Types and Recursion Schemes for
Higher-Order Program Verification

Naoki Kobayashi
Tohoku University

In collaboration with
Luke Ong (University of Oxford),
Ryosuke Sato, Naoshi Tabuchi, Takeshi Tsukada, Hiroshi Unno
(Tohoku University)

This Talk

¢ Type-theoretic approach to model checking
of recursion schemes

- Simpler proofs of decidability/complexity of model
checking

- A practical algorithm for model checking
(c.f. TRecS: a type-based recursion scheme model
checker)

¢ Applications to program verification

- A sound, complete, and automated verification
method for higher-order functional programs

Plan of the Talk
¢ Part 1

- From program verification to model checking
recursion schemes [K. POPLO9]

- From model checking to type checking: Simple case
(safety properties) [K. POPLO9]

- Model checking (=type checking) algorithm
[K. PPDPQO9]

¢ Part 2

- From model checking to type checking:
General case [K. and Ong, LICS09]

- Towards a software model checker for higher-order
languages [K., Tabuchi and Unno, POPL10][Tsukada and K. FoSSaCS10]

- Remaining challenges

Plan of the Talk
¢ Part 1

- From program verification to model checking
recursion schemes [K. POPLO9]

- From model checking to type checking: Simple
case (safety properties) [K. POPLO9]

- Model checking (=type checking) algorithm
[K. PPDPO9]

¢ Part 2

- From model checking to type checking:
General case [K. and Ong, LICS09]

- Towards a software model checker for higher-
order languages

- Remaining challenges

Program Verification Techniques

¢ Finite state/pushdown model checking

- Applicable to first-order procedures (pushdown
model checking), but not to higher-order
programs

¢ Type-based program analysis
- Applicable to higher-order programs
- Sound but imprecise

¢ Dependent types/theorem proving
- Requires human intervention

Sound and precise verification techniques for
higher-order programs (e.g. ML/Java programs)?

From Program Verification

to Model Checking Recursion Schemes
[K. POPL 2009]

Higher-order

program
+
specification

—

Program
Transformation

#

Tree automaton,

Rec. scheme
(describing all
event sequences
or outputs)
+

recognizing

—

Model
Checking

valid event sequences

or outputs

From Program Verification to Model Checking:

Example
let f(x) = Fxk— + (c k) (r(F x k))
if * then close(x) S—>Fd *+
else read(x); f(x) /" \
in cC r
let y = open "foo" .
ery P * N
in C rl
f (y) X
C r
: R ||
Is the file "foo" - ‘ \
ccessed according| —p | Is each path of the tree
to read™ close? , labeled by r*c?
_)

From Program Verification to Model Checking:
Example

_ Fxk—> + (c k) (r(F x k)
let f(x) =
if * then close(x) XS > Fdx*

+

else read(x); f(x) P
in Transformation!

let y = open "foo"

NN
in C rl
£ I
(y) AN
C r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according | ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, _ y

From Program Verification to Model Checking:

Example
+
if * then EFS_)Fd*_F
else cPS
in e Transformation!
let y = open "foo —
in C rl'
f (y) X
C r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according | ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, _ y

From Program Verification to Model Checking:
Example

close(x)

in
let y = open "foo"

in
f (y)

(c k)

F»S > Fdx
+

CPS
Transformation!

~
Is the file "foo”

ccessed according | ——p

to read™ close?
Y,

NN

_

Is each path of the tree
labeled by r*c?

)

From Program Verification to Model Checking:

Example
(r(F x k))
F»S >Fdx
+
read(x); f(x) —
in o Transformation!
let y = open “foo —
in C rl'
f (y) X
C r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according| —p | Is each path of the tree
to read™ close? labeled by r*c?
Y, _ y

From Program Verification to Model Checking:

Example
let f(x) = Fxk— + (c k) (r(F x k))
if * then close(x) —>S > Fdx*
else read(x); f(x) S
in
let y = open "foo"
in
f (y)
~
Is the file "foo" - \
ccessed according| —p | Is each path of the tree
to read™ close? , labeled by r*c?
_)

From Program Verification to Model Checking:
Example

let f(x) = Fxk— + (ck) (r(F x k))
if * then close(x) —>S > Fdx
else read(x); f(x)

in Fdx
let y = open "foo"
in
f (y)
~
Is the file "foo” - N
ccessed according | ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, _ y

