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What’s This Talk About?
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–

 
Applications

–
 

Common principles
•
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•
 

Type Inference Algorithms

Future directions
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Type-Based Program Analysis?
Program analysis formalized in the form of 
type inference
–

 
Types

 
as abstract properties of a program

–
 

Type judgment
 

as a relation between a program 
and its abstract properties

–
 

Type inference algorithm
 

as an algorithm for 
inferring abstract properties of a program

Examples:
–

 
type-based exception analysis

–
 

region inference [Tofte
 

and Talpin
 

POPL94]

–
 

type-based flow analysis [Palsberg
 

POPL95]

–
 

type-based information flow analysis [Volpano
 

et al. 96]

–
 

type-based deadlock analysis [Kobayashi LICS 97]



Substructural  Type Systems?

Type systems with restricted 
structural rules (c.f. substructural logics)

Weakening:
Γ |−

 
M:τ

−−−−−−−−−−−−
Γ, x:τ’ |−

 
M:τ

Contraction:
Γ, x:τ’, x:τ’ |−

 
M:τ

−−−−−−−−−−−−−−−
Γ, x:τ’ |−

 
M:τ

Exchange:
Γ, x:τ1

 

, y:τ2
 

|−
 

M:τ
−−−−−−−−−−−−−−−−
Γ, y:τ2

 

, x:τ1
 

|−
 

M:τ



Substructural  Type Systems
weakening
Γ |−

 
M:τ

−−−−−−−−−−
Γ, x:τ’ |−

 
M:τ

contraction
Γ, x:τ’, x:τ’ |−

 
M:τ

−−−−−−−−−−−−−−−
Γ, x:τ’ |−

 
M:τ

exchange
Γ, x:τ1

 

, y:τ2

 

|−
 

M:τ
−−−−−−−−−−−−−−−−
Γ, y:τ2

 

, x:τ1

 

|−
 

M:τ

Affine

Linear 

Ordered 
linear



Substructural  Type Systems

W C E Restriction on resource usage

Affine Can be used at most once

Linear Must be used exactly once

Ordered 
linear

Must be used exactly once, 
in the specified order
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Why Affine Types?
 (why “at most once”

 
condition?)

Memory management [Baker, “Linear LISP”]
–

 
Memory space for an affine value can be deallocated

 after the value is used. 
Optimization 
–

 
Inlining

 
(for

 
lazy languages)

 
[Turner et al. FPCA95]

let x = M in N ⇒
 

[M/x]N
 

(if
 

x is affine)
–

 
One-shot call/cc

–
 

“tail-call optimization”
 

for message-passing programs

Security
–

 
Nonce should not be used twice 
[Abadi, “secrecy by typng”]

–
 

Linear declassification (e.g. password check) 
[Kaneko&Kobayashi, ESOP 2008]



Why Linear Types?
 (why “exactly once”

 
condition?)

Finalization of resource
–

 
A memory cell should be eventually deallocated.

–
 

A file should be eventually closed.

Synchronization/communication protocols
–

 
An acquired lock should be eventually released.

–
 

A server should send a reply to each request 
exactly once.



Why Ordered Types?
Checking resource access protocols 
[Igarashi&Kobayashi, POPL2002]
–

 
An array should be initialized before being read.

–
 

A memory cell must not be read after deallocation
–

 
A file must not be read/written after being closed.

Preventing deadlock [Kobayashi 97-]

Streaming XML processing [Suenaga et al. 04]

–
 

Tree data in streams can be accessed only in a 
restricted order.
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λ-calculus with resource
M (term) ::= x | c | λx.M

 
| M1

 

M2

| if M1
 

then M2
 

else M3
 

| let x = M1
 

in M2

| new( )
 
resource creation

|
 

use(M)
 
resource access 



Semantics
Run-time state:  (H, M)

H  ∈
 

Resource →
 

{0, 1}   
Reduction
(H, E[new( )]) → (H{r:1}, E[r])    (r is fresh)
(H{r:1}, E[use r]) → (H{r:0}, E[()])
(H{r:0}, E[use r]) → Error

E.g.
 

