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Abstract—The model checking of higher-order recursion
schemes (HORS), aka. higher-order model checking, is the
problem of checking whether the tree generated by a given
HORS satisfies a given property. It has recently been studied
actively and applied to automated verification of higher-order
programs. Kobayashi and Igarashi studied an extension of
higher-order model checking called µHORS model checking,
where HORS has been extended with recursive types, so that a
wider range of programs, including object-oriented programs and
multi-threaded programs, can be precisely modeled and verified.
Although the µHORS model checking is undecidable in general,
they developed a sound but incomplete procedure for µHORS
model checking. Unfortunately, however, their procedure was not
scalable enough. Inspired by recent progress of (ordinary) HORS
model checking, we propose a new procedure for µHORS model
checking, based on automata-based abstraction refinement. We
have implemented the new procedure and confirmed that it often
outperforms the previous procedure.

Keywords-higher-order model checking; tree automata; ab-
straction refinement

I. INTRODUCTION

A higher-order recursion scheme (HORS) [1], [2] is a
simply-typed, higher-order grammar for generating a possibly
infinite tree. It can be considered a simply-typed functional
program with recursion and tree constructors (but not de-
structors). The model checking of HORS is the problem
of checking whether the tree generated by a given HORS
satisfies a given tree property. HORS model checking can be
considered a generalization of finite-state and pushdown model
checking, and has been applied to automated verification of
functional programs [3], [4], [5]. The idea of applying HORS
model checking to program verification is to transform a given
source program (possibly after predicate abstraction [4]) to
a HORS that generates a tree representing all the possible
execution sequences of the source program [3], so that the
problem of checking a property of the source program is
reduced to that of checking a property of the tree generated by
the HORS. The advantage of using HORS model checking for
program verification is that higher-order functional programs
can be precisely modeled as HORS. If higher-order functional
programs were modeled as finite state systems and finite-state
model checking [6] were applied, a lot of control information
would be lost by the modeling.

While HORS can serve as a precise model of a simply-
typed higher-order functional program, it does not do so for
programs of more expressive languages, such as functional

programs with recursive types, object-oriented programs, and
multi-threaded programs. To remedy the problem, Kobayashi
and Igarashi [7] introduced μHORS, an extension of HORS
with recursive types, and considered a model checking prob-
lem for μHORS. Thanks to recursive types, object-oriented
programs and multi-threaded programs can be naturally mod-
eled by μHORS. Although μHORS model checking is unde-
cidable, they developed a sound procedure for μHORS model
checking; furthermore, it is relatively complete with respect to
recursive intersection types: if there exist recursive intersection
types that serve as a certificate that μHORS satisfies a given
property, then their procedure will eventually succeed. They
have implemented the procedure and reported that it worked
for small but non-trivial examples.

Kobayashi and Igarashi’s previous algorithm for μHORS
model checking, however, suffers from the following limita-
tions:

1) It does not scale well, especially with respect to the size
of the property automaton. Roughly, their procedure prepares a
template of recursive intersection types, and looks for a proper
instantiation of the template by using a SAT solver. When
there is no solution, the template is expanded and the same
procedure is repeated. With this approach, the size of SAT
formulas quickly blows up.

2) Their procedure is not effective when a property is NOT
satisfied. It just relies on an exhaustive search of the (possibly
infinite) state space.

3) The relative completeness condition (the typability in a
recursive intersection type system) is somehow specialized for
their approach.

To remedy the problems above, we propose a new proce-
dure for μHORS model checking. It is based on automata-
based abstraction: each term that occurs during reductions
is abstracted as a state of a tree automaton that accepts the
term tree, and the automaton used for abstraction is gradually
refined based on counterexamples. Our new algorithm has the
following advantages over Kobayashi and Igarashi’s previous
procedure [7].

1) The abstraction refinement is more lightweight, and
therefore, our procedure is expected to scale better, as con-
firmed by experiments.

2) When a property is not satisfied, our new procedure can
find a counterexample more effectively.

3) The assumption for the relative completeness is replaced
by a (arguably) more familiar condition that there exists a



regular invariant (a regular tree language that (i) is closed
under reduction, (ii) contains the initial state, and (iii) contains
no error state). Actually, we show that this assumption is
equivalent to the assumption of the previous work based on
the typability.

Technically, our procedure borrows some ideas of the
two state-of-the-art model checking algorithms for (ordinary)
HORS: HORSAT [8] and PREFACE [9]. For constructing the
initial abstraction, we use HORSAT to collect intersection types
of each symbol and convert them to tree automata. For abstract
execution of μHORS, we construct a PREFACE-style abstract
configuration graph. Unlike HORSAT and PREFACE, however,
our abstraction is automata-based; in fact, we cannot directly
use intersection types to guarantee the relative completeness
property mentioned above. For this reason, (despite the use
of similar abstract configuration graphs) the mechanism of
abstraction refinement is quite different from that of PREFACE.

We have implemented a prototype μHORS model checker
and confirmed it often outperforms the previous procedure.

The rest of the paper is organized as follows. Section II
reviews the definition of the μHORS model checking problem.
Section III describes the new procedure for μHORS model
checking. Section IV shows that the two assumptions for rela-
tive completeness are actually equivalent. Section V reports the
implementation and experimental results. Section VI discusses
related work and Section VII concludes the paper.

II. PRELIMINARIES

A. μHORS and Model Checking Problem

The set of types, ranged over by κ, is defined by the syntax:

κ ::= κ1 → · · · → κm → o | α | μα.κ
Intuitively, o describes trees. The type κ1 → · · · → κm → o

(where m may be 0) describes a function that takes m
arguments x1, . . . , xm of types κ1, . . . , κm and returns a tree.
The type μα.κ is a recursive type that satisfies α = κ. The
prefix μα binds α, and we call a type κ closed if all the type
variables in κ are bound. We consider only closed types below.
As usual [10], we consider that a (closed) recursive type μα.κ
denotes a regular tree constructed from type constructors →
and o, and identify two recursive types if their corresponding
regular trees are identical. For example, we do not distinguish
between μα.(α → o) and μα.((α → o) → o). We assume
that → binds tighter than μα, so that μα.α → o denotes
μα.(α → o), not (μα.α) → o. We sometimes call types sorts,
following [7].

A ranked alphabet Σ is a map from a set of symbols (ranged
over by a) to non-negative integers. A Σ-labeled (ranked) tree
T is a map from a subset of {1, . . . ,m}∗ to dom(Σ), such
that (i) dom(T ) is closed under the prefix operation, and (ii)
T (π) = a implies {i | πi ∈ dom(T )} = {1, . . . ,Σ(a)}.
Intuitively, each element a of a ranked alphabet serves as a
tree constructor, and Σ(a) denotes its arity (i.e., the number
of children of each node labeled by a). For a map f , we
write f{x �→ v} for the map f ′ obtained by extending f with
f ′(x) = v.

Given a ranked alphabet Σ, the set of (applicative) terms is
given by

t ::= x | a | t1t2
where x ranges over a set of variables, and a ranges over
dom(Σ).

A type environment K is a map from a finite set of variables
to the set of closed types. As usual, the type judgment relation
K � x : κ is defined by the following rules:

K, x : κ � x : κ K � a : o → · · · → o︸ ︷︷ ︸
Σ(a)

→ o

K � t0 : κ1 → κ2 K � t1 : κ1

K � t0t1 : κ2

When ∅ � t : o, we identify t with the corresponding (finite)
Σ-labeled ranked tree.

A μHORS [7] is a higher-order recursion scheme [2]
extended with recursive types.

Definition 2.1 (μHORS): A μHORS is a quadruple
(N ,Σ,R, S), where

• N is a map from a set of symbols (called non-terminals)
to the set of types, where N (S) = o.

• Σ is a ranked alphabet. We call an element of dom(Σ) a
terminal.

• R is a set of rewriting rules of the form F x1 · · · xm → t
where F is a non-terminal of type κ1 → · · · → κm → o, and t
is an applicative term such that N , x1 :κ1, . . . , xm :κm � t : o.
For each non-terminal F , there must be exactly one rewriting
rule.
A μHORS can be considered a higher-order, typed functional
program for generating a (possibly infinite) tree (that has
terminals as tree constructors). For a μHORS G, we sometimes
write NG ,ΣG ,RG , SG for the four components of G. The
rewrite relation −→G on applicative terms is defined by

F x1 · · · xm → t ∈ RG
F s1 · · · sm −→G [s1/x1, . . . , sm/xm]t

ti −→G t′i Σ(a) = m

a t1 · · · ti · · · tm −→G a t1 · · · t′i · · · tm
Let ⊥ �∈ dom(Σ) be a special symbol. For an applicative

term of type o, we define the Σ{⊥ �→ 0}-labeled ranked tree
t⊥ by

(a t1 · · · tm)
⊥
= a (t1

⊥) · · · (tm⊥) (F t1 · · · tm)
⊥
= ⊥

The tree generated by G, written Tree(G), is the Σ{⊥ �→
0}-labeled tree:

⊔{t⊥ | SG −→∗
G t}. Here,

⊔
is the least

upper-bound with respect to the least partial order that satisfies
C[⊥] 	 C[t] for any tree t and tree context C.

