · · ≺ `m = `. We write
depth≺(`) for m.

Example 4.1: Recall G1 from Example 2.1. S is reduced as
follows by the extended reduction.

(S`0 , ∅) ε−→G1 (F `1 e, {(`0, `1)})
ε

=⇒G1 (a (F `2 (b e)) e, {(`0, `1), (`1, `2)})
(a,1)−→G (F `2 (b e), {(`0, `1), (`1, `2)}) (a,1)−→G · · ·

�
In order to use the results of Section III, we need to

“approximate” each non-terminal by a finite unfolding of it
and remove recursion. We define λ-terms Fi〈m〉 by:

Fi
〈0〉 = Fi Fi

〈m+1〉 = [F1
〈m〉/F1, . . . , Fk

〈m〉/Fk]R(Fi)

Intuitively, Fi〈m〉 is an “approximation” of Fi, obtained by
unfolding each non-terminal m times. We also write θ〈m〉

for the substitution [F1
〈m〉/F1, . . . , Fn

〈m〉/Fn]. Note that
θ〈m〉Fi = Fi

〈m〉.
Let us write t � t′ if t′ is obtained by unfolding some non-

terminals Fi in t with Fi〈m〉. We repeatedly use the following
properties: (i) if t w

=⇒G s, then θ〈m〉t
w

=⇒λ s
′ for some m

and s′ such that s � s′; and (ii) if t � t′
w

=⇒λ s′, then
t

w
=⇒G s � s′ for some s.
Example 4.2: Recall G1 in Example 2.1.

S〈2〉 = F 〈1〉 e = (λx.a (F 〈0〉 (bx))x)e = (λx.a (F (bx))x)e.

The reduction from S to F (b e) in Example 4.1 can be
simulated by: S〈2〉

ε−→λ a (F (b e)) e
(a,1)−→λ F (b e) . �

7

The following lemma states that a sufficiently long reduction
sequence must contain a certain number of unfoldings.

Lemma 4.1: Suppose (S`0 , ∅) w
=⇒G (t,≺). If |w| >

expord(G)−1(Bm−1
G), then there exist `0, `1, . . . , `m such that

`0 ≺ `1 ≺ · · · ≺ `m.

Proof: The proof is by contradiction. Suppose that there
is no increasing chain `0 ≺ `1 ≺ · · · ≺ `m of length m. Then,
the reduction S

w
=⇒G t can be simulated by S〈m−1〉 w

=⇒λ

t′. By Theorem 3.5, |w| ≤ expord(G)−1(|S〈m−1〉|) ≤
expord(G)−1(Bm−1

G), hence a contradiction.
The following lemma guarantees that a constant number

of unfoldings is actually sufficient to simulate the reduction
properties captured by the type system in the previous section.

Lemma 4.2: If ∅ ` θ〈m〉t : τ for some m, then ∅ ` θ〈m′〉t :
τ for every m′ ≥ TG .

Proof: By Lemmas 3.8 and 3.10, it suffices to show that
∅ ` F 〈m〉 : τ implies ∅ ` F 〈m

′〉 : τ for every m′ ≥ TG ,
non-terminal F , and type τ . Let Γ〈m〉 be:

{F : τ | ∅ ` F 〈m〉 : τ and τ ::N (F)}.

We define F by:

F(Γ) = {Fi : τ | Γ′ ` R(Fi) : τ for some Γ′ ⊆ Γ}.

By the definition of F 〈m〉 and Lemmas 3.8 and 3.10, we have:

∅ ` F 〈m〉 : τ
⇔ {Fi : τi,j | i ∈ {1, . . . , k}, j ∈ Ii} ` R(F) : τ and

∅ ` Fi〈m−1〉 : τi,j for each i, j
⇔ F : τ ∈ F(Γ〈m−1〉).

Thus, we have Γ〈m〉 = F(Γ〈m−1〉). Since F is monotonic,
Γ〈m〉 forms a monotonically-increasing sequence:

Γ〈0〉(= ∅) ⊆ Γ〈1〉 ⊆ · · · ⊆ Γ〈TG〉 ⊆ · · · .

Since |Γ〈m〉| ≤ TG , it must be the case that Γ〈k〉 = Γ〈k+1〉 for
some k ≤ TG . By the condition Γ〈m〉 = F(Γ〈m−1〉), we have
Γ〈m〉 = Fm−k(Γ〈k〉) = Fm−k(Γ〈k+1〉) = Γ〈m+1〉 for every
m ≥ TG . Thus, we have Γ〈m〉 ⊆ Γ〈TG〉 for every m ≥ 0,
which completes the proof.

