10 Years of the Higher-Order Model
Checking Project (at UTokyo)

Naoki Kobayashi
The University of Tokyo

Thanks to numerous collaborators:

Kazuyuki Asada, Atsushi lgarashi, Etienne Lozes, Luke Ong, Ryosuke Sato,

Ayumi Shinohara, Takeshi Tsukada, Hiroshi Unno, (ex-)students at UTokyo
and Tohoku University, ...

¢

This Talk

Summary of the Higher-Order Model Checking
(HOMC) Project at UTokyo, which started in 2009,
following the two papers:

POPL 2009 PPDP 2009

Calegories and

Types and Higher-Order Recursion Schemes for Verification of

Higher-Order Programs
Model-Checking Higher-Order Functions

Naoki Kobayashi

Abstract

We propose a ne
higher-order fung]
recent result on

for higher-order 1f
formed to an HOJ
ble event sequend
checked. Unlike
higher-order prog
plete. Moreover,

integration of abs|
of higher-order pif
algorithm for H(Q
ment of the prop
gorithm and its c
those of Ong’s g
the HORS model
algorithm is line;
the sizes of types

Model Checking Higher-Order Programs
JACM 2013

NAOK| KOBAYASHI, The University of Tokyo

We propose a novel verification method for higher-order functional programs based on higher-order model
checking, or more precisely, model checking of higher-order recursion schemes {(recursion schemes, for short).
The most distinguishing feature of our verification method for higher-order programs is that it is sound, com-
plete, and automatic for the simply typed A-calculus with recursion and finite base types, and for various
program verification problems such as reachability, flow analysis, and resource usage verification. We first
show that a variety of program verification problems can be reduced to model checking problems for recur-
sion schemes, by transforming a program into a recursion scheme that generates a tree representing all
the interesting possible event sequences of the program. We then develop a new type-based model-checking
algorithm for recursion schemes and implement a prototype recursion scheme model checker. To our knowl-

tomated verifica-
e method is sound
typed A-calculus
booleans): in fact,
algorithm for the
lem “given a pro-
kion and resource
TOQIAIT ACCesses
lion”; other verifi-
flow analysis can
verification) [12].
egrated with soft-
e abstractions and
finement), as out-
r-order programs,
lay the same role
[while-programs,
of programs with

odoe thiz iz the firet imblementation of a recuireion echeme model checleer Fyxyperiments chow that ouir model

Tool demonstration:
MoCHi

[K&Sato&Unno, PLDI 2011]
(a software model checker

for a subset of functional programming
language OCaml)

Outline
¢ What is Higher-Order Model Checking?

¢ History of the Project

— ... with (hopefully) gentle introduction to foundations,
algorithms and applications of higher-order model checking

® *r—>
2009 2019

¢ Conclusion

Two Notions of
Higher-Order Model Checking

Models Logic
. . modal
finite state . .
finite state systems p-calculus

model checking (or LTL, CTL, ...

Two Notions of
Higher-Order Model Checking

Models Logic
finite state . . modal
. finite state systems
model checking u-calculus
HORS higher-order
: . modal
model checking recursion schemes u—calculus
[Knapik+ 01; Ongﬂﬂ (HORS)
4 Higher-order tree grammars, h

useful for modeling a certain class of

infinite state systems
__(such as higher-order functional programs))

Two Notions of
Higher-Order Model Checking

Models Logic
finite state . modal
. finite state systems
model checking u-calculus
HORS hlgl:ler-order Modal
model checking recursion schemes caleulus
[Knapik+ 01; Ong 06] (HORS) H
HFL . higher-order
model checking finite state systems modal fixpoint
[Viswanathan&

——==_ logic (HFL)
Useful for describing

Viswanathan 04] r

| non-regular properties |

Two Notions of
Higher-Order Model Checking

Models Logic
finite state . modal
. finite state systems
model checking u-calculus
HORS higher-order odal
model checking recursion schemes caleulus
[Knapik+ 01; Ong 06] (HORS) H
HFL . higher-order
model checking finite state systems modal fixpoint
[Viswanathan& logi HFL)
Viswanathan 04] ogic

Higher-Order Recursion Scheme (HORS)

¢ Grammar for generating an infinite tree

Order-0 HORS S —>;’=\\
(regular tree grammary) c B
S—>acB B—)IIo
B>bsS S

Higher-Order Recursion Scheme

(HORS)
¢ Grammar for generating an infinite tree
Order-0 HORS S —>Ia\
(regular tree grammar) cB
S >acB B—>|?]
B>bsS | S /\\

S— a —> a > a = .—

ﬁ’
/N /N /\ /a\
c B ¢ b >
|
a
/

C

Higher-Order Recursion Scheme (HORS)

¢ Grammar for generating an infinite tree

Order-1 HORS

S >Ac

Ax—a x (A (b x))
S:0,A:0—>0

Key restrictions on rewriting rules:
- Rules must be simply-typed.
- There are no pattern matching on trees.