Example 2.1: Let G1 = (Σ,N ,R, S) where

Σ = {a �→ 2, b �→ 1, c �→ 0}
N = {S �→ o, F �→ μα.(α → (o → o) → o),

B �→ (o → o) → o → o}
R = {S → F F b, F f g → a (g(gc)) (f f (Bg)),

B h x → b(hx)}



S is reduced as follows:

S → F F b → a (b2 c) (F F (B b)) → · · · .
The tree generated by G1 is as follows:

a

b2

c

a

b4

c

a

b6

c

a

· · · · · ·

Definition 2.2: A trivial tree automaton is a quadruple
A = (Σ, Q, δ,Q0), where Σ is a ranked alphabet, Q is
a set of states, δ ⊆ Q × dom(Σ) × Q∗ is a transition
function such that (q, a, q1 · · · qm) ∈ δ implies m = Σ(a), and
Q0 ⊆ Q. A run tree of A over T is a Q-labeled (unranked)
tree R such that (i) dom(R) = dom(T ), (ii) R(ε) ∈ Q0,
and (iii) (R(π), T (π), R(π1) · · ·R(πΣ(a))) ∈ δ for every
π ∈ dom(R). A accepts T if there is a run tree of A over T . If
Q0 is a singleton set {q0} and if there is at most one q1 · · · qm
such that (q, a, q1 · · · qm) ∈ δ for each q, a, the automaton is
called topdown-deterministic (or just deterministic). If there
is at most one q such that (q, a, q1 · · · qm) ∈ δ for each
q1 · · · qm, a, the automaton is called bottom-up deterministic.
We write L(A) for the set of trees accepted by A, and write
L(A, q) for L(A′) where A′ is the automaton obtained by
replacing the initial state with q, i.e., A′ = (Σ, Q, δ, {q}).
The equivalence relation ∼A on Σ-labeled trees is defined by:
T ∼A T ′ def⇔ ∀q ∈ Q.(T ∈ L(A, q) ⇔ T ′ ∈ L(A, q)).

We often write q −→δ a q1 · · · qn for (q, a, q1 · · · qn) ∈ δ,
and omit the subscript δ. For a trivial automaton A, we
sometimes write ΣA, QA, δA, QA,0 for the four components
of A. Note that, for finite trees, a topdown-deterministic
trivial tree automaton is just an ordinary deterministic topdown
tree automaton, and a bottom-up deterministic trivial tree
automaton is just an ordinary deterministic bottom-up tree
automaton [11].

For a tree automaton A = (Σ, Q, δ,Q0), we write A⊥ for
the automaton (Σ{⊥ �→ 0}, Q, δ ∪ {(q,⊥, ε) | q ∈ Q}, δ, Q0).

A μHORS model checking problem is the problem of, given
a μHORS G and a trivial tree automaton A, deciding whether
Tree(G) ∈ L(A⊥). Unfortunately, the μHORS model check-
ing problem is undecidable [7] unlike the model checking of
ordinary HORS [2]. For the sake of simplicity, in this paper,
we consider only the case where A is topdown deterministic.

Example 2.2: Let A1 be (Σ, {q0, q1}, δ, {q0}) where Σ is
as given in Example 2.1, and δ is as follows:

{(q0, a, q0q0), (q1, a, q1q1), (q0, b, q1), (q1, b, q0), (q0, c, ε)}.
A1 accepts the trees such that every path from the root to a
leaf contains an even number of b’s. In particular, A1 accepts
the tree generated by G1 in Example 2.1.

B. Invariants and Relative Completeness Criterion

This section gives some characterization of the μHORS
model checking problem, and introduces the notion of regular
invariants as the criterion for relative completeness.

The following fact is trivial by the definition of Tree(G)
(see, e.g., [3]).

Fact 2.1: Tree(G) ∈ L(A⊥) if and only if {t⊥ | SG −→∗
G

t} ⊆ L(A⊥).

For a model checking problem Tree(G) ?∈ L(A⊥), a set I
of (applicative) terms is an (inductive) invariant if I satisfies
the following conditions.

1) SG ∈ I
2) I is closed under reduction, i.e, if t ∈ I and t −→G t′,

then t′ ∈ I .
3) I contains no invalid tree, i.e., if t ∈ I , then t⊥ ∈ L(A⊥).

By Fact 2.1, there exists an inductive invariant if and only if
Tree(G) ∈ L(A⊥) holds.

A regular invariant is an inductive invariant I that is a
regular (tree) language (i.e., accepted by some tree automaton).
Our goal is to develop a μHORS model checking procedure
that satisfies the following conditions:

1) If Tree(G) �∈ L(A⊥), then the procedure eventually
terminates and reports that the property is not satisfied (and
outputs a reduction sequence SG −→∗

G t such that t⊥ �∈
L(A⊥)).

2) If there exists a regular invariant, then the procedure
eventually terminates and reports that the property is satisfied
(and outputs some regular invariant).

A regular invariant can be expressed by a tree automaton
that accepts term trees. When considering a term automaton
below, we make the application symbol explicit. For exam-
ple, we write b c as @o,ob c (where @κ1,κ2 is considered a
symbol of type (κ1 → κ2) → κ1 → κ2). We use the two
representations of a term (where @ is implicit or explicit)
interchangeably.

Definition 2.3 (term automaton): A term automaton for
μHORS G is a bottom-up deterministic tree automaton B =
(Σ,

⋃
κ∈TypesG

Qκ, δ, Q0), where TypesG is the set of types
occurring in G, Q0 is a subset of Qκ for some κ, and

Σ = {@κ1,κ2 �→ 2 | κ1 → κ2 ∈ TypesG}
∪{a �→ 0 | a ∈ dom(ΣG)} ∪ {F �→ 0 | F ∈ dom(NG)}

The transition function δ should respect typing, i.e.,
• If (q,@κ1,κ2 , q0q1) ∈ δ, then q ∈ Qκ2 , q0 ∈ Qκ1→κ2 ,

and q1 ∈ Qκ1 .
• If (q, a, ε) ∈ δ, then q ∈ Qo → · · · → o︸ ︷︷ ︸

ΣG(a)

→ o.

• If (q, F, ε) ∈ δ, then q ∈ QNG(F ).
We further require that δ is total (when it is interpreted as
a bottom-up transition function), i.e., for any input symbol
e ∈ Σ of arity1 n and q1 · · · qn, there exists some q such that
(q, e, q1 · · · qn) ∈ δ.

1By the definition of Σ above, n is actually either 0 or 2.



Let t be a term consisting of terminals, non-terminals,
applications (@κ1,κ2), and states of Q. We define the bottom-
up transition relation t −→B t′ by

C[e q1 · · · qn] −→B C[q] if (q, e, q1 · · · qn) ∈ δ

where C is any context.
Example 2.3: Recall G1 in Example 2.1. Let B0 be

(Σ0, Q, δ, {ξo}) where

Σ0 = {@κ,(o→o)→o �→ 2,@o→o,o �→ 2,
@o→o,o→o �→ 2,@o,o→o �→ 2,@o,o �→ 2,
S �→ 0, F �→ 0, B �→ 0, a �→ 0, b �→ 0, c �→ 0}

Q = Qκ ∪Q(o→o)→o ∪Q(o→o)→o→o

∪Qo→o→o ∪Qo→o ∪Qo

Qκ = {ξκ}, Q(o→o)→o = {ξ(o→o)→o}, Qo→o→o = {ξo→o→o},
Q(o→o)→o→o = {ξ(o→o)→o→o}, Qo→o = {ξo→o}, Qo = {ξo}
κ = μα.(α → (o → o) → o)

The transition rules are as follows:

ξ(o→o)→o −→ @ ξκ ξκ ξo −→ @ ξ(o→o)→o ξo→o

ξo→o −→ @ ξo→o→o ξo ξo→o −→ @ ξ(o→o)→o→o ξo→o

ξo −→ @ ξo→o ξo ξκ −→ F ξ(o→o)→o→o −→ B
ξo −→ S ξo→o→o −→ a ξo→o −→ b ξo −→ c.

