
Combining Type-Based Analysis and Model Checking for
Finding Counterexamples against Non-Interference

Hiroshi Unno
University of Tokyo

uhiro@yl.is.s.u-tokyo.ac.jp

Naoki Kobayashi
Tohoku University

koba@ecei.tohoku.ac.jp

Akinori Yonezawa
University of Tokyo

yonezawa@yl.is.s.u-tokyo.ac.jp

Abstract
Type systems for secure information flow are useful for efficiently
checking that programs have secure information flow. They are,
however, conservative, so that they often reject safe programs as
ill-typed. Accordingly, users have to check whether the rejected
programs indeed have insecure flows. To remedy this problem, we
propose a method for automatically finding a counterexample of
secure information flow (input states that actually lead to leakage
of secret information). Our method is a novel combination of type-
based analysis and model checking; Suspicious execution paths
(that may cause insecure information flow) are first found by using
the result of a type-based information flow analysis, and then a
model checker is used to check whether the paths are indeed unsafe.
We have formalized and implemented the method. The result of
preliminary experiments shows that our method can often find
counterexamples faster than a method using a model checker alone.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Information flow controls; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Model check-
ing; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms Security, Languages, Theory, Verification

Keywords non-interference, type system, model checking

1. Introduction
A number of type systems for secure information flow have re-
cently been proposed [8, 9, 14, 15, 20, 21]. Those type systems
guarantee that well-typed programs never leak secret information,
so that the problem of checking secure information flow is reduced
to the problem of type checking. While the type-based information
flow analysis is fast and scalable, it is sometimes too conservative
and rejects innocent programs as ill-typed (i.e., false alarms may be
generated). For example, let h be a variable holding a high-security
value and l a variable that may be read by a low-security observer.
The assignment l := h − h does not leak secret information, but

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’06 June 10, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-374-3/06/0006. . . $5.00.

it is rejected by type systems for secure information flow [20]1. In
such a case, users have to manually inspect the program to check
whether the ill-typed program is indeed unsafe. Such manual in-
spection is error-prone; users may overlook real violation of secure
information flow.

To remedy the problem above, we propose a method for auto-
matically finding input states that actually lead to leakage of se-
cret information. More precisely, our method finds a counterexam-
ple against the non-interference property [3], a standard criterion
for secure information flow. The counterexample is a pair of input
states which only differ in the values of high-security variables and
lead to output states that differ in the values of low-security vari-
ables. For example, a counterexample for the program:

if h then l := 1 else l := 0

is the pair ({h = true, l = 0}, {h = false, l = 0}). The
counterexample can convince the user that the program is indeed
unsafe.

Our method is a novel combination of type-based analysis and
model checking. The result of a type-based information flow analy-
sis is first used to find suspicious execution paths that may cause in-
secure information flow, and then a model checker is used to check
whether those paths are indeed unsafe (and if so, output a pair of
input states that go through the paths). To illustrate our approach,
we ask you to consider the following program (which is ill-typed
in the usual type system for secure information flow):

cex1 = x0 := h;

if b1 then x1 := x0 else . . .

...

if bn then xn := xn−1 else . . .

l := xn.

Throughout this paper, we assume that h is a high-security variable,
and l is a low-security variable. The program above leaks infor-
mation about h if all the conditional expressions execute the then-
branch. Our method consists of the following two main phases.

A. Finding a pair of execution paths that may violate the non-
interference property Let ρx be the security level of a variable
x. From Volpano and Smith’s type system, we obtain the following
constraints:

ρh(= H) ≤ ρx0 ≤ ρx1 ≤ · · · ≤ ρxn−1 ≤ ρxn ≤ ρl(= L).

From the constraints, an inconsistent constraint H ≤ L is obtained.
Thus, we can conclude that the program is ill-typed. Actually, we

1 Of course, this example is too simple and unlikely to appear in real
programs. In general, however, as the example shows, type-based analysis
is not good at analyzing value-dependent behavior of programs.

can obtain more information from the constraints: Notice that the
existence of a constraint ρx ≤ ρy implies that information about
the value of x may flow to the value of y. Thus, the above con-
straints tell us that information about the value stored in h may flow
to variable l through variables x0, x1, . . . , xn−1, xn in this order.
From this reasoning, we can find the following execution path as a
suspicious execution path that may violate secure information flow:

πex1 = x0 := h;

assume(b1); x1 := x0;

...

assume(bn); xn := xn−1;

l := xn.

Here, the path is represented as a program with assume statement.
The statement assume(b1) above means that the then-branch of the
original conditional expression is chosen.

Let us consider another ill-typed program, which contains indi-
rect information flow:

cex2 = if h then (l := 1)pc1 else (l := 0)pc2 .

From Volpano and Smith’s type system, we obtain the following
unsatisfiable constraints:

ρh(= H) ≤ ρpc1
≤ ρl(= L).

(We also get the constraint ρh ≤ ρpc2
≤ ρl, but we only need

to focus on a subset of inconsistent constraints.) Here, ρpc is the
security level of information about whether the program point pc
is executed. From the constraints, we know that information about
the value stored in h may flow to pc1, and then to l, so that the
following pair of execution paths (one of which visits pc1, and the
other does not) may violate the non-interference property:

Πex2 = ((assume(h); l := 1), (assume(!h); l := 0)).

Here, the path in the lefthand side takes the then-branch and the
path in the righthand side takes the else-branch.

B. Checking whether the pair of execution paths are unsafe The
next phase is to check whether the suspicious execution paths are
indeed unsafe. For this purpose, we use the idea of model-checking-
based information flow analysis [1, 18]. Let (π1, π2) be a pair of
suspicious execution paths that may violate the non-interference
property. Let π′

2 be the program obtained from π2 by renaming each
variable x in π2 with x′. Then, the two execution paths violate the
non-interference property if and only if the program π1; π

′
2 with

some initial state satisfying x = x′ for every variable other than
high-security variables ends up in a state where l �= l′ for some
low security variable l2. We can use a model checker to check
whether the latter is the case, and if so, find an initial state. For
example, we can check whether the second program cex2 violates
secure information flow by checking whether the assertion in the
following program is violated:

assume(l = l′);
(assume(h); l := 1); (assume(!h′); l′ := 0);
assert(l = l′).

A model checker can find that the assertion is indeed violated, and
generate a counterexample h = true, h′ = false, l = l′ = 0,
which is also a counterexample against the non-interference of the
original program cex2.