Higher-Order Recursion Scheme (HORS)

¢ Grammar for ger - ~*in= ~= fnfinis- tvap
Tree whose paths are
Order-1 HORS labeled by
am+1 bm C
S >Ac 3
Ax—>a x (A (bx)) SN
S:0,A:0— 0 7N
b a
S ->Ac > a —>a - .o |b/\a
/\\ 7/ \\ C | N
C A(bc) ¢ 2@ b
(b c) N\ |
b A(b(b c)) C

C

Higher-Order Recursion Scheme (HORS)

¢ Grammar for generating an infinite tree

Order-1 HORS

S >Ac

Ax—>a x (A (bx))
S:0,A:0—>0

-

HORS

~y
~y

A simply-typed functional program
_ for generating a tree .

HORS Model Checking

/Given
G: HORS
¢: a formula of modal p-calculus
(or a tree automaton),
\does Tree(G) satisfy ¢?

e.g.
- Does every finite path end with “c”?

“an”n

- Does “a” occur below “b”?

HORS Model Checking

Order-1 HORS

S >Ac
d
Ax—a x (A (bx)) / "\
S:0,A:0—>0 7N

/Ql. Does every finite path end with “c”?) tI)
YES! b
I
C

Q2. Does “a” occur below “b”?

_ J

b
]
NO! l}
C

HORS Model Checking

Given
G: HORS
¢: a formula of modal p-calculus
(or a tree automaton),
does Tree(G) satisfy ¢@?

_

J

e.g.
- Does every finite path end with “c”?

“_»n

- Does “a” occur below “b”?

-

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

k

2

p(x)

HORS Model Checking as Generalization of Finite
State/Pushdown Model Checking

¢ order-0 = finite state model checking
¢ order-1 ~ pushdown model checking

infinite tree P~ transition system

A
C I? (a)

A b

4)
ad _n C b
Does “a | - — N
occur 3 Is there a transition
below “b”? sequence in which
\ j /\ (4 "q ar.”
a” occurs after “b”?
c b _

HORS Model Checking as Generalization of Finite
State/Pushdown Model Checking

¢ order-0 = finite state model checking

¢ order-1 ~ pushdown model checking

infinite tree

7~

N

dn”n

Does “a
occur

below “b”?
J

~Y
~y

(infinite-state) transition system

e‘e (a) (a)—> ..

Is there a transition
sequence in which

dn

a” occurs after “b”?

~

Outline
¢ What is Higher-Order Model Checking?

¢ History of the Project

— start of the project (through 2009)
e application to program verification [POPL09]
o type-theoretic foundation [POPL09]
e practical algorithm [PPDP09]

— tool development and quest for better algorithms
and more foundations (2010-2016)

— shift to HFL model checking (2017-)

sl @
2009 2019

¢ Conclusion

Background of the Project

¢ | attended two talks by Luke Ong on
HORS model checking

— IFIP WG 2.2 meeting in 2007

“Theoretically interesting, but ...”

— FoSSaCS 2008 invited talk

“Maybe useful for program verification?”

2009 2019

Background of the Project

¢ | attended two talks by Luke Ong on
HORS model checking
— IFIP WG 2.2 meeting in 2007
— FoSSaCsS 2008 invited talk

¢ | was working with Atsushi Igarashi on
resource usage analysis [igarashi&K, POPLO2]

letrecfx =
if * then close(x)
else (read(x); f x)

Is the file “foo”
accessed according

in
* P
let y = open “foo” to read™ close*
inf(y)
o ®

2009 2019

From Program Verification
to HORS Model Checking

let f x = Fxk— +(ck) (r (F xk))
if * then close(x) > S —>Fdx d h
4 Represents
else (read(x); f x) '\ | howthefile
in C I’I gcessed. ,
- «“ ” I +
!et y = open “foo * NG
In C I‘I
f(y) |4
* N\
C I
Is the file “foo” 4 R

accessed according [— | 'S eaIcI; platth:f t:e?tree
abeled by r*c:

to read™ close? y S)

Fro
to

continuation parameter,
expressing how “foo” is
accessed after the call returns /

~

let f x =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f(y)

F X

— + (c k) (r (F x k))

F»SoS>FdX

A -

CPS

L Transformation!

Is the file “foo”
accessed according
to read* close?

)¢

C r
I
* N

C r

4

r

Is each path of the tree
labeled by r*c?

N

From Program Verification
to HORS Model Checking

let f x =
if * then
else
in
let y = open “foo”
in
f(y)

Is the file “foo”
accessed according
to read* close?

+
F»SoS>FdX
(k A
CPS
L Transformation!
D . ¢

C f

B

* N\

C I

4

(

Is each path of the tree
labeled by r*c?

\

From Program Verification
to HORS Model Checking

let fx =

in

let y = open “foo”

N
f(y)

close(x)

(c k)

F»SoS>FdX

A -

CPS

L Transformation!

Is the file “foo”
accessed according
to read* close?

)¢

C r
4
* N

C r

4

(

Is each path of the tree
labeled by r*c?

\

From Program Verification
to HORS Model Checking

let fx =

(read(x); f x)
in
let y = open “foo”
in
f(y)

(r(F x k))

F»SoS>FdX

A -

CPS

L Transformation!