Here, we have omitted the subscript for @ for readability.
Then, t −→∗

B0
ξκ′ if and only if t is a term of type κ′. In

particular, B0 accepts all the terms of type o. �
Example 2.4: Let B1 be (Σ0, Q, δ, {ξacc}) where Σ0 is as

given in Example 2.3, and

Q = Qκ ∪Q(o→o)→o ∪Q(o→o)→o→o ∪Qo→o→o

∪Qo→o ∪Qo

Qκ = {ξF }, Q(o→o)→o = {ξFF }, Q(o→o)→o→o = {ξB},
Qo→o→o = {ξa}, Qo→o = {ξb, ξBb, ξac}, Qo = {ξacc, ξc, ξbc}
ξF F −→ @ ξF ξF ξBb −→ @ ξBξb ξb −→ @ ξBξBb

ξac −→ @ ξaξc ξc −→ @ ξbξbc ξc −→ @ ξBbξc
ξbc −→ @ ξBbξbc ξbc −→ @ ξbξc ξacc −→ @ ξFF ξb
ξacc −→ @ ξFF ξBb ξacc −→ @ ξacξacc ξbc −→ @ ξbξc
ξc −→ @ ξBbξc ξF −→ F ξB −→ B ξacc −→ S
ξa −→ a ξb −→ b ξc −→ c

Here, we have omitted states that are not reachable to ξacc; δ
can be made total by adding dummy states. B1 accepts terms
of the form t1(· · · (tn(F F (Bmb))) · · · ) or t1(· · · (tnS) · · · )
where each ti is a term accepted from ξac. L(B1) is a regular
invariant for Tree(G1) ∈ L(A1

⊥), where A1 is the automaton
in Example 2.2. �

We give another characterization of the μHORS model
checking problem. For a μHORS G and a topdown-
deterministic automaton A, we define the relation −→G,A by
the following rules:

• (F t1 · · · tm, q) −→G,A ([t1/x1, . . . , tm/xm]s, q)
if F x1 · · · xm → s ∈ RG .

• (a t1 · · · tm, q) −→G,A (ti, qi)
if (q, a, q1 · · · qm) ∈ δA and i ∈ {1, · · · ,m}.

• (a t1 · · · tm, q) −→G,A fail if there exists no q1 · · · qm
such that (q, a, q1 · · · qm) ∈ δA.

Then, we have the following fact:

Fact 2.2: Let G be a μHORS and A a topdown-
deterministic automaton, with QA,0 = {q0}. Then,
(SG , q0) −→∗

G,A fail if and only if Tree(G) �∈ L(A⊥).
The abstract configuration graph introduced in the next section
can be considered an over-approximation of the reduction
relation −→G,A.

We give below an example of reduction from a program
verification problem to a model checking problem for μHORS.
An interested reader may wish to consult [3], [7] for a
more detailed account of reduction from program verification
problems to higher-order model checking.

Example 2.5: Consider the following OCaml-like program:
let mk_list b = cons b (cons (not b) nil)
let rec for_some p l =
match l with

[] -> false
| x::l’ -> (p x) || (for_some p l’)

let main() =
let b = * in
assert(for_some (fun x->x) (mk_list b))

Here, ∗ represents a non-deterministic Boolean value. The
main function first creates a non-deterministic Boolean value,
binds b to it, makes a list of Booleans by calling mk list,
and then asserts that the list contains true.

Suppose we wish to check that the assertion in the program
above never fails. Then we transform the program to the fol-
lowing μHORS G2, which generates the tree consisting of br,
end, and fail that respectively denotes a non-deterministic
branch, a successful termination, and an assertion failure.

Main → br (C1 True) (C1 False)
C1 b → Mklist b C2 C2 l → Forsome Id l Assert
Assertx → If x end fail

Mklist b k → k(Cons b (Cons (Not b) Nil))
Forsome p l k → l (k False) (C3 p k)
C3 p k x l → If (p x) (k True) (Forsome p l k)
Idx k1 k2 → x k1 k2 If b x y → b x y
True x y → x False x y → y Not x k1 k2 → x k2 k1
Nil k1 k2 → k1 Cons x l k1 k2 → k2 x l

Here, Main is the start symbol. The μHORS G2 above is es-
sentially a CPS (continuation-passing-style [12]) version of the
source program, where Booleans and lists are encoded based
on Church encoding. The grammar first non-deterministically
chooses a Boolean, and then calls Mklist, Forsome, and
Assert in this order. The source program above may fail if
and only if the tree generated by G2 contains fail. Thus,
the verification problem has been reduced to a μHORS model
checking problem. �

III. MODEL CHECKING PROCEDURE

A. Overall Procedure

Fig. 1 shows the overall procedure MC (G,A). First, a term
automaton B0 used for the initial abstraction is prepared (line
1). For relative completeness, B0 may be any automaton,
although the efficiency of the procedure may often depend
on the choice of B0. The automaton B used for abstraction is



1: B0 := initial automaton for abstraction;
2: B := B0;
3: Constr := ∅;
4: while true do {
5: C := CG,A,B;
6: if C contains no error
7: then return SATISFIED
8: else if a real error is found then
9: return UNSATISFIED
10: else {
11: CE := a (spurious) counterexample;
12: Constr := Constr∪{gen_constr(CE)};
13: B := refinement(B0, Constr); } }

Fig. 1. Overview of the Model Checking Procedure MC (G,A).

initialized to B0, and the set Constr, which accumulates a set
of constraints on B, is initialized to the empty set (lines 2-3).
After the initialization, the procedure enters an abstraction-
refinement loop. In the loop, the μHORS G is abstractly
reduced using the current automaton B for abstraction, in the
style of the abstract configuration graph [9] (line 5). If no
error is found in the abstract reduction, then we can conclude
that the property is satisfied (i.e., Tree(G) ∈ L(A⊥)) (line
7). If there is an abstract error path, then we inspect it, and
if it is a real one (i.e., if there is a corresponding concrete
reduction sequence that generates an invalid tree), then it is
reported that the property is violated (line 9). Otherwise, we
pick a spurious counterexample CE , and add to Constr a
new constraint gen constr(CE ) for avoiding CE (lines 11-
12). We then find a new automaton B that is a refinement of B0

and satisfies Constr (lines 13). We repeat this abstraction-
refinement loop until the property is proved or disproved.
Note that, since the model checking problem is undecidable,
the procedure may not terminate, repeating the abstraction-
refinement loop forever.

In the rest of this section, we first explain lines 5–9 in
Section III-B. We then explain the refinement procedure (lines
11-13) in Section III-C and the initial automaton construction
in Section III-D. Finally, we discuss the properties of the
procedure in Section III-E.

B. Automata-based Abstract Configuration Graph

Given a μHORS G, a (top-down deterministic) tree au-
tomaton A, and a term automaton B (recall Definition 2.3),
an abstract configuration graph (ACG) is constructed as
described below. A node in the ACG is either fail or of
the form (t, q) where q is a state of A and t is an applicative
term given by the syntax:

t ::= a | F | xξ,� | t1t2.
Here, each variable is annotated with a state ξ of B, and
a label � that uniquely identifies the corresponding binding.
The existence of a node (t, q) intuitively means that every
term represented by t is expected to generate a tree that is

accepted by A from q. Besides the graph, a binding function ρ
is constructed, which maps each variable xξ,� to an applicative
term. An ACG is constructed as follows.

1) Add the initial node (S, q0) (where q0 is the initial state
of A), and let the binding function ρ be the empty map.

2) Repeat the following procedures, until no more node or
edge is added. When adding a node, we ignore the label part
(denoted by �), and merge the node with an existing one if the
two nodes are identical up to label renaming.
• If there is a node N = (F s1 · · · sm, q), and
F x1 · · · xm → t ∈ RG with si −→∗

B ξi for
each i ∈ {1, . . . ,m} (here, we extend −→B by the
rule C[xξ,�] −→B C[ξ]), then we add a node N ′ =
([xξ1,�1

1 /x1, . . . , x
ξm,�m
m /xm]t, q) and an edge from N to

N ′, where �1, . . . , �m are fresh labels. Also, extend ρ with
ρ(xξi,�i

i ) = si.
• If there is a node N = (a s1 · · · sm, q) and
(q, a, q1 · · · qm) ∈ δA, then we add a node Ni = (si, qi) and
an edge from N to Ni for each i ∈ {1, . . . ,m}. If there is no
such q1 · · · qm, then add a special node N ′ = fail, and an
edge from N to N ′.
• If there is a node N = (xξ,� s1 · · · sm, q) and ρ(xξ,�′) = t
for some �′, then we add a node N ′ = (t s1 · · · sm, q) and
add an edge labeled by (�, �′) from N to N ′.
We call an ACG graph closed if no more node or edge can
be added in step 2, and denote it by CG,A,B

Note that CG,A,B always exists and is finite; furthermore, it
is unique up to isomorphism and a renaming of labels. The
finiteness of CG,A,B follows from the fact that there can be
finitely many nodes (up to label renaming), as in [9]: whenever
a node (t, q) belongs to an ACG, t is of the form t1 · · · tk
where each ti is a term obtained from a term occurring in G
by annotating each variable with a state of B and a label.

