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What’s This Talk About?
NOT a general survey 
(see the paper in the proceedings for this)

BUT an overview of our recent work,
to get

practical applications
(e.g. software model checker for ML)

from
theoretical results [Knapik et al.02;Ong06;...]

on higher-order model checking 
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– higher-order recursion schemes
– model checking problems
Applications
– program verification: 

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
Future directions
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Order-0 scheme 
(regular tree grammar)

S  → a  c  B
B → b  S

→ a

c B c b

→ a

S

c b

→ a

a

c B

→ ... →
c b

a

c b

a

c b

a

S

S  → a  
c  B

B → b
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Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S  → A c
A → λx. a  x  (A (b x))

S: o, A: o→ o
→A c

c A(b c)

→ a → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths 
are labeled by

am+1 bm c

S



Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S  → A c
A → λx. a  x  (A (b x))

S: o, A: o→ o

Higher-order recursion schemes
≈

Call-by-name simply-typed λ-calculus
+

recursion, tree constructors



Model Checking Recursion Schemes

e.g. 
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G:  higher-order recursion scheme
A:  alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?
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Grammar for generating an infinite tree
Order-1 scheme

S  → A c
A → λx. a  x  (A (b x))

S: o, A: o→ o
c a
a

b
c

a
b
b
c

a
b
b
b
c

...
Q1. Does every finite path end with “c”?

YES!
Q2. Does “a” occur below “b”?

NO!



Model Checking Recursion Schemes

e.g. 
- Does every finite path end with “c”?
- Does “a” occur below “b”?

Given
G:  higher-order recursion scheme
A:  alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]       
(for order-n recursion scheme)   

p(x)
2

..
2

2



(Non-exhaustive) History
70s: (1st-order) Recursive program schemes

[Nivat;Coucelle-Nivat;...]

70-80s: Studies of high-level grammars 
[Damm; Engelfriet;..]

2002: Model checking of higher-order recursion 
schemes [Knapik-Niwinski-Urzyczyn02FoSSaCS]
Decidability for “safe” recursion schemes

2006: Decidability for arbitrary recursion schemes
[Ong06LICS]

2009: Model checker for higher-order recursion
schemes [K09PPDP]
Applications to program verification [K09POPL]
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From Program Verification
to Model Checking Recursion Schemes

[K. POPL 2009]

Program 
Transformation

Higher-order
program

+
specification
(on events or 
output)

Rec. scheme
(describing all 
event sequences

or outputs)
+

Tree automaton,
recognizing 

valid event sequences
or outputs

Model
Checking



From Program Verification to Model Checking:
Example

let f(x) = 
if ∗ then close(x) 
else read(x); f(x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according 

to read* close?
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Is the file “foo”
accessed according 

to read* close?
Is each path of the tree

labeled by r*c?

CPS 
Transformation!

continuation parameter, 
expressing how “foo” is accessed 

after the call returns
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From Program Verification
to Model Checking Recursion Schemes

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 

event sequences)
+

automaton for
infinite trees

Model
Checking

Sound, complete, and automatic for:
- A large class of higher-order programs:

simply-typed λ-calculus + recursion 
+ finite base types (e.g. booleans)

- A large class of verification problems:
resource usage verification (or typestate checking), 
reachability, flow analysis,...



Combination with Predicate Abstraction 
and CEGAR [K&Sato&Unno,PLDI11]

Predicate 
abstraction

Higher-order
functional program

Higher-order
boolean program Higher-order

model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates



Comparison with Traditional Approach 
(Software Model Checking)

Program Classes Verification Methods
Programs with 
while-loops

Finite state model checking

Programs with 
1st-order recursion

Pushdown model checking

Higher-order functional 
programs

Higher-order model 
checking

infinite
state
model 
checking



Applications to Program Verification: 
Summary

Sound, complete, and automatic
for simply-typed programs with recursion and 
finite base types (e.g. booleans)

Sound (but incomplete) and automatic
for simply-typed programs with recursion and 
infinite base types (e.g. integers, lists, ...) 
by combination with predicate abstraction and 
CEGAR
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Applications to Data Compression

Compressed data as higher-order grammars
(c.f. Kolmogorov complexity)
– Hyper-exponential compression ratio 

Data processing without decompression
using higher-order model checking



Compressed Data as Recursion Schemes

a(a(a(.....(a(e))...)))

2n

S = Twice(Twice(...(Twice a)...)) e

Twice f x = f(f(x)) n

Compression ratio : O(n/2n)



Compressed Data as Recursion Schemes

a(a(a(.....(a(e))...)))