Is the file “foo”
accessed according
to read* close?

)¢

C r
4
* N

C r

4

(

Is each path of the tree
labeled by r*c?

\

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f(y)

Is the file “foo”
accessed according
to read* close?

Fxk— +(ck) (r(F x k))
—»S>Fdx

S

r

Is each path of the tree
labeled by r*c?

N

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f(y)

Is the file “foo”
accessed according
to read* close?

Fxk— +(ck) (r(F x k))
—»S>Fdx

Fd %

r

Is each path of the tree
labeled by r*c?

N

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f(y)

Is the file “foo”
accessed according
to read* close?

Fxk— +(ck) (r(F x k))
—»S>Fdx

/
C r

L orax

r

Is each path of the tree
labeled by r*c?

N

From Program Verification
to HORS Model Checking

let f(x) =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f(y)

Fxk— +(ck) (r(F x k))
—»S>Fdx

/
C r

Is the file “foo”
accessed according
to read* close?

* Fd*

——p | Iseach path of the tree

labeled by r*c?

N

From Program Verification
to HORS Model Checking

let f(x) = Fx k— + (ck) (r(F x k))

if * then close(x) S—>Fd* .

else (read(x); f x) / "\

in C I

let y = open “foo” | Jl

. y - p * /7

In C rl

f(y) oy

7\
c

Is the file “f00”

accessed according | ——- | Is each path of the tree
to read* close? y labeled by r*c?

From Program Verification
to HORS Model Checking

, HORS
Higher-order (describing all
program event sequences)
+ - Program R + - MOd?'
specification Transformation Tree property Checking
Gound, complete, and automatic for: \

- A large class of higher-order programs:
simply-typed A-calculus + recursion
+ finite base types (e.g. booleans) + exceptions + ...
- A large class of verification problems:
resource usage verification (or typestate checking),
\ reachability, flow analysis, strictness analysis, ... /

From Program Verification

to HORS Model Checking

Higher-order

program

+ —
specification

Program
Transformation

#

HORS

(describing all
event sequences)

.|.
Tree property

—

Model

Checking

But ...

/For finite-data HO programs,
automated verification comes for free
from HORS model checking!

is HORS model checking feasible in practice?
\(recallz HORS model checking is k-EXPTIME complete) /

~

sl

2009

@
2019

>

How to solve HORS MC problems?

On model-checking trees generated by higher-order recursion schemes

C.-H. L. Ong”

[Ong, LICS 2006]

Oxford University Computing Laboratory

Abstract

We prove that the modal mu-calculus model-checking
problem for (ranked and ordered) node-labelled trees that
are generated by order-n recursion schemes (whether safe
or not, and whether homogeneously typed or not) is n-
EXPTIME complere for every n > 0. It folfows rhar rhe

Shupp [13] proved that the configuration graphs of push-
down systems have decidable MSO theories. In the 90’s,
as finite-state technologies matured, researchers embraced
the challenges of software verification. A highlight from
this period was Caucal’s result [5] that prefix-recognizable
graphs have decidable MSO theories. In 2002 a flurry of
dlscoverles significantly extended and umﬁed earher devel

IO SO0 A P ey

The decidability proof (in a 55 page paper) was based on

game semantics.

The proof included an algorithm, which always suffers from

k-EXPTIME bottleneck.

The key notion of “variable profiles” reminded me of

Intersection types.
sl

2009

—
2019

Outline
¢ What is Higher-Order Model Checking?

¢ History of the Project

— start of the project (through 2009)
e application to program verification [POPL09]
e type-theoretic foundation [POPL09]
e practical algorithm [PPDP09]

— tool development and quest for better algorithms
and more foundations (2010-2016)

— shift to HFL model checking (2017-)
sl @

2009 2019

¢ Conclusion

Type-Theoretic Approach to
HORS Model Checking [k, popLo9][k&0ng, LICS09]

Construct a type system TS(A) s.t.

Tree(G) is accepted by tree automaton A

if and only if
G is typable in TS(A)

cf. “Model Checking as Type Checking”
[Naik & Palsberg, ESOP2005]

2009 2019

HORS Model Checking Problem:
Restricted version

/Given \
G: HORS
A: trivial automaton [Aehlig CSLO6]

(Blichi tree automaton where
all the states are accepting states)

\does A accept Tree(G)? /
4)

k-EXPTIME-complete [K&Ong, ICALP09]
(for order-k HORS)

Trivial tree automaton
for infinite trees

q0
q0 ¢ aq0 8(q0 a) = q0 qO0
S ’
©b_, /af) 5(q0, b) = q1
1éq b /aq 8(q1, b) = ql
I q1 I bqO a(qO, C) = €
'=|> . 5(ql, ¢) = ¢
qlc |:|)q
b [g below "b”
éq] qQ oes not occur below

Types for HORS

¢ Automaton state as the type of trees
— q: trees accepted from state q

A

— g1Aq2: trees accepted from both g1 and g2

Is Tree(G) accepted by A?

v

Does Tree(G) have type q,?