We are now ready to prove the main theorem. Since the
proof uses heavy notations, while reading the proof, the reader
may wish to consult Example 4.3, which provides examples
of the constructions.

Proof of Theorem 2.1: Let c1 and c2 be as given at the
beginning of this section. Assume that S w

=⇒G e for some
w such that |w| > expord(G)−1(c1) = expord(G)−1(BTGG).
By the assumption, we have an extended reduction sequence
(S`0 , ∅) w

=⇒G (e,≺) for some ` and ≺. By Lemma 4.1, there
is at least one increasing sequence:

`0 ≺ `1 ≺ · · · ≺ `TG+1.

Choose such an increasing sequence with `TG+1 introduced in
the earliest step of the reduction sequence (so that there are

no `′1, . . . , `
′
TG+1 such that `0 ≺ `′1 ≺ · · · ≺ `′TG+1 and `′TG+1

is introduced earlier than `TG+1).
By definition, the reduction sequence (S`0 , ∅) w

=⇒G (e,≺)
is of the form:

(F `0j0 , ∅)
u1=⇒G (F `1j1 s̃1,≺1)

u2=⇒G · · ·
uTG
=⇒G

(F
`TG
jTG

s̃TG ,≺TG)
uTG+1

=⇒ G (e,≺) (∗)

where S = Fj0 . By replacing Fj0 in the reduction sequence
with Fj0

〈2TG〉 and appropriately labeling subterms, we obtain
the reduction sequence:

t`00
u1=⇒λ (t1)`1 s̃′1

u2=⇒λ · · ·
uTG
=⇒λ (tTG)`TG s̃′TG

u′
=⇒λ e (∗∗)

where:
• s̃′i is the sequence of terms obtained from s̃i by replacing

each non-terminal F rj with Fj〈2TG−depth≺(r)〉; and
• ti is the term obtained from Fji

〈2TG−i〉, by labeling each
subterm Fjm

〈2TG−m〉 (where i < m ≤ TG) with `m.
Note that the reduction ui=⇒G has been replaced by ui=⇒λ.
Except the last step, the replacement is justified by the fact
that each non-terminal is unfolded at most TG times in the
original reduction sequence from S(= Fj0) to F

`TG
jTG

s̃TG . As for

the last step (tTG)`TG s̃′TG
u′

=⇒λ e, from F
`TG
jTG

s̃TG
uTG+1

=⇒ G e, we

obtain θ〈m〉(F
`TG
jTG

s̃TG)
uTG+1

=⇒ λ e for some m. By Theorem 3.7,
we have ∅ ` θ〈m〉(FjTG s̃TG) : r. By Lemma 4.2, we obtain

∅ ` (tTG)s̃′TG : r (where all the labels are removed in the
two typings above); note that (tTG)s̃′TG has been obtained
by replacing each non-terminal F in FjTG s̃TG with F 〈k〉 for
some k ≥ TG . Thus, by using Theorem 3.7 again, we obtain
(tTG)`TG s̃′TG

u′
=⇒λ e for some u′ as required.

Now, by applying Lemma 3.11 repeatedly to the reduction
sequence (**) (in the backward direction), we obtain:

ΓTG (= {`TG : τTG}), . . . ,Γ1,Γ0

such that:

Γi ` (ti)
`i s̃′i : r for each i ∈ {0, . . . , TG}

(Γi)V = ∅ for each i ∈ {0, . . . , TG}
`j : τj ∈ Γi for every i, j such that 0 ≤ i ≤ j ≤ TG ,
where τi is the type of t`ii used to derive Γi ` (ti)

`i s̃′i : r.

By the pigeonhole principle, there must be duplicated occur-
rences of the same type binding in:

S(= Fj0) : τ0, Fj1 : τ1, . . . , FjTG : τTG .

That is, there exist i1 and i2 (∈ {0, . . . , TG}) such that ji1 =
ji2 and τi1 = τi2 . Let F = Fji1 and τ = τi1 = σ1 → · · · →
σk → r. Then, we have: Γ, `i2 : τ ` ti1 : τ for some Γ such
that ΓV = ∅. By Theorem 3.6, for all s1, . . . , sk such that
∅ ` si : σi for each i ∈ {1, . . . , k}, there exist s′1, . . . , s

′
k, w

′

such that
ti1 s1 · · · sk

w′
=⇒λ t

`i2
i2
s′1 · · · s′k

8

and ∅ ` s′i : σi for each i ∈ {1, . . . , k}. By removing labels,
we obtain

F 〈2TG−i1〉 s1 · · · sk
w′

=⇒λ F
〈2TG−i2〉 s′1 · · · s′k.

