
Substructural

Type Systems for
Program Analysis

Naoki Kobayashi
Tohoku University

What’s This Talk About?

A review of substructural type systems
for program analysis
–

Applications

–

Common principles
•

Type Systems

•

Type Inference Algorithms

Future directions

Outline

Background and Motivations
–

What is type-based program analysis?

–

What are substructural

type systems?
–

What are they for?

Affine/Linear Type Systems
Ordered Linear Type Systems
Emerging and Future Research Topics

Type-Based Program Analysis?
Program analysis formalized in the form of
type inference
–

Types

as abstract properties of a program

–

Type judgment

as a relation between a program
and its abstract properties

–

Type inference algorithm

as an algorithm for
inferring abstract properties of a program

Examples:
–

type-based exception analysis

–

region inference [Tofte

and Talpin

POPL94]

–

type-based flow analysis [Palsberg

POPL95]

–

type-based information flow analysis [Volpano

et al. 96]

–

type-based deadlock analysis [Kobayashi LICS 97]

Substructural Type Systems?

Type systems with restricted
structural rules (c.f. substructural logics)

Weakening:
Γ |−

M:τ

−−−−−−−−−−−−
Γ, x:τ’ |−

M:τ

Contraction:
Γ, x:τ’, x:τ’ |−

M:τ

−−−−−−−−−−−−−−−
Γ, x:τ’ |−

M:τ

Exchange:
Γ, x:τ1

, y:τ2

|−

M:τ
−−−−−−−−−−−−−−−−
Γ, y:τ2

, x:τ1

|−

M:τ

Substructural Type Systems
weakening
Γ |−

M:τ

−−−−−−−−−−
Γ, x:τ’ |−

M:τ

contraction
Γ, x:τ’, x:τ’ |−

M:τ

−−−−−−−−−−−−−−−
Γ, x:τ’ |−

M:τ

exchange
Γ, x:τ1

, y:τ2

|−

M:τ
−−−−−−−−−−−−−−−−
Γ, y:τ2

, x:τ1

|−

M:τ

Affine

Linear

Ordered
linear

Substructural Type Systems

W C E Restriction on resource usage

Affine Can be used at most once

Linear Must be used exactly once

Ordered
linear

Must be used exactly once,
in the specified order

Outline

Background and Motivations
–

What is type-based program analysis?

–

What are substructural

type systems?
–

What are they for?

Affine/Linear Type Systems
Ordered Linear Type Systems
Future Directions

Why Affine Types?
 (why “at most once”

condition?)

Memory management [Baker, “Linear LISP”]
–

Memory space for an affine value can be deallocated

 after the value is used.
Optimization
–

Inlining

(for

lazy languages)

[Turner et al. FPCA95]

let x = M in N ⇒

[M/x]N

(if

x is affine)
–

One-shot call/cc

–

“tail-call optimization”

for message-passing programs

Security
–

Nonce should not be used twice
[Abadi, “secrecy by typng”]

–

Linear declassification (e.g. password check)
[Kaneko&Kobayashi, ESOP 2008]

Why Linear Types?
 (why “exactly once”

condition?)

Finalization of resource
–

A memory cell should be eventually deallocated.

–

A file should be eventually closed.

Synchronization/communication protocols
–

An acquired lock should be eventually released.

–

A server should send a reply to each request
exactly once.

Why Ordered Types?
Checking resource access protocols
[Igarashi&Kobayashi, POPL2002]
–

An array should be initialized before being read.

–

A memory cell must not be read after deallocation
–

A file must not be read/written after being closed.

Preventing deadlock [Kobayashi 97-]

Streaming XML processing [Suenaga et al. 04]

–

Tree data in streams can be accessed only in a
restricted order.

Outline

Background and Motivations
Affine/Linear Type Systems
- λ-calculus

with affine/linear resources

- Type systems
- Type inference algorithms

Ordered Linear Type Systems
Future Directions

λ-calculus with resource
M (term) ::= x | c | λx.M

| M1

M2

| if M1

then M2

else M3

| let x = M1

in M2

| new()

resource creation

|

use(M)

resource access

Semantics
Run-time state: (H, M)

H ∈

Resource →

{0, 1}
Reduction
(H, E[new()]) → (H{r:1}, E[r]) (r is fresh)
(H{r:1}, E[use r]) → (H{r:0}, E[()])
(H{r:0}, E[use r]) → Error

E.g.