An ACG is considered an abstraction of the configuration
graph introduced in [13], [3]. In the procedure above, the
abstraction is performed by (i) merging nodes that are identical
up to a renaming of labels, and (ii) introducing the edge
(�1, �2) in the last case, where the variable with label �1 is
instantiated to the value of the variable (of the same name
and state) with a possibly different label �2.

Remark 3.1: A careful reader may notice that the initial
states of B do not matter to the abstraction procedure above;
what matters is only L(B, q) for each q. Thus, we ignore the
initial states of B below.

The following theorem states that the abstraction is sound
in the sense that if the abstract reduction does not fail, then
the answer to the model checking problem is yes.

Theorem 3.1: CG,A,B exists (i.e., the step 2 above eventu-
ally terminates). If CG,A,B does not contain the special node
fail, then Tree(G) ∈ L(A⊥).

Proof: We show the contraposition. Suppose that
Tree(G) is not accepted by A. Let CCG be the “concrete”
(possibly infinite) configuration graph constructed in the same
way as the ACG, except that (i) nodes are NOT identified
up to label renaming, and (ii) the edge (�1, �2) is added only
when �1 = �2. From Fact 2.2, it follows immediately that CCG



contains fail. By the construction of the ACG, CG,A,B also
contains fail.

On the other hand, if CG,A,B contains fail, then either
(i) Tree(G) �∈ L(A⊥), or (ii) Tree(G) ∈ L(A⊥) but the
abstraction is too coarse. To find which is the case, we pick
each error path of CG,A,B from (S, q0) to fail of up to a
certain length (this is the number of edges of CE chosen in
Section III-C), and check whether there is a corresponding
concrete reduction sequence. If that is the case, we can
conclude that Tree(G) �∈ L(A⊥), and output the corre-
sponding concrete reduction sequence as a counterexample.
Otherwise, we proceed to abstraction refinement as described
in Section III-C. The procedure for checking whether there is
a concrete reduction sequence corresponding to an abstract
error path is more or less standard: from the error path,
we extract a sequence consisting of elements of the form
(a, i) (which means that the i-th branch was chosen at node
(a t1 · · · tn, q)) or F (which means that the non-terminal F
has been reduced). Then we just need to check whether there
is a concrete reduction sequence (S, q0) −→∗ fail that takes
the same branch and reduces the same non-terminal at each
step.

Example 3.1: Recall G1 in Example 2.1, A1 in Exam-
ple 2.2, and B0 in Example 2.3. Fig. 2 shows (a part of)
CG1,A1,B0 , where the state annotations on variables are omitted.
The bindings generated by the part of the ACG are as follows:

ρ(f ξκ,[1]) = ρ(f ξκ,[3]) = F

ρ(gξo→o,[2]) = b ρ(gξo→o,[4]) = B gξo→o,[2]

ρ(hξo→o,[5]) = ρ(hξo→o,[7]) = gξo→o,[2]

ρ(xξo→o,[6]) = c ρ(xξo→o,[8]) = gξo→o,[2] c

The bindings for f ξκ,[3] and gξo→o,[4] are created by the
node (F f [1] (B g[2]), q0) in the figure; the resulting node
(a (g[4](g[4] c)) (f [3] f [3] · · · ), q0) has been merged with the
existing node (a (g[2](g[2] c)) (f [1] f [1] · · · ), q0) since they are
equal up to label renaming. In the figure, the label (�1, �2) of
an edge is shown only when �1 �= �2; such an edge indicates
that a binding different from the actual binding has been
used in the reduction (so that a spurious error path may be
created). In fact, the graph contains a path from (S, q0) to
fail, although Tree(G1) is accepted by A1. This is due to the
edge labeled by ([2], [4]), where gξo→o,[2] has been instantiated
to ρ(gξo→o,[4]) = B gξo→o,[2] despite that the correct value for
gξo→o,[2] is ρ(gξo→o,[2]) = b. The dashed line is explained in
Example 3.2. �

C. Abstraction Refinement

Given an ACG CG,A,B, we compute a set CE of nodes,
edges, labels, and label pairs such that

• CE includes (the nodes and edges in) a path from (S, q0)
to fail.

• If an edge labeled with (�, �′) such that � �= �′ belongs to
CE , then �, �′, (�, �′) ∈ CE .

• If � ∈ CE and ρ(xξ,�) = s, then CE should include a
path from (S, q0) to the node that has created the bindings
ρ(xξ,�) = s, and all the labels in s should also belong to CE .

(S, q0)

(F F b, q0)

(a (g[2] (g[2] c)) (f [1] f [1] (B g[2])), q0)

(g[2] (g[2] c), q0) (f [1] f [1] (B g[2]), q0)

(F f [1] (B g[2]), q0)(b (g[2] c), q0) (B g[2] (g[2] c), q0)

(g[2] c, q1)

(b c, q1)
(B g[2] c, q1)

(c, q0)
(b (h[5] x[6]), q1)

(h[5] x[6], q0) (g[2] x[6], q0) (b x[6], q0)

(B g[2] x[6], q0)

(x[6], q1)(c, q1)fail

(b (h[7] x[8]), q0)
([2], [4])

([6], [8])

([2], [4])

([2], [4])

...

Fig. 2. Abstract configuration graph CG1,A1,B0
.

Among CE ’s, we pick one such that the number of edges is
minimal. For each label � occurring in CE , we define a term
ρ+(�) by

ρ+(�) = [ρ+(�1)/x
ξ1,�1
1 , . . . , ρ+(�n)/x

ξn,�n
n ]s

if ρ(xξ,�) = s for some x, ξ, where xξ1,�1
1 , . . . , xξn,�n

n are the
variables occurring in s. Note that, by the construction of the
abstract configuration graph, x, ξ, and s such that ρ(xξ,�) = s
are uniquely determined for each �, and the above equality
cannot be circular. Therefore, ρ+(�) is well defined. Then the
constraint is as follows:

∨

(�,�′)∈CE

δB(ρ+(�)) �= δB(ρ+(�′)).

The constraint means that we should refine the automaton B so
that for some (�, �′), t� and t�

′
should be accepted by different

states (i.e., ρ+(�) −→∗
B ξ and ρ+(�′) −→∗

B ξ′ imply ξ �= ξ′).
That ensures that in the next refinement step, CE is no longer
detected as a counterexample.

Example 3.2: Recall the ACG shown in Fig. 2. The region
enclosed by the dashed line shows a CE . The only label
pair in CE is ([2], [4]), hence the constraint is δB(ρ+([2])) �=
δB(ρ+([4])), i.e.,

δB(b) �= δB(B b).

This indicates that in the next step, the automaton B should
distinguish between b and B b. �

Remark 3.2: In the feasibility check (to check whether
there is a concrete reduction sequence that corresponds to an
abstract error path) discussed at the end of Section III-B, we
check all the abstract error paths shorter than the number of
edges of CE chosen above. Then, the number of nodes of CE



monotonically increases as the refinement proceeds (because
the number of constraints that may be generated by CE with
a fixed number of nodes is bounded, and the same constraint
is never encountered) we can ensure that a concrete error path
is eventually found if there is any. �

As a candidate of an updated automaton B, we consider
only a refinement of the initial automaton B0 in the following
sense.

Definition 3.1: Let B0 = (Σ, Q, δB0 , Q0) be a term au-
tomaton and k a positive integer. A term automaton B =
(Σ, Q′, δB, Q′

0) is a k-refinement (or just a refinement) of B0

if the following holds:
• Q′ = Q× {1, . . . , k}
• ((q, i), a, (q1, i1) · · · (qn, in)) ∈ δB implies
(q, a, q1 · · · qn) ∈ δB0

• Q′
0 = Q0 × {1, . . . , k}.

By the definition above, a set of (total) functions

{fq,a,q1···qn ∈ {1, . . . , k}n → {1, . . . , k}
| (q, a, q1 · · · qn) ∈ δB0}

uniquely determines a k-refinement of B0, whose transition
function is given as follows:

δB = {((q, fq,a,q1···qn(i1, . . . , in)), a, (q1, i1) · · · (qn, in))
| (q, a, q1 · · · qn) ∈ δB0 , i1, . . . , in ∈ {1, . . . , k}}.

