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This Talk
Type-theoretic approach to model checking 
of recursion schemes
–

 
Simpler proofs of decidability/complexity of model 
checking

–
 

A practical algorithm for model checking
 (c.f. TRecS: a type-based recursion scheme model 

checker)

Applications to program verification
–

 
A sound, complete, and automated verification 
method for higher-order functional programs



Plan of the Talk
Part 1
–

 
From program verification to model checking 
recursion schemes [K. POPL09]

–
 

From model checking to type checking: Simple case 
(safety properties) [K. POPL09]

–
 

Model checking (=type checking) algorithm 
[K. PPDP09]

Part 2
–

 
From model checking to type checking: 
General case  [K. and Ong, LICS09]

–
 

Towards a software model checker for higher-order 
languages [K., Tabuchi

 

and Unno, POPL10][Tsukada and K. FoSSaCS10]

–
 

Remaining challenges
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Program Verification Techniques
Finite state/pushdown model checking
–

 
Applicable to first-order procedures (pushdown 
model checking), but not to higher-order 
programs

Type-based program analysis
–

 
Applicable to higher-order programs

–
 

Sound but imprecise
Dependent types/theorem proving
–

 
Requires human intervention

Sound and precise verification techniques for 
higher-order programs (e.g. ML/Java programs)?



From Program Verification
 to Model Checking Recursion Schemes

 [K. POPL 2009]

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 
event sequences

or outputs)
+

Tree automaton,
recognizing 

valid event sequences
or outputs

Model
Checking



From Program Verification to Model Checking:
 Example

let f(x) = 
if ∗

 
then close(x) 

else read(x); f(x)
in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according 

to read* close?
Is each path of the tree

labeled by r*c?

F x k →
 

+
 

(c k) (r(F
 

x k))
S →

 
F d 
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From Program Verification
 to Model Checking Recursion Schemes

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 

event sequences)
+

automaton for
 infinite trees

Model
Checking

Sound, complete, and automatic for:
-

 
A large class of higher-order programs:

 simply-typed λ-calculus + recursion 
+ finite base types

-
 

A large class of verification problems:
 resource usage verification [Igarashi&K. POPL2002], 

reachability, flow analysis, ...



Comparison with Traditional Approach 
(Control Flow Analysis)

Control flow analysis

Our approach

Flow 
Analysis

Higher-order
program

Control flow 
graph
(finite state 
or pushdown 
machines)

verification

Program
Transformation

Higher-order
program

Recursion 
scheme verification

Only information about 
infinite data domains
is approximated!



Comparison with Traditional Approach 
(Software Model Checking)

Program Classes Verification Methods
Programs with 
while-loops

Finite state model checking

Programs with 
1st-order recursion

Pushdown model checking

Higher-order functional 
programs

Recursion scheme model 
checking

infinite
state
model 
checking



Plan of the Talk
Part 1
–

 
From program verification to model checking 
recursion schemes [K. POPL09]

–
 

From model checking to type checking: 
Simple case (safety properties) [K. POPL09]

–
 

Model checking (=type checking) algorithm 
[K. PPDP09]

Part 2
–

 
From model checking to type checking: 
General case  [K. and Ong, LICS09]

–
 

Towards a software model checker for higher-
 order languages

–
 

Remaining challenges



Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A 

if and only if

G is typable
 

in TS(A)

Model Checking as
Type Checking 
(c.f. [Naik

 
& Palsberg, ESOP2005])



Why Type-Theoretic 
Characterization?

Simpler decidability proof of model 
checking recursion schemes
–

 
Previous proofs [Ong, 2006][Hague et. al, 2008]

 made heavy use of game semantics

More efficient model checking algorithm
–

 
Known algorithms [Ong, 2006][Hague et. al, 2008]

 always
 

require n-EXPTIME



Model Checking Problem

Given
 G:  higher-order recursion scheme

(without safety restriction)
 A:  alternating parity tree automaton (APT)

 (a formula of modal μ-calculus or MSO),
 does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
 (for order-n recursion scheme)



Model Checking Problem
Given

 G:  higher-order recursion scheme
(without safety restriction)

 A:  trivial automaton [Aehlig
 

CSL06]

(Büchi
 

tree automaton where
 all the states are accepting states)

 does A accept Tree(G)?