({}, let y= new()

in (use y; use y))
→

({r:1}, let

y=r

in (use y; use y))

→

({r:1}, use r; use r)
→

({r:0}, use r)

→

Error

Functions as Resources

M (term) ::=

x |

c |

λx.M

|

M1

M2

|

if M1

then M2

else M3

|

let x = M1

in M2

| new()

resource creation
|

use M resource access

fun x => M ≡

(λx.M, new())
app(M1

, M2

) ≡

let x=M1 in let y=M2 in
use(snd(x)); (fst

x)(y)

Expected Properties
Affine type system:
If M is well-typed, then:
({}, M) →* Error

(No resource can be used twice)

Linear type system:
If M is well-typed, then:
(i) ({}, M) →* Error
(ii) ({}, M) →* (H, c) implies

H(ｒ)=0 for every r ∈ dom(H)
(Every resource is used)

Types
τ

(types) ::= b base types

 | R(u) resource types
| (τ → τ, u) function types
| τ

×

τ pair types

u (uses) ::= 0 cannot be used
| 1 exactly once (linear type only)
| ≤1 at most once (affine type only)
| ω

any number of times

Type Judgment (examples)
x: R(1) |−

use(x): unit

x: R(1) |−

use(x); use(x): unit
x: R(ω) |−

use(x); use(x): unit

x: R(1) |−

(): unit
x: R(≤1) |−

(): unit

x: R(1) |−

λy.use(x): (unit →

unit, 1)
x: R(1) |−

λy.use(x): (unit →

unit, ω)

Typing (structural rules)

Γ┝ M:σ

nonlinear(τ)
−−−−−−−−−−−−−−−−−−−−−

(weakening)

Γ, x:τ┝ M:σ

Γ , x:τ1

, y:τ2

, Δ

┝ M:σ
−−−−−−−−−−−−−−−−−−−−− (exchange)

Γ, y:τ2

, x:τ1

, Δ

┝ M:σ

x: R(1) |−

use(x):unit
−−−−−−−−−−−−−−−−−−−−−−−−
x:R(1), y:R(1)

|−

use(x):unit

x:R(1) |−

use(x):unit
−−−−−−−−−−−−−−−−−−−−−−−−
x:R(1),y:R(≤1)

|−

use(x):unit

Typing: subsumption

Γ┝ M:τ τ ≤ σ
−−−−−−−−−−−−−−

(subsumption)

Γ┝ M:σ

R(ω)

R(≤1)

R(0) R(1)

≤
≤≤

Typing for resources

Γ┝ M:

R(1)
−−−−−−−−−−−−−−−−−

 Γ┝ use M: unit

−−−−−−−−−−−−−−−−−

(affine resource)
┝ newA(): R(≤1)

−−−−−−−−−−−−−−−−−

(linear resource)
┝ newL(): R(1)

Typing for resources

Γ┝ M:

R(1)
−−−−−−−−−−−−−−−−−

 Γ┝ use M: unit

−−−−−−−−−−−−−−−−−

(affine resource)
Γ┝ newA(): R(≤1)

−−−−−−−−−−−−−−−−−

(linear resource)
┝ newL(): R(1)

Typing : let
Γ┝ M:τ

Δ, x:τ

┝ N:σ

−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ

+ Δ

┝ let x=M in N :

σ

Example:

r:R(1)┝ use(r):unit

r:R(1), x:unit

┝ use(r):unit

−−−
r:R(1)+R(1)

┝ let x=use(r) in use(r) : unit

R(u) + R(u’) = R(u+u’) where: + 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω

Typing : let
Γ┝ M:τ

Δ, x:τ

┝ N:σ

−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ

+ Δ

┝ let x=M in N :

σ

Example:

r:R(1)┝ use(r):unit

r:R(1), x:unit

┝ use(r):unit

−−−
r:R(ω)