Instead of combining type-based analysis and model checking
as described above, it is possible to use model checking alone [1]

2 Actually, part of π1 and π′
2 can be shared by using the optimization

proposed by Terauchi and Aiken [18].

to find a counterexample against the non-interference property. We,
however, expect that our combination of type-based analysis and
model checking can often find counterexamples faster than the
method using model checking alone [1], since the type-based anal-
ysis allows us to prune innocent execution paths first, and to focus
on particular pairs of execution paths in the model checking phase.
For example, the program cex1 contains 2n execution paths (so the
number of pairs of execution paths is 22n), but after type-based
analysis, we only need to inspect a single pair of execution paths.
The expectation that our method often works faster is supported by
the result of preliminary experiments.

The rest of this paper is structured as follows. Section 2 intro-
duces a simple imperative language and a type system for infor-
mation flow analysis. The language and the type system are essen-
tially the same as those of Volpano and Smith [20], except that
minor modification has been made for the formalization of our
method. Section 3 formalizes our method for finding a counterex-
ample against non-interference. Section 4 and Section 5 report im-
plementation of our method and experiments respectively. We have
used the BLAST model checker [5] and implemented our method
for a subset of C language. Section 6 compares our method with
related work. Section 7 discusses future work and Section 8 con-
cludes.

2. Language and Type System
This section introduces a simple imperative language and a type
system for information flow analysis.

2.1 Language

The abstract syntax of the language is defined as follows:

(Expression) a ::= x | n | a1 + a2 | !a
(Labeled Expression) e ::= aη

(Command) c ::= (skip)pc

| (x := e)pc

| (c1; c2)
pc

| (if e then c1 else c2)
pc

| (while e do c)pc

Here, the meta-variables x and n range over program variables and
integers respectively. Labels ranged over by the meta-variables pc
and η are attached to commands and expressions respectively. We
assume that each command has a unique label pc and that each
labeled expression has a unique label η. We write η2pc(η) for
the label pc of the command in which an expression labeled by
η occurs.

We write (c, σ) ↓ σ′ for the evaluation relation, meaning that
the program c with the initial state σ ends up in the state σ′. The
formal definition of the relation is given in Figure 1. In the rules,
σ[x �→ n](y) has value n if x = y, and σ(y) otherwise.

2.2 Type System for Secure Information Flow

Our type system for secure information flow is essentially the same
as the standard type system of Volpano and Smith [20]. For the
purpose of formalizing our method, however, we present the type
system in a slightly different way:

1. Instead of explicitly considering a lattice of security levels, we
just use variable names and labels (pc, η) as security levels. For
example, a variable name x also stands for the security level of
values stored in x.

2. Because of the difference above, we have no usual type environ-
ment that maps each variable to its type (i.e., its security level
since we do not have compound data structures). Instead, we
have a set of constraints of the form τ1 ≤ τ2 (where τ1, τ2 are

(x, σ) ↓ σ(x)

(n, σ) ↓ n

(ai, σ) ↓ ni (for i = 1, 2)

(a1 + a2, σ) ↓ n1 + n2

(a, σ) ↓ n(�= 0)

(!a, σ) ↓ 0

(a, σ) ↓ 0

(!a, σ) ↓ 1

(skip, σ) ↓ σ

(e, σ) ↓ n

(x := e, σ) ↓ σ[x �→ n]

(c1, σ) ↓ σ′′ (c2, σ
′′) ↓ σ′

(c1; c2, σ) ↓ σ′

(e, σ) ↓ n(�= 0) (c1, σ) ↓ σ′

(if e then c1 else c2, σ) ↓ σ′

(e, σ) ↓ 0 (c2, σ) ↓ σ′

(if e then c1 else c2, σ) ↓ σ′

(e, σ) ↓ n(�= 0) (c, σ) ↓ σ′′

(while e do c, σ′′) ↓ σ′

(while e do c, σ) ↓ σ′

(e, σ) ↓ 0

(while e do c, σ) ↓ σ

Figure 1. The Evaluation Rules: (e, σ) ↓ e′ and (c, σ) ↓ σ′

variables or labels), which expresses the order of security levels
(or, in which direction information may flow) as an assumption
of a type judgment.

The syntax of types and type constraints are defined as follows:

(Data Type) τ ::= x | η | pc
(Constraints) C ::= {τ1 ≤ τ ′

1, . . . , τn ≤ τn}
A type judgment is of the form C � c : pc cmd (for a command)

or C � e : τ (for a labeled expression). Intuitively, a judgment
C � c : pc cmd means that the command c conforms to the
security policy C, which describes in which direction information
may flow. τ1 ≤ τ2 means that the security level τ1 is lower than τ2;
in other words, information on a value of level τ1 may flow to τ2.
For example, {y ≤ x, pc ≤ x} � (x := y)pc : pc cmd is a valid
judgment, while {x ≤ y, pc ≤ x} � (x := y)pc : pc cmd is not.
The label pc in a judgment C � c : pc cmd expresses the security
level of information about whether c is executed (which is actually
the same as the label of c in our type system).

The typing rules are shown in Figure 2. In rule T-EXP, FV(a)
denotes the set of variables occurring in a. We explain a few rules
below. In rule T-ASSIGN, the constraint pc ≤ x captures the fact
that information about whether the command is executed may flow
to the value of variable x (since an observer may be able to guess
whether the command was executed by looking at the final value
of x). The constraint pc ≤ τi in rule T-SEQ captures the fact that
information about whether the command c1; c2 is executed flows
to information about whether the command c1 or c2 is executed
(since if an observer knows that c1 has been executed, he or she
can infer that c1; c2 has been executed). We write C |= τ0 ≤ τn

if there exists τ1, . . . , τn−1 such that τi ≤ τi+1 ∈ C for each
i(0 ≤ i < n).

In order to discuss the correctness of the type system, we for-
mally define (T1, T2)-non-interference and its counterexample.
(T1, T2)-non-interference states that the final values of variables
in T2 never depend on the initial values of variables in T1.

Definition 2.1. A pair of states (σ1, σ2) is a counterexample
against (T1, T2)-non-interference of a program c if: (i) σ1 =T1

σ2,
(ii) (c, σ1) ↓ σ′

1 and (c, σ2) ↓ σ′
2 for some σ′

1 and σ′
2, and

x ≤ η ∈ C for each x ∈ FV(a)

C � aη : η
(T-EXP)

C � (skip)pc : pc cmd
(T-SKIP)

C � e : τ pc ≤ x ∈ C τ ≤ x ∈ C

C � (x := e)pc : pc cmd
(T-ASSIGN)

C � ci : τi cmd pc ≤ τi ∈ C (for i = 1, 2)

C � (c1; c2)
pc : pc cmd

(T-SEQ)

C � e : τ C � ci : τi cmd
pc ≤ τi ∈ C τ ≤ τi ∈ C (for i = 1, 2)

C � (if e then c1 else c2)
pc : pc cmd

(T-IF)

C � e : τ C � c : τ ′ cmd pc ≤ τ ′ ∈ C τ ≤ τ ′ ∈ C

C � (while e do c)pc : pc cmd
(T-WHILE)

Figure 2. The Typing Rules: C � e : τ and C � c : pc cmd

(iii) σ′
1 �=T2 σ′

2. If there is no counterexample, we say that c
satisfies (T1, T2)-non-interference. Here, σ1 =T σ2 means that
σ1(z) = σ2(z) holds for every z ∈ T . T is the complement of T .