Thus, the constraint
∨

(�,�′)∈CE

δB(ρ+(�)) �= δB(ρ+(�′))

can be reduced to the constraint on functions fq,a,q1···qn
as follows. First, annotate each constructor (which is an
application @κ1,κ2 , a terminal a, or a non-terminal F ) of
the term trees ρ+(�) and ρ+(�′) with the transition rule used
in the sequence ρ+(�) −→∗

B0
q or ρ+(�′) −→∗

B0
q. Then,

replace each constructor e(q,e,q1···qn) by the function symbol
fq,e,q1···qn . This gives us a constraint of the following form:

∨
i

ui �= u′
i,

where each of ui, u
′
i is an expression consisting of uninter-

preted function symbols. Add this constraint to Constr. The
satisfiability of Constr can be checked by an off-the-shelf
SMT solver, like Z3. If Constr is satisfiable, an SMT solver
returns a solution. Thus, we can use it to construct a new
k-refinement B. Otherwise, we increase the value of k until
Constr becomes satisfiable.

Example 3.3: Recall Example 3.2. The constraint δB(b) �=
δB(B b) can be converted to the following formula on unin-
terpreted function symbols.

fξo→o,b,ε �= fξo→o,@o→o,o→o,ξκ1ξo→o
(fξκ1 ,B,ε, fξo→o,b,ε)

where κ1 = (o → o) → o → o. This indicates that in the next
step, the automaton B should distinguish between b and B b.
For k = 2, a solution for the formula above is as follows:

fξo→o,b,ε = fξκ1 ,B,ε = 1 fξo→o,@o→o,o→o,ξκ1ξo→o
(1, 1) = 2

fξo→o,@o→o,o→o,ξκ1ξo→o
(1, 2) = 1

Then, the new automaton B accepts B2nb and B2n+1b with
states (ξo→o, 1) and (ξo→o, 2) respectively. With the refined
automaton, gξo→o,[2] and gξo→o,[4] in Fig. 2 are refined to
g(ξo→o,1),[2] and g(ξo→o,2),[4]; thus, the bindings for g(ξo→o,1),[2]

and g(ξo→o,2),[4] are no longer confused, and the edge ([2], [4])
is removed.

Fig. 3 shows the ACG after the refinement. In the figure,
we have omitted labels (as they are important only for gener-
ating constraints), and states of B0 from variables. Thus, the
variables gi and xi (where i ∈ {1, 2}) are actually abbreviated
forms of g(ξo→o,i),� and x(ξo,i),�

′
respectively. We have omitted

all the annotations from f , which is an abbreviation of
f (ξμα.α→(o→o)→o,1),�

′′
. The binding function associated with the

graph is as follows:

ρ(f (ξκ,1),∗) = {F} ρ(g(ξo→o,1),∗) = {b, B g(ξo→o,2),∗}
ρ(g(ξo→o,2),∗) = {B g(ξo→o,1),∗}
ρ(h(ξo→o,i),∗) = {g(ξo→o,i),∗} (for i ∈ {1, 2})
ρ(x(ξo,1),∗) = {x(ξo,1),∗, g(ξo→o,1),∗c}
ρ(x(ξo,2),∗) = {x(ξo,2),∗, c, g(ξo→o,2),∗c}

(Here, again we have ignored labels and merged bindings for
different labels.) The graph no longer contains fail, so that
we can conclude that Tree(G1) ∈ L(A1

⊥). �

D. Construction of the Initial Automaton

We use a HORSAT-based algorithm to construct the initial
term automaton B0. HORSAT [8] is a model checking algo-
rithm for (ordinary) HORS. It computes an intersection type
environment Γ such that

{t | Γ � t : q0} = {t | t −→∗
G s ∧ s⊥ �∈ L(A⊥)}

where q0 is the initial state of the complement of A (thus, Γ
is a finite description of the set of terms that may generate
invalid trees). Γ is obtained by iteratively applying a function
F that expands a type environment:

∅ ⊆ F(∅) ⊆ F2(∅) ⊆ · · · ⊆ Fn(∅) = Fn+1(∅) = Γ.

Then it suffices to check whether S : q0 ∈ Γ. If we apply
HORSAT to μHORS, we can use the same function F , but the
computation of Fn(∅) may not converge. However, for every
n, we have

{t | t −→n
G s ∧ s⊥ �∈ L(A⊥)} ⊆ {t | Fn(∅) � t : q0}

⊆ {t | t −→∗
G s ∧ s⊥ �∈ L(A⊥)}.

Thus, for sufficiently large n, {t | Fn(∅) � t : q0} gives
a good approximation of the set of error terms {t −→∗

G s |
s⊥ �∈ L(A⊥)}. We construct the term automaton that accepts
{t | Fn(∅) � t : q0}, and use it as the initial automaton B0.

Although the choice of B0 above is heuristic, if the input
grammar G is an ordinary HORS and n is sufficiently large,
then the refinement-loop (lines 4-15) is guaranteed to succeed
immediately. According to the experimental results reported
in Section V, the choice of B0 often helps the refinement loop
terminate quickly also for μHORS.



(S, q0)

(F F b, q0)

(a (g1(g1 c)) (f f (B g1)), q0)

(g1 (g1 c), q0)

(f f (B g1), q0)

(F f (B g1), q0)

(b (g1 c), q0)
(B g2 (g1 c), q0)

(g1 c, q1)

(b c, q1)
(B g2 c, q1)

(c, q0)

(b (h2 x2 ), q1) (h2 x2, q0) (g2 x2, q0)
(B g1 x2, q0)

(a (g2 (g2 c)) (f f (B g2)), q0)

(b (h2 x1), q0)

(g2 (g2 c), q0)

(f f (B g2), q0)

(F f (B g2), q0)

(B g1 (g2 c), q0)

(b (h1 x2), q0)

(h2 x1, q1) (g2 x1, q1)

(B g1 x1, q1) (b (h1 x1), q1)
(h1 x1, q0)

(g1 x1, q0)

(B g2 x1, q0)

(b x1, q0)(x1, q1)

(h1 x2, q1)

(g1 x2, q1)(b x2, q1)(x2, q0) (g2 c, q0)

(B g1 c, q0)
(B g2 x2, q1)

Fig. 3. Abstract configuration graph CG1,A1,B .

E. Properties of the Procedure

We show that our model checking procedure is relatively
complete, i.e., if a regular invariant exists, then MC (G,A)
terminates and reports that the property is satisfied. Note that
the termination does not depend on the choice of the initial
automaton (although it may affect the efficiency).

The following lemma states that if the automaton B used for
abstraction is properly chosen, then the verification succeeds
immediately.

Lemma 3.2: Suppose that I is a regular invariant for
Tree(G) ∈ L(A⊥), and that B is a term automaton that
accepts I . Then CG,A,B does not contain node fail.

Proof: Let ρ be the binding function associated with
CG,A,B. For each node (t, q) in CG,A,B, we define Terms(t,q)
as the least set of terms that satisfies the following conditions.

• Terms(t,q) ⊇ ρ∗(t).
Here, ρ∗(t) is the least set that satisfies the following
conditions.

ρ∗(xξ,�) ⊇ ρ∗(ρ(xξ,�′)) if xξ,�′ ∈ dom(ρ)
ρ∗(a) ⊇ {a} ρ∗(F ) ⊇ {F}
ρ∗(t1t2) ⊇ {t′1t′2 | t′1 ∈ ρ∗(t1), t′2 ∈ ρ∗(t2)}

• If there are edges from (a t1 · · · tn, q) to (ti, qi) for i ∈
{1, . . . , n}, then

Terms(a t1 ··· tn,q)
⊇ {a t′1, · · · t′n | t′i ∈ Terms(ti,qi) for each i}

• If there is an edge from (t1, q) to (t2, q) where the head
of t1 is a non-terminal or a variable, then

Terms(t1,q) ⊇ Terms(t2,q).

Then, we have:
1) Terms(S,q0) ⊆ I .

2) If CG,A,B contains a node fail, then there exists a term
t ∈ Terms(S,q0) such that t⊥ �∈ L(A⊥).

The required property follows immediately from those prop-
erties. (Suppose that CG,A,B contains a node fail. Then there
must exist a term t ∈ Terms(S,q0) ⊆ I such that t⊥ �∈ L(A⊥),
but this contradicts the assumption that I is a regular invariant
for Tree(G) ∈ L(A⊥).) The property 2 above follows from
the property that if there is a path from node (t′, q) to fail,
then there exists t ∈ Terms(t′,q) such that t⊥ �∈ L(A⊥, q),
which follows by an easy induction on the length of the path.
To show the property 1, it suffices to prove the following
property:

For every node (t, q), if t −→∗
B ξ, then Terms(t,q) ⊆

{s | ∃s0 ∈ L(B, ξ).s0(−→G∼B)∗s}.
This follows by induction on the rules for defining Terms(t,q).
Suppose t′ ∈ Terms(t,q) and t −→∗

B ξ.
• If t′ ∈ ρ∗(t), then t′ ∈ L(B, ξ) follows from the fact that
ρ∗(xξ,�) ⊆ L(B, ξ).