From Program Verification to Model Checking:
Example

let f(x) = Fxk— + (ck) (r(F x k))
if * then close(x) —>S > Fdx
else read(x); f(x)

in /N
let y = open “foo" ‘i’ ri
in * Fdx
f (y)
~
Is the file "foo" - \
ccessed according | ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, _ y

From Program Verification to Model Checking:
Example

let f(x) = Fxk— + (ck) (r(F x k))
if * then close(x) —>S > Fdx
else read(x); f(x)

in /N
let y = open “foo" ‘i’ ri
in * /-l-\
f (y) cI rl'
~\ * Fdx
Is the file "foo" - \
ccessed according | ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, _ y

From Program Verification to Model Checking:

Example
let f(x) = Fxk— + (c k) (r(F x k))
if * then close(x) S—>Fd *+
else read(x); f(x) /" \
in cC r
let y = open "foo" .
ery P * N
in C rl
f (y) X
C r
: R ||
Is the file "foo" - ‘ \
ccessed according| —p | Is each path of the tree
to read™ close? , labeled by r*c?
_)

From Program Verification

to Model Checking Recursion Schemes

Higher-order

program
+
specification

—

Program
Transformation

Rec. scheme
(describing all

event sequences)

#

automaton for

+

infinite trees

—

Model
Checking

/Sound, complete, and automatic for:
- A large class of higher-order programs:
simply-typed A-calculus + recursion
+ finite base types
- A large class of verification problems:
resource usage verification [Igarashi&K. POPL2002],
\ reachability, flow analysis, ...

~

/

Comparison with Traditional Approach
(Control Flow Analysis)

¢ Control flow analysis
Control flow

graph

Higher-order_ [Flow > (finite state — |verification

program Analysis

or pushdown
machines)

¢ Our approach

Higher-order

Drogram — Program _, Recursion _,

Transformation| scheme

verification

Only information about
infinite data domains
is approximated!

Comparison with Traditional Approach
(Software Model Checking)

Program Classes Verification Methods
Programs with Finite state model checking
while-loops
Programs with Pushdown model checking infinite
1st-order recursion state
Higher-order functional Recursion scheme model model.

: checking
programs checking

Plan of the Talk
¢ Part 1

- From program verification to model checking
recursion schemes [K. POPLO9]

- From model checking to type checking:
Simple case (safety properties) [K. POPLO9]

- Model checking (=type checking) algorithm
[K. PPDPO9]

¢ Part 2

- From model checking to type checking:
General case [K. and Ong, LICS09]

- Towards a software model checker for higher-
order languages

- Remaining challenges

Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A
if and only if
G is typable in TS(A)

Model Checking as

Type Checking
(c.f. [Naik & Palsberg, ESOP2005])

Why Type-Theoretic
Characterization?

¢ Simpler decidability proof of model
checking recursion schemes

- Previous proofs [Ong, 2006][Hague et. al, 2008]
made heavy use of game semantics

¢ More efficient model checking algorithm

- Known algorithms [0Ong, 2006][Hague et. al, 2008]
always require n-EXPTIME

Model Checking Problem

(Given
G: higher-order recursion scheme
(without safety restriction)

\does A accept Tree(6)?

~

A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

J

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)

Model Checking Problem
/Given \

G: higher-order recursion scheme

(without safety restriction)
A: trivial automaton [Aehlig c5L06]

(Biichi tree automaton where
all the states are accepting states)

\does A accept Tree(G)?)

The general case (full modal p-calculus model
checking) is discussed in Part 2

(Trivial) tree automaton
for infinite trees

q0
©c aqo0 5(q0, a) = q0 qO
b, a® 5(q0. b) = q1
| 97" a0 3(ql, b) = q1
1c b
T qltl) bq/O\ 3(q0, ¢) = ¢
ll ||Dq1 8((,1, C)=8
qic |q1
b In every path,
éql “a" cannot occur after "b"

Types for Recursion Schemes

¢ Automaton state as the type of trees
- q: trees accepted from state q

A

- qlAq2: trees accepted from both q1 and q2

Does A accept Tree(G)?

v

Does Tree(G) have type q,?

