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What's This Talk About?

¢ NOT a general survey
(see the paper in the proceedings for this)

¢ BUT an overview of our recent work,
to get
practical applications
(e.g. software model checker for ML)
from
theoretical results [Knapik et al.02;0ng06:...]
on higher-order model checking



Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problems
¢ Applications

- program verification:
“software model checker for ML"

- data compression
¢ Algorithms for higher-order model checking
¢ Future directions
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Higher-Order Recursion Scheme
¢ Grammar for generating an infinite tree

Order-0 scheme
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Higher-Order Recursion Scheme

¢ Grammar for generating an infinite tree
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Higher-Order Recursion Scheme

¢ Grammar for generating an infinite tree
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Higher-Order Recursion Scheme

‘Gl‘ammal‘ fOl" Tree whose pafhs Ii'|'e '|'r'ee

Order-1 schem( are labeled by
S S Ac a™: br ¢
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Higher-Order Recursion Scheme

¢ Grammar for generating an infinite tree

Order-1 scheme
S > Ac

A—>Ax.a x (A (b x))

S:0, Ato—> o0

-

Higher-order recursion schemes
Call-by-name simply-typed A-calculus
+

recursion, free constructors

~S

~




Model Checking Recursion Schemes

Given
G: higher-order recursion scheme

Qioes A accept Tree(6)?

~

A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

J

e.g.
- Does every finite path end with "c"?

- Does “"a” occur below "b"?
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Model Checking Recursion Schemes
~

Given
G: higher-order recursion scheme
A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

does A accept Tree(G)?
° P 6) Y

e.g.
- Does every finite path end with "c"?

- Does “"a” occur below "b"?
f

N
n-EXPTIME-complete [Ong, LICS06] n _ZP >

(for order-n recursion scheme) (2

\_ Y,




(Non-exhaustive) History

¢ 70s: (1s'-order) Recursive program schemes
[Nivat;Coucelle-Nivat;...]

¢ 70-80s: Studies of high-level grammars
[Damm; Engelfriet:..]

¢ 2002: Model checking of higher-order recursion
schemes [Knapik-Niwinski-Urzyczyn02FoSSacCS]
Decidability for “safe” recursion schemes

¢ 2006: Decidability for arbitrary recursion schemes
[Ong06LICS]

¢ 2009: Model checker for higher-order recursion
schemes [KO9PPDP]
Applications to program verification [kKo9poPL]



Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problems

¢ Applications

- program verification:
“software model checker for ML"

- data compression
¢ Algorithms for higher-order model checking
¢ Future directions



From Program Verification

to Model Checking Recursion Schemes
[K. POPL 2009]

Higher-order

pr'ogr'am
+ —>

specification

(on events or

Program
Transformation

#

Tree automaton,

output)

Rec. scheme
(describing all
event sequences
or outputs)
+

recoghizing

—

Model
Checking

valid event sequences

or outputs




From Program Verification to Model Checking:
Example

let f(x) =
if * then close(x)
else read(x); f(x)
in
let y = open "foo"

in
f (y)

~
Is the file “"foo”

ccessed according

to read™ close?
J




From Program Verification to Model Checking:
Example

let f(x) =
if * then close(x)
else read(x): f(x)
in
let y = open "foo"

in
f (y)
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From Program Verification to Model Checking:

Example
let f(x) = Fxk—> + (c k) (r(F x k)
if * then close(x) S—>Fd *+
else read(x); f(x) / "\
let y = open "foo" o
ery N
in C rl'
f (y) VoA
C r
, D B
Is the file "foo” - ‘ 2
ccessed according| ——p | Is each path of the tree
to read™ close? , labeled by r*c?
\ y




expressing how "foo” is accessed

-
From Progr'am ‘ continuation parameter, ng:
after the call returns

T
let f(X) - F x k —; ';(C k) (r'(F X k))
if * then close(x) S-F .
else read(x); f(x) oPe O
n “r Transformation!
let y = open “foo .
in C rl'
f (y) VoA
C r
, D |
Is the file "foo” ( ‘ \
ccessed according| —p | Is each path of the tree
to read™ close? , labeled by r*c?
\ y




From Program Verification to Model Checking:
Example

if * then
else
in

let y = open "foo”

in

f (y)