• If t = a t1 · · · tn and t′ = a t′1, · · · t′n with
t′i ∈ Terms(ti,qi) for each i, then a@t1@ · · ·@tn −→∗

B
a@ξ1@ · · ·@ξn −→∗

B ξ; and by the induction hypothesis,
there exists si ∈ L(B, ξi) such that si(−→G∼B)∗t′i. Thus,
we have s(−→G∼B)∗t′ for s = a s1 · · · sn ∈ L(B, ξ).

• If t′ ∈ Terms(t2,q) and there is an edge from (t, q) to
(t2, q), with the head of t being a variable, then the result
follows immediately from the induction hypothesis, since
t2 −→∗

B ξ.
• If t′ ∈ Terms(t2,q) and there is an edge from (t, q) to
(t2, q), with the head of t being a non-terminal, then
t = F s1 · · · sn and t2 = [xξ1,�1

1 /x1, . . . , x
ξn,�n
n /xn]u

with F x1 · · · xn → u ∈ RG . Pick s′i ∈ L(B, ξi)
for each i. Then by the induction hypothesis, we have
[s′1/x1, . . . , s

′
n/xn]u ∼B (−→G∼B)∗t′. Thus, L(B, ξ) �

F s′1 · · · s′n(−→G∼B)∗t′ as required.



Theorem 3.3: If there is a regular invariant for Tree(G) ∈
L(A⊥), then MC (G,A) eventually terminates and reports that
the property is satisfied.

Proof: Let B′ be a term automaton that accepts the regular
invariant, and B0 be the initial automaton chosen on line 2.
Then the product automaton B of B0 and B′ also accepts the
regular invariant. Let k be the number of states of B′. Then
there is a k-refinement B1 of B0 that is equivalent to B. Since
the number of k′-refinement is finite for each k′ ≤ k, and each
refinement loop picks a different automaton B (to see the latter,
note that the constraint

∨
(�,�′)∈CE δB(ρ+(�)) �= δB(ρ+(�′))

added at each step is not satisfied by the current automaton
but satisfied by the next refinement automaton), the refinement
loop eventually terminates or picks B1. In the latter case, by
Lemma 3.2, the refinement loop terminates and reports that
the property is satisfied.

IV. ON RELATIVE COMPLETENESS

In this section, we show the equivalence of the two as-
sumptions for relative completeness: the existence of a regular
invariant (used in this paper) and the typability in Kobayashi
and Igarashi’s recursive intersection type system (used in [7]).

We first recall their recursive intersection type system. The
set of recursive intersection types is defined by the syntax:

θ ::=
∧
Θ1 → · · · → ∧

Θm → q | α | μα.θ
Θ ::= {θ1, . . . , θk}

A type environment is a set of bindings of the form x : θ,
which may contain more than one binding for each variable.
The typing rules are given as follows:

θ ≤ θ′

Γ, x : θ �A x : θ′

(q, a, q1 · · · qk) ∈ δA q1 → · · · → qk → q ≤ θ

Γ �A a : θ

Γ �A t1 :
∧{θ1, . . . , θk} → θ

Γ �A t2 : θ′i and θ′i ≤ θi (for every i ∈ {1, . . . , k})
Γ �A t1t2 : θ

Here, we omit the definition of the subtyping relation θ ≤ θ′

and refer the reader to [7]. We write Γ �A G if (i) S : q0 ∈ Γ,
and (ii) for each F x1 · · · xn → t ∈ RG and F : θ ∈ Γ, θ is
of the form

∧
Θ1 → · · · → ∧

Θn → q and Γ ∪ {xi : θ | θ ∈
Θi, i ∈ {1, . . . , n}} � t : q. The type system is sound (but not
complete) with respect to the model checking problem, i.e., if
Γ �A G then Tree(G) ∈ L(A⊥).

The main result in [7] was a model checking procedure that
is relatively complete with respect to the typability: if there
exists Γ such that Γ �A G, then their procedure eventually
finds one.

We can show that the two assumptions for relative com-
pleteness are equivalent. (Understanding the detail of the proof
requires familiarity with [7].)

Theorem 4.1: Let G be a μHORS and A be a (topdown-
deterministic) tree automaton. Then, there is a regular invariant
for Tree(G) ∈ L(A⊥) if and only if there exists a type
environment Γ such that Γ �A G.

Proof Sketch: The “if” direction follows immediately
from the fact that {t � Γ �A t : q0} is a regular invariant. The
set being closed under reduction follows immediately from the
standard subject reduction property. The proof that the set is
regular is the same as the case without recursive types [14],
[8]: one can construct an alternating tree automaton that
accepts the set, having states corresponding to the intersection
types occurring in the derivation of Γ �A G.

The “only if” direction follows from the proof of relative
completeness in [7]. Let B be a term automaton that accepts
the regular invariant. By choosing ∼B as the term equivalence
relation of [7], we can obtain a fair reduction sequence
(X0,U0) −→∼B (X1,U1) −→∼B (X2,U2) −→∼B · · · of [7]
that does not contain fail, from which we can extract Γ
(ΓX ,U ,∼B in [7]) such that Γ �A G. �

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented a prototype model checker called
MUHORSAR based on the new procedure described in Section
III, and the tool is written in OCaml. As for the underlying
SMT solver, we have used Z3 4.3.3 (http://z3.codeplex.com/).

We have evaluated the tools on benchmarks from two
categories of applications, including verification problems of
FJ (Featherweight Java) programs detailed in Section V-A and
that of multi-threaded programs with recursion detailed in V-B.
For the former, we reused the reduction and translator from FJ
to μHORS presented in [7]. To show the effectiveness of the
new algorithm, we enlarged the benchmarks with programs
implementing container classes like stack and queue, and
applications based on them. As for the latter, we inherited the
approach of [7] for verifying concurrent programs that explic-
itly writes a thread-scheduler in μHORS. Notably, we extended
the target programs with boolean variables (i.e., all variables
and function parameters have boolean type), if-statement and
while-loop that are guarded by (negated) boolean variables
and have deterministic choices for their conditions. By such
an extension, we are able to verify interesting problems like
mutual exclusion and deadlock. We have also implemented a
translator in Java from multi-threaded boolean programs with
recursion (also written in Java syntax) to μHORS. To facilitate
the translation, we first translated the target program to Jimple
(a typed 3-address representation of Java suitable for analy-
sis) by Soot (http://sable.github.io/soot/). Our benchmarks are
available at http://www-kb.is.s.u-tokyo.ac.jp/∼li-xin/muhorsar.

The preliminary experimental results for comparing the
verification time taken by MUHORSAR and RTRECS are
given in Table I-III. For all the tables, the column “Bench” lists
the name of studied benchmarks. The columns “#G” and “#A”
show the number of rules of μHORS for each benchmark and
the size of the property automaton in question, respectively.
The column “R” gives the answer whether the property is satis-
fied (Y) or violated (N). The last two columns “MUHORSAR”



TABLE I
RESULTS FOR VERIFYING BENCHMARKS FROM [7]

Bench #G #A R MUHORSAR RTRECSHorsat (#Ar) Sort (#Ar)
G1 2 2 Y 0.006 0.005 0.009
G2 3 2 Y 0.004 0.004 0.010
Thread 9 5 Y 0.013 0.040 (1) 0.181
Pred 15 1 Y 0.008 0.007 0.010
Ski1 22 1 N 0.008 0.007 0.005
Ski2 25 1 Y 0.008 0.007 0.010
L-append 30 1 Y 0.013 0.012 0.012
L-map 182 1 Y 0.561 0.563 0.189
L-app-map 212 1 Y 0.840 0.831 0.279
L-even 87 1 Y 0.077 0.059 0.021
L-filter 122 1 Y 1.454 (6) 3.814 (33) 0.429
L-risers 122 1 Y 1.450 (6) 4.219 (33) 0.431
Twofiles 21 5 Y 0.027 0.187 (6) 4.390

and “RTRECS” give the time taken by each tool for verifica-
tion, respectively. The column “MUHORSAR” has two sub-
columns “HORSAT (#Ar)” and “Sort (#Ar)” that shows the
time with the initial automaton being constructed by HORSAT
(as explained in Section III-D) and the type information (as in
in Example 3.1), respectively, where “#Ar” records the number
of refinement steps taken by verification if any. The timeout
is set to be 5 minutes. We make the best of each tool for
verification by tuning their parameters (e.g., the refinement
steps for MUHORSAR or the reduction steps for RTRECS)
when necessary. Time is given in seconds or “-” for timeout.
All benchmarks were run on a machine having a Mac OS X
v.10.9.2, 1.7 GHz Intel Core i7 processor and 8GB RAM.