The following is a standard type soundness theorem:

Theorem 2.1 (soundness). Let H be the set of high security
variables and L be the set of low security variables. Suppose
C �|= h ≤ l for every h ∈ H and l ∈ L. If C � c : pc cmd
holds, then c satisfies (H, L)-non-interference.

3. Algorithm of Finding Counterexample
As mentioned in Section 1, our method finds a pair of execution
paths that may violate the non-interference property (phase A), and
then checks whether the pair of execution paths are unsafe (phase
B). Each of (A) and (B) consists of the following sub-steps.

(A.1) Finding Suspicious Flow Perform type inference to find a
suspicious flow of information from a high-security variable to
a low-security variable that may be caused by a program.

(A.2) Path Pruning Generate a pair of execution paths that may
cause the suspicious flow of information found in A.1.

(B.1) Self-Composition Express the condition that the pair of ex-
ecution paths (generated in A.2) satisfies the non-interference
property as a safety property, by using the idea of self-compo-
sition [1, 18].

(B.2) Finding Counterexample Use a model checker to find a
counterexample (if any) against the safety property generated
in B.1. That counterexample serves as a counterexample against
the non-interference property of the original program.

We explain each step in Subsections 3.1-3.4 by using the fol-
lowing program cex3:




(
if bη1 then (x := hη2)pc2

else (x := 0η3)pc3

)pc1

;
(
if (x = 1)η4 then (l := 1η5)pc5

else (l := 0η6)pc6

)pc4




pc0

3.1 Finding Suspicious Flow

Given a program c, we first obtain the least set C of type constraints
such that C � c : pc cmd; Such an algorithm is easily obtained by

(e, σ) ↓ n(�= 0)

(assume(e), σ) ↓ σ

(e, σ) ↓ n(�= 0)

(assert(e), σ) ↓ σ

(e, σ) ↓ 0

(assert(e), σ) ↓ error

(π1, σ) ↓ σ′

(if ∗ then π1 else π2, σ) ↓ σ′

(π2, σ) ↓ σ′

(if ∗ then π1 else π2, σ) ↓ σ′

(π, σ) ↓ σ′′

(while ∗ do π, σ′′) ↓ σ′

(while ∗ do π, σ) ↓ σ′

(while ∗ do π, σ) ↓ σ

Figure 3. The Evaluation Rules for New Commands: (π, σ) ↓ σ′

(π, σ1) ↓ σ′
1 (π, σ2) ↓ σ′

2

(〈π〉, σ1, σ2) ↓ (σ′
1, σ

′
2)

(Π1, σ1, σ2) ↓ (σ′′
1 , σ′′

2)
(Π2, σ

′′
1 , σ′′

2) ↓ (σ′
1, σ

′
2)

(Π1; Π2, σ1, σ2) ↓ (σ′
1, σ

′
2)

(π1, σ1) ↓ σ′
1 (π2, σ2) ↓ σ′

2

(π1 ⊕ π2, σ1, σ2) ↓ (σ′
1, σ

′
2)

(π2, σ1) ↓ σ′
1 (π1, σ2) ↓ σ′

2

(π1 ⊕ π2, σ1, σ2) ↓ (σ′
1, σ

′
2)

(π, σ1) ↓ σ′′
1 (π, σ2) ↓ σ′′

2

(repeat〈π〉, σ1′′, σ2′′) ↓ (σ′
1, σ

′
2)

(repeat〈π〉, σ1, σ2) ↓ (σ′
1, σ

′
2)

(repeat〈π〉, σ1, σ2) ↓ (σ1, σ2)

Figure 4. The Evaluation Rules for Doubled Pro-

grams: (Π, σ1, σ2) ↓ (σ′
1, σ

′
2)

reading the typing rules in Figure 2 in a bottom-up manner. For
example, the following constraints are obtained for cex3:

C = {pc0 ≤ pc1, pc0 ≤ pc4,

b ≤ η1, η1 ≤ pc2, η1 ≤ pc3, pc1 ≤ pc2, pc1 ≤ pc3,

h ≤ η2, η2 ≤ x, pc2 ≤ x, η3 ≤ x, pc3 ≤ x,

x ≤ η4, η4 ≤ pc5, η4 ≤ pc6, pc4 ≤ pc5, pc4 ≤ pc6,

η5 ≤ l, pc5 ≤ l, η6 ≤ l, pc6 ≤ l}.
Then, a suspicious flow (path) of information is constructed

from the set of constraints. Let C be the least C′ such that C′ � c :
pc cmd. A sequence of data types τ1 ·. . .·τn is called an information
flow path from τ1 to τ2 of a program c, if τi ≤ τi+1 ∈ C for each
i(1 ≤ i ≤ n−1), and no variable occurs twice in the sequence. Let
flows(c, T1, T2) denotes the set of information flow paths of c from
an element of T1 to an element of T2. We call an information flow
path τ1 ·. . .·τn suspicious if τ1 ·. . .·τn ∈ flows(c, H, L), where H
and L are sets of high- and low-security variables respectively. If c
has no suspicious flow, c has secure information flow. For example,
for the program cex3, flows(cex3, H, L) is:

{h · η2 · x · η4 · pc5 · l, h · η2 · x · η4 · pc6 · l}.
Here, we use the first information flow path h · η2 · x · η4 · pc5 · l to
explain the succeeding steps.

3.2 Path Pruning

The next step is to construct a pair of execution paths that may
cause the suspicious information flow path obtained in the previ-
ous step (in other words, to prune paths that are irrelevant to the
information flow path).

We first convert the information flow path to a sequence of
pc labels, which represents control flow information, by using the
function f2pc given below. (Recall that η2pc(η) denotes the label
of the command in which η occurs.)

f2pc(x) = ε
f2pc(x · η · y · �τ) = η2pc(η) · f2pc(y · �τ)

f2pc(x · η · �pc · pc · y · �τ) = η2pc(η) · pc · f2pc(y · �τ)

The second clause of the definition of f2pc captures the flow caused
by an assignment, and the third clause captures the flow caused by
an if- or a while-statement.

The sequence generated by f2pc consists of the labels of if-
statements, while-statements and assignments. Intuitively, the label
of an if-statement occurring in the sequence expresses that two ex-
ecution paths must split into the then-branch and the else-branch.
Similarly, the label of a while-statement means that the two exe-
cution paths must go through the while-loop the same number of
times first, then the two must split: one of the paths must exit the
loop and the other must not. The label of an assignment expresses
that one of the two execution paths must execute the assignment if
the two have splited, otherwise both of the two must execute the
assignment. For example,

f2pc(h · η2 · x · η4 · pc5 · l) = pc2 · pc4 · pc5.

