Noname manuscript No.
(will be inserted by the editor)

ICE-based Refinement Type Discovery for Higher-Order
Functional Programs

Adrien Champion - Tomoya Chiba - Naoki
Kobayashi - Ryosuke Sato

the date of receipt and acceptance should be inserted later

Abstract We propose a method for automatically finding refinement types of higher-order
function programs. Our method is an extension of the Ice framework of Garg et al. for finding
invariants. In addition to the usual positive and negative samples in machine learning, their
Ice framework uses implication constraints, which consist of pairs (x, y) such that if x satisfies
an invariant, so does y. From these constraints, Ice infers inductive invariants effectively.
We observe that the implication constraints in the original Ice framework are not suitable
for finding invariants of recursive functions with multiple function calls. We thus generalize
the implication constraints to those of the form ({xi,..., xx}, ¥), which means that if all
of x1, ..., x; satisfy an invariant, so does y. We extend their algorithms for inferring likely
invariants from samples, verifying the inferred invariants, and generating new samples. We
have implemented our method and confirmed its effectiveness through experiments.

Keywords Higher-Order Program Verification - Machine-Learning - Formal Verification -
Refinement Types

1 Introduction

Higher-order functional program verification is an interesting and challenging problem. Over
the past two decades, several approaches have been proposed: refinement types with manual
annotations [11,33], liquid types [24], and reduction to higher-order recursion schemes [26].
These approaches face the same problem found in imperative and synchronous data-flow
program verification: the need for predicates describing how loops and components behave
for the verification and/or abstraction method to work in practice [8, 13, 18]. This paper

Adrien Champion
The University of Tokyo, now OCamlPro
E-mail: adrien.champion@email.com

Tomoya Chiba, Naoki Kobayashi
The University of Tokyo
E-mail: tomo.asleep@gmail.com, E-mail: koba@is.s.u-tokyo.ac.jp

Ryosuke Sato
Kyushu University
E-mail: sato@ait.kyushu-u.ac.jp

https://www.ocamlpro.com/

2 Adrien Champion et al.

proposes to address this issue by combining refinement types with the recent machine-
learning-based, invariant discovery framework Ice from [12,13].

Consider for instance a function f from integers to integers such that if its input n is less
than or equal to 101, then its output is 91, otherwise it is n — 10. (This is the case of the
mc_91 function on Figure 1.) Then our objective is to automatically discover, by using an
adaptation of IcE, the refinement type

f:{n:int|true} — {r:int|(n>101Ar=n-10) v r =91}.

That is, function f accepts any integer n that satisfies true as input, and yields an integer r
equal to n — 10 when n > 101, and equal to 91 otherwise. The traditional Ice framework is
not appropriate for our use-case. We briefly summarize it below, and then discuss how this
approach needs to be extended for the purpose of functional program verification.

Brief review of the Ice framework.

Let .7 be a transition system (s, 7 (5), 7(s,5’)), with 5 its vector of state variables, 7 (5)
its initial predicate, and 77(5,5”) the transition relation between consecutive states. Suppose
we wish to prove that Prop(s) is an invariant, i.e., that a property Prop(5) holds for any state
§ reachable from an initial state. Then it suffices to find a predicate Inv(s) that satisfies the
following conditions.

I(5) F Inv(s))]

Inv(s) A T(,5") |= Inv(s") ?2)
Inv(5) = Prop(s) 3)

C)]

The predicate Inv(s) is an invariant that is inductive in that it is preserved by the transition
relation, as guaranteed by (2). We call such an Inv(s) a strengthening inductive invariant for
Prop(s). It serves as a certificate that Prop(s) is a (plain) invariant. Given a candidate for
Inv(5), the conditions (1)—(2) can be checked by an SMT [2] solver. In the rest of this section,
“invariant” will always mean “strengthening inductive invariant”.

The Ice framework is a machine-learning-based method combining a learner that incre-
mentally produces candidate invariants, and a feacher that checks whether the candidates are
such that (1), (3) and (2) hold. If a given candidate is not an invariant, the teacher produces
learning data as follows, so that the learner can produce a better candidate. A candidate
is an arbitrary Boolean combination of atomic predicates called qualifiers. Given a candi-
date Ci(5), the teacher checks whether (1) holds — using an SMT solver for instance. If
it does not, a concrete state ¢ is extracted and will be given to the learner as an example:
the next candidate Cy,; should be such that Cy1(€) holds, i.e. it must include the example.
Conversely, if (3) does not hold, a concrete state ¢ is extracted and will be given as a coun-
terexample: the next candidate should be such that Ci1(¢) does not hold, i.e. it must exclude
the counterexample.

Unlike traditional machine-learning approaches, in Ick the teacher also extracts learning
data from (2) when it does not hold. It takes the form of a pair of (consecutive) concrete
states (Z z?’), and is called an implication constraint: the next candidate should be such that
Ck+1(7) = Ci+1 (?’). Implication constraints are crucial for the learner to discover inductive
invariants, as they let it know why its current candidate failed the induction check. The Ice
framework does not specify how the learner generates candidates, but this is typically done
by building a classifier consistent with the learning data, in the form of a decision tree —
discussed further in Section 3.

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 3

let rec mc_91 n = if n > 100 then n - 10
else let tmp = mc_91 (n + 11) in mc_91 mp
let main m =
let res = mc_91 m in if m < 101 then assert (res = 91)

Fig. 1: McCarthy’s 91 function.

Refinement type inference as a predicate synthesis problem.

We now discuss why the original Ice framework is ill-suited for functional program verifi-
cation. Consider McCarthy’s 91 function from Figure 1. To prove this program correct in a
refinement type setting, it is enough to find some refinement type

{n:int| pi(m)} — {r:int| pa(n,r)}

for mc_91, where p; and p; are such that!

pin) An>100 A r=n-10 = p2(n,r) (®)]

pi(n) A n<100 = pi(n+11) 6)

p1(n) A n<100 A po(n+11,tmp) = pi(tmp) @)

pi(n) A n<100 A pa(n+11,tmp) A pa(tmp,r) | pa(nr) (®)
true = pi(m) ©)

m <101 A pa(m,res) |= res =91 (10)

We can observe some similarities between the Horn clauses above and (1)—(2). The con-
straints (9) and (10) respectively correspond to the constraints (1) and (3) on initial states
and the property to be proved, whereas the constraints (5)—(8) correspond to the induction
constraint (2). This observation motivates us to reuse the Ice framework for refinement type
inference.

There are, however, two obstacles in adapting the Ice framework to refinement type
inference. First, we must infer not one but several mutually-dependent predicates. Second,
and more importantly, we need to generalize the notion of implication constraint because of
the nested recursive calls found in functional programs. To illustrate, let us assume that we
realized that mc_91’s precondition is p;(n) = true. Then the third constraint from the else
branch is

n <100 A pa(n+ 11,tmp) A pa(tmp,r) |= pa(n,r).

Contrary to the ones found in the original Ice framework, this Horn clause is non-linear: it has
more than one application of the same predicate (p,, here) in its antecedents. Now, assuming
we have a candidate for which this constraint is falsifiable, the implication constraint should
have form ({(n1,r1), (n2,12)}, (n,7)), which means that the next candidate C should be such
that C(ny, r1) A C(np,) = C(n,r). This is because there are two occurrences of p, on the
left-hand side of the implication.

The need to infer more than one predicate and support non-linear Horn clauses is not
specific to higher-order functional program verification. After all, McCarthy’s 91 function is
first-order and is occasionally mentioned in first-order imperative program verification pa-
pers [4]. Sv-Cowmp [3], the main (imperative) software verification competition features 3247
verification problems in its linear arithmetic track which can be encoded as Horn clauses, 54
of which contain non-linear Horn clauses. In our context of higher-order functional program

I We discuss how to extract these verification conditions in Section 2.

https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA
https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA

4 Adrien Champion et al.

verification the ratio is much higher, with 63 of our 164 OCaml [21] programs yielding
non-linear Horn clauses.

The main contribution of this paper is to address the two issues aforementioned and
propose a modified Ice framework suitable for higher-order program verification in particular.
While adapting machine-learning techniques to higher-order program verification has been
done before [37, 38], transposing implication constraints to this context is, to the best of
our knowledge, new work. We also present various simplifications/optimizations for the
encoding of the problem and the modified Ice framework, which prove extremely useful in
practice. We have implemented our approach as a program verifier for a subset of OCaml
and report on our experiments.

The rest of the paper is organized as follows. Section 2 introduces our target language and
describes verification condition generation and simplification. The modified Ice framework
is discussed in Section 3. We report on our implementation and experiments of the approach
in Section 4. Section 5 describes and evaluates ongoing work for adapting our approach to
Algebraic Data Types. Finally, we discuss related work in Section 6 before concluding in
Section 7.

This article is an extended version of previous work [6]. This version adds information
and examples that make the discussion more understandable, as well as a completely new
section (Section 5) discussing preliminary work on adapting our approach to Algebraic Data
Types. We implemented this work in our Horn clause solver Holce [7] and report on our
experimental evaluation.

2 Target Language and Verification Conditions

In this section, we first introduce the target language of our refinement type inference
method. We then introduce a refinement type system and associated verification conditions
(i.e., sufficient conditions for the typability of a given program).