({}, let y= new( )
 

in (use y; use y))
→

 
({r:1}, let

 
y=r

 
in (use y; use y))

→
 

({r:1}, use r; use r)
→

 
({r:0}, use r)

→
 

Error



Functions as Resources

M (term) ::=
 

x |
 

c |
 

λx.M
 

|
 

M1
 

M2

|
 

if M1
 

then M2
 

else M3
 

|
 

let x = M1
 

in M2

| new( )
 

resource creation
|

 
use M  resource access 

fun x => M    ≡
 

(λx.M, new( ))
app(M1

 

, M2
 

) ≡
 

let x=M1 in let y=M2 in 
use(snd(x)); (fst

 
x)(y)



Expected Properties
Affine type system: 
If M is well-typed, then:
({}, M) →* Error 

(No resource can be used twice)

Linear type system:
If M is well-typed, then:
(i) ({}, M) →* Error 
(ii) ({}, M) →* (H, c) implies 

H(ｒ)=0 for every r ∈ dom(H)
(Every resource is used)



Types
τ

 
(types) ::=  b            base types

 |  R(u)          resource types
|  (τ → τ, u)   function types
|  τ

 
×

 
τ                pair types

u (uses)   ::=  0     cannot be used
|   1     exactly once (linear type only)
|   ≤1   at most once (affine type only)
|   ω

 
any number of times



Type Judgment (examples)
x: R(1) |−

 
use(x):  unit

x: R(1) |−
 

use(x); use(x):  unit
x: R(ω) |−

 
use(x); use(x):  unit

x: R(1) |−
 

( ):  unit
x: R(≤1) |−

 
( ):  unit

x: R(1) |−
 

λy.use(x):  (unit →
 

unit, 1)
x: R(1) |−

 
λy.use(x):  (unit →

 
unit, ω)



Typing (structural rules)

Γ┝ M:σ
 

nonlinear(τ)
−−−−−−−−−−−−−−−−−−−−−

 
(weakening)

Γ, x:τ┝ M:σ

Γ , x:τ1
 

, y:τ2
 

, Δ
 

┝ M:σ
−−−−−−−−−−−−−−−−−−−−− (exchange)

Γ, y:τ2
 

, x:τ1
 

, Δ
 

┝ M:σ

x: R(1) |−
 

use(x):unit
−−−−−−−−−−−−−−−−−−−−−−−−
x:R(1), y:R(1)

 
|−

 
use(x):unit

x:R(1) |−
 

use(x):unit
−−−−−−−−−−−−−−−−−−−−−−−−
x:R(1),y:R(≤1)

 
|−

 
use(x):unit



Typing: subsumption

Γ┝ M:τ τ ≤ σ
−−−−−−−−−−−−−−

 
(subsumption)

Γ┝ M:σ

R(ω)

R(≤1)

R(0) R(1)

≤
≤≤



Typing for resources

Γ┝ M:
 

R(1)
−−−−−−−−−−−−−−−−−

 Γ┝ use M: unit

−−−−−−−−−−−−−−−−−
 

(affine resource)
┝ newA( ): R(≤1)

−−−−−−−−−−−−−−−−−
 

(linear resource)
┝ newL( ): R(1)



Typing for resources

Γ┝ M:
 

R(1)
−−−−−−−−−−−−−−−−−

 Γ┝ use M: unit

−−−−−−−−−−−−−−−−−
 

(affine resource)
Γ┝ newA( ): R(≤1)

−−−−−−−−−−−−−−−−−
 

(linear resource)
┝ newL( ): R(1)



Typing : let
Γ┝ M:τ

 
Δ, x:τ

 
┝ N:σ

−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ

 
+ Δ

 
┝ let x=M in N :

 
σ

Example:

r:R(1)┝ use(r):unit
 
r:R(1), x:unit

 
┝ use(r):unit

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r:R(1)+R(1)

 
┝ let x=use(r) in use(r) : unit

R(u) + R(u’) = R(u+u’)  where: + 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω



Typing : let
Γ┝ M:τ

 
Δ, x:τ

 
┝ N:σ

−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ

 
+ Δ

 
┝ let x=M in N :

 
σ

Example:

r:R(1)┝ use(r):unit
 
r:R(1), x:unit

 
┝ use(r):unit

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r:R(ω)

 
┝ let x=use(r) in use(r) : unit

R(u) + R(u’) = R(u+u’)  where: + 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω



Typing : let
Γ┝ M:τ

 
Γ, x:τ

 
┝ N:σ

−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ

 
┝ let x=M in N :

 
σ

Example:

r:R(1)┝ use(r):unit
 
r:R(1), x:unit

 
┝ use(r):unit

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r:R(ω)

 
┝ let x=use(r) in use(r) : unit

R(u) + R(u’) = R(u+u’)  where: + 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω
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Type Inference 
For Linear/Affine Type Systems
Prepare variables to denote unknown uses

Extract subtype constraints

τ1
 

≤ σ1
 

, ..., τn
 

≤ σn

Reduce subtype constraints 
to constraints on use variables

η1
 

≤
 

u1
 

, ..., ηn
 

≤
 

un

Solve subuse constraints



Affine Type Inference: 
Example

let rec
 

f(n, x) = 
if n=0 then use(x)
else f(n-1, x)

in 
let r = newA()
in f(3, r)



Affine Type Inference: 
Example

let rec
 

f(n, x: R(η) ) = 
if n=0 then use(x)
else f(n-1, x)

in 
let r = newA()
in f(3, r)



Affine Type Inference: 
Example

let rec
 

f(n, x: R(η) ) = 
if

 
n=0 then use(x)

else f(n-1, x)
in 
let r = newA()
in f(3, r)

R(η) ≤
 

R(≤1) 

R(ω) ≤
 

R(≤1) ≤
 

R(0)



Affine Type Inference: 
Example

let rec
 

f(n, x: R(η) ) = 
if

 
n=0 then use(x)

else f(n-1, x)
in 
let r = newA()
in f(3, r)

R(η) ≤
 

R(≤1)

R(η) ≤
 

R(η)

R(ω) ≤
 

R(≤1) ≤
 

R(0)



Affine Type Inference: 
Example

let rec
 

f(n, x: R(η) ) = 
if n=0 then use(x)
else f(n-1, x)

in 
let r = newA()
in f(3, r)

R(η) ≤
 

R(≤1)

R(η) ≤
 

R(η)

R(≤1) ≤
 

R(η)

R(ω) ≤
 

R(≤1) ≤
 

R(0)



Affine Type Inference: 
Example

let rec
 

f(n, x: R(η) ) = 
if n=0 then use(x)
else f(n-1, x)

in 
let r = newA()
in f(3, r)

R(η) ≤
 

R(≤1)

R(η) ≤
 

R(η)

R(≤1) ≤
 

R(η)

η ≤ ≤1,  η ≤ η,  ≤1 ≤ η
(ω ≤ ≤1 ≤

 
0)

η
 

= ≤1



Constraint solving for uses:
 Affine case

η1 , ..., ηn :  use variables
f1

 

,...,fn
 

, g1
 

,...,gk
 

: 
monotonic functions

 (constructed from
 

+, ×, lub, 0,  ≤1)

η1
 

≤
 

f1
 

(η1
 

, ...,
 

ηn
 

)
 ...

 ηn
 

≤
 

fn
 

(η1
 

, ...,
 

ηn
 

)

≤1 ≤
 

g1
 

(η1
 

, ...,
 

ηn
 

)
 ...

≤1 ≤
 

gk
 

(η1
 

, ...,
 

ηn
 

)



Constraint solving for uses:
 Affine case

1. Use a fixedpoint
 

computation algorithm 
to get the greatest solution

 
η

 
=c for η

 
≤

 
f (η)

(n.b.  0 ≥
 

f (0) ≥
 

f(f(0)) ≥
 

... )

η1 , ..., ηn :  use variables
f1

 

,...,fn
 

, g1
 

,...,gk
 

: 
monotonic functions

 (constructed from
 

+, ×, lub, 0,  ≤1)

η1
 

≤
 

f1
 

(η1
 

, ...,
 

ηn
 

)
 ...