Please note that the current implementation of MUHORSAR
is very naive; in particular, the tool currently uses the text
interface of Z3 for the sake of simplicity, and forks a Z3
process through OS system call in each abstraction-refinement
loop. Thus, in the experimental results reported below, much of
the time is spent for calling Z3 when the number of refinement
loops (#Ar) is large. The performance would be substantially
enhanced by using the library interface of Z3 for solving the
constraints incrementally.

For all the negative benchmarks in Tables II and III,
we have manually added a dummy branch that has a very
long reduction sequence. More precisely, we have added the
following rule:

S′ → br Dummy S

where S is the start symbol of the original grammar, S′ is the
new start symbol, br is a terminal symbol for encoding the
non-deterministic choice, and the non-terminal Dummy has a
very long reduction sequence that only generates a valid tree.
This is for emphasizing the advantage of the new mechanism
in finding a counterexample. Since the size of each benchmark
is not large, the naive exhaustive search as implemented in
RTRECS actually works for the original μHORS. The twist
explained above makes the naive search of RTRECS fail, while
it has little impact on MUHORSAR.

A. Verifying Functional Objects

Table I summarizes the experimental results on benchmarks
originated from [7]. Most of benchmarks as given in the
second row are for FJ programs, except for “G1”, “G2”
and “Thread”. We refer to [7] for details of those bench-
marks. For this family of benchmarks, both MUHORSAR and
RTRECS successfully verified all programs. For the top six
benchmarks except for “Thread”, RTRECS performs equally
well (slightly worse) as MUHORSAR . For benchmarks having
their names prefixed by “L-”, RTRECS slightly outperforms
MUHORSAR. As the size of the property automaton increases
for verifying “Thread” and “Twofiles”, MUHORSAR outper-
forms RTRECS by orders of magnitude. As for the two choices
of the initial automaton, MUHORSAR performs equally well
for verifying most benchmarks, except for the last three
examples which MUHORSAR obviously found more difficult
to verify (with more time and refinement steps) using the type-
based construction.

TABLE II
RESULTS FOR VERIFYING FJ PROGRAMS

Bench #G #A R MUHORSAR RTRECSHorsat (#Ar) Sort (#Ar)
stack 33 1 Y 0.040 0.075 (2) 0.207

3 0.039 0.071 (2) 3.435
5 0.044 0.066 (2) 23.292

stack-br 39 1 Y 0.396 (13) 0.672 (24) -
3 0.403 (13) 0.671 (24) -
5 0.397 (13) 0.777 (28) -

queue 56 1 Y 0.169 0.165 0.143
3 0.173 0.165 2.140
5 0.164 0.167 12.633

queue-br 61 1 Y 0.249 (2) 0.324 (6) -
3 0.249 (2) 0.307 (5) -
5 0.249 (2) 0.373 (8) -

queue-pc 104 1 Y 1.160 1.133 0.211
3 1.218 1.130 0.642
5 1.137 1.153 1.648

2stack 43 1 Y 0.151 0.144 0.052
5 0.145 0.137 0.285

2stack-e 52 1 N 0.105 0.098 -
5 0.105 0.101 -

2stack-br 44 1 Y 0.261 0.325 (2) 0.115
5 0.253 0.320 (2) 6.459

2stack-pc 88 1 Y 4.202 4.204 0.498
5 4.176 4.309 1.262
7 4.182 4.179 2.132

2stack-pc-e 97 1 N 0.776 0.761 -
5 0.768 0.764 -

nat 35 1 Y 17.810 (147) - 0.288

Table II summarizes the experimental results on benchmarks
of FJ programs that implement stacks and queues, and applica-
tions based on them. The example “stack” pushes a sequence
of string and integer objects onto the stack, followed by a
sequence of popping, and then reads the topmost stack symbol
and checks whether it is a string or an integer object. We
verified the last-in-first-out property of stacks by verifying
the program does not fail (i.e., it never attempts to get an
integer object when the topmost is a string object, and vice
versa). Similarly, we verified the first-in-first-out property of
queues by verifying the program does not fail. The examples



“stack-br” and “queue-br” are variants of “stack” and “queue”,
respectively. The example “queue-pc” implements a producer
and a consumer that alternatively put and take an item from a
queue. We verified that the program does not fail (i.e., never
dequeue an empty queue). To confirm the bad behaviour of
RTRECS as the size of the property automaton increases, we
gradually refined the automaton by introducing more states.

The benchmarks having their name prefixed by “2stack-
” implement a pseudo-queue using two stacks, say in-stack
and out-stack: for enqueue, it pushes onto in-stack, and
for dequeue, it non-deterministically pops from out-stack or
pops an element from in-stack and pushes it onto out-stack.
The example “2stack-br” simply puts in a non-deterministic
if-statement with two different sequences of enqueue and
dequeue operations. The example “2stack-pc” implements a
producer and a consumer that alternatively put and take an
item from a pseudo-queue. The example “2stack-e” attempts
to dequeue a pseudo-queue having an empty out-stack. For
this category of benchmarks, we verified that the program
does not fail (i.e., never attempt to dequeue a pseudo-queue
having an empty out-stack), and that the program satisfies
the temporal property that dequeue must be followed by pop
and enqueue must be followed by push, respectively. The last
example “nat” implements natural numbers and we verified
that “3×n modulo 3 = 0” by verifying that the program does
not fail.

The experimental results in Table II proves our claim that
RTRECS does not scale well as the size of the property au-
tomaton increases. When the size of the property automaton is
relatively larger, MUHORSAR often outperforms RTRECS in
orders of magnitude. It is also not effective for RTRECS to find
counter-examples by a naive search of the state space. For this
family of benchmarks, MUHORSAR successfully verified all
benchmarks although it has some difficulty in verifying “nat”,
whereas RTRECS couldn’t terminate for many benchmarks.

B. Verifying Multi-threaded Boolean Programs with Recursion

Table III shows experimental results for verifying a family
of multi-threaded boolean programs with recursion. The reach-
ability problem of multi-threaded programs with recursion
is known to be undecidable. For simplicity, we assume that
there are two threads asynchronously running for all the
benchmarks. As [7], we modeled concurrency by explicitly
writing a thread-scheduler in μHORS, and represent the thread
of control as a continuation. We modeled the interleaving
semantics of multi-threaded programs and the thread of control
is passed to each thread non-deterministically. We improved
[7] by further considering boolean programs, and modeled
boolean variables and parameters in a store-passing style.
Thanks to recursive types, we are able to model recursive
programs in μHORS. When there is no recursion in the
studied examples, we artificially added two mutually recursive
functions at a proper place in the program and allow the
functions to terminate non-deterministically.

We studied properties of mutual exclusion, deadlock, and
assertion checking (reduced to reachability checking), and

classified benchmarks into two rows by having positive or
negative answers. To study concurrent properties, we imple-
mented in the target programs the basic simplified usage of
synchronization mechanisms monitor (mutex with blocking
wait(), and notify() functions), and binary semaphore. To
translate the target programs to μHORS, (i) when one thread
has an exclusive access to a monitor or atomic operations of
a semaphore, we do not allow the interleaved execution of
another thread, whereas (ii) the thread of control is determin-
istically (resp. non-deterministically) passed to another thread
right after one thread calls wait() (resp. notify()).

TABLE III
RESULTS FOR VERIFYING MULTI-THREADED BOOLEAN PROGRAMS WITH

RECURSION

Bench #G #A R MUHORSAR RTRECSHorsat (#Ar) Sort (#Ar)
locks-e 103 5 N 0.160 0.625 -
dining-e 135 5 N 2.857 - -
dining-sp-e 193 5 N 10.997 - -
bluetooth 129 1 N 2.300 - -
bluetooth-v 158 1 N 272.626 - -
locks 95 5 Y 0.779 - -
plotter 88 4 Y 0.195 0.240 (3) 1.189
peterson 74 2 Y 3.331 (2) - -
peterson-d 80 9 Y - - -
dekker 94 2 Y - - -
pc-monitor 71 5 Y 0.338 - -
pc-sp 111 5 Y 2.250 - -
dining-sp 303 5 Y - - -

The benchmark “locks-e” implements the notorious example
that one thread acquires locks l1 and l2 in order, and another
thread acquires locks l2 and l1 in an opposite order. We verified
that it gives rise to a deadlock. The programs “dining-e”
and “dining-sp-e” implement the dining philosophers problem,
respectively, and both are wrong implementations and may
cause a deadlock. The property automaton for verifying them
specifies that, there is at most one philosopher waiting for
the chopstick to his right or left. The program “bluetooth”
is an example taken from [15], and is a simplified model of
Bluetooth drivers. A driver has four global variables that are
shared among threads, and a thread could modify the value
of global variables and either stops the driver or performs
I/O in the driver. We verified that the program does not fail
(i.e., never violates assertions in the program). The example
“bluetooth-v” is a variant of “bluetooth” that uses locks for
mutual exclusion, although it would still reach an error state.