Therefore, we have s̃′1, . . . , s̃′m such that:

S〈2TG〉
w1=⇒λ F

〈2TG−i1〉 s̃′1
F 〈2TG−i1〉 s̃′1

w2=⇒λ F
〈2TG−i2〉 s̃′2

· · ·
F 〈2TG−i1〉 s̃′m−1

wm=⇒λ F
〈2TG−i2〉 s̃′m

∅ ` F 〈2TG−i2〉 s̃′m : r (for every m ≥ 1).

From the last condition and Theorem 3.7, we also have
F 〈2TG−i2〉 s̃′m

vm=⇒λ e for some vm. Thus, we can construct
the corresponding reduction sequence of G:

S
w1=⇒G F s̃1

w2=⇒G F s̃2
w3=⇒G · · ·

wm=⇒G F s̃m
vm=⇒G e.

By Lemma 4.2, we can assume that the depth of unfoldings
of F in the last step F s̃m

vm=⇒G e is at most TG . Thus,
if m2 ≥ m1 + c2 = m1 + TG + 1, then F s̃m1

vm1=⇒G e

and F s̃m1

wm1+1

=⇒ G · · ·
wm2=⇒G F s̃m2

vm2=⇒G e must be
different reduction sequences; thus, we have w1 · · ·wm1

vm1
6=

w1 · · ·wm2
vm2

.
Finally, to bound |w1 · · ·wmvm|, we construct terms t′i(0 ≤

i ≤ m) by:
• t′m = F 〈2TG−i2〉; and
• t′i(0 ≤ i ≤ m − 1) is the term obtained from F 〈2TG−i1〉

by replacing the (single) occurrence of F 〈2TG−i2〉 corre-
sponding to the head of F 〈2TG−i2〉 s̃′i+1, with t′i+1.

Then, we have:

t′0
w1=⇒λ t

′
1 s̃
′′
1

w2=⇒λ t
′
2 s̃
′′
2

w3=⇒λ · · ·
wm=⇒λ t

′
m s̃
′′
m

vm=⇒λ e

for some s̃′′1 , . . . , s̃′′m. The size |t′0| is estimated by:

|t′0| ≤ |F 〈2TG−i1〉|+ |t′1|
≤ |F 〈2TG−i1〉|+ |F 〈2TG−i1〉|+ |t′2| ≤ · · ·
≤ m|F 〈2TG−i1〉|+ |t′m| = (m+ 1)|F 〈2TG−i1〉|
≤ (m+ 1)B2TG

G = (m+ 1)c21

Therefore, by Theorem 3.5, we have

|w1 · · ·wmvm| ≤ expn−1((m+ 1)c21)

as required.
Example 4.3: We demonstrate the constructions in the

proof above for G2 in Example 2.2. For the sake of simplicity,
we treat TG2 as if it were 2. The non-terminal Two is
abbreviated to T below. Consider w = (a, 1)(a, 2)(b, 1)2, and
the following reduction sequence that generates it:

(S`0 , ∅) ε−→G2 (F `1 b,≺1)
ε

=⇒G2
(a (F `2 (T `2 b)) (b e),≺2)

(a,1)−→G2 (F `2 (T `2 b),≺2)
ε

=⇒G2
(a (F `3 (T `3(T `2 b))) (T `2 b e),≺3)

(a,2)−→G2
(T `2 b e,≺3)

(b,1)2

=⇒ G2 (e,≺4).

The above sequence is simulated by the following reduction
sequence:

(t`00 , ∅)
ε

=⇒λ (t`11 b,≺1)
(a,1)
=⇒λ (t`22 (T 〈2〉 b),≺2)

u′
=⇒λ (e,≺4).

Here, t0, t1, and t2 are:

t2 = F 〈2〉 t1 = λf.a (t`22 (T 〈2〉 f)) (f e) t0 = t`11 b

Note that except labels, ti is identical to Fji
〈4−i〉 where Fji is

S or F . In particular, t0 is the same as S〈4〉. The label u′ for
the last step can be either (a, 2)(b, 1)2 or (a, 1)(a, 2)(b, 1)4;
whichever is fine for the construction below.