This sequence intuitively expresses that two execution paths should
first go through the assignment labeled by pc2, split into the then-
and the else-branch of the if-statement labeled by pc4, and then one
of the paths must go through the assignment labeled by pc5.

Next, we construct the set of pairs of execution paths expressed
by the sequence of pc labels. The set of pairs of execution paths is
expressed as a doubled program given below.

Definition 3.1. The sets of extended commands and doubled pro-
grams are given by the following syntax:

(extended commands) π ::= skip
| x := e
| assume(e)
| assert(e)
| π1; π2

| if e then π1 else π2

| while e do π
| if ∗ then π1 else π2

| while ∗ do π
(doubled programs) Π ::= 〈π〉

| Π1; Π2

| π1 ⊕ π2

| repeat〈π〉
An extended command expresses a set of execution paths. The

new command assume(e) checks that the value of e is non-zero,
and if so proceeds to the next command; If the value of e is 0,
the evaluation gets stuck (so that the command never terminates).
The command assert(e) is the same, except that it terminates
with a special state error if the value of e is 0. The assert
command is only used in the next step, for converting the non-
interference property into a safety property (that the state error is
never reached). The command if ∗ then π1 else π2 executes π1

or π2 in a non-deterministic manner. The command while ∗ do π
repeats π an arbitrary number of times. The evaluation rules for the
new commands are given in Figure 3.

A doubled program expresses a set of pairs of execution paths.
〈π〉 expresses that both of the two execution paths belong to (the set
of execution paths expressed by) π. The doubled program π1 ⊕ π2

means that one of the execution paths belongs to π1, while the other
belongs to π2. Π1; Π2 expresses the sequential composition of path
pairs. For example, (x := 1 ⊕ x := 2); (y := 1 ⊕ y := 2)
expresses the set of path pairs {((x := 1; y := 1), (x := 2; y :=
2)), ((x := 1; y := 2), (x := 2; y := 1))}. repeat〈π〉 expresses
that both of the two execution paths repeat paths which belong to π

the same number of times. We write (Π, σ1, σ2) ↓ (σ′
1, σ

′
2) for the

evaluation relation, meaning that the doubled program Π with the
initial states σ1 and σ2 ends up in the states σ′

1 and σ′
2. Intuitively,

the relation expresses that Π contains a pair of execution paths, one
of which starts with state σ1 and ends in σ′

1 and the other starts
with state σ2 and ends in σ′

2. The formal definition of the relation
is given in Figure 4.

We formalize a (non-deterministic) algorithm for constructing a
doubled program from a command c and a sequence s of pc labels
(generated by f2pc) by using a 4-tuple relation s � c −→ Π � s′.
Intuitively, the relation means that Π is the set of pairs of two
execution paths of the command c that conform to control flow
expressed by s\s′ (the sequence obtained by removing the postfix
s′ from s).

The rules for s � c −→ Π � s′ is given in Figure 5. In the rules,
PCs(c) returns the set of pc labels occurring in the command c,
erase(c) erases all pc labels occurring in c, and length(s) returns
the length of the sequence s of pc labels. Let τ1 · . . . · τn be a
suspicious information flow path obtained in the previous step. By
reading the rules in a bottom-up manner, we can obtain Π such that
f2pc(τ1 · . . . · τn) � c −→ Π � ε.3 Then, the doubled program
Π expresses a set of execution paths that may cause the suspicious
information flow.

We explain some rules below. In rule P-ASSIGN, the first la-
bel pc of the sequence indicates that both of the two execution
paths must execute (x := e)pc. Consequently, the algorithm con-
sumes pc, and generates 〈x := e〉. In rule P-IF-THEN, the first la-
bel pc′ of the sequence (together with the condition pc′ ∈ PCs(c1)
indicates that both of the two execution paths must execute the
then-branch. Thus, the algorithm prunes the else-branch, and gen-
erates a doubled program which goes through the then-branch. In
rule P-IF-THEN-IMP, the notation !e expresses a logical negation
of the labeled expression e. The first label pc of the sequence
indicates that the two execution paths must split into the then-
branch c1 and the else-branch c2. Suppose that the second la-
bel pc′ occurs in c1. The algorithm consumes pc, and generates
(assume(e); π)⊕(assume(!e); c2). Here, the extended command
π is generated from c1 by using the relation s � c ��� π � s′. The
relation s � c ��� π � s′ is used to generate an extended com-
mand π that expresses a set of single execution paths that conform
to the control flow expressed by s\s′.

There are two rules P-WHILE and P-WHILE-IMP for while-
statements. Rule P-WHILE-IMP covers the case where an indirect
information flow (caused by the two execution paths going through
the while-loop different numbers of times) occurs from the con-
dition of the while-loop. The part repeat〈assume(e); erase(c)〉
in the rule’s output means that the two execution paths must first
go through the while-loop the same number of times, and the part
π ⊕ assume(!e) means that the paths must then split: one path
further goes through the while-loop, while the other path exits.
Rule P-WHILE handles the remaining case, where an information
flow first occurs inside the body of the while-loop. The first part
repeat〈assume(e); erase(c)〉 of the rule’s output means that the
two execution paths must go through the while-loop the same num-
ber of times, and the second part 〈assume(e)〉; Π means that the
flow specified by pc′ must occur inside the body of the while-loop.
For example, the following doubled program {Πex3} is obtained
from cex3.

〈assume(b); x := h〉;
((assume(x = 1); l := 1) ⊕ (assume(x �= 1); l := 0)).

3 There are finitely many such Π since the rules are non-deterministic. A
deterministic, complete algorithm for generating a single doubled command
for each pair of c and τ1 · . . . · τn seems to be hard to construct. We discuss
a deterministic, incomplete version of the algorithm in Section 4.1.

In order to discuss the correctness of the path pruning, we
formally define (T1, T2)-non-interference of a doubled program
and its counterexample.

Definition 3.2. A pair of states (σ1, σ2) is a counterexample
against (T1, T2)-non-interference of a doubled program Π if: (i)
σ1 =T1

σ2, (ii) (Π, σ1, σ2) ↓ (σ′
1, σ

′
2) for some σ′

1 and σ′
2, and

(iii) σ′
1 �=T2 σ′

2. If there is no counterexample, we say that Π
satisfies (T1, T2)-non-interference.

The soundness and completeness of path pruning are stated as
the following theorems. Proofs are given in the full version of this
paper [19].