┝ let x=use(r) in use(r) : unit

R(u) + R(u’) = R(u+u’) where: + 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω

Typing : let
Γ┝ M:τ

Γ, x:τ

┝ N:σ

−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ

┝ let x=M in N :

σ

Example:

r:R(1)┝ use(r):unit

r:R(1), x:unit

┝ use(r):unit

−−−
r:R(ω)

┝ let x=use(r) in use(r) : unit

R(u) + R(u’) = R(u+u’) where: + 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω

Outline
Background and Motivations
Affine/Linear Type Systems
- λ-calculus with affine/linear resources
- Type systems
- Type inference algorithms

- polynomial-time algorithm for affine types
- NP-completeness of linear type system
- tractable linear type systems

Ordered Linear Type Systems
Future Directions

Type Inference
For Linear/Affine Type Systems
Prepare variables to denote unknown uses

Extract subtype constraints

τ1

≤ σ1

, ..., τn

≤ σn

Reduce subtype constraints
to constraints on use variables

η1

≤

u1

, ..., ηn

≤

un

Solve subuse constraints

Affine Type Inference:
Example

let rec

f(n, x) =
if n=0 then use(x)
else f(n-1, x)

in
let r = newA()
in f(3, r)

Affine Type Inference:
Example

let rec

f(n, x: R(η)) =
if n=0 then use(x)
else f(n-1, x)

in
let r = newA()
in f(3, r)

Affine Type Inference:
Example

let rec

f(n, x: R(η)) =
if

n=0 then use(x)

else f(n-1, x)
in
let r = newA()
in f(3, r)

R(η) ≤

R(≤1)

R(ω) ≤

R(≤1) ≤

R(0)

Affine Type Inference:
Example

let rec

f(n, x: R(η)) =
if

n=0 then use(x)

else f(n-1, x)
in
let r = newA()
in f(3, r)

R(η) ≤

R(≤1)

R(η) ≤

R(η)

R(ω) ≤

R(≤1) ≤

R(0)

Affine Type Inference:
Example

let rec

f(n, x: R(η)) =
if n=0 then use(x)
else f(n-1, x)

in
let r = newA()
in f(3, r)

R(η) ≤

R(≤1)

R(η) ≤

R(η)

R(≤1) ≤

R(η)

R(ω) ≤

R(≤1) ≤

R(0)

Affine Type Inference:
Example

let rec

f(n, x: R(η)) =
if n=0 then use(x)
else f(n-1, x)

in
let r = newA()
in f(3, r)

R(η) ≤

R(≤1)

R(η) ≤

R(η)

R(≤1) ≤

R(η)

η ≤ ≤1, η ≤ η, ≤1 ≤ η
(ω ≤ ≤1 ≤

0)

η

= ≤1

Constraint solving for uses:
 Affine case

η1 , ..., ηn : use variables
f1

,...,fn

, g1

,...,gk

:
monotonic functions

 (constructed from

+, ×, lub, 0, ≤1)

η1

≤

f1

(η1

, ...,

ηn

)
 ...

 ηn

≤

fn

(η1

, ...,

ηn

)

≤1 ≤

g1

(η1

, ...,

ηn

)
 ...

≤1 ≤

gk

(η1

, ...,

ηn

)

Constraint solving for uses:
 Affine case

1. Use a fixedpoint

computation algorithm
to get the greatest solution

η

=c for η

≤

f (η)

(n.b. 0 ≥

f (0) ≥

f(f(0)) ≥

...)

η1 , ..., ηn : use variables
f1

,...,fn

, g1

,...,gk

:
monotonic functions

 (constructed from

+, ×, lub, 0, ≤1)

η1

≤

f1

(η1

, ...,

ηn

)
 ...

 ηn

≤

fn

(η1

, ...,

ηn

)

≤1 ≤

g1

(η1

, ...,

ηn

)
 ...