S = ((Twice Twice) ... Twice) a e

Twice f x = f(f(x)) n

2
2

..
2
2 compression



Applications to Data Compression

Compressed data as higher-order grammars
– Hyper-exponential compression ratio 

Data processing without decompression
using higher-order model checking
– pattern match queries
– associated data processing to compute:

• matching positions
• the number of matches
• ... (whatever expressed by transducers)



Pattern Matching without Decompression
by Higher-Order Model Checking

Does Tree(G) match a pattern P?

Is Tree(G) accepted by MP?

e.g. contains “bb”?

e.g. accepted by the following automaton? 

b b
a a



Example: a Fibonacci word
Fibonacci word:
w0=b, w1=a, w2=w1w0=ab, w3=w2w1=aba,..., 
wn=wn-1wn-2

S = Twice(Twice(...(Twice Next)..)) Fst b a e
Next k u v = k v (Concat v u)
Concat f g x = f(g(x))
Twice f x = f(f(x))

m
Compression (case n=2m)

Query: Does w1024 contain “bb”?
(Note: |w1024| > 10200 )



Applications to Data Compression

Compressed data as higher-order grammars
– Hyper-exponential compression ratio 

Data processing without decompression
using higher-order model checking
– pattern match queries
– associated data processing to compute:

• matching positions
• the number of matches
• ... (whatever expressed by transducers)



Data Transformation without Decompression

tree T

grammar G

decompress
T = Tree(G)

transducer f
e.g. counting “ab”:

tree f(T)

grammar G’

decompress
f(T)=Tree(G’)

higher-order 
model checking
+ α

a/ε

a/ε
b/1b/ε



Applications to Data 
Compression: Summary

Compressed data as higher-order 
grammars
– Hyper-exponential compression ratio 

Data processing without decompression
using higher-order model checking
– pattern match queries; and
– associated data processing expressed by 
transducers



Outline
What is higher-order model checking?
Applications
– program verification: 

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
– from model checking to typing
– practical algorithms
Future directions



Difficulty of higher-order model checking

Extremely high worst-case complexity
– n-EXPTIME complete [Ong, LICS06]

– Earlier algorithms [Ong06;Aehlig06;Hague et al.08]
almost always suffer from n-EXPTIME bottleneck.

p(x)
2

..
2

2



Our approach: 
from model checking to typing

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A 

if and only if

G is typable in TS(A)

Model Checking as
Type Checking 
(c.f. [Naik & Palsberg, ESOP2005])



Model Checking Problem

Given
G:  higher-order recursion scheme

(without safety restriction)
A:  alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)



Model Checking Problem: 
Restricted version

Given
G:  higher-order recursion scheme

(without safety restriction)
A:  trivial automaton [Aehlig CSL06]

(Büchi tree automaton where
all the states are accepting states)

does A accept Tree(G)?

See [K.&Ong, LICS09] for the general case 
(full modal μ-calculus model checking)



Trivial tree automaton 
for infinite trees
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q0 q0



Trivial tree automaton 
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

“a” does not occur below “b”

q0 q0



Trivial tree automaton 
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0

“a” does not occur below “b”

q0 q0



Trivial tree automaton 
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0

“a” does not occur below “b”

q0 q0



Trivial tree automaton 
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

“a” does not occur below “b”

q0 q0



Trivial tree automaton 
for infinite trees

c a
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...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1
“a” does not occur below “b”

q0 q0



Types for Recursion Schemes
Automaton state as the type of trees
– q: trees accepted from state q

– q1∧q2: trees accepted from both q1 and q2

q

Is Tree(G) accepted by A?

Does Tree(G) have type q0?



Types for Recursion Schemes
Automaton state as the type of trees

– q1→ q2: functions that take a tree of type q1 
and return a tree of q2

q2

q1 + =
q1

q2

q1



Types for Recursion Schemes
Automaton state as the type of trees
– q1∧q2 → q3: 

functions that take a tree of type q1∧q2 and 
return a tree of type q3

+ =
q1, q2

q3

q1 q2q2

q3

q1 q2q2



Types for Recursion Schemes
Automaton state as the type of trees
(q1 → q2) → q3: 

functions that take a function of type q1 → q2 
and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2



Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ 
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ 
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ 

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q



Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ 
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ 
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ 

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Γ, x:τ ┝ x :τa

…

q

q1 qn



Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ 
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ 
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ 

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q



Soundness and Completeness
[K., POPL2009]

G = {F1 →t1, ..., Fm →tm } (with S=F1)
A: Trivial automaton with initial state q0
TS(A): Intersection type system for A      

Tree(G) is accepted by A
if and only if

S has type q0 in TS(A),
i.e. ∃Γ.(S:q0∈ Γ ∧ |− {F1→t1,..., Fn → tn} : Γ)

if and only if
∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈Γ. Γ|− tk : τ )