Theorem 3.1 (soundness). For any doubled program Π such
that s � c −→ Π � s′ is derivable for some s and s′, if
a pair of states (σ1, σ2) is a counterexample against (H, L)-
non-interference of Π, then (σ1, σ2) is a counterexample against
(H, L)-non-interference of c.

Theorem 3.2 (completeness). If a pair of states (σ1, σ2) is a
counterexample against (H, L)-non-interference of a program c,
then there exist a doubled program Π and a sequence τ1 · · · τn that
satisfy the following conditions:

(i) τ1 · . . . · τn ∈ flows(c, H, L),
(ii) f2pc(τ1 · . . . · τn) � c −→ Π � ε, and

(iii) (σ1, σ2) is a counterexample against (H, {τn})-non-interference
of Π.

Intuitively, the soundness means that if there exists a counterex-
ample for a doubled program Π which is obtained from a program
c, then it is a counterexample for c. The completeness means that
any counterexample for c is a counterexample for some doubled
program Π which is obtained from c.

3.3 Self-Composition

The next step is to turn the non-interference property of the doubled
program obtained in the previous step into a safety property, by
using the idea of self-composition [1]. As observed by Barthe et
al. [1], a program c satisfies (T1, T2)-non-interference if and only
if the following self-composition of c never reach the state error.

assume(�u = ξ(�u)); c; ξ(c); assert(�v = ξ(�v)),

Here, ξ(�u) and ξ(c) are the sequence of variables and the command
obtained from �u and c by renaming each variable x with a fresh
variable x′. �u is the sequence consisting of all the variables which
is not in T1, and �v is the sequence consisting of all the variables in
T2.

Similarly, a doubled program Π satisfies (T1, T2)-non-inter-
ference if and only if the following self-composition never reach
the state error.

assume(�u = ξ(�u)); �Π�; assert(�v = ξ(�v)),

Here, �·� is defined in Figure 6. For a double program Π obtained
using a suspicious flow τ1 ·. . .·τn, we use T1 = H and T2 = {τn}.

Actually, we adopt an optimized self-composition proposed by
Terauchi and Aiken [18] for statements whose effects never depend
on the values of the variables in T1. A predicate bd(e) holds if the
value of e may depend on the values of the variables in T1:

bd(aη) ≡ flows(c, T1, {η}) �= ∅.
For example, an optimized self-composition of Πex3 yields:

assume(l = l′ and x = x′ and b = b′);

assume(b); x := h; x′ := h′;

assume(x = 1); l := 1; assume(x′ �= 1); l′ := 0;

assert(l = l′).

s � c −→ 〈erase(c)〉 � s
(P-EPSILON)

pc · s � (x := e)pc −→ 〈x := e〉 � s
(P-ASSIGN)

s � c1 −→ Π1 � s′′ s′′ � c2 −→ Π2 � s′

s � c1; c2 −→ Π1; Π2 � s′
(P-SEQ)

pc′ ∈ PCs(c1) pc′ · s � c1 −→ Π � s′

pc′ · s � (if e then c1 else c2)
pc −→ 〈assume(e)〉; Π � s′

(P-IF-THEN)

pc′ ∈ PCs(c2) pc′ · s � c2 −→ Π � s′

pc′ · s � (if e then c1 else c2)
pc −→ 〈assume(!e)〉; Π � s′

(P-IF-ELSE)

pc′ ∈ PCs(c1) pc′ · s � c1 ��� π � s′

pc · pc′ · s � (if e then c1 else c2)
pc −→ (assume(e); π) ⊕ (assume(!e); erase(c2)) � s′

(P-IF-THEN-IMP)

pc′ ∈ PCs(c2) pc′ · s � c2 ��� π � s′

pc · pc′ · s � (if e then c1 else c2)
pc −→ (assume(e); erase(c1)) ⊕ (assume(!e); π) � s′

(P-IF-ELSE-IMP)

pc′ ∈ PCs(c) length(pc′ · s) > length(s′′)
pc′ · s � c −→ Π � s′′ s′′ � (while e do c)pc −→ Π′ � s′

pc′ · s � (while e do c)pc −→ repeat〈assume(e); erase(c)〉; 〈assume(e)〉; Π; Π′ � s′
(P-WHILE)

pc′ ∈ PCs(c) pc′ · s � (while e do c)pc ��� π � s′

pc · pc′ · s � (while e do c)pc −→ repeat〈assume(e); erase(c)〉; (π ⊕ assume(!e)) � s′
(P-WHILE-IMP)

s � c ��� erase(c) � s
(Q-EPSILON)

pc · s � (x := e)pc ��� x := e � s
(Q-ASSIGN)

s � c1 ��� π1 � s′′ s′′ � c2 ��� π2 � s′

s � c1; c2 ��� π1; π2 � s′
(Q-SEQ)

pc′ ∈ PCs(c1) pc′ · s � c1 ��� π � s′

pc′ · s � (if e then c1 else c2)
pc ��� assume(e); π � s′ (Q-IF-THEN)

pc′ ∈ PCs(c2) pc′ · s � c2 ��� π � s′

pc′ · s � (if e then c1 else c2)
pc ��� assume(!e); π � s′ (Q-IF-ELSE)

pc′ ∈ PCs(c) length(pc′ · s) > length(s′′)
pc′ · s � c ��� π � s′′ s′′ � (while e do c)pc ��� π ′ � s′

pc′ · s � (while e do c)pc ��� while ∗ do (assume(e); erase(c)); assume(e); π; π′ � s′
(Q-WHILE)

Figure 5. The Path Pruning Rules: s � c −→ Π � s′ and s � c ��� π � s′

�〈skip〉� = skip
�〈x := e〉� = x := e; ξ(x) := x (¬bd(e))
�〈x := e〉� = x := e; ξ(x) := ξ(e) (bd(e))

�〈assume(e)〉� = assume(e) (¬bd(e))
�〈assume(e)〉� = assume(e); assume(ξ(e)) (bd(e))

�〈π1; π2〉� = �〈π1〉�; �〈π2〉�
�〈if e then π1 else π2〉� = if e then �〈π1〉� else �〈π2〉� (¬bd(e))
�〈if e then π1 else π2〉� = if e then π1 else π2; (bd(e))

if ξ(e) then ξ(π1) else ξ(π2)
�〈while e do π〉� = while e do �〈π〉� (¬bd(e))
�〈while e do π〉� = while e do π; while ξ(e) do ξ(π) (bd(e))

�〈if ∗ then π1 else π2〉� = if ∗ then π1 else π2;
if ∗ then ξ(π1) else ξ(π2)

�〈while ∗ do π〉� = while ∗ do π; while ∗ do ξ(π)
�Π1; Π2� = �Π1�; �Π2�
�π1 ⊕ π2� = if ∗ then π1; ξ(π2) else π2; ξ(π1)

�repeat〈π〉� = while ∗ do �〈π〉�

Figure 6. The Self-Composition of Path Pairs

3.4 Finding Counterexample

The last step is to check whether the self-composition obtained in
the previous step reaches an error state, and generate a counterex-
ample if so. In the experiments reported in Section 5, we used the
model checker BLAST [5] for this purpose. For example, the fol-
lowing counterexample is obtained for cex3:

l = l′ = 0, x = x′ = 0, b = b′ = true, h = 1, h′ = 0.