≤1 ≤

gk

(η1

, ...,

ηn

)

Constraint solving for uses:
 Affine case

Linear in the size of the constraints
[Rehof&Mogensen, 1999]

1. Use a fixedpoint

computation algorithm
to get the greatest solution

η

=c for η

≤

f (η)

(n.b. 0 ≥

f (0) ≥

f(f(0)) ≥

...)
2. Check

≤1 ≤

g (c)

η1 , ..., ηn : use variables
f1

,...,fn

, g1

,...,gk

:
monotonic functions

 (constructed from

+, ×, lub, 0, ≤1)

η1

≤

f1

(η1

, ...,

ηn

)
 ...

 ηn

≤

fn

(η1

, ...,

ηn

)

≤1 ≤

g1

(η1

, ...,

ηn

)
 ...

≤1 ≤

gk

(η1

, ...,

ηn

)

Constraint solving for uses:
 Linear case

The same algorithm does NOT apply!

η1

≤

f1

(η1

, ...,

ηn

)
 ...

 ηn

≤

fn

(η1

, ...,

ηn

)

1 ≤

g1

(η1

, ...,

ηn

)
 ...

 1 ≤

gk

(η1

, ...,

ηn

) ω

0 1

≤≤

?

Linear type system is NP-complete!
1-in-3SAT problem can be encoded.

⊕(X,Y, ¬Z)

∧ ⊕(¬X, ¬Y, Z)

iff

fX

: R(ηX

) →

unit, f¬X

: R(η¬X

) →

unit,
fY

: R(ηY

) →

unit, f¬Y

: R(η¬Y

) →

unit,
fZ

: R(ηZ

) →

unit, f¬Z

: R(η¬Z

) →

unit
 |−

let r=newL() in

(fX

(r); f¬X

(r));
let r=newL() in (fY

(r); f¬Y

(r));
let r=newL() in (fZ

(r); f¬Z

(r));
let r=newL() in (fX

(r); fY

(r); f¬Z

(r));
let r=newL() in (f¬X

(r); f¬Y

(r); fZ

(r))

ηX + η¬X = 1
ηY + η¬Y = 1
ηZ + η¬Z = 1

ηX + ηY + η¬Z = 1
η¬X + η¬Y + ηZ = 1

⊕(A, B, C):
Exactly one of
A, B, C is true

Linear type system is NP-complete!
1-in-3SAT problem can be encoded.
⊕(X,Y, ¬Z) ∧ ⊕(¬

X, ¬Y, Z)

iff

|−
let fX

(r)= fX

(r) in let f¬X

(r)= f¬X

(r) in
let fY

(r)= fY

(r) in let f¬Y

(r)= f¬Y

(r) in
let fZ

(r)= fZ

(r) in let f¬Z

(r)= f¬Z

(r) in
let r = newL() in (fX

(r) ; f¬X

(r));
let r = newL() in (fY

(r) ; f¬Y

(r));
let r = newL() in (fZ

(r) ; f¬Z

(r));
let r = newL() in (fX

(r) ; fY

(r); f¬Z

(r));
let r = newL() in (f¬X

(r) ; f¬Y

(r); fZ

(r))

⊕(A, B, C):
Exactly one of
A, B, C is true

Tractable Linear Type System

R(ω)

R(0) R(1)
≤≤

?
≤ ≤

Tractable Linear Type System

R(ω)

R(0) R(1)
≤≤

R(T)
≤ ≤

Used exactly once
Not used

Tractable Linear Type System

R(ω)

R(0) R(1)
≤≤

R(T)
≤ ≤

Not used
Used exactly once
if the program terminates.
Otherwise, at most once.

Tractable Linear Type System

R(ω)

R(0) R(1)
≤≤

R(T) Non-termination with no use

Used exactly once
if the program terminates.
Otherwise, at most once.

≤ ≤

Rehof&Mogensen’s

algorithm
is applicable!