+

F»S > Fdx

+
L
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~
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From Program Verification to Model Checking:
Example
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From Program Verification to Model Checking:

Example
(r(F x k))
F»S >Fdx
read(x): f(x) e
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From Program Verification

to Model Checking Recursion Schemes

Higher-order

program
<+
specification

—

Program
Transformation

Rec. scheme
(describing all

event sequences)

#

automaton for

+

infinite trees

—

Model
Checking

éound, complete, and automatic for:

- A large class of higher-order programs:
simply-typed A-calculus + recursion
+ finite base types (e.g. booleans)

- A large class of verification problems:
resource usage verification (or typestate checking),

\ reachability, flow analysis, ...

~

/




Combination with Predicate Abstraction
and CEGAR [K&Sato&Unno PLDI11]

Program is unsafe!
Higher-order
unctional progra
Predicate A*Q :

abstraction

l

Higher-order
boolean program

Error path

property not satisfied

igher-order
nodel checking

property satisfied
Program is safel!



Comparison with Traditional Approach
(Software Model Checking)

Program Classes Verification Methods
Programs with Finite state model checking
while-loops
Programs with Pushdown model checking ] infinite
1s'-order recursion state

" model
Higher-order functional Higher-order model :

: checking

programs checking )




Applications to Program Verification:
Summary

¢ Sound, complete, and automatic
for simply-typed programs with recursion and
finite base types (e.g. booleans)

¢ Sound (but incomplete) and automatic
for simply-typed programs with recursion and
infinite base types (e.g. integers, lists, ...)
by combination with predicate abstraction and
CEGAR



Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problems
¢ Applications

- program verification:
“software model checker for ML"

- data compression
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Applications to Data Compression

¢ Compressed data as higher-order grammars
(c.f. Kolmogorov complexity)
- Hyper-exponential compression ratio

¢ Data processing without decompression
using higher-order model checking



Compressed Data as Recursion Schemes

a(a(a(.....(a(e))...)))
\ J

Y
Zn
m Compression ratio : O(n/2")
4 )
S = Iwnce(Twuce(...(Twucs a)...)) e

e
Twice f x = f(f(x)) "

\ J




Compressed Data as Recursion Schemes

a(a(a(.....(a(e))...)))
\ J

n 22
5
2 M compression
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Applications to Data Compression

¢ Compressed data as higher-order grammars
- Hyper-exponential compression ratio

¢ Data processing without decompression
using higher-order model checking
- pattern match queries
- associated data processing to compute:
- matching positions
* the number of matches
* ... (whatever expressed by transducers)



Pattern Matching without Decompression
by Higher-Order Model Checking

[Does Tree(G) match a pattern P?J

M e.g. contains "bb"?

[ Is Tree(6) accepted by Mp? J

e.g. accepted by the following automaton?

N
%bec
a a



Example: a Fibonacci word

Fibonacci word: A

wo=b, w;=a, w,=w;wy=ab, ws=w,w;=aba,...,

\wnzwn-lwn-z Y
ﬂ Compression (case n=2M)

4 m )

S = Twice(Twice(...(Twice Next)..)) Fst b a e
Next k u v = k v (Concat v u)
Concat f g x = f(g(x))

\Twme f x = f(f(x)) y

Query: Does w;q,4 contain "bb"?
(Note: |wjgo4| > 10200)




Applications to Data Compression

¢ Compressed data as higher-order grammars
- Hyper-exponential compression ratio

¢ Data processing without decompression
using higher-order model checking
- pattern match queries
- associated data processing to compute:
- matching positions
* the number of matches
* ... (whatever expressed by transducers)



Data Transformation without Decompression

. | tree f(T }
[ tree T J‘rr‘ansducer‘ f [ ( )

N e.g. counting “ab":
N a/e
decompress t‘ ’5(0/ 85 decompress
T = Tree(6) b/e b/1 f(T)=Tree(G')
[grammar GJ . [grammar Gﬂ

higher-order
model checking
+ q



Applications to Data
Compression: Summary

¢ Compressed data as higher-order
grammars
- Hyper-exponential compression ratio

¢ Data processing without decompression
using higher-order model checking

- pattern match queries; and

- associated data processing expressed by
transducers



Outline

¢ What is higher-order model checking?
¢ Applications

- program verification:
“software model checker for ML"

- data compression

¢ Algorithms for higher-order model checking
- from model checking to typing
- practical algorithms

¢ Future directions



Difficulty of higher-order model checking

¢ Extremely high worst-case complexity
- n-EXPTIME complete [Ong, LICS06]

n//- 2p(><)
-
2

- Earlier algorithms [Ong06;Aehlig06:Hague et al.08]
almost always suffer from n-EXPTIME bottleneck.