4. Implementation
We have implemented our algorithm for a subset of C. We used
CIL [11] for parsing programs, and used BLAST model checker [5]
for the fourth step of the algorithm described in Section 3. There are
some discrepancies between the theory described in Section 3 and
the actual implementation. First, we have traded the completeness
for the efficiency. Second, we have extended the target language
and its type system for information flow to handle C-specific fea-
tures (pointers and jumps). We discuss the first point in Subsec-
tion 4.1 and then discuss the second point in Subsection 4.2.

4.1 Optimization of the Algorithm

Our implementation applies a few optimizations to speed up our
algorithm for finding a counterexample. Some of them sacrifice the
completeness of the algorithm. We think that losing the complete-
ness is not so big a problem, since we can always revert to the
usual self-composition approach [18] (or just give up) when our
algorithm fails to find a counterexample.

• Prioritization of suspicious information flow paths
In the first step of our algorithm, more than one suspicious
information flow paths may be found. Our system inspects those
paths one by one (until a counterexample is found), giving a
higher priority to information flow path which involves fewer
indirect flows.

• Deterministic algorithm for constructing doubled programs
In the second step, more than one doubled programs may be
generated for each suspicious information flow path. That is
because the rules in Figure 5 are non-deterministic; Note that
the rule P-EPSILON is applicable to any command c. In the
actual implementation, rules P-EPSILON and Q-EPSILON are
replaced with the following rules.

pc /∈ PCs(c)

pc · s � c −→ 〈erase(c)〉 � pc · s (P-EPSILON-DET)

pc /∈ PCs(c)

pc · s � c ��� erase(c) � pc · s (Q-EPSILON-DET)

Because of this change, the completeness (Theorem 3.2) is lost
for some tricky programs (see the full version [19]). However,
this change makes the execution path generation algorithm de-
terministic (so that only one doubled program is generated for
each information flow path), which helps the system to avoid
performing duplicated computation for similar paths. As a re-
sult, a counterexample is often found much faster.

• A user can optionally instruct the system to replace the while-
loop with a loop-free program which simulates the while-loop
only a finite number of times. Again, this loses the complete-
ness.

• Given a suspicious flow τ1 · . . . · τn and a doubled program Π
which is constructed from the flow, the system tries to prove
({τ1}, {τn})-non-interference of Π instead of (H, {τn})-non-
interference. That is partially justified by the fact that, if a pair

of initial states ({h1 �→ n1, h2 �→ n2}, {h1 �→ n′
1, h2 �→ n′

2})
is a counterexample, then ({h1 �→ n1, h2 �→ n2}, {h1 �→
n′

1, h2 �→ n2}) or ({h1 �→ n′
1, h2 �→ n2}, {h1 �→ n′

1, h2 �→
n′

2}) is also a counterexample unless c diverges for the initial
state {h1 �→ n′

1, h2 �→ n2}.

The optimization above has two kinds of effects. First, Ter-
auchi and Aiken’s optimized self-composition becomes more
effective since we can set T1 = {τ1} in the definition of
bd(e) in Section 3.3. Second, the search space explored by the
model checker is reduced by adding the assumption h1 = h′

1 ∧
· · · ∧ hn = h′

n about the input states, where {h1, . . . , hn} =
H \ {τ1}.

4.2 Extensions for C Programming Language

Our system supports various features of C programming language,
including pointers, arrays, structures, unions, and a restricted form
of jumps. Our system does not support function pointers and recur-
sive functions. The current implementation of type-based analysis
is intraprocedural. Thus, path pruning may only exploit local in-
formation within a function. Insecure information flows via global
variables are overlooked. However, the system may perform inter-
procedural analysis by inlining functions before a type-based anal-
ysis as we do in experiments in Section 5.

The type system and the algorithm for finding a counterexam-
ple have been extended accordingly. We briefly explain those ex-
tensions below.

4.2.1 Handling pointers, arrays, structures, and unions

Operations on arrays, structures, and unions are translated to
pointer operations. In order to track information flow caused by
pointer operations, we introduce extended data types θ:

θ ::= int
τ | · · · | θ ptr

τ

τ ::= x | η | pc.

The typing rules for creating, dereferencing, and updating pointers
(&e, *e, and *x = e) are similar to those of the type system for
secure information flow in ML [15].

To handle pointer arithmetic, we assume that programs are
compiled by using a C compiler ensuring the memory safety like
CCured [2, 12] and Fail-safe C [13], which guarantees that any
access to invalid memory regions (like an access beyond an array
boundary) is caught at a run-time. (Without that assumption, we
have to assume that a pointer p + n may point to any part of
memory.) Moreover, we force every element stored in the same
memory region (like an array, a structure, or a union) to have
the same security level. On that assumption, we use the following
typing rule for pointer arithmetic:

Γ; C � e : θ ptrτ1 Γ; C � n : intτ2

τ1 ≤ τ3, τ2 ≤ τ3 ∈ C

Γ; C � e + n : θ ptrτ3

4.2.2 Handling restricted control structures

C has jump instructions such as goto, break, and continue. Our
system supports only jumps into the outward and forward direction.
Two non-trivial extensions are required to handle the restricted
jumps.

First, we need to extend the type system so that it can handle
indirect flows caused by the restricted jumps. For example, the
following program has indirect flow from h to l:

l := 0;

while 1 do (if h then goto BL); l := 1; · · ·
BL : · · ·

For such a program, the type system must impose constraints {pc ≤
pc1, . . . , pc ≤ pcn}, where pc is the label of the goto-statement and
pc1, . . . , pcn are the labels of the statements that may be skipped
by the jump.

Second, we need to modify the algorithm for making the self-
composition (the third step of the algorithm described in Section 3).
In fact, the following self-composition of the program above is
incorrect:

l := 0; l′ := l;

while 1 do

(if h then goto BL); (if h′
then goto BL);

l := 1; l′ := l; · · ·
BL : · · ·

Note that even if h is true, if h′ then · · · ; l′ := 1 should be
executed since h′ may be false, in which case l′ := 1 should
be executed. For the program above, the current implementation
duplicates the while-statement as follows:

l := 0; l′ := l;

while 1 do (if h then goto BL); l := 1; · · ·
BL :

while 1 do (if h′
then goto BL′); l′ := 1; · · ·

BL′ : · · ·

5. Experiments
The main purpose of the experiments is to show that our method
of combining type-based analysis and model checking is effective
for showing that certain programs rejected by type-based analy-
sis are indeed unsafe (by finding a counter-example against non-
interference). In principle, our method should be effective also for
certifying that certain programs rejected by type-based analysis are
actually secure. The current implementation of our method is, how-
ever, not so effective for the latter purpose: See the discussion in
Section 7.2.