Not used

Affine/Linear Types: Lessons
Extend resource types with uses
Extend also function types with uses
Carefully restrict structural rules
Carefully design the domain of uses
(to enable efficient type inference)

ω

0 1

≤≤
ω

≤1

0

ω

0 1

≤≤

T

≤

≤

Outline

Background and Motivations
Affine/Linear Type Systems
Ordered Linear Type Systems
– λ-calculus with order-constrained resources
–

Type system

–

Type inference

Emerging and Future Research Topics

λ-calculus with ordered resource
 [Igarashi&Kobayashi, POPL02]

M (term) ::=

x |

c |

λx.M

|

M1

M2

|

if M1

then M2

else M3

|

let x = M1

in M2

| newΦ()

creation of resource

used according to Φ

|

usea(M)

resource access

Φ

: A set of valid access sequences

Example

let fp = newr*c() in
read(fp); close(fp)

let fp = newr*c() in
close(fp) ; read(fp)

let fp = newr*c() in
if b then read(fp) else close(fp)

(read, write, close as abbreviations for

user, usew, usec

)

Should be closed after
some read operations

Semantics
Reduction
(H, E[newΦ()]) → (H{r: Φ}, E[r]) (r is fresh)
(H{r: Φ}, E[usea r]) → (H{r: {w | aw ∈ Φ}, E[()])
(H{r: Φ}, E[usea r]) → Error

(if {w | aw ∈ Φ} = { })

E.g.

({}, let y=newr*c() in (useC

y; useR

y))
 →

({x: R*C}, let y=x in (useC

y; useR

y))
→

({x: R*C}, useC

x; useR

x)
→

({x: {ε}}, useR

x)
→

Error

Expected Properties

If M is well-typed, then:

(i) ({}, M) →* Error
(no invalid access)

(ii) ({}, M) →* (H, c) implies
ε ∈H(r) for every r ∈ dom(H)

(finalization)

Types
τ

(types) ::= b base typ

es

| R(u)

resource types

| τ1

→ τ2

function types
| τ × τ

u

(usages) ::= 0 cannot be used
| a

accessed once by usea

| u1

; u2

u1

and then

u2

| u1

&u2

u1

or u2
 | ρ usage variable

 | μρ. u recursion

Examples: usages
μρ.(c & (r; ρ)) : read-only file

μρ.(0 & (push;ρ; pop)) : stack

u (usages) ::= 0 cannot be used
| a

accessed once by usea

| u1

; u2

u1

and then

u2

| u1

&u2

u1

or u2
 | ρ usage variable

 | μρ. u recursion

Typing : let
Γ┝ M:τ

Δ, x:τ

┝ N:σ

rfree(τ)

−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ

; Δ

┝ let x=M in N

: σ

Example:

y: R(r)┝

read(y):unit

y: R(c), x: unit ┝

close(y):unit
−−

y: R(r;c)

┝

let x= read(y) in close(y) : unit

(rfree(τ) if τ

does not contain resource types)

Type Inference: Example

let rec

f(n, x) =
if n=0 then close(x)
else (read(x);f(n-1, x))

in
let r = newr*c()
in f(3, r)

Type Inference: Example

let rec

f(n, x: R(ρ)

) =
if n=0 then close(x)
else (read(x);f(n-1, x))

in
let r: R(η)

= newr*c()

in f(3, r)

Type Inference: Example

let rec

f(n, x: R(ρ)

) =
if n=0 then close(x)
else (read(x);f(n-1, x))

in
let r: R(η)

= newr*c()

in f(3, r)

R (ρ)

≤

R (c)
R (ρ) ≤

R(r); R

(ρ)

R (η) ≤

R (ρ)
sem(η) ⊆

r*c

ρ ≤

c & (r; ρ

)
η ≤ ρ
sem(η) ⊆

r*c

sem(μr.c

& (r; ρ

)) ⊆

r*c

Outline

Background and Motivations
Affine/Linear Type Systems
Ordered Linear Type Systems
Emerging and Future Directions
–

Fractional Types

–

Ordered Linear Datatypes
–

Better Ordered Type Systems

–

Integration with Other Verification Methods

Fractional Types

fun f(x: R(≤0.5), y: R(≤0.5)) =
if x=y then use(x)

else ()

What are they for?
•

More expressive power

•

Efficient type inference (via linear programming)
for
•

Race analysis [Boyland, SAS03] [Terauchi,CONCUR06, etc.]