Types for Recursion Schemes

¢ Automaton state as the type of trees

- q1—> q2: functions that take a tree of type qi
and return a tree of q2

i

ql

v A =

Types for Recursion Schemes

¢ Automaton state as the type of trees
- qlAq2 — q3:
functions that take a tree of type qlAq2 and
return a tree of type g3

Types for Recursion Schemes

¢ Automaton state as the type of trees
(91 - q2) — q3:
functions that take a function of type q1 — q2
and return a tree of type q3

q3

Example

4)
Automaton:
8(qo. @) = 90 90 3(qo. b) = q;
3(qo. ¢) = 8(q;. ¢) = ¢
_ J

a: 9o —90—90 b: q,—q, Ax.a ¢ (b x): q;—>qo

b‘lo

a‘!o /aq<
ALk A" k
9

Typing

S(q: Cl) = q1--Qn T x:it I-X -

Fa:q;>..5q,~q

Tt 1AAT, =T
T, Xx:1y,..., xX:t, Ftt I Ft,t (i=1,..n)
[FAX.t T ALAT, = T Tkttt

T T : Tt (for every F,:tel’)
|-{F1—>'|'1,..., Fn —)1'“} B

Soundness and Completeness
[K., POPL2009]

Let
G: Rec. scheme with initial non-terminal S
A: Trivial automaton with initial state q,
TS(A): Intersection type system
derived from A

Then,
Tree(G) is accepted by A
if and only if
S has type q, in TS(A)

Plan of the Talk
¢ Part 1

- From program verification to model checking
recursion schemes [K. POPLO9]

- From model checking to type checking: Simple
case (safety properties) [K. POPLO9]

- Model checking (=type checking) algorithm
* Naive algorithm
* Practical algorithm

¢ Part 2

- From model checking to type checking:
General case [K. and Ong, LICS09]

- Summary of our recent results
- Ongoing and future work

Typing

S(Q, Cl) = q1-Qn T x:it I'X -

|-0:q1—>...—>qn—>q

Tt 1AAT, =T
T, Xx:1y,..., xX:t, Ftt I Ft,t (i=1,..n)
[FAX.t T ALAT, = T Tkttt

T | 1'j : T (for every F;:tel)
|'{F1—>'|‘1,..., Fn —)fn} B

Naive Type Checking Algorithm

[S has type qo]

Recursion Scheme:

{F, »t,, ..., F, o1, }
()T |- t, A
for each FiteT
(i) Sigg e T

where
H() -{F tel|T -1

Fpox = (Fit |75 sor"l'(F)}

kfor Some I rFll'rer' out invalid type bmdmgsj

(siqq < gfp(H) - n HK(T o

it}

All the possuble
type bindings
E.g. for F:o—o,

{F:T > q0, F: qO - q0,
F: q1 — qO,
F:qOAql — qO, ...}

_ -

Example
¢ Recursion scheme:
S—>Fc F - Ax.a x (F (b x))
(S:0, F: 0—>0)
¢ Automaton:
8(q0. @) = 9o G0 (0. b) = qy
6(qp. €) = 8(q;, ¢) = ¢

Imax= {S:90. S:q1, F: Toqo, F: qo 590, F: 91 290, F: 9o Aq; —qo,
F: T>q, F: qo —q;, F: q; —q;, F: g0 Aq; —qy}

I'y = { Sit e 1_‘maxlrmax |_F C:T}
U{Fit el Tn - 2A%.a x (F(b x)) :1}

= {S:q0, S:q;, F: qp >qo. F: qorq; —qo}
I, = {5:90. F: 907q; —q0}
I3 = {S:qo, F: qonqy —q0} = T,

Naive Algorithm Does NOT Work
[S has ’rypeza

4 # K

S:qo (S gfp(H) = ﬂk H (Fmax)
where H(I') = { Fit e T|T|-1;it}
| {F:t |t sor"l'(F)} This is huge!