 ηn
 

≤
 

fn
 

(η1
 

, ...,
 

ηn
 

)

≤1 ≤
 

g1
 

(η1
 

, ...,
 

ηn
 

)
 ...

≤1 ≤
 

gk
 

(η1
 

, ...,
 

ηn
 

)



Constraint solving for uses:
 Affine case

Linear in the size of the constraints
[Rehof&Mogensen, 1999]

1. Use a fixedpoint
 

computation algorithm 
to get the greatest solution

 
η

 
=c for η

 
≤

 
f (η)

(n.b.  0 ≥
 

f (0) ≥
 

f(f(0)) ≥
 

... )
2. Check

 
≤1 ≤

 
g (c)

η1 , ..., ηn :  use variables
f1

 

,...,fn
 

, g1
 

,...,gk
 

: 
monotonic functions

 (constructed from
 

+, ×, lub, 0,  ≤1)

η1
 

≤
 

f1
 

(η1
 

, ...,
 

ηn
 

)
 ...

 ηn
 

≤
 

fn
 

(η1
 

, ...,
 

ηn
 

)

≤1 ≤
 

g1
 

(η1
 

, ...,
 

ηn
 

)
 ...

≤1 ≤
 

gk
 

(η1
 

, ...,
 

ηn
 

)



Constraint solving for uses:
 Linear case

The same algorithm does NOT apply!

η1
 

≤
 

f1
 

(η1
 

, ...,
 

ηn
 

)
 ...

 ηn
 

≤
 

fn
 

(η1
 

, ...,
 

ηn
 

)
 

1 ≤
 

g1
 

(η1
 

, ...,
 

ηn
 

)
 ...

 1 ≤
 

gk
 

(η1
 

, ...,
 

ηn
 

) ω

0 1

≤≤

?



Linear type system is NP-complete!
1-in-3SAT problem can be encoded.

⊕(X,Y, ¬Z)
 

∧ ⊕(¬X, ¬Y, Z)

iff

fX
 

: R(ηX
 

) →
 

unit,  f¬X
 

: R(η¬X
 

) →
 

unit,
fY

 

: R(ηY
 

) →
 

unit,  f¬Y
 

: R(η¬Y
 

) →
 

unit,
fZ

 

: R(ηZ
 

) →
 

unit,  f¬Z
 

: R(η¬Z
 

) →
 

unit
 |−

let r=newL() in
 

(fX
 

(r); f¬X
 

(r));
let r=newL() in (fY

 

(r); f¬Y
 

(r));
let r=newL() in (fZ

 

(r); f¬Z
 

(r));
let r=newL() in (fX

 

(r); fY
 

(r); f¬Z
 

(r));
let r=newL() in (f¬X

 

(r); f¬Y
 

(r); fZ
 

(r))

ηX + η¬X = 1
ηY + η¬Y = 1
ηZ + η¬Z = 1

ηX + ηY + η¬Z = 1
η¬X + η¬Y + ηZ = 1

⊕(A, B, C): 
Exactly one of 
A, B, C is true



Linear type system is NP-complete!
1-in-3SAT problem can be encoded.
⊕(X,Y, ¬Z) ∧ ⊕(¬

 
X, ¬Y, Z)

iff

|−
let fX

 

(r)= fX
 

(r) in let f¬X
 

(r)= f¬X
 

(r) in
let fY

 

(r)= fY
 

(r) in let f¬Y
 

(r)= f¬Y
 

(r) in
let fZ

 

(r)= fZ
 

(r) in let f¬Z
 

(r)= f¬Z
 

(r) in
let r = newL() in  (fX

 

(r) ; f¬X
 

(r));
let r = newL() in  (fY

 

(r) ; f¬Y
 

(r));
let r = newL() in  (fZ

 

(r) ; f¬Z
 

(r));
let r = newL() in (fX

 

(r) ; fY
 

(r); f¬Z
 

(r));
let r = newL() in (f¬X

 

(r) ; f¬Y
 

(r); fZ
 

(r))

⊕(A, B, C): 
Exactly one of 
A, B, C is true



Tractable Linear Type System

R(ω)

R(0) R(1)
≤≤

?
≤ ≤



Tractable Linear Type System

R(ω)

R(0) R(1)
≤≤

R(T)
≤ ≤

Used exactly once 
Not used 



Tractable Linear Type System

R(ω)

R(0) R(1)
≤≤

R(T)
≤ ≤

Not used 
Used exactly once 
if the program terminates.
Otherwise, at most once. 