2.1 Language

The target of the method is a simply-typed, call-by-value, higher-order functional language
with recursion. Its syntax is given by:

P (programs) ::= {fi(z1) = e1,. .., fu(Zn) = en}
e (expressions) ::=n | x | ®{a; = ey,...,a, = ¢, } | fail
|letx=+ine|letx=aine|letx=yzine
a (arith. expressions) ::=n | x | op(ay, az) v (values) i=n| f;v

7 (simple types) ::=int | 11 > 1

We use the meta-variables x, y, ..., f,g,... for variables. We write ~ for a sequence; for
example, we write X for a sequence of variables. For the sake of simplicity, we consider
only integers as base values. We represent Booleans using integers, and treat 0 as false and
non-zero values as true. We sometimes write true for 1 and false for 0.

We briefly explain programs and expressions; the formal semantics is given later. We
use let-normal-form-style for simplicity. A program P is a set of mutually recursive function
definitions f(z) = e. The expression &{a; = e;}1<;<n evaluates e; non-deterministically if

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 5

n is the value of a

E[let x = * in e] —p E[[n/x]e] E[let x = a in e] —p E[[n/x]e]
fO)=eeP <yl fO)=e€eP |v|=yl
E[let x = fv ine] —p E[[fV/x]e] E[let x = fv ine] —p E[let x = [v/y]e’ ine]
E #[] the value of a; is non-zero
E[fail] —p fail E[®{a) = e, ...,an = ex}] —p Ele;]

E:=[]|letx=E ine

Fig. 2: Operational semantics of the language

the value of a; is non-zero, which can be also used to generate non-deterministic Boolean-
s/integers. We also write (a; = e1) ® -+ ® (a, = e,) for ®{a; = e;}1<i<n, and write
if a then e else ¢, for (a = e1) ® (—a = e;). The expression let x = in e
generates an integer, then binds x to it, and evaluates e. The expression let x =a in e
(let x =y z in e, resp.) binds x to the value of a (y z, resp.), and then evaluates e. The
expression fail aborts the program. An assert expression assert(a) can be represented
as if a then 0 else fail. An arithmetic expression consists of an integer constant, an
(integer) variable, and primitive operators, denoted by op; we assume that the set of primitive
operators contains standard integer/Boolean operations/relations like +, <, V, A, - - . A value
v is either an integer constant or a function closure; the latter is a partial function application
of the form f; v; here, the length [v] of arguments v must be (strictly) smaller than |x;| where
(fi(x;) = e;) € P.

We assume that a program is well-typed under the standard simple type system. We also
assume that every function in P has a non-zero arity, the body of each function definition has
the integer type, and PP contains a distinguished function symbol main € {fj,..., f,} whose
simple type is int — int.

The operational semantics of the target language is given on Figure 2, where we extend the
syntax of expressions with let x = v in e and let x = ¢’ in e. The goal of our verification
is to find an invariant (represented in the form of refinement types) of the program that is
sufficient to verify that, for every integer n, main n does not fail (i.e., is not reduced to fail).

2.2 Refinement Type System

We present a refinement type system for the target language. The syntax of refinement types
is given by:

T(refinement types) ::= {x:int | a} | (x: T1) > T».

The refinement type {x:int | a} denotes the set of integers that satisfy a, i.e., the value of a is
non-zero. For example, {x:int | x > 0} represents natural numbers. The type (x:7}) — T»
denotes the set of functions that take an argument x of type 77 and return a value of type
T>. Here, note that x may occur in 7». We write int for {x : int | true}, and T} — T
for (x : Ty) — T» when x does not occur in 7>. By abuse of notation, we sometimes (as in
Section 1) write {x :int |a} —» T for (x: {x:int | a}) > T.

Figure 3 shows the typing rules, which are the standard ones. We have three kinds of type
judgments: I" - ¢ : T for expressions, - P : I for programs, and I' - 7' <: T” for subtyping. A

6 Adrien Champion et al.

I'x)=T 1] E false
- (T-ConsT) (T-Var) ———— (T-Famw)
I'tn:{x:int | x =n} 'tx:T Tk fail: T
ILa;Fe;:T foreachi € {l,...,n} Ix:intke: T
(T-BrANCH) ————— (T-Ranp)
T'to{a=e,...,an=>en}: T I'Fletx==ine:T
Lx:{y:int|y=a}te:T I'-e:T’ T <:T
d (T-AExp) (T-Sus)
I'letx=aine:|a/x|T 'e:T
I'l,a; Fa 'k T < Th Ix:To b Tip < T
.[[ﬂ 1 Fa . (S-Inm) s To 11 bl <iln oo o
Thy {x:int | a;} <: {x:int |as} Thy(x:Ty) 2 T <:(x:Ta1) > T
I'ty:(z:TY) » T I'kz:T Lx:Thte:T
yi(z:Th)—> T h 2 (LAre)
I'-letx=yzine:T
I'(main) = (x : int) — int
x1:T, ..., x T be:Tforeachf:(x;:T})— -+ > (xx :Tx) > T €T where f(x),...,xx)=e €P

FP:T
(T-Proc)

[0] = true, [, x:{y:int | a}] = [I'] A [x/y]a, [T, a] =[] Aa, [Cx:(y:T) -] =TT

Fig. 3: Typing rules of refinement type system

judgment I' - e : T means that the expression e has the refinement type 7 under refinement
type environment I', which is a sequence of refinement type bindings and guard predicates:
I' := O |T,x:T|T,a. Here, x : T means that x has refinement type T, and a means
that @ holds. When I' = 'y, x : T, I, where I'; does not contain a binding of the form x : 77,
we write I'(x) for 7. A judgment - P : T means that the program P is well-typed, where I"
describes the type of each function defined in P. A subtyping judgment I' - 7' <: T’ means
that a value of type T may be used as a value of type T’. In the rules, we implicitly assume
that all the variables occurring in an arithmetic expression a have type int. Though typing
rules are fairly standard, we explain a few typing rules. In rule T-FaiL, [I'] expresses the
constraint implied by the type environment I'. The premise [I'] |= false ensures that there
is no environment that conforms to I', so that fail is unreachable. In rule T-AExp, the
information that x is bound to a is propagated to the type of x. Since the type T of e may
contain x, we substitute a for x in the conclusion. The rule T-Sus allows the type of an
expression to be weakened. For example, if we have I' - e : {x : int | x = 1}, it can be
weakened toI' e : {x :int | x > 0} by using T-Sus.

The type system is sound in the sense that if - P : I" holds for some I', then main n does
not fail for any integer n. We omit to prove this type system sound as it is a rather well-known
system [24,30,31]. The type system is, however, incomplete: there are programs that never
fail but are not typable in the refinement type system. Implicit parameters are required to
make the type system complete [32].

2.3 Verification Conditions

Our goal has now been reduced to finding I' such that - P : T, if such I' exists. To this
end, we first infer simple types for the target program by using the Hindley-Milner type
inference algorithm. From the simple types, we construct a template for the refinement type
environment I, by adding predicate variables, and then generate the verification conditions,
i.e., constraints on the predicate variables that describe a sufficient condition for - P : I". The
construction of the verification conditions is also rather standard [24, 30, 31], we present it

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 7

VCo(T'kEx:T) = VC.(T s I'(x) <: T)
VCe(TkFn:T) = VCo.(T kg {x:int | x =n} <:T)
VC.(T'F ®{a; > e1,...,an =>en}:T) = Niefl,...,n} VC.(T,a; Fe;:T)
VC (T + fail: T) = [I'] = false
VC.(TFletx=xine:T) = VCo. (I, x:int k- e:T)
VC.IT'+letx=aine:T) = VC.(I,x:{y:int |y=a}te:T)
VC.THletx=yzine:T)=VC.THT(z2) <)) AVC.(I,x:Th-e:T)
where (z:T1) —> Tr =T'(y)
VCo.T ks {x:int a1} <t {x:int |ax}) = (T A a1) = a2
VCo.Thy (x:Ty) > Ty <:(x:Th) > Trn) = VCo.(T s Ty <:T1) AVC<.(T, x 1 Thy b Tin <: T2))
VCr(TH f(xy,...,xk)=e) = VCo (I, x1: T, ..., xp T e:T)
where T'(f)=(x1:Tq) = -+ > (xp :Tx) > T
VC(F{fixi)=e1,.... fu(kn) =en}:T) = VC.(FsT(main) <: (x : int) — int)
ANiet,...ny VCr (T F fi(X7) = e;)

Fig. 4: Verification condition generation

here in the form of a function VC(+P : ') defined on Figure 4. We note that the verification
conditions generated by the function VC(+P:I") can be normalized to a set of Horn clauses [4].

In Figure 4, VC(+P : T') is defined by using three sub-procedures VCy, VC.., and VC,.
The procedure VC¢(I' - f(x1, ..., xx) = e) generates a condition for the function definition
f(x1,...,x¢) = e) to be well-typed. The procedures VC.(I' /s T <:T’) and VC.(I' e : T)
respectively generate conditions forI' =y T <:T" and ' | e : T to be derivable by the rules in
Figure 3. Each of the computation rules for VC.(I' H T <: T’) and VC.(I' | e : T') follows
from the corresponding typing rule in Figure 3.