Soundness and Completeness
[K., POPL2009]

Tree(G) is accepted by A
if and only if

S has type q0 in TS(A),
i.e. ∃Γ.(S:q0∈ Γ ∧ |− {F1→t1,..., Fn → tn} : Γ)

if and only if
∃Γ.(S: q0 ∈ Γ ∧ ∀(Fk:τ)∈Γ. Γ|− tk : τ )

if and only if
∃Γ.(S: q0 ∈ Γ  ∧ Γ = H( Γ) )
for H(Γ) = { Fk:τ ∈ Γ  |   Γ |− tk:τ }

Function to filter out invalid type bindings



Type checking (=model checking) problem

Is there a fixedpoint of H greater than {S:q0}? 
(where H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })

Γmax (the set of all type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

⊆ ⊆

...

..
. ...

∅

⊆

x  fixedpoint of H



Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H

(H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x  fixedpoint

H(Γmax) x

...
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Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H

(H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x  fixedpoint

H(Γmax) x

H2(Γmax) x

H3(Γmax) x
...



Example
Recursion scheme:

S → F c     F → λx.a x (F (b x))
(S:o, F: o→o)

Automaton:
δ(q0, a) = q0 q0 δ(q0, b) = q1 
δ(q0, c) = δ(q1, c) = ε

Γmax= {S:q0, S:q1,  F: T→q0, F: q0 →q0, F: q1 →q0, F: q0 ∧q1 →q0, 
F: T→q1, F: q0 →q1, F: q1 →q1, F: q0 ∧q1 →q1}

H(Γmax) = { S:τ ∈ Γmax | Γmax |− F c:τ } 
∪ { F:τ ∈ Γmax | Γmax |− λx.a x (F(b x)) :τ }

= {S:q0, S:q1,  F: q0 →q0, F: q0∧q1 →q0}
H2(Γmax) = {S:q0, F: q0∧q1 →q0}
H3(Γmax) = {S:q0, F: q0∧q1 →q0} = H2(Γmax)



Naive Algorithm [K. POPL09]
1.Compute the greatest fixedpoint Γgfp of H

(H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ })
2.Check whether S:q0∈ Γgfp

Γmax (the set of all possible type bindings)

{S:q0}

⊆

{F:q0→q0,S:q0}

⊆

...
...

x  fixedpoint

H(Γmax) x

H2(Γmax) x

H3(Γmax) x
...

Drawbacks:
- Huge cost for computing H
- Huge number of iterations
(both as huge as |Γmax| = 

O(|G|× )

)

(AQ)1+ε

2
..
2

2 A: largest arity
Q: automaton size 



How large is Γmax?

sort # of types for each sort 
(Q={q0,q1,q2,q3})

o (trees) 4 (q0,q1,q2,q3)

o → o 24 ×4 = 64  (∧S→ q, with S∈2Q, q∈Q)

(o→o) → o 264 ×4 = 266 

((o→o) → o) → o 266 10000000000000000000
2   ×4 > 10

Γmax: the set of all possible type bindings for non-terminals

(A|Q|)1+ε

2
..
2

2
|Γmax| = O(|G|× )



Outline
What is higher-order model checking?
Applications
– program verification: 

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
– from model checking to typing
– practical algorithms
Future directions



Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

1.Guess a type environment Γ0

2.Compute greatest fixedpoint Γ smaller than Γ0

3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

Γmax (the set of all possible type bindings)

{S:q0}
......

Γ0 x
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Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

Γmax (the set of all possible type bindings)

{S:q0}
...

...

H(Γ0) x
H2(Γ0) x

...

Γ0 x

1.Guess a type environment Γ0

2.Compute greatest fixedpoint Γ smaller than Γ0

3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.



How to guess Γ0?
PPDP09 algorithm
– Reduce a recursion scheme 

a finite number of steps
– Observe how each function 

is used and express it 
as types

FoSSaCS11 algorithm
– Like PPDP09, but avoid 

reductions by using game 
semantic interpretation of 
types

Γmax

{S:q0}

......

H(Γ0) x
H2(Γ0) x

...

Γ0 x



Example
Recursion scheme:

S → F c     F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1 
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

S
q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0
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Example
Recursion scheme:

S → F c    F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1 
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0 

F: T → q0 



Practical Algorithms [K. PPDP09] [K.FoSSaCS11]

1.Guess a type environment Γ0

2.Compute greatest fixedpoint Γ smaller than Γ0

3.Check whether S:q0∈ Γ
4. Repeat 1-3 until the property is proved or refuted.

{S:q0}

...