Typing

6(q, a) = q;..q, Foxie b x i

I'G:q1—>...—>qn—>q

Tt tAAT, DT
I', Xity, ..., Xi1T, - t:t I' |-t2:'ci (i=1,..n)

I FAx.t: g A AT, > T Tt tr

rF T ¢ T (for every F,:tel’)

Soundness and Completeness [k., PoPL2009]

/Tree(G) is accepted by A w
3 el ot Type environment for
S has type q, non-terminals F,,...,F
i.e.Al(S:qeI'AV(Fet)e I.T' |-t : 1)
Qi = {F, -t,, ..., F, >t } with S=F_ ; A: Trivial automaton with initial state q,)

Consequences:
- Straightforward algorithm, which runs in time linear in |G|

(if the other parameters are fixed):
r

max

repeat I := Shrink(I") until I'= Shrink(I')

I :=1__ (all the possible typings for non—terminals)}
. return(S:q,eT)

Shrink(I') ={F:t e ' | " |-t : 1}
filters out invalid typings

Soundness and Completeness [k., PoPL2009]

(5)

ree(G) is accepted by A
if and only if

S has type q,
i.e. AI'.(S:q e ' AV(F:t)e I.T |-t :1)

Qi ={F, -t,, ..., F, >t } with S=F_ ; A: Trivial automaton with initial state qo)/

Consequences:
- Straightforward algorithm, which runs in time linear in |G|
(if certain parameters are fixed):

{ [':=T1", (all the possible typings for non-terminals) }

repeat I := Shrink(I") until I'= Shrink(I")
return (S: q, € I')

— I serves as a certificate, which can be checked efficiently
(cf. NP problems)

Summary of POPL 09 Paper

Types and Higher-Order Recursion Schemes for Verification of
Higher-Order Programs

+ Sound and complete reduction
from higher-order program verification
to HORS model checking

+ Type-based characterization of
(a subclass of) HORS model checking,

which yields

Naoki Kobayashi
Tohoku University
koba®ecei.tohoku.ac.jp

Abstract

We propose a new verification method for temporal properties of
higher-order functional programs, which takes advantage of Ong’s
recent result on the decidability of the model-checking problem
for higher-order recursion schemes (HORS's). A program is trans-
formed to an HORS that generates a tree representing all the possi-
ble event sequences of the program, and then the HORS is model-
checked. Unlike most of the previons methods for verification of
higher-order programs, our verification method is sound and com-
plete. Moreover, this new verification framework allows a smooth
integration of abstract model checking techniques into verification
of higher-order programs. We also present a type-based verification
algorithm for HORS's. The algorithm can deal with only a frag-
ment of the properties expressed by modal j-calcnlus, but the al-
gorithm and its correctness proof are (arguably) much simpler than
those of Ong’s game-semantics-based algorithm. Moreover, while
the HORS model checking problem is n-EXPTIME in general, our
algorithm is linear in the size of HORS, under the assumption that
the sizes of types and specifications are bounded by a constant.

Categories and Subiect L i D.2.4 [Software Engineer-

lem of resource usage verification [19] for higher-order functional
languages with dynamic resource creation and access primitives.
The goal of the verification is to check that each dynamically cre-
ated resource is accessed in a proper manner (like “an opened file is
eventually closed, and it is not read or written after being closed”).
Assertion-based model-checking problems (like “X > 0 holds at
program point p”) can also be recasted as the resource verification
problem, by regarding an assertion failure as an access to a global
resource. (For example, “assert (b)” can be transformed into “if
b then skip else fail.” where £ail isan action to the global
resource. Then the problem of checking lack of assertion failures
is reduced to the resource usage verification problem of checking
whether the £ail action occurs.)

Our verification technique is built on the recent result on
model checking of higher-order recursion schemes (HORS's, for
short) [29]. A higher-oder recursion scheme is a grammar for de-
scribing an infinite tree. HORS is a generalization of regular tree
grammars; they are described by HORS’s of order 0. Ong [29]
has recently shown the decidability of the problem of checking
whether the infinite tree generated by G satisfies 4, given a modal

denins formnla o and an HORS G

a naive fixed-parameter linear-time algorithm

- It remained open whether HORS model checking is feasible

In practice.

(The naive algorithm is impractical due to the huge constant factor.

2009

2019

Outline
¢ What is Higher-Order Model Checking?

¢ History of the Project

— start of the project (through 2009)
e application to program verification [POPL09]
o type-theoretic foundation [POPL09]
e practical algorithm [PPDP09]

— tool development and quest for better algorithms
(2010-2016)

— shift to HFL model checking (2017-)
sl @

2009 2019

¢ Conclusion

Practical Algorithm for HORS
Model Checking?

Too large: k-fold exponential in the size of
automata and the largest arity of functions

4 Naive algorithm:

[T = I" ., (all the possible typings for non-terminals)
repeat I := Shrink(I") until I'= Shrink(I')
. return(S:q,eI) p

4 Practical algorithm [K, PPDP09]
/

while true do {

I" := (guess typings for non-terminals)
repeat I := Shrink(I") until I'= Shrink(I')
if S: gq € I then return true

! Y

Practical Algorithm for HORS
Model Checking?