The general case (full modal μ-calculus model
checking) is discussed in Part 2 



(Trivial) tree automaton 
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1
In every path, 
“a”

 
cannot occur after “b”



Types for Recursion Schemes
Automaton state as the type of trees
–

 
q: trees accepted from state q

–
 

q1∧q2: trees accepted from both q1 and q2

q

Does A accept Tree(G)?

Does Tree(G) have type q0
 

?



Types for Recursion Schemes
Automaton state as the type of trees

–
 

q1→
 

q2: functions that take a tree of type q1 
and return a tree of q2

q2

q1 + =
q1

q2

q1



Types for Recursion Schemes
Automaton state as the type of trees
–

 
q1∧q2 →

 
q3: 

functions that take a tree of type q1∧q2 and 
return a tree of type q3

+ =
q1, q2

q3

q1 q2

q3

q1 q2



Types for Recursion Schemes
Automaton state as the type of trees
(q1 →

 
q2) →

 
q3: 

functions that take a function of type q1 →
 

q2 
and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2



Example

a: q0 →q0
 

→q0

aq0

q0 q0

bq0

q1

Automaton:
δ(q0

 

, a) = q0
 

q0
 

δ(q0
 

, b) = q1
 δ(q0

 

, c) = δ(q1
 

, c) = ε

λx.a
 

c (b x): q1
 

→q0b: q1
 

→q0

aq0

q0 q0c b
q1

x



Γ, x:τ
 

┝ x
 

:τ

Typing

Γ┝ t1 : τ1
 

∧…∧τn
 

→ τ 
Γ┝ t2 :τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2 :τ

Γ, x:τ1
 

,..., x:τn
 

┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1

 

∧…∧τn
 

→ τ 

Γ┝ tk
 

:
 

τ (for every Fk
 

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

 

→t1
 

,..., Fn
 

→

 
tn} : Γ

δ(q, a) = q1
 

…qn
−−−−−−−−−−−−−−−−−−−
┝ a

 
:q1 →

 
…

 
→

 
qn

 

→

 
q



Soundness and Completeness
 [K., POPL2009]

Let
 G: Rec. scheme with initial non-terminal S

 A: Trivial automaton with initial state q0
 TS(A): Intersection type system 

derived from A
Then,
Tree(G) is accepted by A

 if and only if
 S has type q0

 

in TS(A)
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Typing
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Γ, x:τ
 

┝ x
 

:τ

Γ┝ tj
 

:
 

τ (for every Fj
 

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

 

→t1
 

,..., Fn
 

→
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…qn
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Naïve Type Checking Algorithm
Recursion Scheme:
{F1

 

→t1
 

, ..., Fm
 

→tm
 

}
S has type q0

(i)
 

Γ |− tj
 

: τ   
for each Fj

 

:τ ∈ Γ
(ii) S:q0

 

∈ Γ
for some Γ

S:q0
 

∈
 

gfp(H) = ∩k
 

Hk(Γmax
 

)
where

H(Γ) = { Fj
 

:τ
 

∈
 

Γ | Γ |−
 

tj
 

:τ
 

}
Γmax

 

= {F:τ
 

| τ :: sort(F)
 

}

All the possible 
type bindings
E.g. for F:o→o,
{F:T → q0, F:q0 → q0,
F: q1 → q0, 
F:q0∧q1 → q0,…}

Filter out invalid type bindings



Example
Recursion scheme:

S →
 

F c     F → λx.a
 

x (F (b x))
(S:o, F: o→o)

Automaton:
δ(q0

 

, a) = q0 q0
 

δ(q0
 

, b) = q1 
δ(q0

 

, c) = δ(q1
 

, c) = ε

Γmax= {S:q0

 

, S:q1

 

,  F: T→q0

 

, F: q0

 

→q0

 

, F: q1

 

→q0

 

, F: q0

 

∧q1

 

→q0

 

, 
F: T→q1

 

, F: q0

 

→q1

 

, F: q1

 

→q1

 

, F: q0

 

∧q1

 

→q1

 

}

Γ1
 

= { S:τ ∈ Γmax
 

| Γmax
 

|−
 

F c:τ
 

} 
∪

 
{ F:τ ∈ Γmax

 

| Γmax
 

|−
 

λx.a
 

x (F(b
 

x))
 

:τ
 

}
=

 
{S:q0

 