To evaluate our method, we have also implemented the original
self-composition method of Barthe et al. [1] and Terauchi and
Aiken’s optimized self-composition method [18], and compared
the running times for several programs. The result is summarized
in Table 1.

Programs expr1.c to expr4.c are artificial examples. We
examined several artificial examples. The program expr1.c is an
instance of cex1 discussed in Section 1. It has 216 paths, and only
one path leaks information of high to low through x0 to x16. The
result shows that our method is much faster than the others.

expr2.c leaks information of high to low indirectly through
x0 to x15. It has 216 paths, but non-interference is violated only
when two execution paths take different branches at every if-
statement. Previous methods [1, 18] have to inspect 216 × 216 =
232 pairs of execution paths in the worst case to find a counterexam-
ple, while our method only needs to inspect 216 pairs of execution
paths. The table shows that our method is much faster than the oth-
ers. The speed-up depends also on how BLAST search execution
paths, and expr2.c is an ideal case, where the execution path
that was first inspected by BLAST was a counterexample. To make
fairer comparison, we also measured the running times for a vari-
ant expr2’.c, which is obtained by swapping bodies of then-
and else-clauses of every if-statements and reducing the number of
if-statements to 8. The result shows that our method is still faster
than the others.

expr3.c is a secure program, although the type system reports
a false alarm by detecting superfluous flows from high to x by
the if-statement. The running times show how long it takes for

foo(intH high)
{

int b1, b2, b3, ..., b16;
int x0, x1, x2, ..., x16;
intL low;
x0 = high;
if (b1) { x1 = x0; }
if (b2) { x2 = x1; }
if (b3) { x3 = x2; }
...
if (b16) { x16 = x15; }
low = x16;

}

Figure 7. A Program for Experiment (expr1.c)

foo(intH high)
{

int x0, x1, x2, ..., x16;
intL low;
x0 = high;
if (x0) { x1 = 1; }
if (x1) { x2 = 1; }
if (x2) { x3 = 1; }
...
if (x15) { x16 = 1; }
low = x16;

}

Figure 8. A Program for Experiment (expr2.c)

each system to report that programs are actually secure. The result
shows that our method is slightly slower than Terauchi and Aiken’s
method. It is because our current method generates and checks two
suspicious information flows: high to pc1 to x to low, and high
to pc2 to x to low, where pc1 and pc2 are labels of then- and else-
clauses of the if-statement.

In general, our current method is not good at proving that a
program satisfies non-interference. That is because our method may
generate multiple doubled programs, and runs a model checker
repeatedly for each of them. The doubled programs may share part
of the original program, which result in duplicated computation by
the model checker. If combined with the compositional analysis
discussed in Section 7, however, our method would also be effective
for verifying that a program is secure.

expr4.c uses 20 high-security variables and 20 low-security
variables. There is an insecure flow from high10 to low10. From
the result of type inference, our system first infers that the only
possibility of information leakage is from highi to lowi (where
i ∈ {1, . . . , 20}), rather than an arbitrary combination of highi

and lowj . As the table shows, our system runs faster than the other
methods, by taking advantage of that information .

In addition to the small artificial programs above, we have
also used a real program to compare our method with the others.
The program mod_imagemap.c is an Apache httpd server mod-
ule mod_imagemap.c, which realizes server side image maps.
This program is known to have a Cross-Site Scripting vulnera-
bility due to an omission of sanitizing HTTP_REFERER (fixed in
Apache httpd 2.2.1-dev). The system found suspicious flows from
return values of a function imap_url, which may be tainted by
HTTP_REFERER into arguments of a function ap_rvputs(),

Program LOC Naive Self-Composition (sec.) Optimized Self-Composition (sec.) Our Method (sec.)
expr1.c 25 2000.765 75.657 1.493
expr2.c 24 307.892 305.890 2.317
expr2’.c 16 117.349 84.111 33.027
expr3.c 19 fail 1.774 2.181
expr4.c 28 145.841 31.857 8.848

mod_imagemap.c 895 658.357 150.356 117.849

Table 1. Experimental Results (Intel Pentium III 500MHz 256MB RAM)

foo (intH high)
{

int n, f1, f2, x, i;
intL low;
while (0 < n) {
f1 = f1 + f2; f2 = f1 - f2; n = n - 1;

}
if (high) { x = 1; } else { x = 1; }
while (i < f1) {
low = low + x; i = i + 1;

}
}

Figure 9. A Program for Experiment (expr3.c)

foo(intH high1, ..., intH high20)
{

int b1, b2, ..., b20;
intL low1, low2, ..., low20;
if(b1) { low1 = high1 - high1; }
else if(b2) { low2 = high2 - high2; }
...
else if(b9) { low9 = high9 - high9; }
else if(b10) { low10 = high10; }
else if(b11) { low11 = high11 - high11; }
...
else if(b20) { low20 = high20 - high20; }

}

Figure 10. A Program for Experiment (expr4.c)

which sends the arguments to the web browsers of clients. As the
table shows, our method could find a counterexample faster than
the other methods, although ours was not significantly faster than
Terauchi and Aiken’s method. That seems to be because our sys-
tem duplicated the body of while-loops by applying rule P-WHILE,
P-WHILE-IMP, and Q-WHILE, and the overhead caused by that
duplication canceled the gain obtained by the path pruning. If
closer cooperation with a model checker discussed in Section 7
were available, our method would be more effective for while-
statements.

6. Related Work
Most closely related is the work by Terauchi and Aiken [18]. They
use type information to optimize the model-checking-based infor-
mation flow analysis [1], but in a more limited manner than ours.
The idea of their optimization is to find expressions whose val-
ues do not depend on high-security values using type informa-
tion, and avoid duplication of the expressions when making the

self-composition. For example, the naive self-composition [1] of
while e do c yields while e do c; while ξ(e) do ξ(c) (where
ξ renames each variable x with x′), while the optimized self-
composition yields while e do (c; ξ(c)) when e does not depend
on high-security values. This optimization avoids the duplication
of the expression e and (more importantly) the while-loop. Unlike
ours, however, their method does not use flow information (the sus-
picious information flow paths discussed in Section 3.1) obtained
by type inference.