¢ Practical algorithm [K, PPDP09]
/

while true do {
I'" := (guess typings for non-terminals)
repeat I := Shrink(I") until I'= Shrink(I')
if S: q, € I' then return true

! Y

How can we guess types?
- The type of a function describes how it will be used in a program
=> Guess the type of a function by executing the program

and observing how the function is used.

Example

¢ HORS:
S—>Fc Fx—>ax(F (b x)

¢ Automaton:
8(qo. @) = 9090 8(qo. b) = 8(q;, b) = q,
(g0, ¢) = 8(qy, €) = ¢

S1% F d% do — a9
/\ AN
W rb S /03
Yb F(b(b c))°
q: |
C

Example

¢ HORS:
S—>Fc Fx—>ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q

(g0, ¢) = 8(qy, €) = ¢
Ty :

5% F d% dlo —> a S: q,
/ "\ AN
e S /03
b Fb(b)"
q: |
C

Example

¢ HORS:
S—>Fc Fx—>ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, ¢) = 8(qy, €) = ¢

T :
5% F d% dlo — a0 S: qo
/' \ AN .
9 Fb g)o q{ /03 F: 2 > q

Yp F(b(b)
‘hcl:

Example

¢ HORS:
S—>Fc Fx—>ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, ¢) = 8(qy, €) = ¢

T, :
5% F d% dlo — a0 S: qo
/' \ N\ .
9o 0 q 9o F: go A q4
c F(b c?) 2,/ /a\ S a

Yp F(b(b)
‘hcl:

Example

¢ HORS:
S—>Fc Fx-ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, ¢) = 8(qy, €) = ¢

T :
5% F d%s dlo —> a S: qq
q"c:/F\(b é') q{\QO F: go A q

q q — Qo
°b F(b(b c))® | Fi go— qo

|
‘hc

Example

¢ HORS:
S—>Fc Fx-ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, ¢) = 8(qy, €) = ¢

T :
5% F d%s dlo —> a S: qq
q"c:/F\(b Cq) q{\QO F: go A q

q q — Qo
°b F(b(b) Fi o~ qo

‘hcl: F: T—> qq

Example

¢ HORS:
S—>Fc Fx-ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, €) = 8(qy, €) = ¢

I

« while true do { A
I' := (guess typings for non-terminals) S: q
repeat I := Shrink(I") until I'= Shrink(I') F: go A qy
if S: gqg € I then return true - Qo

! / Figqo—>q

‘hcl: F: T—> qq

Example

¢ HORS:
S—>Fc Fx-ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, €) = 8(qy, €) = ¢

| P
« while true do { B
I' := (guess typings for non-terminals) S: q
repeat I := Shrink(I") until I'= Shrink(I') F: go A q
if S: gqg € I then return true - Qo
! / Figqo—>q

‘hcl: F: T—> qq

Example

¢ HORS:
S—>Fc Fx-ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, €) = 8(qy, €) = ¢

| P
« while true do { N
I' := (guess typings for non-terminals) S: q
repeat I := Shrink(I") until I'= Shrink(I') F: go A q
if S: gqg € I then return true - Qo
! / Figqo—>q

|
‘hc

Example

¢ HORS:
S—>Fc Fx-ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, €) = 8(qy, €) = ¢

Ig:

@ while true do { A
I' := (guess typings for non-terminals) S: q
repeat I := Shrink(I’) until I'= Shrink(I') F: go A q
if S: gqg € I then return true - Qo

_ Y

|
‘hc

Example

¢ HORS:
S—>Fc Fx-ax(F (b x))

¢ Automaton:

6(qo. @) = 9990 3(q0, b) =3(q;, b) = q
(g0, €) = 8(qy, €) = ¢

Ig:

@ while true do { A
I' := (guess typings for non-terminals) S: q
repeat I := Shrink(I") until I'= Shrink(I') F: go A qy
if S: q, € I' then return true - Qo

_ Y

|
‘hc

TRecS [K. PPDP09]
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/

) Type—Based Model Checker for Higher-Order Recursion Scheme — Mozilla Firefox

rE RED FrOh EEG Tuhv-dE w-l@D sATHH

@ - c fy | ,J http: /S kbeceitohokuac jpkoba/trecs/ 7y - |_(_;:| j'-

5] £{REA— § Firefox BETHLY 0] BIHZ1-2
Ij FrontPage — Kobalab Wiki |_] Type-Based Model Ghecker for. B | o £ Fv—BREREIZEN v
~

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit" button. Examples are given below. Currently, our model checker only accepts deterministic Buchn
automata with a trivial acceptance condition.

¢ The first practical model checker for HORS

¢ Does not immediately suffer from k-EXPTIME
bottleneck

¢ Used as a backend of the software model checker
MoCHi

Summary of the Results in 2009

¢ Applications to program verification [POPL09]

4 Type-theoretic foundations
— [POPLO9] for trivial automata model checking

— [LICS09, with Ong] for full p-calculus model checking
4 The first practical algorithm [PPDP09]

4 Complexity
— parameterized complexity [POPLO9, LICS09]

— complexity of subclasses [ICALP09, with Ong]

- o——>
2009 2019

Outline
¢ What is Higher-Order Model Checking?