, S:q1
 

,  F: q0
 

→q0
 

, F: q0
 

∧q1
 

→q0
 

}
Γ2

 

= {S:q0
 

, F: q0
 

∧q1
 

→q0
 

}
Γ3

 

= {S:q0
 

, F: q0
 

∧q1
 

→q0
 

} = Γ2



Naïve Algorithm Does NOT Work

sort # of types (Q={q0
 

,q1
 

,q2
 

,q3
 

})
o 4 (q0

 

,q1
 

,q2
 

,q3
 

)
o → o 24

 
×4 = 64  (∧S→ q, with S∈2Q, q∈Q)

(o→o) → o 264
 

×4 = 266 

((o→o) → o) → o 266

 

10000000000000000000
2   ×4 > 10

S has type q0

S:q0
 

∈
 

gfp(H) = ∩k
 

Hk(Γmax
 

)
where H(Γ) = { Fj

 

:τ
 

∈
 

Γ | Γ |−
 

tj
 

:τ
 

} 
Γmax

 

= {F:τ
 

| τ :: sort(F)
 

} This is huge!
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More Efficient Algorithm?
S has type q0
⇔

S:q0
 

∈
 

∩k
 

Hk(Γmax
 

)
where

H(Γ) = { Fj
 

:τ
 

∈
 

Γ | Γ |−
 

tj
 

:τ
 

} 

Γ0 
⇐

Challenges:
(i)  How can we find an appropriate Γ0 ?

(ii) How can we guarantee completeness?

“Run”
 

the recursion scheme (finitely many steps), 
and extract type information  

Iteratively repeat (i) and type checking  



Hybrid Type Checking Algorithm

Step 1:
Run the recursion scheme
a finite number of steps

Property 
violated?

Error path
yes

no Step 2: Extract 
type environment

Γ0

Step 3: Compute
Γ

 
= ∩k

 

Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!



Soundness and Completeness of
 the Hybrid Algorithm

Given:
–

 
Recursion scheme G

–
 

Deterministic trivial automaton A,
the algorithm eventually terminates, and:
(i) outputs an error path

 if Tree(G) is not accepted by A
(ii) outputs a type environment

 if Tree(G) is accepted by A
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F
 

c

c F(b
 

c)

→
 

a

c a

→
 

a

b F(b(b
 

c))

c

S
q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0
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Example: 
Filtering out invalid judgments
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, a) = q0 q0
 

δ(q0
 

, b) = q1 
δ(q0

 

, c) = δ(q1
 

, c) = ε

Γ0
 

= {S: q0
 

, F: q0 ∧
 

q1
 

→
 

q0,
 

F: q0 →
 

q0 , F: T →
 

q0
 

}

Γ1
 

=
 

H(Γ0
 

) = { Fk
 

:τ ∈ Γ0
 

| Γ0
 

|−
 

tk
 

:τ
 

}
 = {S: q0

 

, F: q0 ∧
 

q1
 

→
 

q0,
 

F: q0 →
 

q0 }

Γ2
 

=
 

{S: q0
 

, F: q0 ∧
 

q1
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, F: q0 ∧
 

q1
 

→
 

q0
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TRecS
 http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

The first model checker for recursion schemes (or, 
for higher-order functions)
Restricted to deterministic trivial automata
Based on the hybrid model checking algorithm, 
with certain additional optimizations



Experiments
order rules states result Time 

(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1

TwofilesE 4 12 5 Yes 2

FileOcamlC 4 23 4 Yes 5

Lock 4 11 3 Yes 5

Order5 5 9 4 Yes 2

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of 
Objective Caml, consisting of 
about 60 lines of O’Caml

 
code



(A simplified version of) 
FileOcamlC

let readloop
 

fp
 

= 
if * then () else readloop

 
fp; read fp

let read_sect() =
let fp

 
= open “foo”

 
in

{readc=fun x -> readloop
 

fp;
closec

 
= fun x -> close fp}

let loop s =
if * then s.closec() else s.readc();loop

 
s

let main() =
let s = read_sect() in loop s



Demonstration



Conclusion (for Part I)
Recursion schemes are very relevant to 
program verification, hence of practical 
interest
Type-based approach gives a simple, 
efficient model checking algorithm
Despite the disappointing worst case 
complexity, the model checking of recursion 
schemes may be tractable for realistic 
inputs
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