Example 1 Consider the following program and its associated simple types:

let incr n = n + 1 in let twice f x = f (f x) in
let main m = assert (twice incr m > m)
main: int — int, incr:int — int, twice:(int — int) - int — int

By assigning a unique predicate variable to each integer type, we can obtain the following
refinement type templates.

main: int — int, incr: {n:int | p;(n)} - {k:int | po(n, k)},

twice : ({y :int | p{(y)} = {z:int | p)(y,2)}) = {x:int | pj(x)} = {r:int | pj(x,r)}.

We then extract the following verification conditions from the body of the program:

pi(n) E pamn+1) pi(x) F pi(x) pi(x)Api(xz1) Fopi(z1)
P5(x) A p5(x, z1) A P5(z1,22) | p4(x, 22) pi(n) E p1(n)
true |= pi(m) pymr) E r>m PI) A P2y, 2) | py(y, 2).

2.4 Simplifying Verification Conditions

The number of unknown predicates to infer is critical to the efficiency of our algorithm in
Section 3, because the algorithm succeeds only when the learner comes up with correct

8 Adrien Champion et al.

solutions for all the unknown predicates. We discuss here a couple of techniques to reduce
the number of unknown predicates.

The first one takes place at the level of Horn clauses and is not limited to refinement
type inference over functional programs. Suppose that some predicate p occurs in the clauses
¢ |= p and C[p] [¢’, where C[p] is a formula having only positive occurrences of p, and
p does not occur in ¢, ¢’, nor any other clauses of the verification condition. Then, we can
replace the two clauses above with C[¢] |= ¢’ and p = ¢. For example, recall the incr /
twice from the example above. The predicate o occurs only in the clauses o} (n) | p1(n) and
p1(n) |= p2(n, n+1). Thus, we can replace them with p}(n) |= pa(n, n+1) and p1(n) = p}(n).
In this manner we can reduce the number of unknown predicate variables. This optimization
itself is not specific to our context of functional program verification; similar (and more
sophisticated) techniques are also discussed in [4]. We found this optimization particularly
useful in our context, because the standard verification condition generation for higher-order
functional programs discussed above introduces too many predicate variables.

The other optimization is specific to our context of refinement type inference. Suppose
that the simple type of a function f is int — int. Then, in general, we prepare the refinement
type template {x : int | p;(x)} — {r:int | p2(x,r)}. If the evaluation of f(n) does not fail
for any integer n, however, then the above refinement type is equivalent to {x : int | true} —
{r :int | p1(x) = p2(x,r)}. Thus, the template (x : int) — {r:int | p3(x,r)} suffices,
with p3(x, r) encoding the p1(x) = p2(x, r) we had previously, resulting in fewer predicates
to infer. For instance, in the mc_91 example from Section 1, it is obvious that mc_91(n)
never fails as its body contains no assertions and contains only calls to itself. Thus, we can
actually set p;(n) to true.

In practice we use effect analysis [23] to check whether a function can fail. To this end,
we extend simple types to effect types defined by: o= ::= int | o 5 o, where ¢ is either

an empty effect €, or a failure £. The type o i o describes functions that take an argument
of type o and return a value of type o7, but with a possible side effect of £&. We can infer
these effect types using a standard effect inference algorithm [23]. A function with effect
type int 5 o takes an integer as input and returns a value of o~ without effect, i.e., without
failure. For this type, we then use the simpler refinement type template {x:int | true} — ---
instead of {x: int | p(x)} — ---. For example, since mc_91 has effect type int S int, we
assign the template (x : int) — {r : int | p(x, r)} for the refinement type of mc_91.

3 Modified IcE Framework

This section discusses our modified Ice framework tackling the predicate synthesis problem
extracted from the input functional program as detailed in Section 2. Algorithm 1 details how
the teacher supervises the learning process. Following the original Ice approach, teacher and
learner only communicate by exchanging guesses for the predicates (from the latter to the
former) and positive (#), negative (/) and implication (Z) data — from the former to the
latter. These three sets of learning data are incrementally populated as long as the verification
conditions are falsifiable, as discussed below.

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 9

Algorithm 1: Teacher supervising the learning process.
Input: the set VC of verification conditions with predicate variables py, . . ., pn
Result: concrete predicates for py, . . ., p, for which A VC is valid

1 (PN, T) = (0,0,0)5

2 (p1,.--,pn) = learn(quals, P, N, I); (see Alg. 2)

3 while A VClp; :=pi, ..., pn := pn] isfalsifiable do

4 (P, N, I") = extract_data(VC, p1, ...,pn)} (discussed in Sec. 3.1)

5 PN, IT) = (PUP NUN,TUI);

6 (p1>--->»pn) = learn(quals, P, N, I); (see Alg. 2)

7 (P15 -5 Pn)

3.1 Teacher

‘We now describe our modified version of the IcEe teacher that, given some candidate predicates
for IT = {p1, ..., pn}, returns learning data if the verification conditions instantiated on the
candidates are falsifiable. Since there are several predicates to discover, the positive, negative
and implication learning data (concrete values) will always be annotated with the predicate(s)
concerned.

Now, all the constraints from the verification condition set VC have one of the following
shapes, reminiscent of the original Ice’s (1)—(2) from Section 1:

a A Aay AC = Ope (11
ay A...ANay AC [false m>1 (12)
where each @, . . ., @41 is an application of one of the py, . . ., p, to variables of the program,

and C is a concrete formula ranging over the variables of the program. In the following, we
write p(a;) for the predicate a; is an application of. To illustrate, recall constraint (8) of the
example from Figure 1:

p1(n) A pa(n+ 11, tmp) A pa(tmp,r) A n <100 = p2(n,r).
—— | —— [— S—— ———
) @ @3 C y

It has the same shape as (11), with p(a;) = p; and p(az) = p(az) = p(as) = p>.

Given some guesses py,...,p, for the predicates py,..., p,, the teacher can check
whether VC[p := pi,...,pn := pn] (the verification conditions obtained from VC by sub-
stituting p; for each p;) is falsifiable using an SMT solver. If it is, then function extract_data
(Algorithm 1 line 4) extracts new learning data as follows. If a verification condition with
shape (11) and m = 0 can be falsified, then we extract some values X from the model produced
by the solver. This constitutes a positive example (p(ay), x) since p(a;) should evaluate to
true for x. From a counterexample model for a verification condition of the form (12), we
extract a negative constraint { (p(ar), x1), ..., (plam), Xm) } It means that at least one of
the (p(a;), x;) should be such that p(«;)(X;) evaluates to false. Last, an implication constraint
comes from a counterexample model for a verification condition of shape (11) with m > 0
and is a pair

({ (o). T) v (Pl To) b (Pltmer). Tons))-

Similarly to the original Ice implication constraints, this constraint means that if p(a;)(x1) A
... A p(am)(x,) evaluates to true, then so should p(@+1)(Xm+1). Those positive exam-
ples, negative constraints, and implication constraints are accumulated in #, N, and 7,
respectively, in Algorithm 1.

10 Adrien Champion et al.

Remark I Note that negative examples and implication constraints in the original Ice frame-
work are special cases of the negative constraints and implication constraints above. A
negative example of the original IcE is just a singleton set {(p(a1), X1)}, and an implication
constraint of ICE is a special case of the implication constraint where m = 1. Due to the
generalization of learning data, negative constraints also contain unclassified data (unless
they are singletons).

3.2 Learner: Building Candidates

‘We now start describing the learning part of our approach, which is an adaptation of the deci-
sion tree construction procedure from the original Ice framework [13]. The main difference
is that the unclassified data can also contain values from negative constraints, as explained in
Remark 1. This impacts decision tree construction as we now need to make sure the negative
constraints are respected, in addition to checking that the implication constraints hold. Also,
we adapted the qualifier selection heuristic (discussed in Section 3.4) to fit our context.

The learner takes, in addition to learning data (#, N, and), a mapping quals from
predicate variables to sets of qualifiers as input. The learner then tries to find solutions for
Horn clauses as Boolean combinations of qualifiers, by running Algorithm 2, as explained
below. For the moment, we assume that the qualifier mapping quals is given a priori; how
to find it is discussed in Section 3.5.

The learner needs to synthesize predicates for the variables pj, ..., p, that respect the
learning data. To do so, the learning data is projected on the different predicates and partially
classified in the class mapping (in Algorithm 2 lines 1-5) following the semantics of the
learning data given in Section 3.1. Notice the way each element of N is classified depending
on whether it only has one predicate/values pair, as a consequence of Remark 1.

The algorithm also maintains a partial classification class (line 3) of the data from unc. This
mapping encodes the choices made on the unclassified data: if (o, x) + true (resp. false),
then a previous choice forced (p, X) to be considered a positive (resp. negative) example.

It then calls build_tree (Algorithm 3) for each unknown predicate p, to construct
a decision tree that encodes a candidate solution for p. A free T is defined by T ::=
Node(q,T,,T-) | Leaf(b) where b is a Boolean. The formula it corresponds to is given
by function f, defined inductively by

f(Node(q.T+.T-)) = (g A f(T)) V(g A f(T-)) and f(Leaf(b)) = b.