¢ History of the Project

— start of the project (through 2009)
e application to program verification [POPL09]
o type-theoretic foundation [POPL09]
e practical algorithm [PPDP09]

— tool development and quest for better algorithms
and more foundations (2010-2016)

— shift to HFL model checking (2017-)
_— .

2009 2019

¢ Conclusion

HOMC Project: 2010 - 2016

¢ Applications

— Automated program verification
e MoCHi [K+, PLDI 11]

e Termination and temporal properties
[Kuwahara+ ESOP14, CAV15][Murase+ POPL16][Watanabe+ ICFP16]

— Data compression [K+ PEM12]

¢ Quest for better HORS MC algorithms
— GTRecS, HorSat, HorSat2, HorSatpP, ...

¢ Foundations (properties on HO languages)
— HO languages vs context-sensitive languages

— Pumping lemmas [K, Lics13] [Asada&K, ICALP17]

HOMC Project: 2010 - 2016

¢ Applications

— Automated program verification
e MoCHi [K+, PLDI 11]

e Termination and temporal properties
[Kuwahara+ ESOP14, CAV15][Murase+ POPL16][Watanabe+ ICFP16]

— Data compression [K+ PEM12]

¢ Quest for better HORS MC algorithms
— GTRecS, HorSat, HorSat2, HorSatP, ...

¢ Foundations (properties on HO languages)
— HO languages vs context-sensitive languages

— Pumping lemmas [K, Lics13] [Asada&K, ICALP17]

MoCHi: Software Model Checker for

OCaml [K, Sato&Unno, PLDI11]
4 Based on HORS MC + predicate abstraction

MoCHi SLAM ([Ball+] Blast [Beyer+]

HORS MC pushdown MC finite-state MC
¢ Support:

— higher-order functions + recursion (by HORS MC)

— integers (by predicate abstraction)
— exceptions (by extended CPS transformation)

— (restricted) ADT (by encoding into functions)
[Tlist] =int x (int > [7])

—
length function from indices to elements

MoCHi: Software Model Checker for

OCaml [K, Sato&Unno, PLDI11]
4 Based on HORS MC + predicate abstraction

MoCHi SLAM ([Ball+] Blast [Beyer+]

HORS MC pushdown MC finite-state MC
¢ Support:

— higher-order functions + recursion (by HORS MC)

— integers (by predicate abstraction)
— exceptions (by extended CPS transformation)
— (restricted) ADT (by encoding into functions)
[Tlist] =int x (int > [7])
nil = (0, Ax. fail)
cons = AX.A(len,f). (len+1, Ai.if i=0 then x else f(i-1))
hd (len,f) = f(0)

HOMC Project: 2010 - 2016

¢ Applications

— Automated program verification
e MoCHi [K+, PLDI 11]

e Termination and temporal properties [Kuwahara+ ESOP14,
CAV15][Murase+ POPL16][Watanabe+ ICFP16]

— Data compression [K+ PEM12]

¢ Quest for better HORS model checkers
— GTRecS, HorSat, HorSat2, HorSatpP, ...

4 Foundations
— HO languages vs context-sensitive languages

— Pumping lemmas [K, Lics13] [Asada&K, ICALP17]

HorSat2 [K, 2014]

= x

<« C @ (@ www-kb.is.s.u-tokyo.acjp/~koba/horsat2, B 120% b w S hiA N O @

HorSat2: A model checker for HORS based on SATuration

This is a Web interface for HorSat2: a saturation-based model checker for higher-order recursion schemes (HORS). HorSat2 is based on

e Christopher Broadbent and Naoki Kobayashi, Saturation-Based Model Checking of Higher-Order Recursion Schemes

but a number of changes/optimizations (in particular, in the treatment of flow information) have been applied.

Enter a HORS and a tree automaton (in the TRecS format) in the box below, choose an option, and press the "submit" button. The property
should be given either in the form of a trivial deterministic tree automaton (a top-down deterministic tree automaton with frivial acceptance
conditions) or a trivial alternating tree automaton. Some examples are given below. More examples are available here and here as zip files.

Note that on this web interface, only small examples can be tested (as the time-out is set to 3 seconds). The source code is available here.

* State-of-the-art trivial automata model checker for HORS A

- scales up to 10,000 — 100,000 rules
* Based on
- Type-theoretic foundations [POPL09,LICS09]
- Saturation-based algorithm [Broadbent&K, CSL13]

with Preface [Ramsay+, POPL14]-style flow analysis

llll.lll_ L |

~

Outline
¢ What is Higher-Order Model Checking?