By applying Lemma 3.11 repeatedly to the sequence above
in the backward direction, we obtain:

`2 : τ ` t`22 (T 〈2〉 b) : r `1 : τ, `2 : τ ` t`11 b : r

`0 : r, `1 : τ, `2 : τ ` t`00 : r

for τ = (r → r) → r. By Theorem 3.6 and `1 : τ, `2 : τ `
t`11 b : r, for every s such that ∅ ` s : r → r, there exists s′

such that t1 s
w′

=⇒λ t
`2
2 s′ and ∅ ` s′ : r → r. By removing

the labels, we obtain:

F 〈3〉 s
w′

=⇒λ F
〈2〉 s′.

Thus, we have s′1(= b), s′2(= T 〈2〉 b), s′3, . . . , s
′
m and w1(=

ε), w2(= (a, 1)), w3, . . . , wm such that:

S〈4〉
w1=⇒λ F

〈3〉 s′1
w2=⇒λ F

〈2〉 s′2
F 〈3〉 s′2

w3=⇒λ F
〈2〉 s′3 · · · F 〈3〉 s′m−1

wm=⇒λ F
〈2〉 s′m

∅ ` F 〈2〉 s′m : r

From the last condition and Theorem 3.7, we also have
F 〈2〉 s′m

vm=⇒λ e for some vm. Thus, we can construct the
corresponding reduction sequence:

S
w1=⇒G2 F s1

w2=⇒G2 F s2
w3=⇒G2 · · ·

wm=⇒G2 F sm
vm=⇒G2 e.

To bound |w1 · · ·wmvm|, let t′i(0 ≤ i ≤ m) be:

t′m = F 〈2〉 t′0 = t′1 b
t′i = λf.a (t′i+1 (T 〈2〉 f)) (f e) (for each i ∈ {1, . . . ,m− 1}).

Then we have

t′0
w1=⇒λ t

′
1 s
′′
1

w2=⇒λ t
′
2 s
′′
2

w3=⇒λ · · ·
wm=⇒λ t

′
m s
′′
m

vm=⇒λ e

and the size |t′0| is bounded by m×|λf.a (F (T 〈2〉 f)) (f e)|+
|t′m| < (m+1)B3

G2 . Thus, by Theorem 3.5, we have a required
bound for |w1 · · ·wmvm|. �

V. RELATED WORK

As mentioned in Section I, higher-order grammars have
been actively studied [9], [15], [19], [21], [26], [29] but there
are not so many results on pumping lemmas. Hayashi [11]
proved a pumping lemma for indexed languages (which cor-
respond to order-2 HORS for word languages). Our pumping
lemma (Theorem 2.1) is weaker than Hayashi’s lemma for
the order-2 case, in that ours does not state the strict increase
of the length |w1 · · ·wmvm ↑br |. Because of this weakness,
Theorem 2.1 cannot be used to separate the classes of word

9

languages generated by HORS (recall Remark 2.1). Strength-
ening Theorem 2.1 is left for future work.

Kartzow and Parys [12], [13], [24], [23] have recently
shown pumping lemmas for higher-order pushdown automata,
and proved various properties of (collapsible) higher-order
pushdown automata.5 The present paper is closest to [13],
and provides an alternative proof of the main result of [13].
As mentioned in Section I, their reasoning is for collapsi-
ble higher-order pushdown automata (CPDA) rather than for
grammars, and complex probably partly due to the complexity
of CPDA. They also use the notion of types for capturing
certain properties of configurations of CPDA, but the corre-
spondence between their notion of types and ours is unclear
and worthy of further investigation.

Damm [9] showed that the classes of word languages
generated by higher-order grammars form an infinite hierar-
chy. More precisely, he considered two hierarchies of word
languages, IOn and OIn, and showed IOn (IOn+1 and
OIn (OI2n+1. OIn corresponds to the word languages
generated by order-n safe HORS [15]. He used a complexity
measure of languages called the rational index instead of a
pumping lemma.6 Damm’s technique can actually be used to
show that the classes of word languages generated by (unsafe)
HORS form an infinite hierarchy (but it is not strong enough
to show that the hierarchy is strict in the sense that there is
a word language that is generated by an order-(n+ 1) HORS
but not by any order-n HORS).