Our approach:
from model checking to typing

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A
if and only if
G is typable in TS(A)

Model Checking as

Type Checking
(c.f. [Naik & Palsberg, ESOP2005])




Model Checking Problem

(Given
G: higher-order recursion scheme
(without safety restriction)

~

A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

\does A accept Tree(6G)?

/

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)




Model Checking Problem:
Restricted version

KGiven \

G: higher-order recursion scheme

(without safety restriction)
A: trivial automaton [Aehlig c5L06]

(Bichi tree automaton where
all the states are accepting states)

\does A accept Tree(G)? W,

See [K.&Ong, LICSO09] for the general case
(full modal p-calculus model checking)




Trivial tree automaton
for infinite trees

A\ (

c a 3(q0, a) = q0 qO
)~ @ 5(q0, b) = q1
Ly 5(q1, b) = q1

, €)= ¢
d(ql, ¢) = ¢

“a” does not occur below "b”

0 —0—0O
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Trivial tree automaton
for infinite trees

A
0¢c a

7~

b a

| /\a
c |:|> ~.

b
|
C

0—0—0—0O
\

6(q0, a) = q0 q0
5(q0, b) = q1
5(q1, b) = ql
3(q0, ¢) = ¢
d(ql, ¢) = ¢

“a” does not occur below "b”




Trivial tree automaton
for infinite trees

d(ql, ¢) = ¢

q0
e\
qOc /ag 5(q0, a) = q0 qO0

b a 5(q0, b) = q1
P q q

<|: b a 5(q1, b) = q1
:
|

“a” does not occur below "b”

b/ \ 3(q0, ¢) = ¢
b
b
C




Trivial tree automaton
for infinite trees

8(q0,
8(q0,
5(q1,

a) = q0 qO0
b) = q1
b) = q1

, C) = ¢
, €) = €

“a” does not occur below "b”




Trivial tree automaton
for infinite trees

q0
q0 ¢ aq0 5(q0, a) = q0 q0

7 ’

©b, B 80, b) = ql

q1<|: b /Oq\ 5(q1, b) = q1
qltl’ bqO 6(q0, ¢) = ¢

A 5(ql, ¢) = &
qls bf
bal "a"” does not occur below "b”




Types for Recursion Schemes

¢ Automaton state as the type of trees
- q: trees accepted from state q

A

- qlAq2: trees accepted from both q1 and q2

Is Tree(6) accepted by A?

v

Does Tree(G) have type q,?




Types for Recursion Schemes

¢ Automaton state as the type of trees

- q1—> q2: functions that take a tree of type ql
and return a tree of q2

Aok



Types for Recursion Schemes

¢ Automaton state as the type of trees
- qlAq2 — q3:
functions that take a tree of type q1Aq2 and
return a tree of type g3

q3

ql, q2
, + A =

\




Types for Recursion Schemes

¢ Automaton state as the type of trees
(91 - q2) — q3:
functions that take a function of type q1 — q2
and return a tree of type q3

q3




Typing

S(Q: 0) = Q1---Qn T x:it I-X -

I'G:q1—>...—>qn—>q

Tt T ALAT, =T
T, X:T,..., XiT, Ft7 I Ft,:1 (i=1,..n)

I FAXt T ALAT, > T Tkt t,r

T | T, : T (for every F,:tel’)
|'{F1—>'|'1,..., Fn —)1'"} T




Typing

S(ql C() = Q1---Qn /

I'G:q1—>...—>qn—>q

(\qn

I, xX:t,..., Xit, Ftit T+t (i=1

I FAXt T ALAT, > T Tkt t,r

T | T, ¢ T (for every F,:tel’)




Typing

5@, @) = 414 o e

I'G:q1—>...—>qn—>q

Tt T ALAT, =T
T, X:T,..., XiT, Ft7 I Ft,:1 (i=1,..n)