Algorithm 3 shows the decision tree construction process for a given p € I1. We now
discuss the algorithm formally and will illustrate it on an example in Section 3.3. Building a
decision tree consists in choosing qualifiers splitting the learning data until there is no negative
(positive) data left and the unclassified data can be classified as positive (negative) in each
branch. The main difference with the tree construction from the original Ice framework
is that the classification checks now take into account the negative constraints introduced
earlier. Qualifier selection is discussed separately in Section 3.4.

Function can_be_pos checks whether all the unclassified data can be classified as
positive. This consists in making sure that negative and implication constraints are verified
or contain unclassified data — meaning future choices are able to (and will) verify the
constraints. Given unclassified data U, constraint sets N and 7, and classifier mapping
class, can_be_pos checks that the following conditions hold for every u € U:

VNeN, (pbu)eN = 3(p’,n)eN\{(p,u)u’ € U}, class(p’,n) = false

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 11

Algorithm 2: learn(quals, P, N, I)

Input: Qualifiers quals and positive (P), negative (), and implication (') learning data
Result: concrete predicates for {p1, . . ., pn } = I consistent with the learning data

global class = (
{ (. X) > true | (0,X) € P } U { (0, X) > false | {(p,X)} € N'}

1
2

3);
4 foreach (p, X) appearing in the elements of I and N do

s | if class(p, X) is undefined then class(p, X) « unknown;

6

7 pi > build_tree(

8 pi» quals(p;), {X |class(p;,x)}, {X | =class(p;, X)}, {X | class(p;, X) = unknown}
9)lie{l,...,n}

Algorithm 3: build_tree(p, Q, P, N, U)
Input: Predicate variable p, qualifiers Q, positive (P), negative (/N) and unclassified (U) projected learning data.

if N =0 A can_be_pos(U, class) then
foreach u € U do class(p, u) « true;
Leaf (true)

1
2
3
4 elseif P =0 A can_be_neg(U, class) then
5 foreach u € U do class(p, u) « false ;
6 Leaf (false)

7 else

8 choose ¢ in Q that best divides the data

9 (P4, N4, Uy) = data X from (P, N, U) such that g(x) ;
10 (P-, N_,U-) = data X from (P, N, U) such that =g(X) ;
11 T, =build_tree(p, Q\ g, Py, Ny, Ui,)

12 T- =build_tree(p, Q\gq, P, N_, U_,);

13 Node(q, Ty, T-)

class(rhs) = true
V(LHS, rhs) € I, (p,u) € LHS = {Vv 3A(p’,1) € LHS \ {(p,u")|u’ € U},
class(p’, 1) = false

where class(n) ~ b means that class(n) is unknown or equal to b. Conversely, function
can_be_neg checks that all the unclassified data can be classified as negative:

Yu € U, Y(LHS, rhs) € I, (p,u) = rhs = 3(p’,1) € LHS, class(p’,l) = false.

The next section unfolds this algorithm on a simple example.

While we did not specify the order in which the trees are constructed (Algorithm 2
line 10), it can impact performance greatly because the classification choices influence later
runs of build_tree. Hence, it is better to treat the elements of I1 that have the least amount
of unclassified data first. Doing so directs the choices of the qualifier ¢ (Algorithm 3 line 8§,
discussed below) on as much classified data as possible. The data is then split (lines 9 and 10)
using ¢: more classified data thus means more informed splits, leading to more relevant
classifications of unclassified data in the terminal cases of the decision tree construction.

Remark 2 Because the functions can_be_pos and can_be_neg only locally check the
constraints to decide whether the data can be classified to be true or false, the algorithm
above may end up with inconsistent classification of data even if the learning data are
consistent.? In such a case, we should either backtrack and reclassify the data, or use a SAT
solver to get a globally consistent classification of data.

2 Thanks to Uki Ryuu for identifying this problem.

12 Adrien Champion et al.

3.3 Learner: Example

We now illustrate the decision tree building process discussed above using the 91 function
from Figure 1, with verification conditions (5)—(10). Again, say that we realize that p;(n) =
true, so that we only need to synthesize p»(n, r). Suppose that the learner is called with
P = {(p2,[101,91])} from verification condition (5), N' = {{(p2,[100,90])}} from (10),
and 7 = { ({(p2,[103,102]), (p2,[102,102])}, (p2,[92,102])) } from (8).

Below we omit to write which predicate the input values are for, since there is only p, here.
Also, we use +, — or ? superscripts on the samples to denote whether it is positive, negative
or unclassified respectively. The learner starts working on the data [101,91]*, [100,90]",
[103,102]°, [102,102]%, [92, 102]°; say the first qualifier it chooses is n > 101. This splits
the data in two as shown on Figure 5, the data on which the qualifier evaluates to true (top
branch) and the data where it evaluates to false (bottom branch). Then, the algorithm recurses
on the branch where n > 101 with data [102,92]*, [103,102]%, [102,102]’. There is no
negative example and the unclassified data can be classified as positive, since the implication
constraint it comes from mentions [92, 102] which is still unclassified.

[101,91]*
[103,1023
102, 102} Leaf (true)
n > 101 [92, 102]? Leaf (true)
POO, 9017 r>90
92, 102]"
[100, 90]~ Leaf (false)

Fig. 5: Decision tree example.

Next, we recursively go in the branch where n z 101 with data [101,92]~, [91, 102]".
There is no positive data left, but [91, 102] cannot be classified negative as it is the conse-
quent of implication constraint ({[103, 102], [102, 102]}, [92, 102]) which antecedents are
entirely classified positively. The algorithm is forced to choose another qualifier, say » > 90.
The data is split in two and both recursive calls are terminal cases. The learner thus returns
the tree from Figure 5, which represents the formula

n > 101V (=(n > 101) A r > 90).

3.4 Qualifier Selection in Algorithm 3

We now discuss how to choose qualifier ¢ € Q on line 8 in Algorithm 3. The choice of
the qualifier ¢ used to split the learning data D = (P,N,U) in D; = (P4, Ny, U,) and
Dy = (P-g, Ny, U-y) is crucial. In [13], the authors introduce two heuristics based on the
notion of Shannon Entropy &:

|P| |P| I I

D) =—- 1 - 1
#D) = {5 N 2 (P v N 1P+ IN] € [P + [N

13)

which yields a value between 0 and 1. This entropy rates the ratio of positive and negative
examples: it gets close to 1 when |P| and |N| are close. A small entropy is preferred as it

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 13

indicates that the data contains significantly more of one than the other. The information gain
v of a split is

(14)

v(D, q) = (D) - (1Dgle(Dg) N |D-y4le(D-y))

LD] LD]

where | D = (P, N,U)] = |P| + |N|. A high information gain means g separates the positive
examples from the negative ones. Note that the information gain ignores unclassified data, a
shortcoming the Ice framework [13] addresses by proposing two qualifier selection heuristics.
The first subtracts a penalty to the information gain. It penalizes qualifiers separating data
coming from the same implication constraint — called cutting the implication. The second
heuristic changes the definition of entropy by introducing a function approximating the
probability that a non-classified example will eventually be classified as positive. We present
here our adaptation of this second heuristic, as it is much more natural to transfer to our
use-case.

The idea is to create a function Pr that approximates the probability that some values
from the projected learning data D = (P, N, U) end up classified as positive. More precisely,
Pr(v) approximates the ratio between the number of legal (constraint-abiding) classifications
in which v is classified positively and the number of all legal classifications. Computing
this ratio for the whole data is impractical: it falls in the counting problems class and it is
#P-complete [1]. The approximation we propose uses the following notion of degree:

1 1 1

Degree(v) = = = =1

gree(v) ~Z T+ %] ~Z T+ A ~Z~|x|
(x,v)el (x,y)el,vex xXeN,vex

The three terms appearing in function Degree are based on the following remarks. Let v be
some value in the projected learning data. If (X, v) € 7, there is only one classification for X
to force v to be true: the classification where all the elements of X are classified positively.
More elements in X generally mean more legal classifications where one of them is false
and v need not be true: Pr(v) should be higher if X has few elements. If v appears in the
antecedents of a constraint (X, y), then Pr(v) should be lower. Still, if X has many elements
it means v is less constrained. There are statistically more classifications in which v is true
without triggering the implication, and thus more legal classifications where v is true. Last,
if v appears in a negative constraint x then it is less likely to be true. Again, a bigger x means
v is less constrained, since there are statistically more legal classifications where v is true.
Our Pr function compresses the degree between 0 and 1, and we define a new multi-
predicate-friendly entropy function & to compute the information gain (where D = (P, N, U)):

1 ifveP
_ 2Zvepunuu Pr(v) _Jo ifveN
Friby = PIHINTHU] Privy = 1 arctan Degree(v)
5 + ———=———= otherwise
n

&(D) = —Pr(D)log, Pr(D) — (1 — Pr(D))log,(1 — Pr(D))

Note that it can happen that none of the qualifiers can split the data, i.e. there is no qualifier
left or they all have an information gain of 0. In this case we synthesize qualifiers that we
know will split the data as described in the next subsection.