Our intersection type system is non-standard in the sense
that weakening is disallowed but contraction (or, the idempo-
tency of intersection types) is allowed, while previous standard
intersection type systems [3], [28], [14] either allow or disal-
low both. The need for disallowing weakening is clear from
the example at the beginning of Section III. The idempotency
of intersection types is required to ensure that the number of
possible intersection types for each non-terminal is finite.

VI. CONCLUSION

We have shown a pumping lemma for higher-order recursion
schemes, by using a novel intersection type system for the
λ-calculus to reason about reductions. Our proof is arguably
much simpler than Kartzow and Parys’s proof for the pumping
lemma for collapsible pushdown automata.

Acknowledgment: This work is partially supported by Kak-
enhi 23220001 and the Mitsubishi Foundation. We would
like to thank Christopher Broadbent, Kazutaka Matsuda and
anonymous referees for useful comments.

REFERENCES

[1] Y. Bar-Hillel, M. A. Perles, and E. Shamir. On formal properties
of simple phrase structure grammars. Z. Phonetik Sprachwiss. und
Kommunikat., (14):143–172, 1961.

5In prior to their work, Blumensath [6] presented a pumping lemma for
higher-order pushdown automata, but his proof contained a flaw [24].

6He writes: “We note, that an approach to the hierarchy question ... would
require the proof of (some sort of) pumping lemmata ..., which seem to be
extremely hard to prove.” [9].

[2] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. J. Symb. Log.,
48(4):931–940, 1983.

[3] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. J. Symb. Log.,
48(4):931–940, 1983.

[4] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North Holland, 1985.

[5] A. Beckmann. Exact bounds for lengths of reductions in typed lambda-
calculus. J. Symb. Log., 66(3):1277–1285, 2001.

[6] A. Blumensath. On the structure of graphs in the Caucal hierarchy.
Theor. Comput. Sci., 400(1-3):19–45, 2008.

[7] A. Carayol and O. Serre. Collapsible pushdown automata and labeled
recursion schemes: Equivalence, safety and effective selection. In
Proceedings of LICS 2012, pages 165–174. IEEE, 2012.

[8] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters
of solvable terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981.

[9] W. Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207,
1982.

[10] M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In Proceedings of LICS
2008, pages 452–461. IEEE Computer Society, 2008.

[11] T. Hayashi. On derivation trees of indexed grammars –an extension of
the uvwxy-theorem–. Publ. RIMS, Kyoto Univ., pages 61–92, 1973.

[12] A. Kartzow. A pumping lemma for collapsible pushdown graphs of level
2. In Proceedings of CSL 2011, volume 12 of LIPIcs, pages 322–336,
2011.

[13] A. Kartzow and P. Parys. Strictness of the collapsible pushdown
hierarchy. In Proceedings of MFCS 2012, volume 7464 of LNCS, pages
566–577. Springer, 2012.

[14] A. J. Kfoury and J. B. Wells. Principality and type inference for
intersection types using expansion variables. Theor. Comput. Sci., 311(1-
3):1–70, 2004.

[15] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees
are easy. In FoSSaCS 2002, volume 2303 of LNCS, pages 205–222.
Springer-Verlag, 2002.

[16] N. Kobayashi. Types and higher-order recursion schemes for verification
of higher-order programs. In Proc. of POPL, pages 416–428, 2009.

[17] N. Kobayashi. A practical linear time algorithm for trivial automata
model checking of higher-order recursion schemes. In Proceedings of
FoSSaCS 2011, volume 6604 of LNCS, pages 260–274. Springer-Verlag,
2011.

[18] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR
for higher-order model checking. In Proc. of PLDI, pages 222–233,
2011.

[19] A. N. Maslov. The hierarchy of indexed languages of an arbitrary level.
Soviet Math. Dokl., 15(4):1170–1174, 1974.

[20] R. P. Neatherway, S. J. Ramsay, and C.-H. L. Ong. A traversal-
based algorithm for higher-order model checking. In ACM SIGPLAN
International Conference on Functional Programming (ICFP ’12), pages
353–364, 2012.

[21] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. In LICS 2006, pages 81–90. IEEE Computer Society
Press, 2006.

[22] C.-H. L. Ong and S. Ramsay. Verifying higher-order programs with
pattern-matching algebraic data types. In Proc. of POPL, pages 587–
598, 2011.

[23] P. Parys. On the significance of the collapse operation. In Proceedings
of LICS 2012, pages 521–530, 2012.