¢ History of the Project

— start of the project (through 2009)
e application to program verification [POPL09]
o type-theoretic foundation [POPL09]
e practical algorithm [PPDP09]

— tool development and quest for better algorithms
and more foundations (2010-2016)

— shift to HFL model checking (2017-)

. —_——

2009 2011 2017 2019

¢ Conclusion

HOMC Project: 2017-
¢ From HORS to HFL model checking

Models Logic
finite state . modal
] finite state systems
model checking p-calculus
HORS higher-order modal
model checking recursion schemes caleulus
[Knapik+ 01; Ong 06] (HORS) H
HFL . higher-order
model checking finite state systems modal fixpoint
[Viswanathan& Veref (HFL)
Viswanathan 04] ogic

Higher-Order Modal Fixpoint Logic (HFL)

[Viswanathan&Viswanathan 04]

¢ Higher-order extension of the modal p-calculus

¢ ::= true
P1 A P2
P11V P2
[alo ¢ must hold after a
<a>Q ¢ may hold after a
X variable
uX.o least fixpoint
vX.0p greatest fixpoint

e.g. uX. true v <a>X

“b” may occur after a finite number of “a” transitions

Higher-Order Modal Fixpoint Logic (HFL)

[Viswanathan&Viswanathan 04]

¢ Higher-order extension of the modal p-calculus

¢ ::= true
P1 A P2
P1V P2
[alo ¢ must hold after a
<a>Q ¢ may hold after a
X predicate variable
uX.o least fixpoint
vX©. greatest fixpoint
AXS. @ (higher-order) predicate
O PO application

K ::= @ the type of propositions

Selected Typing Rules for HFL

[true: ® ‘ I Fo: ®
T |- [alp: ®
FTFo:® Tly:e
[Foay: @
Y [, Xk, Foix,
FFo:ix; >k, TFyix [LXx Foix

T'Fo yik, [FpX.pix

Example
(LF®—®—=® AX.AY. (XAY) V F (<a>X) (Y)) P Q

= (AX.AY. (XAY) v (UF...) (<a>X) (Y))) P Q

= (PAQ) v
(LF®®>® AXAY. (XAY) vV

F(<a>X)(Y)) (<a>P)(Q)

= (PAQ) Vv (<a>PAQ) Vv (<a><a>PAQ) v ...

For some n, <a>"P and " Q hold
bn

~

d

HFL Model Checking

[Viswanathan&Viswanathan 2004]

-

Given

L: (finite-state) labeled transition system
¢: HFL formula,

does L satisfy @?

_

e.g. L |=0 for:
L: @: (UWF.AX.AY. (XAY)

\O@) V F (<a>X) (Y))
b - (<c>true) (<d>true)

HORS/HFL Model Checking and
Program Verification

HO program verification

[K+, ESOP 18]
[K, POPLO9] [Watanatabe+, PEPM 19]
[K&Lozes&Bruse,
HORS POPL 17] HEL
model checking € E model checking
. #

2009 2011 2017 2019

HORS/HFL Model Checking and
Program Verification

HO program verification

[K+, ESOP 18]
[K, POPLO9] [Watanatabe+, PEPM 19]
[K&Lozes&Bruse,
HORS POPL 17] HEL
model checking € E model checking
. #

2009 2011 2017 2019

Higher-Order Program Verification
vs HFL/HORS Model Checking

Models Spec
HO program HO programs safety,
verification 1[|<, POPLO9IN\. | termination, ...

HORS higher-order modal
model checking recursion schemes u-calculus
[Knapik+ 01; Ong 06] (HORS) formula
HFL
: . HFL
model checking | finite state systems
[Viswanathan& formula

Viswanathan 04]

Higher-Order Program Verification
vs HFL/HORS Model Checking

Models Spec
HO program HO programs safety,
verification 1[|<, POPLO9N... | termination, ...
HORS higher-order modal
model checking | recursion scheme p-calculus
[Knapik+ 01; Ong 06] (HORS) formula
HFL
: o HFL
model checking | finite state systems
[Viswanathan& /Rormula
Viswanathan 04]

(
“The program’s
L behavior is correct”

From Program Verification
to HFL Model Checking: Example

let y = open “foo” y HFL formula that says
{4 °
i the behavior of the program

is correct”

in
read(y); close(y)

<read><close><end>true

/LTS: \

read g

e N close ()
Is the file “foo” @ @

accessed according |=——>
* ?
L to read™ close: y _)

From Program Verification
to HFL Model Checking: Example

HFL formula that says

— o 104
!Et y = open “foo =» “the behavior of the program

In is correct”
read(y); close(y) <read><close><end>true
/Does LTS: \

read nd
4]) A
Is the file “foo” @ close Q.

accessed according |——p :
to read* close? . satisfy the formula S?
__ ’) \ /

From Program Verification

to HFL Model Checking: Example
HFL formula that says

let y = open “foo” “the behavior of the program
in ™ is correct”
if * then <read><close><end>true
(read(y); close(y)) A
else close(y) <close><end>true
/Does LTS: N

read g
4 A > close ()
Is the file “foo”

1 E> .
ac:essedd:cclordl:lg satisfy the formula S?
_ toread” close? _ -/

From Program Verification
to HFL Model Checking: Example

HFL formula that says

let f x =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f(y)

Is the file “foo”
accessed according
to read* close?

is correct”

Ly the behavior of the program

/Does LTS:

9 read d
‘5 cIose@

satisfy the formula S?