Tractable Linear Type System

R(ω)

R(0) R(1)
≤≤

R(T) Non-termination with no use

Used exactly once 
if the program terminates.
Otherwise, at most once. 

≤ ≤

Rehof&Mogensen’s
 

algorithm
is applicable!

Not used 



Affine/Linear Types: Lessons
Extend resource types with uses
Extend also function types with uses
Carefully restrict structural rules
Carefully design the domain of uses 
(to enable efficient type inference) 

ω

0 1

≤≤
ω

≤1

0

ω

0 1

≤≤

T

≤

≤
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λ-calculus with ordered resource
 [Igarashi&Kobayashi, POPL02]

M (term) ::=
 

x |
 

c |
 

λx.M
 

|
 

M1
 

M2

|
 

if M1
 

then M2
 

else M3
 

|
 

let x = M1
 

in M2

| newΦ()
 
creation of resource

 
used according to Φ

|
 

usea(M)
 

resource access 

Φ
 

:  A set of valid access sequences



Example

let fp = newr*c() in
read(fp); close(fp)

let fp = newr*c() in
close(fp) ; read(fp) 

let fp = newr*c() in
if b then read(fp) else close(fp)

(read, write, close as abbreviations for
 

user, usew, usec
 

)

Should be closed after 
some read operations



Semantics
Reduction
(H, E[newΦ()]) → (H{r: Φ}, E[r])    (r is fresh)
(H{r: Φ}, E[usea r]) → (H{r: {w | aw ∈ Φ}, E[()])
(H{r: Φ}, E[usea r]) → Error

(if {w | aw ∈ Φ} = { })

E.g.
 

({}, let y=newr*c() in (useC
 

y; useR
 

y))
 →

 
({x: R*C}, let y=x in (useC

 

y; useR
 

y)) 
→

 
({x: R*C}, useC

 

x; useR
 

x) 
→

 
({x: {ε}}, useR

 

x) 
→

 
Error



Expected Properties

If M is well-typed, then: 

(i)  ({}, M) →* Error 
(no invalid access)

(ii) ({}, M) →* (H, c) implies 
ε ∈H(r) for every r ∈ dom(H)

(finalization)



Types
τ

 
(types) ::=  b base typ

 
es

|  R(u)
 
resource types

|  τ1
 

→ τ2
 

function types
|  τ × τ

u
 

(usages)   ::=  0              cannot be used
|   a

 
accessed once by usea

|  u1
 

; u2
 

u1
 

and then
 

u2

|  u1
 

&u2
 

u1
 

or u2
 |   ρ                 usage variable

 |   μρ. u recursion



Examples: usages
μρ.(c & (r; ρ)) :    read-only file

μρ.(0 & (push;ρ; pop)) :    stack

u (usages) ::=  0        cannot be used
|   a

 
accessed once by usea

|   u1
 

; u2
 

u1
 

and then
 

u2

|  u1
 

&u2
 

u1
 

or u2
 |   ρ              usage variable

 |   μρ. u       recursion



Typing : let
Γ┝ M:τ

 
Δ, x:τ

 
┝ N:σ

 
rfree(τ) 

−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ

 
; Δ

 
┝ let x=M in N

 
: σ

Example:

y: R(r)┝
 

read(y):unit
 

y: R(c), x: unit ┝
 

close(y):unit
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

y: R(r;c)
 

┝
 

let x= read(y) in close(y) : unit

(rfree(τ) if τ
 

does not contain resource types)