14 Adrien Champion et al.

3.5 Mining and Synthesizing Qualifiers

We now discuss how to prepare the set Q of qualifiers used in Algorithm 3. The learner
in both the original Ice approach and our modified version spend a lot of time evaluating
qualifiers. Having too many of them slows down the learning process considerably, while not
considering enough of them reduces the expressiveness of the candidates. The compromise
we propose is to i) mine for (few) qualifiers from the clauses, and ii) synthesize (possibly
many) qualifiers when needed, driven by the data we need to split.

To mine for qualifiers, for every clause C and for every predicate application of the form
p(¥) in C, we add every atomic predicate @ in C as a qualifier for p as long as all the free
variables of a are in v. All the other qualifiers are synthesized during the analysis.

Based on our experience, we have chosen the following synthesis strategy. With vy, ..., v,

the formal inputs of p, for all (x1,...,x,) € PUN U U, we generate the set of new qualifiers
{ Vi 0 X; | 1<i<n oe{s 2}}
U{vi+vj<>xl-+xj |1<i<j<n oe{<g, =2}}
U{vi—vjox;—xj|1<i<j<n oe{sg, 2}}

Adding these qualifiers allows to split the data on these (strict, when negated) inequalities,
and encode (dis)equalities by combining them in the decision tree. Also, notice that when no
qualifier can split the data we have in general small P, N and U sets, and the number of new
qualifiers is quite tractable. The learning process is an iterative one where relatively few new
samples are added at each step, compared to the set of all samples. Since we could split the
samples from the previous iteration, it is very often the case that P, N and U contain mostly
new samples. Last, our approach shares the limitation of the original Ice: it will not succeed
if a particular relation between the variables is needed to conclude, but no qualifier of the
right shape is ever mined for or synthesized.

4 Experimental Evaluation

Our implementation consists of two parts: first, RType is a frontend (written in OCaml) gen-
erating Horn clauses from programs written in a subset of OCaml as discussed in Section 2.
It relies on an external Horn clause solver for actually solving the clauses, and post-processes
the solution (if any) to yield refinement types for the original program. Holce3, written in
Rust#, is one such Horn clause solver and implements the modified Ice framework presented
in this paper. All experiments in this section use RType v1.0 and Holce v1.0. Under the
hood, Holce relies on the Z3> SMT solver [22] for satisfiability checks. In the following ex-
periments, RType uses Holce as the Horn clause solver. Note that the input OCaml programs
are not annotated: the Horn clauses correspond to the verification conditions encoding the
fact that the input program cannot falsify its assertion(s). RType supports a subset of OCaml
including (mutually) recursive functions and integers, without algebraic data types.

We now report on our experimental evaluation. Our benchmark suite of 162 programs®
includes the programs from [26] and [37] in the fragment RType supports, along with
programs automatically generated by the termination verification tool from [19], and 10 new

3 Hosted at https://github.com/hopv/r_type and https://github.com/hopv/hoice.
4 For more details, see https://www.rust-1lang.org/en-US/.

5 The revision of Z3 in all the experiments is the latest at the time of writing: 5bc4c98.

¢ Hosted at https://github.com/hopv/benchmarks.

https://github.com/hopv/r_type
https://github.com/hopv/hoice
https://www.rust-lang.org/en-US/
https://github.com/Z3Prover/z3/commit/5bc4c9809e232d63f46018b200cb930bca993ce5
https://github.com/hopv/benchmarks

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 15

benchmarks written by ourselves. We only considered programs that are safe since RType is
not refutation-sound.

These benchmarks range from very simple to relatively complex, with in particular a program
computing a solution to the N Queen problem using arrays. The verification challenge for
this program is to prove it does not perform out-of-bound array accesses. Here are a few
statistics on the number of lines in the original OCaml program, and the number of predicates
and clauses in the Horn clause problems:

| max | mean | variance | standard deviation

lines 95 | 31.671 515.160 22.697
predicates 38 9.829 58.581 7.654
clauses 364 | 55.707 | 3604.963 60.041

Note that the Horn clause data was generated from the encoding discussed in Section 2,
including optimizations.

All the experiments presented in this section ran on a machine running Ubuntu (Xeon
E5-2680v3, 64GB of RAM) with a timeout of 100 seconds. The number between parentheses
in the keys of the graphs is the number of benchmarks solved. We begin by evaluating the
optimizations discussed in Section 2, followed by a comparison against automated verification
tools for OCaml programs. Last, we evaluate our predicate synthesis engine against other
Horn-clause-level solvers.

4.1 Evaluation of the Optimizations

Figure 6a shows our evaluation of the effect analysis (EA) and clause reduction (Red)
simplifications discussed in Section 2. It is clear that both effect analysis and Horn reduction
speedup the learning process significantly. They work especially well together and can
reduce drastically the number of predicates on relatively big synthesis problems, as shown
on Figure 6¢.

The 11 programs that we fail to verify show inherent limitations of our approach. Two
of them require an invariant of the form x + y > z. Our current compromise for qualifier
mining and synthesis (in Section 3.4) does not consider such qualifiers unless they appear
explicitly in the program. We are currently investigating how to alter our qualifier synthesis
approach to raise its expressiveness with a reasonable impact on performance. The remaining
nine programs are not typable with refinement types, meaning the verification conditions
generated by RType are actually unsatisfiable. An extension of the type system is required to
prove these programs correct [32].

4.2 Comparison with other OCaml Program Verifiers

The first tool we compare RType to is the higher-order program verifier MoCHi from [26]
(Figure 6b). MoCHi infers intersection types, which makes it more expressive than RType.
The nine programs that MoCHi proves but RType cannot verify are the (refinement-)untypable
ones discussed above. While this shows a clear advantage of intersection types over our ap-
proach in terms of expressiveness, the rest of the experiments make it clear that, when
applicable, RType outperforms MoCHi on a significant part of our benchmarks.

We also evaluated our implementation against DOrder from [37,38]. This comparison
is interesting as DOrder also uses machine-learning to infer refinement types, but does not

16 Adrien Champion et al.

3 _
10 s+
—_ £ —_ + +
) / 8 +
® 10% F] 2 o
g e 8 10 +
o - 2 N
S 10" F ~ #
E ¢ *w
Q N | + 4
g 10° L A =
£ £ A
GE)10'1 rtype Inactive (144) % e ¥ o+ T +
B rtype EA (149) —— S o041 L+ +
rtype Red (150) —=— : Timeout
102 j j j) | fype (151) —— | f " "
0 20 40 60 80 100 120 140 160 01 1 10
Benchmarks passed (of 162) rtype, 151/162 (seconds)
(a) Cumulative runtime comparison. (b) Against MoCHi.
10° ¢ -
rtype Inactive i
rtype EA — ™
rtype Red ° + +
e Q +
o +
310% 3 |+
o ;1
2 o +
3 S 4
o
D.A1 L - +
g0 3 Hg; 3
Q o1 g
o ., Timeout " |
10°
0 0.1 1
Benchmarks rtype, 114/124 (seconds)
(¢) Predicate reduction. (d) Against DOrder.

Fig. 6: Evaluation: verification of OCaml programs.

support implication constraints. DOrder compensates by conducting test runs of the program
on random inputs to gather better positive data. It supports a different subset of OCaml than
RType though, and after removing the programs it does not support, 124 programs are left.
The results are on Figure 6d, and show that RType overwhelmingly outperforms DOrder.
This is consistent with the results reported for the original Ice framework: the benefit gained
by considering implication constraints is huge.

These results show that, despite its limitations, our approach is competitive and often
outperforms other state-of-the-art automated verification tools for OCaml programs.

4.3 Horn-clause-level Evaluation

Last, we compare our Horn clause solver Holce to other solvers (Figure 7): Spacer [17],
Duality [20], Z3’s PDR [14], and Eldarica [15]. The first three are implemented in Z3 (C++)
while Eldarica is implemented in Scala. The benchmarks are the Horn clauses encoding the
safety of the 162 programs aforementioned with additional two programs, omitted in the
previous evaluation as they are unsafe.

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 17

100

—~ 100 F T+ + +
_ 3 Sat (3056) +
o 5 Unsat (133) *
© [
3 2 ol
g g 1
(2] (V)
E B
§ ® 1F 3 X
c e + XL
Lo W
£10 eldarica (153) —— 23 duality (25) —* S o1 {E ;R 4 o
= 23 pdr (151) —=— hoice (162) —+— - W e
_2 _ z3spacer (158) — | . \ . i h o : '
10
0 20 40 60 80 100 120 140 160 180 01 1 10
Benchmarks passed (of 164) hoice, 2920/3242 (seconds)
(a) Cumulative comparison. (b) Against Spacer on SV-COMP.

Fig. 7: Comparison with Horn clause solvers.

Holce solves the most benchmarks at 162.7 The fastest tool overall is Z3’s Spacer which
solves slightly fewer benchmarks. The two timeouts for Holce come from the programs
discussed above for which Holce does not have the appropriate qualifiers to conclude.
Because it mixes IC3 [5] with interpolation, Spacer infers the right predicates quite quickly.
Thus, in our use-case, our approach is competitive with state-of-the-art Horn clause solvers
in terms of speed, in addition to being more precise. We also include a comparison on
the SV-COMP with Spacer on Figure 7b. Holce is generally competitive, but timeouts on a
significant part of the benchmarks. Quite a few of them are unsatisfiable; the Ice framework is
not made to be efficient at proving unsatisfiability. The rest of the timeouts require qualifiers
we do not mine for nor synthesize, showing that some more work is needed on this aspect of
the approach.