H(Γ0) x
H2(Γ0) x

...

Γ0 x

Γ0 = {S: q0, F: q0 ∧ q1→ q0,
F: q0 → q0 , F: T → q0}

H(Γ0) = { Fk:τ ∈ Γ0 | Γ0 |− tk:τ }
= {S: q0, F: q0 ∧ q1→ q0,

F: q0 → q0 }

H2(Γ0) = {S: q0, F: q0 ∧ q1→ q0}

H3(Γ0) = {S: q0, F: q0 ∧ q1→ q0}



TRecS [K. PPDP09]
http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

The first model checker for recursion 
schemes

Based on the PPDP09 algorithm, 
with certain additional optimizations



Experiments
order rules states result Time 

(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1
TwofilesE 4 12 5 Yes 2
FileOcamlC 4 23 4 Yes 5
Lock 4 11 3 Yes 10
Order5 5 9 4 Yes 2
mc91 4 49 1 Yes 50
xhtml 2 64 50 Yes 884

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of 
Objective Caml, consisting of 
about 60 lines of O’Caml code



(A simplified version of) 
FileOcamlC

let readloop fp = 
if * then () else readloop fp; read fp

let read_sect() =
let fp = open “foo” in
{readc=fun x -> readloop fp;
closec = fun x -> close fp}

let loop s =
if * then s.closec() else s.readc();loop s

let main() =
let s = read_sect() in loop s



Algorithms for Higher-Order 
Model Checking: Summary

Model checking can be reduced to type checking, 
which in turn becomes a fixedpoint problem

Greatest fixedpoint is too costly to compute

Practical algorithms guess a type environment and 
use it as a start point of fixedpoint computation

FoSSaCS11 algorithm (for trivial automata model 
checking) is linear time in the size of grammar 
if other parameters (the size of types and 
automaton) are fixed



Outline
What is higher-order model checking?
Applications
– program verification: 

“software model checker for ML”
– data compression
Algorithms for higher-order model checking
– from model checking to typing
– practical algorithms
Discussions on FAQ and Future Directions
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Does higher-order model checking scale? 

Bad News
- n-EXPTIME complete

- Huge constant factor

Good News
+ Fixed-parameter PTIME
in the grammar size
(linear time for safety
properties)

+ Use PPDP09 or 
FoSSaCS11 algorithm

+ Worst-case behavior shows
an advantage of HO functions,
rather than a disadvantage
of HO model checking



Recursion schemes generating

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

m
2a c

Exponential time algorithm for order-1
≈
Polynomial time algorithm for order-0

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

Order-0:
S→a G1, G1 →a G2,..., Gk → c  (k=2m)
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Recursion schemes generating

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

m
2a c

(fixed-parameter)
Polynomial time algorithm for order-n [K11FoSSaCS]
>>
Polynomial time algorithm for order-0

Order-1:
S→F1 c, F1 x→F2(F2 x),..., Fm x→a(a x)

Order-0:
S→a G1, G1 →a G2,..., Gk → c  (k=2m)
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– no false alarms!
– no annotations



Advantages of HO model checking 
for program verification

(1) Sound, complete and automatic for a large 
class of higher-order programs
– no false alarms!
– no annotations

(2) Subsumes finite-state/pushdown model 
checking
– Order-0 rec. schemes ≈ finite state systems
– Order-1 rec. schemes ≈ pushdown systems



Advantages of HO model checking 
for program verification

(3) Take the best of model checking and types 

– Types as certificates of successful verification 
⇒ applications to PCC (proof-carrying code)

– Counterexample when verification fails 
⇒ error diagnosis, 

CEGAR (counterexample-guided 
abstraction refinement)



Advantages of HO model checking 
for program verification

(4) Encourages structured programming

Previous techniques:
- Imprecise for higher-order functions and recursion,
hence discourage using them

Our technique:
- No loss of precision for higher-order functions and 
recursion

- Performance penalty? -- Not necessarily!
If higher-order functions are properly used,
there may be performance gain!



Remaining Challenges
Refinement of HO model checkers
– More efficiency
– Support of full modal μ-calculus
Software model checkers for 
full-scale programming languages
– Refinement of predicate abstraction and CEGAR
– Dealing with advanced types, references, etc.
Extension of the decidability result?
– Extension of models (recursion schemes)
– Extension of properties 
Other applications 
(e.g. data compression)



Conclusion
HO model checking problems can often be 
solved efficiently, despite the high worst-case 
complexity
(More justifications are needed, though.)
Important and interesting applications:
– automated program verification
– data compression

Only the first step from theory to practice; 
more efforts are required both in theoretical 
and practical communities