•

Protocol verification [Kikuchi & Kobayashi, APLAS2007]

Type of resource that can be used 0.5

times

Ordered Pair Types
τ ⊗ σ

:

Type of a pair of values of types

τ

and

σ
 with no order constraint

τ σ
Type of pair (v,w) where v is used according
to τ and then w is used according to σ

τ σ
Type of pair (v,w) where w is used according
to σ and then v is used according to τ

Ordered List/Tree Types

μ α. (unit

+ τ α) :
A list accessed from the head

μ α. (unit

+ τ α) :
A list accessed from the tail

μ α. (unit

+ (α τ) α) :
A tree accessed in the depth-first,

left-to-right order

Application: Stream processing of XML
[Suenaga

et al. 2004]

Better Ordered Type Systems?

Naive rule is unsound

Γ┝ M:τ

Δ, x:τ

┝ N:σ

rfree(τ)
−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ

; Δ

┝ let x=M in N

: σ

y:R(r)

┝ y:R(r)

y:R(c), x:R(r)

┝ close(y);read(x): unit
−−

y: R(r;c)

┝ let x= y in close(y); read(x) : unit

Better Ordered Type Systems?

Naive rule is unsound

Existing solutions
–

Restrict types (“rfree”

condition) ([Suenaga

et al.

2004] for XML processing)
–

Introduce temporal operators ([Igarashi&Kobayashi

 2002], for resource usage analysis)
–

Introduce “levels”

to express causal

dependencies ([Kobayashi 97, for deadlock analysis)

Γ┝ M:τ

Δ, x:τ

┝ N:σ
−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ

; Δ

┝ let x=M in N

: σ

Integration with
Other Verification Methods?

Need for value-dependent information

let
x = if y>0 then newL() else null

in
if y>0 then use(x) else ()

Substructural

Type Systems:
Summary

Useful for checking resource usage
Must be carefully designed to ensure:
–

Type soundness

–

Efficient type inference
Often reduced to:
•

Fixedpoint

computation for monotonic functions

•

Language inclusion problem (e.g. CFL vs

RL)
•

Model checking problem

Emerging and Future Topics

Fractional types
–

utilization of linear programming

Ordered linear datatypes
–

More applications?

Better ordered type systems

Integration with other verification methods

	Substructural Type Systems for Program Analysis
	What’s This Talk About?
	Self-Introduction:�History of My Research
	Starting Point of My Research (Year 1991)
	One year later...
	History of my research
	Outline
	Type-Based Program Analysis?
	Substructural Type Systems?
	Substructural Type Systems
	Substructural Type Systems
	Outline
	Why Affine Types?�(why “at most once” condition?)
	Why Linear Types?�(why “exactly once” condition?)
	Why Ordered Types?
	Outline
	l-calculus with resource
	Semantics
	Functions as Resources
	Expected Properties
	Types
	Type Judgment (examples)
	Typing (structural rules)
	Typing: subsumption
	Typing for resources
	Typing for resources
	Typing : let
	Typing : let
	Typing : let
	Outline
	Type Inference �For Linear/Affine Type Systems
	Affine Type Inference: Example
	Affine Type Inference: Example
	Affine Type Inference: Example
	Affine Type Inference: Example
	Affine Type Inference: Example
	Affine Type Inference: Example
	Constraint solving for uses:�Affine case
	Constraint solving for uses:�Affine case
	Constraint solving for uses:�Affine case
	Constraint solving for uses:�Linear case
	Linear type system is NP-complete!
	Linear type system is NP-complete!
	Tractable Linear Type System
	Tractable Linear Type System
	Tractable Linear Type System
	Tractable Linear Type System
	Affine/Linear Types: Lessons
	Outline
	l-calculus with ordered resource�[Igarashi&Kobayashi, POPL02]
	Example
	Semantics
	Expected Properties
	Types
	Examples: usages
	Typing : let
	Type Inference: Example
	Type Inference: Example
	Type Inference: Example
	Outline
	Fractional Types
	Ordered Pair Types
	Ordered List/Tree Types
	Better Ordered Type Systems?
	Better Ordered Type Systems?
	Integration with �Other Verification Methods?
	Substructural Type Systems: Summary
	Emerging and Future Topics