[24] P. Parys. A pumping lemma for pushdown graphs of any level. In
Proceedings of STACS 2012, volume 14 of LIPIcs, pages 54–65. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[25] K. Terui. Semantic evaluation, intersection types and complexity of
simply typed lambda calculus. In 23rd International Conference on
Rewriting Techniques and Applications (RTA’12), volume 15 of LIPIcs,
pages 323–338, 2012.

[26] R. Turner. An infinite hierarchy of term languages - an approach to
mathematical complexity. In Proceedings of ICALP, pages 593–608,
1972.

[27] S. van Bakel. Complete restrictions of the intersection type discipline.
Theor. Comput. Sci., 102(1):135–163, 1992.

[28] S. van Bakel. Intersection type assignment systems. Theor. Comput.
Sci., 151(2):385–435, 1995.

10

[29] M. Wand. An algebraic formulation of the Chomsky hierarchy. In
Category Theory Applied to Computation and Control, volume 25 of
LNCS, pages 209–213. Springer-Verlag, 1974.

APPENDIX

VII. PROOFS FOR SECTION III-A
Proof of Lemma 3.2: We show that R(t) ≥ n implies

R(u) ≥ n for any natural number n, by induction on n. The
case n = 0 is trivial. If n > 0, we have t1 and t2 such that

t
ε

=⇒λ t1
(a,i)−→λ t2

and R(t2) ≥ n − 1. By the confluence of β-reductions, we
have t′1 such that t1 −→∗β t′1 and u −→∗β t′1. By the condition

t1
(a,i)−→λ t2 and t1 −→∗β t′1, we have:

t1 = a s1 · · · sn t′1 = a s′1 · · · s′n t2 = si
sj −→∗β s′j for each j ∈ {1, . . . , n}

Thus, we have u −→∗β t′1
(a,i)−→ s′i and t2 −→∗β s′i. By the

induction hypothesis, R(s′i) ≥ n− 1. Thus, we have R(u) ≥
R(s′i) + 1 ≥ n as required.

Lemma 7.1: If rord(t) = n and t −→n
β u, then rord(u) ≤

n. Furthermore, if t is not a λ-abstraction and u = λx.s, the
order of the type of λx.s is not greater than n.

Proof: By the assumption t −→n
β u, t = C[(λx :κ.t1)t2)]

and u = C[[t2/x]t1] for some terms t1, t2 and context C,
where the order of λx : κ.t1 is n. Since the orders of t1 and
t2 are at most n and n− 1 respectively, no redex greater than
n is introduced. Thus, rord(u) ≤ n. Suppose that t is not
a λ-abstraction but u is. Then, C must be an empty context,
and either (i) t1 = λx.s′ with s = [t2/x]s′, or (ii) t1 = x and
t2 = λx.s. In the former case, the order of the type of λx.s
is equal to that of t1, which is at most n. In the latter case,
the order of the type of λx.s is equal to that of t2, which is
at most n− 1.

Proof of Lemma 3.3: The proof proceeds by induction
on the structure of t.
• Case t = x or t = a: Trivial, as u = t.
• Case t = λx.t′: In this case, u must be of the form λx.u′

with t′(−→n
β)∗u′. By the induction hypothesis, |u′| ≤ 2|t

′|.
Thus, we have |u| = |u′|+ 1 ≤ 2|t

′| + 1 ≤ 2|t
′|+1 = 2|t|.

• Case t = t1t2: In this case, we have either (i) t1(−→n
β

)∗u1 and t2(−→n
β)∗u2 with u = u1u2, or (ii) t1(−→n

β)∗λx :
κ.u3 and t2(−→n

β)∗u2 with u = [u2/x]u3. Recall that −→n
β is

the inner-most reduction; therefore, in the latter case, we have
rord(u2), rord(u3) < n, and ord(κ) ≤ n−1 by Lemma 7.1.
Since ord(κ) ≤ n − 1, the substitution [u2/x] does not
introduce any new order-n-redex, hence rord([u2/x]u3) < n.
In case (i), we have:

|u| = |u1|+ |u2|+ 1 ≤ 2|t1| + 2|t2| + 1 ≤ 2|t1|+|t2|+1 = 2|t|

as required. In case (ii), we have:

|u| = |u3|+ 〈the number of occurrences of x in u3〉
×(|u2| − |x|)

≤ |u3|+ |u3|(|u2| − 1)
= |u3| × |u2|
≤ 2|t1| × 2|t2| (by induction hypothesis)
= 2|t1|+|t2|

≤ 2|t|

11

as required.