Type-based analysis for secure information flow is applied to
various languages such as simple imperative languages [20, 21] and
functional languages [4, 14, 15], object-oriented languages [9], and
concurrent languages [6, 7, 17]. They are useful for conservatively
proving that a program has secure information flow, but not at
all for disproving it. Some systems based on such work [10, 16]
provide some useful error messages, showing how secret data may
possibly be leaked when a program is not well-typed. Unlike ours,
however, they cannot confirm that a certain program is indeed
unsafe, and generate a counterexample to show the violation of
non-interference.

7. Future Work
We discuss some future work in this section.

7.1 Compositional Analysis

We expect that we can make our algorithm more efficient by intro-
ducing compositional analysis. Recall that a suspicious information
flow path h · τ1 · . . . · τn · l indicates that information about the vari-
able h may flow to l through τ1, . . . , τn. That implies, if a flow
from τi to τi+1 does not actually occur, then the whole informa-
tion flow path h · τ1 · . . . · τn · l is superfluous. This observation
suggests us to inspect a suspicious information flow path in a com-
positional manner: to find a counterexample corresponding to the
information flow path p1p2, we can first search counterexamples
corresponding to partial paths p1 and p2, and combine them (and
apply this recursively). This compositional analysis is, for exam-
ple, effective for the program expr3.c discussed in Section 5.
From type inference, we obtain a suspicious information flow path
h · x · l (pc labels are omitted). In order to check whether there is
indeed a flow from h to x, we only need to inspect the if-statement.
Since the if-statement actually does not leak information of h to x,
we can immediately conclude that expr3.c is safe, without ever
analyzing the two while-loops.

Actually, we have already implemented a restricted form of
compositional analysis sketched below (although that feature has
not been used in the experiment described in Section 5). Consider
the following program:

x := h − h; · · · ; l := x

From type inference, we obtain a suspicious information flow path
h · x · l. Since the possible flow from h to x is inferred from
the assignment x := h − h, if there is indeed such a flow, the
values of x and x′ in the self-composition should differ after the

assignment. Thus, we can insert additional assume statement into
the self-composition:

assume(x = x′ and l = l′ and · · ·);
x := h − h; x′ := h′ − h′; assume(x �= x′);

...

l := x; l′ := x′;
assert(l = l′)

The insertion of assume(x �= x′) enables a model checker to
conclude that no assertion violation occurs, without looking at the
code after assume(x �= x′). (Note that the assert statement is
never reached since x �= x′ does not hold.)

7.2 Closer Cooperation with a Model Checker

As the experiment in Section 5 shows, our method is sometimes
less efficient than the previous method [18]. The main source of the
overhead of our current system is that the system generates a dou-
bled program and invokes a model checker for it repeatedly, once
for each suspicious information flow path, until a counterexample
is found. Moreover, each doubled program may contain duplicated
copies of while-loops. Thus, some part of the original program is
analyzed by a model checker repeatedly. It seems possible to avoid
the duplicated computation to some extent by generating one dou-
bled program for multiple suspicious flow paths, but closer cooper-
ation with a model checker seems necessary to avoid the duplicated
computation completely. More cooperation with a model checker
seems also necessary for realizing the compositional analysis dis-
cussed above.

8. Conclusion
We have formalized and implemented a novel method of combin-
ing type-based analysis and model checking to construct counterex-
amples against non-interference. The result of preliminary experi-
ments shows that our method can often find counterexamples faster
than previous methods based on model checking.

Acknowledgments
We thank Tachio Terauchi and Jun Furuse for many useful discus-
sions. We will also like to thank anonymous referees for useful
comments.

References
[1] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow

by self-composition. In CSFW ’04: Proceedings of the 17th IEEE
Computer Security Foundations Workshop (CSFW’04), pages 100–
114, Washington, DC, USA, 2004. IEEE Computer Society.

[2] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer.
CCured in the real world. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and
implementation, pages 232–244, New York, NY, USA, 2003. ACM
Press.

[3] J. A. Goguen and J. Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[4] N. Heintze and J. G. Riecke. The SLam calculus: programming
with secrecy and integrity. In POPL ’98: Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 365–377, New York, NY, USA, 1998. ACM Press.

[5] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
58–70, New York, NY, USA, 2002. ACM Press.

[6] K. Honda and N. Yoshida. A uniform type structure for secure
information flow. In POPL ’02: Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 81–92, New York, NY, USA, 2002. ACM Press.

[7] N. Kobayashi. Type-based information flow analysis for the pi-
calculus. Acta Informatica, 42(4-5):291–347, 2005.

[8] P. Li and S. Zdancewic. Practical information flow control in web-
based information systems. In CSFW ’05: Proceedings of the 18th
IEEE Computer Security Foundations Workshop (CSFW’05), pages
2–15, June 2005. 20-22.

[9] A. C. Myers. JFlow: practical mostly-static information flow control.
In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 228–241,
New York, NY, USA, 1999. ACM Press.

[10] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java
information flow. http://www.cs.cornell.edu/jif, July 2001.

[11] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation
of C programs. In CC ’02: Proceedings of the 11th International
Conference on Compiler Construction, pages 213–228, London, UK,
2002. Springer-Verlag.

[12] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In POPL ’02: Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 128–139, New York, NY, USA, 2002. ACM Press.

[13] Y. Oiwa, S. Tatsurou, S. Eijiro, and Y. Akinori. Fail-safe ANSI-C
compiler: An approach to making C programs secure: Progress report.
In In International Symposium on Software Security, number 2609 in
LNCS, pages 133–153. Springer-Verlag, 2002.

[14] F. Pottier and S. Conchon. Information flow inference for free. In
ICFP ’00: Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 46–57, New York,
NY, USA, 2000. ACM Press.

[15] F. Pottier and V. Simonet. Information flow inference for ML.
In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 319–330,
New York, NY, USA, 2002. ACM Press.

[16] V. Simonet. Flow Caml in a nutshell. In G. Hutton, editor,
Proceedings of the first APPSEM-II workshop, pages 152–165,
Nottingham, United Kingdom, March 2003.

[17] G. Smith and D. Volpano. Secure information flow in a multi-
threaded imperative language. In POPL ’98: Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 355–364, New York, NY, USA, 1998. ACM Press.

[18] T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In In Proceedings of the 12th International Static Analysis
Symposium, September 2005.

[19] H. Unno, N. Kobayashi, and A. Yonezawa. Combining type-based
analysis and model checking for finding counterexamples against
non-interference (Full version), February 2006. Available from
http://web.yl.is.s.u-tokyo.ac.jp/˜uhiro/.

[20] D. M. Volpano, C. Irvine, and G. Smith. A sound type system for
secure flow analysis. Journal of Computer Security, 4(2-3):167–187,
1996.

[21] D. M. Volpano and G. Smith. A type-based approach to program
security. In TAPSOFT ’97: Proceedings of the 7th International
Joint Conference CAAP/FASE on Theory and Practice of Software
Development, pages 607–621, London, UK, 1997. Springer-Verlag.