I FAXt T ALAT, > T Tkt t,r

T | T, ¢ T (for every F,:tel’)
|'{F1—>‘|'1,..., Fn —)1'"} I




Soundness and Completeness
[K., POPL2009)

/Tr'ee(G) is accepted by A

S

if and only if
has type q, in TS(A),

i.e. dr'.(S:qpe I' A |-{F;>1,4,..., F,->t}:T)

if and only if

EIl".(S: Qo € F/\V(Fk:T)Er. Fl— tk: T)

\_

/

G = {F, »t,, ..., F, ot} (with S=F,)
A: Trivial automaton with initial state q,
TS(A): Intersection type system for A



Soundness and Completeness
[K., POPL2009]

ﬁee(@) is accepted by A
if and only if

S has type q, in TS(A),

i.e. Ar.(S:qpe I' A |-{F;>t4,..., F,>t}:T)
if and only if

ar.(S: qg € TAV(Fit)el.T|-t,: 1)
if and only if

Ar.(S: qoe ' AT = H(T))

for HI') = { Fiitel | T |-ttt}

Function to filter out invalid type bindings




Type checking (=model checking) problem

r “
Is there a fixedpoint of H greater than {S:q,}?
(wher‘e HT) = { FiiteT|T |-1;it})

Y,

iy . x fixedpoint of
(S. UI W\ U <

. S{F 9090, 5" QO}
N o <,




Naive Algorithm [K. POPLO9]

(1 .Compute the greatest fixedpoint I';¢, of H ™
(HI) = { Fiit e | T |-1;it))
2-Check whether S:qoe I'py, y

'/ ax (the set of all possible type bindings)

x fixedpoint



Naive Algorithm [K. POPLO9]

(1 .Compute the greatest fixedpoint I';¢, of H A
(HI) = { Fire T[T |-13:1))
_2.Check whe'rher' 5:qo€ I'gfp y

'/ ax (the set of all possible type bindings)

H(T e
()

x fixedpoint



Naive Algorithm [K. POPLO9]

(1 .Compute the greatest fixedpoint I';¢, of H ™
(HI) = { Fiit e | T |-1;it))
2-Check whether S:qoe I'py, y

'/ ax (the set of all possible type bindings)

H(T fnax)
HE(T ) ><>
H3(rmGX)

x fixedpoint



Example
¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
(S:0, F: 0—0)
¢ Automaton:
6(q0. @) = 9090 (90, b) = q;
6(qo. €) = 8(q;, €) = ¢

Fmax= {5190, S:q;, F: Toqo, Fi qo >q0, F: 91 290, F: g9 Aq; —qo,
F: T—q,, F: g0 —q;, F: q1 —>q;, F: qo Aq; —q;}

H(Fmax) = { Site 1_‘max | 1_‘lrncxx |_ F C:T}
U{Fitel, | Thxl—-AX%.a x (F(b x)) i1}

= {S:q0. S:q;. F: qo —qo. F: qorq; —qo}
H(Tnex) = {540, F: qorgs —90)
H3(Cmax) = {S:q0. F* qorqy —>qg} = HA(Tpye0)



Naive Algorithm [K. POPLO9]

1 .Compute the greatest fixedpoint I

(HI) = { Fiit e | T |-1;it))

gfp Of H

~

J

2-Check whether S:qoe I'py,

'/ ax (the set of all possible type bindings)

H(Tnax) Drawbacks:

Ha(rmax)

)

-~
H2(T, 0) - Huge cost for computing H
- Huge number of iterations

(both as huge as |I', .| =

(AQ)! "
o(l61x y 2 )
-

2 A: largest arity

Q: automaton size




How large is I', ., ?