VIII. PROOFS FOR SECTION III-B

We first provide proofs of the lemmas on substitutions.
Proof of Lemma 3.8: The proof proceeds by induction

on the structure of t.
• Case t = x: In this case, Γ0 ∪ {x : τ1, . . . , x : τn} ` t : τ

must have been derived by using T-VAR, so that Γ0 = ∅,
n = 1, and τ = τ1. The required result follows immediately
from Γ1 ` s : τ1, since Γ0∪Γ1∪· · ·∪Γn = Γ1 and [s/x]t = s.
• Case t = y 6= x: In this case, Γ0 = y :τ and n = 0. Thus,

the result follows immediately from Γ0, x:τ1, . . . , x:τn ` t : τ ,
since Γ0, x : τ1, . . . , x : τn = y : τ and [s/x]t = y = t.
• Case t = a: Similar to the above case.
• Case t = t0t1: In this case, we have:

Γ0,0 ∪ {x : τi | i ∈ S0} ` t0 :
∧
j∈{1,...,m} τ

′
j → τ

Γ0,j ∪ {x : τi | i ∈ Sj} ` t1 : τ ′j for each j ∈ {1, . . . ,m}
Γ0 = Γ0,0 ∪ Γ0,1 ∪ · · · ∪ Γ0,m

S0 ∪ S1 ∪ · · · ∪ Sm = {1, . . . , n}

By the induction hypothesis, we have:

Γ0,0 ∪ (
⋃
i∈S0

Γi) ` [s/x]t0 :
∧
j∈{1,...,m} τ

′
j → τ

Γ0,j ∪ (
⋃
i∈Sj

Γi) ` [s/x]t1 : τ ′j for each j ∈ {1, . . . ,m}

By applying T-APP, we obtain⋃
j∈{0,...,m}(Γ0,j ∪ (

⋃
i∈Sj

Γi)) ` [s/x]t : τ.

Since Γ0 = Γ0,0 ∪Γ0,1 ∪ · · · ∪Γ0,m and S0 ∪S1 ∪ · · · ∪Sm =
{1, . . . , n}, we have

⋃
j∈{0,...,m}(Γ0,j ∪ (

⋃
i∈Sj

Γi)) = Γ0 ∪
Γ1 ∪ · · ·Γn. Thus, we have

Γ0 ∪ Γ1 ∪ · · · ∪ Γn ` [s/x]t : τ

as required.
• Case t = λy.u: Without loss of generality, we can assume

x 6= y, and y does not occur in s (so that y 6∈ dom(Γi)). We
have:

τ =
∧
j∈{1,...,m} τ

′
j → τ ′′

Γ0 ∪ {x : τ1, . . . , x : τn, y : τ ′1, . . . , y : τ ′m} ` u : τ ′′

By the induction hypothesis, we have:

Γ0 ∪ Γ1 ∪ · · · ∪ Γn ∪ {y : τ ′1, . . . , y : τ ′m} ` [s/x]u : τ ′′

By applying T-APP, we obtain

Γ0 ∪ Γ1 ∪ · · · ∪ Γn ` λy.[s/x]u(= [s/x]t) : τ

as required.
• Case t = t′`: In this case, we have Γ′0∪{x:τ1, . . . , x:τn} `

t′ : τ with Γ0 = Γ′0 ∪{` : τ}. By the induction hypothesis, we
have Γ′0 ∪ Γ1 ∪ · · · ∪ Γn ` [s/x]t′ : τ . By using T-LAB, we
obtain Γ0 ∪ Γ1 ∪ · · · ∪ Γn ` ([s/x]t′)` : τ as required.

Proof of Lemma 3.10: This follows by induction on the
structure of t0.
• Case t0 = x: In this case, Γ ` t1 : τ . Thus, the required

result holds for I = {1}, τ1 = τ,Γ0 = ∅, and Γ1 = Γ.
• Case t0 = a or t0 = y 6= x: In this case, [t1/x]t0 = t0,

so that the result trivially holds for I = ∅ and Γ0 = Γ.
• Case t0 = t0,0t0,1: In this case, we have:

Γ′0 ` [t1/x]t0,0 :
∧
j∈J τ

′
j → τ

Γ′j ` [t1/x]t0,1 : τ ′j for each j ∈ J
Γ =

⋃
j∈{0}∪J Γ′j

By the induction hypothesis, we have:

Γ′(0,0) ∪ {x : τ(0,1), . . . , x : τ(0,n0)} ` t0,0 :
∧
j∈J τ

′
j → τ

Γ′(0,i) ` t1 : τ(0,i) for each i ∈ {1, . . . , n0}
Γ′0 =

⋃
i∈{0,1,...,n0} Γ′(0,i)

Γ′(j,0) ∪ {x : τ(j,1), . . . , x : τ(j,nj)} ` t0,1 : τ ′j
Γ′(j,i) ` t1 : τ(j,i) for each j ∈ J, i ∈ {1, . . . , nj}
Γ′j =

⋃
i∈{0,1,...,nj} Γ′(j,i) for each j ∈ J

Let I be {(j, i) | j ∈ {0} ∪ J, i ∈ {1, . . . , nj}}, By applying
T-APP to the 1st and 4th conditions, we get:⋃

j∈{0}∪J Γ′(j,0) ∪ {x : τk | k ∈ I} ` t0 : τ.

Thus, the required result holds for Γ0 =
⋃
j∈{0}∪J Γ′(j,0) and

Γk = Γ′k for k ∈ I .
• Case t0 = t′0

`: In this case, we have:

Γ′ ` [t1/x]t′0 : τ
Γ = Γ′ ∪ {` : τ}

By the induction hypothesis, we have:

Γ′0 ∪ {x : τi | i ∈ I} ` t′0 : τ
Γ′i ` t1 : τi for each i ∈ I⋃
i∈{0}∪I Γ′i = Γ′.

The required result holds for Γ0 = Γ′0 ∪ {` : τ} and Γi = Γ′i
for i ∈ I .

Remark 8.1: To derive the property above, we need to
allow, in rule T-APP, multiple occurrences of the same type
(τi and τj such that i, j ∈ I , i 6= j but τi = τj). If we do
not allow multiple occurrences of the same type, then we get
a weaker result, obtained by replacing

⋃
i∈{0}∪I Γi = Γ with⋃

i∈{0}∪I Γi ⊆ Γ, hence also a weaker result for the subject
expansion lemma (Lemma 3.11): “If Γ′ ` t′ : τ and t −→ t′,
then Γ ` t : τ and Γ ⊆ Γ′ for some Γ.” �

The direction from (i) to (ii) of Theorem 3.7 is an immediate
corollary of the following lemma (and the fact that there is no
infinite reduction sequence).

Lemma 8.1: If ∅ ` t : r, then either t = e or t α−→λ t
′ and

∅ ` t′ : r for some t′.

Proof: Suppose that t 6= e. We show that there exists t′

such that t α−→λ t
′ and ∅ ` t′ : r, by case analysis on the shape

of t. Since t is well-typed under the empty type environment,
the head term of t cannot be a variable or a labeled term t`0.

12

• Case where t is of the form (λx.t0)t1 · · · tn: In this case,
we have

{x : τ1, . . . , x : τk} ` t0 : τ
∅ ` t1 : τi for each i ∈ {1, . . . , k}

By Lemma 3.8, the required result holds for t′ =
([t1/x]t0)t2 · · · tn.
• Case where t is of the form t = a t1 · · · tn: In this case,

we have n > 0 and ∅ ` ti : r for some i ∈ {1, . . . , n}. Thus,
the required result holds for t′ = ti.

We are now ready to show Theorem 3.7.
Proof of Theorem 3.7:

• (i)⇒(ii): Suppose that Γ ` t : r for some Γ such that
ΓV = ∅. Let t′ be the term obtained from t by removing all
the labels. Then, ∅ ` t′ : r with t

ε
=⇒λ t

′. Suppose that t′

cannot be reduced to e. Then, by Lemma 8.1, there must exist
an infinite reduction sequence t′ α1−→λ t1

α2−→λ t2
α3−→λ · · ·,

but this cannot be the case by Lemma 3.1.
• (ii)⇒(i): Suppose t

w
=⇒λ e for some w. Let t′ be the

term obtained by labeling all the occurrences of e in t with a
fresh label `. Then, we have t′ w

=⇒λ e`. By Theorem 3.6, we
have Γ ∪ {` : r} ` t′ : r for some Γ such that ΓV = ∅. From
the derivation of Γ ∪ {` : r} ` t′ : r, we can obtain Γ ` t : r
as required.

13