In our experience, it is often the case that Holce’s models are significantly simpler
than those of Spacer’s and PDR’s (as illustrated in Appendix A). Note that simple models
are useful if the Horn clause solver is placed inside a CEGAR loop such as the one in
MoCHi [26]; indeed, Sato et al. [25] have recently employed CHC solving as a backend of
MoCHi, and observed that Holce was more effective than Spacer as the backend CHC solver
in that context.

5 Algebraic Data Types

This section discusses how to extend our approach to deal with functional programs that
manipulate algebraic data types (ADTs) such as lists and trees. We assume here that ADTs
do not contain functions; we do not consider, for example, a list of functions. As we discuss
below, most of our framework need not be changed, including verification condition gener-
ations, and the main procedures for teacher and learner, as long as the backend SMT solver
supports ADTs; the main new issue is how to find/synthesize appropriate qualifiers. Below,
after briefly discussing the overall extension of our framework in Section 5.1, we explain our
approach to qualifier synthesis in Section 5.2. We then report preliminary experiments on
the extension in Section 5.3.

7 This is consistent with the OCaml results: 151 sat results, 9 unsat from programs RType cannot verity,
and 2 unsat from unsafe programs.

18 Adrien Champion et al.

5.1 Overview

As mentioned above, except for the fact that a new method is required for qualifier discovery,
our framework can be smoothly extended to deal with ADTs; this is an advantage of our ICE-
based approach. Below we sketch the extension of each component through the following
running example.

let rec ins (i :) (Ist :) = match lst with

[[0 —1i:=10]

| hd :: t1 — if i < hd then i :: 1st else hd :: (ins i tl)

let main (i :) (st :) = assert (ins i 1st != [])

The function ins takes an integer i and an integer list 1st as arguments, and returns a list
obtained by inserting i into 1st.

Refinement Types and Verification Condition Generation. Under the assumption that
ADTs do not contain functions, the simplest way to extend the refinement type system and
verification condition in Section 2 is to treat ADTs just like ordinary base types. The syntax
of refinement types is extended by:

T (refinement types) ::= {x: A |a} | (x:T1) > T»
A (base and algebraic data types) ::=int | int list|---

Here, the set of expressions ranged over by a is extended to allow operations on algebraic data
types. No change is required on the verification condition generation procedure in Figure 4
(except the extension of the syntax of types and expressions).

For the running example above. we obtain the following refinement type templates and
verification conditions.

main:int — int list — int
ins:i:int — Ist:int list — {r:int list | pins(i Ist,r)}
pins(, Ist,r) Ar=[1 [false
i <hd |= pins(i,hd ::tli:: hd ::tl)
Ist=1[1 | pins(iIst,i:: [1)
i >hd A pins(i,t,r) = pins(i, hd 2 tl, hd 1)

Teacher. Assuming that the backend SMT solver supports ADTs, the teacher procedure
described in Section 3.1 can be used as it is. For the example above, given a candidate
solution:pins(x, €, r) = r # [], the teacher just needs to check that the candidate satisfies
the verification conditions by using the SMT solver.
Learner. The learner procedure described in Section 3.2 can also be used as it is. In fact, for
the example above, the learner can easily find the valid candidate solution pins(x, €, 7) = r #
[1, by using equality constraints as qualifiers.

The remaining issue is how to find appropriate qualifiers. In Section 3.5, we have
discussed how to mine and synthesize qualifiers on integers. That is not sufficient for programs
manipulating ADTs, like the following one:

let rec ins (i :) (st :) = ...
let rec sorted : — = function
| [11 - [] — true

| hd_1 :: hd_2 :: t1 — if hd_1 > hd_2 then false else sorted (hd_2 : tl)
let main (i :) (st :) = if sorted lst then assert (sorted (ins i 1lst))

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 19

From the example above, we obtain the following refinement type templates and verification
conditions.

main:int — int list — int
ins:i:int — Ist:int list — {r:int list | pins(i Ist,r)}
sorted:Ist:int list — {b:bool | psorted(lst, b)}
Psorted(lst, true) A pins(i, Ist, 1) A psorted(r, false) [false

Ist=[1 [pins(Ist,i:: []1)

i<hd |= pins(i,hd ::tli:: hd :: t)
i >hd A pins(i, t,r) = pins(i, hd 2t hd :: r)
Ist=[1 F psorted(Ist, true)
t1=1[1 [psortea(hd :: tl, true)
hdy > hdy = psorted(hd; :: hdy :: tl, false)
hdy £ hdy A psorted(hdy i tl, res) |E psorted(hd) :: hdy :: tl, res)

In order for the above clauses to be valid, psorted(x, b) must express the property: “b = true
justif x is sorted,” which clearly cannot be expressed by the qualifiers mined/synthesized by
the method in Section 3.5. This issue is addressed in the next subsection.

5.2 Qualifier Synthesis for ADTs

Our approach to qualifier synthesis is, given a set of CHCs representing verification con-
ditions, to extract (possibly recursive) functions that take ADTs as input and return base
type values, and to allow them to be used in the qualifier mining and synthesis discussed in
Section 3.5 (thus, v; in Section 3.5 may now be a function application f(vy,...,v,)). Let us
explain this through the last example. We first gather CHCs on psorted:

Ist = [1 |F psorted(Ist, true)
tl = [1 |& psortea(hd :: tl, true)
hdy, > hdy |= psorted(hd) :: hdy :: tl, false)
hdy < hdy A psorted(hdy :: tl, res) |E psortea(hd :: hdy :: tl, res)

We turn them to the following function definition for the underlying SMT solver.

(define-fun-rec sorted ((i) (Ist Intlist))
(ite (or (= 1lst nil) (tl 1st)) true
(ite (> (hd 1st) (hd (tl 1st))) false)
(ite (< (hd 1st) (hd (tl 1st))) (sorted (tl 1st)))))

We call this process function reconstruction, which will be explained later.
The learner may now use, as qualifiers, arithmetic constraints involving the function
sorted above, and may return the following candidate solution:

pins(i, Ist,r) = sorted(ist) A sorted(r)
Psorted(Ist, b) = sorted(lst) = b

The teacher can verify it as a valid solution, as long as the underlying SMT solver can
properly deal with recursive functions (and indeed, Z3 can verify the validity of the solution
above instantly).

20 Adrien Champion et al.

Remark 3 In the example above, we picked psorteq for the function reconstruction. Our
criterion for a predicate p to be eligible for function reconstruction is that it only appears in
i) negative clauses and i) clauses that only mention p (called the defining clauses of p). When
there are more than one candidate predicate, we heuristically choose one with the simplest
signature (lowest arity and lowest number of ADT-valued parameters) and complexity (lowest
number of non-negative clauses mentioning p).

5.2.1 Function Reconstruction

We now explain how to reconstruct a function definition from the defining clauses of a
predicate p. We can assume that each of the defining clauses is of the form:

CAP(tLts -t YD) A pltets . tegs Ye) F p(X1, ..., Xk, 1)

where C is a conjunction of atomic constraints without predicate variables. We first eliminate
variables other than xi, ..., Xk, y1, . . ., y¢ in a heuristic manner. For example, if C contains
X = 71 :: 20, we eliminate z; and zp by adding is-cons(x) and replacing z; and z, with
hd(x) and t1(x) respectively. If the variable elimination fails, then we give up the function
reconstruction for p.

Example 2 Consider one of the defining clauses for psorteq:
hd, < hdy A psorted(hdy i tl, 1) |= psorted(hd) 2 hdy :: tl, 1).
It can first be transformed to:
hdy < hdy A x = hdy :: hdy 22 tl A psorted(hdy :: tl, 1) |= psorted(X, 7).
By eliminating hd;, hd, and tl, we obtain:

is-cons(x) A is-cons(tl(x)) A hd(x) < hd(t1l(x))
Apsorted(hd(t1(x)) :: t1(t1(x)), 7) & psorted(X, 7).

O

Using this variable elimination, the defining clauses are normalized to:
Cr A p(t1, 1) A== Al ye) | p(X 1)

Cn /\ p(?n,la y]) AREN /\ p(;n,fn,)’Zn) |: p()?’ tn)'

For the sake of simplicity, we assume below that Cy, ..., C,, do not contain variables other
than ¥. We now check that i) Cy, ..., C, are mutually exclusive and exhaustive, and ii) the
term ?l j contains none of the variables y;, . . ., y,,. We then construct the function definition:

]23()_5) = if C; then let y; = fp(le) in ... let ye, =];3(;1,[1) int#y
else if - - -

else let y, = fp(?n,l) in...letyy, = fp(l_‘)n,[n) int,

Finally, we check that the above definition makes f,, total by requiring that C; implies that
Z',gl. < X with respect to a certain well-founded order <.8

8 Since the totality of f, is undecidable in general, this check is necessarily heuristic. The check is omitted
in the current implementation reported in Section 5.3. The implementation is thus unsound, although the
unsoundness did not show up in the reported experiments.