I'.x: The set of all possible type bindings for non-terminals

sort # of types for each sort
(Q={q0.9:.9..93})

o (trees) 4 (90.91.92.93)

050 24 x4 = 64 (7S—q, with 5c2R, qeQ)

(0—0) > o 204 x4 = 266

((0>0) - 0) > o | 2s 10000000000000000000
2 x4 > 10

] Z(AIQI)“S
Ced = OUG1%° )
2



Outline

¢ What is higher-order model checking?
¢ Applications

- program verification:
“software model checker for ML"

- data compression

¢ Algorithms for higher-order model checking
- from model checking to typing
- practical algorithms

¢ Future directions



Practical Algorithms (k. PPpPO9] [K.FosSacs11]
N

G .6uess a type environment Iy
2.Compute greatest fixedpoint I" smaller than T,
3.Check whether S:iqpe T

d. Repeat 1-3 until the property is proved or r'efutedj

' ax (the set of all possible type bindings)
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Practical Algorithms [k. PPDPO9] [K.Fossacs11]
N

G .6uess a type environment Iy
2.Compute greatest fixedpoint I" smaller than T,
3.Check whether S:iqpe T

d. Repeat 1-3 until the property is proved or r'efu‘redj

' ax (the set of all possible type bindings)




Practical Algorithms [k. PPDPO9] [K.Fossacs11]
N

G .6uess a type environment I
2.Compute greatest fixedpoint I" smaller than T,
3.Check whether S:iqpe T

d. Repeat 1-3 until the property is proved or r'efu‘redj

Iy ax (the set of all possible type bindings)




How to guess I'y?

¢ PPDPO9 algorithm

- Reduce a recursion scheme
a finite number of steps

- Observe how each function
is used and express it
as types

¢ FoSSacCS11 algorithm

- Like PPDPQO9, but avoid
reductions by using game
semantic interpretation of
types

H(To)
H2(To) «

{5:q0}



Example

¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
¢ Automaton:
8(qo. @) = 9090  6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

s, F d% dlo — a9
/\ AN
e S 6 /aif
b F(b(b c))°
qi |
c



Example

¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
¢ Automaton:
8(qo. @) = 9090  6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

5%, F 4oy oo —> a
/" \ AN
e S ¢ /ajf
b Fb(b )}
qi |
C

* Qo



Example
¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
¢ Automaton:

8(qo. @) = 9090  6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5%, F doy dlo —> a S: qq
/' \ N\ .
9/ Fb Cq)o q{ /aif F: 25 qo

Yp F(b(b c))
91 CI:



Example
¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
¢ Automaton:

8(qo. @) = 9090  6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢
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Example
¢ Recursion scheme:
S—>Fc F - Ax.ax (F (b x))
¢ Automaton:

8(qo. @) = 9090  6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5% F d%s do — q S: qq
/\ N\ :
dq o q Jo F: go A q4
C F(b g) i/ /a\ S

Y5 Fbb ) F: g0 g
q: |
C



Example
¢ Recursion scheme:
S—>Fc F - Ax.ax (F (b x))
¢ Automaton:

8(qo. @) = 9090  6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5% F d%s do — q S: qq
/\ N .
Qo ° 4 9o F: g0~ q;
{re S o« "9

Yp Flbb o) F: gy qo
‘hcl: F: T> q



Practical Algorithms (k. PPpPO9] [K.FosSacs11]
N

G .6uess a type environment I
2.Compute greatest fixedpoint I" smaller than T,
3.Check whether S:iqpe T

d. Repeat 1-3 until the property is proved or r'efutedj

I'0={S: qo. F: 9o A 91— qo.
F: g0 qo.F: T > qo}

H(Fo) - { Fk:T € FO | FO |— tk:T}

= {5 q0, F: g0 A 91— qo.
F: g0— o}

H2(I'o) = {S: qo0. F: qo A 91— qo}
HB(FO) ={S: qo, F: qo A 91— qp}

5:qo}



TRecS [K. PPDP09]
http://www_.kb.ecei.tohoku.ac. jp/~koba/trecs/

%) Type-Based Model Checker for Higher-Order Recursion Scheme - Mozilla Firefox Q@@
Z7ANE REER FTW EES TvHv-2@ VD ANTH

@ v c‘ a7 | L] | http:/fwan kbeceitohokuac.jp/ koba/trecs/

- G-
8] HRB-T P Firefox £ETHED o B#IZ1-2

__| FrontPage - Kobalab Wiki .| Type-Based Model Checker for..[d = -1 ¥vIFe-@REREIDAD .

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit” button. Examples are given below. Currently, our model checker only accepts determumstic Buchy
automata with a trivial acceptance condition.