The benchmark “locks” is a correct program for using
nested locks and is deadlock-free. The program “plotter” is
an example studied in the literature of pushdown systems
[16]. We verified that it satisfies some temporal property.
The benchmarks “peterson” and “dekker” implement the well-
known Peterson’s algorithm and Dekker’s algorithm for mutual
exclusion, respectively. The property automaton for them spec-
ifies that at most one thread can reside in the critical section at
the same time. For the last three benchmarks in the table, we
attempted to verify that they are deadlock-free. The program
“pc-monitor” and “pc-sp” implements the producer-consumer



problem using monitor and binary semaphore, respectively.
The program “dining-sp” implements Tannenbaum’s correct
solution to the dining philosophers problem using binary
semaphore. The property automaton for those programs spec-
ifies that at most one thread is waiting. For “peterson-d”,
we attempted to verify that Peterson’s algorithm is deadlock
free. Because two threads could interleave arbitrarily without
synchronization and the algorithm uses non-blocked busy wait-
ing, the property automaton for verification is slightly more
complex and specifies that, at most one thread is busy waiting
after a finite sequences of alternative (positively consecutive)
waiting of two threads.

For this family of benchmarks, MUHORSAR verified many
benchmarks while RTRECS failed verifying most of them
within the given timeout, including all benchmarks having
negative answers. The choice of the initial automaton also
matters a lot to verification, and MUHORSAR does not scale
well using the type-based construction.

VI. RELATED WORK

As already discussed, most closely related to the present
work is Kobayashi and Igarashi’s previous work on μHORS
model checking. Our new procedure is quite different from
theirs, and as confirmed by the experiments, ours is often more
efficient. Another contribution is that we have replaced their
assumption for relative completeness (which is the typability
in their own recursive intersection type system) with an
(arguably) more familiar one (the existence of an inductive
invariant that is a regular language).

Our model checking procedure has been inspired by the
recent model checking algorithms PREFACE [9] and HOR-
SAT [8] for ordinary HORS. In particular, the idea of our
abstract configuration graph (based on abstract binding) has
been borrowed from PREFACE. The main difference is in
abstraction; PREFACE collects two kinds of intersection types
(acceptance types and rejection types) and use them for
abstracting terms, whereas our procedure uses an automaton
for abstracting terms. The completeness of both PREFACE and
HORSAT relies on the fact that there can be finitely many
intersection types, which are not the case in the setting of
μHORS. That is why we had to use automata to guarantee
relative completeness. As a result, the refinement procedure is
completely different.

A few other extensions of HORS have been introduced
and verification methods have been considered. Kobayashi et
al. [17] introduced an extension of HORS called higher-order
multi-tree transducers (HMTT), and proposed a verification
method based on automata-based abstraction. The original
work did not employ abstraction refinement, but it has recently
been extended to employ counterexample-guided abstraction
refinement [18]. Their method is not directly applicable or
comparable due to a number of differences; the underlying
computation model of μHORS and HMTT (in particular,
HMTT is simply-typed, while μHORS has recursive types);
automata are used to abstract tree data in the HMTT veri-
fication procedure, whereas they are used to abstract terms

in our procedure. Ong and Ramsay [5] also introduced an
extension of HORS with pattern matching, called PMRS, and
proposed a verification procedure based on counterexample-
guided abstraction refinement (CEGAR). Their abstraction is
based on finite patterns, which is weaker than our automata-
based abstraction (in the sense that finite patterns can be
expressed by automata, but not vice versa). They do not
guarantee relative completeness in the sense of ours. (They
guarantee that a counterexample is eventually found if there
exists one, but do not guarantee the success of verification.)

Another line of related work is tree automata completion
for term rewriting systems (TRS) [19], [20], [21], [22]. Tree
automata completion computes a tree automaton that repre-
sents an over-approximation of the set of reachable terms
by a TRS. Therefore, one can check that no error term is
reachable, by first performing tree automata completion, and
then checking that the automaton accepts no error term. Since
a μHORS can be easily translated to a TRS (by representing
a function application t1t2 as @(t1, t2)), one can use a tree
automata completion procedure as a sound (but incomplete)
μHORS model checking procedure. Boichut et al. [23] has
proposed a counterexample-guided abstraction refinement for
tree automata completion. To our knowledge, however, no
tree automata completion procedure has been proposed that
satisfies a similar relative completeness condition.

Our analysis is also related to flow analysis for functional
programs, although we are not aware of any method that
guarantees relative completeness in the sense of ours. Jones
and Anderson [24] proposed a method for over-approximating
the set of reachable terms by a tree grammar. This seems
essentially equivalent to a special case of our abstract con-
figuration graph where the term automaton is collapsed to
an automaton with just one state (so that all the terms are
abstracted to the same element). In k-CFA [25], variable
bindings are distinguished based on calling contexts, while we
(like Preface [9]) distinguish them based on the abstraction
of the values of variables. It is actually easy to extend our
procedure to take calling contexts into account.

VII. CONCLUSION

We have proposed a new procedure for μHORS model
checking and proved that it is relatively complete with respect
to the existence of a regular invariant. We have implemented
the new procedure and confirmed that it often outperforms the
previous procedure for μHORS model checking.

A limitation of μHORS model checking is the weak rel-
ative completeness guarantee that invariants must be regular.
Consider, for example, the following μHORS (extended with
natural numbers and conditionals, which can be encoded in
μHORS):

S → F 0 0
F mn → a (F (m+ 1) (n+ 1)) (Gmn)
Gmn → if m = n then end else fail.

Suppose that the property automaton accepts the set of trees
that do not contain fail. Then, the above grammar satisfies



the property, but there is no regular invariant, since any induc-
tive invariant contains F mn if and only if m = n, which is
not regular (assuming that a natural number n is represented as
Succn Zero). Thus, our μHORS model checking procedure (as
well as the previous one [7]) would fail. To address this issue,
we plan to combine μHORS model checking with predicate
abstraction, just like the ordinary HORS model checking has
been combined with predicate abstraction [4].

ACKNOWLEDGMENT

This work is partially supported by Kakenhi 23220001 and
25730039. The authors would like to thank Atsushi Igarashi
and anonymous referees for useful comments.

REFERENCES

[1] T. Knapik, D. Niwinski, and P. Urzyczyn, “Higher-order pushdown
trees are easy,” in Proceedings of FoSSaCS 2002, ser. Lecture Notes
in Computer Science, vol. 2303. Springer, 2002, pp. 205–222.

[2] C.-H. L. Ong, “On model-checking trees generated by higher-order
recursion schemes,” in Proceedings of IEEE Symposium on Logic in
Computer Science (LICS). IEEE Computer Society Press, 2006, pp.
81–90.

[3] N. Kobayashi, “Model checking higher-order programs,” Journal of the
ACM, vol. 60, no. 3, 2013.

[4] N. Kobayashi, R. Sato, and H. Unno, “Predicate abstraction and CEGAR
for higher-order model checking,” in Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM Press, 2011, pp. 222–233.

[5] C.-H. L. Ong and S. Ramsay, “Verifying higher-order programs with
pattern-matching algebraic data types,” in Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages
(POPL). ACM Press, 2011, pp. 587–598.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The
MIT Press, 1999.

[7] N. Kobayashi and A. Igarashi, “Model checking higher-order programs
with recursive types,” in Proceedings of ESOP 2013, ser. Lecture Notes
in Computer Science, vol. 7792. Springer, 2013.

[8] C. H. Broadbent and N. Kobayashi, “Saturation-based model checking
of higher-order recursion schemes,” in Proceedings of CSL 2013, ser.
LIPIcs, vol. 23, 2013, pp. 129–148.

[9] S. Ramsay, R. Neatherway, and C.-H. L. Ong, “A type-directed ab-
straction refinement approach to higher-order model checking,” in
Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of
Programming Languages (POPL). ACM Press, 2014, pp. 61–72.

[10] R. M. Amadio and L. Cardelli, “Subtyping recursive types,” ACM
Transactions on Programming Languages and Systems, vol. 15, no. 4,
pp. 575–631, September 1993.

[11] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
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