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 21

hoice no rec (17) —— spacer (11) —
hoice (47) —< ECZ3 (91) —=—

—_
o
N

—
A=A

—
<

0 10 20 30 40 50 60 70 80 920
Benchmarks passed (of 105)

Time in seconds (logscale, timeout 10s)
S
o

—_
2
N

Fig. 8: Comparison on benchmarks with ADTs.

Remark 4 Our approach above relies on the assumption that the underlying SMT solver can
effectively reason about recursive functions. We have used Z3 and applied some optimiza-
tions to help it reason about recursive functions. Omitting solver-specific tweaks®, the most
rewarding optimization was to add an invariant discovery step at the end of function recon-
struction. The length function over lists for instance, without the invariant that its output is
always positive, can be a problem for solvers even on relatively simple queries. This invariant
discovery step generates candidate invariants based on the signature and definition of the
function, which it attempts to prove by checking they are preserved in each branch of the
definition. If some invariant inv is discovered for function f, then whenever the definition of
f is given to a solver then it is followed by the assertion Vv, (V) = inv(V).

5.3 Evaluation

While the work on ADTs presented in this section is still in an early stage, we implemented
and evaluated it against Spacer [17] and recent work [9] where the authors reduce Horn clause
problems over ADTs to an equisatisfiable problem over basic sorts. Unfortunately, as far as
we know this latter approach does not always allow to produce models for the predicates if
the problem is satisfiable, while Spacer and our approach do.

Also, we were not able to retrieve a binary for the implementation of [9] called ECZ3. The
results presented on Figure 8 for ECZ3 are the results reported in [9] where the experiments
ran on a different machine. As a consequence, the runtimes reported below are not comparable
and readers should really focus on the number of benchmarks solved. This evaluation uses
the set of benchmarks from [9].10

9 Such as the use of conditional “check-sat” in the check https://rise4fun.com/Z3/cXot4.
10 Available at https://fmlab.unich.it/iclp2018.

https://rise4fun.com/Z3/cXot4
https://fmlab.unich.it/iclp2018

22 Adrien Champion et al.

The two versions of our implementation!! presented, Holce and “Holce no rec”, run
with and without function reconstruction respectively. The difference in precision is quite
noticeable, despite the fact that the approach and the implementation are still ongoing work.
The benchmarks Holce is not able to solve fail for various reasons and indicate future
directions of research. In a few cases, the problem is that the underlying solver (Z3) returns
unknown, at which point Holce is forced to give up. In other cases the solver does not return
in reasonable time on a query. This often happens in the teacher while checking a valid
candidate, meaning all clauses are unsatisfiable which the solver struggles to verify. In a few
other cases the function reconstructed are not enough for Holce to reach a conclusion and it
keeps trying to find a model forever.

ECZ3 from [9] is by far the best in terms of precision, with the drawback that models
for the original predicates are not available. Spacer yields performance similar to Holce
without function reconstruction which suggests that it would also benefit from function
reconstruction. In fact, we ran spacer on a handful of problems in which we manually forced
the definition given by function reconstruction, and spacer was able to solve the modified
version. This is a good indication that the approach we suggest in this section extends beyond
sampling- and template-based techniques such as our generalized Ice framework.

Last, for the sake of reproducibility we should mention that we used Z3 version 4.7.1!2
as both Holce’s underlying SMT solver and in the evaluation of spacer. More recent versions
of Z3 (4.8.*% at the time of writing) seem far less efficient when it comes to dealing with
ADTs and recursive functions. Running Holce with Z3 4.8.* on the benchmarks mentioned
in this section yields a huge number of timeouts and unknown result (meaning the Z3 cannot
answer one the teacher’s queries).

6 Related Work

There has been a lot of work on sampling-based approaches to program invariant discoveries
during the last decade [12,13,27-29,36-38]. Among others, most closely related to this paper
are Garg et al.’s Ice framework [12, 13] (which this paper extends) and Zhu et al.’s refinement
type inference methods [36—38]. To the best of our knowledge, Zhu et al. [36—38] were the first
to apply a sampling-based approach to refinement type inference for higher-order functional
programs. They did not, however, consider implication constraints. As discussed in Section 4,
their tool fails to verify some programs due to the lack of implication constraints.

There are other automated/semi-automated methods for verification of higher-order func-
tional programs [16,24,30-32,34,37,38], based on some combinations of Horn clause solv-
ing, automated theorem proving, counterexample-guided abstraction refinement, (higher-
order) model checking, etc. As a representative of such methods, we have chosen MoCHi
and compared our tool with it in Section 4. As the experimental results indicate, our tool often
outperforms MoCHIi, although not always. Thus, we think that our learning-based approach
is complementary to the aforementioned ones; a good integration of our approach with them
is left for future work. Liquid types [24], another representative approach, is semi-automated
in that users have to provide qualifiers as hints. By preparing a fixed, default set of qualifiers,
Liquid types may also be used as an automated method. From that viewpoint, the main
advantage of our approach is that we can infer arbitrary Boolean combinations of qualifiers
as refinement predicates, whereas Liquid types can infer only conjunctions of qualifiers. On

11 This evaluation uses Holce 1.8.1.
12 https://github.com/Z3Prover/z3/releases/tag/z3-4.7.1

https://github.com/hopv/hoice/releases/tag/1.8.1
https://github.com/Z3Prover/z3/releases/tag/z3-4.7.1

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 23

the downside, since we synthesize (a potentially infinite number of) quantifiers, and build
candidates which are arbitrary Boolean combinations of these qualifiers, our approach has
no guarantee to terminate, unlike Liquid types.

Since the publication of our original paper on which this extended version is based, at
least two related approaches to Horn clause solving were published [10,35]. Both approaches
rely on ideas similar to ours: produce candidate for the predicates based on data accumulated
by refuting previous candidates. The main difference with our work is that neither use
implication constraints, which we believe to be important for the learning of inductive
invariants. Also, they seem to mainly target verification problems stemming from imperative
programs while our approach was designed with functional program verification in mind.

7 Conclusion

In this paper we proposed an adaptation of the machine-learning-based, invariant discov-
ery framework Ice to refinement type inference. The main challenge was that implication
constraints and negative examples were ill-suited for solving Horn clauses of the form
p(x1) A=+ A p(xy) A ... = p(x), which tend to appear often in our context of functional
program verification because of nested recursive calls.

We addressed this issue by generalizing Ice’s notion of implication constraint. For similar
reasons, we also adapted negative examples by turning them into negative constraints. This
means that, unlike the original Ice framework, our learner might have to make classification
choices to respect the negative learning data. We have introduced a modified version of
the Ice framework accounting for these adaptations, and have implemented it, along with
optimizations based on effect analysis. Our evaluation on a representative set of programs
show that it is competitive with state of the art OCaml model-checkers and Horn clause
solvers.

We also reported on preliminary work on adapting our approach to Algebraic Data Types
by reconstructing, when relevant, functions that the framework can leverage to build useful
qualifiers. The evaluation of our prototype implementation show that doing so is rewarding
but, in its current state, fails to outperform a recent technique that encodes Horn clause over
ADT verification as ADT-free Horn clauses, with the drawback of not being able to generate
models for the original problem when the problem is satisfiable.

Acknowledgements We would like to thank anonymous referees for useful comments. We would also like
to thank He Zhu for his help in benchmarking DOrder, Hiroshi Unno for his help and insight on Horn clauses
over ADTs and the reviewers for their constructive feedback. This work was supported by JSPS KAKENHI
Grant Number JP15H05706 and JP20H00577.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge University Press
(2009)

2. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825-885. I0S Press
(2009). DOI 10.3233/978-1-58603-929-5-825

3. Beyer, D.: Competition on software verification - (SV-COMP). In: C. Flanagan, B. Konig (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 18th International Conference, TACAS
2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7214,

24

Adrien Champion et al.

15.

16.

17.

18.

19.
20.
21.
22.

23.

pp. 504-524. Springer (2012). DOI 10.1007/978-3-642-28756-5_38. URL https://doi.org/10.
1007/978-3-642-28756-5_38

. Bjgrner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers for program verification.