_

~

%

From Program Verification
to HFL Model Checking: Example

let f x k = !:II;‘L fzrrl:\ul? thaft s:ys
. .t e behavior of the program
is correct”

F x k =, <close>k

if * then close x k
else read x (f x k)

in o A (<read>(F x k))
!et y = open “foo S =, F true (<end>true)
in
/Does LTS: \

fyl)

read
4)
Is the file “foo” @ Q

accessed according (= | satisfy the formula S?
* ?
L to read*™ close: y \ /

From Program Verification
to extended HFL (HFL,) Model Checking

letfnxk-=

if n<0 then close x k
else

read x (f (n-1) x k)
in
let y = open “foo”
in fmy()

Fnxk =

(n<0 =<close>k)
A (—n<0 =
<read>(F (n-1) x k))

S=,Fmtrue (<end>true)

/Does LTS:

Is the file “f00”

to read* close?

read
| end
@ close @.

accessed according (= | satisfy the formula S?

_

~

/

HOMC Project: 2017-

¢ HFL approach to program verification
— More streamlined than HORS-based approach

2009 2017 2019

HORS-based Approach HFL-based Approach

fair termination termination verification problems
[POPL1E] ~g y Bord "
rogram
: [tra:sfogrmation] Reduction to HFL,
fair model checking
non-termination
non-termination safety »le
[ICFP16] [CAV15] :
A //1PLoIL] Reduction to
predicate abstraction v-only fragment
l higher-order l
boolean programs [predicate abstraction]

4 N
HORS ‘l’
model checking pure HFL model
- - checking

HOMC Project: 2017-

4 HFL approach to program verification
— More streamlined than HORS-based approach

— Natural extension of other approaches

e Constrained Horn Clauses (CHC)
+ higher-order predicates + fixpoint alternations
(cf. SeaHorn [Gurfinkel+], JayHorn [Kahsai+])

e HoCHC [Burn+, 2018] + fixpoint alternations
¢ Improving scalability of MoCHi

— modular verification [sato&K, ESOP17]

— machine-learning for predicate discovery
[Champion+ TACAS18][Sato+ PEPM19]

HOMC Project:
Where are we heading now?

4 Tool constructions for HFL-based approach
— Pure HFL model checker [Hosoi+, APLAS19]

— validity checker for first-order fragment of HFL,
(or, CHC + fixpoint alternations) [K+, SAS19]

¢ Average-case complexity of HOMC
— Why does HOMC work in practice?

¢ Probabilistic HORS model checking
[K, Dal Lago&Grellois, LICS19]

® - —

2009 2017 2019

Conclusion
¢ Summarized HOMC Project at UTokyo

— HOMC works in practice, despite k-EXPTIME completeness
— Applicable to program verification and data compression

— Of the two kinds of HOMC, the HFL-based approach seems
more promising

¢ Remaining challenges
— More tool constructions
e scalability to larger programs,
e non-functional features (references, concurrency, etc.)
— More theories
e Justification for why HOMC works in practice
e open problems about higher-order languages

	10 Years of the Higher-Order Model Checking Project (at UTokyo)
	This Talk
	Tool demonstration:�MoCHi�[K&Sato&Unno, PLDI 2011]�(a software model checker �for a subset of functional programming language OCaml)�
	Outline
	Two Notions of �Higher-Order Model Checking
	Two Notions of �Higher-Order Model Checking
	スライド番号 7
	スライド番号 8
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	HORS Model Checking
	HORS Model Checking
	HORS Model Checking
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	Outline
	Background of the Project
	Background of the Project
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking
	From Program Verification �to HORS Model Checking�
	From Program Verification �to HORS Model Checking�
	How to solve HORS MC problems?
	Outline
	Type-Theoretic Approach to�HORS Model Checking [K, POPL09][K&Ong, LICS09]
	HORS Model Checking Problem: �Restricted version
	Trivial tree automaton �for infinite trees
	Types for HORS
	Typing
	Soundness and Completeness [K., POPL2009]
	Soundness and Completeness [K., POPL2009]
	Summary of POPL 09 Paper
	Outline
	Practical Algorithm for HORS Model Checking?
	Practical Algorithm for HORS Model Checking?
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	Summary of the Results in 2009
	Outline
	HOMC Project: 2010 - 2016
	HOMC Project: 2010 - 2016
	MoCHi: Software Model Checker for OCaml [K, Sato&Unno, PLDI11]
	MoCHi: Software Model Checker for OCaml [K, Sato&Unno, PLDI11]
	HOMC Project: 2010 - 2016
	HorSat2 [K, 2014]
	Outline
	HOMC Project: 2017-
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Selected Typing Rules for HFL
	Example
	HFL Model Checking �[Viswanathan&Viswanathan 2004]
	HORS/HFL Model Checking and Program Verification
	HORS/HFL Model Checking and Program Verification
	スライド番号 101
	スライド番号 102
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to extended HFL (HFLZ) Model Checking
	HOMC Project: 2017-
	スライド番号 113
	HOMC Project: 2017-
	HOMC Project: �Where are we heading now?
	Conclusion