~N

.
sort # of types (Q={q0.9:.9..95})
0 4 (90.91.92.93)
0 >0 24 x4 = 64 (7S—q., with Sc2R, qcQ)
(0—0) > o0 204 x4 = 266
((0—>0) > 0) >0 | 28 10000000000000000000
2 x4 > 10

Plan of the Talk
¢ Part 1

- From program verification to model checking
recursion schemes [K. POPLO9]

- From model checking to type checking: Simple
case (safety properties) [K. POPLO9]

- Model checking (=type checking) algorithm
* Naive algorithm
* Practical algorithm

¢ Part 2

- From model checking to type checking:
General case [K. and Ong, LICS09]

- Summary of our recent results
- Ongoing and future work

More Efficient Algorithm?
S has type qq

e 1‘*0
Siqo € Ny HYE=)
where

HT) = {FiteT|T |- 1t}
Challenges:

(i) How can we find an appropriate I’y ?

"Run” the recursion scheme (finitely many steps),
and extract type information

(ii) How can we guarantee completeness?
Iteratively repeat (i) and type checking

Hybrid Type Checking Algorithm

f

Step 1:

~N

Run the recursion scheme

a finite number of steps

’roperty
violated?

yes

Error path

es Property
Is
nho Satisfied!
4)
Step 3: Compute
_ k
. =Ny HY(TY))

/

Step 2: Extract |
type environment

I'g)

Soundness and Completeness of
the Hybrid Algorithm

Given:

- Recursion scheme 6

- Deterministic trivial automaton A,
the algorithm eventually terminates, and:

(i) outputs an error path
if Tree(6) is not accepted by A

(ii) outputs a type environment
if Tree(G) is accepted by A

Example
¢ Recursion scheme:
S—>Fc F - Ax.a x (F (b x))
¢ Automaton:
6(qo. @) = 9090 (90, b) = q;
6(qo. ¢) = 8(qy, ¢) = ¢

$q°—> F §°_> aq{ > qJ0
/ AN
I F(b c?)0 q{ /a$
P Flb(b c))*
‘hcl:

Example
¢ Recursion scheme:
S—>Fc F - Ax.a x (F (b x))
¢ Automaton:
6(qo. @) = 9090 (90, b) = q;
6(qo. ¢) = 8(qy, ¢) = ¢

S'% F % /aq{ —~ a0
AN
e S ¢ /03
b Fb(b)
q: |
C

+ o

Example
¢ Recursion scheme:
S—>Fc F - Ax.a x (F (b x))
¢ Automaton:
6(qo. @) = 9090 (90, b) = q;
6(qo. ¢) = 8(qy, ¢) = ¢

S'% F d% o —~> a0
/" \ AN .
Wb o i /a$ F: G0~ 4y
o Fb(b c))°
‘hcl:

Example
¢ Recursion scheme:
S—>Fc F - ix.ax (F (b x))
¢ Automaton:

6(qo. @) = 9090 (90, b) = q;
6(qo. ¢) = 8(qy, ¢) = ¢

Iy
S'% F d%s g0 —~ ado S: qo
/' \ AN .
qOC F(b 3 q{ aqO F- qo/\ ql
7/ \\ — Qo

Y5 Flbb) F: g0 o
91 |
C

Example
¢ Recursion scheme:
S—>Fc F - ix.ax (F (b x))
¢ Automaton:

6(qo. @) = 9090 (90, b) = q;
6(qo. ¢) = 8(qy, ¢) = ¢

Iy
S'% F d%s g0 —~ ado S: qo
/" \ AN .
qOC F(b 830 q{ aqO F- qo N\ ql
7/ \\ — Qo

Pp Flbb) F: go— qo
‘hCI: F: T> q

Example

4 D
Step 1: es ;:°Pe""y
Run the recursion scheme| no Satisfied|
a finite number of steps
. y,
[)
Step 3: Compute
’roperty
violated?

=N, HK(T o))

/

es Step 2: Extract)
Y type environment
Error path Ty y

S: qo F: qoA 91> qq
F: qo—> 9 F: T q

Example:

Filtering out invalid judgments
¢ Recursion scheme:

S—>Fc F - Ax.a x (F (b x))
¢ Automaton:

6(qo. @) = 9090 (90, b) = q;
6(qo, ¢) = 8(qy. €) = ¢
I'0={S: q0. F: qoA q1— 9. F: qo—> qo . F: T > qg}
Fl - H(Fo) - { Fk:T € ro | ro |— '|'k21:}
= {5: 9. F: 9o~ 91> qo. F: 9o > qo}
I'2={S5: q0. F: qo A 91— qo}
I'3={S: q0. F: g0 A 91— qo}

Example

\

es Property
Is
Satisfied!