¢ The first model checker for recursion
schemes

¢ Based on the PPDPO9 algorithm,
with certain additional optimizations
Tm i T —

1 [=wy e




Experiments

order |rules |states |result |Time

Twefiles 141 ujecrie cami. consetng o
FileWrong |4 about 60 lines of O'Caml code
TwofilesE |4 T2 ez >
&FileOcamlc mn
Lock 4 11 3 Yes 10
Orderb 5 9 4 Yes 2
mc91 4 49 1 Yes 50
xhtml 2 64 50 Yes 884

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)



(A simplified version of)

FileOcamlC

let readloop fp =

if * then () else readloop fp: read fp
let read_sect() =

let fp = open “foo” in

{readc=fun x -> readloop fp:

closec = fun x -> close fp}
let loop s =

if * then s.closec() else s.readc():loop s
let main() =

let s = read_sect() in loop s



Algorithms for Higher-Order
Model Checking: Summary

¢ Model checking can be reduced to type checking,
which in turn becomes a fixedpoint problem

¢ Greatest fixedpoint is too costly to compute

¢ Practical algorithms guess a type environment and
use it as a start point of fixedpoint computation

¢ FoSSaCS11 algorithm (for trivial automata model
checking) is linear time in the size of grammar
if other parameters (the size of types and
automaton) are fixed



Outline

¢ What is higher-order model checking?
¢ Applications

- program verification:
“software model checker for ML"

- data compression

¢ Algorithms for higher-order model checking
- from model checking to typing
- practical algorithms

¢ Discussions on FAQ and Future Directions



FAQ

Does HO model checking scale?
(It shouldn't, because of n-EXPTIME completeness)
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Answer:

Don't know yeft.

But there is a good hope it does! )




Does higher-order model checking scale?

Good News

+ Fixed-parameter PTIME
in the grammar size
(linear time for safety
properties)

+ Use PPDPQ9 or
FoSSaCS11 algorithm

+ Worst-case behavior shows

an advantage of HO func‘rions,é

rather than a disadvantage
of HO model checking

Bad News
- n-EXPTIME complete

- Huge constant factor
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Order-0:
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Exponential time algorithm for order-1
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Polynomial time algorithm for order-0
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m
Recursion schemes generating d ¢

4 )
| Order-1:

S—F; ¢, F; xoF,(F, x),..., F, x—>a(a x)
\_ Y,
(" N

Order-0:

$—-»a 6, 6, >a6,,..., 6> c (k=2m)

- y,

(fixed-parameter)

Polynomial time algorithm for order-n [K11FoSSaCS]
>>

Polynomial time algorithm for order-0
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Does higher-order model checking scale?
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Advantages of HO model checking
for program verification

(1) Sound, complete and automatic for a large
class of higher-order programs
- no false alarms!
- no annotations



Advantages of HO model checking
for program verification

(1) Sound, complete and automatic for a large
class of higher-order programs
- no false alarms!
- no annotations

(2) Subsumes finite-state/pushdown model
checking
- Order-0 rec. schemes ~ finite state systems
- Order-1 rec. schemes ~ pushdown systems



Advantages of HO model checking
for program verification

(3) Take the best of model checking and types

- Types as certificates of successful verification
= applications to PCC (proof-carrying code)

- Counterexample when verification fails
= error diagnosis,
CEGAR (counterexample-guided
abstraction refinement)



Advantages of HO model checking
for program verification
(4) Encourages structured programming

Previous techniques:
- Imprecise for higher-order functions and recursion,
hence discourage using them

Our technique:

- No loss of precision for higher-order functions and
recursion

- Performance penalty? -- Not necessarily!

If higher-order functions are properly used,
there may be performance gainl



Remaining Challenges

¢ Refinement of HO model checkers
- More efficiency
- Support of full modal p-calculus

¢ Software model checkers for
full-scale programming languages

- Refinement of predicate abstraction and CEGAR
- Dealing with advanced types, references, etc.

¢ Extension of the decidability result?
- Extension of models (recursion schemes)
- Extension of properties

¢ Other applications
(e.g. data compression)



Conclusion

¢ HO model checking problems can often be
solved efficiently, despite the high worst-case
complexity
(More justifications are needed, though.)

¢ Important and interesting applications:
- automated program verification
- data compression

¢ Only the first step from theory to practice;
more efforts are required both in theoretical
and practical communities