In: L.D. Beklemishev, A. Blass, N. Dershowitz, B. Finkbeiner, W. Schulte (eds.) Fields of Logic and
Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, Lecture Notes
in Computer Science, vol. 9300, pp. 24-51. Springer (2015). DOI 10.1007/978-3-319-23534-9_2

. Bradley, A.R.: SAT-based model checking without unrolling. In: R. Jhala, D.A. Schmidt (eds.) Veri-

fication, Model Checking, and Abstract Interpretation - 12th International Conference, VMCAI 2011,
Austin, TX, USA, January 23-25, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6538, pp.
70-87. Springer (2011). DOI 10.1007/978-3-642-18275-4_7

. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: Ice-based refinement type discovery for higher-order

functional programs. In: Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part
I, pp. 365-384 (2018). DOI 10.1007/978-3-319-89960-2_20. URL https://doi.org/10.1007/
978-3-319-89960-2_20

. Champion, A., Kobayashi, N., Sato, R.: Hoice: An ice-based non-linear horn clause solver. In: S. Ryu

(ed.) Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New
Zealand, December 2-6, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11275, pp. 146—
156. Springer (2018). DOI 10.1007/978-3-030-02768-1_8. URL https://doi.org/10.1007/
978-3-030-02768-1_8

. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker. In: Proceedings of CAV

2016, LNCS, vol. 9780, pp. 510-517. Springer (2016). DOI 10.1007/978-3-319-41540-6_29

. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Solving horn clauses on inductive data types

without induction. TPLP 18(3-4), 452-469 (2018). DOI 10.1017/S1471068418000157. URL https:
//doi.org/10.1017/S1471068418000157

. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained horn clauses using syntax

and data. In: N. Bjgrner, A. Gurfinkel (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, pp. 1-9. IEEE (2018). DOI 10.23919/FMCAD.
2018.8603011. URL https://doi.org/10.23919/FMCAD.2018.8603011

. Freeman, T.S., Pfenning, F.: Refinement types for ML. In: Proceedings of PLDI’91, pp. 268-277. ACM

(1991). DOI 10.1145/113445.113468

. Garg, P., Loding, C., Madhusudan, P., Neider, D.: ICE: A robust framework for learning invariants. In: Pro-

ceedings of CAV 2014, LNCS, vol. 8559, pp. 69-87. Springer (2014). DOI 10.1007/978-3-319-08867-9_5

. Garg, P, Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees and implication

counterexamples. In: Proceedings of POPL 2016, pp. 499-512. ACM (2016). DOI 10.1145/2837614.
2837664

. Hoder, K., Bjgrner, N.: Generalized property directed reachability. In: A. Cimatti, R. Sebastiani (eds.)

Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International Conference, Trento,
Italy, June 17-20, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7317, pp. 157-171. Springer
(2012). DOI 10.1007/978-3-642-31612-8_13

Hojjat, H., Konecny, F., Garnier, F., losif, R., Kuncak, V., Riimmer, P.: A verification toolkit for numerical
transition systems - tool paper. In: D. Giannakopoulou, D. Méry (eds.) FM 2012: Formal Methods - 18th
International Symposium, Paris, France, August 27-31, 2012. Proceedings, Lecture Notes in Computer
Science, vol. 7436, pp. 247-251. Springer (2012). DOI 10.1007/978-3-642-32759-9_21

Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: verifying functional programs using abstract in-
terpreters. In: Proceedings of CAV 2011, LNCS, vol. 6806, pp. 470-485. Springer (2011). DOI
10.1007/978-3-642-22110-1_38

Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs. Formal
Methods in System Design 48(3), 175-205 (2016). DOI 10.1007/s10703-016-0249-4

Kovécs, L., Voronkov, A.: Finding loop invariants for programs over arrays using a theorem
prover. In: Proceedings of FASE 2009, LNCS, vol. 5503, pp. 470-485. Springer (2009). DOI
10.1007/978-3-642-00593-0_33

Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination verification for higher-order
functional programs. In: Proceedings of ESOP 2014, LNCS, vol. 8410, pp. 392-411. Springer (2014)
McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpolation. Tech. rep. (2013)
Minsky, Y.: Ocaml for the masses. ACM Queue 9(9), 43 (2011). DOI 10.1145/2030256.2038036

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: Proceedings of TACAS 2008, LNCS, vol.
4963, pp. 337-340. Springer (2008). DOI 10.1007/978-3-540-78800-3_24

Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer (1999). DOI 10.1007/
978-3-662-03811-6

https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1017/S1471068418000157
https://doi.org/10.1017/S1471068418000157
https://doi.org/10.23919/FMCAD.2018.8603011

ICE-based Refinement Type Discovery for Higher-Order Functional Programs 25

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of PLDI 2008, pp. 159-169.
ACM (2008). DOI 10.1145/1375581.1375602

Sato, R., Iwayama, N., Kobayashi, N.: Combining higher-order model checking with refinement type
inference. In: Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, pp. 47-53. ACM (2019)

Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for higher-order programs.
In: Proceedings of PEPM 2013, pp. 53-62. ACM (2013). DOI 10.1145/2426890.2426900

Sharma, R., Aiken, A.: From invariant checking to invariant inference using randomized search. In: Pro-
ceedings of CAV 2014, LNCS, vol. 8559, pp. 88—105. Springer (2014). DOI 10.1007/978-3-319-08867-9_
6

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data driven approach for
algebraic loop invariants. In: Proceedings of ESOP 2013, LNCS, vol. 7792, pp. 574-592. Springer
(2013). DOI 10.1007/978-3-642-37036-6_31

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learning geometric
concepts. In: Proceedings of SAS 2013, LNCS, vol. 7935, pp. 388-411. Springer (2013). DOI
10.1007/978-3-642-38856-9_21

Terauchi, T.: Dependent types from counterexamples. In: Proceedings of POPL 2010, pp. 119-130. ACM
(2010). DOI 10.1145/1706299.1706315

Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Proceedings of PPDP 2009,
pp. 277-288. ACM (2009). DOI 10.1145/1599410.1599445

Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification of higher-order func-
tional programs. In: Proceedings of POPL *13, pp. 75-86. ACM (2013). DOI 10.1145/2429069.2429081
Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings of POPL ’99, pp.
214-227. ACM (1999). DOI 10.1145/292540.292560

Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type inference for ML. In: Proceed-
ings of VMCAI 2013, LNCS, vol. 7737, pp. 295-314. Springer (2013). DOI 10.1007/978-3-642-35873-9_
19

Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: J.S. Foster, D. Grossman (eds.)
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pp. 707-721. ACM (2018). DOI
10.1145/3192366.3192416. URL https://doi.org/10.1145/3192366.3192416

Zhu, H., Nori, A.V., Jagannathan, S.: Dependent array type inference from tests. In: Proceedings of
VMCAI 2015, LNCS, vol. 8931, pp. 412-430. Springer (2015). DOI 10.1007/978-3-662-46081-8_23
Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: Proceedings of ICFP 2015, pp.
400-411. ACM (2015). DOI 10.1145/2784731.2784766

Zhu, H., Petri, G., Jagannathan, S.: Automatically learning shape specifications. In: Proceedings of PLDI
2016, pp. 491-507. ACM (2016). DOI 10.1145/2908080.2908125

https://doi.org/10.1145/3192366.3192416

26 Adrien Champion et al.

Appendix

A Comparing Model Complexity

This section illustrates the difference in complexity between Z3’s Spacer and PDR models. We use the Horn
clause problem

https:
//github.com/hopv/benchmarks/blob/master/clauses/lia/termination/up_down@®1.smt2.

There are 11 predicates to infer in this satisfiable problem. Our predicate synthesis engine Holce immediately
returns the following model where all variables are of type Int, and we write ® for variables that do not appear
in the predicate’s definition

predicate variables definition
app_10301, o, 0 V3, 0 0 0 o o v3=0
faily . false
app_1030g Vi, V2, V3, V4, V5, Vg, V7, Vg app_103012(vy, vo, v3, V4, Vs, Vg, V7, V8)
app_10309 e 0 o 0 0 o o o o true
app_103013 o 0 0 0 0 0 0 0 o true
down_103119 o 0 o o true
up_1032y4 Vi, V2, V3 app_1030g(vy, v2, v3,0,0,0,0,0)
up_1032,5 o, 0 o o true
botis o 0 false
faily o o false
up_111529 e, 0 o o true

Note that we have abbreviated the name of the predicates slightly for the sake of readability. While this model
could be made slightly simpler by inlining the predicate applications, it is already quite concise.
Z3’s Spacer also returns immediately with a model that is much more complex. We only look at two of
the predicates. First,
app_103012(vy, v2, v3, V4, Vs, Vg, V7, V8)

defined as

Awv,v'), ((v=0=0<v)) A=(v=0) AV <0
Av=0Am=0Awu=0AvVs=0Avs=0Av;=0Av=0
\Y Jv, ((v=0=@w <0)) A ~(v=0)
Avy=0Av3i=0Av=0Avs=0Avs=0Av;=0Avg=0

Another example is failyo(v)), defined as I(xy, x2, X3, X4, X5, X65 X7, X3),

(A VB)A =(x=0)
A (x7==-x3) A (x5 ==x3) A (x4 =—Xx2)
A((x6=0) = (x4 <x5))
A((x¢=0) V (xg=0))
A(=(xg=0) = (x7 20))
Avi=0
where A is 3(x9, x10, X11),
=(x9=0) A ((x11=0) = (0 <x19))
A((xg=0)=(0 <x3)) A =(x;; =0)
Ax2=0Ax1=0
and B is 3(xo, x10, X11),
=(x9=0) A ((x11=0) = (0 <x19))
A((x9g=0)=(x3<0)) A =(x;1 =0)
Axo=0A x1=0

which is equivalent to false: https://rise4fun.com/Z3/XPN.

https://github.com/hopv/benchmarks/blob/master/clauses/lia/termination/up_down01.smt2
https://github.com/hopv/benchmarks/blob/master/clauses/lia/termination/up_down01.smt2
https://rise4fun.com/Z3/XPN

	Introduction
	Target Language and Verification Conditions
	Modified Ice Framework
	Experimental Evaluation
	Algebraic Data Types
	Related Work
	Conclusion
	Comparing Model Complexity