Step 1:
Run the recursion scheme

a finite number of steps

S: qo
F: goA 91> qo

(Step 3: Compute
=N, HK(T o)

/

’roperty
violated?

es Step 2: Extract)
Y type environment
Error path To y

S: qo F: qoA 91> qq
F: qo—> 9 F: T q

Example

\

g Property
Is
Satisfied!

Step 1:
Run the recursion scheme

a finite number of steps

F Qo N 91— Qo

Step 3: CompuTe
. =N, H (1"0)

V4

’roperty
violated?

es Step 2: Extract)
Y type environment
Error path To y

S: qo F: qoA 91> qq
F: qo—> 9 F: T q

TRecS
http://www_ kb .ecei.tohoku.ac. jp/~koba/trecs/

@Type—Based Model Checker for Higher-0Order Recursion Scheme — Mozilla Firefox

2rE REE LW EES Yeiv-0B V-D o ATFH

@ - C T | ‘J hittped Ao kb ecei tohoku.ac jp kobatreces” Ko |_C.,J- i }"

8] F{RBA—T b Firefox B(ETHLS 0 BEHT1-A
‘j FrontPage - Kobalab Wiki d Type-Based Model Ghecker for B | o ¥¢7Fe-EEEFEIREN -0 -
~

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit" button, Examples are given below, Currently, our model checker only accepts determunistic Buchy
automata with a trivial acceptance cotdiion,

¢ The first model checker for recursion schemes (or,
for higher-order functions)

4 Restricted to deterministic trivial automata

¢ Based on the hybrid model checking algorithm,
with certain additional optimizations

Experiments

order |rules |states |result |Time

(msec)
Twofiles 4 P 11 4 Mac
Taken from the compiler of]

FileWrong |4 Objective Caml, consisting of

about 60 lines of O'Caml code |
TwofilesE |4
Filecanic -ﬁ_--
Lock
Orderb 5 9 4 Yes 2

(Environment: Intel(R) Xeon(R) 3Ghz with 2G6B memory)

(A simplified version of)

FileOcamlC

let readloop fp =

if * then () else readloop fp:; read fp
let read_sect() =

let fp = open “foo” in

{readc=fun x -> readloop fp:

closec = fun x -> close fp}
let loop s =

if * then s.closec() else s.readc():loop s
let main() =

let s = read_sect() in loop s

Demonstration

Conclusion (for Part I)

¢ Recursion schemes are very relevant to
program verification, hence of practical
interest

¢ Type-based approach gives a simple,
efficient model checking algorithm

¢ Despite the disappointing worst case
complexity, the model checking of recursion
schemes may be tractable for realistic
inputs

	Types and Recursion Schemes for Higher-Order Program Verification
	This Talk
	Plan of the Talk
	Plan of the Talk
	Program Verification Techniques
	From Program Verification�to Model Checking Recursion Schemes�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to Model Checking Recursion Schemes�
	Comparison with Traditional Approach (Control Flow Analysis)
	Comparison with Traditional Approach (Software Model Checking)
	Plan of the Talk
	Goal
	Why Type-Theoretic Characterization?
	Model Checking Problem
	Model Checking Problem
	(Trivial) tree automaton �for infinite trees
	Types for Recursion Schemes
	Types for Recursion Schemes
	Types for Recursion Schemes
	Types for Recursion Schemes
	Example
	Typing
	Soundness and Completeness�[K., POPL2009]
	Plan of the Talk
	Typing
	Naïve Type Checking Algorithm
	Example
	Naïve Algorithm Does NOT Work
	Plan of the Talk
	More Efficient Algorithm?
	Hybrid Type Checking Algorithm
	Soundness and Completeness of�the Hybrid Algorithm
	Example
	Example
	Example
	Example
	Example
	Example
	Example: �Filtering out invalid judgments
	Example
	Example
	TRecS�http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/
	Experiments
	(A simplified version of) FileOcamlC
	Demonstration
	Conclusion (for Part I)