Type Inference: Example

let rec
 

f(n, x) = 
if n=0  then close(x)
else (read(x);f(n-1, x))

in 
let r = newr*c()
in f(3, r)



Type Inference: Example

let rec
 

f(n, x: R(ρ)
 

) = 
if n=0  then close(x)
else (read(x);f(n-1, x))

in 
let r: R(η)

 
= newr*c()

in f(3, r)



Type Inference: Example

let rec
 

f(n, x: R(ρ)
 

) = 
if n=0  then close(x)
else (read(x);f(n-1, x))

in 
let r: R(η)

 
= newr*c()

in f(3, r)

R (ρ)
 

≤
 

R (c)
R (ρ) ≤

 
R(r); R

 
(ρ)

R (η) ≤
 

R (ρ)
sem(η) ⊆

 
r*c

ρ ≤
 

c & (r; ρ
 

)
η ≤ ρ
sem(η) ⊆

 
r*c

sem(μr.c
 

& (r; ρ
 

)) ⊆
 

r*c



Outline
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Affine/Linear Type Systems
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Emerging and Future Directions
–

 
Fractional Types

–
 

Ordered Linear Datatypes
–

 
Better Ordered Type Systems

–
 

Integration with Other Verification Methods



Fractional Types

fun f(x: R(≤0.5), y: R(≤0.5)) = 
if x=y then use(x)

 
else ()

What are they for?
•

 
More expressive power

•
 

Efficient type inference (via linear programming)
for
•

 
Race analysis [Boyland, SAS03] [Terauchi,CONCUR06, etc.]

•
 

Protocol verification [Kikuchi & Kobayashi, APLAS2007]

Type of resource that can be used 0.5
 

times



Ordered Pair Types
τ ⊗ σ

 
:   

Type of a pair of values of types
 

τ
 

and
 

σ
 with no order constraint

τ σ
Type of pair (v,w) where v is used according  
to τ and then w is used according to σ

τ σ
Type of pair (v,w) where w is used according  
to σ and then v is used according to τ



Ordered List/Tree Types

μ α. (unit
 

+ τ α ) :
A list accessed from the head

μ α. (unit
 

+ τ α ) :
A list accessed from the tail

μ α. (unit
 

+ (α τ) α ) :
A tree accessed in the depth-first, 

left-to-right order

Application: Stream processing of XML 
[Suenaga

 
et al. 2004]



Better Ordered Type Systems?

Naive rule is unsound

Γ┝ M:τ
 

Δ, x:τ
 

┝ N:σ
 

rfree(τ)
−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ
 

; Δ
 

┝ let x=M in N
 

: σ

y:R(r)
 

┝ y:R(r)
 

y:R(c), x:R(r)
 

┝ close(y);read(x): unit
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

y: R(r;c)
 

┝ let x= y in close(y); read(x) : unit



Better Ordered Type Systems?

Naive rule is unsound

Existing solutions
–

 
Restrict types (“rfree”

 
condition) ([Suenaga

 
et al. 

2004] for XML processing)
–

 
Introduce temporal operators ([Igarashi&Kobayashi

 2002], for resource usage analysis)
–

 
Introduce “levels”

 
to express causal 

dependencies ([Kobayashi 97, for deadlock analysis)

Γ┝ M:τ
 

Δ, x:τ
 

┝ N:σ
−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ
 

; Δ
 

┝ let x=M in N
 

: σ



Integration with 
Other Verification Methods?

Need for value-dependent information

let 
x = if y>0 then newL() else null

in
if y>0 then use(x) else ( )



Substructural
 

Type Systems: 
Summary

Useful for checking resource usage
Must be carefully designed to ensure:
–

 
Type soundness

–
 

Efficient type inference
Often reduced to: 
•

 
Fixedpoint

 
computation for monotonic functions

•
 

Language inclusion problem (e.g. CFL vs
 

RL)
•

 
Model checking problem



Emerging and Future Topics

Fractional types
–

 
utilization of linear programming

Ordered linear datatypes
–

 
More applications?

Better ordered type systems

Integration with other verification methods
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